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Abstract 10 

Photosynthesis is a key biological process. However, we know little about whether plants change 11 

their photosynthetic strategy when introduced to a new range. We located the most likely source 12 

population for the South African beach daisy Arctotheca populifolia introduced to Australia in the 13 

1930s, and ran a common-garden experiment measuring ten physiological and morphological leaf 14 

traits associated with photosynthesis. Based on predictions from theory, and higher rainfall in the 15 

introduced range, we hypothesised that introduced plants would have a (i) higher photosynthetic rate, 16 

(ii) lower water-use efficiency and (iii) higher nitrogen-use efficiency. However, we found that 17 

introduced A. populifolia had a lower photosynthetic rate, higher water use efficiency and lower 18 

nitrogen-use efficiency than did plants from Arniston, South Africa. Subsequent site visits suggested 19 

that plants in Arniston may be able to access moisture on a rocky shelf, while introduced plants grow 20 

on sandy beaches where water can quickly dissipate. Our unexpected findings highlight that: (1) it is 21 

important to compare introduced species to their source population for an accurate assessment of 22 

evolutionary change; (2) rainfall is not always a suitable proxy for water availability; and (3) 23 

introduced species often undergo evolutionary changes, but without detailed ecological information 24 

we may not be able to accurately predict the direction of these changes.  25 

Key-words 26 

Introduced species, nitrogen-use efficiency, photosynthesis, rapid evolution, source population, 27 

water-use efficiency.   28 
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Introduction 29 

Thousands of plant species have been introduced to new ranges and have become naturalised in these 30 

areas over the last few hundred years [1]. We now know that introduced plants can evolve in many 31 

aspects of their morphology [2, 3], and that this can occur quite commonly [4]. However, much less 32 

work has focused on the evolution of physiological changes in introduced plants. For example, 33 

carbon assimilation by plants through photosynthesis is one of the most fundamental processes in the 34 

natural world, and yet we have scant knowledge of whether photosynthetic capacity in introduced 35 

plants can evolve. Comparing plants grown from seeds collected in 1994 to plants grown from seeds 36 

collected in 2005 showed that introduced Polygonum cespitosum evolved higher photosynthetic rates 37 

over 11 generations [5]. This ‘resurrection’ approach allows researchers to accurately quantify 38 

capture recent change in populations that are already established, but it does not allow us to quantify 39 

the full extent of change resulting from the introduction of populations in a new range and the 40 

selective processes they undergo during early establishment. A global study showed that invasive 41 

plant species had higher photosynthetic assimilation rates than co-occurring native species [6]. 42 

However, the same group did not find differences in assimilation rates within species measured in 43 

both their native and introduced ranges, though there were shifts to faster growth strategies overall 44 

for the invasive species studied [7].  45 

In situ measurements, while assessing plant responses in the field, do not allow environmental effects 46 

to be separated from any physiological evolution associated with plant adaptation to a new habitat. 47 

Excluding environmental effects requires common-garden experiments and such experiments have 48 

yielded varying results, including both higher photosynthetic assimilation rates in introduced 49 

populations [8, 9] and no difference in photosynthetic assimilation rates between introduced and 50 

native populations [10, 11]. None of the surprisingly few common-garden studies comparing the 51 

photosynthetic assimilation rate of native and introduced populations of the same species use the 52 
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actual source population of the introduced populations (likely because most introduced species have 53 

large home ranges and/or multiple introductions, making it very difficult to locate the source 54 

population). Using the source population as a control could be critical for the most accurate 55 

assessment of what evolutionary changes have taken place since introduction, and may explain 56 

findings where responses differ between species [12].  57 

Basing comparisons on plants from various populations in the native range introduces intra-specific 58 

variation that may obscure differences between native and introduced plants [12]. For example, two 59 

studies on the Mediterranean lineage of common reed (Phragmites australis) show different results 60 

for maximum photosynthetic assimilation rate (Amax) depending on which groups of native and 61 

introduced populations were sampled. One study [13] comparing six native populations with six 62 

introduced populations found no differences in Amax between native and introduced P. australis. 63 

