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Abstract. In this paper, we continue the program initiated by Kahn-Saito-Yamazaki by construct-

ing and studying an unstable motivic homotopy category with modulus MH(k), extending the Morel-
Voevodsky construction from smooth schemes over a field k to certain diagrams of schemes. We

present this category as a candidate environment for studying representability problems for non

A1-invariant generalized cohomology theories.
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1. Introduction

1.1. In this paper we start developing a machinery in the spirit of Morel-Voevodsky’s homotopy
theory of schemes as described in [30]. Their construction, which is now classical, starts from the
fundamental observation that A1, the “affine line”, should play in algebraic geometry the role of the
unit interval [0, 1] ⊂ R in topology. The homotopy invariance property (in the usual sense) of an
ordinary cohomology theory gets translated in the algebraic world in the invariance with respect to
A1. This allows to capture many important invariants, but not all of them. In the present work, we
consider a notion of “invariance” with respect to a different object.

The lighthouse that guides our construction is the behavior of K-theory for possibly singular
schemes. If the homotopy invariance property, i.e. the existence of an equivalence K(S ×A1) ' K(S)
(of, say, S1-spectra) does not hold for an arbitrary scheme S, the projective bundle formula, as for-
mulated e.g. in [33], is still available with only mild finiteness assumptions. In fact, for any scheme
S quasi-compact and quasi-separated, the K-theory spectrum K(S × P1) decomposes, as module over
K(S), as follows

K(S × P1) ' K(S)[H]/(H2), H = [O(−1)], H0 = [O] ∈ K0(P1
Z),

where the summand [H]K(S) is supported on the hyperplane at infinity of S×P1. The pullback along
the projection π : S × P1 → S induces then an isomorphism (in the homotopy category of spectra)

π∗ : K(S)
'−→ hocof(K(S)

ι∞,∗−−−→ K(S × P1)).

The homotopy cofiber computes the K-theory of S × P1 modulo the K-theory of S ' S × {∞}. If we
think of P1 as being the compactification of A1, with the point at infinity as boundary, we can imagine
that such cofiber works as a replacement for the K-theory of the open complement S × A1 (in fact,
it is equivalent to the K-theory of the complement when S is regular). In a way, the lost homotopy
invariance is found again in a form of invariance with respect to the pair (P1,∞), this time without
regularity assumptions.
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It looked therefore reasonable to conceive a theory where the basic objects are not schemes but
rather pairs of schemes, and where the role played by A1 in Voevodsky’s theory is played by the closed
box or the cube

� = (P1,∞).

This is, with some simplifications, the point of view adopted by Kahn-Saito-Yamazaki in [23] (although
with a different starting point), following original insights of Kerz-Saito. Let us fix a field k. Objects
in the category MSm(k) of modulus pairs (see [23, Definition 1.1] or Definition 2.4) are “partial
compactifications” X (with the total space not necessarily proper over k) of a smooth and separated
k-scheme X and with the specified datum of an effective, possibly non reduced, divisor “at infinity”
X∞ with support on X \X. The morphisms are given by certain finite correspondences between two
compactifications X and Y satisfying suitable admissibility and properness conditions, and restricting
to actual morphisms of schemes between the open complements X and Y .

1.2. The idea of extending the motivic framework to the setting of pairs of schemes, in order to
capture some non A1-invariant phenomena with the aid of non-reduced Cartier divisors, has been
explored in the work of many authors, starting from the pioneering work of Bloch-Esnault on additive
Chow groups in the early 2000’s (see [8] and [9]), continued by Park, Krishna and Levine [25], [26],
[28], [27] and then further generalized in [6] where the current formulation of higher Chow groups with
modulus and of relative motivic cohomology was introduced.

In [6], the word pair was used to designate the datum (X,D) consisting of a smooth and sep-
arated k-variety and an effective Cartier divisor D on it. The relative motivic cohomology groups
H∗M(X|D,Q(∗)) are conjectured to describe rationally the relative K-groups K∗(X,D), defined as
homotopy groups of the homotopy fiber

K(X,D) = hofib(K(X)→ K(D))

(along the inclusion D ↪→ X), and are related to other invariants, such as relative Deligne cohomology
and relative deRham cohomology: see [6, Sections 6 and 7]. The functoriality of these invariants is
for morphisms of pairs in the topological sense, i.e., morphisms f : X → Y that restrict to morphisms
of the closed subschemes fD : DX → DY . From this point of view, the cofiber construction sketched
above does not fit completely well with the general picture: it is in fact contrasting with the idea
of compactification with boundary divisor that was coming from the analysis of K-theory of singular
schemes.

We are then in front of two forces pulling in opposite directions. On one side, in the hope of finding
an easy replacement for homotopy invariance, we would like to have a divisor ∂X on a scheme X
representing the boundary of an abstract compactification, such as (P1,∞). On the other hand, we
would like to have a relative theory for a divisor D, that we think as effective subscheme of X, to
which we attach relative invariants such as relative K-theory, Chow groups with modulus and other
generalized relative cohomologies. All phenomena that are arising from fiber constructions, rather then
cofiber constructions, and that have different functoriality constraints. Our solution is to incorporate
both aspects in one category.

Instead of working with the category Sm(k) of smooth and separated schemes over a field k (Vo-
evodsky’s model) or with the category of smooth modulus pairs MSm(k) over k built out from the
insights of Kahn-Saito-Yamazaki, we introduce a category of modulus data, MSmlog(k). Objects of

MSmlog(k) are triples

M = (M,∂M,DM ),

where M is a smooth and separated k-schemes and ∂M and DM are effective Cartier divisors on M .
The different roles are reflected in the notation that we have chosen. The divisor ∂M is assumed to be
a strict normal crossing divisor on M , that we think of as a log-compactification of M \M . Insisting
on our interpretation of the divisor at infinity as a boundary (and unlike [23]), we assume it to be
always reduced. The non-reduced piece of information will then come from the second divisor DM . A
simpler category of schemes with compactifications, Smlog(k), is identified with the full subcategory

of MSmlog(k) of modulus data with empty “modulus divisor” DM ,

u : Smlog(k) ↪→MSmlog(k).
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Both categories come equipped with a symmetric monoidal structure, modelled on the tensor struc-
ture of MSm(k) of [23], and there are natural cd-structures inherited from the standard Zariski and
Nisnevich cd-structures on the underlying categories of schemes over k (see Section 2.9).

Although much of our construction can be carried out without this assumption, we will furthermore
ask that ∂M + |DM |red forms a strict normal crossing divisor on M . This restriction turns out to be
useful in the definition of a K-theory realization of a modulus datum (as discussed in [1] and in [2]),
and is consistent with the assumptions of [6].

Morphisms in MSmlog(k) are modelled on the two constraints of the “compactification divisor” and
of the “relative divisor” that we mentioned before. We refer the reader to Definition 2.11 for details,
but we remark here that we follow the opposite convention of [23] (whence the overline notation
instead of the underline notation). Out of MSmlog(k) we build, in parallel with the Morel-Voevodsky
construction of (unstable) motivic homotopy categories in [30], a homotopy category with “modulus”.
We briefly sketch the main difficulties that we have encountered.

1.3. There is a first evident difficulty in trying to extend Voevodsky’s formalism of sites with interval
to our context. The multiplication map

µ : A1 × A1 → A1

does not extend to a morphism P1 × P1 → P1, but only to a rational map. It is, however, defined as
correspondence, and as such satisfies a suitable admissibility condition. This is the path followed by
Kahn-Saito-Yamazaki in [23], that eventually leads to the definition of the (homological) triangulated

category MDMeff(k,Z), built as suitable localization of the derived category of complexes of presheaves
on MCor(k), the category of modulus correspondences, an enlargement of the category MSm(k)
introduced above.

If considering presheaves on categories of correspondences is the basic input in the construction of
“derived ” categories of motives, the intrinsically linear nature of them does not fit well with the desire
of putting homotopy theory in the picture. We then abandon the idea of extending directly the set of
admissible morphisms and we turn to a different approach.

The key observation is the following. There is no direct way of making the closed box � into an
interval object in the category sPsh(MSmlog(k)) of simplicial presheaves on MSmlog(k), nor in the
category sPsh(Smlog(k)) of simplicial presheaves over Smlog(k). Instead, we consider an auxiliary
category BSmlog(k), built as localization of Smlog(k) with respect to a suitable class of admissible
blow-ups. For making sense of this, we need our base field k to admit strong resolution of singularities
(see Section 2.3 for a precise definition).

In BSmlog(k), the multiplication map µ : � ⊗ � → � is an acceptable morphism, and � is nat-
urally an interval object. Starting from it, we build a non-representable simplicial presheaf I in
sPsh(MSmlog(k)), that is a ⊗-interval object with respect to the convolution product of presheaves
(see Sections 2.6- 2.8 and 3.3). It comes naturally equipped with a map

�
η−→ I,

and we define the motivic model structure with modulus MM(k) to be the (left) Bousfield localization
of the standard (Nisnevich-local) model structure on sPsh(MSmlog(k)) (the category of motivic spaces

with modulus) to the class of maps X ⊗ I → X . The resulting homotopy category MH(k) is called
the unstable (unpointed) motivic homotopy category with modulus (see 4.7).

Even though the map η is not a weak equivalence (and does not become such after localization),
every (Nisnevich-local fibrant) �-invariant simplicial presheaf X is I-local. Thus, the category MH(k)
can serve the purpose of representing �-invariant theories equally well. We investigate the precise
relationship between the �-theory, the I-theory and the A1-theory in 3.3 and in 4.4.

1.4. In constructing the I-model structure on MM(k), we go through a certain amount of technical
work for generalizing Voevodsky’s homotopy theory for a site with interval. We generalize his results
in two directions. First, we deal with a (closed) monoidal structure on simplicial presheaves that is not
the Cartesian product but is induced via Day convolution by the monoidal structure on MSmlog(k).
Second, the interval object we consider is not, as remarked above, representable. Nevertheless, we
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draw inspiration from the work of Morel-Voevodsky [30] and of Jardine [19] to construct a replacement

for the A1-singular functor SingA1

, that we denote

Sing⊗I (−) : MM(k)→MM(k),

and that allows us to reprove in this generality the Properness Theorem [30, Theorem 3.2] — which is
one of the non-trivial structural properties of the Morel-Voevodsky construction.

Theorem 1.1 (see Theorem 4.39 and 4.5.1). The I-⊗-localization MM(k) = MM(k)I−locinj of the

category of motivic spaces with modulus (over k) equipped with the local injective (for the Nisnevich
topology) model structure is a proper cellular simplicial monoidal (for the Cartesian product) model
category.

The proofs are necessarily technical, and cover Sections 4.5 and 4.6. After this, we conclude with a
characterization of simplicial presheaves satisfying the Brown-Gersten (B.G.) property in our context
(4.7) and with the following representability result.

Theorem 1.2 (see Theorem 4.51). Let X be a pointed motivic space with modulus that is Nisnevich
excisive (Proposition 4.45) and �-⊗-invariant (in particular, I-⊗-invariant). Then for any n ≥ 0 and
any modulus datum M , we have a natural isomorphism

πn(X (M)) ' [Sn ∧ (M)+,X ]MH•(k).

We conclude this introduction by mentioning a few possible future developments of the theory. In
[1], we constructed for each modulus datum M a K-theory spectrum K(M), that is automatically
�-invariant. Unfortunately, the assignment M 7→ K(M) is not strictly functorial: if f : M → N is a
morphism, we defined a pull-back map f∗ : K(N)→ K(M), but the construction is not canonical (i.e.
(g◦f)∗ is not strictly equal to f∗◦g∗ as morphisms of spectra), due to the existence of certain diagrams
of maps which do commute only up to homotopy. A suitable refinement of this construction would
give rise to a presheaf of spectra on the category of modulus data MSmlog(k), which will then be
automatically an object in the associated category of S1-spectra. An obvious variant of Theorem 1.2
could be then applied directly to get the representability of relative K-theory in (the S1-stabilization
of) MH•(k). In a different direction, it is important to understand what is the analogue of the
Morel-Voevodsky localization property in this context: the most naive guess is probably doomed to
failure, given for example the difficulty of formulating the localization property in the context of higher
Chow groups with modulus (see [24] and [31] for counterexamples, and [3] for related questions). For
reciprocity sheaves (so, in the context of sheaves with transfers), an answer to this question is discussed
in [5].

Finally, it is not clear what is the analogue of P1-spectra (or, in other words, what are the “spheres”
in this world). This last issue is related to a similar problem in the work of Kahn-Saito-Yamazaki,
where only effective motivic complexes are considered, and a duality is lurking beyond the curtains.
We plan to (partially) address these issues in a future work.

Notations and conventions. Throughout this paper we fix a base field k for which we assume to
have resolution of singularities (see Section 2.3). Unless specified otherwise, all schemes will be assumed
to be separated and of finite type over k. We write Sm(k) for the category of smooth quasi-projective
k-schemes.

2. Categories of schemes with moduli conditions

2.1. Schemes with compactifications. Let X be a smooth k-scheme and let ∂X be a reduced
codimension 1 closed subscheme of X with irreducible components ∂X1, . . . , ∂XN . We say that ∂X
is a strict normal crossing divisor if for every non empty subset A of {1, . . . , N}, the subscheme
∂XA =

⋂
i∈A ∂Xi is smooth over k and of pure codimension |A| in X. We will denote by ∂X∗ the set

of irreducible components of a strict normal crossing divisor ∂X and we write |∂X| = ∪Ni=1∂Xi for the
support of ∂X. If T1, . . . , Tr are smooth integral codimension one subschemes of X such that their
union is a strict normal crossing divisor, we say that the set T1, . . . , Tr form a normal crossing divisor
on X. The empty scheme is considered a strict normal crossing divisor of every smooth k-scheme.
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Definition 2.1. The category Smlog(k) is the category of pairs (X, ∂X), where X is a smooth k-
scheme and ∂X is a strict normal crossing divisor on X (possibly empty). A morphism

f : (X, ∂X)→ (Y, ∂Y )

of pairs in Smlog(k) is a k-morphism f : X → Y such that for every irreducible component ∂Yi
of ∂Y , the reduced inverse image f−1(∂Yi)red is a strict normal crossing divisor on X and satisfies
f(X \ |∂X|) ⊆ Y \ |∂Y |.

Note that the composition of morphisms in Smlog(k) is well defined. Indeed, let f : (X, ∂X) →
(Y, ∂Y ) and g : (Y, ∂Y )→ (Z, ∂Z) be as in Definition 2.1. It is clear that g(f(X\|∂X|)) ⊆ Z\|∂Z|, since
g(f(X \ |∂X|)) ⊆ g(Y \ |∂Y |) ⊆ Z \ |∂Z| by assumption. As for the other condition, we need to verify
that for every irreducible component ∂Zi of ∂Z, the support of its inverse image f−1(g−1(∂Zi)) is a
strict normal crossing divisor on X. Write g−1(∂Zi)red = ∪j∈Ai∂Yij , and f−1(∂Yij)red = ∪k∈Aij∂Xijk.

Thus f−1(g−1(∂Zi))red = ∪k∪j ∂Xijk (there might be repetitions in the union, but this is not relevant
when considering the support). Since any reduced divisor contained in a strict normal crossing divisor
is itself strict normal crossing, we can conclude.

Suppose now that we are given two pairs (X, ∂X) and (Y, ∂Y ) in Smlog(k). Write ∂X1, . . . , ∂XM for
the components of ∂X, and ∂Y1, . . . , ∂YN for the components of ∂Y . Their product (X, ∂X)× (Y, ∂Y )
is by definition the pair (X × Y,X × ∂Y + ∂X × Y ), where (X × ∂Y + ∂X × Y ) is by definition the
normal crossing divisor formed by X × ∂Y1, . . . , X × ∂YN , ∂X1× Y, . . . ∂XM × Y . This construction is
the categorical product in Smlog(k). The terminal object in Smlog(k) is the pair (Spec(k), ∅).

Definition 2.2. Let f : (X, ∂X)→ (Y, ∂Y ) be a morphism in Smlog(k). We say that f is minimal if
∂X = f−1(∂Y )red.

As a remark, we note that the projection maps (X ×Y,X × ∂Y + ∂X ×Y ) to (X, ∂X) and (Y, ∂Y )
are typically not minimal. In fact, both are minimal if and only if the divisors ∂X and ∂Y are empty.
Minimal morphisms play a special role in the construction of certain fiber products, as we will see
below.

