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Abstract. We consider an overdetermined problem for the Finsler Laplacian in the

exterior of a convex domain in RN , establishing a symmetry result for the anisotropic

capacitary potential. Our result extends the one of W. Reichel [Arch. Rational Mech.
Anal. 137 (1997)], where the usual Newtonian capacity is considered, giving rise to an

overdetermined problem for the standard Laplace equation. Here, we replace the usual

Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of
the solution is that of the so-called Wulff shape (a ball in the dual norm H0).
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1. Introduction

The Newtonian capacity of a bounded open set Ω in RN , N ≥ 3, is defined as

Cap(Ω) = inf

{∫
RN

1

2
|Dv|2dx : v ∈ C∞0 (RN ), v ≥ 1 in Ω

}
, (1)

where Dv is the gradient of the function v and | · | denotes the Euclidean norm in RN .
When N = 3, Cap(Ω) represents the capacitance (i.e. ability to hold electrical charge)

of the condenser Ω immersed in an isotropic dielectric, that is the total charge Ω can hold
while maintaining a given potential energy (computed with respect to an idealized ground
at infinity).

When Ω is a sufficiently smooth domain, the capacity problem (1) admits a unique min-
imizer. In fact, since Laplace equation is the Euler equation of the involved functional, this
minimum problem is completely equivalent to the following Dirichlet problem

∆u = 0 in RN \ Ω ,

u = 1 on ∂Ω ,

u→ 0 if |x| → ∞ .

(2)

Here, the function u represents the electrostatic potential and one can ask whether there
exists a set Ω such that the intensity of the corresponding electrostatic field Du is constant
on its boundary. This is equivalent to couple problem (2) with the extra condition

|Du| = C on ∂Ω . (3)

Since both Dirichlet and Neumann boundary conditions are imposed, the resulting prob-
lem (2)-(3) is overdetermined and then, in general, it is not well-posed and a solution does
not exist, unless the domain Ω satisfies some additional symmetry property. And indeed in
[22] Reichel proved that (2)-(3) admits a solution if and only if Ω is a ball. In other words,
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Euclidean balls are the only electrical conductors such that (when embedded in an isotropic
dielectric) the intensity of the corresponding electrostatic field is constant on the boundary.

The technique used in [22] is the well-known moving plane method, which goes back first
to Alexandrov and then to Serrin. The latter, in the seminal paper [25], combined the
geometric argument of Alexandrov with a smart refinement of the maximum principle to
study the archetypal overdetermined problem

∆u = 1 in Ω ,

u = 0 on Ω ,

|Du| = C on Ω ,

(4)

which is related to the minimization of the functional∫
Ω

(
1

2
|Du|2 − u

)
.

Serrin proved that a solution to problem (4) exists if and only if Ω is an Euclidean ball (and
hence u is radially symmetric).

Notice that, in both problems (4) and (2)-(3), the radial symmetry of the solution is
compelled by the isotropy of the Euclidean norm and of the Laplacian. Considering in
particular problem (2), we see that the Laplace operator reflects the linearity of the electrical
conduction law, which is in turn determined by the isotropy of the dielectric and dictates
the use of the Euclidean norm in measuring the electric field in condition (3). In this paper
we investigate what happens if one considers an anisotropic dielectric background which
influences the organization of electric charges and affects the measure of the intensity of the
electric field. To this aim, in problem (1) we replace the Euclidean norm with a generic
norm H which reflects the anisotropy of the medium, thus defining the FinslerH-capacity
as follows

CapH(Ω) = inf

{∫
RN

1

2
H(Dv)2dx : v ∈ C∞0 (RN ), v ≥ 1 in Ω

}
. (5)

CapH(Ω) represents the anisotropic capacitance of the set Ω, that is the total charge that
the set Ω can hold while embedded in the considered anisotropic dielectric medium and
maintaining a given potential energy with respect to an idealized ground at infinity.

Under suitable regularity assumptions, as in the Euclidean case the capacity problem (5)
admits a unique minimizer in W 1,2(RN ) and it is in fact equivalent to the following Dirichlet
problem 

∆Hu = 0 in RN \ Ω,

u = 1 on ∂Ω,

u→ 0 as H0(x)→∞ ,

(6)

where
∆Hu = div(H(Du)∇ξH(Du))

is the so called Finsler Laplacian (associated to H) and H0 is the dual norm of H (see below
for precise definitions and notation). Then, as in [22], we investigate the overdetermined
problem arising when the additional constraint

H(Du) = C on ∂Ω (7)

is imposed. The study of geometric properties and characterization of the solution of (6)-(7)
is in fact the main goal of the present work.
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Clearly, since the associated metric is no more radially symmetric, we can not expect Eu-
clidean balls to be solutions and the results and techniques from [22] do not apply anymore.
In particular, the classical moving plane method is no more suitable. Indeed the shape of
the set Ω and the geometry of the solution u are governed by the norm H and we need to
use an ad hoc technique. For this we adapt and merge the arguments of [6] and [4], that
in turn both exploit and suitably arrange a method from [3]. In [6] the authors improve
the results of [22], weakening the regularity assumptions on the set Ω. In [4], the authors
consider the anisotropic version of the classical Serrin’s problem (4)

∆Hu = 1 in Ω ,

u = 0 on Ω ,

H(Du) = C on Ω ,

(8)

proving that, under suitable regularity assumption, a solution exists if and only if Ω has the
so-called Wulff shape associated to H, i.e. it is a ball in the dual norm H0. Here, we will
prove the same symmetry property for problem (6)-(7), i.e. for the anisotropic version of
(2)-(3), in perfect analogy with the interplay between problems (8) and (4).

1.1. Main results. Let N ≥ 3 and H : RN → R be a norm in RN , that is a nonnegative
positively homogeneous convex function; more explicitly:

(i) H is convex;
(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;
(iii) H(tξ) = |t|H(ξ) for ξ ∈ RN and t ∈ R.

Then let H0 be the dual norm of H, that is

H0(x) = sup
ξ 6=0

〈x; ξ〉
H(ξ)

for x ∈ RN . (9)

We denote by BH(1) and BH0
(1) the unitary balls in the norm H and H0 respectively; in

general, for r > 0, we set

BH(r) = {ξ ∈ RN H(ξ) < r} , BH0(r) = {x ∈ RN H0(x) < r} .

We say that a set has the Wulff shape of H if it is a ball in norm H0.
Given a smooth function u, we will use H0 to measure the norm of x ∈ RN and H to

measure the norm of Du(x) (then H endows in fact the dual of RN , that coincides however
with RN ). The Finsler Laplacian (associated to H) of the function u is given by

∆Hu = div
(
H(Du)∇ξH(Du)

)
. (10)

The Finsler Laplacian have been widely investigated in literature and goes back to Wulff
[29], who considered it to describe the theory of crystals. Many other authors developed the
related theory in several settings, considering both analytic aspects (see [13, 7, 8, 14, 15, 16,
27, 28, 4]) and geometric points of view (see [19, 9, 12]).

