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A NOTE ON AN OVERDETERMINED PROBLEM FOR THE CAPACITARY

POTENTIAL
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ABSTRACT. We consider an overdetermined problem arising in potential theory for the ca-
pacitary potential and we prove a radial symmetry result.
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1. INTRODUCTION

In this note we deal with an overdetermined problem for the electrostatic potential. The
electrostatic capacity of a bounded set Ω ⊂ R

n, n ≥ 3, is defined by

Cap(Ω) = inf

{
∫

Rn

|Dv|2dx : v ∈ C∞
c (Rn) , v(x) ≥ 1 ∀x ∈ Ω

}

, (1)

where C∞
c (Rn) denotes the set of C∞ functions having compact support. It is well-known

that it can be equivalently obtained via the asymptotic expansion of the so-called electro-
static potential of Ω (or capacitary function of Ω), i.e.

Cap(Ω) = (n− 2)ωn lim
|x|→∞

u(x)|x|n−2 , (2)

where ωn denotes the surface area of the unit sphere in R
n, and u realizes the minimum of

problem (1) and hence satisfies










∆u = 0 in R
n \ Ω ,

u = 1 on ∂Ω ,

lim|x|→+∞ u(x) = 0 .

(3)

We mention that the electrostatic potential u represents the potential energy of the electrical
field induced by the conductor Ω, normalized so that the voltage difference between ∂Ω and
infinity is one, and hence Cap(Ω) represents the total electric charge needed to induce the
potential u (see for instance [8]).

A classical question in potential theory is the study of symmetry properties for problem
(3). More precisely, one imposes an extra assumption to Problem (3) and studies how such
an overdetermination reflects on the domain Ω. In particular, one can ask whether certain
geometric properties of the constraint are inherited by the domain Ω. In this respect, a
typical problem is the so-called Serrin’s exterior problem, where one assumes that

|Du| = c on ∂Ω , (4)

where c is a positive constant, and one proves that a solution to (3)-(4) exists if and only if
the domain Ω is a ball. This kind of problem has been successfully solved in [9] by using
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the method of moving planes. Other similar problems and related results can be found in
[2, 3, 7, 10, 11, 12].

In this note we discuss two kinds of overdeterminations involving the mean curvature
H∂Ω of ∂Ω (that is the average of the principal curvatures of ∂Ω). More precisely, we prove
the following theorem.

Theorem 1.1. Let Ω ⊂ R
n be a bounded domain with boundary of class C2 and let u be the solution

of (3). If u and Ω are such that
∫

∂Ω

|Du|2
[

H∂Ω −
|Du|

n− 2

]

dHn−1 ≤ 0, (5)

or
∫

∂Ω

|Du|2
[

(n− 1)H∂Ω −
n|Du|

2(n− 2)

]

dHN−1 ≤
(n− 2)3

2
ωn

(

Cap(Ω)

(n− 2)ωn

)

n−4

n−2

, (6)

then Ω is a ball and u is radially symmetric.

We mention that in the case that constraint (5) holds, Theorem 1.1 was already proven
in [1]. Indeed, in [1, Theorem 1.1] the authors prove the symmetry result by using a confor-
mal reformulation of the problem and by proving the rotational symmetry via a splitting
argument. In this respect, we give a different proof of this theorem.

Our approach is very simple and use a chain of integral identities and a basic inequality
for symmetric elementary functions (known as Newton’s inequality), as in the spirit of
[4, 5, 6]. More precisely, by considering the auxiliary problem for the function

v = u− 2

n−2 ,

where u solves (3), we prove that v must be quadratic, and hence the capacitary function
u has radial symmetry. This approach is very flexible and it has been extended to more
general settings [2, 3].

It is interesting to notice that from the proof of Theorem 1.1 (see Step 1 in Section 3) we
immediately obtain the following lower bound for the capacity, for n = 3:

Cap(Ω)

∫

∂Ω

|Du|2
[

(n− 1)H∂Ω −
n|Du|

2(n− 2)

]

dHN−1 ≥
(n− 2)3

2
ωn . (7)

This lower bound is optimal, in the sense that the equality sign is attained when Ω is a ball.

Acknowledgements. The work has been supported by the FIRB project 2013 “Geometri-
cal and Qualitative aspects of PDE” and the GNAMPA of the Istituto Nazionale di Alta
Matematica (INdAM).

2. PRELIMINARIES

We use the following notation. Let A = (aij) be a n×n symmetric matrix. We denote by
Sk(A), k ∈ {1, . . . , n}, the sum of all the principal minors of A of order k, so that S1(A) =
tr(A) and Sn(A) = det(A). Denoting by

Sk
ij(A) =

∂

∂aij
Sk(A),

it holds

Sk(A) =
1

k
Sk
ij(A)aij ,
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where here and later the Einstein summation convention is applied. In particular for k = 2

S2
ij(A) =

∂

∂aij
S2(A) =

{

−aji i 6= j
∑

k 6=i akk i = j .