2.1.1. Let ω : Smlog(k) → Sm(k) be the functor (X, ∂X) 7→ X \ |∂X|. This functor has an obvious
left adjoint

(2.1) λ : Sm(k)� Smlog(k) : ω

that sends a smooth k-scheme X to the pair (X, ∅). Indeed, any morphism f : (X, ∅) → (Y, ∂Y )
in Smlog(k) is given by a morphism of k-schemes f : X → Y that has to factor through the open
embedding Y \ ∂Y = ω((Y, ∂Y ))→ Y . Note that the functors λ and ω both commute with products,
and that the unit of the adjunction is the identity, expressing Sm(k) as a retract of Smlog(k). There
is also another functor

F : Smlog(k)→ Sm(k), P = (X, ∂X) 7→ F (P ) = X,

that does not have any obvious left adjoint. If confusion does not arise, given a smooth k-scheme X,
we will write just X in Smlog(k) for the pair (X, ∅) = λ(X).

2.1.2. Let P1 be the projective line over k and let y be the standard rational coordinate on it. For
every n ≥ 1 we have a distinguished object �

n
in Smlog(k), defined as �

n
= ((P1)n, Fn∞), where

Fn∞ denotes the normal crossing divisor
∑n
i=1(yi = ∞). There are also maps ιnε,i : �

n
↪→ �n+1

for
ε ∈ {0, 1}, i = 1, . . . n+ 1 given by the inclusion with

(ιnε,i)
∗(yj) = yj for 1 ≤ j < i , (ιnε,i)

∗(yj) = yj−1 for i < j ≤ n+ 1 and (ιnε,i)
∗(yi) = ε,

as well as projections pni : �
n → �n−1

for i = 1, . . . , n induced by pni : (P1)n → (P1)n−1 that forgets

the i-th coordinate. We will denote by δn : �
n → �n ×�n the diagonal map.

Remark 2.3. To get a feeling of the importance of the additional datum of a “divisor at infinity” ∂X

on a smooth scheme X, consider the pairs A1 = (A1, ∅) and �
1

= (P1,∞) and P1 = (P1, ∅). There are
canonical maps

A1 → �1 → P1,
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the first being given by the counit of the adjunction displayed in (2.1), and there are no non-costant
maps in the opposite directions, so that the three objects are all distinct in Smlog(k).

2.2. Modulus pairs à la Kahn-Saito-Yamazaki. We recall from [22]1 the following constructions.

Definition 2.4. A modulus pair M = (M,M∞) consists of a scheme M ∈ Sch(k) and an effective
Cartier divisor M∞ ⊂M , possibly empty, such that M is locally integral and the open (dense) subset
Mo = M \M∞ is smooth and separated over k. A pair M is called proper if M → Spec(k) is proper.

Definition 2.5. Let M1,M2 be two modulus pairs. Consider a scheme-theoretic morphism

f : Mo
1 →Mo

2

over k. Let Γf ⊂M1 ×M2 be the closure of the graph of f and let p1, p2 be the two projections

p1 : M1 ×M2 →M1, p2 : M1 ×M2 →M2.

Let ϕ : Γ
N

f →M1×M2 be the composition of the normalization morphism of the closure of the graph
with the inclusion. We say that f is admissible for the pair M1,M2 if

i) the composition morphism p1 ◦ ϕ : Γ
N

f →M1 is proper,

ii) there is an inequality ϕ∗p∗1(M∞1 ) ≥ ϕ∗p∗2(M∞2 ) as Weil divisors on Γ
N

f .

Here we are using the standard partial ordering on the set of Weil divisors on a scheme by setting
D ≥ D′ if and only if D−D′ is effective. We denote by MSm the category having as objects modulus
pairs and as morphism admissible morphisms between them (the fact that composition of morphisms

is well defined is verified in [22], Section 1.2). With MSmfin, we denote the subcategory of MSm

having the same objects and whose morphisms satisfy the additional condition that p1 ◦ϕ : Γ
N

f →M1

is finite. Finally, we denote by MSm the full subcategory of MSm whose objects are proper modulus
pairs.

Remark 2.6. Note the difference between the admissibility condition of a morphism in MSm and a
morphism in Smlog, even in the case a morphism f : M1 → M2 in MSm is induced by a morphism

of smooth schemes f : M1 →M2 (e.g. if f is a map in MSmfin). In this situation, condition ii) in 2.5
reads

(2.2) ν∗M∞1 ≥ ν∗f∗M∞2

where ν : M1
N → M1 is the normalization morphism. The inequality in (2.2) is an inequality of

effective Weil divisors on a normal variety. Suppose now that both M1 and M2 are smooth and that
the divisors M∞1 and M∞2 have SNC support. We immediately see that M∞1 ≥ f∗M∞2 implies that f
gives rise to a map in Smlog(k) according to Definition 2.1. On the other hand, since the admissibility
condition in Smlog(k) is checked on the reduced pull-back of the divisor, it is not true that a map in
Smlog(k) gives rise to a map of pairs in MSm (see Remark 2.7 below for a useful example).

2.2.1. For M,N ∈ MSm, we define their tensor product L = M ⊗ N by L = M × N and L∞ =
M∞ × N + M × N∞. This gives the categories MSm and MSm a symmetric monoidal structure,
with unit the modulus pair (Spec(k), ∅).

Remark 2.7. As noticed in [22], Warning 1.12, the tensor product M1⊗M2 does not have the universal

property of products, since, for example, the diagonal morphism M
∆−→ M ⊗M is not admissible as

soon as M∞ is not empty. Indeed, let M = (P1,∞). Then M ⊗M = (P1 ×k P1,∞× P1 + P1 ×∞).
The diagonal map δ : P1 → P1 × P1 is not admissible in MSm, since

δ∗(∞× P1 + P1 ×∞) = 2 · ∞ �∞.

On the other hand, the map δ = δ1 is a morphism in Smlog(k) between �
1

and �
1 ×�1

= �
2
.

1The paper [22] has been superseded by [21] during the revision of this manuscript. Since the latter is not yet available
to the public, we have decided to keep the references to the obsolete version. To the best of our knowledge, the relevant
parts will appear unchanged in [21] (but presumably with a different numbering).
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2.3. Inverting birational maps. We need to embed the category Smlog(k) in a larger category with
the same objects but where we allow some morphims to be defined only after a proper birational
transformation. Recall that we are assuming that k admits resolution of singularities, i.e. that the
following two conditions hold:

(1) for any reduced scheme of finite type X over k, there exists a proper birational morphism

f : X̃ → X such that X̃ is smooth,
(2) for any smooth scheme X over k and a proper surjective morphism Y → X which has a section

over a dense open subset U of X, there exists a sequence of blow-ups Xn → Xn−1 → . . . X0 =
X, with smooth centers lying over X \U , and a morphism Xn → Y such that the composition
Xn → Y → X is the structure morphism Xn → X.

Definition 2.8. Let P = (X, ∂X) ∈ Smlog(k). We denote by BP the category of admissible blow-
ups of P . An object of BP is a morphism π : P ′ = (X ′, ∂X ′) → P with P ′ ∈ Smlog(k) induced by
a projective birational map π : X ′ → X that restricts to an isomorphism on the open complements
ω(X ′) ' ω(X) and such that |∂X ′| = |π−1(∂X)|. Morphisms in BP are the minimal morphisms in
Smlog(k) over P . If Sb denotes the class of admissible blow-ups of pairs, BP is the full subcategory of

the comma category Smlog(k)/P given by the objects P ′
s−→ P with s ∈ Sb.

In other words, an object in BP is a blow-up with center in a closed subscheme Z ⊂ ∂X ⊂ X.

Proposition 2.9. The class Sb enjoys a calculus of right fractions. In particular, for every P,Q ∈
Smlog(k), the natural map

colim−−−→
P ′∈BP

HomSmlog(k)(P
′, Q)→ HomSmlog(k)[S−1

b ](P,Q)

is an isomorphism. Moreover, since for any P ∈ Smlog(k) the category BP contains a small cofinal

subcategory, the Hom sets of Smlog(k)[S−1
b ] are small.

Proof. We recall from [13] the conditions that a class of morphisms Σ has to satisfy in order to enjoy
calculus of right fractions (this is dual to [13, I.2.2]). These conditions are: a) the identities of Smlog(k)
are in Σ; b) if u : X → Y and v : Y → Z are in Σ, then their composition v ◦ u is also in Σ; c) for each

diagram X ′
s−→ X

u←− Y where s ∈ Σ, there exists a commutative square

(2.3) Y ′
u′ //

s′

��

X ′

s

��

Y
u // X

with s′ ∈ Σ; d) if f, g : X ⇒ Y are morphisms of Smlog(k) and if s : Y → Y ′ is a morphism of
Σ such that s ◦ f = s ◦ g, then there exists a morphism t : X ′ → X such that f ◦ t = g ◦ t. For
P ∈ Smlog(k), write Σ ↓ P for the full subcategory of the comma category Smlog(k)/P given by

the objects P ′
s−→ P with s ∈ Σ. If a class of arrows Σ enjoys calculus of right fractions, there is an

isomorphism colimP ′∈Σ↓P HomSmlog(k)(P
′, Q)

'−→ HomSmlog(k)[Σ−1](P,Q), natural in P and Q, by the
dual of [13, Proposition I.2.4]. Note that by resolution of singulartities, for each (X, ∂X) ∈ Smlog(k),
the category B(X,∂X) contains the the cofinal subcategory consisting of maps (Xn, ∂Xn) → (X, ∂X)
where Xn → X is a composition of blow-ups with smooth centers contained in X \ |∂X| (the cofinality
follows directly from condition (2) in the above definition of resolution). Let’s prove that Sb enjoys
calculus of right fractions. Conditions a) and b) are obvious. We first show that condition c) holds.
Given pairs (X, ∂X), (X ′, ∂X ′) and (Y, ∂Y ) with maps f : (Y, ∂Y ) → (X, ∂X) and π : (X ′, ∂X ′) →
(X, ∂X) with π ∈ B(X,∂X), we define the pair (Y ′, ∂Y ′) as follows. Set Ỹ = Y ×X X ′ and write pY
for the projection Ỹ → Y . By assumption, Ỹ \ |p−1

Y (f−1(∂X))| is isomorphic to Y \ |f−1∂X|. By
resolution of singularities, we can find a projective birational map

π′ : Y ′ → Ỹ → Y

that is obtained as sequence of blow-ups with smooth centers lying over ∂Y and such that ∂Y ′ :=
(π′)−1(∂Y )red is a normal crossing divisor on Y ′. Then (Y ′, ∂Y ′)→ (Y, ∂Y ) is a morphism in B(Y,∂Y ).
Note that the induced morphism f ′ : (Y ′, ∂Y ′) → (X ′, ∂X ′) is admissible and gives a commutative
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square like (2.3) as required. The commutativity is clear, so we only need to verify the admissibility
conditions of Definition 2.1. Since f is admissible, we have f(Y \ |∂Y |) ⊆ X \ |∂X| = X ′ \ |∂X ′| (where
the latter equality follows from the fact that π is in B(X,∂X)). Since π′ belongs to B(Y,∂Y ), it follows
that Y ′ \ |∂Y ′| = Y \ |∂Y |, and the induced morphism f ′ restricts to f on the open complements.
In particular, we have that f ′(Y ′ \ |∂Y ′|) ⊆ X ′ \ |∂X ′|. Let now ∂X ′i be a component of ∂X ′.
Since ∂X ′ = π−1(∂X)red, there is a component ∂Xj of ∂X such that ∂X ′i ⊆ π−1(∂Xj)red. Then
(f ′)−1(∂X ′i)red ⊆ (π′)−1(f−1(∂Xj))red ⊆ ∂Y ′, which is a strict normal crossing divisor on Y ′ by
construction. So f ′ is admissible.

Finally, we turn to condition d). Suppose we are given f, g : (X, ∂X) → (Y, ∂Y ) and a morphism
s : (Y, ∂Y ) → (Y ′, ∂Y ) in Sb such that s ◦ f = s ◦ g. By assumption, s is given by a projective
birational morphism Y → Y ′ which restricts to the identity on the open complements ω((Y, ∂Y )) =
ω((Y ′, ∂Y ′)). In particular, the underlying morphisms ω(f), ω(g) : ω((X, ∂X)) = X \ |∂X| → Y \ |∂Y |
agree. The required morphism t is then given by the counit map λ(X \ ∂X) → (X, ∂X), noting that
the compositions f ◦ t and g ◦ t have to factor through λ(Y \ |∂Y |)→ (Y, ∂Y ). �

Write BSmlog(k) for the localized category Smlog(k)[S−1
b ]. We denote by

(2.4) v : Smlog(k)→ BSmlog(k)

the localization functor: it is clearly faithful (note that admissible blow-ups are in particular epimor-
phisms of schemes), and by [13, I.3.6] commutes with finite direct and inverse limits that exist in
Smlog(k). Note here that finite products exist in Smlog(k) and there is a terminal object (Spec(k), ∅),
but arbitrary fiber products are not representable in Smlog(k): indeed, let X,X ′ be smooth hy-
persurfaces in Z = Pnk such that their intersection is not smooth. We can consider X,X ′ and Z
as objects of Smlog(k) with empty boundary (via λ). Since ω is a right adjoint, it preserves finite
limits, and therefore if the product λ(X) ×λ(Z) λ(X ′) existed in Smlog(k), so would the product
ω(λ(X)×λ(Z) λ(X ′)) = X ×Z X ′ in Sm(k). Since X ×Z X ′ is not smooth, this is not the case. This
implies by [32, Tag 04AS], that Smlog(k) does not have all small limits.

We will construct in 2.16 fiber products in Smlog(k) where one of the maps is a smooth morphism
that is minimal in the sense of Definition 2.2).

2.3.1. If an object in Smlog(k) has empty boundary divisor, our definition does not allow more
morphisms to appear in BSmlog(k). More precisely, we have

HomSmlog(k)((X, ∅), (Y, ∂Y ))
'−→ HomBSmlog(k)((X, ∅), (Y, ∂Y ))

for every (Y, ∂Y ) in Smlog(k). As a consequence of this fact, we can extend the adjunction of 2.1.1
to the localized category BSmlog(k). Indeed, we first notice that every admissible blow-up BP for
a given pair P = (X, ∂X) does not change the open complement X \ ∂X (up to isomorphism). The
universal property of the localization allows then to define a functor

ω : BSmlog(k)→ Sm(k), (X, ∂X) 7→ X \ ∂X,
that restricts to the functor ω of 2.1.1 when composed with the localization functor v. The above
observation shows then that we have a bijection

HomSm(k)(X, (Y \ ∂Y ))
'−→ HomBSmlog(k)((X, ∅), (Y, ∂Y ))

so that the composite functor λ : Sm(k)→ Smlog(k)
v−→ BSmlog(k) is left adjoint to ω.

A similar situation shows up in the case dimX = 1. In this case, morphisms from (X, ∂X) to any
other object of Smlog(k) do not change if we pass to BSmlog(k), since every morphism in B(X,∂X) is
an isomorphism already in Smlog(k).

Remark 2.10. Let Psh(Smlog(k)) (resp. Psh(BSmlog(k))) be the category of presheaves of sets on
Smlog(k) (resp. on BSmlog(k)). Then the functor v induces a string of adjoint functors (v!, v

∗, v∗)
(where each functor is the left adjoint to the the following one) between the categories of presheaves:
v∗ is induced by composition with v, while v! (resp. v∗) is the left (resp. right) Kan extension of v.
Since v is a localization, then v! is also a localization or, equivalently (by [13, Proposition I.1.3]), v∗

is fully faithful. The functor v∗ identifies Psh(BSmlog(k)) with the subcategory of Psh(Smlog(k)) of
presheaves that invert the morphisms in Sb.
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2.4. Modulus data. We now introduce the category of modulus data over k, that will be the basic
object for our constructions.

Definition 2.11. A modulus datum M consists of a triple M = (M ; ∂M,DM ), where M ∈ Sm(k) is
a smooth k-scheme, ∂M is a strict normal crossing divisor on M (possibly empty), DM is an effective
Cartier divisor on M (again, the case DM = ∅ is allowed), and the total divisor |DM |red + ∂M is a
strict normal crossing divisor on M .

