
Testability of Switching Lattices in the Cellular
Fault Model

Anna Bernasconi
Dipartimento di Informatica

Università di Pisa, Italy
anna.bernasconi@unipi.it

Valentina Ciriani
Dipartimento di Informatica

Università degli Studi di Milano, Italy
valentina.ciriani@unimi.it

Luca Frontini
I.N.F.N.

Sezione di Milano, Italy
luca.frontini@mi.infn.it

Abstract—A switching lattice is a two-dimensional array of
four-terminal switches implemented in its cells. Each switch is
linked to the four neighbors and is connected with them when the
switch is ON, or is disconnected when the switch is OFF. Recently,
with the advent of a variety of emerging nanoscale technologies
based on regular arrays of switches, lattices of multi-terminal
switches, originally introduced by Akers in 1972, have found a
renewed interest. In this paper, the testability under the Cellular
Fault Model (CFM) of switching lattices is defined and analyzed.
Moreover, some techniques for improving the testability of lattices
are discussed and experimentally evaluated.

Index Terms—Switching lattices; testability; cellular fault
model; logic synthesis.

I. INTRODUCTION

A switching lattice is a two-dimensional array of four-
terminal switches linked to the four neighbors of a lattice cell,
so that these are either all connected (when the switch is ON),
or disconnected (when the switch is OFF). The first description
of lattices for implementing Boolean functions is due to a
seminal paper by Akers in 1972 [1]. Recently, with the advent
of a variety of emerging nanoscale technologies based on
regular arrays of switches, synthesis methods targeting lattices
of multi-terminal switches have found a renewed interest [2],
[3], [4], [5], [7], [8], [10], [11], [12].

Beside synthesis, testability is a major aspect of the design
process. For this reason, the testability should be considered
from the very beginning. The classical Stuck-at Fault Model
(SAFM) is well-known and used throughout the industry for
many years for CMOS technology. In the SAFM it is assumed
that a defect causes a basic cell input or output to be fixed to
either 0 or 1. The testability of lattices in the SAFM has been
studied in [6].

The strongest cell-based fault model that controls the correct
static behavior of a combinational circuit is the Cellular
Fault Model (CFM), which tries to completely verify the
function computed by each basic cell in the circuit [9]. The
investigations with respect to CFM and SAFM are usually
based on the single fault assumption, i.e., one assumes that
there is at most one fault (according to the considered fault
model) in the circuit.

In lattice model we do not deal with gates, but with literals
that control switches. Thus, in this paper we define and study
a cellular fault (CF) in a switching lattice as the event that
replaces a controlling literal with a different (faulty) one.

First, we prove that the testability of a general cellular
fault is related to the testability of the fault where the correct
controlling literal behaves as if it had been inverted. We then
discuss how to derive a test set for a general CF starting from
the test set for the inverted literal fault. This result allows to
simplify the testability analysis.

Finally, out of all possible CFs, we consider the cellular
faults that immediately derive from the physical layout of a
lattice. To this aim, we denote adjacent cellular fault a cellular
fault where the faulty literal is the controlling literal of an
adjacent switch. For this special case of CFs, we propose some
techniques for improving the testability of a lattice without
increasing its dimension.

In the experimental results we compare the CF testability
of lattices obtained with the two main synthesis methods
and evaluate the effect of the proposed lattice restructuring
techniques on lattices’ testability.

The paper is organized as follows. Preliminaries on switch-
ing lattices and on the cellular fault model are reviewed in
Section II. The analysis of CF testability is presented in
Section III. Section IV describes two methods for improving
the testability of adjacent cellular faults in a lattice. Finally,
Section V provides the experimental results and Section VI
concludes the paper.

II. PRELIMINARIES

A. Switching Lattices

A Boolean function can be implemented by a lattice in the
following way:
• each four-terminal switch (or cell of the lattice) is con-

trolled by a literal or a constant value (0 or 1);
• if the literal takes the value 1 (or the cell is labeled by

the constant 1), the corresponding switch is connected to
its four neighbors; else it is not connected;

• the function evaluates to 1 if and only if there exists a
connected path between two opposing edges of the lattice,
e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected cor-
respond to output 0.

For instance, the 3 × 3 network of switches in Figure 1(a)
corresponds to the lattice depicted in Figure 1(b), which im-
plements the function f = x1x2x3+x1x2+x2x3. If we assign
the values 1, 1, 0 to the variables x1, x2, x3, respectively, we

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/227965372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

(b)

x2

x1 x3

x3 x2 x2

x2

TOP

BOTTOM

(a)

(c) (d)

x1

x2 x2

x2 x2

x1 x3

x3 x2

TOP

BOTTOM

x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

x2

x1 x1

Fig. 1. A four terminal switching network implementing the function
f = x1x2x3 + x1x2 + x2x3 (a); its corresponding lattice form (b);
the lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with
grey and white cells representing ON and OFF switches, respectively.

obtain paths of gray (i.e., connected) cells connecting the top
and the bottom edges of the lattices (Figure 1(c)), indeed
on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates
to 0, does not produce any connected path from the top to the
bottom edge (Figure 1(d)).

The synthesis problem on a lattice consists in finding an
assignment of literals to switches in order to implement a
given target function with a lattice of minimal size. The size
is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left
edge to right edge connectivity, so that a single lattice can
implement two different functions. This fact is exploited in [4]
where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according
to the connectivity between the top and the bottom plates, and
its dual function fD according to the connectivity between
the left and the right plates. Recall that the dual of a Boolean
function f depending on n binary variables is the function
fD such that f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This
method consists of the following steps [4]:

Step 1: find an irredundant, or a minimal, SOP representa-
tion for f and fD: SOP (f) = p1 + p2 + . . . ps and
SOP (fD) = q1 + q2 + . . . qr;

Step 2: form a r× s switching lattice and randomly assign
each product pj (1 ≤ j ≤ s) of SOP (f) to a column
and each product qi (1 ≤ i ≤ r) of SOP (fD) to a
row;

Step 3: for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, randomly assign
to the lattice cell ci,j one literal that is shared by qi
and pj (the fact that f and fD are duals guarantees
that such a shared literal exists for all i and j).

