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Plasticity and Cognition
Luca Franchini,1,7 Jennifer Stanic,1,7,9 Luisa Ponzoni,5,6 Manuela Mellone,1 Nicolò Carrano,1 Stefano Musardo,2

Elisa Zianni,1 Guendalina Olivero,4 Elena Marcello,1 Anna Pittaluga,4 Mariaelvina Sala,5 Camilla Bellone,2

Claudia Racca,3 Monica Di Luca,1,8 and Fabrizio Gardoni1,10,*

SUMMARY

NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory

synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction

of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of

NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used

different protocols to induce synaptic plasticity in the presence or absence of agents modulating

Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to syn-

aptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A

silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction.

Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial mem-

ory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at

synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive

behavior.

INTRODUCTION

NMDA-type glutamate receptors (NMDARs) are key mediators of excitatory synaptic transmission in the

brain (Swanger and Traynelis, 2018) contributing to synaptic plasticity and relevant for many forms of

learning and memory (Morris et al., 1986; Lynch, 2004; Kullmann and Lamsa, 2007). However, the precise

molecular mechanism by which postsynaptic NMDARs are retained at the synapse to allow for activity-

dependent plasticity and expression of cognitive functions is still mostly unexplored.

The functional and pharmacological properties, the interacting proteins, and the subcellular localization of

NMDARs strictly depend on their subunit composition, namely, the combination of the obligatory subunit

GluN1 with the regulatory subunits GluN2 (A–D) and GluN3 (Paoletti et al., 2013). NMDAR subunit compo-

sition not only changes during neuronal development (Bellone andNicoll, 2007) but at mature synapses can

be modulated by synaptic activity and sensory experiences (Philpot et al., 2001, 2003; 2007; Sawtell et al.,

2003; Yashiro et al., 2005) and can profoundly modify neuronal circuits and behavior. Recently, the unbal-

ance in NMDAR subunit composition was recognized as a pivotal feature of several common neurological

disorders (Sanz-Clemente et al., 2013; Lai et al., 2014; Shohami and Biegon, 2014; Gardoni and Bellone,

2015; Mellone et al., 2015).

GluN2A-containingNMDARs are rather stable at synapses, and several mechanisms have been called upon

to regulate their synaptic retention. The C-terminal domain (CTD) of GluN2A enables interaction with the

PDZ domain of scaffolding proteins, anchoring the receptor at the postsynaptic membrane as well as ex-

pressing correct downstream events (Horak et al., 2014; Shipton and Paulsen, 2013; Lussier et al., 2015;

Stanic et al., 2015). Interestingly, mice lacking the CTD of GluN2A display impaired hippocampal long

term potentiation (LTP) (Sprengel et al., 1998). Our group has previously reported Rabphilin3A (Rph3A)

as a novel GluN2A synaptic partner needed to stabilize GluN2A/PSD-95 complex at the postsynaptic den-

sity (PSD). Disruption of the Rph3A/GluN2A/PSD-95 complex reduced GluN2A synaptic retention associ-

ated with increased GluN2A-containing NMDARs endocytosis (Stanic et al., 2015). Notably, this event is

also associated with reduced dendritic spine density both in vitro and in vivo (Stanic et al., 2015).

1DiSFeB, Dipartimento di
Scienze Farmacologiche e
Biomolecolari, Università
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Many studies assigned specific roles for synapticGluN2A-containingNMDARs in the induction of LTP and Long-

TermDepression (LTD) (Liu et al., 2004; Foster et al., 2010; Kellermayer et al., 2018). Deletion of GluN2A leads to

reduced hippocampal LTP and impaired spatial learning (Sakimura et al., 1995; Kiyama et al., 1998; Kannangara

et al., 2015). The use of GluN2A-specific antagonists prevented LTP but not LTD (Liu et al., 2004). Similarly,

selective inhibition of GluN2A-containing receptors with low Zn2+ concentrations impaired LTP but not LTD

(Papouin et al., 2012). Finally, different studies demonstrated an increase in GluN2A-containing NMDARs at

the PSD following LTP induction (Barria and Malinow, 2002; Bellone and Nicoll, 2007; Peng et al., 2010; Baez

et al., 2013), suggesting that NMDAR trafficking at synapses could play a relevant role in these events. However,

many open questions remain about (1) the role of the complex of proteins responsible for synaptic retention of

GluN2A-containing NMDARs in synaptic plasticity and (2) the link between GluN2A-containing NMDARs and

cognitive behavior. Starting from these questions here we analyzed the role of Rph3A and Rph3A/GluN2A com-

plex in the functional andmorphological modifications of excitatory synapses following induction of LTP as well

as in hippocampal NMDAR-dependent behaviors such as spatial learning.

RESULTS

Rph3A-Positive Dendritic Spines Are Characterized by an Increased Spine HeadArea and PSD

Size

Rph3A is a known vesicle-associated presynaptic protein (Li et al., 1994; Burns et al., 1998) also highly en-

riched in dendritic spines at the lateral domain of the PSD (Stanic et al., 2015). Pre-embedding immunohis-

tochemistry for Rph3A in rat stratum radiatum of the CA1 region of hippocampus revealed that 42.428 G

2.301% of presynaptic terminals (n = 3632) and 48.275 G 2.331% of dendritic spines (n = 3632) display

Rph3A labeling (Figures 1A and 1B), thus indicating a similar enrichment of the protein at pre- and post-

synaptic sites. We analyzed possible morphological differences between Rph3A positive (Rph3A+) and

negative (Rph3A�) dendritic spines. Rph3A+ spines exhibit a highly significant increased spine head

area (***p < 0.001; Figures 1C and 1D and Table 1) and PSD length (***p < 0.001; Figures 1E and 1F and

Table 1) and also an augmented PSD thickness (*p < 0.05; Figures 1G and 1H and Table 1) compared to

Rph3A� ones, thus defining a selective accumulation of the protein in more ‘‘mature’’ synapses.

Modulation of Rph3A/GluN2A Complex by Long-Term Potentiation

It is well known that induction of LTP leads to an accumulation of GluN2A-containing NMDARs at the excitatory

PSDs (Barria andMalinow, 2002; Grosshans et al., 2002; Bellone andNicoll, 2007). By using a previously validated

protocol, here we treated rat primary hippocampal neurons with Forskolin/Rolipram/Picrotoxin cocktail to

induce chemical LTP (cLTP; Otmakhov et al., 2004; Dinamarca et al., 2016). Quantification of GluA1 Ser845 phos-

phorylation showed a significant increase of AMPA subunit phosphorylation levels after cLTP (Esteban et al.,

2003; Oh et al., 2006; Hu et al., 2007; Makino et al., 2011; Figure S1). We observed that cLTP was sufficient to

increase the levels not only of GluN2A (**p < 0.01; Figure 2A) but also of Rph3A (*p < 0.05; Figure 2A) in post-

synaptic membrane fractions (Triton insoluble fractions, TIF; Gardoni et al., 2006) as measured 15min after cLTP

induction. Conversely, induction of cLTD (Oh et al., 2006;Marcello et al., 2013) did not induce anymodification of

GluN2A and Rph3A synaptic localization (Figure S2).

The confocal microscopy analysis in GFP-transfected primary hippocampal neurons revealed that cLTP

significantly increased the percentage of Rph3A+ spines compared with basal conditions (Figure 2B;

**p < 0.01). A careful morphological analysis of dendritic spines showed that Rph3A was selectively

enhanced in mushroom spines after cLTP (Figure 2C; *p < 0.05); no alteration of Rph3A localization was

observed in stubby or thin spines (Figure 2C).