Let M1,M2 be two modulus data. A morphism f : M1 →M2 is called admissible if it is a morphism
of k-schemes f : M1 →M2 that satisfies the following conditions.

i) The map f is a morphism in Smlog(k) between (M1, ∂M1) and (M2, ∂M2), i.e. for every
irreducible component ∂M2,l of ∂M2 we have |f∗(∂M2,l)| ⊆ |∂M1|.

ii) The divisor f∗(DM2
) is defined, and satisfies f∗(DM2

) ≥ DM1
as Weil divisors on M1.

We denote by MSmlog(k) the category having objects modulus data and morphisms admissible mor-
phisms. If one inverts the inequality in condition ii) above, we obtain a “dual” category MSmlog(k).
We will refer to condition ii) as the modulus condition on morphism. If equality holds in ii), we will
say that the morphism f is minimal with respect to the modulus condition. If f is minimal also with
respect to the boundary divisors ∂M1 and ∂M2 in the sense of Definition 2.2, we will simply say that
f is a minimal morphism of modulus data. Finally, given a modulus datum M = (M ; ∂M,DM ), we
will say that ∂M is the boundary divisor of the datum M and that DM is its modulus divisor.

Remark 2.12. The condition that |DM |red + ∂M forms a strict normal crossing divisor on M is not
necessary for the construction of our motivic homotopy category MH(k). This condition is however
useful for the construction of a K-theory space associated to a modulus datum M , as discussed in [1].

Definition 2.13. The category of modulus pairs MSm(k) is the category having objects pairs
(M,DM ) where M is a smooth k-scheme and DM is an effective Cartier divisor on it such that

the open complement Mo = M \ |DM | is dense. A morphism of pairs M1
f−→ M2 is a morphism of

k-schemes such that f∗(DM2
) ≥ DM1

as Weil (or Cartier) divisors on M1.

Remark 2.14. We are here using the opposite inequality of the definition given in [22]. A possible way
for unifying the two notions would be to allow non effective modulus pairs M = (M,DM ) in MSm
where DM is a Cartier divisor on M , not necessarily effective. Then one can fix the direction of the
inequality of the definition of modulus pairs as done in [22], Definition 1.1, and embed our category
MSm(k) in MCor by sending (M,DM ) to (M,−(DM )).

2.4.1. There is a fully faithful functor u : Smlog(k) → MSmlog(k), that sends a pair P = (X, ∂X)

to the modulus datum u(P ) = (X; ∂X, ∅), as well as a “forgetful” functor F : MSmlog(k) → MSm

that sends a modulus datum (M ; ∂M,DM ) to the modulus pair (M,DM ). They fit together in a
commutative square of categories

MSmlog(k)
F //MSm(k),

Smlog(k)

u

OO

F // Sm(k)

u

OO
(M ; ∂M,DM ) � // (M,DM )

(X, ∂X) � // X

2.5. Fiber products. As for products, fiber products do not exist in general in the categories
Smlog(k) and MSmlog(k). We have, however, the following useful proposition.

Proposition 2.15. Let f : M = (M ; ∂M,DM ) → N = (N ; ∂N,DN ) be a minimal morphism in
MSmlog(k) such that the underlying morphism of schemes f : M → N is smooth. Then for every

g : L = (L; ∂L,DL)→ N , the fiber product L×N M exists in MSmlog(k).

Proof. Since f is smooth, the fiber product M
′

= L×NM is also smooth over k. Write f ′ : M
′ → L for

the base-change map, and define ∂M ′ to be the divisor (f ′)−1(∂L)red. Each component of ∂M ′ is the
inverse image of a (smooth) component of ∂L along a smooth map, so it is smooth over k. Similarly,

each face ∂M ′I = ∩i∈I∂M ′i is smooth over k and of pure codimension |I| on M
′
. Thus, ∂M ′ defined in
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this way is a strict normal crossing divisor on M
′
. By construction, it’s clear that the morphisms f ′

and g′ : M
′ →M are admissible morphisms in Smlog(k), and that f ′ is minimal. As for the modulus

condition, set DM ′ to be the divisor (f ′)∗(DL). Then we have

(g′)∗(DM ) = (g′)∗f∗DN = (f ′)∗g∗DN ≥ (f ′)∗DL = DM ′ ,

where the first equality follows from the minimality requirement on f , so that the maps g′ and f ′ are
both satisfying the modulus condition, and therefore are admissible morphisms in MSmlog(k). We
are left to show that the universal property of the fiber product is satisfied by the modulus datum M ′,
but this is straightforward. �

We deduce from the case DM = DL = ∅ the analogous statement for Smlog(k).

Corollary 2.16. Let f : (X, ∂X)→ (Y, ∂Y ) be a minimal morphism in Smlog(k) such that f : X → Y
is smooth. Then for every map g : (Z, ∂Z) → (Y, ∂Y ), the fiber product (X, ∂X) ×(Y,∂Y ) (Z, ∂Z) is
representable in Smlog(k).

Of course, there is nothing to say in case ∂X and ∂Y are also empty.

2.6. Monoidal structure on MSmlog(k). We extend the product in Smlog(k) to a symmetric

monoidal structure on MSmlog(k).

Definition 2.17. Let M,N ∈MSmlog(k) be modulus data. We define the modulus datum L = M⊗N
by

L = (M ×N ; ∂L = ∂M ×N +M × ∂M,DL = DM ×N +M ×DN ).

The category MSmlog(k) equipped with the tensor product ⊗ is a symmetric monoidal category, with
unit object 1 = (Spec(k), ∅, ∅). In a similar fashion, we define a symmetric monoidal product ⊗ on
the category of modulus pairs MSm(k).

2.6.1. When M = (M ; ∂M, ∅) and N = (N ; ∂N, ∅), then we can check that M ⊗ N = M × N =
(M × N ; ∂L, ∅) is the categorical product of M and N . In particular, the functor u : Smlog(k) →
MSmlog(k) is strict monoidal (when one considers on Smlog(k) the monoidal structure given by the

cartesian product). The forgetful functor F : MSmlog(k)→MSm(k) is also strict monoidal.

Remark 2.18. For arbitrary objects M,N in MSmlog(k), our choice of admissibility condition for
morphisms prevents the existence of projection maps M ⊗ N → M or M ⊗ N → N . However, if
M = (M ; ∂M, ∅) and N = (N ; ∂N,DM ), then the map M ⊗ N → N induced by the projection
M ×N → N is clearly admissible.

2.7. A digression on interval objects in monoidal categories. Let (M,⊗,1) be a symmetric
monoidal category with unit object 1.

Definition 2.19. An object I inM is called a weak interval inM if there exist a map pI : I → 1 (the
“projection”) and monomorphisms ιIε : 1→ I for ε = 0, 1 (the “inclusions at 0 and 1”) that satisfy

pI ◦ ιI0 = pI ◦ ιI1 = id1 .

Let M be a symmetric monoidal category equipped with a weak interval I. An I-⊗−homotopy
between two maps f, g : X ⇒ Y is the datum of a morphism H : X ⊗ I → Y in M such that f =
H ◦ (idX ⊗ιI0) and g = H ◦ (idX ⊗ιI1).

Definition 2.20. An object I in M is called an interval in M if it is a weak interval (I, ιI0, ι
I
1, pI)

that is additionally equipped with a multiplication map

µ : I ⊗ I → I,

verifying the identities µ ◦ (idI ⊗ιI0) = ιI0 ◦ pI and µ ◦ (idI ⊗ιI1) = idI .

The notion of interval object presented here is more general then the definition of Voevodsky in
[34].
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2.7.1. Any weak interval object I in M determines a co-cubical object (see [29] for the notation)
I• : Cube→M by setting

In = I⊗n, pni,I = id
⊗(i−1)
I ⊗pI ⊗ id

⊗(n−1)
I , δni,ε = id

⊗(i−1)
I ⊗ιIε ⊗ id

⊗(n−1)
I

for ε ∈ {0, 1}, i = 1, . . . , n. If I is moreover an interval object (so that is equipped with a multiplication
map), the same formulas work to give an extended co-cubical object, I• : ECube→M, where ECube
is the extended cubical category introduced e.g. in [29].

Conversely, given an extended cocubical object C in M, where the monoidal structure on ECube
is given by cartesian product, one can easily check that I = C([1]) is an interval object in M.

2.7.2. In arbitrary monoidal categories there are no diagonal morphisms, so that given a weak interval
object one can — a priori — only develop a cubical theory and not a simplicial theory. Fortunately,
we will consider for our applications an interval object (I, ιI1, ι

I
0, pI , µ) that is equipped with an extra

map δI : I → I⊗2 such that the compositions (idI ⊗pI) ◦ δ and (pI ⊗ idI) ◦ δ are the identity on I.
Following [34, 2.2, p.118-119], we can then construct a universal cosimplicial object inM as follows.

Definition 2.21. Set ∆n
I = I⊗n for every n. For i = 0, . . . , n, let

di : [n− 1] = {0, . . . , n− 1} → [n] = {0, . . . , n} (resp. si : [n+ 1]→ [n])

be the standard i−th face (resp. i−th degeneracy) in the simplicial category ∆. Define

(2.5) ∆I(d
i) =


ιI0 ⊗ id

⊗(n−1)
I if i = 0,

id
⊗(n−1)
I ⊗ιI1 if i = n,

id
⊗(i−1)
I ⊗δI ⊗ id

⊗(n−i−1)
I if 1 ≤ i ≤ n− 1

and

(2.6) ∆I(s
i) = id⊗iI ⊗pI ⊗ id

⊗(n−i)
I .

It is easy to check that this data define a cosimplicial object in M, that we will denote by ∆•I .

Remark 2.22. The formulas in (2.5) and (2.6) are not explicit in [34]. Voevodsky’s construction holds
in a ⊗-category that is a site with products, the tensor structure being given by cartesian products of
objects, and this fact is used in the formulation of loc.cit.. It is not hard (but a bit tedious) to deduce
from Voevodsky’s definition our formulas.

2.8. A distinguished interval in Smlog(k). We specialize the result of the previous subsection to
our case of interest.

Consider the object � = �
1

= (P1,∞) in Smlog(k). We have two distinguished admissible mor-
phisms in Smlog(k)

ι�0 , ι
�
1 : Spec(k) = (Spec(k), ∅)⇒ �

induced by the inclusions of the points 0 = [0 : 1] and 1 = [1 : 1] in P1. There is also a projection

p� : �→ (Spec(k), ∅) =: 1,

indued by the structure map P1 → Spec(k) and satisfying the obvious property that

p� ◦ ι
�
0 = p� ◦ ι

�
1 = id1,

making (�, ι�0 , ι
�
1 , p�) a weak interval object in Smlog(k).

Let BSmlog(k) as in 2.3 be the localization of the category Smlog(k) to admissible blow-ups, and

consider � as object there. Let F∞ denote the divisor (∞× P1 + P1 ×∞) on P1 × P1 (we drop the
superscript “2” from the notation used in 2.1.2). There is an extra multiplication map

µ : (P1 × P1, F∞)→ �
in BSmlog(k) induced by the following diagram:

(2.7) P1 × P1 // P1.

Bl0×∞+∞×0(P1 × P1)

π

OO

µ̃

77
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Here, π : B = Bl0×∞,∞×0(P1 × P1)→ (P1 × P1) is the blow-up along the closed subscheme (0×∞∪
∞ × 0) ⊂ F∞. It is easy to see that B is smooth over k (since it is the blow-up along a regularly
embedded subscheme), and that it agrees with the closure in P1×P1×P1 of the graph of the rational
map µ : P1 × P1 99K P1 given by the multiplication map µ : A1 × A1 → A1, (x, y) 7→ xy (and we will
constantly use this identification in what follows). The map µ̃ in (2.7) is then identified with the

composition B ↪→ (P1)3 p3−→ P1, where p3 is the projection to the third factor.

On B we have two distinguished divisors, that we denote by F̃∞ and E respectively. The divisor
F̃∞ = F̃∞,1 + F̃∞,2 = P1 ×∞×∞+∞× P1 ×∞ is the strict transform of the boundary divisor F∞
on P1 × P1 along the map π. The divisor E = E1 +E2 = 0×∞× P1 +∞× 0× P1 is the exceptional
divisor of the blow-up. Together, (F̃∞,1, F̃∞,2, E1, E2) form a strict normal crossing divisor on B, that
we simply denote by ∂B. Then the pair (B, ∂B) is a well-defined object in Smlog(k) and the map
µ̃ is an admissible morphism in Smlog(k). Note that we clearly have π−1(F∞) = ∂B, so that π is a
minimal morphism in Smlog(k), that is therefore an admissible blow-up for (P1 × P1, F∞) (and hence
becomes invertible in BSmlog(k)). To conclude, we have constructed a well-defined morphism

µ : (P1 × P1, F∞)→ �, in BSmlog(k)

as required.
To show that � with this multiplication morphism defines an interval object in BSmlog(k), we still

need to check that the axioms of Definition 2.20 hold. First, note that there is a natural monoidal
structure on BSmlog(k) that makes the localization functor v strict monoidal. Namely, given pairs
(X, ∂X) and (Y, ∂Y ), define

(2.8) (X, ∂X)⊗ (Y, ∂Y ) = (X × Y, ∂X × Y +X × ∂Y ).

This assignment coincides with the cartesian product in Smlog(k). In fact, more is true:

Lemma 2.23. The product (X, ∂X)⊗ (Y, ∂Y ) = (X×Y, ∂X×Y +X×∂Y ) is the categorical product
in BSmlog(k).

Proof. We can assume that X and Y are connected. Let (Z, ∂Z) ∈ Smlog(k), and suppose we are
given two maps (Z, ∂Z) → (X, ∂X) and (Z, ∂Z) → (Y, ∂Y ) in BSmlog(k). By Proposition 2.9, such
maps can be described as zig-zags

(Z, ∂Z)
πf←−− (Zf , ∂Zf )

f−→ (X, ∂X),

(Z, ∂Z)
πg←− (Zg, ∂Zg)

g−→ (Y, ∂Y ),

where f and g are morphisms in Smlog(k), and the underlying morphisms to πf and πg are compositions
of blow-ups with smooth centers lying over ∂Z. In particular, Zf \ |∂Zf | = Zg \ |∂Zg| = Z \ |∂Z|,
and πf and πg are minimal morphisms in Smlog(k). Let Z̃ be the fiber product Zf ×Z Zg, and
let π : Zf,g → Zf ×Z Zg be a resolution of singularities such that the compositions Zf,g → Zf and
Zf,g → Zg are given by compositions of blow-ups with smooth centers, and such that the support
of the total transforms of ∂Zf and ∂Zg are strict normal crossing divisors on Zf,g. Let ∂Zf,g be the
reduced inverse image of ∂Z under the composition Zf,g → Zf → Z (or, equivalently, Zf,g → Zg → Z),
and consider (Zf,g, ∂Zf,g) as an object of Smlog(k). Note that the projection (Zf,g, ∂Zf,g)→ (Z, ∂Z)
belongs to B(Z,∂Z). Write f and g for the induced morphisms Zf,g → X and Zf,g → Y respectively.
This induces a map h : Zf,g → X × Y , and we need to verify that it is admissible in the sense of
Definition 2.1. Every irreducible component of (∂X × Y +X × ∂Y ) is clearly of the form ∂Xi × Y or
X×∂Yj , thus their pullback to Zf,g via h is obtained as a pullback of ∂Xi (resp. ∂Yj) via f (resp. via g).
Since f and g are admissible to begin with, and since the projections Zf,g → Zf and Zf,g → Zg are also
admissible, we conclude that the first admissibility condition is satisfied. Next, we need to check that
h(Zf,g \ |∂Zf,g|) ⊆ X×Y \ |∂X×Y +X×∂Y |. Note that Zf,g \ |∂Zf,g| = Z \ |∂Z|, and by assumption
f(Z \|∂Z|) ⊆ X \|∂X| and g(Z \|∂Z|) ⊆ Y \|∂Y |. Now, if we let pX : X×Y → X and pY : X×Y → Y
be the two projections, we have p−1

X (X \|∂X|) ⊇ h(Zf,g \|∂Zf,g|) and p−1
Y (Y \|∂Y |) ⊇ h(Zf,g \|∂Zf,g|),

so that p−1
X (X \ |∂X|) ∩ p−1

Y (Y \ |∂Y |) ⊇ h(Zf,g \ |∂Zf,g|), that is precisely what we needed to show.
The above construction determines a unique map in BSmlog(k) from (Z, ∂Z) to (X × Y, ∂X ×

Y + X × ∂Y ) such that the composition with the projections to (X, ∂X) and to (Y, ∂Y ) agree with
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the original maps. This shows that (X, ∂X) ⊗ (Y, ∂Y ) satisfies the universal property for being the
categorical product. �

Consider now the inclusions at 0 and 1 of � in Smlog(k). First, we note that the morphisms

id�×ι
�
1 : �× 1 ' �→ P1 × P1, ι�1 × id� : 1×� ' �→ P1 × P1,

automatically factors through π, since their image is disjoint from the center of the blow-up. Explicitly,

we have the morphism ι�1 × id� : � → B given by the diagonal embedding 1 ×∆P1 ↪→ B induced by

x 7→ (1, x, µ(1, x) = x), and id�×ι
�
1 given by the “twisted” diagonal embedding x 7→ (x, 1, µ(x, 1) =

x). These maps are clearly admissible in Smlog(k). Since the morphism µ̃ is induced by the third
projection, we immediately see that we have identities

µ̃ ◦ (id�×ι
�
1 ) = µ̃ ◦ (ι�1 × id�) = id� in Smlog(k),

that descend to the corresponding identities in BSmlog(k) once we replace µ̃ with µ.