Taking Step 3 into consideration, let Si,j be the, non-empty,
set of literals that are shared by qi and pj . We observe that
|Si,j | ≥ 1 and that the algorithm, proposed in [4], randomly
assigns a literal in Si,j as the controlling literal of the cell ci,j .
In Section IV we discuss how to choose the controlling literal
in Si,j in order to possibly improve the lattice’s testability.

We can observe that the synthesis algorithm, proposed
in [4], produces a lattice for f whose size depends on the
number of products in the irredundant SOP representations
of f and fD. For instance, the lattice depicted in Figure 1
has been built according to this algorithm, and it implements
both the function f = x1x2x3 + x1x2 + x2x3 and its dual
fD = x1x2x3 + x1x2 + x2x3.

The time complexity of the algorithm is polynomial in the
number of products. However, the method does not always
build lattices of minimal size for every target function, since it
ties the dimensions of the lattices to the number of products in
the SOP forms. In [10], the authors have proposed a different
approach to the synthesis of minimal-sized lattices, which is
formulated as a satisfiability problem in quantified Boolean
logic and solved by quantified Boolean formula solvers. Exper-
imental results show how this alternative method can decrease
lattice sizes considerably, at the expense of computational
time. In fact, bigger benchmarks cannot be handled by this
method. While in the method proposed in [4] the constant
labels are not exploited, in this approach the use of fixed inputs
(i.e., constant values 0 and 1) is allowed.

We now review some definitions and present some proper-
ties of switching lattices that will be exploited for the analysis
of their testability [6].

Let the first row of a lattice be the top row, the last row
be the bottom row, and any other row be an internal row.
Two cells in a lattice are adjacent if they are in the same
column and in two adjacent rows or in the same row and in
two adjacent columns. Hereafter, in a lattice we denote path
any list l1, l2, . . . , lm−1, lm of literals such that li and li+1

(for all 1 ≤ i < m) are contained in adjacent cells and: 1)
l1 is contained in a cell in the top row, 2) lm is contained
in a cell in the bottom row, and 3) all the other literals (i.e.,
l2, . . . , lm−1) are contained in cells of the internal rows. Note
that paths in lattices may contain more occurrences of the same
literal. A path in a lattice is unsatisfiable (resp., satisfiable)
if contains (resp., does not contain) both a variable x and
its complement x. The product associated to a satisfiable
path is the conjunction of all literals of the path, without
repetitions. The product associated to an unsatisfiable path is
0. For example, in the lattice in Figure 1 (b) the path x2, x1, x2

is satisfiable and the path x1, x2, x1, x2 is unsatisfiable. The
associated products are x1x2 and 0, respectively. An accepting
path for a minterm v in a lattice is a satisfiable path whose
associated product covers v. A path l1, . . . , li, . . . , lm in a
lattice L is prime w.r.t. a literal li (1 ≤ i ≤ m), if the product
associated to the sequence of literals obtained removing li
from the path is not an implicant of the function implemented
by L. Let c be a cell in a switching lattice L that implements
a function fL. The cell c is essential in L if there exists at



least a minterm v in the on-set of fL whose accepting paths
always contain c. For instance, in the lattice in Figure 1 (b)
all cells on the leftmost column are essential, as they form the
only accepting path for the on-set minterm 000 in the lattice.

B. Cellular Fault Model in a Lattice

The cellular fault model CFM [9] for CMOS circuits
considers faults that modify the behavior of exactly one gate
in a given Boolean circuit. In our model we do not deal with
gates, but with controlling literals in a lattice. Thus, we can
define a cellular fault CF in a switching lattice L as a tuple
(c, lc, lf ), where c is the cell of the lattice L (i.e., the fault
location), lc is the correct controlling literal in c, and lf ( 6= lc)
is the faulty controlling literal.

Out of all the possible faulty literals in a cell c, we can
describe a specific cellular fault model that derives from
the physical implementation of a lattice. We denote adjacent
cellular fault a cellular fault where the faulty literal lf is in
an adjacent cell. More precisely:

Definition 1: Let li,j be the literal in the cell ci,j of a lattice
L. We have that:

1) A Left Adjacent Cellular Fault (L-ACF) is the cellular
fault (ci,j , li,j , li,j−1) ,

2) A Right Adjacent Cellular Fault (R-ACF) is the cellular
fault (ci,j , li,j , li,j+1),

3) A Bottom Adjacent Cellular Fault (B-ACF) is the cellu-
lar fault (ci,j , li,j , li+1,j),

4) A Top Adjacent Cellular Fault (T-ACF) is the cellular
fault (ci,j , li,j , li−1,j).

Finally, we denote TL (resp., TR, TB , and TT ), with 1 ≤
i ≤ r, 1 ≤ j ≤ s the number of testable cells with a L-ACF
(resp., R-ACF, B-ACF, and T-ACF) in the given lattice.

III. TESTABILITY IN THE CFM

In this section we analyze the testability of general cellular
faults in a lattice. The special case of adjacent cellular faults
will be further discussed in Section IV, together with some
techniques for improving their testability.