We performed Proximity Ligation Assay (PLA) to address whether Rph3A accumulation in spines leads also

to its interaction with the GluN2A/PSD-95 complex (Stanic et al., 2015). Analysis of PLA clusters after cLTP

in GFP-transfected neurons (Figure 2D) showed a statistically significant increase in Rph3A/PSD-95

(**p < 0.01) and GluN2A/Rph3A (*p < 0.05) interactions within dendritic spines.

The observed increase of Rph3A levels at postsynaptic sites after cLTP induction could be the result of a

modulation of protein trafficking or novel protein synthesis. To clarify this point, we blocked protein syn-

thesis through anisomycin (40 mM) during cLTP. Protein levels of GluN2A and Rph3A at synapses did not

differ in the presence or absence of anisomycin (Figure 2E), thus suggesting that novel protein synthesis

does not play a key role in these events. To confirm these results, we performed analysis of Rph3A local

synthesis after cLTP through a PLA of puromycin and Rph3A (puro-PLA assay; see Transparent Methods).
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This assay allows one to monitor the synthesis of novel Rph3A molecules in the different subcellular com-

partments (Dieck et al., 2015). As shown in Figure 2F, we did not observe any difference in the density of

puromycin/Rph3A clusters between control and cLTP-treated neurons both in the soma and along den-

drites. Overall, these in vitro data indicate that the cLTP-triggered accumulation of GluN2A/Rph3A/

PSD-95 complexes at synapse cannot be ascribed to Rph3A de novo synthesis.

Figure 1. Morphological Analysis of Rph3A-Positive and Rph3A-Negative Dendritic Spines

(A and B) Representative electron micrographs of stratum radiatum CA1 region of Rph3A negative (A, left image;

Rph3A�) and positive (B, right image; Rph3A+) spinous synapses, respectively. Scale bar, 125 nm.

(C and D) Shifted distribution of spine head area toward bigger values in Rph3A+ spines (blue; n = 689/1,500, 3 rats)

compared with Rph3A� spines (red; n = 811/1,500, 3 rats; p < 0.001, Mann-Whitney Rank Sum Test).

(E and F) Shifted distribution of PSD length toward bigger values in Rph3A+ spines (blue; n = 689/1,500, 3 rats) compared

with Rph3A� spines (red; n = 811/1,500, 3 rats; p < 0.001, Mann-Whitney Rank Sum Test).

(G and H) Shifted distribution of PSD thickness toward bigger values in Rph3A+ spines (blue; n = 689/1,500, 3 rats)

compared with Rph3A� spines (red; n = 811/1,500, 3 rats; p < 0.05; Mann-Whitney Rank Sum Test).
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Housing animals in enriched environment conditions induces neuronal plasticity events and accumulation of

GluN2A-containing NMDARs at synapses (Philpot et al., 2001, 2003; 2007; Sawtell et al., 2003; Yashiro et al.,

2005; Grilli et al., 2009; Summa et al., 2011; Bonfiglio et al., 2018). To evaluate whether Rph3A localizes at the

postsynapse also after this in vivo plasticity, we purified the postsynaptic fraction from hippocampi of mice

housed in enriched environment for 3 months or in standard cages. As previously reported, enriched environ-

ment promoted the increase of GluN2A-containing NMDARs at synapses (Figure 2G; *p < 0.05; Philpot et al.,

2001, 2003, 2007; Sawtell et al., 2003; Yashiro et al., 2005). Similarly, the enriched environment induced also a sig-

nificant increase of Rph3A levels in the postsynaptic fraction (Figure 2G; *p < 0.05).

Phospholipase C Activation Promotes Rph3A/GluN2A Interaction in the Postsynaptic

Density

Different putative molecular mechanisms could be envisaged for the increased formation of the synaptic

Rph3A/GluN2A complex induced by LTP. It is well known that LTP induces activation of tyrosine kinases

(src/fyn) in the postsynaptic compartment leading to phosphorylation of NMDAR subunits (Nakazawa

et al., 2001; Liu et al., 2004). In particular, GluN2A phosphorylation at Tyr1387, within the GluN2A domain

involved in the interaction with Rph3A (Stanic et al., 2015), has been put forward for consideration (Yang

and Leonard, 2001). However, as shown in Figure S3A, cLTP did not change the phosphorylation of GluN2A

Tyr1387 in cultured cells. Moreover, co-localization analysis in COS-7 cells transfected with Rph3A and

GluN2Awt/GluN2A-Y1387E (mimicking phosphorylation) showed that GluN2A phosphorylation in this

tyrosine residue did not alter the capability of the subunit to interact with Rph3A (Figure S3B). Overall,

these experiments indicate that GluN2A phosphorylation in Tyr1387 does not represent the molecular

event regulating GluN2A/Rph3A complex formation following LTP induction.

Rph3A, through both its C2A and C2B domains, binds inositol triphosphate (IP3) in a Ca2+-dependent

manner (Montaville et al., 2008; Ferrer-Orta et al., 2017). Interestingly, IP3 and Ca2+ binding to the C2A

domain are reciprocally modulated in a positive manner. In particular, Ca2+ induces a conformational re-

arrangement of a specific Rph3A loop (namely, CBL3), which is involved in IP3 binding (Coudevylle et al.,

2008; Guillén et al., 2013). Notably, IP3 and Ca2+ regulate also the formation of Rph3A complex with

GluN2A (Stanic et al., 2015). Phospholipase C (PLC) cleaves phosphatidylinositol 4,5-bisphosphate (PIP2)

into IP3 and diacylglycerol; afterward, IP3 releases Ca2+ from the ER, suggesting that activation could

modulate the formation of Rph3A/GluN2A. PLCg and PLCb isoforms are both localized at the excitatory

synapse and functionally associated to TrkB (Gottschalk et al., 1999) and group I metabotropic receptors

(mGluR1/mGluR5; Chuang et al., 2001; Hannan et al., 2001), respectively. Activation of group I of metabo-

tropic glutamate receptors (mGluRs) through DHPG (50 mM) increased postsynaptic levels of both Rph3A

(Figure 3A, *p < 0.05) and GluN2A (Figure 3A, *p < 0.05) but not GluN2B (Figure 3A). Under the same

experimental conditions, DHPG augmented Rph3A-GluN2A interaction as evaluated by the co-immuno-

precipitation assay (Figure 3B, ***p < 0.001). Analysis of pERK phosphorylation was performed as a positive

control of DHPG treatment (Gallagher et al., 2004; Figure S4, **p < 0.01).

Finally, as further demonstration of the role of PLC in the modulation of Rph3A retention at the excitatory

synapse, we showed that also the treatment of hippocampal primary cultures with the TrkB agonist Brain

Derived Neurotrophic Factor (BDNF, 3 h, 50 ng/mL), leading to activation of the PLCg pathway, increased

Rph3A protein levels in the postsynaptic fraction (Figure 3C, *p < 0.05).

