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Abstract. The sheet-like endoplasmic reticulum (ER) of eukaryotic cells has been

found to be riddled with spiral dislocations, known as ‘Terasaki ramps’, in the

vicinity of which the doubled bilayer membranes which make up ER sheets can be

approximately modeled by helicoids. Here we analyze diffusion on a surface with locally

helicoidal topological dislocations, and use the results to argue that the Terasaki ramps

facilitate a highly efficient transport of water-soluble molecules within the lumen of the

endoplasmic reticulum.
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Terasaki Spiral Ramps and Intracellular Diffusion 2

1. Introduction

The endoplasmic-reticulum (ER) sheets consist of stacks of pairs of phospholipid bilayer

membranes in the interior of eukaryotic cells [1]. The bilayers divide the cell into two

distinct regions, illustrated in figure 1(a): the lumen of the ER enclosed between the

doubled bilayers forms a single region which is connected throughout the cell, and which

is also continuous with the nuclear envelope. The region complementary to the lumen

is the cytoplasm (and also the nucleoplasm). As well as dividing the cell into two

regions, the surfaces of the ER play an important role in organizing complex biochemical

processes by acting as a substrate for membrane-bound protein complexes on both the

luminal and cytoplasmic sides (e.g., ribosomes are attached to the cytoplasmic facing

ER-sheet membranes). It is this role as a surface for catalysis that dictates the large

surface area of the ER, but these extensive surfaces would create barriers to diffusion in

both cytoplasmic and luminal compartments [2]. Specifically, a system of stacked bilayer

membranes can act as a barrier to diffusion of water-soluble species in the directions

perpendicular to the layers. This appears to present a challenge to the efficient operation

of the cell.

It has been understood for some time that there are topological ‘defects’ in the

layers of the ER. These are often represented as holes in the lipid bilayer system, with

approximately catenoidal edge surfaces, as illustrated in figure 1(a), forming a set of

‘windows’ or fenestrae, as illustrated in figure 1(b). However, careful studies [3, 4] of

the topological structure of the ER sheets have revealed that the layers have a type of

screw dislocation, which have been named ‘Terasaki spiral ramps’ after their primary

discoverer. These are illustrated schematically in figure 1(c). In this paper we argue

that these spiral dislocations allow extremely efficient diffusive transport perpendicular

to the plane of the membrane sheets.

(a) (b) (c)

Figure 1. The interiors of eukaryotic cells are divided by the surfaces of the

endoplasmic reticulum (ER). (a) Each of these surfaces contains a region termed the

‘lumen’, separated from the cytoplasmn by lipid bilayers. Edges of the ER may have

a catenoidal cross-section. (b) The ER is sometimes pictured as being punctured by

‘windows’, allowing diffusion of water-soluble species throughout the cytoplasm. (c)

However, careful analysis of serial-section transmission-electron micrographs reveals

the presence of spiral dislocations termed Terasaki ramps.
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Terasaki Spiral Ramps and Intracellular Diffusion 3

(a) (b)

Figure 2. Diffusion is a consequence of molecules following a random walk trajectory.

Some of these trajectories allow crossing of the ER sheets. In the case of a ‘window’,

the trajectory has to make contact with the singularity (a), whereas in the case of a

spiral dislocation, the trajectory only needs to wind around the singularity (b).

Small molecules are able to traverse the cell by diffusion, a consequence of the fact

that the motion of each molecule is a random walk. For both fenestra and Terasaki

ramps, a random-walk trajectory can allow a molecule to pass between regions of the

cytoplasm separated by sheets of the ER. In the case of a window connecting layers of

the ER (as illustrated in figure 1(b)), a molecule must diffuse to the aperture in order

to pass between layers (as illustrated in figure 2(a)). In the case of a spiral dislocation,

however, a path (such as that illustrated in figure 2(b)) which winds once around a

spiral dislocation allows movement between two successive sheets of the endoplasmic

reticulum, without having to make contact with the dislocation itself. Compared to

the situation illustrated in figure 2(a), this represents a much weaker constraint on

the subset of random walks which allow transport between sheets. Analogous and

mathematically equivalent to the problem of diffusion in the cytoplasm adjacent to ER

sheets is the complementary problem of diffusion within the ER lumen, since paths that

wind around the dislocation will also connect the lumina of successive sheets. In fact,

we will argue that, rather than being a structural curiosity, the Terasaki spirals solve

both of these diffusion problems at once, and are an essential element in the efficient

operation of eukaryotic cells.