Consider a CF (c, lc, lf ) in a cell c with controlling literal lc
and faulty literal lf . We denote test set of CF the set T(lc←lf )

of all input vectors that give an uncorrected output on the
faulty lattice. The vectors in T(lc←lf ) are called test vectors.
A fault is testable if and only if its test set is not empty.

First of all, we observe that the testability of a general
cellular fault CF (c, lc, lf ) is related to the testability of the
CF (c, lc, lc), i.e., the fault where the correct controlling literal
lc behaves as if it had been inverted. Indeed, we prove that if
the CF (c, lc, lf ) is testable, then the fault (c, lc, lc) is testable
as well. On the other hand, if the fault (c, lc, lc) is testable on
a test vector v on which the literals lc and lf assume different
values, then v can be used as a test for the fault (c, lc, lf ):

Proposition 1: A CF (c, lc, lf ) in a lattice cell c with literal
lc is testable if and only if the CF (c, lc, lc) is testable and the
test set T(lc←lc)

contains at least one input vector where lf
and lc assume different values.

Proof. Only-if part. Let us suppose that the CF (c, lc, lf ) is
testable, and let v ∈ T(lc←lf ). This means that the function fL′

implemented by the faulty lattice L′ differs from the function
fL computed by the original lattice L on v. Now, observe that
since L and L′ have the same behaviour if the literals lc and
lf assume the same value, the value of lf on all test vectors in
T(lc←lf ) must be different from the value of lc, and therefore
equal to the value of lc. This implies that the minterm v can
also be used to test the fault (c, lc, lc), as on this vector the
correct and the faulty lattice compute different values. Thus
T(lc←lc)

is not empty, and the fault (c, lc, lc) is testable.
If part. Now, suppose that the CF (c, lc, lc) is testable and

that T(lc←lc)
contains a vector v where the two literals lf and

lc assume different values. Thus, since on v the correct and
the faulty lattice behave differently, and lc is different from lf
(i.e., lf and lc get the same value), we can use v to test the
fault where the controlling literal lc in cell c is replaced by
lf . Thus, v ∈ T(lc←lf ), and the fault (c, lc, lf ) is testable.

Observe that this proposition implies that any vector in the
test set for the fault (c, lc, lf ) can be used to test the fault
(c, lc, lc), while a test vector v for the CF (c, lc, lc) is a test
vector for the fault (c, lc, lf ) if and only if lc and lf assume
different values on v, as stated below.

Remark 1: Let Blc 6=lf denote the subset of the space {0, 1}n
containing all minterms on which the two literals lc and lf
assume different values. Then T(lc←lf ) = T(lc←lc)

∩Blc 6=lf .

Due to the relationship between these two kinds of cellular
faults, we start the testability analysis with the fault (c, lc, lc),
and then we will discuss how to derive a test set for a general
fault CF (c, lc, lf ) starting from the test set for CF (c, lc, lc).
As we will discuss in Section III-B, this approach allows to
simplify the testability analysis.

A. Testability of the CF (c, lc, lc)
Consider a lattice L that implements a function fL depend-

ing on n binary variables. Let L′ be the lattice L with the fault
(c, lc, lc) in the cell c, and let p be a path that contains c. We
denote with p′ the subpath composed by all cells but c (with
an abuse of notation, we use the path terminology for p′).

First of all, we observe that the fault can only be tested on
paths p such that p′ is satisfiable:

Proposition 2: A CF (c, lc, lc) cannot be tested if for each
path p through c, the subpath p′ = p \ {c} is unsatisfiable.
Proof. If p′ is unsatisfiable, then also the two paths p = p′ ∪
{lc} and pf = p′ ∪ {lc} are unsatisfiable. This means that if
we change the literal lc in c with its complement, the path
remains unsatisfiable and the behavior of the lattice does not
change on that path: the products associated to p and pf are
both 0. If this happens for any path p through c, then the fault
cannot be tested.

Therefore, we restrict the analysis to paths p such that p′ is
a satisfiable path, i.e., to paths that without the literal in the
faulty cell c are satisfiable. We consider three different cases:

1) p′ is satisfiable and contains an occurrence of lc;
2) p′ is satisfiable and contains an occurrence of lc;
3) p′ is satisfiable and does not contain lc or lc.



In the first case, the fault changes the overall path p from
p = p′∪{lc} to pf = p′∪{lc}. Note that the original path p is
unsatisfiable since p′ contains lc. Thus, the effect of the fault
is to change p from an unsatisfiable path to a satisfiable one,
as the product associated to the new path pf coincides with
the product associated to p′, and p′ is satisfiable. In order to
test the fault, we should then look for an off-set minterm v of
fL that is covered by the product associated to p′, so that on v
the faulty lattice L′ computes 1 instead of 0. This implies that,
with respect to the product p, the fault in c becomes equivalent
to a stuck-at-1 fault (SA1), i.e., a fault where the controlling
literal lc is fixed to the constant value 1. The testability of
lattices in the stuck-at-fault model (SAFM) has been studied
in [6], where it has been proved that a SA1 in a lattice cell
c can be tested if and only if there exists a path containing
the cell c that is prime with respect to the controlling literal
lc of c. The reason is that if we substitute lc with 1 in a prime
path p, we get an accepting path in the faulty lattice L′ for
an off-set minterm. Thus, we can apply this result to the CF
(c, lc, lc), and state the following proposition.

Proposition 3: The CF (c, lc, lc) can be tested on a path
p = p′∪{lc}, where p′ is satisfiable and contains an occurrence
of lc if and only if p is prime with respect to lc.
Proof. Follows from the above considerations and from The-
orem 2 in [6].