Modulation of Rph3A/GluN2A Complex Governs Plasticity at Molecular and Structural Level

To test the direct role of Rph3A in the membrane localization of GluN2A-containing NMDARs following

induction of cLTP, we used a small hairpin RNA for Rph3A (tGFP-shRph3A) to downregulate Rph3A in

Labeling Rph3A� Spines

(n = 811/1,500)

Rph3A+ Spines

(n = 689/1,500)

p Value (Rph3A+ versus

Rph3A�)

PSD length (nm) 215 G 2.38 232 G 2.87 <0.001

PSD thickness (nm) 54.5 G 0.96 56.7 G 1.06 0.049

Spine Head Area (nm2) 99.9 G 2.40 143 G 3.54 <0.001

Table 1. Morphological Analysis of Rph3a+ and Rph3A� Dendritic Spines (n = 3 Rats, 500 Spines/Rat)
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the presence or absence of cLTP induction, and we evaluated the surface localization of the GluN2A sub-

unit (Figure 4A). As expected (Baez et al., 2018), induction of cLTP promoted an accumulation of GluN2A at

the cell surface (Figure 4A, ***p < 0.001). Notably, Rph3A silencing prevented GluN2A accumulation at the

cell surface following induction of cLTP (Figure 4A, ***p < 0.001 shSCR-cLTP versus shRph3A-cLTP), thus

Figure 2. Effect of Long-Term Potentiation on Rph3A/GluN2A Complex

(A) Bar chart (left) and representative western blots (right) for GluN2A and Rph3A protein levels in TIF from hippocampal

primary cultures after cLTP. cLTP induction was performed in artificial cerebrospinal fluid (ACSF) without MgCl2, plus

50 mM Forskolin, 0.1 mMRolipram, and 100 mM Picrotoxin for 16 min. Control groups were kept in normal ACSF. After that,

cells were incubated back in ACSF with MgCl2 for 15 min (n = 9, t test; *p < 0.05; **p < 0.01; data are expressed as meanG

SEM). Molecular weight markers are indicated on the right.

(B) Dendritic spine positivity for Rph3A after cLTP in primary cultures (t test) and representative images (scale bar, 5 mm).

**p < 0.01; data are expressed as mean G SEM.

(C) Morphological analysis of Rph3A-positive spines before and after cLTP treatment (t test). *p < 0.05; data are expressed

as mean G SEM.

(D) Bar chart and representative images of PLA for Rph3A:PSD-95 (red bar) and Rph3A:GluN2A (green bar) in control

cultures (CTR) and after cLTP (scale bar, 5 mm). Merge panels are shown in the right. *p < 0.05; **p < 0.01; data are

expressed as mean G SEM.

(E) Bar graph and representative blots of GluN2A and Rph3A protein levels in TIF from hippocampal cultures after cLTP,

with (cLTP + Anis) or without (cLTP) protein synthesis inhibitor Anisomycin (40 mM) (RM one-way ANOVA, n = 8); *p < 0.05;

data are expressed as mean G SEM. Molecular weight markers are indicated on the right.

(F) Column graph and representative images of Puro-PLA analysis for Rph3A newly synthetized (Rph3A:puromycin) in

dendritic and somatic compartments after cLTP in primary cultures (n = 39–43, scale bar, 10 mm).

(G) Bar graph and representative images of GluN2A and Rph3A protein levels in hippocampal TIF from young mice

housed in enriched environment (EE) compared with standard cages (CTRL). *p < 0.05; data are expressed as mean G

SEM. Molecular weight markers are indicated on the right.
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suggesting that formation of GluN2A/Rph3A complex is required for the stabilization of GluN2A at synap-

ses following LTP.

It is well known that LTP also increases GluA1 clusters at synapses (Malinverno et al., 2010). As shown in

Figures 4B and 4C, induction of cLTP increased GluA1 cluster width (Figure 4B, ***p < 0.001), paralleled

by augmented spine density (Figure 4C, **p < 0.01) and spine head width (Figure 4C, *p < 0.05).

Figure 3. mGluR/PLC Pathway Modulates Rph3A Synaptic Localization and Interaction with NMDAR

(A) Column chart and representative blots in TIF from primary cultures treated with 3,5-R,S-DHPG (DHPG, 50 mM for

15 min). DHPG increased GluN2A and Rph3A significantly, whereas no difference could be inferred for GluN2B (t test,

n = 5). *p < 0.05; data are expressed as mean G SEM. Molecular weight markers are indicated on the right.

(B) Graph and blots for co-immunoprecipitation of Rph3A and GluN2A from P2 fraction of primary cultures treated with

DHPG. The analysis revealed increased binding of Rph3A with GluN2A (n = 4). ***p < 0.001; data are expressed as

mean G SEM. Molecular weight markers are indicated on the right.

(C) Bar graph and representative blots for Rph3A and tubulin in TIF from primary hippocampal neurons treated with BDNF

(50 ng/mL, 3 h; n = 5; t test). *p < 0.05; data are expressed as meanG SEM. Molecular weight markers are indicated on the

right.
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Interestingly, Rph3A silencing completely prevented any modification of GluA1 cluster size (Figure 4B,

*p < 0.05 shSCR-cLTP versus shRph3A-cLTP) and spine density (Figure 4C, *p < 0.05 shSCR-cLTP versus

shRph3A-cLTP). Moreover, Rph3A silencing prevented the enlargement of spine head width induced by

LTP (Figure 4C, p > 0.05, shSCR-CTRL versus shRph3A-cLTP).

To evaluate the role of PLC in these events, we inhibited PLC activity through U73122 (1 mM) during cLTP.

Co-incubation with PLC inhibitor recapitulated basal levels of both Rph3A (*p < 0.05, U73122 + cLTP versus

cLTP) and GluN2A (*p < 0.05, U73122 + cLTP versus cLTP) in the postsynaptic fraction (Figure 4D). It is well

Figure 4. Effect of Modulation of Rph3A/PLC Pathway on GluN2A Surface Staining, GluA1 Synaptic Localization

and Spine Morphology

(A) Bar graph and representative images of GluN2A surface expression before (CTRL) and after cLTP (cLTP) in tGFP-

shScramble (shSCR) or tGFP-shRph3A transfected neurons. cLTP induction was performed in ACSF without MgCl2, plus

50 mM Forskolin, 0.1 mM Rolipram and 100 mM Picrotoxin for 16 min. Control groups were kept in normal ACSF. After that,

cells were incubated back in ACSF with MgCl2 for 15 min (one-way ANOVA Tukey post hoc n = 41–46, scale bar, 4 mm);

***p < 0.001.

(B) Graph chart and representative images of GluA1 cluster width before and after cLTP in hippocampal neurons

transfected with shSCR or shRph3A (one-way ANOVA Tukey post hoc, n = 9–11, scale bar, 4 mm); *p < 0.05, ***p < 0.001.

(C) Column graphs and representative images of shSCR or shRph3A transfected neurons before and after cLTP. cLTP

induction was performed in ACSF without MgCl2, plus 50 mM Forskolin, 0.1 mM Rolipram, and 100 mM Picrotoxin for

16 min. Control groups were kept in normal ACSF. After that, cells were incubated back in ACSF with MgCl2 for 2 h

(one-way ANOVA Tukey post hoc, n = 8, scale bar, 4 mm); **p < 0.01, *p < 0.05.

(D) Inhibition of Phospholipase C with U73122 (1 mM) during cLTP on hippocampal primary cultures recapitulates control

levels of Rph3A and GluN2A in TIF (one-way ANOVA Bonferroni post hoc, n = 5–7); *p < 0.05, ***p < 0.001. Molecular

weight markers are indicated on the right.

(E) Bar chart and representative images of spine morphology analysis after cLTP induction in the presence (cLTP +

U73122) or absence (cLTP) of U73122 (1 h after cLTP; one-way ANOVA Bonferroni post hoc, n = 25, scale bar, 4 mm);

**p < 0.01. ***p < 0.001.
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known that LTP increases dendritic spine density in hippocampal neurons (Chidambaram et al., 2019). In

addition, we previously reported that Rph3A silencing or disruption of its interaction with GluN2A is suffi-

cient to reduce spine density in resting conditions (Stanic et al., 2015). Notably, we now observed that

inhibition of PLC with U73122 during cLTP not only decreased synaptic localization of Rph3A/GluN2A com-

plex (Figure 4D) but also completely blocked the increase in dendritic spine density produced by cLTP

(Figure 4E; ***p < 0.001 cLTP versus control; **p < 0.01 cLTP versus cLTP + U73122). Overall, these results

suggest that PLC activation is required to modulate Rph3A/GluN2A retention at synapses needed for

structural modifications following induction of LTP in primary hippocampal neurons.