The technical content of our paper is concerned with describing a model for

diffusion in the endoplasmic reticulum, showing how the spiral dislocations allow efficient

transport perpendicular to its layers. In section 2 we model the structure of the

endoplasmic reticulum in the vicinity of a spiral dislocation as a helicoidal surface.

We analyze the diffusion on a helicoidal surface, emphasizing the statistics of winding

numbers of diffusive trajectories about its axis. In section 3 we show that, at large

times, the statistics of winding numbers approach those of random walks in a plane,

which avoid a disc centered on the position of the dislocation. We calculate the variance
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Terasaki Spiral Ramps and Intracellular Diffusion 4

of the winding number at large times. Having modeled a single dislocation, in section 4

we use our results to describe diffusion of a water-soluble molecule in the cell, modeling

the endoplasmic reticulum as a set of sheets connected by spiral dislocations with an

approximately helicoidal structure. Section 5 discusses the implications of our estimate.

The dispersion is described by an effective diffusion coefficient which is proportional to

the density of Terasaki ramps. We argue that the density of ramps that are present in

the ER is sufficient to allow unimpeded diffusion of small molecules.

Our results are related to a previous treatment of diffusion in an extended lamellar

medium with randomly scattered dislocations [5]. That earlier work used a different

approach, which depends upon a regularization procedure, and yields an estimate for

the perpendicular diffusion coefficient which is comparable to our own. We contrast

the two approaches in our discussion (section 5). In [5] it was predicted that dispersion

perpendicular to the plane of the lamellae is marginally superdiffusive (specifically, the

variance increases faster than linear in time by a logarithmic factor). However, the

prediction of superdiffusion was strongly criticized [6], and the issue was left unresolved.

In section 5, and in an Appendix, we explain why this criticism is not relevant to our

application.

2. Diffusion on a helicoid

The Teraski spiral ramps are screw dislocations connecting the layers of the endoplasmic

reticulum. The axis of the spiral is a topological singularity, in the sense that if a path

on the surface of the endoplasmic reticulum lipid bilayer makes a circuit about the axis,

then the path ends up on another layer of the structure. The surface of the lipid bilayer

structure is, however, smooth everywhere. A helicoid is a smooth surface which has the

same topology as the Terasaki spiral. The Helfrich model [7] for the energy density of

a biological membrane has a term proportional to the square of the mean curvature.

Because the helicoid has zero mean curvature it is a plausible model for the shape of

the Terasaki spirals: a more refined model is considered in [8]. We therefore begin our

investigation of diffusion within the ER sheets by analyzing diffusion on a helicoidal

surface.

A helicoid is a two-dimensional surface in three dimensions defined by the following

parametric equations for the Cartesian coordinates (x, y, z):

x = r cos θ

y = r sin θ

z = αθ (1)

with r ≥ 0 (technically speaking, it is the half helicoid since the line r = 0 represents

an edge of the structure). We assume there is isotropic diffusion on the two-dimensional

surface, with diffusion coefficient D. There is a corresponding stochastic dynamics of

the r, θ variables. Because our particular interest is in the dynamics of the z coordinate,

representing motion perpendicular to the sheets, we concentrate on analyzing the
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Terasaki Spiral Ramps and Intracellular Diffusion 5

dynamics of θ in the limit as time t → ∞. For simplicity, in this section we consider

diffusion in a cylinder of radius R, with the dislocation lying along the axis of the

cylinder. Equivalently, we consider the motion to occur in the region 0 ≤ r ≤ R, with θ

unbounded. The length R therefore represents a lateral size parallel to the plane of the

sheets, which could be identified with larger cellular scales.

The problem of diffusion on a helicoidal surface is closely related to understanding

the winding of a random walk about a point in the plane. Some classic works

which address the distribution of winding numbers for diffusion on the plane are

[9, 10, 11, 12, 13]. The plane-diffusion problem turns out, however, to be quite different,

in that the winding number about a point has a long-tailed distribution with a diverging

variance. This divergence arises because the direction of a diffusive trajectory changes

discontinuously. Because an arbitrarily short path can wind around a given point, a

typical trajectory can make an infinite number of windings around said point in any

time interval, no matter how short. The calculations in [9, 10, 11, 12, 13] show that this

is what actually happens. For our problem of helicoidal diffusion, however, the particle

has to move a finite distance in the direction of the dislocation axis in order to wind

around the dislocation. This implies that the winding-number variance on a helicoidal

surface is finite.