Let us now consider the second case, where p′ is satisfiable
and contains an occurrence of lc. In this case, the original path
p = p′ ∪{lc} is satisfiable since the product associated to p is
equivalent to the product associated to the satisfiable path p′.
Thus, the effect of the fault is to change p from a satisfiable
path to an unsatisfiable one, as pf = p′∪{lc} contains both lc
and lc. To test the fault, we should look for an on-set minterm
v of fL such that (i) p is an accepting path for v, and (ii) the
faulty lattice L′ computes 0 on v. Observe that in this case,
the fact that p becomes unsatisfiable because of the fault is
not enough to conclude that the fault is testable. Indeed, each
on-set minterm covered by the product associated to p, could
have at least another accepting path that does not include the
faulty cell c. Again, we have a connection with a stuck-at fault,
in particular with the stuck-at-0 fault (SA0), i.e., a fault where
the controlling literal lc is fixed to the constant value 0. The
testability of SA0 faults has been studied in [6], where it has
been proved that a SA0 in a cell c can be tested if and only
if c is essential. Indeed, the essentiality of c implies that there
is at least an on-set minterm whose accepting paths always
include c, so that the fault (c, lc, lc) disconnect all of them.

Applying this result to the CF (c, lc, lc), we have
Proposition 4: The CF (c, lc, lc) can be tested on a path

p = p′∪{lc}, where p′ is satisfiable and contains an occurrence
of lc if and only if c is essential.
Proof. Follows from the above considerations and from The-
orem 2 in [6].

In the third and final case, we assume that p′ is satisfiable
and contains no occurrences of lc and lc. In this case, the
testability can be reduced to the testability under both SA0

and SA1 faults. Indeed, the original path p = p′ ∪{lc} is now
changed to pf = p′ ∪ {lc}, and both paths are satisfiable, but
under different input assignments. In particular, the effect of
the fault is the following.
• All on-set minterms covered by the product associated to

p are such that lc is equal to 1, and therefore the new
path pf , that contains lc, is not an accepting path for
them (as in a SA0). In order to test the fault, we need
the essentiality of the cell c, as in this case there exists
at least a minterm v in the on-set of fL whose accepting
paths always contain c, and on v the faulty lattice L′

computes 0 instead of 1.
• The new path pf becomes an accepting path for all off-

set minterms, if any, covered by the product associated to
p′ and such that lc is equal to 0 (as in a SA1). In order to
test the fault, we now need the primality of p with respect
to lc, that implies that there exists an off-set minterm v
on which the faulty lattice L′ computes 1 instead of 0.

We can therefore state the following proposition.
Proposition 5: The CF (c, lc, lc) can be tested on a path

p = p′ ∪ {lc}, where p′ is satisfiable and does not contain lc
or lc if and only if p is prime with respect to lc or the cell c
is essential.
Proof. Follows from the above considerations and from The-
orems 2 and 3 in [6].

B. Testability of the CF (c, lc, lf )
We now discuss the testability of the general fault CF

(c, lc, lf ). Observe that, for any lattice cell c, there are 2n− 1
possible cellular faults, where n is the number of input
variables. In fact, the faulty literal lf can be any literal x,
x, but lc. Fortunately, all these different faults can be seen
as particular instances of the fault CF (c, lc, lc), and this fact
allows us to simplify the testability analysis, as proved in the
following theorem, summarizing all previous results.

Theorem 1: For any literal lf different form lc, the CF
(c, lc, lf ) in a lattice cell c with controlling literal lc is testable
if and only if T(lc←lc)

∩Blc 6=lf 6= ∅ .
Proof. Follows from Proposition 1 and Remark 1.

Therefore, once the test set for the fault (c, lc, lc) has been
computed, we can use it to derive, by a simple set intersection,
the test sets of all the other 2n − 2 cellular faults (c, lc, lf ),
where lf can be any literal but lc and lc.

IV. IMPROVING THE TESTABILITY IN THE ACFM
In Section III, we discuss the testability properties of lattices

under the CF model. In this section, we concentrate on
improving the testability of Adjacent Cellular Faults for the
lattices synthesized by the Altun-Riedel method [4] described
in Section II-A. First of all, we note that the considered
minimization algorithm defines many equivalent lattices for
the given function f , all of dimension r × s. These lattices
may exhibit a different ACF sensitivity for a single fault.
In particular, the controlling literal in the lattice cell ci,j is
selected choosing arbitrarily in the corresponding set Si,j (see
Step 3 of the algorithm). Consider, for example, the lattice
for f = x1x2 + x1x3 + x2x3 depicted in Figure 2, where



in each cell ci,j it is represented the corresponding set Si,j .
Starting from this lattice we can build 8 different equivalent
lattices by choosing the controlling literal in the diagonal cells.
Instead of selecting arbitrarily the controlling literal, we will
exploit the degrees of freedom offered by the Altun-Riedel
method to detect the most testable one in the ACF model (see
Definition 1).

We first discuss a lower bound on the number of cells
that are not testable in a lattice. Consider the cell ci,j and
its controlling literal li,j ∈ Si,j . Suppose that l′i,j ∈ Si,j ,
l′i,j 6= li,j , is another possible controlling literal for ci,j . In
presence of the CF (ci,j , li,j , l

′
i,j) we cannot test the fault since

the two lattice are equivalent. Therefore, in a lattice the number
of non testable faults is lower-bounded by the total number of
these faults. In particular, consider the ACF model. Let ci,j
be a cell of the given lattice, and li,j ∈ Si,j be the controlling
literal. For example, if the controlling literal li,j−1 of the left
adjacent cell ci,j−1 is contained in Si,j then we cannot test
the L-ACF. More precisely, the number of non-testable ACFs
for the cell ci,j (1 ≤ i ≤ r and 1 ≤ j ≤ s) is lower-bounded
by Ni,j = ni−1,j + ni+1,j + ni,j−1 + ni,j+1, where nh,k = 1
iff lh,k ∈ Si,j (we consider nh,k = 0 if h < 1 or k < 1 or
h > r or k > s). Considering this observation we can give
a heuristic algorithm for choosing the controlling literal in
Si,j for the cell ci,j . This heuristic tries to avoid to choice of
controlling literals occurring in the sets of the adjacent cells.
Thus, Step 3 of the Altun-Riedel algorithm can be replaced
by the following strategy.