Overall, the above-described results indicate that induction of cLTP in primary hippocampal neurons

promotes synaptic enrichment of the Rph3A/GluN2A complex, demonstrating also a key role for Rph3A

in LTP-dependent molecular andmorphological modifications of dendritic spines, namely, LTP-dependent

trafficking of AMPARs and formation of novel dendritic spines.

GluN2A/Rph3A Complex Is Necessary for LTP Induction and Spatial Learning

We previously reported that perturbing GluN2A/Rph3A interaction in vivo with TAT-2A40 interfering

peptide (containing the GluN2A1349-1389 domain involved in the interaction with Rph3A) decreases

the amplitude of NMDAR-mediated currents and GluN2A levels at dendritic spines (Stanic et al., 2015,

2017). Here, we acutely treated adult mice with TAT-2A40 or its control TAT-scramble (TAT-SCR) peptide

(3 nmol/g, i.p., single injection). One hour after the treatment, animals were sacrificed for ex vivo molec-

ular and electrophysiological analyses. As previously reported (Stanic et al., 2015, 2017), treatment with

TAT-2A40 leads to a specific reduction of GluN2A but not GluN2B subunits at synapses leading to an

overall significant decrease of synaptic GluN2A/GluN2B ratio with no modification of GluN1 (see Fig-

ure S5). LTP was induced by stimulation of Schaffer collaterals in CA1 stratum radiatum (see Transparent

Methods). As expected, in hippocampal slices from animals treated with TAT-SCR peptide we observed

the induction and the maintenance of the LTP (Figures 5A–5C). On the contrary, in hippocampal slices

from animals treated with TAT-2A40 peptide, LTP induction was completely impaired (Figures 5A–5C;

**p < 0.01).

Changes in NMDAR synaptic levels are triggered by synaptic plasticity and by spatial memory formation

(Baez et al., 2018). In particular, an increase in the synaptic GluN2A/GluN2B subunit ratio could act as a sta-

bilizer of synaptic/circuital changes, hence leading to stabilization of memory consolidation, particularly

spatial representations (Baez et al., 2018). Starting from these considerations, we performed a spatial ob-

ject recognition behavioral task to assess the effect of disrupting Rph3A/GluN2A interaction on spatial

learning, in the same experimental conditions used for electrophysiology (TAT-2A40 versus TAT-SCR,

3 nmol/g, i.p., single injection). In the Spatial Object Recognition test, locating the object to a novel config-

uration during the T2 phase induced a significant treatment effect in terms of mean discrimination index

between TAT-SCR- and TAT-2A40-treated mice (t18 = 5.61, ***p < 0.0001, Figure 5D). During T1 phase,

all groups of mice showed a similar mean exploration time for each object (TAT-SCR: Object 1 = 11.7 G

1.0; Object 2 = 12.4 G 0.96. TAT-2A40: Object 1 = 12.9 G 0.82; Object 2 = 13.7 G 0.75). During T2 phase

two-way ANOVA revealed differences among groups (treatment effect: F(1,36) = 4.269, p < 0.05; object ef-

fect: F(1,36) = 8.79, p = 0.0053; interaction treatment x object: F(1,36) = 12.28, p = 0.001). Post hoc analysis

revealed that the mean exploration time of the displaced object was significantly higher than that of the

stationary object after treatment with TAT-SCR (Figure 5E; $$$p < 0.001 versus the corresponding stationary

object). Conversely, no difference was shown in the mean exploration time between the two objects after

treatment with TAT-2A40 (Figure 5E). The mean number of horizontal and vertical movements did not

change between the two groups (Horizontal counts: t18 = 1.252, p = 0.23, Figure 5F; Vertical counts:

t18 = 0.325, p = 0.74, Figure 5G).

DISCUSSION

The mechanism by which GluN2A-containing NMDARs accumulate at the synapse following activity-

dependent plasticity and how this relates to the expression of given cognitive functions has been ap-

proached. Here we indicate that the formation of the Rph3A/GluN2A complex is needed for molecular

and structural modifications of dendritic spines induced by LTP. In vivo disruption of Rph3A/GluN2A inter-

action by an interfering peptide leads to both LTP and spatial memory impairment corroborating this

finding.
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Rph3A is a Rab effector protein involved in neurotransmitter release at the presynaptic terminal, and its

conformation and activity are strictly modulated by the presence of Ca2+ ions and IP3 (Coudevylle et al.,

2008; Montaville et al., 2008; Guillén et al., 2013). Recently, Rph3A has been detected also at dendritic

spines, where it interacts with and promotes synaptic retention of GluN2A-containing NMDARs (Stanic

et al., 2015). Here we explored the molecular mechanisms by which Rph3A binds the GluN2A subunits

following different paradigms of activity-dependent plasticity induced both in vitro, as cLTP or mGluR5

activation, and in vivo through enriched environment. All these forms of plasticity converge on promoting

Rph3A accumulation at dendritic spines and its Ca2+/IP3-dependent interaction with the NMDAR subunit.

Our electron microscopy data eventually clarify the pre- and postsynaptic enrichment of Rph3A. We show

by pre-embedding immunohistochemistry that about half of presynaptic terminals as well as dendritic

spines in hippocampus display Rph3A, thus suggesting a similar distribution of the protein at the two sides

of the excitatory synapse. Importantly, we observed that spines in which we detect Rph3A have an

increased spine head area and PSD length and thickness, suggesting a higher stability of neuronal trans-

mission through these Rph3A-positive connections.

Accumulation of GluN2A-containing NMDARs at synapse is a highly validated molecular event occurring

after LTP induction (Barria and Malinow, 2002; Grosshans et al., 2002; Bellone and Nicoll, 2007). Overall,

these studies indicate that the GluN2A-containing NMDARs move at the synapses thanks to mobilization

of preassembled NMDARs from non-synaptic pools. However, themolecular mechanisms responsible for a

selective accumulation of receptors containing the GluN2A subunit are far to be understood. We show that

Figure 5. In Vivo Effect of Rph3A/GluN2A Interfering Peptide on LTP Induction and Spatial Memory

(A–C) Somatic whole-cell voltage-clamp recordings were made from CA1 pyramidal cells using 2–6 UM electrodes. The

internal solution contained (in mM) 115 CsMeSO4, 20 CsCl2, 10 HEPES, 2.5 MgCl2, 4 NaATP, 0.4 NaGTP, 10 NaCreatine,

and 0.6 EGTA (pH 7.2). Synaptic responses were collected with a Multiclamp 700B amplifier (Axon Instruments, Foster

City, CA, USA), filtered at 2 kHz, digitized at 5 kHz, and analyzed online using Igor Pro Software (Wavemetrics, Lake

Oswego, OR, USA). All data are expressed as mean G SEM. Cells were held at �70 mV, and LTP protocol was induced by

pairing the cell at 0 mV at a frequency of 2 Hz for 90 s. The amplitude of TAT-2A40 treated animals, as well as LTP kinetic,

was completely impaired compared with TAT-SCR (AMPLITUDE, **p < 0.01, unpaired t test).

(D and E) Mean discrimination index and mean exploration time evaluated in the Spatial Object Recognition test, 60 min

after treatment; ***p < 0.001 versus TAT-SCR Student’s t test; xxxp < 0.001 versus corresponding stationary object,

TAT-SCR; two-way ANOVA followed by Bonferroni test.