The inclusions at 0 given by id�×ι
�
0 and ι�0 × id� have image in P1×P1 that is clearly not disjoint

from the center of the blow-up. We explicitly lift them to B by taking the strict transform of their

image. Explicitly, for ι�0 × id� (the other case is identical) we have

(P1,∞)
ι�0 ×id

�−−−−−→ (0× P1 × 0, 0×∞× 0) ↪→ B.

Then ∂B ∩ (0×∞× 0) = (0×∞× 0), so that the map is admissible. The composition (0×P1× 0) ↪→
B

p3−→ P1 is the constant morphism to 0 ∈ P1, so that we have identities

µ̃ ◦ (id�×ι
�
0 ) = µ̃ ◦ (ι�0 × id�) = ι�0 ◦ p� in Smlog(k),

that descend to the corresponding identities in BSmlog(k) once we replace µ̃ with µ. To summarize,
we have proved the following

Proposition 2.24. The quintuple (�, ι�0 , ι
�
1 , p�, µ) makes � into an interval object for the category

BSmlog(k).

2.9. Topologies on Smlog(k) and MSmlog(k). The definitions of this section are adapted from [22]
to our setting. Let σ be either the Zariski or the Nisnevich topology on Sm(k).

Definition 2.25. A morphism p : (U, ∂U) → (X, ∂X) in Smlog(k) is called a σ-covering for (X, ∂X)
if p : U → X is a σ-cover of Sm(k) and a minimal morphism in Smlog(k).

By Corollary 2.16, the pull-back of a σ-covering along any morphism f : (Y, ∂Y )→ (X, ∂X) is still
a σ-covering, so that the above definition gives rise to a Grothendieck topology tσ on Smlog(k).

The topology tσ is the Grothendieck topology associated with a cd-structure Pσ. The distinguished
squares Pσ are defined as follows. Let (X; ∂X) be a pair in Smlog(k). For σ = Zar, let i : U ↪→ X and
j : V ↪→ X be two open embeddings (for the Zariski topology on X). Then we have the pairs (U, ∂U)
and (V, ∂V ) in Smlog(k), where ∂U = U ∩ ∂X and ∂V = V ∩ ∂X are strict normal crossing divisors
on U and V respectively. The distinguished squares PZar on Smlog(k) over (X, ∂X) are then given by
the pull-back squares

(U ∩ V, ∂X ∩ (U ∩ V )) //

��

(U, ∂U)

��

(V, ∂V ) // (X, ∂X)

for U and V running on the set of open subschemes of X.
In a similar fashion, an elementary Nisnevich square (i.e. a distinguished square in PNis) in Smlog(k)

is a pull-back square of the form

(U ×X Y, ∂Y ∩ p−1(U)) //

��

(Y, ∂Y )

p

��

(U, ∂U)
j

// (X, ∂X)
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where j : U ↪→ X is an open embedding, p : Y → X is an étale morphism such that

(p−1(X \ U))red → (X \ U)red

is an isomorphism, ∂Y is the strict normal crossing divisor p−1(∂X) on Y and ∂U = U ∩ ∂X.
The following Proposition is an immediate application of [35, Lemma 2.5 and Lemma 2.11], using

the known results for the Nisnevich and Zariski topology on Sm(k).

Proposition 2.26. The set of elementary Nisnevich (resp. Zariski) squares PNis (resp. PZar) on the
category Smlog(k) defines a complete and regular cd-structure. In particular, a presheaf of sets F on
Smlog(k) is a sheaf in the Nisnevich (resp. Zariski) topology if and only if for any elementary square
Q, the square of sets F (Q) is cartesian.

We can add the modulus divisor to the picture, obtaining two complete and regular cd-structures
on the category of modulus data.

Definition 2.27. Let σ ∈ {Zar,Nis}. A morphism p : U →M of modulus data is called a σ-cover if

i) The underlying morphism of schemes p : U →M is a σ-cover of Sm(k),
ii) p is a minimal morphism of modulus data (so that DU = p∗(DM ) and ∂U = (p−1)(∂M)).

The class of σ-covers defines a Grothendieck topology on MSmlog(k), using Proposition 2.15 instead

of Corollary 2.16. The topology tσ on MSmlog(k) is the Grothendieck topology associated with a

complete and regular cd-structure Pσ. For σ = Nis, a distinguished square in MSmlog(k) is a pull-
back square of the form

(2.9) (U ×M Y , ∂Y ∩ p−1(U), DU×MY ) //

��

(Y ; ∂Y,DY )

p

��

(U ; ∂U,DU )
j

// (M ; ∂M,DM )

where j : U ↪→M is an open embedding, p : Y →M is an étale morphism such that

(p−1(M \ U))red → (M \ U)red

is an isomorphism, and

∂Y = p−1(∂M), DY = p∗DM , ∂U = U ∩ ∂M, DU = DM ∩ U.

The cd-structures PNis and PZar on MSmlog(k) are also bounded in the sense of Definition [35,
Definition 2.22]. A density structure Di(−) that works for both cd-structures was introduced by
Voevodsky in [36, 2]. In our context, it takes the following form. Recall that a sequence of points
x0, . . . , xd of a topological space X is called an increasing sequence of length d if xi 6= xi+1 and

xi ∈ {xi+1}.

Definition 2.28. Let M = (M ; ∂M,DM ) be a modulus datum. Define Di(M) as the class of mor-
phisms of modulus data j : U → M where U = (U ; ∂U,DU ) is the minimal datum associated to a
dense open embedding j : U ↪→ M such that for any z ∈ M \ U there exists an increasing sequence
z = x0, x1, . . . , xd in M of length d.

Lemma 2.29. The assignment M 7→ Di(M)i≥0 defines a density structure on the category of modulus
data, that is compatible with the standard density structure on Sm(k) defined in [36, 2]. The cd-
structures PNis and PZar on MSmlog(k) are bounded with respect to this density structure.

Proof. Let σ be either the Zariski or the Nisnevich topology. We need to show that the density structure
Di(M)i≥0 is reducing for the cd-structures PNis and PZar on MSmlog(k). By definition, this property

depends only on the small site Mσ attached to any fixed modulus datum M . Let (M)σ be the usual
small σ-site on the underlying scheme M . Then the forgetful functor F : MSmlog(k) → Sm(k) that

sends a modulus datum N to the underlying scheme N defines an isomorphism of sites Mσ
FM−−→ (M)σ

(this was already observed by [22, Lemma 3.9] in the context of modulus pairs). The claim now follows
from [36, Proposition 2.10]. �
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Recall that a point of a site T is a functor x∗ : Shv(T ) → Set which commutes with finite limits
and all colimits. A site T has enough points if isomorphisms can be tested stalkwise, i.e. if there is a
set x∗i of points such that the induced functor (x∗i ) : Shv(T )→

∏
i Set is faithful.

Question 2.30. Does the site MSmlog(k) with the Nisnevich or the Zariski topology defined above
have enough points?

3. Motivic spaces with modulus

3.1. Generalities and first definitions. Let S be the category of simplicial sets, S = ∆opSet, with
simplicial function objects S(−,−). We write ∆n for the standard n-simplex Hom∆(−, [n]). If T is a
site, we write Psh(T ) for the category of presheaves (of sets) on T and sPsh(T ) = ∆opPsh(T ) for
the category of simplicial objects in Psh(T ).

For every object U in T , we denote by hU (or simply by U if no confusion arises) the Yoneda functor
hU (X) = HomT (X,U) considered as discrete simplicial set.

3.2. Monoidal structures on presheaves categories. In this section we present some general
material on symmetric monoidal structures for simplicial presheaves. We will then specialize these
general results for the construction of a closed symmetric monoidal model structure on the category
of motivic spaces with modulus.

3.2.1. Let C be a small symmetric monoidal category, with tensor product ⊗ and unit 1. There is
a natural extension of the monoidal structure on C to a symmetric monoidal structure on Psh(C) via
Day convolution (see [11]), that makes the Yoneda functor hC strong monoidal. The existence of the
monoidal structure follows formally from the general theory of left Kan extensions. Explicitly, given
that any presheaf is colimit of representable presheaves, write F = colimX↓F hX and G = colimY ↓G hY .
Then their convolution F ⊗Day G is the colimit colimX,Y hX⊗Y . It follows immediately from the
definition that the Yoneda functor is strong symmetric monoidal. It is also clear that the unit for
the convolution product is the representable presheaf h1. It is also formal to see that the monoidal
structure on presheaves given by Day convolution is closed, i.e. there exists an internal hom [−,−]Day

that is right adjoint to ⊗Day. This is characterized by

[F,G]Day(X) = HomPsh(C)(hX ⊗Day F,G), for all X ∈ C.
Unless required for clarity, we will drop the superscript and write simply ⊗ for the tensor product of

presheaves. Recall (see e.g. [17]) that a monoidal category (D, ?,1D) is called monoidally co-complete
if D is co-complete and all the endofunctors X ? (−), (−) ? Y for X,Y in D are co-continuous. By
[17, Proposition 4.1], the category Psh(C) on a small symmetric monoidal category is monoidally
co-complete. This construction is universal in the following sense.

Proposition 3.1 (Theorem 5.1 [17]). Let D be a monoidally co-complete category. Then the functor
[Psh(C),D]⊗ → [C,D]⊗ between the categories of strong monoidal functors from Psh(C) to D and the
category of strong monoidal functors from C to D induced by the Yoneda functor is an equivalence.

Remark 3.2. Here’s a situation where the previous Proposition turns out to be useful. Let u : C → D
be a strong symmetric monoidal functor. Then u gives rise to a string of adjoint functors between the
categories of presheaves

(u!, u
∗, u∗), Psh(D)

u∗−→ Psh(C)
where each functor is the left adjoint to the the following one. The left adjoint u! to the restriction u∗

is defined via left Kan extension, so that Proposition 3.1 implies that it is strong monoidal.

3.2.2. There is a natural way of extending Day convolution from the category of presheaves on C to
the category of simplicial presheaves, so that the sequence of embeddings

C ↪→ Psh(C) ↪→ sPsh(C)
is a sequence of strong monoidal functors (recall here that we identify presheaves of sets with discrete
simplicial presheaves, i.e. simplicial presheaves of simplicial dimension zero). Given two simplicial
presheaves F,G we define F ⊗G by

(3.1) (F ⊗G)n = Fn ⊗Gn, n ≥ 0
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and this gives sPsh(C) the structure of a closed symmetric monoidal category. We keep writing [−,−]
for the internal hom for Day convolution.

Remark 3.3. The category of simplicial presheaves on C is tensored over S in the following way.
The product F × K of a simplicial presheaf F with a simplicial set K is defined on sections by
(F ×K)(U) = F (U)×K. Alternatively, we can simply think to X ×K as the product of X with the
constant simplicial presheaf K.

The functor S → sPsh(C) given by K 7→ 1⊗Day K is easily seen to be endowed with the structure
of strong symmetric monoidal functor.

Remark 3.4. There is a pointed variant of Day convolution. Let sPsh(C)• be the category of pointed
simplicial presheaves, i.e. the category of presheaves of pointed simplicial sets on C, and let

(−)+ : sPsh(C)→ sPsh(C)•
be the canonical “add base point” functor (left adjoint to the forgetful functor). By mimicking the
definition of smash product ∧ of pointed simplicial preshaves starting from the cartesian product, we

can define a symmetric monoidal structure ⊗Day
• on sPsh(C)• (see Section 4.8 for details). This is the

unique symmetric monoidal structure on sPsh(C)• that has 1+ as unit and that makes (−)+ strong
monoidal.

We will come back later on the behaviour of Day convolution with respect to different model
structures on simplicial presheaves.

3.3. Motivic spaces with modulus and interval objects. We begin with the following definition.

Definition 3.5. Let MSmlog(k) be the category of modulus data over k. A motivic space with

modulus is a contravariant functor X : MSmlog(k)→ S i.e. a simplicial presheaf on MSmlog(k). We

let MM(k) denote the category of motivic spaces with modulus.

Since MM(k) is a category of simplicial presheaves on a small category, it is a locally finitely
presentable bicomplete S-category, with simplicial function complexes defined as above. In particular,
finite limits commute with filtered colimits. The following fact is standard.

Lemma 3.6. Every motivic space with modulus is filtered colimit of finite colimits of spaces of the
form hM ×∆n, for M ∈MSmlog(k) a modulus datum and n ≥ 0.

Apart from the category of motivic spaces MM(k), there are two other categories of simplicial
presheaves that will play an important rôle in what follows.

Definition 3.7. The category of motivic spaces with compactifications, Mlog(k) is the category of
simplicial presheaves on Smlog(k), i.e. Mlog(k) = sPsh(Smlog(k)). The category of birational mo-
tivic spaces with compactifications, BMlog(k) is the category of simplicial presheaves on the localized
category BSmlog(k), i.e. BMlog(k) = sPsh(BSmlog(k)). Finally, we let Mk denote the category of
motivic spaces over k in the sense of Morel-Voevodsky, i.e. Mk = sPsh(Sm(k)).

The categories MM(k), Mlog(k) and BMlog(k) are closed symmetric monoidal categories, where

we consider on MM(k) Day convolution induced by the monoidal structure 2.6 on MSmlog(k) (and
the usual Cartesian product on the other categories).

3.3.1. Recall from the discussion in Section 2.3 (with the notations of (2.4)) that there is a canonical
faithful functor

v : Smlog(k)→ BSmlog(k)

and from 2.4.1 that there is a fully faithful embedding

u : Smlog(k) ↪→MSmlog(k).

They are both strict monoidal functors.
These functors extend to the presheaves categories, giving a plethora of adjunctions

(u!, u
∗, u∗), u∗ : MM(k)�Mlog(k) : u∗

(v!, v
∗, v∗), v∗ : BMlog(k)�Mlog(k) : v∗.
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Note that from general principle the restriction functors u∗ and v∗ preserve limits and colimits, and
the functors u! and v! preserve colimits and are strong monoidal by Proposition 3.1.

Definition 3.8. We denote by I the object of MM(k) given by

I = u!v
∗(�) = u!v

∗(h(P1,∞)).

We will use the interval structure of � = �
1

on BSmlog(k) to show that I is an interval object in

the symmetric monoidal category MM(k). We start from the following simple observation.

Lemma 3.9. The representable simplicial presheaf � is an interval object in BMlog(k) and a weak

interval object in MM(k).

Proof. The maps (ι�0 , ι
�
1 , p�) define maps in BMlog(k). Since the Yoneda embedding preserves (small)

limits, we have h�×h� = h�×� = h�⊗�, so that the multiplication µ also extends, with the required

compatibilities, to BMlog(k). The statement for MM(k) is also clear. �

3.3.2. Let (X, ∂X) be an object of Smlog(k). From the adjunction (v!, v
∗) we get a natural map

ηX : h(X,∂X) → v∗(v!h(X,∂X)) = v∗(h(X,∂X)) (since v! commutes with Yoneda). Evaluated on an
object (Y, ∂Y ) of Smlog(k), the map ηX corresponds to the inclusion

HomSmlog(k)((Y, ∂Y ), (X, ∂X)) ↪→ HomBSmlog(k)((Y, ∂Y ), (X, ∂X)).