We can introduce a local Cartesian frame describing points on the helicoid in the

neighborhood of (r, θ), with coordinates (X, Y ). Because of rotational symmetry it is

sufficient to take θ = 0. The X axis will be taken to lie in the radial direction, along a

line of constant z, and the Y axis is then tilted so that small increments δy, δY of y and

Y are related by δY =

√
1 +

(
∂z
∂y

)2

δy. Noting that dz = αdθ and dy = rdθ, we have

δY =

√
r2 + α2

r
δy . (2)

Because a point makes diffusive motion on the helicoidal surface, we can assume that,

in a small time δt, there is a corresponding diffusive motion on the tangent plane. The

consequent small displacement on the tangent plane, (δX, δY ), has a probability density

function (PDF) which is the diffusion kernel for isotropic diffusion in two dimensions:

P (δX, δY ) =
1

4πDδt
exp

(
−δX

2 + δY 2

4Dδt

)
. (3)

This implies corresponding random displacements of the parameters δr and δθ. If we can

determine the first two moments of these displacements, we can write down a Fokker-

Planck equation for the joint PDF P(r, θ, t) of r and θ:

∂P
∂t

=
∂

∂r

[
−〈δr〉

δt
P +

1

2

∂

∂r

(
〈δρ2〉
δt
P
)]

+
∂

∂θ

[
−〈δθ〉

δt
P +

1

2

∂

∂θ

(
〈δθ2〉
δt
P
)]

. (4)

The relations between (X, Y ) and (r, θ) are determined by first projecting onto the

(x, y) plane, then transforming to polar coordinates. We have δx = δX and δy =
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Terasaki Spiral Ramps and Intracellular Diffusion 6

δY r/
√
r2 + α2. Then, noting that r2 = x2+y2 and using

√
1 + a = 1+a/2−a2/8+O(a3),

retaining terms to second order in the stochastic fluctuations, we have

δr =
√

(r + δx)2 + δy2 − r = δx+
δy2

2r
+ . . .

δθ =
δy

r
− δxδy

r2
+ . . . . (5)

Hence we find

δr = δX +
r

2(r2 + α2)
δY 2 + . . .

δθ =
δY√
r2 + α2

− δXδY

r2 + α2
+ . . . . (6)

Noting that 〈δX2〉 = 〈δY 2〉 = 2Dδt and 〈δX〉 = 〈δY 〉 = 〈δXδY 〉 = 0, the statistics of

the increments of the polar coordinates are, therefore,

〈δr〉 =
rDδt

r2 + α2

〈δr2〉 = 2Dδt

〈δθ〉 = 0

〈δθ2〉 =
2Dδt

r2 + α2
. (7)

The Fokker-Planck equation is therefore

1

D

∂P
∂t

=
∂

∂r

[
∂P
∂r
− r

r2 + α2
P
]

+
1

r2 + α2

∂2P
∂θ2

. (8)

Now consider the long-time behavior of the distribution of the angular variable, for

the case where the motion is confined to a cylinder with radius R with the axis of the

helicoid at its center. We assume that the radial distribution has reached equilibrium,

and write

P(r, θ, t) = f(r)p(θ, t) (9)

where the radial component is the zero-flux steady-state solution of (8), satisfying

f ′ = fr/(α2 + r2) with solution

f(r) = n0

√
α2 + r2 (10)

where n0 is a constant of integration. Noting that a uniform distribution on the disc

of density n0 corresponds to f(r) = n0r, we see that n0 can be identified with the

density when r/α � 1. We assume the distribution p(θ, t) is normalized, so that its

integral over θ is equal to unity. If there is a single particle in a disc of radius R, then

2π
∫ R

0
dr f(r) = 1, so that when R/α� 1, the density is n0 ∼ 1/πR2.