(F and G) Cumulative mean of horizontal (F) and vertical (G) counts evaluated for 10 min in an automated activity cage.

N = 10 animals for each group.
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Rph3A represents a needed protein in these processes thanks to its selective binding to GluN2A but not to

other GluN2-type regulatory NMDAR subunits (Stanic et al., 2015). Different experimental protocols can be

used to induce cLTP in dissociated hippocampal neurons, the treatment with glycine being the more

commonly used (Lu et al., 2001). Here we show that induction of cLTP by using the Forskolin/Rolipram/

Picrotoxin cocktail in primary cultures acts by augmenting AMPAR surface insertion and phosphorylation

at GluA1-Ser845 (Joiner et al., 2010) as well as NMDAR activity/synaptic stabilization. Notably, Rph3A inter-

action with GluN2A plays a key role in the increase of NMDAR activity at synapses. In addition, our results

show now that induction of LTP promotes accumulation of Rph3A in mushroom-type dendritic spines,

where it interacts with GluN2A-containing NMDARs thus leading to synaptic retention of the receptor

(Stanic et al., 2015). This event is not associated with de novo Rph3A protein synthesis as indicated by

cLTP experiments performed in the presence of anisomycin or by the puromycin-PLA assay. Moreover, acti-

vation of the mGluR/PLC pathway plays a fundamental role in these events also confirming that Ca2+/IP3

strictly modulate the capability of Rph3A to interact with protein partners (Coudevylle et al., 2008; Guillén

et al., 2013).

A number of previous studies demonstrated an involvement of mGluRs/PLC pathway in both LTP and LTD.

Even if the role of mGluR-dependent synaptic LTD in physiology and disease is well established (see for

review Lüscher and Huber, 2010), activation of group I mGluRs through DHPG can facilitate also LTP

through a PLC signaling cascade (Cohen et al., 1998; van Dam et al., 2004; Mellentin et al., 2007). Interest-

ingly, inhibition of phospholipase C by U73122 abolished the priming of LTP induced by DHPG (Cohen

et al., 1998). Moreover, the LTP induction protocol can increase the amount of GluN2A at CA1 synapses

in a mGluR5 and NMDAR-dependent manner (Matta et al., 2011). In particular, in hippocampal CA1 pyra-

midal neurons, the developmental GluN2A/GluN2B switch driven acutely by activity requires activation of

NMDARs and mGluR5 and it involves PLC activation (Matta et al., 2011). Here, we demonstrate that in vitro

activation of PLC is essential for cLTP-associated biochemical and morphological plasticity, driving Rph3A/

GluN2A summon in PSD. Furthermore, activation of different PLC-grouped metabotropic receptors

increased Rph3A protein levels at synapses, indicating PLC as a key enzyme upstream of Rph3A/GluN2A

complex formation.

Furthermore, Rph3A silencing or disruption of Rph3A/NMDAR complex by an interfering peptide not only

blocks GluN2A accumulation at postsynaptic membranes but also prevents the induction of LTP and for-

mation of new spines. Notably, treatment of animals with either Rph3A silencing or cell permeable peptide

disrupting Rph3A/NMDAR complex impairs the acquisition of spatial memories.

Our data are in close agreement with previous reports showing that rising of hippocampal GluN1/GluN2A

NMDARs at synapses appears to be a general feature after novel spatial memory acquisition (Cercato et al.,

2017). As reviewed by Baez et al. (2018), the GluN1/GluN2A subunits increase at synapse starting from

about 20 to 30 min after plasticity induction or memory acquisition could represent a check point or a syn-

aptic tag for plasticity establishment or memory consolidation (Baez et al., 2018). Overall, our results

demonstrate that GluN2A interaction with Rph3A is needed for NMDAR stabilization in hippocampal

PSD after LTP induction and to trigger downstream signaling necessary for LTP synaptic adaptation and

cognitive behavior.

Limitations of the Study

Even if our results strengthen the putative role of Rph3A as an attractive pharmacological target for several

neurological conditions in which GluN2A-containing NMDARs are not correctly functioning (Sanz-Clem-

ente et al., 2013; Lai et al., 2014; Shohami and Biegon, 2014; Gardoni and Bellone, 2015; Mellone et al.,

2015), additional long-term studies in disease models are needed to confirm the involvement of Rph3A

and Rph3A/GluN2A complex in these brain disorders.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.036.
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Figure S1 - GluA1 Ser845 phosphorylation levels after induction of cLTP, related to Figure 2.

Bar graph and representative blots of GluA1 and phosphorylation of GluA1 at Ser845 in TIF from
primary cultures undergone cLTP. **p<0.01, t test, n=9. Molecular weight markers are indicated on
the right.
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Figure S2 - GluN2A and Rph3A synaptic localization after induction of cLTD, related
to Figure 2.

Application of cLTD did not affect protein levels for Rph3A and GluN2A in TIF as
displayed through immunoblot. Molecular weight markers are indicated on the right.
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Figure S3 - GluN2A phosphorylation in Tyr1387 does not regulate GluN2A/Rph3A complex
formation following LTP induction, related to Figure 3.

(A) Western blot analysis of GluN2A Tyr1387 phosphorylation normalized on GluN2A total
levels in TIF of hippocampal primary cultures after cLTP (t-test, n=3). Molecular weight markers
are indicated on the right. (B) Colocalization analysis between RFP-Rph3A and SEP-GluN2Awt
or with single point mutation at Tyr1387 mimicking phosphorylation (Y1387E). n=13, t-test.
Scale bar, 10µm.
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Figure S4 - Analysis of pERK phosphorylation as positive control of DHPG treatment,
related to Figure 3.

Bar chart and representative blots of pERK, ERK, and tubulin performed in the homogenate from
primary hippocampal cultures treated with DHPG. **p<0.01, t-test, n=10. Molecular weight
markers are indicated on the right.
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Figure S5 – Effect of in vivo treatment with TAT-2A40 on GluN1 and
GluN2A/GluN2B ratio at synapses, related to Figure 5.

Western blot analysis of GluN1, GluN2A, GluN2B and tubulin performed in triton-
insoluble postsynaptic fractions (TIF) purified from the hippocampus of rats treated
with TAT-2A40 or TAT-SCR peptides (1h, 3 nmol/gr). The bar graph represents the
percentage of tubulin normalized optical density of GluN2A/GluN2B and GluN1 bands
of TAT-2A40 samples compared with TAT-SCR controls. *p<0.05, t-test, n=5.
Molecular weight markers are indicated on the right.



TRANSPARENT METHODS  

Enriched Environment (EE) - Mice (5 weeks old female, strain C57BL/6J) were obtained from 

Charles River (Calco, Italy) and were housed in the animal facility of the Department of Pharmacy, 

Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, 

University of Genoa (authorization n. 484 of 2004). After three days, mice were housed for three 

months in standard or in enriched conditions (see below) and then they were sacrificed by cervical 

dislocation and immediately decapitated to collect cerebral tissues. The experimental procedures were 

in accordance with the European legislation (Directive 2010/63/EU for animal experiments), the 

ARRIVE guidelines and the 8th Edition of the “Guide for the care and Use in laboratory-animals”, 

and they were approved by the Animal Subjects Review Board of the University of Genoa and by the 

Italian Ministry of Health (DDL 26/2014 and previous legislation; protocol n. 50/2011-B and 

612/2015-PR).  

Female mice were randomly assigned to two different groups: the untrained mice and the enriched 

environmental trained mice. Trained animals were housed in a large cage (36 x 54 x 19 cm, 8 animals 

per cage) containing a variety of objects such as plastic tunnels, climbing ladders, running wheels, 

toys in wood and plastic suspended from the ceiling, paper, cardboard boxes, and nesting material. 

