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Abstract: Sarcopenia is an age-related and accelerated process characterized by a progressive
loss of muscle mass and strength/function. It is a multifactorial process associated with several
adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence,
sarcopenia represents a major public health problem and has become the focus of intense research.
Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related
condition. At present, the only strategies for the management of sarcopenia are mainly based on
nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an
overview on the role of proteins and other key nutrients, alone or in combination with physical
exercise, on muscle parameters.
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1. Sarcopenia

Muscle mass and strength progressively decline after the age of 40. Then, these age-related
changes substantially accelerate after the age of 60, especially in the presence of sedentary behavior
and comorbidities [1]. This clinical manifestation of aging is called sarcopenia (from the Ancient Greek
σάρξ (sárx, “flesh”) + πενῐ´ᾱ (peníā, “poverty”), and has recently been the object of increasing attention
from researchers, clinicians, and public health authorities. Its growing relevance is paradigmatically
exemplified by the recent inclusion of a specific ICD-10 code for it [2].

Contrary to lean mass decline, there is an increase in fat mass, with aging [3]. Adipose tissue can
infiltrate muscles both at macroscopic (between muscle groups) and microscopic level (between and
inside myocytes) with a further reduction in muscle mass and quality [4].

Sarcopenia represents an important sanitary problem since it affects 20% of people over 70 and
50% of people over 80 [5]. Moreover, considering the important function of muscle tissue beyond
locomotion (e.g., influence on glucose and protein metabolism and on bone density) [6], it is associated
with many adverse clinical outcomes (falls, fractures, functional and cognitive decline, cardiac and
respiratory disease, reduced quality of life and independence, hospitalization, and mortality) [7–19].
Therefore, an early detection and treatment of this condition is pivotal.

In recent years, many studies have consistently demonstrated that muscle strength declines more
rapidly (1.5%–5% year after the age of 50) than muscle mass (1%–2% year after the age of 50) [1,20–27],
allowing an earlier identification of muscle impairment. Moreover, muscle strength correlates better
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than muscle mass with adverse health outcomes [28]. Therefore, in 2009, the European Working
Group on Sarcopenia in Older People (EWGSOP) met to elaborate a definition of sarcopenia, which
included both the presence of low muscle mass and function [29]. Sarcopenia was defined as a geriatric
syndrome characterized by a progressive loss of muscle mass and strength. However, recently this
definition has been updated [30] in light of the recognition of the role as disease of sarcopenia and
of the scientific advantages, which stress the role of muscle strength as a principal determinant of
the condition. Sarcopenia is now defined as a muscle disease, which can be considered probable if
reduced muscle strength is detected. The main tools used to assess muscle strength are the hand grip
dynamometer [31] or the chair stand test [32,33]. The diagnosis is confirmed in the presence of reduced
muscle mass. The main instrument to assess muscle mass used for research purpose is the dual-energy
X-ray absorptiometry (DXA). Bioelectrical impedance analysis [34] is another possibility, though less
precise and more sensitive to body water content changes. Finally, in selected settings (i.e., oncologic
patients), abdominal CT scans [35] performed for other purposes can be employed to estimate body
muscle mass. Instead, anthropometric measures (i.e., calf circumference), though easy to assess, are
not considered a reliable measure of muscle mass [36].

The severity of the condition can be then graded by measuring muscle performance. The most
common used tools are the Short Physical Performance Battery32, the timed ‘up and go’ test [37], and
the 400 m walking test [38].