Now consider the long-time behavior of θ. The statistics of the increments of θ are

specified in equations (7). Because the variance of δθ depends upon r, the long-time

behavior of 〈θ2〉 is determined by averaging over the distribution of r. The distribution
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Terasaki Spiral Ramps and Intracellular Diffusion 7

of θ has, in the long-time limit, a variance 〈∆θ2〉 ≡ 2D̄θt, with diffusion coefficient

D̄θ =
1

2t

∫ t

0

dt′ 〈δθ2〉t′

=
1

t

∫ t

0

dt′
D

r2(t′) + α2

= D

∫ R

0

dr
f(r)

r2 + α2
(11)

where R is the radius of the cylinder. The last step of (11) follows from replacing a

time average with an ensemble average, and using the fact that f(r) is the probability

density function for r. Hence we find

D̄θ = n0D

∫ R

0

dr
1√

r2 + α2
=

D

πR2
ln

R
α

+

√(
R

α

)2

+ 1

 . (12)

In the case where R/α� 1, this is

D̄θ ∼
D ln(2R/α)

πR2
. (13)

3. Winding number at a finite time

In section 2 we examined the diffusion of the rotation angle in a finite region, and used

the idea that the diffusing particle approaches a uniform density at large times. In this

section we consider how to evaluate the variance of the rotation angle in an unbounded

region.

When r � α, the Fokker-Planck equation (8) takes the same form as the two-

dimensional diffusion equation. Because the diffusing particle has a low probability of

being in the vicinity of the dislocation, this indicates that, for large time, the variance

of the rotation angle will be determined by solving a conventional diffusion equation,

with the center of the helicoid replaced by an impenetrable disc, with a radius ε which

will be determined shortly.

Compare equation (13) with the case of diffusion in the plane around a disc of

radius ε. The corresponding angular diffusion coefficient is obtained by setting α = 0,

and introducing a lower cutoff of ε in the integration over r in (11). This gives an

equation which is identical to (13), except for replacing α/2 with ε, implying that a

helicoid with pitch α has the same asymptotic winding number statistics as a planar

diffusion around a disc of radius α/2.

We have argued that the diffusion on a helicoid of pitch α is equivalent to motion

on a flat surface with an excluded disc of radius ε = α/2 for trajectories which do not

approach close to the axis of the helicoid. Now we use this observation to determine the

distribution of winding angle ∆θ when the starting point is at a distance R from the

axis, with R/α� 1.
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Terasaki Spiral Ramps and Intracellular Diffusion 8

The winding angle of a trajectory is

∆θ =

∫ t

0

dt′
η(t′)

r(t′)
(14)

where r(t) is the distance of the diffusing trajectory from the center of the disc at time

t, and η(t) is a stochastic velocity of the diffusive trajectory in a direction perpendicular

to its displacement from the dislocation. This satisfies

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = 2Dδ(t− t′) . (15)

Using (15) in (14), the variance of the rotation angle is

〈∆θ2〉 = 2D

∫ t

0

dt′
〈 1

r2(t′)

〉
= 2D

∫ t

0

dt′
∫ ∞
ε

dr
P̄ (r, R, t′)

r2
(16)

where P̄ (r, R, t) is the probability density to reach a distance r from the dislocation at

time t, after starting at R when t = 0. If there was no excluded disc, we would be

able to obtain P̄ (r, R, t) exactly by integrating over the propagator for diffusion in two

dimensions (equation (3)) over a circle, to obtain

P̄ (r, R, t) =
r

4πDt

∫ 2π

0

dφ exp

[
−(R− r cosφ)2 + r2 sin2 φ

4Dt

]
. (17)

We are interested in the limit where the radius of the excluded disc is small compared

to other length scales in the problem. As the radius ε of the excluded disc approaches

zero, its effect on the density of diffusing trajectories becomes negligible, and we can

approximate P̄ (r, R, t) using (17) outside the disc of radius ε (and it is obviously exactly

zero inside). The variance of the rotation angle at time t for a trajectory which starts

at a distance R from the dislocation is therefore

〈∆θ2〉 = F

(
R2

4Dt
,
ε

R

)
(18)

where

F (X, Y ) =
1

2π

∫ ∞
Y

dx

x

∫ 1

0

dy

y

∫ 2π

0

dφ exp

[
−X
y

(
1 + x2 − 2x cosφ

)]
=

∫ ∞
Y

dx

x

∫ 1

0

dy

y
exp

[
−X
y

(1 + x2)

]
I0

(
2Xx

y

)
(19)

and I0(·) is a modified Bessel function of the first kind and of order zero. This may be

written in the form

F (X, Y ) =

∫ ∞
Y

dx

x
G(X, x) (20)

where G(X, x) is obtained by comparison with (19).