Another study [14] comparing four of those six native populations with two of the same and two 64 

different introduced populations to [13] found lower Amax in introduced P. australis. Genetic 65 

techniques can allow the original source population of the introduced plants to be located, and thus 66 

offer an opportunity for the most accurate assessment of change since introduction.  67 

In previous work, we compared microsatellite data from 10 populations spanning the entire native 68 

range of the beach daisy Arctotheca populifolia (which has a narrow distribution spanning ~ 2200km 69 

along the coast of South Africa [15]) with data from four populations spanning the introduced range 70 

of A. populifolia in eastern Australia [16]. We do not know the number of individuals introduced to 71 

Australia, but the fact that the eastern Australian A. populifolia have only 1% of the genetic diversity 72 

of A. populifolia in the native range is consistent with the east Australian populations deriving from a 73 

small number of founding individuals [16]. There are no native Australian Arctotheca with which A. 74 

populifolia could have hybridised after arrival [17]. Molecular data show that there was a separate 75 

introduction of A. populifolia to western and southern Australia [16], but these plants are spatially 76 
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separated and genetically distinct from the eastern Australian invasion. STRUCTURE analysis, 77 

principal component analysis, and RST all showed that the population of A. populifolia from the 78 

beach in Arniston (South Africa) was the most closely related to the east Australian populations of 79 

the ten South African populations available for analysis [12, 16]. Arniston was also the only one of 80 

these ten South African populations that included all of the rare alleles found in the east Australian 81 

plants [12]. Finally, log odds analyses indicated that Arniston was >1099 times as likely to be the 82 

source population than any of the other nine South African populations available for comparison 83 

[12]. It is impossible to rule out the possibility that the east Australian populations of A. populifolia 84 

derived from an unmeasured South African population. However, it seems very likely that Arniston, 85 

or a population very similar to it, and therefore likely from the same part of the range, was the source 86 

population. 87 

We set up a common-garden glasshouse experiment, and measured ten physiological and 88 

morphological traits related to photosynthesis, thus providing the first study to test introduced plants 89 

for differences in photosynthetic capacity relative to plants from the most likely source population. 90 

Our hypothesis was that introduced A. populifolia would have a higher rate of photosynthetic 91 

assimilation than would plants from the likely source population. This prediction was based on the 92 

results of previous studies [8, 9], and the Evolution of Increased Competitive Ability hypothesis [18] 93 

which predicts increased growth in introduced populations due to a reduced allocation to defence - 94 

including evidence of increased photosynthesis in conjunction with decreased cell-wall defence 95 

(Feng et al. 2009). In addition to testing this hypothesis, we investigated mechanisms that might 96 

underlie any observed changes. Photosynthesis involves light-dependent and -independent reactions, 97 

where the first are constrained by the capacity for electron transport to support Ribulose 1,5-98 

bisphosphate (RuBP) regeneration (Jmax), and the latter by the maximum rate of carboxylation 99 
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(Vcmax). Calculating Jmax and Vcmax with respect to intercellular CO2 concentration (Ci) are powerful 100 

approaches to identify factors limiting the maximum rate of photosynthetic assimilation. 101 

Even though the Arniston, South Africa and introduced east Australian populations of A. populifolia 102 

grow at similar latitudes and temperatures, the introduced populations experience rainfall that is two 103 

to three times higher than that experienced by the population in Arniston, South Africa [12]. Since 104 

water relations regulate stomatal behaviour [19] and plants in wet environments tend to have low 105 

water-use efficiency compared to plants in dry environments [20, 21], our second hypothesis was 106 

that higher rainfall in the introduced range would lead to lower water-use efficiency in the introduced 107 

plants. To investigate the mechanisms underlying any observed changes, we measured stomata [22] 108 

and leaf hair densities [23], in addition to stomatal conductance and water use efficiency. 109 

Soil nitrogen (N) is often low on beach dunes [24, 25], the habitat of A. populifolia. The majority of 110 