Algorithm 1: Heuristic for choosing the controlling literal
in each cell of a lattice L .
ControllingLiterals (lattice L)
INPUT: a lattice L (r × s) and, for each cell ci,j , the set
Si,j of its possible controlling literals
OUTPUT: a lattice L′ where each cell c′i,j contains exactly
one controlling literal l′i,j
for i = 1 to r − 1

for j = 1 to s− 1
S = Si,j \ (Si+1,j ∪ Si,j+1)
if (S 6= ∅) choose randomly l′i,j ∈ S;
else
S = Si,j \ Si+1,j

if (S 6= ∅) choose randomly l′i,j ∈ S;
else
S = Si,j \ Si,j+1

if (S 6= ∅) choose randomly l′i,j ∈ S;
else choose randomly l′i,j ∈ Si,j ;

for i = 1 to r − 1 // last column
S = Si,s \ Si+1,s

if (S 6= ∅) choose randomly l′i,s ∈ S;
else choose randomly l′i,s ∈ Si,s;

for j = 1 to s− 1 // last row
S = Sr,j \ Sr,j+1

if (S 6= ∅) choose randomly l′r,j ∈ S;
else choose randomly l′r,j ∈ Sr,j ;

choose randomly l′r,s ∈ Sr,s;

{x1 , x2 } { x1 } { x2 }

{x1 , x3 } { x3 }

{ x2 } { x3 } {x2 , x3 }

{ x1 }

Fig. 2. A lattice for the function f = x1x2 + x1x3 + x2x3, where each
cell ci,j contains the corresponding set Si,j .

A second observation on Altun-Riedel algorithm is that in
the Step 2 of the procedure (see Section II-A) each product
of the SOP for f is assigned to a column, and each product
of the SOP for the dual fD is assigned to a row, without any
specific rule for these assignments. As a consequence, any
permutation of the products in SOP (f) and in SOP (fD)
gives rise to a correct, and possibly different, lattice for f .
We are then allowed to permute columns and rows in order
to minimize the number of adjacent cells containing the same
literal. In fact, we can easily observe that if two adjacent cells
contain exactly the same literal, the corresponding ACF cannot
be tested.

In summary, we propose a new version of Altun-Riedel
algorithm in order to avoid some possible non-testable ACFs.
The overall strategy, which we implement and show in Sec-
tion V, exploits Algorithm 1 for Step 3 of the method [4],
and inserts a new last Step 4 that performs column and row
permutations in order to decrease the number of adjacent cells
containing the same literal. Thus, the new synthesis algorithm
that improves ACF testability is:

Step 1: find an irredundant, or a minimal, SOP representa-
tion for f and fD: SOP (f) = p1 + p2 + . . . ps and
SOP (fD) = q1 + q2 + . . . qr;

Step 2: form a r × s switching lattice and assign each
product pj (1 ≤ j ≤ s) of SOP (f) to a column and
each product qi (1 ≤ i ≤ r) of SOP (fD) to a row;

Step 3: for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to
the switch on the lattice site (i, j) one literal that is
shared by qi and pj following the strategy described
in Algorithm 1;

Step 4: permute rows and columns in order to minimize the
number of adjacent cells containing the same literal.

Note that the proposed approach possibly improves the
testability without increasing the lattice’s area.

V. EXPERIMENTAL RESULTS

The aim of this section is twofold. In the first part we
compare the testability of ACFs for lattices obtained with [4]
and [10] synthesis methods. In the second part we evaluate
the effect of the lattice restructuring methods proposed in
Section IV on the testability of lattices obtained with [4].

The experiments have been run on a machine with two
AMD Opteron 4274HE for a total of 16 CPUs at 2.5 GHz and
128 GByte of main memory, running Linux CentOS 7. The
benchmark functions (expressed in PLA form) are taken from