Let assume that Y � 1, and divide the integral over x into two intervals: [x0, 1]

and [Y, x0], with Y < x0 � 1 . If G(X, 0) 6= 0, in the limit as Y → 0, the integral in

(19) is dominated by the second of these contributions, and we may write

F (X, Y ) ∼ ln(1/Y )G(X, 0) + g(X) (21)
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Terasaki Spiral Ramps and Intracellular Diffusion 9

where g(X) can be expressed as a limit of a triple integral. The dominant term,

logarithmic in Y , is proportional to

G(X, 0) =

∫ 1

0

dy

y
exp(−X/y) =

∫ ∞
1

dz

z
exp(−Xz)

= E1(1/X) = −Ei(−1/X) (22)

where E1(z) and Ei(z) are different standard specifications of the exponential integral

function. We were not able to obtain the function g(X) which appears in (21) explicitly,

but we were able to obtain to obtain a useful expression which is asymptotic to g(X) as

X → 0. The limit X → 0 corresponds to the long-time limit, in which the distribution

of diffusing trajectories becomes isotropic, so that we may drop the term in cosφ from

the first line of (19), so that when X = R2/4Dt is small

〈∆θ2〉 ∼
∫ ∞
Y

dx

x

∫ ∞
1

dz

z
exp[−Xz(1 + x2)]

=
1

2

∫ ∞
1

dz

z
exp(−Xz)E1(XY 2z)

∼ ln

(
1

Y

)
E1(X) +

(lnX + γ)2

4
− π2

24
(23)

where in the final line we use the fact that E1(x) ∼ −(ln x + γ) when x � 1, together

with equation 4.335.1 from [14] (γ is the Euler-Mascheroni constant). Note that this is

in the form of equation (21). Recalling that ε = α/2, in the limit where R � α, the

leading-order contribution to the variance of the winding number is therefore

〈∆θ2〉 ∼ ln

(
2R

α

)∫ ∞
1

dz

z
exp

[
− R2

4Dt
z

]
. (24)

4. Model for perpendicular diffusion

We have analyzed diffusion on a helicoidal surface, leading to an estimate (24) for

the winding angle of a trajectory after time t, starting at a distance R from the

dislocation. We now adapt the results to model diffusion perpendicular to the sheets

of the endoplasmic reticulum, using the observation that its sheets are connected by

multiple spiral dislocations. For definiteness, we consider diffusion within the lumen of

the ER, but the basic arguments for modeling diffusion in the cytoplasm differ only in

inessential points. This perpendicular diffusion process is described by keeping track

of on which sheet of the lumen a molecule is located. Because the spiral dislocation

singularities connect different sheets to form a single manifold, its subdivision into

numbered sheets is somewhat arbitrary.

The layers of the endoplasmic reticulum, which we assume have mean separation

h, are connected by many of these dislocations, which will be assumed to be randomly

scattered, with planar density ρ. The dislocations may be either ascending or descending

for a positive winding number, and we distinguish these cases by a ‘charge’ σi = ±1

for the dislocation with index i. We shall assume that the distribution of these
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Terasaki Spiral Ramps and Intracellular Diffusion 10

topological charges can be modeled by independently assigning each singularity a

positive or negative charge, each with probability equal to one half. This net neutrality

of topological charge is consistent with the census of Terasaki ramps from topological

reconstruction of electron microscopy data [4].

If (x, y) are the coordinates of the plane, we can describe the position by a single

complex number, ζ = x + iy. If there is a dislocation at the origin, we can represent

the height of the surface, z by writing z = hθ/2π, where h is the pitch of the screw

axis, and θ is the polar angle in the complex plane. If we write ζ in polar coordinates,

ζ = r exp(iθ), we can model a single dislocation by means of the logarithm of a complex

variable. This follows from noting that ln(ζ) = ln r + iθ, so that z = (h/2π)Im ln ζ is

a model for a dislocation at the origin. Similarly z = (h/2π)Im ln(ζ − ζ0) describes a

dislocation at (x0, y0), where ζ0 = x0 + iy0. We can extend this to model the connected

surface of the endoplasmic reticulum by considering the following function:

z(x, y) =
h

2π
Im ln

[∏
i

(ζ − ζi)σi
]