Several mechanisms concur to the development of sarcopenia, including malnutrition, hormonal
changes (i.e., reduction of growth hormone, estrogens, and testosterone), increased production of
pro-inflammatory cytokines (also by the adipose tissue infiltrating the muscle [9]), higher muscle
protein breakdown, myocytes loss, reduced satellite cell replenishment, loss of α-motor neurons,
muscular mitochondrial dysfunction, altered myocyte autophagy, accelerated apoptosis of myonuclei,
and impaired satellite cell function. Recently, the role of the fibromodulin has been highlighted, which
is an extracellular matrix protein and predominantly controls a wide range of myogenesis-related genes
(i.e., myogenin, myosin light chain 2, and transcriptional activity of myostatin) [39,40]. Fibromodulin
is an essential part of the myogenic program and its role in the regulation of myoblasts may help in the
development of new therapeutic agents (i.e., novel myostatin inhibitors) for the treatment of different
muscle atrophies like as sarcopenia [39,40]. Furthermore, insulin resistance reduces the ability to use
the available proteins [41]. Insulin resistance in the skeletal muscle results in whole-body metabolic
disturbances associated with type 2 diabetes, which are further exacerbated by sarcopenia [42,43].
All these alterations are differently responsible for an imbalance between the anabolic and catabolic
process at the muscular level [44]. Nevertheless, this list of pathophysiological pathways has to be
considered as non-exhaustive, especially because novel mechanisms are under study and continuously
propose novel/complementary possibilities. Pathophysiological mechanisms represent a possible
target for therapeutic interventions.

2. Nutritional Interventions

Malnutrition is a state resulting from the lack of intake or uptake of nutritional elements, which
alters body composition and body cell mass. Its etiologies can be heterogeneous: Starvation [45],
cachexia [46], or simply aging [47]. Malnutrition has serious consequences, thus impairing both
physical and mental functions and predisposing to adverse clinical outcomes from diseases [48].
Indeed, reduced intake of specific nutrients compromises the anabolic signal to muscles whereas
their altered uptake configures a situation of anabolic resistance. Both conditions contribute to the
development of sarcopenia [49].

Recently, the European Society of Clinical Nutrition and Metabolism (ESPEN) has validated the
new diagnostic criteria for malnutrition [50]. The diagnosis can be performed if body mass index (BMI)
is <18.5 kg/m2 or if an unintentional weight loss is associated with either a reduced BMI (<20 kg/m2 in
younger or <22 kg/m2 in older patients) or a low-fat free mass index. Moreover, malnutrition should
be screened in all individual who are potentially at risk.
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2.1. Proteins and Essential Amino Acids

Dietary proteins stimulate skeletal muscle protein synthesis and inhibit muscle protein
breakdown [51–53]. Some observational studies have showed an association between protein intake
and muscle mass and strength [54–56].

The effect of protein supplementation has been particularly evident on muscle strength and
function [57] rather than on mass. However, protein supplementation alone could not be sufficient in
cases of severe catabolism [58].

Older people frequently fail to reach the recommended dietary allowance (RDA) of proteins and
calories. First of all, there is a reduction in appetite with aging, the so-called “anorexia of aging” [59,60].
Moreover, eating habits change due to swallowing and/or economic problems. Thus, the consumption
of proteins rich nutrients switches in favor of energy-dilute foods (grains, vegetables, and fruits) [61].

Recently, two consensus studies (ESPEN [62] and PROT-AGE study group [41]) have stated that
the traditional RDA of proteins for adults of all ages (0.8 g/kg body weight/day [63]) was not sufficient
for older people. People aged 65 and older need more proteins to activate the muscle protein synthesis,
compared to younger people [41,64]. Actually, older people have to counteract an anabolic resistance
underpinned by an increased splanchnic sequestration of amino acids, lower postprandial perfusion
of muscles, decreased muscle uptake of dietary amino acids, reduced anabolic signaling for protein
synthesis, and an impaired digestive capacity [41,65,66]. Moreover, they require more proteins to offset
inflammatory and catabolic conditions associated with chronic and acute diseases [67]. Thus, both
the ESPEN and the PROT-AGE group concord in suggesting the assumption of 1–1.2 g proteins/kg
body weight/day. A high-protein diet does not damage the kidney in healthy old individuals [68,69],
whereas people with a severe kidney disease who do not undergo dialysis should limit their protein
intake at about 0.8 g/kg body weight/day [41].

The protein source and amino acid composition are also important: Plant proteins have a lower
anabolic effect compared to animal proteins [70], probably because they have a lower content of leucine.
Moreover, independently from the amino acid content, proteins could have different absorption
kinetics, which could influence their anabolic effect. There is a debate whether slow or fast digested
proteins could better influence a muscle synthetic response [71–73]. It seems that fast proteins are more
effective in stimulating muscle protein accretion41 even if results should be confirmed in larger trials.