Objects were changed every 3 days. Untrained animals were housed in a standard cage with nest. In 

both cases, the bedding was changed every week. The animals were kept in the enriched environment 

for three months.  

Spatial object recognition - Mice (6 weeks old male, strain C57BL/6J) were obtained from Charles 

River (Calco, Italy) and were housed in the animal facility of the CNR Institute of Neuroscience, 

Milano.  Spatial object recognition test was performed one week after housing. Object location tests 

were performed in an arena according to the methods described in (Kenney et al., 2011), with slight 

modifications. Two visual cues were placed on two adjacent walls of an opaque white Plexiglas cage 

(58 × 50 × 43 cm) that was dimly lit from above (27 lux). The visual cues consisted of a black and 

white striped pattern (21 × 29 cm) that was affixed to the center of the northern wall and a black and 

white checkered pattern (21 × 29 cm) that was placed in the center of the western wall. The objects 

were counterbalanced across locations. The cage and the objects were thoroughly wiped down with 

acetic acid (0.1%) before and after all behavioural procedures, which were observed and recorded 

using a camera mounted above the cage. Climbing or sitting on objects was not scored as object 

exploration. Twenty-four hours after 10 min habituation to the cage without objects, mice were 

exposed to the cage where two different objects were placed in the NE and NW corners for a 

maximum of 20 min or until they had completed 30 s of cumulative objects exploration and the time 

spent exploring the objects was recorded. Two hours later, the object the mouse had spent more time 



exploring in the previous session (T1 phase) was moved to the SW corner of the cage, and each mouse 

was allowed to re-explore the cage (T2 phase). Exploration was defined as a mouse having its nose 

directed toward the object and within approximately 1 cm of the object. TAT-SCR or TAT-2A40 

treatment was done 60 min before T1 phase. Performance was evaluated by calculating a 

discrimination index (N-F/N+F), where N = the time spent exploring the moved object during T2, 

and F = the time spent exploring the stationary object during T2.  

Spontaneous motor activity - Motor function was evaluated in an automated activity cage (43 x 43 

x 32 cm; Ugo Basile) placed in a sound-attenuating room. The cage was fitted with two parallel 

horizontal and vertical infrared beams located 2 and 4 cm from the floor, respectively. Before the 

start of the test, each mouse was habituated to the testing room for 1 h. Cumulative horizontal and 

vertical movement counts were recorded for 10 min. The test was carried out in the same animals 

submitted to Spatial Object Recognition test, immediately after T2 phase of Spatial Object 

Recognition test (Sala et al., 2011). 

Cell Cultures - Primary neuronal cultures were prepared from embryonic day 18-19 (E18-E19) rat 

hippocampi (Piccoli et al., 2007). Neurons were transfected at DIV9 through Calcium-Phosphate co-

precipitation method with 2-4µg of DNA for GFP (plasmid kindly provided by Dr. Maria Passafaro), 

tGFP-shRph3A or tGFP-shScramble. Procedures on rats were carried out according to the European 

Communities Council Directive 2010/63/EU and the current Italian Law on the welfare of the 

laboratory animal (D.Lgs. n. 26/2014). Procedures were approved by the Italian Ministry of Health 

(authorizazion n. 326/2015). 

COS7 cells were grown on 100 mm dishes and maintained in DMEM containing Glutamax 

(DMEM+Glutamax, GIBCO) supplemented with 10% fetal bovine serum and penicillin–

streptomycin (GIBCO). Cells were allowed to grow till confluence before passaging every 3–4 

days using trypsin. COS-7 cells were placed in a 12 wells multiwell and transfected with 250–

500 ng of plasmid DNA (RFP-Rph3A; eGFP-GluN2A; eGFP-GluN2A(Y1387E) the lipofectamine 

LTX method (Invitrogen). After 36 h, COS-7 cells were fixed for immunostaining.  

Pre-embedding immunohistochemistry - Three Sprague Dawley adult male rats were used. After 

terminal anesthesia was induced by brief inhalation of isoflurane (0.05% in air), followed by an 

intramuscular injection of ketamine (100 mg kg-1) and xylazine (10 mg kg-1), rats were intracardially 

perfused with 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde in phosphate buffer saline (PBS, 

0.1 M, pH 7.2), and brain sections (100 µm) were cut on a Leica VT1000S vibratome (Leica 

Microsystems, Milton Keynes, UK). All procedures were performed according to the requirements 

of the United Kingdom Animals (Scientific Procedures) Act 1986, Newcastle University AWERB 

596. The vibratome sections were collected in PBS and then incubated in 50 mM ammonium chloride 



in PBS for 20 min at RT. After extensive washing in PBS, antigen retrieval was performed by 

incubation of the sections in 10 mM sodium citrate, pH 8.4, for 1 h at 80°C. Sections were once more 

extensively washed with PBS before being blocked in 0.1% (w/v) gelatin in PBS. Sections were 

incubated with rabbit anti-Rph3A polyclonal antibody (1:100; ab68857, Abcam) in 0.1% (w/v) 

gelatin, 0.05% Triton X-100 in PBS at 4°C for 48–72 h. Sections were rinsed in PBS, postfixed for 5 

min in 4% PFA in PBS, rinsed again, and incubated with biotin-conjugated goat anti-rabbit secondary 

antibody (1:200) for 12 h in 0.8% bovine serum albumin and 0.2% fish gelatin (Sigma-Aldrich) in 

PBS at 4°C. The following day, sections were rinsed in PBS, then postfixed in 1% glutaraldehyde in 

PBS (5 min) and rinsed in PBS followed by ABC Elite Kit (1:200; 2 h at RT) (Vector Laboratories). 

The peroxidase reaction was revealed by incubating the sections in ImmPACT VIP substrate Kit 

(Vector Laboratories). Then the sections were osmicated, dehydrated, and flat embedded in Durcupan 

resin (Sigma-Aldrich). Ultrathin sections (70–90 nm) were countercolored with uranyl acetate and 

lead citrate. Control experiments, in which the primary antibody was omitted, resulted in no 

immunoreactivity. The images were captured with an AMT XR404 megapixel side mounted CDD 

camera at a magnification between 7900 and 92000. Only identified synapses on dendritic spines of 

apical dendrites of pyramidal cells in stratum radiatum of CA1 hippocampus were included in the 

analysis. No tangentially cut synapses were analysed. To determine the spine density (number of 

spines/μm2), we utilized 28-35 images per animal (7900 magnification, Tot Area: 7841.306µm2) in 

which we identified the spines and, then, quantified them using the cell counter tool in ImageJ 

(http://rsb.info.nih.gov/ij). Morphometric parameters such as spine head area, PSD length, and 

thickness (Moreau et al., 2010) were measured from 500 spines/animal. To determine the head area 

of spines, we traced the plasma membrane with ImageJ. The average thickness of the PSDs was 

measured as follow: the cytoplasmic outline of a PSD, including the associated dense material, was 

traced with ImageJ, and this area was then enclosed by tracing the postsynaptic membrane (length of 

PSD). The area was then divided by the length of the postsynaptic membrane to derive an average 

thickness for the PSD. The results are presented as the mean ± SEM. The measurements were all 

performed by experimenters blind to the genotype. 

Cell fractionation and postsynaptic density purification – Crude membrane (P2) and Triton-

insoluble (TIF) fractions were isolated from rat hippocampal primary cultures and mice hippocampi. 