Notice that Sk(A) are the k-th elementary symmetric function of the eigenvalues of A;
so that

Sk(A) = Sk(λ1, ..., λn) =
∑

1≤i1<...<ik≤n

λi1 · ... · λin ,

where λi are the eigenvalues of the matrix A.
When A = D2v we have that

Sk(D
2v) =

1

k
div(Sk

ij(D
2v)vj) ,

which follows from the fact that the vector (Sk
i1(D

2v), . . . , Sk
in(D

2v)) is divergence free for
i = 1, . . . , n, i.e.

∂

∂xj

Sk
ij(D

2v) = 0, i = 1, . . . , n.

In particular, for k = 2 we have

S2(D
2v) =

1

2
S2
ij(D

2v)vij =
1

2
div

(

S2
ij(D

2v)vj

)

,

where

S2
ij(D

2v) =
∂

∂vij
S2(D

2v) =

{

−vji i 6= j

∆v − vii i = j .

Notice that if Lt = {v > t} is a super level set of v, then

|Dv|2∆v = (n− 1)H∂Lt
|Dv|3 + vivijvj on ∂Lt , (8)

so that if ∂Lt is oriented such that ν = Dv/|Dv| then

S2
ij(D

2v)vivj = (n− 1)H∂Lt
|Dv|3 on ∂Lt . (9)

Two crucial ingredients in the proof of Theorem 1.1 are contained in next lemmas.

Lemma 2.1 (Newton Inequality). Let A be a symmetric matrix in R
n×n; it holds

S2(A) ≤
n− 1

2n
Tr(A)2 . (10)

Moreover, if Tr(A) 6= 0 and equality holds in (10), then

A =
Tr(A)

n
I .

Lemma 2.2. For any smooth function v and γ ∈ R we have the following identity:

2vγS2(D
2v) =

= div
(γ

2
vγ−1|Dv|2Dv + vγS2

ij(D
2v)vi

)

−
3

2
γvγ−1|Dv|2∆v −

γ(γ − 1)

2
vγ−2|Dv|4 . (11)
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Proof. We notice that for γ = 0 (11) is just the definition of S2 and then we may assume
γ 6= 0. Identity (11) immediately follows from the following two identities:

div(vγS2
ij(D

2v)vi) = 2vγS2(D
2v) + γvγ−1S2

ij(D
2v)vivj , (12)

and

vγ−1S2
ij(D

2v)vivj =
3

2
vγ−1|Dv|2∆v +

γ − 1

2
vγ−2|Dv|4 −

1

2
div(vγ−1|Dv|2Dv) . (13)

Identity (12) is readily obtained from γvγ−1vi = (vγ)i and

S2(D
2v) =

1

2
S2
ij(D

2v)vij =
1

2
div(S2

ij(D
2v)vi) .

To prove (13) we notice that, since

S2
ij(D

2v)vivj = |Dv|2∆v − vivjvij ,

we have that

vγ−1S2
ij(D

2v)vivj = vγ−1|Dv|2∆v − vγ−1vivjvij

= vγ−1|Dv|2∆v +
1

2

[

− div(vγ−1|Dv|2Dv) + (γ − 1)vγ−2|Dv|4 + vγ−1|Dv|2∆v
]

=
3

2
vγ−1|Dv|2∆v +

γ − 1

2
vγ−2|Dv|4 −

1

2
div(vγ−1|Dv|2Dv) ,

which gives (13). �

We conclude this section by recalling some well-known properties of the capacitary po-
tential (see [8]) which will be useful for the proof of Theorem 1.1:

u =
Cap(Ω)

(n− 2)ωn

|x|2−n + o(|x|2−n) ,

ui = −
Cap(Ω)

ωn

|x|−nxi + o(|x|1−n) ,

uij =
Cap(Ω)

ωn

|x|−n

(

n
xixj

|x|2
− δij

)

+ o(|x|−n) ,

(14)

as |x| → +∞.