Spread feeding patterns, in which an equal amount of protein is ingested at each meal, seems
to optimize the protein synthetic capacity [74]. Nevertheless, some studies have also showed that
with pulse feeding (with a main high protein meal), anabolic benefits can be reached [75,76]. Thus,
additional trials are needed to establish the optimal timing of protein administration.

Moreover, some proteins are metabolized to short-chain fatty acids (like propionate, butyrate,
and acetate) which are used by muscle cells to produce energy [77–80]. Indeed, short-chain fatty acids
promote muscle anabolism and display anti-inflammatory proprieties positively, influencing muscle
health [81–84].

Essential amino acids (EAAs), in particular leucine, are an important anabolic stimulus, too [85].
The main dietary sources of EEAs are lean meat, dairy products, soybeans, cowpeas, and lentils.
The biological pathways on which leucine act are the activation of the mammalian target of rapamycin
(mTOR) [86] and the inhibition of the proteasome [87]. However, supplementation with high doses
of EEAs (10–15 g) and leucine (at least 3 g) is necessary to overcome anabolic resistance in older
people [88].

A recent meta-analysis has confirmed that leucine is able to increase muscle protein synthesis
in older people [89] and its consumption has been found to be directly correlated with muscle mass
retention in healthy older people [90]. What is more, the supplementation with EAA in older people
has been effective in increasing both muscle mass and function [91].
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2.2. β-Hydroxy β-Methylbutyrate

ß-hydroxy ß-methylbutyrate (HMB) is one of the metabolites of leucine, which exerts anabolic
effects through the activation of the mTOR pathway and the stimulation of the growth hormone/IGF-1
axis [92]. HMB also has anticatabolic effects: It decreases ubiquitin-proteasome expressions [93,94] and
attenuates the up-regulation of caspases [95]. Moreover, it increases mitochondrial biogenesis and fat
oxidation [96], possibly contributing to the improvement of muscle performance. HMB also favors
sarcolemmal integrity via its conversion into hydroxymethylglutaryl-CoA [97]. Therefore, its final
effects are induction of myogenic proliferation and differentiation [98]. Only 5% of leucine is usually
metabolized to HMB [99] and there is an age-related decline in its concentrations [100]. Thus, there is
a rationale for supplementation with HMB in old sarcopenic individuals. HMB is frequently used
by athletes to better their physical performance [101]. It has been shown to be effective in improving
muscle mass and strength in older adults too. What is more, HMB contributes to the preservation of
muscle mass during bed rest, a known wasting condition [102–105].

2.3. Ornithine α-Ketoglutarate

Ornithine α-ketoglutarate (OKG) is a compound formed by ornithine (a non-proteinogenic amino
acid) and α-ketoglutarate (a keto acid derived from the deamination of glutamate). It can offset
sarcopenia through various mechanisms. OKG is the precursor of many amino acids (glutamate,
glutamine, arginine, and proline), and of nitric oxide (NO), which improves hemodynamics in
skeletal muscles [106]. Furthermore, it acts as a secretagogue of anabolic hormones like insulin
and the growth hormone [106,107]. Therefore, OKG has successfully been used in experimental
conditions of hypercatabolism (e.g., malnutrition, cancer cachexia, burn injury, and surgery) to reduce
muscle wasting [108–111]. However, its effects have not been investigated yet, in non-malnourished
older people.

2.4. Vitamin D

Deficit of vitamin D has been associated with reduced muscle mass and strength in prospective
studies [112,113]. Most older people have serum levels of vitamin D below the normal range.
The etiology of this deficit is multifactorial: Insufficient dietary intake, inadequate sunshine exposure,
altered skin synthesizing capacity, and diminished renal conversion to the active form [114]. Moreover,
there is a reduction in the expression of vitamin D receptors on muscle tissue [115,116] with aging.

The effects of vitamin D are mediated by its link with nuclear (VDR) and membrane-bound
vitamin D receptors. The former activate the transcription of target genes involved in calcium uptake,
phosphate transport, satellite cells proliferation, and terminal differentiation [117] while the latter
regulate the release of calcium into the cytosol, respectively. This is pivotal for muscle contraction and
induces protein synthesis [118].