In this paper we will study the anisotropic capacity problem (6) and the associated
overdetermined problem (6)-(7). In particular, our main result is the following.

Theorem 1.1. Let N ≥ 3 and Ω ⊂ RN be a bounded convex domain of class C2,α. Let
H ∈ C2,α in RN \ {O} be a norm in RN such that H2 is uniformly convex.
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Problem (6)-(7) admits a solution u if and only if Ω has the Wulff shape of H, i.e.
Ω = BH0(r) for some r > 0 (up to a translation) and u is given by

u(x) =

(
H0(x)

r

)2−N

, x ∈ RN \ Ω . (11)

We remark that in our assumptions on H the solution of problem (6) turns out to be
classical, as shown in Theorem 2.5 below.

Notice that the value of the constant C in (7) must be suitably related to the geometry
of the set Ω and a direct calculation (see the Appendix A) gives

C =
(N − 2)

N

PH(Ω)

|Ω|
, (12)

where PH indicates the so called anisotropic perimeter (see (21) below for its definition).
The proof of Theorem 1.1 is based on integral identities and a pointwise inequality (in

the same spirit of [4] and [6]) and can be summarized as follows. We introduce an auxiliary

function v = u
2

N−2 and prove that v is quadratic in the norm H0. Indeed, by using an
anisotropic version of the Minkowski inequality (see Proposition 2.10) and the characteriza-
tion of the equality case in a generalized Newton inequality, we obtain that Ω has constant
anisotropic mean curvature, and then the anisotropic Aleksandrov Theorem (Proposition
2.1) guarantees that Ω is a ball in the suitable anisotropic metric.

We mention that the case N = 2 presents several differences with the respect to the case
N ≥ 3, here considered. However, we are confident that our proof may be adapted to the
case N = 2 by taking v = e2u and making the suitable modifications. Moreover, one could
ask whether the convexity assumption on Ω can be removed in Theorem 1.1. In this regard
we notice that the main difficulty may arise in extending Proposition 2.10 to not convex
domains. An attempt in this direction has been made in [6] in the Euclidean case.

In order to apply our strategy we need several preliminary results.
First we show that if Ω is a bounded convex domain with boundary of class C2,α and

H is a norm of class C2,α(RN \ {O}) with H2 strictly convex, then Problem (6) admits a
unique solution u, with u ∈ C2(RN \ Ω) (see Theorem 2.5). The proof is based on the fact
that the differential problem (6) is the Euler equation of the minimum problem (5), which
involves a strictly convex and differentiable functional.

Several tools from convex geometry are also needed. In particular, we will extensively
use mixed volumes and mixed area measures to prove an anisotropic Aleksandrov-Fenchel
inequality.

In Theorem 2.1 we also prove the anisotropic version of Aleksandrov Theorem. This
result was already available in literature (see [19] and [18]). However, since our approach is
simple and is in the same spirit of the proof of Theorem 1.1, we prefer to include the proof
in the paper.

The paper is organized as follows. Section 2 is devoted to recall and prove some prelim-
inary results which will be useful in the proof of Theorem 1.1, in particular we recall some
well-known properties of norms in RN , facts on Finsler metrics and Finsler laplacian, prove
some results on Finsler capacity and properties of the corresponding capacitary function.
Section 2 is completed by recalling the definition and some basic properties of elementary
symmetric functions of a matrix and tools from convex geometry and proving a Minkowski
type inequality which will be crucial in the proof of Theorem 1.1. Section 3 is devoted to
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prove Theorem 1.1. In Appendix A we prove (12) and in Appendix B we give a proof of the
anisotropic version of Aleksandrov Theorem.

2. Preliminaries

2.1. Notations. For a subset Ω of RN we denote by |Ω| its volume, and by HN−1(∂Ω) the
(N − 1)-dimensional Hausdorff measure of ∂Ω, that is its Euclidean perimeter, so that:

|Ω| =
∫

Ω

dHN (x), HN−1(∂Ω) =

∫
∂Ω

dHN−1(x).

For a convex set Ω ⊂ RN the support function h(Ω, ·) : RN → R of Ω is defined by

h(Ω, u) = sup
y∈Ω
〈y;u〉,

beeing 〈·; ·〉 the standard scalar product. The function h is convex and 1-homogeneous.
Sometimes it is useful to consider its restriction to the (N − 1)-dimensional unit sphere in
RN , which we denote by SN−1. Notice that we will indicate by hi, hij the derivatives of h
with respect to the i-th, j-th components of the variable x ∈ RN .

The gradient of a function u : Ω → RN , evaluated at x ∈ Ω, is the element Du(x) of
the dual space of RN , also identified with RN , which associates to any vector y ∈ RN the
number 〈y;Du(x)〉. Unless otherwise stated, we will use the variable x to denote a point in
the ambient space RN and ξ for an element in the dual space. The symbols D and ∇ξ will
denote the gradients with respect to the x and ξ variables, respectively.

Accordingly, if the dual space of RN is equipped with the norm H, then RN turns out to
be endowed with the dual norm H0 given by (9).

Given a convex set Ω, we denote by ν = (ν1, . . . , νN ) its outer unit normal vector.
Moreover νj = (ν1

j , . . . , ν
N
j ) will indicates the vector of derivatives with respect to the

variable xj .
Einstein summation convention is in use throughout the paper.

2.2. Norms in RN . Let H : RN → R be a norm in RN , that is

(i) H is convex;
(ii) H(ξ) ≥ 0 for ξ ∈ RN and H(ξ) = 0 if and only if ξ = 0;
(iii) H(tξ) = |t|H(ξ) for ξ ∈ RN and t ∈ R.

The dual norm H0 is defined by (9). Analogously, we can define H in terms of H0 as

H(ξ) = sup
x 6=0

〈x; ξ〉
H0(x)

, ξ ∈ RN .

Notice that H results to be the support function of the unitary ball BH0(1) of H0 and, in
turn, H0 is the support function of BH , that is

H(ξ) = h(BH0 , ξ) for ξ ∈ RN , H0(x) = h(BH , x) for x ∈ RN , (13)

and the convex sets BH0
and BH are polar of each other.

From [24, Corollary 1.7.3], we have that H0 ∈ C1(RN \ {0}) if and only BH(1) is strictly
convex. Moreover, we notice that if H ∈ C2(RN \ {0}) and BH(1) is uniformly convex (i.e.
H2 ∈ C2

+(RN \ {0})), then the same holds for H0 and BH0
(1).