3. PROOF OF THEOREM 1.1

Step 1. We prove that the reverse inequality holds in (5) and (6). More precisely, we shall
prove that if u is a solution of (3), then it satisfies

∫

∂Ω

|Du|2
(

H∂Ω −
1

n− 2

|Du|

u

)

dHN−1 ≥ 0 , (15)

and
∫

∂Ω

|Du|2
(

(n− 1)H∂Ω −
n

2(n− 2)

|Du|

u

)

dHN−1 ≥
(n− 2)3

2
ωn

(

Cap(Ω)

(n− 2)ωn

)

n−4

n−2

. (16)
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The proof of (15) and (16) is based on Lemma 2.2 and the Newton Inequality (10) applied
to the Hessian matrix of the function v = u− 2

n−2 . Notice that the function v solves










∆v = n
2

|Dv|2

v
in R

n \ Ω,

v = 1 on ∂Ω,

v → ∞ as |x| → +∞.

(17)

Moreover, it follows from (14) that v satisfies

v =

(

Cap(Ω)

(n− 2)ωn

)− 2

n−2

|x|2 + o(|x|2) ,

vi = 2

(

Cap(Ω)

(n− 2)ωn

)− 2

n−2

xi + o(|x|) ,

vij = 2

(

Cap(Ω)

(n− 2)ωn

)− 2

n−2

δij + o(1) ,

(18)

as |x| → +∞.
We are ready to give the proof of (15) and (16). Let γ be a fixed parameter to be chosen

later and consider (11) applied to the function v, solution of (17). From (10) we have that

vγ
n− 1

n
(∆v)2 ≥

≥ div(vγS2
ij(W )vi) +

γ

2
div(vγ−1|Dv|2Dv)−

3

2
γvγ−1|Dv|2∆v −

γ

2
(γ − 1)vγ−2|Dv|4.

Since v satisfies (17), we obtain that

div(vγS2
ij(D

2v)vi) +
γ

2
div(vγ−1|Dv|2Dv) ≤ |Dv|4vγ−2

(

n

4
(n− 1)−

γ

2
(1− γ) +

3

2
γ
n

2

)

.

(19)
Now, we make our choiche of γ so that the right hand side of the above inequality vanishes.
This is achieved for γ1 = 1 − n and γ2 = −n/2. Hence, by choosing γ = γi, i = 1, 2, we
obtain that v satisfies the following inequality in R

n \ Ω:

div(vγS2
ij(D

2v)vi) +
γ

2
div(vγ−1|Dv|2Dv) ≤ 0.

Let R > 0 be such that Ω ⊂ BR. We integrate the last inequality over BR \ Ω and apply
the divergence theorem: from (9) and since ν = Dv/|Dv| on ∂Ω we have that

∫

∂Ω

(

vγ(n− 1)H∂Ω|Dv|2 +
γ

2
vγ−1|Dv|3

)

dHN−1 ≥

≥

∫

∂BR

(

vγS2
ij(D

2v)viν
j
BR

+
γ

2
vγ−1|Dv|2vjν

j
BR

)

dHN−1 , (20)

where νBR
denotes the outer unit normal vector to BR. Now we notice that if γ = γ1, then

(18) implies that

lim
R→∞

∫

∂BR

vγ1S2
ij(D

2v)viν
j
BR

+
γ1
2
vγ1−1|Dv|2viν

i
BR

= 0, (21)
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while if γ = γ2 then (18) yields that

lim
R→∞

∫

∂BR

vγ2S2
ij(D

2v)viν
j
BR

+
γ2
2
vγ2−1|Dv|2viν

i
BR

= 2(n− 2)ωn

(

Cap(Ω)

(n− 2)ωn

)
n−4

n−2

, (22)

since ∂BR is asymptotically a level set of v.
By using the fact that v = 1 on Ω and coupling (20) and (21), we obtain

∫

∂Ω

|Dv|2
(

H∂Ω −
1

2

|Dv|

v

)

≥ 0 ,

while from (20) and (22) we find
∫

∂Ω

|Dv|2
(

(n− 1)H∂Ω −
n

4

|Dv|

v

)

≥ 2(n− 2)ωn

(

Cap(Ω)

(n− 2)ωn

)

n−4

n−2

.

By recalling that v = u− 2

n−2 , from the last two inequalities we immediately obtain (15) and
(16).

Step 2. From Step 1 we have that the equality sign holds in (5) and (6). This means that
the equality sign holds in Newton inequality, which implies that for every x ∈ R

n \Ω there
exists a constant λ(x) such that

D2v(x) = λ(x)Id.

It is easy to see that λ must be constant. Indeed, let i = 1, . . . , n be fixed and chose any
j 6= i; we have that

∂xi
λ(x) = ∂xi

uxjxj
= ∂xj

uxjxi
= 0 ,

which implies that λ is constant. Hence,

D2v = cId . (23)

From (17) we find that |Dv| is constant on every level surface of v. In particular, |Dv| is
constant on ∂Ω and hence from (8) and (23) we find that H∂Ω is constant and by using
Alexandrov Theorem we conclude that Ω is a ball. The proof is complete.
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