Vitamin D supplementation can modulate the expression of VDR [119] with positive effects on
muscle performance and strength [120,121]. What is more, it also improves muscle fiber composition
and morphology [122]. Curiously, benefits seem to be appreciable only in people with low levels of
vitamin D.

Therefore, it is recommended to dose vitamin D in all sarcopenic patients and to prescribe
supplements in those who are deficient. Promotion of an adequate sunshine exposure together with
the consumption of foods rich in vitamin D (salmon, mackerel, herring, sun-dried mushrooms) should
instead be suggested in all older people.

2.5. Creatine Monohydrate

Creatine (Cr) is a compound that can be assumed with food (lean red meat, tuna, and salmon)
or can be synthetized endogenously in the liver and kidneys using the amino acids glycine, arginine,
and methionine.
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Most of the creatine is stored in the skeletal muscles where it is converted into a high-energy
metabolite phosphocreatine (PCr) by the enzyme creatine kinase. PCr acts as an energy buffer: At the
beginning of muscular contraction, it donates a phosphate group to ADP to form ATP in order to
produce energy anaerobically. During rest, the opposite process takes place and the excess of ATP is
used to regenerate PCr from Cr [123,124].

Moreover, Cr activates the transcription of genes involved in muscle protein synthesis and satellite
cells activation probably mediated by the mTOR pathway [125–127]. In fact, creatine may enhance
muscle mass and force probably by increasing the expression of IGF-1 [127,128], which seems to
activate the key elements of protein synthesis of the IGF1-IRS1-PI3K-AKT-mTOR pathway [129–131].
Indeed, it is well known that the activation of the IGF1-IRS1-PI3K-AKT-mTOR pathway induces
muscle hypertrophy [132,133]. The consequent increase of IGF-1 via Cr is also observable in the
significantly increased expression of several myogenic regulatory factors (i.e., Myo-D, Myf-5 and
MRF-4) [128], which are responsible for satellite cell activation, proliferation, and differentiation [134].
This positive effect of creatine on muscle is probably only observable together with exercise [135–137].
Just recently, Ferretti et al. [138] demonstrated that during resistance training, Cr monohydrate
increases muscle size and performance, suggesting a higher activation of muscle protein synthesis via
IGF1-IRS1-PI3K-AKT-mTOR pathway.

Considering that in older people intramuscular Cr levels are reduced [139], the supplementation
with Cr could be very beneficial. Indeed, there is evidence that high consumption of creatine can
improve muscle mass and functions in older people [140].

2.6. Antioxidants and polyunsaturated fatty acids

Aging is characterized by oxidative stress-induced damages in various organs and systems [141].
In the pathogenesis of sarcopenia, there is an oxidative damage to muscle mitochondria

and membranes, which compromises ATP production and increases sarcolemma permeability.
Both alterations cause energy deprivation and activate stress pathways, which lead to muscle cell
apoptosis [142–145].

The base of this damage is an imbalance between reactive oxygen species production and
antioxidant defenses. Supplementation of exogenous antioxidants has been proposed in older people,
since it can help the action of endogenous antioxidant enzymatic systems (i.e., superoxide dismutase,
glutathione peroxidase)

It is true that high-plasma carotenoids have been associated with a lower risk of developing
walking disability and decline in muscle strength in community-dwelling older people [146,147].
Anyway, excessive vitamin C and E supplementation can compromise muscular adaptations to
strength training in older people [148]. This is because a limited ROS production is pivotal to promote
adaptation to exercise [149]. In fact, it favors force production and mitochondrial biogenesis [150,151].
Excessive antioxidant supplementation in people who are not deficient could therefore compromise
the mechanism of adaption to exercise. Thus, the supplementation can have a final negative effect on
muscle mass and performance.