Since all norms in RN are equivalent, there exist positive constants σ and γ such that

σ|ξ| ≤ H(ξ) ≤ γ|ξ|, ξ ∈ RN . (14)
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Let H ∈ C1(RN \ {0}), by (iii) we have

∇ξH(tξ) = sign(t)∇ξH(ξ), ξ 6= 0, t 6= 0,

and

〈∇ξH(ξ); ξ〉 = H(ξ), ξ ∈ RN , (15)

where the left hand side is taken to be 0 when ξ = 0. If H ∈ C2(RN \ {0}), then

∇2
ξH(tξ) =

1

|t|
∇2
ξH(ξ), ξ 6= 0, t 6= 0,

where ∇2
ξ is the Hessian operator with respect to the ξ variable. Hence, (15) implies that

Hξiξkξi = 0 , (16)

for every k = 1, ..., N .
The following properties hold provided H ∈ C1(RN \{0}) and BH0

is strictly convex (see
[4, Section 3.1]):

H0(∇ξH(ξ)) = 1, ξ ∈ RN \ {0}, (17)

H(DH0(x)) = 1, x ∈ RN \ {0}; (18)

furthermore, the map H∇ξH is invertible with

H∇ξH = (H0∇ξH0)−1. (19)

From (17) and the homogeneity of H0, (19) is equivalent to

H(ξ)DH0(∇ξH(ξ)) = ξ .

When H and H0 are of class C2(RN \ {0}), by differentiating this expression and using (15)
and (16), we obtain

∇2
ξV D

2V0(∇ξH) = Id , (20)

where V = H2/2 and V0 = H2
0/2.

2.3. Finsler metric. Level sets of the norms H or H0 have a special role in the study of
the anisotropic space, as well as Euclidean balls have in the Euclidean space. More precisely
we will say that a set E is Wulff shape of H if there exist t > 0 and x0 ∈ RN such that

E = {x ∈ RN : H0(x− x0) ≤ t};

in other words, if it is a H0-ball. The set E is then denoted by BH0
(x0, t) where x0 is the

center and t is the H0-radius of the ball. When x0 = 0, we simply write BH0
(t) for BH0

(0, t).
Notice that the unitary H0-ball can be seen as the image of the function Φ : SN−1 → RN

such that Φ(ξ) = ∇ξH(ξ), thanks to the properties of the norm H and its dual H0.
For a sufficiently regular set Ω ⊂ RN we denote by PH(Ω) its anisotropic perimeter, or

anisotropic surface energy, that is

PH(Ω) =

∫
∂Ω

H(ν)dHN−1(x). (21)

Obviously, when H is the Euclidean norm, then PH(Ω) is the usual perimeter of Ω.
Following [2, formulae (3.3), (3.9)] (see also [1], [19], [23], [28]), the anisotropic mean

curvature of ∂Ω, which we shall denote by MH , is defined by

MH(Ω) = div(∇ξH(ν)) = Hξiξjν
j
i . (22)
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The anisotropic mean curvature arises for instance when one considers the anisotropic
surface energy (21) of a hypersurface ∂Ω, so that H(ν) gives the unit energy per unit area
of a surface element having normal ν. Since

|Ω| = 1

N

∫
∂Ω

〈x; ν〉dHN−1,

if one considers the critical points of the shape operator PH(·) for volume-preserving varia-
tions, then one obtains that they satisfy MH = constant. We notice that if H(ξ) = |ξ| then
MH is the usual mean curvature normalized so that for the Euclidean unit sphere B it holds
MH(B) = (N − 1).

As it is well known, in the Euclidean setting the only compact constant mean curvature
hypersurfaces without boundary are Euclidean balls (Aleksandrov’s Theorem). In the Finsler
metric an analogous result holds.

Theorem 2.1 (Anisotropic Aleksandrov’s Theorem). Let H be a norm of RN of class
C2(RN \ {O}) such that H2 is uniformly convex, and let ∂Ω be a compact hypersurface
without boundary embedded in Euclidean space of class C2. If MH(x) is constant for every
x ∈ ∂Ω then Ω has the Wulff shape of H.

A proof of the previous result can be found in [19] and in [18]. In Appendix B we present
an alternative proof which is more in the spirit of Reilly’s proof [22] and of our proof of
Theorem 1.1.

2.4. Finsler Laplacian. The Finsler Laplacian associated to a norm H is the operator ∆H

defined by
∆Hu = (H(Du)Hξiξj (Du) +Hξi(Du)Hξj (Du)) uij .

This operator extends the notion of Laplacian to the anisotropic space RN endowed with a
generic norm H. The classical Laplacian corresponds to ∆H in the case H is the Euclidean
norm.

Notice that, thanks to the regularity and the homogeneity properties of the norm H, the
Finsler Laplacian is a strictly elliptic operator; indeed

(H(ξ)Hξiξj (ξ) +Hξi(ξ)Hξj (ξ))ξiξj = H2(ξ) ≥ C|ξ|2 ,
where C = min{H(ξ) : |ξ| = 1}.

Several results, which are valid in the Euclidean case, hold true in the anisotropic case
too; we here present only few of them.

Let αN be the perimeter of the unit ball with respect to H0. We refer to

Γ(x) =
H2−N

0 (x)

αN (N − 2)
(23)

as the fundamental solution of the Finsler Laplacian in RN , N ≥ 3, since Γ solves

−∆HΓ = δ0,

where δ0 is the Dirac measure centered at the origin (see [13]).

Proposition 2.2 (Weak Comparison Principle [13]). Let E be a bounded domain and assume
that

−∆Hu ≤ −∆Hv in E, and u ≤ v on ∂E,

then
u ≤ v a.e. in E.
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In particular, the following maximum principle holds.

Proposition 2.3 (Maximum Principle [13]). If ∆Hu = 0 in E, then

min
∂E

u ≤ u(x) ≤ max
∂E

u,

almost everywhere in E.

An analogous of the mean curvature formula for the Laplacian has been proved in [27]
where the anisotropic mean curvature MH has been taken into account.

Proposition 2.4 ([27]). Let u be a regular function with a regular level set St = {x ∈ RN :
u(x) = t}. The following expression holds at every x ∈ St:

∆Hu = MH(St)H(Du) +HξiHξjuij . (24)

2.5. Finsler Capacity. We recall that the Finsler capacity or anisotropic capacity of a
convex bounded open set Ω ⊂ RN is defined by

CapH(Ω) = inf

{
1

2

∫
RN

H2(Dv)dx : v ∈ C∞0 (RN ), v|Ω ≥ 1

}
. (25)

The function u such that
1

2

∫
RN

H2(Du)dx = CapH(Ω)

is called the H-capacitary potential of Ω and it satisfies Problem (6), as we will show in
Theorem 2.5.