TABLE I
A SAMPLE OF BENCHMARKS SYNTHESIZED WITH THE METHODS [4] AND [10], AND THEIR PERCENTAGES OF TESTABLE ACFS

[4] [10]
name n r s area %TR %TL %TT %TB r s area %TR %TL %TT %TB

add6(1) 4 6 6 36 53% 42% 67% 42% 5 3 15 87% 93% 100% 100%
addm4(6) 5 10 11 110 55% 47% 24% 24% 6 4 24 100% 100% 96% 100%
adr4(3) 4 6 6 36 69% 72% 59% 67% 5 3 15 93% 100% 100% 100%
al2(33) 6 2 5 10 60% 60% 100% 100% 2 4 8 100% 100% 100% 100%
al2(36) 6 2 5 10 60% 60% 100% 100% 2 4 8 100% 100% 100% 100%
amd(7) 6 6 7 42 57% 50% 48% 48% 5 4 20 100% 100% 100% 95%
b11(8) 6 2 5 10 70% 70% 90% 80% 2 4 8 87% 87% 100% 100%
b7(4) 6 3 5 15 60% 66% 100% 100% 3 4 12 100% 100% 100% 100%
bench(7) 6 4 6 24 100% 100% 100% 100% 3 5 15 100% 100% 100% 100%
ex5(35) 6 7 3 21 90% 86% 57% 57% 6 3 18 89% 89% 72% 67%
exp(13) 6 2 5 10 90% 100% 100% 100% 2 4 8 100% 100% 100% 100%
fout(1) 6 9 10 4 100% 100% 100% 100% 6 4 24 87% 92% 100% 100%
fout(2) 6 7 9 63 100% 100% 100% 100% 6 3 18 100% 94% 100% 100%
fout(4) 6 9 8 72 100% 100% 100% 100% 6 4 24 100% 92% 96% 96%
fout(5) 6 7 6 42 100% 100% 100% 100% 5 3 5 80% 80% 100% 100%
fout(6) 6 8 9 72 100% 100% 100% 100% 5 4 20 95% 95% 95% 95%
fout(7) 6 8 10 80 64% 64% 27% 40% 6 4 24 92% 92% 96% 100%
fout(8) 6 9 10 90 61% 56% 27% 33% 6 4 24 96% 92% 87% 96%
inc(0) 6 6 7 42 55% 52% 45% 45% 4 4 16 100% 100% 94% 100%
lin.rom(21) 6 5 5 25 64% 63% 72% 72% 4 4 16 81% 81% 100% 100%
luc(16) 6 6 8 48 50% 52% 52% 46% 4 5 20 100% 100% 90% 90%
luc(6) 6 4 7 28 75% 63% 64% 50% 3 4 12 100% 100% 100% 100%
mish(1) 6 5 6 30 60% 67% 67% 63% 5 3 15 100% 100% 100% 100%
p82(6) 5 6 5 30 63% 57% 80% 63% 3 5 15 100% 100% 87% 87%
pope.rom(0) 6 7 7 49 94% 94% 33% 23% 6 3 18 94% 94% 83% 72%
risc(21) 5 2 5 10 80% 80% 90% 80% 2 4 8 100% 100% 100% 100%
sqr6(3) 6 9 9 81 51% 68% 42% 43% 6 3 18 94% 94% 100% 100%
t2(10) 5 4 5 20 90% 85% 100% 100% 3 4 12 92% 83% 92% 75%
Z5xp1(5) 5 10 10 100 30% 29% 23% 28% 4 5 20 100% 100% 100% 95%

TABLE II
OVERALL RESULTS OF THE COMPARISON BETWEEN [4] AND [10]

Synthesis
Method

Average
area (TR/area)% (TL/area)% (TT /area)% (TB /area)%

[10] 12 95.6% 95.7% 95.8% 95.4%
[4] 27 69.1% 67.9% 68.1% 69.2%

LGSynth93 [13]. Each output of a benchmark is implemented
as a separate Boolean function for a total of 520 functions.

Since the simulation time depends on the number of vari-
ables, we consider lattices with a number of variables lower
than 6. Notice that this limitation is due to the onerous
procedure for the fault simulation, and it is not due to our
proposed algorithms for improving testability.

The software used for simulations is written in C++. We
used ESPRESSO to implement the method described in [4],
and a collection of Python scripts for computing minimum-
area lattices by transformation to a series of SAT problems,
to simulate the results reported in [10].

A. Testability of lattices synthesized with methods [4] and [10]

In Table I we compare the number of testable cells for each
ACF between lattices synthesized as described in [4] and [10].
The first column in the table reports the name and the number
of the considered output of each function; the second column
reports the number of input variables. The following columns
report, for each synthesis method, the dimensions (r, s and
area) and the percentage of testable cells (TR, TL, TT , TB)

w.r.t. the lattice area. From our experiments, it turns out that
for more than 70% of the benchmarks, the lattice synthesized
with [10] contains a higher percentage of testable cells than
the one obtained with [4]. Table II shows the average values
of lattice areas and percentages of testable cells for any ACF,
for the two synthesis methods. This analysis is done only for
lattices where the algorithm proposed in [10] produces a lattice
different from [4]; for this reason the percentages of testable
ACF w.r.t. the lattice area are different from the percentages
of Table V.

B. Improving the testability of lattices synthesized with the
method [4]

In a second set of experiments, we are interested in evalu-
ating the efficacy of the two methods proposed in Section IV
to improve the ACF testability.

First, we consider the method concerning the choice of
the controlling literals described in Algorithm 1. Thus, in
Table III, we compare lattices synthesized using [4] with
different literal choices: arbitrary and using the proposed
algorithm. In particular the first column contains the name
and the output number of each function, the second column
reports the number of input variables. The columns from three
to five contain the dimensions and the area of the lattice; the
columns from six to nine report the percentage of testable
ACFs w.r.t. the lattice area of a lattice where the literals
are chosen arbitrary; columns from ten to thirteen report the



TABLE III
A SAMPLE OF BENCHMARKS SYNTHESIZED WITH THE METHOD [4] AND THEIR PERCENTAGES OF TESTABLE ACFS WITH AN ARBITRARY LITERAL