Moreover, many antioxidants (like selenium, vitamin A, vitamin C, vitamin E, and β-carotene)
can also behave as potent pro-oxidants under some circumstances [152]. This is one more reason
why supplementation with antioxidant in people who are not deficient can blunt the beneficial effects
of physical exercise [153]. Meta-analyses and systematic reviews have demonstrated an increased
mortality in both healthy people and those with various diseases who have been supplemented with
antioxidants [154–156]. Considering the possible harms of antioxidant supplementation, its use to
prevent or treat sarcopenia should be avoided unless an overt deficit is documented [157]. Instead,
promoting the regular consumption of foods naturally rich in antioxidant could be beneficial in older
people [158].

Supplementation with polyunsaturated fatty acids (PUFAs), and in particular with omega-3 fatty
acids, improves muscle protein anabolism. PUFAs seem to directly act on mTOR signaling [159] and
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reduce inflammation [160,161]. The main dietary source of PUFAs is fatty fish: Salmon, mackerel,
herring, lake trout, sardines, albacore tuna, and their oils. A higher dietary consumption of PUFAs has
been associated with a greater fat-free mass [162]. A positive correlation between fatty fish (which is
rich in PUFA) and grip strength was found in community-dwelling older people [163] too.

However, many studies on supplementation with PUFAs (with different dosages and for different
periods) have produced different but mainly inconsistent results so far [164,165]. Moreover, the
risk for potential adverse events associated with long-term supplementation has not been clearly
elicited. Therefore, there is insufficient evidence to promote the systematic consumption of PUFAs in
sarcopenic individuals.

2.7. Ursolic Acid

Ursolic acid is a compound with anti-inflammatory properties, which is abundant in apple peels,
plum, cranberry, blueberry, rosemary, hawthorn, thyme, basil, oregano, and peppermint [166].

In murine models, ursolic acid has displayed anabolic proprieties mediated by the repression
of atrophy-associated genes (atrogin-1 and MuRF1), and the induction of trophic genes (PKB/Akt
and S6 kinase). Furthermore, it was able to stimulate the insulin/IGF-1 axis producing muscular
hypertrophy [167]. However, supplementation in sarcopenic individuals has not been performed yet.

2.8. Nitrate-Rich Foods

Nitrate (NO3–)-rich foods (e.g., celery, cress, chervil, lettuce, red beetroot, spinach, and rocket)
have a potential role in the treatment of sarcopenia. Food-derived NO3− is reduced to NO2− by
commensal bacteria of the oral cavity [168]. Through several mechanisms, NO2– is then converted
to nitric oxide (NO), which is the active mediator of the anti-sarcopenic effects of these compounds.
The increase in gastric levels of NO attenuates the aging anorexia by reducing the earlier satiety
feeling [59]. Furthermore, by improving the endothelial function, NO improves nutrient supply to
muscles [169].

Finally, NO optimizes mitochondrial bioenergetics, by reducing the metabolic cost of
exercise [170,171]. Indeed, NO was effective in improving muscular performance in young
individuals [172]. On the contrary, short-term supplementation with nitrate-rich foods did not
improve muscular performance and strength [173] in older people. Thus, there has been insufficient
evidence so far to recommend the supplementation with nitrate-rich foods in sarcopenic individuals.

2.9. Prebiotics, Probiotics, and Symbiotics

Recently, gut microbiota has been proposed as a contributor in the pathogenesis of sarcopenia,
so interventions that promote its health can be beneficial. Older people tend to develop an intestinal
dysbiosis, which is associated with an increased gut permeability. Alterations of the gut barrier
facilitate the passage of endotoxins and other microbial products with inflammatory effects into the
blood stream. This contributes to the development of a deleterious state of systemic inflammation [174]
contributing to muscle wasting [78,175].

Moreover, the reduction of intestinal mobility, typical of older persons, also alters the species of
bacteria colonizing the gut (Bacteroidetes and Firmicutes) in favor of species with greater proteolytic
potential (Proteobacteria) [176], consequently influencing the proper utilization of dietary proteins [175].
An enhanced proteolytic capacity and anabolic resistance of the gut microbiota, characteristic of older
age, have been reported. These mechanisms are probably mediated by the age-related proinflammatory
state [175,177,178].

Furthermore, it has been demonstrated in murine models that intestinal dysbiosis can alter
neuromuscular transmission with a consequent promotion of muscle protein catabolism [179].