The notion of capacity can be extended to the so called relative capacity : the Finsler
capacity of a convex bounded open set Ω ⊂ RN with respect to a superset E ⊃ Ω is defined
by

CapH(Ω;E) = inf

{
1

2

∫
E

H2(Dv)dx : v ∈ C∞0 (E), v|Ω ≥ 1

}
. (26)

In the following, we show two prime examples which will be useful later. Let us consider
the radial case Ω = BH0

(r) and let ur be solution to (6) in RN \BH0
(r). Since Γ in (23) is

the fundamental solution, it is clear that ur(x) = αN (N − 2)rN−2Γ(x), that is

ur(x) =
H2−N

0 (x)

r2−N , x ∈ RN \BH0
(r). (27)

Moreover, we have that

H(Dur(x)) =
N − 2

r
, for x ∈ ∂BH0(r). (28)

Another crucial example is the annular ring case, where the Finsler capacity of BH0(r1)
with respect to BH0(r2) is considered, for 0 < r1 < r2. The function

ur1,r2(x) =
H2−N

0 (x)− r2−N
2

r2−N
1 − r2−N

2

(29)

minimizes Problem (26) and it solves the capacity problem in the ring
∆Hu = 0, in BH0(r2) \BH0(r1),

u = 1, if H0(x) = r1,

u = 0, if H0(x) = r2.
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In the following theorem we prove that Problem (25) for the Finsler Capacity is equivalent
to the differential problem (6) and we give some crucial estimates on the H-capacitary
function u.

Theorem 2.5. Let Ω be a bounded convex domain with boundary of class C2,α such that
O ∈ Ω. Let H be a norm of RN of class C2,α(RN \ {O}) such that H2 is uniformly convex.
There exists a unique solution u to problem (6), u ∈ C2(RN \ Ω) , and it satisfies the
following properties:

(i) 0 < u < 1 in RN \ Ω;
(ii) there exist two positive constants A1 and A2 depending on Ω such that

A1Γ(x) ≤ u(x), x ∈ RN \ Ω, (30)

u(x) ≤ A2Γ(x), x ∈ RN \BH0
(R1), (31)

where Ω ⊂ BH0
(R1) and Γ is given by (23);

(iii) H(Du) 6= 0 in RN \ Ω;
(iv) there exist positive constants B1, B2 and B3 depending on Ω such that

B1
Γ(x)

H0(x)
≤ H(Du(x)) ≤ B2

Γ(x)

H0(x)
, (32)

and

|D2u(x)| ≤ B3

HN−2
0 (x)

, (33)

for x sufficiently far away from the origin.

Proof. For every r > 0, sufficiently large, let us define the function ur as the solution to the
capacity problem in BH0(r) \ Ω; that is

∆Hur = 0 in BH0(r) \ Ω,

ur = 1 on ∂Ω,

ur = 0 on ∂BH0
(r).

Notice that, by the strictly convexity of H2 the function ur is the unique minimizing function
for the capacity problem (26) related to the sets Ω and BH0

(r).
Thanks to the comparison principle, if r > s then ur(x) ≥ us(x) for every x ∈ BH0

(r)\Ω.
Hence the function

u = lim
R→∞

uR(x)

is well defined, for x ∈ RN \Ω and the sequence uR is in fact uniformly convergent. Then we
are going to deduce the estimates (i)-(iv) for the functions uR and show that the involved
constants do not depend on R, so that we will obtain the desired estimates for u by passing
to the limit as R→∞.

Let 0 < R0 < R1 be given by

R0 = sup{r > 0 : BH0(r) ⊂ Ω} and R1 = inf{r > 0 : Ω ⊂ BH0(r)}.

Consider uR0,R defined as in (29) in the ring BH0
(R) \ BH0

(R0). By comparison principle
it holds

uR(x) ≥ H2−N
0 (x)−R2−N

R2−N
0 −R2−N

, (34)
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for every x ∈ BH0
(R) \ Ω which implies

u(x) ≥ H2−N
0 (x)

R2−N
0

.

for x ∈ RN \ Ω and hence inequality (31) holds.
On the other hand we can compare the function uR with uR1,R defined as in (29) in the

ring BH0(R) \BH0(R1) and we obtain inequality (31) for x ∈ RN \BH0(R1), and in fact the
same holds in RN \ Ω since u ≤ 1. Hence (i) and (ii) are proved.

Let us investigate the regularity of uR. By using an argument analogous to the one used
in the proof of [4, Proposition 2.3], we have that uR ∈ C1,α(BR\Ω). Indeed the result follows
from [20, Chapter 4] and the fact that the set of points of non-differentiability of H∇ξH
consists of just a point, the origin. Furthermore, by arguing as in the proof [21, Lemma 2],
one can show that in fact H(DuR) does not vanish. Indeed, the proof of [21, Lemma 2] can
be adapted to our case since only the following ingredients are needed: a weak comparison
principle, estimates like the ones in (i) and (ii), and the equivalence between norms which
is given by (14). More precisely, a close inspection of the proof of [21, Lemma 2] shows that

H(DuR) ≥ A 1

H0(x)
≥ B1H

1−N
0 (x),

for x ∈ BH0
(R)\Ω, where A,B1 are constants depending only on the set Ω and the dimension

N . Hence the first condition in (32) holds for u, again by passing to the limit.
Notice that, since DuR does not vanish in BH0

(R) \ Ω, the differential operator ∆H has

C0,α coefficients. Thanks to [17, Theorem 6.15] we obtain uR ∈ C2,α(BH0(R) \ Ω).
To prove the second inequality in (32), we rescale u and define

U(y) = ρN−2uR(ρy),

where R1

r < ρ < R, for some r > 0, and y ∈ BH0(1) \ BH0(r). We notice that U satisfies

∆HU = 0, in BH0
(1) \BH0

(r). From the maximum principle and using (i) and (ii) we have

that U is uniformly bounded in BH0
(1) \BH0

(r).
We notice that

∆HU =

n∑
i,j=1

aijUij ,

where

aij(x) = [Hξi(DU(x))Hξj (DU(x)) +H(DU(x))Hξiξj (DU(x))].

From the first inequality in (32), |DU | is bounded away from zero; moreover, the homogeneity
properties of∇ξH and∇2

ξH, imply that aij are bounded as sum of 0-homogeneous functions.
Thus U is solution of a uniformly elliptic quasilinear equation and from standard regularity
results [26], [17] we obtain that |DU | is uniformly bounded and U ∈ C2, that is

H(DuR(ρy)) ≤ B2

ρN−1
, for y ∈ BH0

(1) \BH0
(r).

Let x ∈ RN \ Ω; define ρ = H0(x) and let R be sufficiently large. Hence

H(DuR(x)) ≤ B2H
1−N
0 (x),

for every x such that H0(x) ≥ R1/r. This concludes the proof of (32).
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Estimate (33) follows by Schauder’s estimates [17, Theorem 6.2] applied to U . Indeed
there exists a constant B3 depending only on the dimension, the regularity and the ellipticity
constants (which are independ of R for the homogeneity of the norm H) such that

|D2U(x)| ≤ B3 maxuR ≤ B3,

and hence 33 holds for uR and then for u.
It remains to show that in fact u solves the differential Problem (6). As already pointed

out, thanks to the strict convexity of H2, the function uR is the unique minimizing function
to the capacity problem inBH0

(R)\Ω (see [10, Paragraph 8.2.3]). Thanks to the homogeneity
and the regularity of H and from the previous estimates we have that

lim
R→∞

∫
BH0

(R)\Ω
H2(DuR) =

∫
RN\Ω

H2(Du),

which implies that u solves the minimum problem (25). Moreover, since for every φR ∈
C∞0 (BH0

(R) \ Ω) it holds∫
BH0

(R)\Ω
H(DuR)∇ξH(DuR) ·DφR = 0,

we deduce ∫
RN\Ω

H(Du)∇ξH(Du) ·Dφ = 0,

for every φ ∈ C∞0 (RN \Ω), that is u is a weak solution to Problem (6). Notice that, in fact,
u is a classical solution since, by using a local argument and [17, Theorem 6.13], we obtain
that u ∈ C0(RN \ Ω) ∩ C2,α(RN \ Ω).