(25)

with ζi = xi+iyi, where (xi, yi) are points randomly scattered in some finite-sized region,

with the charges σi being randomly assigned to ±1 with probability 1
2
. The spacing of

the layers, h, is assumed to be small compared to the typical distance between nearest-

neighbor dislocations. In the context of modeling the ER, this model has the attractive

feature that the height z is a harmonic function. This implies that, in regions where

the gradient of z(x, y) is small, the surface approximates a minimal surface (that is, the

mean curvature is everywhere zero).

The motion of a molecule is now described by a random walk in the (x, y) plane,

and its motion in the perpendicular coordinate (z) is determined by the manner in

which this path is threaded through the set of singularities. If we were dealing with

closed paths, we could describe the vertical motion by determining the winding number

of the path about each singularity, but the diffusive trajectory of a molecule is almost

always described by an open path. We adopt the following convention: From each

dislocation we take a line parallel to the x-axis, in the negative direction. We regard the

transitions between layers as occurring when a path crosses one of these lines. A path

with decreasing y-coordinate moves up a layer as it crosses a line attached to a positive

dislocation, and down a layer if it crosses a line attached to a negative dislocation (see

figure 3). In the case where the path is closed, this convention is equivalent to summing

the winding numbers of the trajectory about each dislocation, weighted by their sign.

For a given path, we can define its winding number, ni, about a given dislocation

with index i, in terms of the number of times the line attached to the singularity is

crossed counterclockwise, minus the number of clockwise crossings. The change in level

of a given path is the sum of the winding numbers for each dislocation, weighted by the

sign of the dislocation:

∆z = h
∑
i

σini . (26)
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Terasaki Spiral Ramps and Intracellular Diffusion 11

Figure 3. Our model of the endoplasmic reticulum, summarized by equation (25),

has dislocations with random sign σi and random positions ri. A Brownian trajectory

can move between ‘levels’ of the multi-sheeted manifold. We define a convention for

labelling the levels of the manifold by the considering when the trajectory crosses a

set of lines.

Note that the spacing between levels is h = 2πα for the simple helicoidal model studied

in section 2. When time t is large, there will be many singularities which could have

non-zero winding number, and the winding numbers will typically be large, so that we

may approximate ni = ∆θi/2π, where ∆θi is the winding angle of the trajectory about

the singularity with index i.

Both the winding numbers ni and the signs of the dislocations σi are random

variables (with zero mean), so that ∆z is a random variable. The distribution of

the vertical displacement, ∆z, is conveniently described by its variance: for a fixed

configuration of the signs σi, this is

〈∆z2〉 = h2
∑
i

∑
j

σiσj〈ninj〉 . (27)

The correlation function of the winding numbers, 〈ninj〉, can be computed, as discussed

by Hannay [15]. However we shall perform a further average of (27) over the random

signs σi. Because 〈σiσj〉 = δij, the off-diagonal contributions to the double-sum are zero,

so that the winding-number correlation function 〈ninj〉 is not required for our calculation

of 〈∆z2〉. When we average over the signs, the doubly-averaged second moment of ∆z

is

〈〈∆z2〉〉 = h2
∑
i

〈n2
i 〉 . (28)

We have obtained the variance of the winding angle for a single helicoidal dislocation

in equation (24). We now estimate the sum in (28) by replacing the sum by an integral
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Terasaki Spiral Ramps and Intracellular Diffusion 12

over the density of dislocations at a distance R from a randomly chosen point. The

expected number of dislocations in an annulus of width δR at distance R from the

origin is

δN = 2π R ρ δR (29)

where ρ is the density of dislocations. Using equations (28), (24), (29) and recalling

that h = 2πα, we have

〈〈∆z2〉〉 =
h2

4π2

∑
i

〈∆θ2
i 〉

=
h2ρ

4π2

∫ ∞
0

dR 2πR〈∆θ2〉R,t

=
h2ρDt

2π

∫ ∞
0

dX ln

(
16DtX

α2

)∫ ∞
1

dz

z
exp(−Xz)