TIF is highly enriched in postsynaptic densities proteins (Gardoni et al., 2006). Samples were 

homogenized at 4°C in an ice-cold buffer containing 0.32 M Sucrose, 0.1 mM phenylmethylulfonyl 

fluoride (PMSF), 1 mM Hepes, 1 mM MgCl, 1 mM NaF supplemented with protease inhibitor 

(Complete™, Sigma-Aldrich) and phosphatase inhibitors (PhosSTOP™, Sigma-Aldrich). The 

homogenate was centrifuged at 1,000g for 5 minutes at 4°C to remove nuclear fractions and white 



matter. The supernatant was centrifuged at 13,000g for 15 min at 4°C; the resulting pellet 

representing P2 fraction, was resuspended in 1% Triton-X-100 and 75 mM KCl for 15 minutes at 

4°C. Samples were centrifuged at 100,000g for 1 h at 4 °C and the pellets obtained representing the 

TIF were resuspended in 20 mM HEPES. 

Immunocytochemistry (ICC) - For colocalization and morphological studies, GFP-transfected 

hippocampal neurons were fixed for 5 min at 4ºC in 4% PFA plus 4% sucrose in Dulbecco’s 

Phosphate Buffered Saline (PBS; Sigma-Aldrich). Coverslips were then washed with PBS, 

permeabilized with 0,1% triton X-100 in PBS for 15 min at room temperature and blocked for 30 

minutes at room temperature with 5% Bovine Serum Albumin (BSA) in PBS. Cells were then 

incubated with primary antibodies in 5% BSA-PBS overnight at 4ºC in a humid chamber. After 

washes with PBS, the cells were incubated with the fluorophore-conjugated secondary antibodies in 

5% BSA-PBS for 1h at room temperature in a humid chamber protected from light. The incubation 

was followed by washes with PBS and mounting on glass slides using Fluoroshield mounting medium 

(Sigma-Aldrich). For GluN2A surface/total staining assay, cells were fixed with 4% 

Paraformaldehyde (PFA)-4% sucrose in PBS solution at 4°C for 5 min and washed several times with 

PBS. Cells were then blocked with 5% BSA in PBS for 30 min at room temperature and then labelled 

with primary antibody for surface labelling of extracellular epitopes for 1 h at room temperature (or 

overnight at 4°C). Cells were washed and then incubated with secondary antibody for 1 h at room 

temperature. Cells were then washed with PBS and permeabilized with 0.1% Triton X-100 in PBS 

for 15 min at room temperature and blocked with 5% BSA in PBS for 30 min at room temperature. 

Cells were then labelled with antibodies for intracellular epitopes for 1 h at room temperature or 

overnight at 4 °C. Cells were washed and then incubated with secondary antibodies for 1 h at room 

temperature. Cells were then washed in PBS and mounted on glass slides with Fluoromount mounting 

medium (Sigma Aldrich). 

Proximity ligation assay (PLA) - Primary hippocampal cultures were transfected with GFP at DIV9, 

treated at DIV15 and then fixed with 4%PFA in PBS + 4% sucrose. Coverslips were then washed 3 

times with PBS and permeabilized with Triton-X-100 0,1% in PBS for 15 minutes and later blocked 

with 5% BSA in PBS for 30 minutes at room temperature. Coverslips were then incubated in a dark 

humid chamber overnight at 4°C with primary antibodies in 5% BSA in PBS, washed 3 times with 

PBS and then incubated with secondary antibodies conjugated with oligonucleotides (PLA probe 

MINUS and PLA probe PLUS) for 1 h at 37°C in a dark humid chamber. Coverslips were then washed 

3 times with PBS and incubated with the ligation solution (Olink bioscience) supplemented with 

ligase (25 mU/µL) for 30 min at 37ºC in a dark humid chamber and washed with Wash Buffer A 

(NaCl 0.15 M, Tris 0.01 M, 0.05 % tween 20, pH 7.4; Olink Bioscence). The amplification solution 



(containing nucleotides and fluorescently labeled oligonucleotides; Olink bioscence) supplemented 

with polymerase (0.125 U/µL) was added to each sample and incubated for 100 min at 37 ºC in humid 

dark chamber. Coverslips were then washed 3 times with decreasing concentration of Wash Buffer 

B (NaCl 0.1 M, Tris 0.2 M, pH 7.5; Olink bioscience).  

Western Blot (WB) - Proteins were separated on a denaturing Sodium Dodecyl Sulfate - 

PolyAcrylamide Gel Electrophoresis (SDS-PAGE) followed by western blotting onto nitrocellulose 

membranes. 10-15 µg of proteins were separated on 7% or 10% SDS-PAGE (depending on the 

molecular weight of the protein investigated) and transferred on nitrocellulose membrane. The 

membranes incubated for 1 h at room temperature in blocking solution (I-block, Tris-Buffered saline 

(TBS) 1X, 20% Tween-20) on a shaker. The membranes were then incubated with the specific 

primary antibody (Anti-Tubulin; anti-GluN2A; Anti-phosphoSer845-GluA1; Anti-Rabphilin3A; 

Anti-GluN2B; Anti-phosphoT202/Y204-MAPK 44/42; anti-ERK 44/42) in blocking solution 

overnight at 4 C° and the following day, after three washes with TBS and tween 20 (TBS + Tween-

20 0.1%; TBSt), they were incubated with corresponding Horseradish Peroxidase (HRP)-conjugated 

secondary antibody in blocking solution for 1 h at room temperature. After washing with TBSt, 

membranes were developed using electrochemiluminescence (ECL) reagents (Biorad). Finally, 

membranes were scanned using a Chemidoc (Biorad Universal Hood III) with Image Lab software 

(Biorad). Bands were quantified by means of computer-assisted imaging (Image Lab, Biorad). The 

levels of the proteins were expressed as relative optical density (OD) measurements and normalized 

on tubulin and then expressed as percentage of control mean. 

Co-Immunoprecipitation Assay - A measure of 50 μg of proteins from rat hippocampal primary 

cultures and hippocampal tissue P2 fractions were incubated on a wheel overnight at 4°C in RIA 

buffer 1X (200 mM NaCl, 10 mM EDTA, 10 mM Na2HPO4, 0.5% NP-40) plus 0.1% SDS and the 

rabbit anti-Rabphilin3A antibody. The day after protein A/G-agarose beads were resuspended in 

RIA 1x, added to the samples and incubated at room temperature on a wheel for 2 h. Beads were 

then sedimented and the supernatant discarded, then they were washed three times with RIA 1X + 

SDS 0,1%, mixed with Loading Buffer (6x) and boiled for 10’ at 96°C for Western Blot 

procedures. 

Electrophysiology - C57BL/6J male mice were intraperitoneal injected either with TAT-2A40 or 

TAT-SCR peptides at 3nmol/g. After 1h mice were anesthetized with isoflurane/O2 and brains were 

dissected on ice. Hippocampal coronal slices (300 µm) were cutted in cold artificial cerebrospinal 

fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 1.0 NaH2PO4, 26.2 

NaHCO3 and 11 glucose, bubbled with 95% O2 and 5% CO2. Slices were maintained at room 

temperature and allowed to recover for 1 hr before being transferred to the recording chamber. The 



external solutions contained (in mM) 119 NaCI, 2.5 KCI, 2.5 CaCl2, 1.3 MgSO4, 1.0 NaH2PO4, 26.2 

NaHCO3, 11 glucose, and 0.1 picrotoxin (pH 7.4) at 37°C and equilibrated with 95% O2 and 5% CO2.  

Somatic whole-cell voltage-clamp recordings were made from CA1 pyramidal cells using 2–6 ΩM 

electrodes. The internal solution contained (in mM) 115 CsMeSO4, 20 CsCl2, 10 HEPES, 2.5 MgCl2, 

4 NaATP, 0.4 NaGTP, 10 NaCreatine, and 0.6 EGTA (pH 7.2). Cells were held at −70 mV and LTP 

protocol was induced by pairing the cell at 0 mV at a frequency of 2 Hz for 90 s. Synaptic responses 

were collected for 25 minutes with a Multiclamp 700B-amplifier (Axon Instruments, Foster City, 

CA), filtered at 2 kHz, digitized at 5 Hz, and analysed online using Igor Pro software Wavemetrics, 

Lake Oswego, OR).  