We can finally conclude that in fact u ∈ C2,α(RN \Ω) by applying [17, Theorem 6.19] in
the set {u > 1

2} \ Ω. �

Remark 2.6. Notice that if Ω is assumed to be uniformly convex, then estimate (31) holds
in the whole RN \ Ω as proved in the following. Indeed, since Ω is uniformly convex, there
exists R∗ ≥ R1 such that for any y ∈ ∂Ω there exists x∗ such that the ball BH0(x∗, R∗)
contains Ω and is tangent to ∂Ω at y and BH0(R) ⊇ BH0(x∗, R∗). Moreover BH0(x∗, R∗) ⊆
BH0

(x∗, 3R). By considering the function uR∗,3R(x − x∗), the comparison principle yields

that uR ≤ uR∗,3R(x− x∗) in BH0
(R) \BH0

(x∗, R∗). By varying the point y ∈ ∂Ω and using
the uniform convexity of Ω, we prove that there exists a constant A2, depending only on the
set Ω and the dimension N , such that

uR(x) ≤ A2H
2−N
0 (x),

for x ∈ BH0
(R)\Ω and, by passing to the limit, the same estimate holds for u(x), x ∈ RN \Ω.

2.6. Elementary functions of a matrix. Given a matrix A = (aij) ∈ Rn×n, for any
k = 1, . . . , n we denote by Sk(A) the sum of all the principal minors of A of order k. In
particular, S1(A) = Tr(A), the trace of A, and Sn(A) = det(A), the determinant of A. More
explicitly

Sk(A) =
1

k!

∑
δ

(
i1, . . . , ik
j1, . . . , jk

)
ai1j1 · · · aikjk ,

where ir, jr ∈ {1, . . . , k} and the Kronecker symbol δ

(
i1, . . . , ik
j1, . . . , jk

)
has value +1 (respec-

tively −1) when ir 6= is for r 6= s and (j1, · · · , jk) is an even (respectively odd) permutation
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of (i1, · · · , ik), otherwise it has value 0 (notice that Sk is normalized by the factorial in order
to take into account repetitions in the permutations).

By setting

Skij(A) =
∂

∂aij
Sk(A) =

1

(k − 1)!

∑
(ir,jr)6=(i,j)

δ

(
i1, . . . , ik−1

j1, . . . , jk−1

)
ai1j1 · · · aik−1jk−1

, (35)

we can write

Sk(A) =
1

k

∑
Skij(A)aij , (36)

which is nothing more than the Euler’s rule for homogeneous functions (Sk being homoge-
neous of order k). In particular, for k = n, we have

det(A) = Sn(A) =
1

n

∑
Snij(A)aij . (37)

We also notice that Snij(A) is the (i, j)-cofactor of A. Then (37) also coincides (up to
a normalization) with the so called cofactor (or Laplace) expansion of the determinant;
moreover, if det(A) 6= 0 and we denote by aij the elements of the inverse matrix A−1 of A,
we have

Snij(A) = det(A)aji . (38)

For further use, we also notice that (37), (35) and the chain rule for derivatives yield

d

dt
det(A+ tB)|t=0 =

∑
Snij(A)bij (39)

for any couple of n× n matrices A and B.
Another case of special interest in our applications is when k = 2. In this case, one has

S2(A) =
1

2

∑
i,j

S2
ij(A)aij , (40)

where

S2
ij(A) =


−aji if i 6= j,∑
k 6=i akk if i = j .

The next lemma shows a generalization of Newton’s inequality to not necessarily sym-
metric matrices. This inequality, together with the characterization of the equality case, is
in fact one of the crucial ingredients in the proof of our main result.

Lemma 2.7 ([4], Lemma 3.2). Let B and C be symmetric matrices in Rn×n, and let B be
positive semidefinite. Set A = BC. Then the following inequality holds:

S2(A) ≤ n− 1

2n
Tr(A)2 . (41)

Moreover, if Tr(A) 6= 0 and equality holds in (41), then

A =
Tr(A)

n
I ,

and B is, in fact, positive definite.
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Of particular interest in our approach is the quantity S2(W ), where W = ∇2
ξV (Dv)D2v ∈

RN×N , with V (ξ) = 1
2H

2(ξ), H a C2(RN \{0}) norm, and v ∈W 2,2(Ω)∩C1(Ω) in a bounded
open set Ω with v = 1 on the ∂Ω. Notice that, in this case it holds

S2
ij(W ) =

{
−(∇2

ξV (Dv)D2v)ji if i 6= j,

−(∇2
ξV (Dv)D2v)ji + ∆Hv if i = j.

(42)

Moreover S2
ij(W ) is divergence free:

∂

∂xj
S2
ij(W ) = 0. (43)

When all the involved functions are sufficently smooth (say C3), the latter is a pointwise
identity. In fact, we will use (43) to obtain an integral identity for C2,α functions, and this
is possible thanks to a standard approximation argument as in [4, page 872].

2.7. Ingredients of convex geometry. We briefly present some notions and results of
convex analysis. For their proof and additional details we refer to [24].

We indicate by KN the set of convex subsets of RN . For K,L in KN we define their
Minkowski sum as the vectorial sum K + L = {x ∈ RN : x = k + l, k ∈ K, l ∈ L}. Many
results have been proved regarding the volume of Minkowski sum of convex sets. In particular
the volume of a convex combination of m convex sets K1, ...,Km with weight λ1, ..., λm is a
polynomial of degree m in the coefficients λi, as shown in the following proposition.

Proposition 2.8 ([24] Theorem 5.1.7). Let K1, ...,Km be convex sets in KN and λ1, ..., λm
non negative numbers. There exists a non-negative symmetric function V : (KN )N → R
such that

|λ1K1 + ...+ λmKm| =
m∑

i1,...,iN=1

λi1 · · ·λiNV (Ki1 , ...,KiN ). (44)

The coefficients V (Ki1 , ...,KiN ) (symmetric in their arguments) are named mixed volumes
of K1, ...,Km.