CHOICE AND WITH THE CHOICE PROPOSED BY ALGORITHM 1

Arbitrary Proposed Algorithm
name n col row area %TR %TL %TT %TB %TR %TL %TT %TB

add6(2) 6 16 16 256 20% 20% 20% 21% 20% 22% 24% 23%
addm4(6) 5 10 11 110 55% 47% 24% 24% 62% 50% 25% 25%
al2(20) 4 1 4 4 100% 100% 100% 100% 100% 100% 100% 100%
amd(7) 6 6 7 42 57% 50% 48% 48% 55% 52% 55% 55%
b11(26) 5 2 4 8 62% 62% 100% 100% 62% 62% 100% 100%
b12(0) 6 4 6 24 50% 37% 58% 75% 62% 54% 46% 68%
exp(13) 6 2 5 10 90% 100% 100% 100% 90% 100% 100% 100%
f51m(2) 6 14 14 196 24% 24% 24% 27% 31% 30% 24% 27%
fout(0) 6 9 12 108 100% 100% 100% 100% 100% 100% 100% 100%
fout(3) 6 10 12 120 39% 35% 34% 42% 52% 47% 30% 30%
fout(8) 6 9 10 90 61% 56% 37% 33% 61% 58% 39% 38%
in4(14) 6 3 4 12 50% 50% 100% 100% 50% 50% 100% 100%
in6(3) 5 2 4 8 100% 100% 62% 62% 100% 100% 62% 62%
inc(0) 6 6 7 42 55% 52% 45% 45% 60% 64% 48% 43%
jbp(32) 5 2 4 8 100% 100% 62% 62% 100% 100% 62% 62%
log8mod(1) 6 6 9 54 50% 70% 54% 46% 54% 72% 57% 50%
luc(17) 6 9 10 90 38% 43% 31% 38% 48% 51% 33% 40%
m1(3) 6 3 4 12 83% 83% 67% 50% 83% 83% 67% 50%
m4(8) 6 1 6 6 100% 100% 100% 100% 100% 100% 100% 100%
m181(0) 6 4 6 24 50% 37% 58% 75% 62% 54% 46% 58%
mish(1) 6 5 6 30 60% 67% 67% 63% 63% 70% 63% 70%
mish(22) 6 2 5 10 100% 100% 60% 60% 100% 100% 60% 60%
misj(3) 4 3 2 6 83% 83% 83% 83% 83% 83% 83% 83%
mlp4(5) 6 9 10 90 41% 42% 17% 19% 44% 47% 22% 28%
newxcpla1(15) 6 6 1 6 100% 100% 100% 100% 100% 100% 100% 100%
p1(9) 6 7 8 56 59% 59% 36% 41% 61% 61% 30% 39%
p82(8) 5 5 7 35 60% 60% 49% 49% 66% 69% 51% 51%
p82(10) 5 2 5 10 70% 70% 100% 100% 70% 70% 100% 100%
pope.rom(8) 6 13 10 130 44% 41% 32% 35% 52% 53% 27% 26%
pope.rom(14) 6 10 7 70 67% 56% 41% 39% 67% 56% 47% 44%
pope.rom(16) 6 1 6 6 100% 100% 100% 100% 100% 100% 100% 100%
radd(2) 6 16 16 256 20% 20% 20% 21% 20% 22% 24% 23%
rd53(1) 5 10 10 100 70% 66% 26% 36% 73% 69% 16% 16%
shift(1) 5 4 4 16 62% 44% 44% 62% 62% 44% 44% 62%

percentage of testable ACFs w.r.t. the lattice area of a lattice
where the literals are chosen using Algorithm 1.

The second method, based on row and column permuta-
tions, is evaluated in Table IV. Recall that the goal of the
permutations is to minimize the number of adjacent cells that
contain the same literal. To compute the best permutation of
rows and columns we use the linear optimizer GLPK (GNU
Linear Programming Kit)

Finally, Table V summarizes the experimental results show-
ing the percentages of testable ACFs where the literal choice
and the column and row permutation are arbitrary, with the
percentages obtained with two methods proposed in Sec-
tion IV. The first column shows the used approach, the
following columns show the percentage of testable ACFs w.r.t.
the lattice area, the percentage of lattices that have a higher
testability w.r.t. the arbitrary approach, and the percentage of
cells whose testability is improved for each type of ACF.

The method based on permutations is clearly more effective,
guaranteeing a good improvement of ACF testability. This is
probably due to the fact that only a small number of cells have
a literal set with cardinality strictly greater than 1, so that the
effect of the first method is limited.

VI. CONCLUSION

In this paper we have extended the notion of cellular faults
to switching lattices, and we have proved that the testability
of a general cellular fault is related to the testability of
the inverted literal fault. We have exploited this result for
simplifying the testability analysis of general CFs. We have
then considered the adjacent cellular faults, for which we have
proposed some techniques for improving the testability of
a lattice without increasing its dimension. The experimental
results validated the proposed approach.

Future work includes the study of different fault models for
lattices. Moreover it would be interesting to design techniques
to improve testability of lattices synthesized with the method
proposed in [10].

VII. ACKNOWLEDGMENTS

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 691178.

REFERENCES

[1] S. B. Akers, “A Rectangular Logic Array,” IEEE Trans. Comput., vol. 21,
no. 8, pp. 848–857, Aug. 1972.



TABLE IV
A SAMPLE OF BENCHMARKS SYNTHESIZED WITH THE METHOD [4] AND THE PERCENTAGES OF TESTABLE ACFS BEFORE AND AFTER THE COLUMN AND