Chemical Long-Term Potentation (cLTP) and Chemical Long-Term Depression (cLTD): - 

cLTP was induced using a previously validated protocol (Otmakhov et al., 2004; Dinamarca et al., 

2016). Neurons were incubated in artificial cerebrospinal fluid (ACSF, 125mM NaCl, 25mM KCl, 2 

mM CaCl2, 33 mM Glucose and 25 mM HEPES) + 1 mM MgCl2 for 30 minutes at 37°C, then cLTP 

induction was performed in ACSF without MgCl2, plus 50 µM Forskolin (Tocris), 0.1 µM Rolipram 

(Tocris) and 100 µM Picrotoxin (Tocris) for 16 minutes. Control groups were kept in normal ACSF. 

After that, cells incubated back in ACSF with MgCl2 for 15 minutes till 2 hours, depending on the 

type of the experiment. To induce cLTD neuronal cultures were first incubated in ACSF for 30 

minutes, then stimulated for with 50µM NMDA (Sigma-Aldrich) in ACSF (Oh et al., 2006; Marcello 

et al., 2013).  After 10 minutes stimulation, NMDA solution was replaced with regular ACSF, finally 

cultures were homogenized for TIF preparation.  

Puromycin-Proximity ligation assay (Puro-PLA) – To detect local protein synthesis, we used Puro-

PLA technique (Dieck et al., 2015; Li and Götz, 2017). Puromycin inserts in new synthetized 

polypeptides blocking their elongation. Therefore, by labeling Puromycin and the N-term fragment 

of a target protein with specific antibodies we were able to detect as PLA signal the newly synthetized 

target protein.  Puro-PLA was performed on DIV14 primary hippocampal cultures treated with cLTP. 

Puromycin (1µM) or vehicle were added 16 minutes after cLTP induction. Cells were then fixed 5 

min at 4°C in 4% PFA plus 4% sucrose in Dulbecco’s Phosphate Buffered Saline (PBS; Sigma-

Aldrich). Coverslips were then washed with PBS, permeabilized with 0,1% triton X-100 in PBS for 

15 minutes and blocked for 30 minutes at 37°C with Duo-Link blocking solution. Primary antibodies 

for Puromycin (Mouse monoclonal #MABE343; 1:100) and for Rph3A (rabbit polyclonal N-term 

epitope, #133961AP; 1:200) were diluted in Duo-Link Antibody Diluent and incubated with 

coverslips at 4°C overnight in a humid chamber. Following steps are according to the PLA protocol. 

Negative controls for PLA specificity were performed in absence of Puromycin as well as in absence 

of the Puromycin primary antibody. 



Confocal Imaging - Images were taken using an inverted A1R (Nikon) or LSM510 (Zeiss) confocal 

microscopes. For PLA assay, analysis of GluA1 and GluN2A clusters, and morphological studies z-

stacks of 0.5 µm thickness were acquired. Cells were chosen randomly for quantification from four 

to eight different coverslips (two to three independent experiments), images were acquired using the 

same settings/exposure times and at least ten cells for each condition were analyzed. Co-localization 

analysis was performed using AIM 4.2 software (Zeiss). Analysis of dendritic spine morphology was 

performed with ImageJ software; for each dendritic spine length, the head and neck width were 

measured, which were used to classify dendritic spines into three categories (thin, stubby and 

mushroom; Harris et al., 1992). GluA1 cluster diameters and density as well as PLA clusters area and 

density were measured using ImageJ. 

Reagents - We used cell permeable peptides (CPPs) TAT-2A-40 and TAT-Scr highly validated for 

both in vitro and in vivo studies (Stanic et al., 2015, 2017) and manufactured by Bachem (Bubendorf, 

Switzerland). Lyophilized CPPs were resuspended in sterile deionized water to a stock concentration 

of 1 mM and stored at −20 °C.  U73122 (#1268), Forskolin (#1099/10), Rolipram (#0905), Picrotoxin 

(#1128) were purchased from Tocris and solubilized in DMSO (#D2650) according to manufacturer’s 

protocols to a stock concentration of 2 mM, 25mM, 0.1mM and 100mM, respectively. 3,5-R,S-DHPG 

(#HB0026) was purchased from HelloBio and dissolved in sterile deionized water to a stock 

concentration of 10 mM according to manufacturer’s datasheet. BDNF (#AB9794, Sigma Aldrich) 

was used at a final concentration of 50ng/ml for 3h (Blanquet and Lamour, 1997). NMDA (#M3262) 

puromycin (#P8833) and anisomycin (#A9789) were purchased from Sigma-Aldrich, dissolved in 

sterile deionized water to a stock concentration of 500µM and 4mM respectively. 

Antibodies - The following unconjugated antibodies were used: mouse anti-Tubulin (WB 1:30000; 

#T9026, Sigma), rabbit anti-GluN2A (WB 1:1000 #M264) were purchased from Sigma-Aldrich. 

Rabbit anti-phosphoTyr1387-GluN2A (1:1000 #16647) was purchased from Abcam. Mouse 

monoclonal anti-Puromycin (WB 1:5000 #MABE343) clone 12D10, rabbit anti-N-term GluA1 

(ICC 1:100 MAB2263) and rabbit monoclonal anti-phosphoSer845-GluA1 (WB 1:1000 #04-1073) 

were purchased from Merck Millipore. Rabbit anti-Rabphilin3A (WB 1:1000 #118003) was 

purchased from Synaptic System. Rabbit anti-N-term GluN2A (ICC 1:100 480031), rabbit Anti-

GluN2B (WB 1:1000 #718600), were purchased from Invitrogen. Rabbit anti-phosphoT202/Y204-

MAPK 44/42 (WB 1:1000 #9101) and rabbit anti-MAPK 44/42 (WB 1:1000 #9102) were purchased 

from Cell Signaling. Mouse monoclonal anti-PSD-95 (WB 1:1000, ICC 1:100 #K28/43) Neuromab. 

Rabbit anti-tGFP (ICC 1:300 #AB513) was purchased from Evrogen. Rabbit anti-Nterm-Rph3A 

(Puro-PLA 1:200, #133961AP) was purchased from Proteintech. Secondary antibodies for Western 

Blot analysis: goat anti-Mouse Horseradish (170-6516) and goat anti-rabbit (170-6515), both 



Horseradish peroxidase conjugated, were purchased from Biorad and used in Iblock solution at 

1:5000-1:20000 concentration. Secondary antibodies for imaging experiments: goat anti-rabbit-

Alexa555 (A-21429; Life Technologies), Alexa-fluor 488 (A-11039) goat anti-chicken, goat anti-

mouse-Alexa555 (A-21422), 4’,6’-diamidino-2-phenylindole (DAPI, 1:50,000 in PBS, Thermo 

Fischer Scientific), goat anti-rabbit-Alexa-488 (A-11034), donkey anti-rabbit-Alexa-647 (A-

31573). 

Statistical analysis - Data were expressed as mean ± SEM and analysed with Student’s t test, one-

way analysis of variance (ANOVA) or two-way analysis of variance for repeated measures followed 

by Tukey or Bonferroni post-hoc test as appropriate. The accepted value for significance was p<0.05. 

All statistical analyses were done using the software Prism, version 7 (GraphPad, San Diego, CA, 

USA). 
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