For a regular (say at least C1) convex set K, the Gauss map of K, which associates to
every point x ∈ ∂K the outer unit normal vector of ∂K at x, is denoted by ν(K,x) : ∂K →
SN−1. If K is strictly convex, ν is invertible and its inverse map is denoted by τ(K, ·) and
in fact it coincides with the restriction of Dθh(K, ·) at SN−1 (see [24]), that is

τ(K, ·) = ν−1(K, ·) = Dθh(K, ·) : SN−1 → ∂K , (45)

where we recall that h(K, θ) indicates the support function of the set K in the direction θ.
For an arbitrary convex domain K, τ(K,w) indicates the set of all boundary points of K at
which there exists a normal vector of K belonging to the set w ⊂ SN−1.

The Hausdorff measure of τ(K, ·) is called Area measure:

SN−1(K, θ) = HN−1(τ(K, θ)).

As for the volume, considering the area measure for a Minkowski combination of convex sets
leads to the notion of mixed area measures, as shown in the following proposition.

Proposition 2.9 ([24] Theorem 5.1.6). Let K1, ...,Km be convex sets in KN and λ1, ..., λm
non negative numbers. There exists a symmetric map S from (KN )N to the space of finite
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Borel measures on the sphere SN−1 such that

SN−1(λ1K1 + ...+ λmKm, ·) =

m∑
i1,...,iN−1=1

λi1 · · ·λiN−1
S(Ki1 , ...,KiN−1

, ·). (46)

The coefficients S(Ki1 , ...,KiN−1
, ·) (symmetric in their arguments) are called mixed area

measures of K1, ...,Km.
Mixed volumes and mixed area measures are related by the following integral formula

(see [24, Theorem 5.1.7]):

V (K1,K2, ...,KN ) =
1

N

∫
SN−1

h(K1, θ)S(K2, ...,KN , dθ). (47)

One of the most important results on mixed volume is a system of quadratic inequali-
ties called Aleksandrov-Fenchel inequalities, satisfied by general mixed volumes. A special
version is the following: (see [24, Section 7.3]) for K,L ∈ KN it holds that

V (L,K, ...,K)2 ≥ |K| V (L,L,K, ...,K). (48)

In the proof of our main result, we will use (48) when an anisotropic ball and a general
convex set are considered (i.e. L = BH0

,K = Ω).

Proposition 2.10. Let H be a norm of RN of class C2(RN \ {O}) and let Ω be a regular
bounded convex domain in RN ; it holds:

P 2
H(Ω) ≥ N |Ω|

∫
∂Ω

MH(x)

N − 1
H(ν(x)) dHN−1(x). (49)

Remark 2.11. Notice that (49) can be seen as the anisotropic version of the Minkowski
inequality ([24, Theorem 7.2.1])(

HN−1(∂Ω)
)2

≥ N |Ω|
∫
∂Ω

H1 dHN−1(x),

where H1 denotes the standard mean curvature of ∂Ω.

Proof of Proposition 2.10. We first prove the theorem for strictly convex domains, then the
general statement follows by approximation.

Let Ω be a strictly convex domain; we compute the mixed volumes in the Aleksandrov-
Fenchel inequality (48) for L = BH0

and K = Ω. We first show that:

V (BH0
,Ω, ...,Ω) =

1

N
PH(Ω). (50)

Indeed, thanks to the integral formula (47), the fact that S(Ω, ...,Ω, θ) = HN−1(τ(Ω, θ)) and
(13), we can compute

V (BH0
,Ω, ...,Ω) =

1

N

∫
SN−1

h(BH0
, θ) dHN−1(τ(Ω, θ))

=
1

N

∫
∂Ω

h(BH0 , ν(Ω, x)) dHN−1(x) =
1

N

∫
∂Ω

H(ν(Ω, x)) dHN−1(x)

=
1

N
PH(Ω).

Notice that the function τ(Ω, ·) is well defined since Ω is strictly convex by assumption.
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Let us now show that

V (BH0 , BH0 ,Ω, ...,Ω) =
1

N

∫
∂Ω

MH(x)

N − 1
H(ν(x)) dHN−1(x). (51)

Indeed, by (47) and (13) we have

V (BH0
, BH0

,Ω, ...,Ω) =
1

N

∫
SN−1

H(θ)S(BH0
,Ω, ...,Ω, θ) dθ . (52)

Let θ ∈ SN−1 be fixed and choose an orthonormal basis (e1, . . . , eN ) or RN with eN = θ.
Then it holds (see [24, (2.68)]) that

S(K1,K2, . . . ,KN−1, θ) = D
(
(hij(K1, θ))

N−1
i,j=1, . . . , (hij(KN−1, θ))

N−1
i,j=1

)
, (53)

where D(A1, . . . , Am) denotes the mixed discriminant of the (N − 1) × (N − 1) matrices
A1, . . . , Am; the mixed discriminants are symmetric in their arguments and then uniquely
determined by the formula

det(λ1A1 + · · ·+ λmAm) =

m∑
i1,...,ik=1

λi1 · · ·λikD(Ai1 , . . . , Aik) . (54)

Then, by (53), we have

S(BH0 ,Ω, ...,Ω, θ) = D
(
(Hij(θ))

N−1
i,j=1, (hij(Ω, θ))

N−1
i,j=1, . . . , (hij(Ω, θ))

N−1
i,j=1

)
(55)

and by (54)

D
(
(Hij(θ))

N−1
i,j=1, (hij(Ω, θ))

N−1
i,j=1, . . . , (hij(Ω, θ))

N−1
i,j=1

)
=

1

(N − 1)

d

dt
det(A1 + tA2)|t=0 ,

where A1 = (hij(Ω, θ))
N−1
i,j=1 and A2 = (Hij(θ))

N−1
i,j=1 (and m = 2, λ1 = 1, λ2 = t).

From (39), we get

d

dt
det(A1 + tA2)|t=0 =

∑
Hij(θ)S

ij
N−1((hrs(Ω, θ))

N−1
r,s=1)

and (38) tells

SijN−1((hrs(Ω, θ))
N−1
r,s=1) = hij det((hrs(Ω, θ))

N−1
r,s=1) , (56)

where (hij)N−1
i,j=1 denotes the inverse matrix of (hij(Ω, θ))

N−1
i,j=1.

The chain of equalities from (55) to (56) yields

S(BH0
,Ω, ...,Ω, θ) =

1

N − 1

∑
Hij(θ)h

ij det((hrs(Ω, θ))
N−1
r,s=1) ,

and, since (45) gives hij(Ω, θ) = νji (Ω, τ(Ω, θ)), we obtain

S(BH0
,Ω, ...,Ω, θ) =

1

N − 1

∑
Hij(θ)ν

j
i det((hrs(Ω, θ))

N−1
r,s=1) .

Finally, from (22) we get

S(BH0 ,Ω, ...,Ω; θ) =
MH(τ(Ω, θ))

N − 1
det((hrs(Ω, θ))

N−1
r,s=1) . (57)

Inserting the latter into (52), using the change of variable θ = ν(Ω, x) (equivalently x =
τ(Ω, θ)) and taking into account (45), we obtain (51). Coupling (51), (50) and (48), we get
(49). �
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3. Proof of Theorem 1.1

We consider the auxiliary function v(x) = u(x)
2

N−2 which solves the following problem
∆Hv =

N

v
V (Dv) in RN \ Ω,

v = 1 on ∂Ω,

H(Dv) = 2
N−2C on ∂Ω,

v → +∞ if |x| → ∞,

(58)

where V (ξ) = 1
2H

2(ξ) and C is the same constant as in (7).