We will still denote by ηX the morphism in MM(k) given by u!(ηX). This is the map of motivic
spaces

h(X;∂X,∅) = u!(h(X,∂X))
u!ηX−−−→ u!(v

∗(h(X,∂X))).

ForX = �, the above construction gives a canonical comparison morphism of motivic spaces η : �→ I.

Proposition 3.10. The motivic space I is an interval object in MM(k) for the Day convolution
product.

Proof. We start by proving that the simplicial presheaf v∗(�) in Mlog(k) is an interval object for the
usual product of presheaves. Since the terminal object of Smlog(k) is (Spec(k), ∅) and since Yoneda
preserves small limits, the simplicial presheaf represented by (Spec(k), ∅) is just the constant simplicial
set having one element in simplicial degree 0 (the “point”, denoted pt). Since v∗ preserves finite limits,
we have that v∗(pt) = pt, and therefore we automatically obtain maps

ιv
∗(�)
ε : pt = v∗(pt)⇒ v∗(�), ε ∈ {0, 1}, pv∗(�) : v∗(�)→ pt

satisfying the identities pv∗(�) ◦ ι
v∗(�)
ε = idpt. Let now µ : � × � → � be the multiplication map in

BMlog(k). Since again v∗ preserves finite limits, we have v∗(�×�) = v∗(�)× v∗(�) so that we get
a map

v∗µ : v∗(�)× v∗(�)→ v∗(�)

and we have

v∗(µ) ◦ (idv∗�×v
∗(ι�0 )) =v∗(µ) ◦ v∗(id�×(ι�0 )) = v∗(µ ◦ (id�×(ι�0 ))

=v∗(ι�0 ◦ p�) = ιv
∗�

0 ◦ pv∗�,

v∗(µ) ◦ (idv∗�×v
∗(ι�1 )) =v∗(µ) ◦ v∗(id�×(ι�1 )) = v∗(µ ◦ (id�×(ι�1 )) = idv∗�,

completing the proof that v∗(�) is an interval in Mlog(k). As for I, we first notice that

u!(h(Spec(k),∅)) = 1

is the unit for Day convolution on MM(k). Applying the functor u! we then obtain the morphisms
ιI0 , ι

I
1 , pI that make I into a weak interval on MM(k). As for the multiplication, it’s enough to

show that u!(v
∗(�) × v∗(�)) = u!(v

∗(� × �)) ' I ⊗ I, since the identities involving u!(µ) will be
then automatically satisfied by functoriality (or using the same chain of equalities as above). Slightly
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more generally, let F ∈ Psh(Smlog(k)) be a presheaf of sets and consider it as simplicial presheaf of
simplicial dimension zero. Write F = colimU↓F hU , for U ∈ Smlog(k). Then

u!(F × F ) = u!(colim
U↓F

hU × colim
U ′↓F

hU ′) =† u!(colim
U,U ′

hU×U ′)

†† = colim
U,U ′

u!(hU×U ′) = colim
U,U ′

(hu!(U×U ′)) = colim
U,U ′

(hu(U)⊗u(U ′))

= colim
U,U ′

(hu(U) ⊗ hu(U ′)) =‡ colim
U↓F

hu(U) ⊗ colim
U ′↓F

hu(U ′)

= u!(F )⊗ u!(F ).

The equality † follows from the fact that colimits commute with finite fiber products in a category of
presheaves (Giraud’s axiom), while †† follows from the fact that u! commutes with colimits. For the
equality ‡ we have used the fact that Psh(MSmlog(k)) is monoidally co-complete for Day convolution
product. The other equalities are trivial, using the fact that u! commutes with Yoneda and that
u(U) ⊗ u(U ′) = u(U) × u(U ′) in MSmlog(k) for every U,U ′ in Smlog(k) by 2.6.1. Specializing these

equalities to the case F = v∗(�) gives the required statement. �

Remark 3.11. Our method of transporting the interval structure from BSmlog(k) to MM(k) looks
quite general. It seems plausible that one can repeat a similar argument by replacing the category
of simplicial presheaves on BSmlog(k) with the category of extended co-cubical objects in S, i.e. the
category of strong monoidal functors [ECube,S]⊗, or even with the category of extended cubical
object in a category of presheaves with values in monoidal model category M.

Remark 3.12. In the references [30], [34] and [7] (for A1-theory) and [22] (for the modulus-theory),
the interval objects considered are always representable (either by A1 or by the modulus pair (P1, 1)).
Here, we are pushing the ideas of [22] further to get a theory that works more generally for interval
objects in categories of presheaves that are not necessarily representable.

3.3.3. Let A1 denote the representable simplicial presheaf h(A1;∅,∅) = hu(A1,∅). It is clearly an interval

object in MM(k) for the cartesian product as well as for Day convolution product, since by 2.6.1 we
have A1 ⊗ A1 = A1 × A1. From the admissible morphism j : (A1, ∅) ↪→ (P1,∞) in Smlog(k) we get
maps of motivic spaces

A1 → �→ I in MM(k), A1 → �→ v∗(�) in Mlog(k)

that we will use to compare the different interval structures on MM(k), on Mlog(k) and on M(k).

3.3.4. We start by comparing A1 and v∗(�) with the standard interval A1 in the category of motivic
spaces M(k). Recall that the adjoint pair λ : Sm(k) � Smlog(k) : ω gives rise to a string of four
adjoint functors

(λ!, λ
∗ = ω!, λ∗ = ω∗, ω∗), ω! = λ∗ : Mlog(k)�M(k) : λ∗

(i.e. the functor ω! has in turn a left adjoint). The functors λ∗ and ω∗ clearly commute with products.
Since λ commutes with products and λ! commutes with Yoneda, the same argument used in the proof
of Proposition 3.10 (or even Proposition 3.1 directly) shows that λ! is monoidal with respect to the
cartesian product.

Lemma 3.13. There are canonical isomorphisms λ∗(A1) ' λ∗v∗(�) ' A1 as interval objects ofM(k).

Proof. Since λ∗ = ω!, it’s clear that λ∗(A1) = ω!(h(A1,∅)) = hω(A1,∅) = hA1 = A1. For the second

statement, it’s enough to check that λ∗v∗(�) ' A1 as presheaves on Sm(k), and we just have to play
with adjunctions. For X ∈ Sm(k), we have

HomPsh(Sm(k))(hX , λ
∗v∗(�)) = HomPsh(Smlog(k))(λ!(hX), v∗(�))

= HomPsh(BSmlog(k))(v!(h(X,∅)),�)

= HomBSmlog(k)((X, ∅), (P1,∞))

= HomSm(k)(X,A1).

The fact that the isomorphisms are compatible with the interval structure is a tautology from the
definitions. �
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Remark 3.14. Note that the interval I of MM(k) is obtained from v∗(�) by applying the left adjoint
u! of the restriction functor u∗. The exact same construction, using ω! = λ∗ instead of u! produces,
in view of Lemma 3.13, nothing but the usual interval A1 in the Morel-Voevodsky category of motivic
spaces.

3.3.5. Before moving forward to give more refined comparisons, we ask the following question. Let
F : Smlog(k) → Sm(k) be the forgetful functor (X, ∂X) → X. Then F defines the usual set of
adjoint functors between the categories of spacesMlog(k) andM(k), namely (F!, F

∗, F∗). The general

principle illustrated above allows us to construct the object J ∈M as J = F!(v
∗(�)). Since F is strict

monoidal for the cartesian product, the argument of Proposition 3.10 goes through to show that J is
in fact an interval object in M(k) for the usual product of simplicial presheaves.

The canonical adjunction map η : � → v∗(�) gives then a map P1 → J in M. By construction,
this map cannot be an isomorphism (since P1 does not have any interval structure on M(k)), and is
also easy to see that J is not isomorphic to A1. One could therefore try to develop a machinery for the
localization of M(k) to J , in the same spirit of what we will do for MM(k) with I. We don’t know,
at the moment, what would be the outcome of such a construction.

4. Motivic homotopy categories with modulus

4.1. Model structures on simplicial presheaves. The category of simplicial sets S carries a well-
known cofibrantly generated model structure (the Quillen model structure). The category of simplicial
presheaves sPsh(T ) on a small Grothendieck site T carries two natural model structures, the injective
and the projective model structure presenting the same homotopy category, i.e. having the same class
of weak equivalences:

Definition 4.1. A map f : A → B in sPsh(T ) in sPsh(T ) is called an objectwise (or levelwise or
sectionwise) simplicial weak equivalence if f(X) : A(X) → B(X) is a weak equivalence of simplicial
sets for each X ∈ T . A map f : A → B is called an objectwise Kan fibration if f(X) : A(X) → B(X)
is a Kan fibration of simplicial sets for each X ∈ T .

The injective model structure on sPsh(T ) was introduced by Heller in [14], in which the cofibrations
are the monomorphisms, and the fibrations are the maps having the right lifting property with respect
to the trivial cofibrations. It is a proper, simplicial cellular model structure. We will refer to the
fibrations for the injective model structure as the (simplicial) injective fibrations. The category of
simplicial presheaves with the injective model stucture will be denoted, following the usual convention,
sPsh(T )inj. Note that every object is cofibrant for the injective structure. The second model structure
on sPsh(T ), the projective one, goes back to Quillen (see [15], Theorem 11.6.1). In this model
structure, the fibrations are the objectwise Kan fibrations, and the cofibrations are the maps having
the left lifting property with respect to the trivial fibrations. The projective model structure is also
proper, simplicial and cellular. We denote by sPsh(T )proj the category of simplicial presheaves with the
projective model structure. We refer the reader to [15, 12] for the definition of a cellular model category.
Both the injective and the projective model structure on simplicial presheaves are cellular (see [20],
around 7.19 for a comment on the cellularity of the injective model structure). By definition, a cellular
model category is cofibrantly generated. We choose a functorial cofibrant replacement (−)c → idsPsh(T )

for the projective model structure, so that for every object X ∈ sPsh(T ), there is an objectwise trivial
fibration X c →X with X c cofibrant.

4.1.1. Recall (see [16, Definition 4.2.6]) that a model category M that is also a monoidal category
with product ⊗ and unit 1 is called a monoidal model category if the following conditions are satisfied

(1) Let Q1
q−→ 1 be the cofibrant replacement for the unit 1. Then the natural map Q1 ⊗X →

1⊗X ' X is a weak equivalence for all cofibrant X.
(2) Given two cofibrations f : U → V and g : W → X in M, their push-out product

f�g : (V ⊗W )qU⊗W (U ⊗X)→ V ⊗X

is a cofibration, which is trivial if either f or g is.
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We refer to the first condition as the unit axiom and to the second condition as the pushout product
axiom.

Suppose that a small site T carries a symmetric monoidal structure ⊗, that extends via Day convo-
lution to sPsh(T ) (see Section 3.2). The proof of the following proposition is easy, using [16, Corollary
4.2.5].

Proposition 4.2. The projective model structure on simplicial presheaves is a (symmetric) monoidal
model category with respect to Day convolution.

Remark 4.3. The pointed version of Day convolution presented in 3.4 gives rise to a symmetric monoidal
model structure on the category of pointed simplicial presheaves sPsh(T )• with the projective model
structure. This follows from Proposition 4.2 together with [16, Proposition 4.2.9]. Alternatively, one
can repeat the proof of Proposition 4.2 replacing the product of simplicial presheaves with the smash
product of the pointed counterparts.

4.2. Local model structures. Following Jardine (see [20] or [18]), we can put the topology in the
picture as follows. Let T be again a small Grothendieck site and let sPsh(T ) be the category of
simplicial presheaves on T . The reader can consult [20], Section 4.1 and Section 5.1 for the notion of
local weak equivalence and for the notion of injective or global fibration associated to the topology σ
on T for a morphism f : X → Y in sPsh(T ). Recall finally that an injective cofibration is simply
a monomorphism of simplicial presheaves. If necessary, we will distinguish injective fibrations for the
injective-local model structure from fibrations for the injective model structure on simplicial presheaves
by adding the word simplicial to the latter class. By [20], Theorem 5.8, the local injective model
structure sPsh(T )locinj (having local weak equivalences as weak equivalences and injective fibrations as

fibrations) is a proper simplicial cellular closed model category.

4.2.1. Localizations. Given any model category M and a set of morphisms S, we say that an object
X of M is S-local (see [15, 3.1.4]) if it is fibrant and for every map f : A → B the induced map
f∗ between the homotopy function complexes is a weak equivalence. A map g : X → Y is called an
S−local equivalence if for every S-local object Z the induced map g∗ between the homotopy function
complexes is a weak equivalence. We write LSM for the model structure on M in which the weak
equivalences are the S-local equivalences of M, the cofibrations are the same cofibrations of M and
the class of fibrations is the class of maps having the right lifting property with respect to those maps
that are both cofibrations and S-local equivalences. This is called the left Bousfield localization of
M with respect to S. By a general result of Hirschhorn, see [15, Theorem 4.1.1], if M is left proper
and cellular, LSM exists and is a left proper cellular model category, that has a natural structure of
simplicial model category if M has one.

4.2.2. LetM be a (symmetric) monoidal model category. Write ⊗ for its monoidal product and take
a set of morphisms S. In general, the Bousfield localization LSM (whenever exists) will not inherit
the structure of monoidal model category. The following Proposition gives a convenient criterion for
checking if the localization to S behaves well with respect to the monoidal structure. The proof is
standard, and we refer to [10].

Proposition 4.4 ([10], Proposition 5.6). Let M be a left proper cellular symmetric monoidal model
category. Let S be a set of morphisms in M. Assume that the following conditions hold:

i) M admits generating sets of (trivial) cofibrations consisting of maps between cofibrant ob-
jects;

ii) For every cofibrant object X, the functor X ⊗ (−) sends the elements of S to S-local weak
equivalences;

iii) The unit object for the monoidal structure is cofibrant.

Then the left Bousfield localization LSM with respect to S (that exists by [15, Theorem 4.1.1]) is a
symmetric monoidal model category.

4.2.3. When the topology on T is defined by a regular, complete and bounded cd-structure P , a result
of Voevodsky ([35], Proposition 3.8) presents the local injective structure of Jardine as left Bousfield
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localization of the injective structure sPsh(T )inj to the class of maps given by distinguished squares.
More precisely, let T be a site as above and let X ∈ T . For Q a distinguished square of the form

(4.1) B

��

eB // Y

p

��

A
e // X

for the cd-structure P on T , write P (Q) for the simplicial homotopy push-out of the diagram (A ←
B → Y ). There is a natural map P (Q)→ X. Write ΣP for the class of maps

ΣP = {P (Q)→ X}Q ∪ {∅ → h∅}

where Q runs on the set of distinguished squares for the cd-structure P on T , and ∅ is the initial object
of Psh(T ) and h∅ is presheaf represented by the initial object of T .

Theorem 4.5 ([35]). Let T be a small site whose topology is defined by a complete bounded and regular
cd-structure. Then the local injective model structure on sPsh(T ) is the left Bousfield localization of
the (global) injective model structure sPsh(T )inj to the class ΣP .

4.2.4. Together with the injective local model structure, there is a projective local model structure on
simplicial presheaves due to Blander [7]. We recall here the following useful facts about it.

Proposition 4.6 ([7], Lemma 4.1). Let T be a site with an initial object ∅ whose topology is defined
by a complete bounded regular cd-structure P . Then a simplicial presheaf F on T is local projective
fibrant if and only if F (U) is a Kan simplicial set for all U in T and if for every distinguished square
Q of P , the square F (Q) is a homotopy pull-back square of simplicial sets. Such presheaves are called
flasque.

Theorem 4.7 (Blander [7], Lemma 4.3, Voevodsky [35]). The local projective model structure on the
category of simplicial presheaves on a site T equipped with a complete regular bounded cd-structure P
is the left Bousfield localization of the projective model structure sPsh(T )proj to the class ΣP .

We write sPsh(T )locproj to denote the local projective model structure on sPsh(T ). By the general

theory of Bousfield localization, the local projective and the local injective model structures on sPsh(T )
are both cellular, proper and simplicial.