∼ h2ρDt

2π
ln

(
64π2Dt

h2

)∫ ∞
0

dX

∫ ∞
1

dz

z
exp(−Xz)

=
h2ρDt

2π
ln

[(
8π

h

)2

Dt

]
(30)

where in the penultimate step we use the fact that Dt/h2 � 1 for times large enough

to allow non-zero winding numbers with a significant probability. This is the principal

technical result of our paper. A similar, but not identical, result has been proposed for

diffusion in an extended lamellar medium punctured by dislocations [5]. We comment

on the relation between these results in the concluding section. Note that 〈〈∆z2〉〉 has a

faster than linear growth, because of the logarithmic factor, implying that the dispersion

in the z direction is marginally superdiffusive.

We can describe the dispersion across the layers of the ER by an effective diffusion

coefficient, Deff . We define this by assuming that the size of the cell is R̄, and noting

that the time t̄ for dispersion by conventional diffusion may be related to R̄ by writing

R̄2 = 4Dt̄. The effective diffusion constant for dispersion across the layers of the ER is

defined by writing

〈〈∆z2〉〉t̄ = 2Deff t̄ . (31)

Using these definitions we find the effective diffusion coefficient perpendicular to the

layers of the ER to be

Deff =
Dρh2

2π
ln

(
4πR̄

h

)
. (32)

5. Discussion

We have argued that, relative to spiral dislocations, holes have a disadvantage when it

comes to allowing perpendicular diffusive transport in the lumen and cytoplasmic space.

This is because a dislocation allows perpendicular transport just by winding around the
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Terasaki Spiral Ramps and Intracellular Diffusion 13

singular axis, whereas holes require that the trajectory has to go to the defect and pass

through. This indicates that spirals allow very efficient perpendicular transport.

Our estimate for the effective trans-layer diffusion constant of our model, equation

(32), differs from the bare diffusion coefficient D by a factor proportional to ρh2.

Our model assumes that the singularities are distinct objects, which is equivalent to

specifying that ρh2 � 1, in which case the perpendicular diffusion coefficient is smaller

than the planar diffusion coefficient.

Values for the inter-sheet separation in the ER are typically h ≈ 200nm. The

spacing of of dislocations is thought to be roughly 1µm, hence we estimate that the

small parameter is ρh2 ≈ 4 × 10−2. The characteristic size of the region occupied by

the endoplasmic reticulum is comparable to the size of a cell, so R̄ ≈ 20µm. These

estimates give

Deff

D
∼ ρh2

2π
ln

(
4πR̄

h

)
≈ 5× 10−2 (33)

so that, while the perpendicular diffusion coefficient Deff is smaller than the ambient

coefficient D, by a factor of approximately 20, it is still adequate to allow efficient

transport of small molecules throughout the ER. While it is difficult to measure ER

diffusivity in the three-dimensional cellular setting, particularly considering our present

focus on diffusion in the direction normal to the ER sheets, a typical diffusivity for a

small protein (say, GFP) in the ER has been found to be 20 - 30 times smaller than

that of GFP in water (the latter being 10−10 m2s−1) [16]. Because of discrepancies in

geometry and types of ER probed by existing experiments, the agreement is most likely

spurious. However, the comparison demonstrates that the magnitude of the attenuation

is comparable to what has been measured in these related contexts. We conclude that

Terasaki ramps provide a means to overcome the barriers to diffusive transport faced

by aqueous solutes in the eukaryotic cell. This naturally suggests the hypothesis that

such topological ER structures are required for efficient diffusion in eukaryotes.

In a pioneering work, Gurarie and Lobkovsky [5] obtained estimates for the diffusion

coefficient for a lamellar medium punctured by dislocations. In the case where the

density of positive and negative charged dislocations is equal, their estimate for the

dispersion perpendicular to the plane of the lamellae has a similar form to our equation

(30), and it is pertinent to contrast the two calculations. The method used in [5]

first performs an average over the disposition of dislocations for a given path, before

averaging over the paths, whereas we perform the averages in the opposite order. If the

steps could be performed accurately and yielding finite results, the order of averaging

would be irrelevant. However, the approach of averaging over the position of dislocations

is extremely difficult, if we hope to correctly account for the excluded disc surrounding

every dislocation point. This is because, for a given path, many configurations of

dislocations would have to be excluded. The approach used in [5] averages over paths

and dislocation configurations as if they were independent: the paths are sampled from

an ensemble of Brownian motions and the dislocation positions are a random scatter.