We define the matrix W (x) = ∇2
ξV (Dv(x))D2v(x) whose elements are denoted by

wij . In order to simplify the presentation, arguments are omitted and hence H,V denote
H(Dv(x)), V (Dv(x)), respectively.

Since S2
ij(W ) is divergence free (see (43)), we have that

div(v1−NS2
ij(W )Vξi) = (1−N)v−NS2

ij(W )Vξivj + v1−NS2
ij(W )Vξiξkvkj ,

and from (40) we obtain that

div(v1−NS2
ij(W )Vξi) = (1−N)v−NS2

ij(W )Vξivj + 2v1−NS2(W ) . (59)

From (42) we can write

S2
ij(W )Vξivj = −wjiVξivj + ∆Hv Vξivi

so that (24) yields

S2
ij(W )Vξivj = −VξjξkvkiVξivj + 2V (HξiHξjvij + MH(Ω)H) . (60)

Moreover, recalling that V = 1
2H

2 and the homogeneity properties (15), (16) of H, it holds

VξjξkvkiVξivj = HHξkHξivkiHξjvj +H2HξkξjHξivkivj = H2HξiHξkvki.

By coupling this latter with relation (60) we get

S2
ij(W )Vξivj = H3MH(Ω) . (61)

By (60) and the homogeneity properties (15), (16) it holds that

v−NS2
ij(W )Vξivj = 2v−NV∆Hv − v−NVξiVξkvki.

Moreover, using the fact that v−NVξiVξkvki = 2NV 2v−(N+1) +div(v−NV∇ξV ) and the first
equation (58), we have

v−NS2
ij(W )Vξivj = Nv−(N+1)V 2 − div(v−NV∇ξV ) , (62)

for every x ∈ RN \ Ω.
Let R be large so that Ω is contained in the Euclidean ball BR with radius R and centered

at the origin. We are going to compute

I =

∫
BR\Ω

v−NS2
ij(W )Vξivj dx

by using expressions (59) from one hand and (62) on the other hand.
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From (59), the Divergence Theorem and the fact that ν = −Dv/|Dv|, we compute

I = − 1

N − 1

∫
BR\Ω

div(v1−NS2
ij(W )Vξi) dx+

2

N − 1

∫
BR\Ω

v1−NS2(W ) dx

=
1

N − 1

∫
∂Ω

v1−NS2
ij(W )Vξi

vj
H(Dv)

H(ν) dHN−1(x)− 1

R

1

N − 1

∫
{|x|=R}

v1−NS2
ij(W )Vξixj

+
2

N − 1

∫
BR\Ω

v1−NS2(W ) dx.

Notice that the first term in the latter expression can be rewritten by using the boundary
conditions in (58) and equation (61) as

1

N − 1

∫
∂Ω

v1−NS2
ij(W )Vξi

vj
H(Dv)

H(ν) dHN−1(x) =
4C2

(N − 2)2

∫
∂Ω

MH(Ω)

N − 1
H(ν) dHN−1(x),

and hence it holds

I =
4C2

(N − 2)2

∫
∂Ω

MH(Ω)

N − 1
H(ν) dHN−1(x)− 1

R

1

N − 1

∫
{|x|=R}

v1−NS2
ij(W )Vξixj

+
2

N − 1

∫
BR\Ω

v1−NS2(W ) dx. (63)

On the other hand the value of I can be computed by using (62), the Divergence Theorem
and the fact that ν = −Dv/|Dv|, as follows:

I =

∫
BR\Ω

NV 2v−(N+1) dx−
∫
BR\Ω

div(v−NV∇ξV ) dx

=

∫
BR\Ω

NV 2v−(N+1) dx− 1

R

∫
{|x|=R}

v−NV Vξixi +

∫
∂Ω

v−NV Vξi
vi

H(Dv)
H(ν) dHN−1(x).

The last term can be rewritten by using the boundary conditions in (58) in the following
way: ∫

∂Ω

v−NV Vξi
vi

H(Dv)
H(ν) dHN−1(x) =

1

2

( 2C

N − 2

)3
∫
∂Ω

H(ν) dHN−1(x),

which gives

I =

∫
BR\Ω

NV 2v−(N+1) dx− 1

R

∫
{|x|=R}

v−NV Vξixi dx+
1

2

( 2C

N − 2

)3

PH(Ω) , (64)

where we used (21).
Notice that Theorem 2.5 implies

lim
R→+∞

1

R

1

N − 1

∫
{|x|=R}

v1−NS2
ij(W )Vξixj dx = 0

lim
R→+∞

1

R

∫
{|x|=R}

v−NV Vξixi dx = 0.

Hence, passing to the limit R→ +∞ in (63) and (64) and coupling them, we find that

4C2

(N − 2)2

∫
∂Ω

MH(Ω)

N − 1
H(ν) dHN−1(x) +

2

N − 1

∫
RN\Ω

v1−NS2(W ) dx (65)

=

∫
RN\Ω

NV 2v−N−1 dx+
1

2

( 2C

N − 2

)3

PH(Ω). (66)



18 C. BIANCHINI, G. CIRAOLO, AND P. SALANI

Since W is the product of symmetric matrices, with ∇2
ξV positive semidefinite, Newton’s

Inequality (41) holds for W . Plugging it in (65) we obtain

PH(Ω) ≤ N − 2

C

∫
∂Ω

MH(Ω)

N − 1
H(ν) dHN−1(x). (67)

We use the value of C in (12) and notice that (67) is the reverse inequality of (49); then
equality must hold. Hence the equality sign in (41) holds true too, which implies that W is
a multiple of the identity matrix Id, that is

∇2
ξV (Dv(x))D2v(x) = γ(x) Id, (68)

for every x ∈ RN \ Ω.
Recalling that ∆Hv = Tr(W ) and expression (24), the latter entails

MH(St)H(Dv) +HξiHξjvij = Nγ, x ∈ RN \ Ω. (69)

Moreover (68) and (20) imply that

vij = γ
∂2

∂ηiηj
V0(∇ξH(Dv)),

where V0(η) is the dual function of V (ξ), that is V0(η) = 1
2H

2
0 . Hence the following holds

HξiHξjvij = γ
∂2

∂ηiηj
V0(∇ξH(Dv))HξiHξj = 2γV0(∇ξH) = γ,

thanks to the homogeneity property (15) of V0 and (17). Then (69) can then be rewritten
as

MH(St)H(Dv) + γ(x) = Nγ(x) , (70)

for every x ∈ RN \ Ω.
Notice that, thanks to the regularity result in Theorem 2.5 the function γ is constant on

∂Ω since

Nγ =
N

v
V (Dv) =

N

2

(
2

N − 2
C

)2

,

from (58). Hence relation (70) implies that MH(Ω) is constant, being Ω the level set S1 of
v.