The weak equivalences in both model structure agree and are precisely the local weak equivalences.
Note that left proper is automatic in both cases by Bousfield localization, while right properness follows
from [7, Lemma 3.4] (for the projective case) and [20, Lemma 4.37] (for the injective case).

Proposition 4.8. Let T be a small site whose topology is defined by a complete bounded and regular
cd-structure. Assume that for every distinguished square Q in T and every object Z in T , the product
Q⊗Z is still a distinguished square in T . Then Day convolution makes sPsh(T )locproj a monoidal model
category.

Proof. Thanks to Blander’s Theorem 4.7, the local projective model structure is a (left) Bousfield
localization of the projective structure, and we have an explicit description of the set of maps that we
are inverting. In the notations of 4.2.3, write ϕX : P (Q)→ X for the natural map from the simplicial
homotopy push-out of a distinguished square having X ∈ T as bottom right corner. According
to [10, Theorem 5.7], we have to check that for every representable presheaf hZ , the induced map
ϕX ⊗ idZ : P (Q) ⊗ hZ → hX ⊗ hZ = hX⊗Z is an S-local equivalence for S = ΣP . Write QZ for the
tensor product square Q⊗Z in T . By assumption, QZ is a distinguished square, and the bottom right
corner of it is the product X⊗Z. The natural map P (QZ)→ hX⊗Z is an element of ΣP by assumption,
and factors through the product P (Q)⊗hZ . Since the projective model structure is monoidal for Day
convolution, the tensor product (−) ⊗ hZ commutes with homotopy colimits. In particular, the map
P (QZ) → P (Q) ⊗ hZ is a weak equivalence. By the 2 out of 3 property of S-local equivalences, we
conclude that the required map ϕZ ⊗ idZ is an S-local equivalence, completing the proof. �
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4.3. Interval-local objects and I-homotopies. We start from the following general definition. Let
T be a (small) site and let sPsh(T ) be the category of simplicial presheaves on T . Suppose that T
carries a symmetric monoidal structure ⊗, that extends via Day convolution to sPsh(T ). Finally,
suppose that there exists a weak interval object I for the ⊗-structure on sPsh(T ). We consider on
sPsh(T ) both the injective and the projective local model structures.

Definition 4.9. A simplicial presheaf X is called projective I-local (resp. injective I-local) if:

i) The presheaf X is fibrant for the projective local model structure on sPsh(T ) (resp. X is
fibrant for the injective local model structure on sPsh(T )), and

ii) For every Y in sPsh(T ), the map between the homotopy function complexes

(id⊗ιI0)∗ : Map(Y ⊗ I,X )→ Map(Y ,X )

induced by id⊗ιI0 is a weak equivalence.

Note that, since I is a weak interval, we have the identities pI ◦ ιI0 = pI ◦ ιI1 = id in T . In particular,
for every Y ∈ sPsh(T ) the composition

Map(Y ,X )
(id⊗pI)∗−−−−−−→ Map(Y ⊗ I,X )

(id⊗ιI0)∗−−−−−−→ Map(Y ,X )

is the identity. If X is projective I-local, then the second map is also a weak equivalence by condition
ii) above, and therefore — by the 2 out of 3 property of the class of simplicial weak equivalences — so
is the map (id⊗pI)∗. Thus one can replace condition ii) with the following

ii’) For every Y in sPsh(T ), the map between the homotopy function complexes

(id⊗pI)∗ : Map(Y ,X )→ Map(Y ⊗ I,X )

induced by id⊗pI is a weak equivalence.

In a similar way, one can replace condition ii) with the analogue condition stated using the map id⊗ιI1
instead. All three notions are equivalent.

Remark 4.10. If M is a simplicial model category, a homotopy function complex between a cofibrant
object X and a fibrant object Y is weakly equivalent to the simplicial mapping space (or simplicial
function complex, in the terminology of 3.1) S(X,Y ). Since every object is cofibrant in sPsh(T )inj,
an injective fibrant simplicial presheaf X is injective I-local if for every Y , the natural map between
the simplicial function complexes

S(Y ⊗ I,X )→ S(Y ,X )

is a weak equivalence.
On the other hand, not every object is cofibrant for the projective structure. We can then reformu-

late condition ii) of Definition 4.9 using the simplicial function complex and the functorial cofibrant
replacement (−)c as follows: a projective fibrant simplicial presheaf X is projective I-local if for every
object Y , the natural map between the simplicial function complexes

S((Y )c ⊗ Ic,X )→ S((Y )c,X )

is a weak equivalence. Note that we are using here the fact that ⊗ is left Quillen bi-functor, so that it
preserves cofibrant objects.

Remark 4.11. Note that the cofibrant replacement (I)c → I can be chosen to be a monoidal functor.
This gives automatically the object (I)c the structure of interval object in sPsh(T )proj. This applies,

in particular, in the case T = MSmlog(k) and sPsh(T ) = MM(k).

Definition 4.12. A morphism g : X → Y is called a projective I−weak equivalence (resp. an injective
I-weak equivalence) if for any projective (resp. injective) I-local object Z the induced map between
the homotopy function complexes

g∗ : Map(Y ,Z )→ Map(X ,Z )

is a weak equivalence. We write Wproj
I (resp. Winj

I ) for the class of projective (resp. injective) I-weak
equivalences.
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Definition 4.13. A morphism p : X → Y is called a projective I-fibration (resp. an injective I-
fibration) if it has the right lifting property with respect to all maps that are both projective cofibrations
(resp. monomorphisms) and projective (resp. injective) I-weak equivalences.

Specializing Hirschhorn’s Theorem [15, Theorem 4.1.1] to the caseM = sPsh(T )inj or sPsh(T )proj

with S given by Winj
I or Wproj

I respectively, produces the I-localized model structure (injective or
projective), denoted LI(sPsh(T )) with the relevant subscript. We will denote the homotopy category
of LI(sPsh(T ))locproj (resp. LI(sPsh(T ))locinj ) by H(T, I)locproj (resp. by H(T, I)locinj ) or simply by H(T, I)
if it is clear wich model structure is considered.

The two classes of I-local projective and I-local injective weak equivalences agree, as proven in the
following Proposition.

Proposition 4.14. The identity functor idsPsh(T ) : LI(sPsh(T ))locproj → LI(sPsh(T ))locinj is the left
adjoint of a Quillen equivalence.

Proof. Recall first that the identity functor is a Quillen equivalence from the local projective to the
local injective model structure before I-localization. Let Ic → I be the (functorially chosen) cofibrant
replacement of I in the projective local model structure on sPsh(T ). Note in particular that Ic → I

is a local weak equivalence between two injective-cofibrant objects. Write Winj
Ic for the class of Ic-

injective weak equivalences, defined replacing I with Ic in Definitions 4.9 and 4.12. We claim that
Winj

Ic = Winj
I . Start with f : A → B ∈ Winj

Ic and let Z be an injective I-local object. Then Z is
globally fibrant (i.e. fibrant for the injective local model structure) and thus (using that by Proposition
4.8 −⊗X preserves local weak equivalences) the map S(I ⊗X ,Z )→ S(Ic ⊗X ,Z ) is a simplicial
homotopy equivalence for every X (note that since Z is fibrant and Ic ⊗X and I ⊗X are both
cofibrant, the simplicial mapping spaces are fibrant simplicial sets). We conclude that the map

S(Ic ⊗X ,Z )→ S(X ,Z )

is a weak equivalence. In particular, the object Z is Ic-local and thus the map f is an injective
I-weak equivalence. We can reverse the argument, and start from Z injective Ic-local to get that
every injective I-weak equivalence is an injective Ic-weak equivalence.

Note now that the classes of maps Wproj
Ic and Wproj

I do clearly coincide by definition. We are then

reduced to show that Wproj
Ic = Winj

Ic . This can be done using the same argument of [12, Theorem 2.17].
We recall the argument for completeness. Suppose that f : A→ B is a projective Ic-weak equivalence
and take Z injective Ic-fibrant. Then Z is globally fibrant, hence fibrant for the projective local
model structure. The map of simplicial mapping spaces

(f c)∗ : S(Bc,Z )→ S(Ac,Z )

is then a weak equivalence. Since the maps Ac → A and Bc → B are local weak equivalences,
we conclude that f ∈ Winj

Ic . Conversely, start from Z projective Ic-local and choose a local weak
equivalence Z → Z ′ with Z ′ globally fibrant (this exists by general principle, see [20] or [18]). Then
Z ′ is easily seen to be injective Ic-fibrant. For every f : A→ B injective Ic-weak equivalence, we then
have a diagram of simplicial mapping spaces

S(Bc,Z ) //

��

S(Ac,Z )

��

S(Bc,Z ′) // S(Ac,Z ′)

where the vertical arrows are weak equivalences and the bottom horizontal arrow is a weak equivalence
since f c is an injective Ic-weak equivalence. Thus the top horizontal arrow is a weak equivalence as
well, showing that f is a projective Ic-weak equivalence. The fact that the identity functor gives a
Quillen equivalence is now obvious. �

Remark 4.15. For the categoryM(k) of motivic spaces over k, a comparison between the two localized
model structures (projective and injective) is given, for example, in [12, Theorem 2.17]: the identity
functor id is the left adjoint of a Quillen equivalence between the motivic model structure (in the
sense of [12, 2.12], built as localization of the projective model structure on simplicial presheaves) and
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the Goerss-Jardine model structure (built as localization of the injective model structure on simplicial
presheaves).

4.3.1. Let f, g : X → Y be two morphisms of simplicial presheaves. As in 2.7, an elementary I-⊗-
homotopy from f to g is a morphism H : X ⊗ I → Y satisfying H ◦ ιI0 = f and H ◦ ιI1 = g.
Two morphisms are called I-⊗-homotopic if they can be connected by a sequence of elementary I-⊗-
homotopies. A morphism f : X → Y is called a strict I-⊗-homotopy equivalence if there is a morphism
g : Y →X such that f ◦ g and g ◦ f are I-⊗-homotopic to the identity (of Y and of X respectively).

Lemma 4.16 (cfr. [30], Lemma 3.6). Any strict I-⊗-homotopy equivalence f : X → Y is an I-weak
equivalence for both the injective and the projective I-localized structure on simplicial presheaves.

Proof. We have to show that the compositions of f with an I-⊗-homotopy inverse are equal to the
corresponding identities in the homotopy categories H(T, I)proj and H(T, I)inj. But it’s clear from the
definition that two elementary I-⊗-homotopic maps are equal in the I-homotopy category (and this
does not really depend on the choice of the injective/projective model structure). �

4.4. Comparison of intervals. Let MM(k) be the category of motivic spaces with modulus intro-
duced in 3.5. Let I = u!v

∗(�) be the distinguished interval object of 3.8. Let η : �→ I be the natural
map constructed in 3.3.2.

Since � is a weak interval in MM(k), we can talk about �-⊗-homotopies between morphisms of
motivic spaces with modulus.

Proposition 4.17. Let X be any motivic space with modulus. Then the map id⊗ιI0 : X = X ⊗1→
X ⊗ I is a strict �-⊗-homotopy equivalence.

Proof. Let p = id⊗pI : X ⊗ I → X ⊗ 1 = X be the projection morphism. Since the composition
p ◦ (id⊗ιI0 ) is the identity on X , it’s enough to show that there exists a �-⊗-homotopy between
(id⊗ιI0 ) ◦ p and the identity on X ⊗ I. Write H for the map

H = H� : (X ⊗ I)⊗� idX ⊗ idI ⊗η−−−−−−−−→X ⊗ (I ⊗ I)
idX ⊗µ−−−−−→X ⊗ I.

We need to check that H ◦ (id⊗ι�0 ) = (id⊗ιI0 ) ◦ p and that H ◦ (id⊗ι�1 ) = id. By adjunction, the

compositions η ◦ ι�ε for ε = 0, 1 agree with the map ιIε , so that idX⊗I ⊗ι�ε = idX⊗I ⊗ιIε . The required
identities then follow from the interval structure on I. �

Lemma 4.16 and Proposition 4.17 together give the following

Corollary 4.18. For every motivic space X , the map X →X ⊗ I is a �-weak equivalence.

Corollary 4.19. Let X be a �-local object (for either the projective or the injective model structure
on MM(k)). Then X is I-local.

Proof. By definition, a �-local object X satisfies the following condition: for every �-weak equivalence
f : Y → Z , the induced map f∗ on homotopy function complexes is a weak equivalence. In particular,
the map

Map(Y ⊗ I,X )→ Map(Y ,X )

is a weak equivalence for every Y , since Y → Y ⊗ I is a �-weak equivalence by Corollary 4.18. But
this is precisely the condition that a fibrant object X has to satisfy for being I-local. �

Proposition 4.20. Let X be an A1-local motivic space with modulus. Then X is I-local.

Proof. Let θ : A1 → I be the canonical map of 3.3.3, induced by adjunction by the identity morphism
on A1 in Sm(k). It’s enough to show that the map idX ⊗ιI0 : X → X ⊗ I is an A1 strict homotopy
equivalence. An A1-⊗-homotopy inverse is given by the projection p : X ⊗I →X , and the homotopy
between (idX ⊗ιI0 ) ◦ p is the map

HA1 : (X ⊗ I)⊗ A1 idX⊗I ⊗θ−−−−−−→X ⊗ (I ⊗ I)
idX ⊗µ−−−−−→X ⊗ I.

The argument is then formally identical to the one given in Proposition 4.17 and Corollaries 4.18 and
4.19. �
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We can also ask for the relation between the interval objects v∗(�) and A1 = (A1, ∅) in Mlog(k).

The functor ω! is particularly well behaved, since it sends A1-local and �-local objects in Mlog(k) to
A1-local objects in M(k). In the other direction, we have the following

Proposition 4.21. Let X be an A1-local motivic space in M(k). Then λ∗(X ) is v∗(�)-local in
Mlog(k).

4.5. A singular functor. We specialize the results of the previous sections to MSmlog(k), equipped
with the Nisnevich topology introduced in Section 2.9. This is the topology associated to a complete
bounded regular cd-structure by Proposition 2.26 and Proposition 2.29. In particular, we can apply
Theorem 4.5.

4.5.1. Let MM(k)locinj be the category of motivic spaces with modulus (over k) equipped with the local

injective (for the Nisnevich topology) model structure and let I be again the distinguished interval

object of 3.8. To simplify the notation, we write MM(k)I−locinj for the I-localization of the local-

injective model structure on MM(k). By [15, Theorem 4.1.1], MM(k)I−locinj is a left proper cellular
simplicial model category. Right properness does not follow formally.

For the category of motivic spaces M(k) (without modulus), properness of the A1-local (injective)
model structure is proved in [30], Theorem 3.2 and, using a different technique, in [19], Theorem A.5.
The proof of Morel and Voevodsky makes use of the endofunctor Sing∗, that plays also an important
role in the construction of a fibrant replacement functor.

Since we will work constantly in the category MM(k), we will sometimes omit the locution “with
modulus” for a motivic space X (i.e. for an object of MM(k)).

4.5.2. We introduce in this section an endofunctor Sing⊗I (−) on MM(k) that plays in our theory the
role of Sing∗. Our results look formally like the corresponding statements in [30, Section 3], but the
proofs are different. Another instance of this construction has been used in [4, Appendix B] in the
context of motives for log schemes, where a similar problem (the lack of the multiplication map on �)
arises.

We start by noticing that the interval I comes equipped with an extra diagonal map

δ : I → I ⊗ I

induced by the diagonal δ = (P1,∞)→ (P1 × P1, F 2
∞) in Smlog(k). Thus, we can use the formulas of

2.21 for constructing a cosimplicial object ∆•I in MM(k) whose n-th term is I⊗n. Similarly, we write
∆•A1 for the cosimplicial object deduced from A1 with the standard interval structure.

Definition 4.22. Let X be a motivic space with modulus. We write Sing⊗I (X ) for the diagonal
simplicial presheaf of the bi-simplicial presheaf

∆op ×∆op → Psh(MSmlog(k)), ([n], [m]) 7→ [∆m
I = I⊗m,Xn].

For every n ≥ 0 there is canonical isomorphism [1,Xn] = Xn, giving by composition a natural
transformation s : id→ Sing⊗I . Since the right adjoint [−,−] = [−,−]Day to Day convolution preserves

finite limits, for any X the morphism sX : X → Sing⊗I (X ) is a monomorphism and therefore a
cofibration for the local-injective model structure.