ROW PERMUTATIONS

ordered randomly chosen
name Col Row Area n %TR %TL %TT %TB %TR %TL %TT %TB

add6(1) 6 6 36 4 69% 72% 42% 47% 53% 42% 33% 42%
al2(9) 2 5 10 6 60% 60% 100% 100% 60% 60% 100% 100%
alcom(2) 2 4 8 5 62% 62% 100% 100% 62% 62% 100% 100%
alcom(3) 4 4 16 6 81% 87% 62% 87% 87% 81% 37% 62%
alcom(5) 4 3 12 5 75% 75% 100% 100% 75% 75% 83% 67%
alcom(34) 1 4 4 4 100% 100% 100% 100% 100% 100% 100% 100%
alu2(0) 5 4 20 4 90% 85% 50% 55% 70% 65% 50% 40%
alu2(1) 8 7 56 6 95% 87% 32% 32% 59% 59% 30% 18%
b12(0) 4 6 24 6 68% 62% 58% 75% 50% 37% 58% 75%
bench(2) 6 7 42 6 100% 100% 100% 100% 100% 100% 100% 100%
bench(3) 4 6 24 6 100% 100% 100% 100% 100% 100% 100% 100%
bench(6) 4 8 32 5 100% 100% 100% 100% 100% 100% 100% 100%
dc1(2) 4 4 16 4 75% 75% 94% 69% 62% 56% 56% 81%
dc1(4) 4 5 20 4 70% 75% 60% 70% 75% 65% 60% 45%
dc1(5) 4 4 16 4 75% 81% 87% 62% 62% 56% 44% 56%
dekoder(3) 5 3 15 4 93% 87% 60% 67% 87% 80% 60% 73%
dekoder(5) 4 3 12 4 92% 92% 50% 58% 83% 92% 42% 58%
exp(0) 3 5 15 6 60% 60% 100% 100% 60% 60% 100% 100%
inc(1) 6 7 42 6 79% 81% 74% 74% 40% 50% 48% 48%
inc(4) 3 3 9 4 78% 78% 100% 100% 78% 78% 100% 100%
inc(8) 2 3 6 4 67% 67% 100% 100% 67% 67% 100% 100%
luc(1) 1 5 5 5 100% 100% 100% 100% 100% 100% 100% 100%
luc(6) 4 7 28 6 71% 86% 64% 64% 75% 64% 64% 50%
luc(17) 9 10 90 6 84% 84% 46% 43% 38% 43% 31% 38%
luc(18) 8 8 64 6 72% 73% 55% 64% 47% 39% 53% 58%
luc(22) 5 8 40 6 77% 70% 47% 55% 52% 62% 50% 45%
m2(1) 2 2 4 3 75% 75% 100% 100% 75% 75% 100% 100%
m4(2) 6 2 12 6 94% 100% 100% 100% 100% 92% 100% 100%
misg(2) 3 2 6 4 100% 100% 67% 67% 100% 100% 67% 67%
mish(1) 5 6 30 6 77% 80% 70% 67% 60% 67% 67% 63%
newcwp(0) 5 4 20 4 75% 80% 80% 80% 60% 65% 60% 65%
newcwp(1) 4 4 16 3 81% 81% 81% 81% 75% 75% 69% 69%
p82(4) 3 6 18 5 83% 78% 67% 56% 78% 83% 56% 56%
radd(1) 6 6 36 4 69% 72% 42% 47% 53% 42% 33% 42%

TABLE V
SUMMARY OF THE TESTABILITY RESULTS FOR LATTICES SYNTHESIZED WITH [4] AND LATTICES OBTAINED WITH THE TWO OPTIMIZATION METHODS

R-ACF L-ACF T-ACF B-ACF
(TR/area)% % of

improved
lattices

% of in-
crease of
TR

(TL/area)% % of
improved
lattices

% of in-
crease of
TL

(TT /area)% %of
improved
lattices

% of
increase
of TT

(TB /area)% % of
improved
lattices

% of in-
crease of
TB

[4] 83.9% – – 83.5% – – 85.5% – – 85.5% – –
[4] with Algorithm 1 84.6% 12% 16% 84.2% 12% 15% 85.8% 9% 6% 85.9% 8% 3%
[4] with permutations 88% 22% 52% 88% 23% 54% 89% 18% 40% 90% 21% 40%

[2] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. B. Tahoori, “Logic synthesis and testing techniques
for switching nano-crossbar arrays,” Microprocessors and Microsystems
- Embedded Hardware Design, vol. 54, pp. 14–25, 2017.

[3] M. Altun, V. Ciriani, and M. B. Tahoori, “Computing with nano-crossbar
arrays: Logic synthesis and fault tolerance,” in Design, Automation
& Test in Europe Conference & Exhibition, DATE 2017, Lausanne,
Switzerland, March 27-31, 2017, 2017, pp. 278–281.

[4] M. Altun and M. D. Riedel, “Logic Synthesis for Switching Lattices,”
IEEE Trans. Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[5] L. Anghel, A. Bernasconi, V. Ciriani, L. Frontini, G. Trucco, and I. I.
Vatajelu, “Fault mitigation of switching lattices under the stuck-at-fault
model,” in IEEE Latin American Test Symposium, LATS 2019, Santiago,
Chile, March 11-13, 2019, 2019, pp. 1–6.

[6] A. Bernasconi, V. Ciriani, and L. Frontini, “Testability of switching lat-
tices in the stuck at fault model,” in IFIP/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2018, Verona, Italy, October
8-10, 2018, 2018, pp. 213–218.

[7] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Enhancing logic synthesis of switching lattices by generalized

shannon decomposition methods,” Microprocessors and Microsystems -
Embedded Hardware Design, vol. 56, pp. 193–203, 2018.

[8] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Composition of
switching lattices for regular and for decomposed functions,” Micropro-
cessors and Microsystems - Embedded Hardware Design, vol. 60, pp.
207–218, 2018.

[9] A. Friedman, “Easily testable iterative systems,” IEEE Transactions on
Computers, vol. C-22, pp. 1061–1064, 1973.

[10] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing Optimal
Switching Lattices,” ACM Trans. Design Autom. Electr. Syst., vol. 20,
no. 1, pp. 6:1–6:14, 2014.

[11] M. C. Morgül and M. Altun, “Optimal and heuristic algorithms to
synthesize lattices of four-terminal switches,” Integration, vol. 64, pp.
60–70, 2019.

[12] F. Peker and M. Altun, “A fast hill climbing algorithm for defect and
variation tolerant logic mapping of nano-crossbar arrays,” IEEE Trans.
Multi-Scale Computing Systems, vol. 4, no. 4, pp. 522–532, 2018.

[13] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Microelectronic Center, User Guide, 1991.