The proof is concluded thanks to Theorem 2.1 which assures that Ω is a ball in the H0

norm: Ω = BH0
(r).

Appendix A. Proof of (12)

Proposition A.1. If there exists a solution u ∈ C2,α(RN \ Ω) of (6)-(7), then C =
N−2
N

PH(Ω)
|Ω| .

Proof. First step: CapH(Ω) = CPH(Ω).
Since H is 1-homogeneous, ν = Du/|Du|, and from (7), it holds that

C PH(Ω) = C

∫
∂Ω

H(ν) dHN−1(x) = C

∫
∂Ω

H(
Du

|Du|
) dHN−1(x)

=

∫
∂Ω

1

|Du|
H(Du)H(Du) dHN−1(x) ,
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so that

C PH(Ω) =

∫
∂Ω

1

|Du|
H2(Du) dHN−1(x) . (71)

On the other hand, by using coarea formula and (15), we find that

CapH(Ω) =

∫
RN\Ω

H2(Du) dx =

∫ 1

0

∫
{u=t}

1

|Du|
H2(Du) dHN−1(x)

=

∫ 1

0

∫
{u=t}

H(Du)〈∇ξH(Du);
Du

|Du|
〉 dHN−1(x)

= −
∫ 1

0

∫
{u=t}

H(Du)〈∇ξH(Du); ν〉 dHN−1(x).

Notice that, since ∆Hu = 0 in {u ≥ t} \ Ω, by using Divergence Theorem we have that the
quantity ∫

{u=t}
H(Du)〈∇ξH(Du); ν〉 dHN−1(x)

is independent of the level t ∈ (0, 1]. Hence it holds

CapH(Ω) = −
∫ 1

0

∫
{u=1}

H(Du)〈∇ξH(Du); ν〉 dHN−1(x) =

∫
∂Ω

H2(Du)

|Du|
dHN−1(x),

which entails, together with (71), that C PH(Ω) = CapH(Ω).
Second step: (N − 2)CapH(Ω) = C2N |Ω|.
By the Divergence Theorem and (7), we compute

C2N |Ω| =

∫
∂Ω

〈x; ν〉H2(Du) dHN−1(x) = −
∫
RN\Ω

div(H2(Du)x) dx

= −
∫
RN\Ω

NH2(Du) dx−
∫
RN\Ω

2Vi(Du)xjuij dx

= −NCapH(Ω)− 2

(∫
RN\Ω

〈∇ξV (Du);D2ux+Du〉 dx− 2

∫
RN\Ω

2V (Du) dx

)
,

where V = H2/2 and the last equality holds thanks to the homogeneity of V (·), which
follows from (15).

Recalling the definition of H-capacity, the fact that div(∇ξV (Du)) = 0 in RN \ Ω and
that ν = −Du/|Du| on ∂Ω, and by using the homogeneity of V , the latter can be rewritten



20 C. BIANCHINI, G. CIRAOLO, AND P. SALANI

as

C2N |Ω| = −NCapH(Ω)− 2

∫
RN\Ω

〈∇ξV (Du);D(Du · x)〉 dx+ 2CapH(Ω)

= (2−N)CapH(Ω)− 2

∫
RN\Ω

div(∇ξV (Du)(Du · x)) dx

= (2−N)CapH(Ω) + 2

∫
∂Ω

〈Du;x〉〈∇ξV (Du); ν〉 dHN−1(x)

= (2−N)CapH(Ω)− 2

∫
∂Ω

〈 Du
|Du|

;x〉〈∇ξV (Du);Du〉 dHN−1(x)

= (2−N)CapH(Ω) + 2

∫
∂Ω

(ν · x)H2(Du) dHN−1(x)

= (2−N)CapH(Ω) + 2C2

∫
∂Ω

ν · x dHN−1(x) = (2−N)CapH(Ω) + 2C2N |Ω| ,

which completes Step 2. The desired expression of C is achieved by coupling the two
steps. �

Appendix B. Proof of Theorem 2.1

Let ψ be the solution to the following problem:{
∆Hψ = 1 in Ω,

ψ = 0 on ∂Ω,
(72)

and let W = ∇2
ξV (Dψ)D2ψ, where V (ξ) = 1

2H
2(ξ). Notice that, thanks to (43), it holds

S2(W ) =
1

2
div(S2

ij(W )Vξi).

The latter, together with Newton’s Inequality (41) and (72), implies

N − 1

2N
=
N − 1

2N
(∆Hψ)2 ≥ 1

2
div(S2

ij(W )Vξi) ,

for every x ∈ Ω. By integrating over Ω, using the Divergence Theorem on the right hand
side, using that ν = Du/|Du| and (61), one obtains that

N − 1

2N
|Ω| ≥ 1

2

∫
∂Ω

S2
ij(W )Vξi(Dψ)νj =

1

2

∫
∂Ω

S2
ij(W )Vξi(Dψ)

ψj
|Dψ|

=
1

2

∫
∂Ω

H3(Dψ)

|Dψ|
MH(Ω) ,

and, since H is 1-homogenous, we find

N − 1

2N
|Ω| ≥ 1

2
MH(Ω)

∫
∂Ω

H(ν)H2(Dψ) . (73)

On the other hand by Cauchy-Schwarz inequality it holds(∫
∂Ω

H(ν)H(Dψ)

)2

≤
∫
∂Ω

H(ν)

∫
∂Ω

H(ν)H2(Dψ), (74)
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and hence, by the definition of ∆Hψ and (15), we obtain

|Ω| =
∫

Ω

∆Hψ =

∫
Ω

〈∇ξV (Dψ); ν〉 =

∫
Ω

H(Dψ)

|Dψ|
〈∇ξH(Dψ);Dψ〉 ,

so that

|Ω| =
∫

Ω

H(ν)H(Dψ) . (75)

Coupling (74) and (75) we obtain

|Ω|2 ≤
∫
∂Ω

H(ν)

∫
∂Ω

H(ν)H2(Dψ).

Recalling inequality (73) and definition (21) we have proved that

|Ω|2 ≤ PH(Ω)
|Ω|
N

(N − 1)

MH(Ω)
. (76)

Thanks to the anisotropic Minkowski type formula

P (Ω) =

∫
∂Ω

MH(Ω)

N − 1
〈x; ν〉

(see [18]) and the fact that MH(Ω) is constant, it holds that

P (Ω) = N
MH(Ω)

N − 1
|Ω| ,

and hence the equality sign must hold in (76). This entails that equality holds in both
Newton and Cauchy-Schwarz inequalities and hence H(Dψ) must be constant on ∂Ω, that
is: the overdetermined anisotropic Serrin Problem must be satisfied. Thanks to [4, Theorem
2.2], the set Ω is then Wulff shape.
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