Proposition 4.23. Let f, g : X ⇒ Y be two morphisms of simplicial preshaves and let H be an
elementary I-⊗-homotopy between them. Then there exists an elementary simplicial homotopy between
Sing⊗I (f) and Sing⊗I (g).

Proof. It is enough to show that there exists a simplicial homotopy

Sing⊗I (X )×∆1 → Sing⊗I (X ⊗ I)

between the natural maps Sing⊗I (idX ⊗ιI0 ) and Sing⊗I (idX ⊗ιI1 ). Thus, we have to construct a map
of presheaves

Hn : Sing⊗I (X )n ×∆1
n(= Hom∆([n], [1]))→ Sing⊗I (X ⊗ I)n = [I⊗n,Xn ⊗ I]
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for every n, compatible with faces and degeneracies. Note here that I is a discrete simplicial presheaf,
so that Xn⊗I = (X ⊗I)n according to the definition of the extension of Day convolution to simplicial
presheaves (see (3.1)). For every M ∈MSmlog(k), we have

Sing⊗I (X )n(M) = HomPsh(MSmlog(k))(M ⊗ I
⊗n,Xn)

so that a section over M of Sing⊗I (X )n is a map of presheaves αM : M ⊗ I⊗n → Xn. Limits of
presheaves are computed objectwise, and ∆1

n is a constant presheaf, therefore a section over M of
Sing⊗I (X )n × ∆1

n is a pair (αM , f) for f ∈ Hom∆([n], [1]). Let ∆(f) : I⊗n → I be the induced
morphism given by the cosimplicial structure of ∆•I . Then we can consider the composition

(4.2) M ⊗ I⊗n idM ⊗δn−−−−−→M ⊗ I⊗n ⊗ I⊗n idM ⊗I⊗n⊗∆(f)−−−−−−−−−−−→M ⊗ I⊗n ⊗ I αM⊗idI−−−−−→Xn ⊗ I

that defines a section over M of Sing⊗I (X ⊗I)n = [I⊗n,Xn⊗I]. For ϕ : M ′ →M there is a restriction

map Sing⊗I (X )n(M)
ϕ∗−−→ Sing⊗I (X )n(M ′) that sends a section αM to the composite αM ◦ (ϕ ⊗ id).

The assignment (4.2) is clearly compatible with ϕ∗ and thus defines a morphism of presheaves of sets.
It is easy to check that it is also compatible with the simplicial structure and that it gives indeed an
homotopy between Sing⊗I (idX ⊗ιI0 ) and Sing⊗I (idX ⊗ιI1 ). �

Corollary 4.24. For any motivic space with modulus X , the morphism

Sing⊗I (X )
Sing⊗I (idX ⊗ιI0 )
−−−−−−−−−−→ Sing⊗I (X ⊗ I)

is a simplicial homotopy equivalence (and the same holds for Sing⊗I (idX ⊗ιI1 )).

Proof. By Proposition 4.23, it’s enough to show that the map idX ⊗ιI0 is an I-⊗-homotopy equivalence.

A I-⊗-homotopy inverse is given by the projection map p : X ⊗ I id⊗pI−−−−→ X . The composition
p◦ (idX ⊗ιI0 ) is clearly the identity, and an homotopy between (idX ⊗ιI0 )◦p and the identity of X ⊗I
is given by the multiplication map X ⊗I ⊗I id⊗µ−−−→X ⊗I. The proof for Sing⊗I (idX ⊗ιI1 ) is similar,
and it is left to the reader. �

Lemma 4.25. The map p∗ : X = [1,X ] → [I,X ] induced by the projection pI : I → 1 is a strict
I-⊗-homotopy equivalence.

Proof. A homotopy inverse is given by ι∗0 : [I,X ]→ [1,X ] induced by ιI0 . Since the composition ι∗0◦p∗
is the identity on X we just need to show (as in the previous corollary) that there is a I-⊗-homotopy
between the composition in the other direction p∗ ◦ ι∗0 and the identity morphism. By adjunction, we
have a canonical isomorphism [I ⊗ I,X ] ' [I, [I,X ]] that gives

HomMM(k)([I,X ], [I ⊗ I,X ]) ' HomMM(k)([I,X ]⊗ I, [I,X ]),

so that getting a homotopy [I,X ]⊗I → [I,X ] it’s equivalent to specifying a map [I,X ]→ [I⊗I,X ]
satisfying the required identities. The multiplication map I ⊗ I → I does the job. �

Proposition 4.26. For any motivic space with modulus X , the morphism sX : X → Sing⊗I (X ) is
an I-weak equivalence.

Proof. This is now formally identical to [30, Corollary 3.8], using our Lemma 4.25. �

The functor Sing⊗I has formally a left adjoint that is constructed, as usual, by left Kan extension.
More precisely, we recall the following definition that is valid in every category of simplicial presheaves
on a small site.

Definition 4.27. Let D• be a cosimplicial object in sPsh(T ). We denote by | − |D• the left Kan
extension Lan∆•(D

•)(−) ofD• along the functor ∆→ sPsh(T ) that sends [n] to the constant simplicial
presheaf ∆n.
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There is a canonical isomorphism |∆n|D• = Dn = D([n]). We can write an explicit description as
follows. Let X be a simplicial presheaf and identify every Xn with a simplicial presheaf of dimension
zero. Then |X |D• is the co-equalizer (in sPsh(T )) of the following diagram

(4.3)
∐
ϕ∈Hom∆([m],[n]) Xn ×Dm

f
//

g
//
∐
n Xn ×Dn

where the n-th term of the map f : Xn ×Dm → Xn ×Dn is induced by the cosimplicial structure of
D• and the m-th term of the map g : Xn ×Dm →Xm ×Dm is induced by the simplicial structure of
X .

Remark 4.28. We specialize to the case D = ∆•⊗∆•I in MM(k). By definition, the functor Sing⊗I (−)

satisfies, for any Y ∈MM(k),

Sing⊗I (Y )n = HomMM(k)(∆
n,Sing⊗I (Y )) = HomMM(k)(∆

n, [I⊗n,Y ])

= HomMM(k)(∆
n ⊗ I⊗n,Y ) = HomMM(k)(|∆

n|∆•⊗∆•I
,Y )

so that it’s clear by construction that | − |∆•⊗∆•I
is its left adjoint.

We summarize the properties of the functor Sing⊗I (−) proved so far in the following Theorem.

Theorem 4.29. The endofunctor Sing⊗I (−) of MM(k) commutes with limits and takes the morphism
id⊗ιI0 : X → X ⊗ I to a simplicial weak equivalence for every motivic space X . Moreover, the
canonical natural transformation id → Sing⊗I (−) is both a monomorphism and an injective I-weak
equivalence.

Proof. Sing⊗I (−) commutes with limits since it is by construction a right adjoint. The other statements
are precisely the content of Corollary 4.24 and Proposition 4.26. �

By the same argument discussed after Definition 4.9, the functor Sing⊗I (−) takes also the morphisms
id⊗pI : X ⊗ I → X to a simplicial weak equivalence for every motivic space X . Applying the
argument again, the same holds for the morphisms id⊗ιI1 .

To continue or construction, we need to further study the properties of the adjoint | − |∆•⊗∆•I
to

Sing⊗I (−).

Remark 4.30. For D• = ∆•, we have Lan∆•(D
•)(−) = Lan∆•(∆

•)(−) ' id, that is, | − |∆• is the
(pointwise) left Kan extension of the functor ∆• along itself and is isomorphic to the identity functor.

Lemma 4.31 (see [30], Lemmas 3.9 and 3.10). Let D• be a cosimplicial object in MM(k). Then the
following conditions are equivalent

i) the morphism D0 qD0 → D1 induced by the cofaces is a monomorphism,
ii) the functor | − |D• preserves monomorphism.

Lemma 4.31 clearly applies to D• = ∆• ⊗ I•. In this case we have D0 = ∆0 ⊗ I⊗0 = ∆0 ⊗ 1 = pt
and the maps D0 ⇒ D1 = ∆1⊗I induced by the cofaces are two distinct rational points pt⇒ ∆1⊗I.

Lemma 4.32. Let X and Y be two motivic spaces. Then the natural map ϕ : (X × Y ) ⊗ I →
X × (Y ⊗ I) is an I-homotopy equivalence, and hence an I-weak equivalence.

Proof. The existence of the map is guaranteed by universal property given the existence of morphisms

(X × Y ) ⊗ I p1⊗id−−−−→ X ⊗ I id⊗pI−−−−→ X and (X × Y ) ⊗ I p2⊗id−−−−→ Y ⊗ I for p1, p2 the projections
X × Y →X and X × Y → Y . Let ν be the morphism

X × (Y ⊗ I)
id×(id⊗pI)−−−−−−−−→X × Y

id⊗ιI0−−−−→ (X × kY )⊗ I.

We claim that ν ◦ϕ is I-⊗-homotopic to the identity of (X ×Y )⊗I and that ϕ ◦ ν is I-⊗-homotopic
to the identity of X × (Y ⊗ I). For the first composition, a homotopy is given by the multiplication
map

(X × Y )⊗ I ⊗ I id⊗µ−−−→ (X × Y )⊗ I
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and the required identities follow from the fact that the morphism (X × Y ) ⊗ I → X × Y factors
through ϕ. For the second composition, we consider the morphism H defined as

(X × (Y ⊗ I))⊗ I →X × ((Y ⊗ I)⊗ I) = X × (Y ⊗ (I ⊗ I))
id×(id⊗µ)−−−−−−−→X × (Y ⊗ I)

where the first map is given again by universal property. It is easy to check that this is indeed the
required homotopy. �

Remark 4.33. Let A be the class of morphisms {X id⊗ιI0−−−−→X ⊗I}X ∈MM(k). Following [30, Definition

2.1], we say that a local injective fibrant motivic space Y is A-local if for any Z in MM(k) and any

X
id⊗ιI0−−−−→X ⊗ I in A, the map

Map(Z × (X ⊗ I),Y )→ Map(Z ×X ,Y )

is a weak equivalence of simplicial sets. By Lemma 4.32, an object Z is A-local if and only if it is
(injective) I-local according to Definition 4.9.

Lemma 4.34. For any motivic space with modulus X , the morphism |X |∆•⊗∆•I
→ |X |∆• ' X

induced by the projection pI : ∆• ⊗∆•I → ∆• is an I-weak equivalence.

Proof. The functor |− |∆•⊗∆•I
commutes with colimits and we can do induction on the skeleton to the

reduce to the case X = Y ×∆r for some simplicial presheaf Y of simplicial dimension 0 and some
r ≥ 0. The co-equalizer (4.3) then takes the form

∐
ϕ∈Hom∆([m],[n]) Y ×∆r[n]× (∆m ⊗ I⊗m)

f
//

g
//
∐
n Y ×∆r[n]× (∆n ⊗ I⊗n).

The term Y is constant and the functor Y × (−) commutes with arbitrary colimits in MM(k). So we
can identify |Y ×∆r|∆•⊗I• with Y × (∆r ⊗I⊗r). The morphism |Y ×∆r|∆•⊗∆•I

→ Y ×∆r is then

identified with the projection Y × (∆r⊗I⊗r)→ Y ×∆r. By Lemma 4.32 (applied several times), the
product Y × (∆r ⊗ I⊗r) is I-weakly equivalent to the product (Y ×∆r) ⊗ I⊗r, and the projection
prI : (Y ×∆r)⊗I⊗r → Y ×∆r factors through the canonical map (Y ×∆r)⊗I⊗r → Y × (∆r⊗I⊗r).
An easy induction shows that prI is an I-weak equivalence, and the statement follows. �

Proposition 4.35. The functor Sing⊗I (−) preserves injective I-fibrations.

Proof. Equivalently (using the same strategy of [30], Corollary 3.13), we show that its left adjoint
| − |∆•⊗∆•I

preserves injective cofibrations (i.e. monomorphisms of presheaves) and injective I-weak
equivalences. The first property is provided by Lemma 4.31, while the second property is provided by
Lemma 4.34 together with the 2 out of 3 property of injective I-weak equivalences. �

4.6. Properness. We can now prove right properness of the injective I-local model structure MM(k)locinj .

The proof is a combination of arguments due to Jardine in [19, Appendix A] and Morel-Voevodsky
[30, pp. 77–82].

Lemma 4.36. Let X ,Y ,E be three motivic spaces with modulus. Let p : E → X × (Y ⊗ I) be an
injective I-fibration. Then in the cartesian square

(4.4) E ×X×(Y ⊗I) (X × Y )
f

//

��

E

p

��

X × Y
idX ×(idY ⊗ιI0 )

// X × (Y ⊗ I)

the morphism f is an injective I-weak equivalence.
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Proof. This statement is proved by using a combination of the established properties of the functor
Sing⊗I (−). Applying Sing⊗I (−) to the top arrow of (4.4) gives the following diagram

Sing⊗I (E ×X×(Y ⊗I) (X × Y ))
Sing⊗I (f)

// Sing⊗I (E )

E ×X×(Y ⊗I) (X × Y )

OO

f
// E

OO

whose vertical maps are injective I-weak equivalences by Theorem 4.29. We will show that Sing⊗I (f)

is a simplicial weak equivalence. Note that again by Theorem 4.29, Sing⊗I (−) commutes with limits,
so that applying it to (4.4) gives another cartesian square. Using Lemma 4.32 and Theorem 4.29, we
see that Sing⊗I (X × Y ) → Sing⊗I (X × (X ⊗ I)) is a simplicial weak equivalence. By Proposition

4.35, the morphism SingI(E ) → Sing⊗I (X × (Y ⊗ I)) is a simplicial fibration. Since the injective

model structure on simplicial presheaves is proper, we conclude that Sing⊗I (f) is a weak equivalence
as required. �

Lemma 4.37. Suppose we are given morphisms of motivic spaces X
id⊗ιI0−−−−→ X ⊗ I g−→ Y and an

injective I-fibration p : E → Y . Then the induced map

E ×Y X → E ×X (X ⊗ I)

is an injective I-weak equivalence.

Proof. The class of fibrations in MM(k)locinj is closed under pull-backs (as in any closed model category),

so that the morphism E ×X (X ⊗I)→X ⊗I is an injective I-fibration. The statement then follows
from Lemma 4.36. �

Lemma 4.38. Suppose we are given a morphism of motivic spaces X
g−→ Y and an injective I-

fibration p : E → Y with Y fibrant for the injective I-local model structure. Suppose moreover that g
is an injective I-weak equivalence. Then the top horizontal arrow in the pull-back square

E ×Y X //

��

E

p

��

X
g

// Y

is an injective I-weak equivalence.

Proof. Choose a factorization of g as X
j−→ W

q−→ with q an injective I-fibration and j an elementary I-
cofibration (see [30, p. 75] where the class B1 of elementary A-cofibrations is introduced or [19, p. 537]).
Since Y is fibrant, W is I-fibrant as well. Since g and j are injective I-weak equivalences, q is an
injective I-weak equivalence between I-fibrant objects, and it is therefore a local weak equivalence.
Since p is a global fibration and the injective local model structure is proper, q pulls back along p to a
local weak equivalence (and thus to an I-weak equivalence) W ×Y E → E . We are then left to show
that the natural map E ×Y X → W ×Y E is an I-weak equivalence. This follows from [19, Lemma
A.3], using Lemma 4.37 instead of [19, Lemma A.1]. �

Write ϕX : X → LX for a functorial I-injective fibrant model of a motivic space X . The
morphism ϕX is by construction a cofibration and an injective I-weak equivalence, while the map
LX → pt is an injective I-fibration. Note that the existence of LX is guaranteed by the fact that
MM(k)locinj is cofibrantly generated.

Theorem 4.39. Let X ,Y and E be motivic spaces and suppose we are given a diagram

E ×Y X
γ
//

��

E

p

��

X
g

// Y
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where g is an injective I-weak equivalence and p is an injective I-fibration. Then the induced morphism
γ : E ×Y X → E is also an injective I-weak equivalence.