Thus, the administration of prebiotics, probiotics, and symbiotics, substances that improve
microbiota health, has been proposed as a possible treatment for sarcopenia. Prebiotics are specific
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fermented ingredients that can induce changes in the composition and/or in the activity of the
gastrointestinal microflora with a final beneficial effect for the host organism [79,180].

The actually available prebiotics are non-digestible oligosaccharides (i.e., inulin, oligofructose,
(trans)galactooligosaccharides). They modulate the metabolism of the intestinal flora and show
immunomodulatory properties [180]. Indeed, a study of Buigues [181] demonstrated that 13-week
supplementation with prebiotics improved exhaustion and handgrip strength in older people.

Probiotics are instead viable microorganisms that can exert beneficial effects when administered in
adequate quantities for reaching the intestine in an active state [182]. Probiotics modulate the intestinal
microflora of the host by reducing microbial aberrancies and having an inflammatory effect [180].

The most used probiotics are Bifidobacteri and Lactobacilli [183]. Indeed, in animal studies, the
administration of Lactobacillus reuteri, which modulates the transcriptional factor Forkhead Box
N1 (FoxN1), was able to prevent cachexia in murine models of cancer [184]. Other probiotics, like
Faecalibacterium prausnitzii, has anti-inflammatory proprieties [185] and in animal models, can improve
the marker of oxidative stress [186].

Finally, symbiotics are a combination of prebiotics and probiotics exerting synergic effects [187].
Proteins, which are a known nutritional treatment for sarcopenia, represent a substrate for gut

microbiota too.
Proteins increase microbiota diversity [188] and the number of protein-fermenting bacteria, which

increase the bioavailability of dietary amino acids [175,188].
Short-chain fatty acids and secondary biliary salty acids, produced by microbiota, may counteract

age-related muscle decline, too, thanks to their positive effects on muscle mitochondria. Moreover,
they reduce host inflammation by decreasing TNFα-mediated immune responses and inflammasomes
(i.e., NLRP3) [78].

We have to underline that the evidence of the effectiveness of prebiotics, probiotics, and symbiotics
comes mainly from animal studies. Therefore, further research targeting specifically sarcopenic
individuals is needed to recommend their routinely use.

3. Synergies between Nutritional and Physical Exercise Interventions

Inactivity is one of the main causes of sarcopenia [189] because it determines a resistance to muscle
anabolic stimuli [190]. Therefore, the combination of nutritional interventions and physical exercise
acts synergically to improve muscle health. Indeed, up to now it has been the most effective strategy
for the management of sarcopenia.

The World Health Organization recommends performing at least 150 min/week of
moderate-intensity physical activity or at least 75 min/week of vigorous-intensity physical activity or
an equivalent combination of the two. An additional benefit can be obtained by increasing the amount
of moderate-intensity physical activity to 300 min/week and by performing strengthening activities
involving the major muscle groups on two or more days a week. Furthermore, for people with poor
mobility, it is suggested to do exercises to enhance balance and prevent falls on three or more days
per week [191]. Since sarcopenia involves muscles in the whole-body [7,192,193] it has been recently
recommended to perform an holistic training involving all muscle groups [192].

It is interesting to note that when exercise is proposed to older people, they usually show a positive
attitude and also enjoy the social component of the activities [194], even in the hospital setting [195].

The maximum effect of exercise is achieved within the first 3 h after training, but it can persist up
to 24 h after the bout is over [196].

In particular, resistance training reduces insulin resistance, sensitizes muscles to other anabolic
stimuli, and promotes mitochondrial biogenesis [78]. Therefore, resistance training is established to
increase the synthesis of myofibrillar proteins in older people [197] with a consequent positive effect on
muscle mass, strength, and performance [198–204]. These results are even appreciable at an extremely
advanced age (i.e., centenarians) [205–207].
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There are also potential indirect effects of exercise on gut microbiota that are noteworthy.
By affecting intestinal mobility [208], exercise seems to reduce the dysbiosis, which negatively impacts
muscle protein anabolism [209,210].

Here, we revise the major nutritional interventions that showed to have a synergic effect with
physical exercise.