This choice produces an infinite answer for the first average, because the variance of the
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Terasaki Spiral Ramps and Intracellular Diffusion 14

rotation number of a Brownian path about any given point is infinite. The calculation

in [5] does indeed produce a result in the form of a divergent integral, which must

be regularized. There is no apparent reason why this procedure should produce the

same result as our calculation, but it too produces a result (using our notation) in the

form 〈∆z2〉 ∼ (ρh2Dt/8π) ln(Dt/a2) (their equation (11)). The diffusion coefficient in

[5] differs from our own (which is the conventional choice) by a factor of 4 (see their

equation (1)). Taking account of this difference, the coefficient in their equation (11) is

in accord with our equation (30). However equation (8) of [5] appears to be in error,

and equation (9) is difficult to verify because of ambiguities analogous to the Ito vs.

Stratonovich dichotomy, so we are uncertain about the status of their result.

It is interesting to remark that, according to equation (30), 〈〈∆z2〉〉 increases faster

than linearly as a function of time, despite the fact that the underlying mechanism

is diffusion on a complex surface. If we were modeling diffusion in an extended

medium, rather than a finite-sized cell, this would pose a problem, because the predicted

dispersion would eventually exceed that of the underlying diffusion process, which is

impossible. (This point was made in a comment on the work by Gurarie and Lobkovsky

[5], which treated diffusion in an extended lamellar phase [6, 17].) While this issue is not

directly relevant to our estimates of diffusion in a cell, it is instructive to understand the

origin of the difficulty, and how it could be resolved if we were dealing with an extended

system. We address this in an appendix.

While our results show that small molecules can access the entire cytoplasm by

diffusion alone, this may only be part of the ER-transport story. There is recent evidence

for active transport throughout the smooth ER involving fluid flow within ER tubules.

This may be required for the transport of larger proteins through the ER lumen, and

hence to the most distal locations in cells [18].

Acknowledgements. MW thanks the Chan Zuckerberg Biohub for its hospitality.

The authors thank John Hannay for helpful discussions about [5].

6. Appendix

If we are only interested in diffusion within a the dimensions of a typical cell, then

the logarithmic term in equation (30) does not indicate an error in the calculation.

This is because t must become very large before the product of the small parameter

ρh2 and the logarithmic factor exceeds unity, and diffusion would spread molecules

uniformly across the cell before any superdiffusive behavior could be observed. If we

were interested in diffusion in a homogeneous region however, it is necessary to consider

how the formulation of the problem should be modified so that the logarithmic term

does not eventually imply diffusion which is faster than that which would be observed

without the membranes.

Our model for the height of the surface, equation (25), is not suitable for describing

an infinite, homogeneous region. To make the model well defined we have to confine the

singularities ξi to a finite region, for example a disc of radius R. The fluctuations of the
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product
∏

i(ξ − ξi)σi increase without bound as R increases, indicating that equation

(25) is not suitable to model an infinite region by taking R →∞. If we were interested

in modeling an infinite region, we could replace (25) by

z(x, y) =
h

2π
Im ln [fR(r) + ifI(r)] (34)

where r = (x, y) and fR and fI are independent realizations of an ensemble of random

functions. These functions can be assumed to have the following statistics:

〈f(r)〉 = 0 , 〈f(r)f(r + R)〉 = C(|R|) (35)

where C(R) is the correlation function of the random fields. This model is, by

construction, statistically homogeneous, and is therefore suitable as a model for an

infinitely extended random surface. (However it does lack the property of being

a harmonic function, which was desirable for modeling the ER.) The dislocations

correspond to points where fR = fI = 0. The density of these points is readily

determined by the Kac-Rice method [19, 20].

At first sight, it seems as if the calculation in section 4 would be directly applicable

to this variant model (equations (34) and (35). There is, however, a reason why the

analysis does not carry over. In section 4, when we averaged over the distribution of signs

σi, we assumed that they are completely random. It has been shown that the distribution

of zeros of a statistically homogeneous random field must satisfy a ‘screening’ property,

implying that the signs cannot be chosen at random [21]. For this reason, the calculation

of section 4 cannot be applied to the case of an infinitely extended region.
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