Proof. We can construct a commutative square of the form

E
j
//

p

��

E ′

p′

��

Y
ϕY // LY

such that the upper horizontal arrow j is a cofibration and an I-weak equivalence and p′ is an injective
I-fibration. By Lemma 4.38, the induced map ϕ′ : E ′ ×LY Y → E ′ is an injective I-weak equivalence
between I-fibrant objects over Y , and therefore the morphism θ : E → E ′ ×LY Y is also an injective
I-weak equivalence. Since both objects are fibrant over Y , θ is also a simplicial homotopy equivalence,
and so also a local weak equivalence (cfr. [30, Lemma 2.30]). In the cartesian square

X ×Y E
γ

//

θ′

��

E

θ

��

X ×LY E ′
γ′
// Y ×LY E ′

the morphism γ′ is an injective I-weak equivalence, since ϕ′ ◦ γ′ is an injective I-weak equivalence by
Lemma 4.38 (and we have already noticed that ϕ′ is an injective I-weak equivalence). We are then
left to show that θ′ is an injective I-weak equivalence to conclude. But this map is in fact a local
weak equivalence, since the morphism θ is one and the injective local model structure on simplicial
presheaves is proper. �

Remark 4.40. Theorem 4.39 is a reformulation in our context of [19, Theorem A.5]. This is a conse-
quence of a more general statement, as explained in [20, 7.3]. Jardine proves in loc. cit. Lemma 7.25,
right properness for the f -local theory where f : A → B is a cofibration of simplicial presheaves, sat-
isfying certain conditions, analogue to the property established by Lemmas 4.37 and 4.38. However,
the category MM(k)I−locinj is not obtained as f -local theory (in the sense of Jardine), since we are

inverting X →X ⊗I and not X →X ×I. This explains why, for example, the proof of [19, Lemma
A.1] does not go through in our context and we need to follow more closely [30], using the singular
functor Sing⊗I (−). From this point of view, Theorem 4.39 is new and does not follow from Jardine’s
work.

Remark 4.41. Having Theorem 4.39 at hand, it is possible to use the strategy of [7, Lemma 3.4] to show
that the I-local projective model structure on MM(k) is also right proper. The proof in loc.cit. uses in
an essential way the right properness of the injective structure. We leave the details to the interested
reader.

4.7. Nisnevich B.G. property. Let MM(k)I−locinj be again the category of motivic spaces with
modulus equipped with the I-local injective model structure. To shorten the notation, we will refer
to it as the (injective) motivic model structure. One can define in a similar way a projective variant.
We set the following notation.

Definition 4.42. The class of I-local-weak equivalences will be called the class of motivic weak
equivalences. We say that a map f : X → Y in MM(k) is motivic fibration if it is an injective
I-fibrations. An object X is motivic fibrant if the structure morphism is a motivic fibration.

Note that by Proposition 4.14 we don’t need to specify if we consider the injective or the projective
model structure in the definition of motivic weak equivalences.

The unstable unpointed motivic homotopy category with modulus MH(k) over k is the homotopy

category associated to the model structure MM(k)I−locinj .

For M ∈MSmlog(k) and X ∈MM(k), we write X (M⊗I) for the simplicial set Map(M⊗I,X ).
The morphism id⊗ιI0 induces then a morphism a simplicial sets X (M ⊗ I)→X (M).

Lemma 4.43. A motivic space X ∈MM(k) is motivic fibrant if and only if
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(1) X is globally fibrant (see [20, 5.1]), and
(2) for every M ∈MSmlog(k), the map X (M ⊗ I)→X (M) is a weak equivalence.

Definition 4.44. A motivic space with modulus is called I-invariant if for every M ∈ MSmlog(k),
the map X (M ⊗ I)→X (M) is a weak equivalence.

Definition 4.45. A motivic space with modulus X is said to be Nisnevich excisive (or to have the
B.G. property with respect to Nisnevich squares) if X (∅) is contractible and the square

X (M ; ∂M,DM )
j∗

//

p∗

��

X (U ; ∂U,DU )

��

X (Y ; ∂Y,DY ) // X (U ×M Y , ∂Y ∩ p−1(U), DU×MY )

is homotopy cartesian for every elementary Nisnevich square of the form (2.9).

The following Proposition is the analogue of [30, Proposition 1.16] in our setting.

Proposition 4.46 (B.G. property for motivic spaces). Let X be a motivic space with modulus. Then
the following are equivalent

(1) X is Nisnevich excisive and I-invariant
(2) Any motivic fibrant replacement X → LX (i.e. a fibrant replacement for the I-injective model

structure) is a sectionwise weak equivalence.

Proof. We follow the proof of [30, Proposition 1.16]. The fact that the second condition implies the
first one follows from the explicit description of fibrant objects in a Bousfield localization. Indeed,
it’s clear that if X → LX is a sectionwise weak-equivalence, then X is I-invariant, because if
the map X → LX is a sectionwise weak equivalence, for every motivic space Z the induced map
Map(Z ,X ) → Map(Z ,LX ) is weak equivalence of simplicial sets, and this applies in particular to
Z = M ⊗ I. To show the B.G. property, we combine Lemma 4.43 with Theorem 4.5, noting that
the B.G. property is invariant with respect to weak equivalences of presheaves i.e., sectionwise weak
equivalences (see [30, Remark 3.1.14]).

Conversely, suppose that X satisfies condition (1). Let ϕX : X → LX be a motivic fibrant
replacement. Using [35, Proposition 3.8] we are left to show that ϕX is a local injective fibrant
replacement to deduce that it is a sectionwise weak equivalence. Write a factorization of ϕX as

X
ψ−→ Y

ϕ′−→ LX

in the local injective model structure with ψ a trivial local cofibration (so a monomorphism that is also
a local weak equivalence) and ϕ′ a local injective fibration. Note that ψ is a motivic weak equivalence,
so that also ϕ′ is a motivic weak equivalence. Since ϕ′ is a local injective fibration and LX is local
injective fibrant, Y is also local injective fibrant. Hence ψ is a trivial local cofibration with target a
local injective fibrant object, and therefore it is a fibrant replacement for X in the local injective model
structure. In particular, Y is local projective fibrant, hence by Proposition 4.6 it has the B.G. property
with respect to Nisnevich squares (it is flasque in the sense of [35, Definition 3.3]). By [35, Lemma
3.5] (see also [30, Lemma 1.18]), the map ψ is then a sectionwise weak equivalence and so by Lemma
4.43 we conclude that Y is motivic fibrant. Since ϕ′ is now an injective I-weak equivalence between
injective I-fibrant objects, we conclude that ϕ′ is an objectwise simplicial weak equivalence by [15,
Theorem 3.2.13.(1)]. �

Corollary 4.47. Any morphism f : X → Y between motivic spaces with modulus satisfying the
equivalent conditions of Proposition 4.46 is a motivic weak equivalence if and only if it is a sectionwise
weak equivalence.
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Proof. Taking motivic fibrant replacements of X and of Y we get a diagram

X
f
//

ϕX

��

Y

ϕY

��

LX
f ′
// LY

with vertical arrows sectionwise weak equivalences. The induced morphism f ′ is a motivic weak
equivalence if (and only if) f is a motivic weak equivalence. The local Whitehead Lemma [15, Theorem
3.2.13] implies that f ′ is an objectwise weak equivalence in this case, and thus so is f . �

4.8. Pointed variants. We write MM•(k) for the category of pointed motivic spaces with modulus.
Objects are pairs, (X , x), where X is a motivic space with modulus and x : pt → X is a fixed
basepoints. Equivalently, a pointed motivic space with modulus is a contravariant functor

X : MSmlog(k)→ S•
from MSmlog(k) to the category S• of pointed simplicial sets. We have a canonical adjunction

(−)+ : MM(k)�MM•(k)

where (−)+ is the “add base point functor”, left adjoint to the forgetful functor. The category MM•(k)
inherits by [15, 7.6.5] two natural model structures, induced respectively by the I-local injective and
projective model structure on MM(k).

Theorem 4.48. The injective I-local structure on MM•(k) is proper, cellular and simplicial, while
the projective I-local structure on MM•(k) is left proper, cellular and simplicial (but see Remark
4.41 on right properness). A morphism f : (X , x) → (Y , y) is an injective (resp. projective) I-
weak equivalence if and only if the underlying morphism of unpointed motivic spaces X → Y is a
weak equivalence in the I-localized injective (resp. projective) motivic model structure. The statement
remains true if one replaces the projective I-localized model structure on MM(k) with the Ic-localized
projective structure on MM(k).

By Proposition 4.14, the identity functor is a (left) Quillen equivalence between the projective and
the injective motivic model structure on MM•(k). We denote by MH•(k) the unstable pointed motivic
homotopy category with modulus over k.

4.8.1. There are two natural closed monoidal structures on MM•(k), induced respectively by the
cartesian product and by Day convolution on MM(k) (see Remark 3.4).

i) Smash product. We define the smash product objectwise, X ∧ Y (M) = X (M) ∧ Y (M) for
X and Y pointed motivic spaces. With this definition MM•(k) is naturally enriched over
S•. The simplicial function space is given degreewise by the pointed simplicial set S•(X ,Y )

S•(X ,Y )n = HomMM•(k)(X ∧ (∆[n])+,Y ),

and internal hom given by

HomMM•(k)(X ,Y )(M) = S•(X ,Y )(X ∧ (hM )+,Y ).

ii) Pointed Day convolution. For two pointed motivic spaces X and Y , we define their pointed

convolution X ⊗Day
• Y by means of the following push-out diagram of unpointed simplicial

presheaves

(X ⊗Day pt)
∐

(pt⊗DayY ) //

��

X ⊗Day Y

��

pt // X ⊗Day
• Y ,

where the top horizontal arrow is a monomorphism. We have, in particular, (X ⊗ Y )+ =

(X )+ ⊗Day
• (Y )+ for unpointed motivic spaces X and Y . The unit for ⊗Day

• is 1+. This
definition makes the add base point functor (−)+ strict monoidal. We denote by [−,−]• the
pointed version of the internal hom for Day convolution.
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Lemma 4.49. Let MM•(k)I
c−loc

proj denote the category of pointed motivic spaces equipped with the Ic-
local projective model structure. Then taking the smash product with any motivic space X preserves
projective Ic-weak equivalences.

Proof. The argument given in [12, Lemma 2.18 - Lemma 2.20] works almost verbatim in our setting, so
we just sketch the proof. First, we prove that smashing with any cofibrant space X preserves projective
Ic-weak equivalences. Given a pointed motivic space Z that is Ic-fibrant and a pointed motivic space
X that is cofibrant, the internal hom HomMM•(k)(X ,Z ) is clearly objectwise fibrant since the

category of pointed simplicial presheaves on any small site T equipped with the projective structure is
a monoidal model category for the smash product. In particular the internal hom HomMM•(k)(X ,−)

is a right Quillen functor. Let now Λ′ be the set of maps

Λ′ = ΣP ∪ {(hM )+ ⊗Day
• Ic+ → (hM )+}M∈MSmlog(k)

where ΣP is defined as in 4.2.3. Let Λ be the set of pushout product maps f�g where f ∈ Λ′ and
g ∈ {(∂∆n)+ ↪→ (∆n)+}. To show that HomMM•(k)(X ,Z ) is Ic-projective fibrant, it’s enough to

show that for every generating cofibration i = idM ∧ιn,+ : (hM )+ ∧ (∂∆n)+ → (hM )+ ∧ (∆n)+, the
push-out product of i and any f ∈ Λ is still a composition of pushouts of maps in Λ. For this, it is
enough to notice that for every M,M ′ and every K,L ∈ S•, we have a canonical isomorphism

((hM )+ ∧K)⊗Day
• ((hM ′)+ ∧ L) ' (hM ⊗Day hM ′)+ ∧ (K ∧ L),

that replaces the fourth listed point in the proof of [12, Lemma 2.18]. To conclude, we have to show
that for every Ic-weak equivalence f : Y → Y ′, every Ic-projective fibrant Z , and every cofibrant
X , the map Map(f ∧ X ,Z ) = S•((f ∧X )c,Z ) is a weak equivalence. By the above argument,
HomMM•(k)(X ,Z ) is Ic-projective fibrant, so that the natural map between the simplicial function
spaces

S•(f c ∧X ,Z )→ S•(f c,HomMM•(k)(X ,Z )) = Map(f,HomMM•(k)(X ,Z )),

induced by the closed monoidal structure on MM•(k), is a weak equivalence. In particular, this shows
that f c ∧ X is an Ic-projective weak equivalence. Since the Ic-local structure is obtained by left
Bousfield localization from the projective (objectwise) model structure on simplicial presheaves, and
the latter is monoidal with respect to the smash product, we conclude as in [12] that f c ∧X is an
Ic-projective weak equivalence if and only if (f ∧X )c is an Ic-projective weak equivalence.

For the general case, simply replace X with X c → X , where (−)c denote a functorially chosen
cofibrant replacement. The morphism X c → X is an objectwise weak equivalence, so it is preserved
by smashing with any motivic space. As for X c we can apply the previous claim. �

Proposition 4.50. The smash product preserves I-weak equivalences and cofibrations for the injec-
tive I-local model structure on MM•(k), and induces a symmetric closed monoidal structure on the
unstable motivic homotopy category MH•(k).

Proof. By the description of weak equivalences in the pointed model category given by Theorem
4.48 and the equivalence between the classes of Ic-projective weak equivalences and injective I-weak
equivalences given by Proposition 4.14, Lemma 4.49 implies immediately that I-weak equivalences
are preserved under smash product. Since cofibrations in the injective structure are monomorphisms,
they are clearly preserved by smash product. This gives the homotopy category MH•(k) the desired
structure of monoidal category. To show that MH•(k) is closed with respect to this monoidal structure,

it’s enough to use the fact that MM•(k)I
c−loc

proj is a monoidal model category for the smash product.
This is a consequence of Proposition 4.4, using Lemma 4.49, together with left properness of the
Ic-local projective model structure on MM•(k). �

4.9. A representability result. We conclude this Section with a general representability result in
the I-homotopy category.
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4.9.1. Let MH•(k) be again the pointed unstable motivic homotopy category with modulus. For X
and Y motivic spaces with modulus, we set

[X ,Y ]MH•(k) = HomMH•(k)(X ,Y ),

(not to be confused with the internal hom for Day convolution, that we denoted [−,−]). Let M ∈
MSmlog(k) be any modulus datum. Evaluation at M determines a Quillen pair

(4.5) (M)+ ∧ (−) : S• �MM•(k) : EvM = S•((M)+,−)

(where we write M instead of hM for short) for the injective model structure MM•(k)I−locinj on

MM•(k), since (M)+ ∧ (−) preserves monomorphisms and sectionwise weak equivalences.

4.9.2. Write S1 for the constant simplicial presheaf given by ∆1/∂∆1 and Sn for the n-th simplicial
sphere (S1)∧n. The space S1 is naturally pointed by the image of ∂∆1, so that we can consider it
as object in MM•(k). Smashing with S1 defines an endofunctor on MM•(k), that is a left Quillen
functor by Proposition 4.50. As customary, we write Σ(−) for S1 ∧ (−) (the suspension functor) and
Ω1(−) = HomMM•(k)(S

1,−) for its right adjoint:

Σ: MM•(k)�MM•(k) : Ω1.

Theorem 4.51. Let X be a pointed motivic space with modulus that satisfies the equivalent conditions
of Proposition 4.46. Then for any pointed simplicial set K and any modulus datum M , we have a
natural isomorphism

[K,X (M)]S• ' [(M)+ ∧K,X ]MH•(k).

Proof. The proof is a formal consequence of the results collected so far. Let ϕX : X → LX be a
fibrant replacement for X in the injective I-local model structure. By Proposition 4.46, ϕX is a
sectionwise weak equivalence. Then we have

[K,X (M)]S• ' [K,LX (M)]S• ' [K,REvM (X )]S• ' [(M)+ ∧K,X ]MH•(k)

where the last isomorphism follows from the Quillen adjunction displayed in (4.5). �

We state as separate Corollary the following result. It is a direct consequence of Theorem 4.51
and Corollary 4.19. This result shows that the category MH•(k) can serve as an environment for
studying representability problems for �-invariant (generalized) cohomology theories, as explained in
the Introduction.

Corollary 4.52. Let X be a pointed motivic space with modulus that is Nisnevich excisive in the

sense of Definition 4.45 and �
1
-⊗-invariant. Then for any n ≥ 0 and any modulus datum M , we have

a natural isomorphism
πn(X (M)) ' [Sn ∧ (M)+,X ]MH•(k).
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