3.1. Protein/Amino Acid and Exercise

Exercise sensitizes the muscle to the anabolic actions of amino acids [211]. Indeed, the combination
of protein/amino acid administration with physical exercise has proved to augment muscle protein
anabolism compared to each intervention alone [212]. The synergistic effect is appreciable both
in young and older people [213]. The sensitizing effect of exercise to amino-acid anabolic effects
is maximal 3 h after the physical effort [211]. Therefore, proteins should be assumed 2–3 h after
training [41]. Both resistance [73,197,214] and aerobic exercise [215,216] improve the protein anabolic
stimulus. The effect is appreciable even if the intensity of exercise is only moderate [215]. Indeed,
a metanalysis of 22 randomized controlled trials have confirmed that the combination of protein
supplementation with resistance training has produced a greater increase in fat-free mass, type I and II
muscle fiber cross-sectional area, and muscle strength compared to exercise alone [217]. These results
have partially been endorsed by a more recent systematic review [218]. This review has included
heterogeneous studies in terms of populations, duration, and dose of daily proteins. There have been
negative findings in some of the included studies. These were mainly in older participants already
with a sufficient protein and caloric intake and in people receiving soy proteins.

In summary, combination of protein/EAAs supplementation should be recommended in people
who are deficient in association with physical exercise to prevent and reverse sarcopenia.

3.2. HMB and Exercise

The rationale for associating HMB supplementation and exercise is that HMB seems to promote
the regenerative capacity of skeletal muscles after high-intensity exercise. Attenuation of markers of
skeletal muscle damage after exercise were seen in case of administration of HMB [219]. Moreover, in
one study, supplementation with HMB in association with strength training in older people increased
more muscle mass and strength compared to exercise alone [220].

HMB effects are mainly appreciable in untrained people undergoing strenuous exercise, but also
in trained people performing high physical stress training [95].

Indeed, a recent systematic review [221] has shown that the association of HMB plus resistance
training enhances training-induced muscle mass and strength, attenuates markers of muscle damage,
and improves markers of aerobic fitness. However, in another systematic review, the additional effect
of HMB plus exercise was found only in one out of three randomized controlled trials for muscle mass
and no additional effect was demonstrated for muscle strength and performance [218]. These negative
findings can be explained by the fact that the suppression of proteolysis mediated by HMB may blunt
the adaptation to training [95]. Moreover, a long period of pre-exercise supplementation may be
necessary to achieve results [222].

3.3. Creatinine and Exercise

Considering the role of creatinine as energy buffer, it appears to be particularly useful in
high-intensity exercise. The creatine-phosphocreatine system is highly used during these performances,
so it can provide energy at a rapid rate.

The combination of Cr supplementation and resistance training increases IGF-1 at muscular
level [127]. In turn, IGF-1 favors protein synthesis by activating the central mediator, PKB/AKT;
and, subsequently, mTOR [223]. The final effect is an increase in muscle mass and strength, which
can continue until 12 weeks after Cr withdrawal [224]. These results were confirmed both in
young [225–228] and older [229–231] adults, though with some conflicting results [229,232–234].
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Therefore, the PROT-AGE study group suggests supplementation only in older people who are
deficient or at high risk of deficiency [41].

3.4. Vitamin D and Exercise

Vitamin D has a pivotal role on muscle tropism and function [235,236]. The effects of its deficiency
on muscles are severe (extreme weakness and muscle pain) [236]. Anyway, in a recent review, no
additional effect of vitamin D supplementation plus exercise was found for muscle mass and only
conflicting results in terms of muscle performance [203]. Moreover, in the study of Bunout et al. [237],
people were supplemented with a dose that was below (400 UI/daily) the recommended daily dose
(800 UI/daily), while the study of Binder et al. [238] was considered of poor quality. It is reasonable that
only individuals who are deficient would display an additional benefit of vitamin D supplementation
over exercise. The deficit, causing muscle weakness and pain, would prevent the benefit from exercise
training. Supplementation increases vitamin D receptor expression at muscle level with a positive
effect in terms of muscle tropism and performance. Therefore, supplementation creates a positive
background for the action of exercise in people who are deficient.

3.5. PUFA and Exercise

Results on the synergic effect of PUFA supplementation and exercise on muscle mass and
performance are conflicting. In one study, the supplementation with PUFAs (fish oil) plus strength
training produced great improvements in muscle strength and performance compared to exercise
alone [239]. Anyway, another study has found that 12-week supplementation with α linoleic acid
combined with resistance training had only marginal effects on muscle mass and strength [240].
A recent narrative review [241] has concluded that the synergic effect of the two interventions on
muscle mass are still equivocal and conflicting about muscle function in older people. Therefore, there
is insufficient evidence to recommend this intervention in sarcopenic individuals.

3.6. Practical Application

It is well known that older adults frequently have health-related problems, which may compromise
the capacity to perform exercise tasks. Furthermore, since it has been shown that individual responses
to nutrition/exercise interventions may be quite variable, a personalized approach to counteract muscle
decline seem to be promising [242]. As mentioned above, resistance training is the most effective type
of exercise to counteract and/or reverse sarcopenia. However, various training-related parameters
(i.e., frequency, duration, intensity, volume, etc.), specifics for the older person, need to be considered
in the implementation of exercise training programs [243].

Resistance training should be supervised both for compliance and safety (especially for those
who are frail or sarcopenic) [244,245]. Furthermore, the time of intervention should be of at least three
months to obtain significant improvement in muscle parameters (i.e., muscle strength and physical
performance) [244] and exercise frequency should be of two or more nonconsecutive sessions per
week [41]. An exercise duration of 10 to 15 min per session with eight repetition for each muscle group
is considered sufficient to counteract muscle decline in healthy older people [41]. However, in frail
and sarcopenic subjects, more time and repetitions may be needed to improve muscle parameters.
A high-intensity resistance training (i.e., 80%–95% 1 repetition maximum) is recommended to induce
maximum muscle hypertrophy or muscle fiber adaption [246,247]. Some authors reported that
high-intensity resistance training is tolerated in older adults [206,248–250]. Unfortunately, this exercise
intensity may not be achieved by frail subjects [251]. Nevertheless, lower intensities of exercise training
(i.e., from 50% to 75%) may be sufficient to induce strength gains [192,243].

In a recent systematic review, Liao et al. [251] reported that protein supplementation, in addition
to muscle strengthening exercise, is effective in promoting gain both in muscle mass and strength and
enhancing physical performance in older adults with a high risk of sarcopenia or frailty.
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In addition to increasing dietary protein intake to at least 1.2 g protein/kg of BW or providing
supplements, it is recommended to supplement proteins or EEAs close after exercise sessions (i.e., 20 g
of proteins) [41]. Nutritional status should be assessed before each intervention and the amount of
proteins should be individually adjusted with regard to nutritional status, physical activity level,
disease status, and tolerance [252].

4. Conclusions

The severe adverse consequences of sarcopenia and their impact on individuals and health systems
make the treatment of this condition compelling. Importantly, the complexity of its pathogenesis
represents a challenge for its management. Unfortunately, a contemporary pharmacological therapy
is not yet available. However, nutritional interventions have shown to produce important beneficial
effects on muscle parameters in older adults. Moreover, new dietary components with promising
effects are emerging (i.e., gut microbiota manipulation). What is more, promotion of physical exercise
according to the WHO guidelines is another efficacious modality considering the beneficial synergisms
of nutritional and physical interventions.

In conclusion, sarcopenic individuals should assume 1–1.2 g proteins/kg body weight/day, with
high content of EEAs (10–15 g) and leucine (at least 3 g) preferentially 2–3 h after exercise to maximize
their anabolic effect. Older individuals who are deficient or at high risk of deficiency of vitamin D,
creatinine, and HMB should be integrated.

Personalization of the diet and exercise programs according to patients’ needs remain the pivotal
step for the treatment of sarcopenia. Moreover, preventive strategies to maximize the peak of muscle
mass during the adulthood and reduce midlife muscle mass decline should be promoted configuring a
life course approach to this condition, so that muscle function is preserved for as long as possible; and,
thus positively affecting quality of life and health span.
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