N in leaves occurs as a component of the Rubisco enzyme [26]; both Vcmax and Jmax are positively 111 

correlated with leaf N in a range of plant functional types [26-29]. Limited soil nitrogen could 112 

therefore contribute to differences in photosynthetic capacity among populations. We hypothesise 113 

that the generally low nitrogen of the beach environment combined with our prediction of higher 114 

rates of photosynthetic assimilation in the introduced range would result in increased photosynthetic 115 

nitrogen-use efficiency (PNUE) in introduced plants. This prediction is consistent with previous 116 

studies on congeneric species which showed that introduced plants had higher PNUE than their 117 

native counterparts [30, 31].  118 

In summary, we tested three hypotheses: That introduced populations of A. populifolia in Australia 119 

will have higher rates of photosynthetic assimilation (H1), lower water-use efficiency (H2) and 120 

higher photosynthetic nitrogen-use efficiency (H3) than their likely source population from Arniston, 121 

South Africa.  122 
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Methods 123 

STUDY SPECIES 124 

Arcthotheca populifolia (P.J. Bergius) Norlindh (Asteraceae) is a semi-succulent, perennial herb 125 

which is native to South Africa and grows on the foredunes of sandy beaches [32]. It was introduced 126 

to eastern Australia in the 1930s and can now be found along the southern half of the Australian 127 

coastline from Geraldton in the west to Arakoon in the east [33]. A. populifolia plants typically 128 

produce seeds in their first year of growth, so there might have been as many as ~80 generations 129 

since the South African and east Australian populations diverged. 130 

COLLECTING AND GROWING THE PLANTS  131 

We collected seeds from Arniston, South Africa (the most likely source population), and from four 132 

introduced populations spanning 600km along the east coast of Australia (Treachery Beach, Wairo 133 

Beach, Narooma Beach and Mallacoota Beach; for co-ordinates see Table S1, Electronic 134 

Supplementary Material). At each location we collected seeds from multiple seed heads of individual 135 

plants, each representing a separate maternal line. The number of individuals collected at these 136 

locations ranged from 17 to 46 (Table S1, Electronic Supplementary Material). We then set up a 137 

common-garden experiment under controlled conditions in the glasshouse at the University of New 138 

South Wales. In order to minimise maternal effects we first used the field-collected seeds to grow 139 

and pollinate a generation of parent plants from October 2012 to November 2013 to produce 140 

standardised offspring for our experiments. The experimental plants which grew from December 141 

2013 to November 2014 were then used for this study. Full sample size and maternal line details are 142 

provided in Table S1, Electronic Supplementary Material. Pots were placed haphazardly on 143 

glasshouse benches, with positions randomly rotated every 4-6 weeks. Plants were watered by 144 

automatic drippers at 5pm daily, and temperatures were controlled between 10-25 ˚C. Additional 145 

experimental details can be found in [12].  146 
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EXPERIMENTAL MEASUREMENTS 147 

For photosynthetic measurements, we randomly selected a subset of plants from our standardised 148 

generation of 340 experimental plants. We selected 44 plants spread over the five populations, 149 

avoiding siblings in almost all cases (Table S1, Electronic Supplementary Material). We began 150 

photosynthetic measurements on 24 February 2014 when plants were approximately twelve weeks 151 

old, and took measurements on eight different days from then until 11 April 2014. Measurements 152 

were conducted with a portable infrared gas analyser (LiCor-6400XT, Lincoln, Nebraska) on well-153 

watered, non-flowering plants. We measured the youngest fully expanded leaf, and followed 154 

standard protocols [34]. All traits were measured on a leaf-area basis in order to make comparable 155 

analyses of physiological processes. We took our measurements of photosynthesis under saturating 156 

light (photosynthetic photon flux density = 1800 μmol m-1s-1), CO2 = 400 p.p.m. and a leaf 157 

temperature of 25 °C. We recorded the following parameters: CO2 assimilation rate (Aarea; μmol m-2 158 

s-1), stomatal conductance (gs; mmol m-2 s-1) and intercellular CO2 concentration (Ci; μmol m-2). 159 

Intrinsic water-use efficiency (WUE; μmol CO2 mmol-1 H2O) was calculated as the ratio of Aarea to 160 

gs. Mass-based assimilation rates can be obtained by multiplying area-based assimilation rates by 161 

specific leaf area (SLA). However, our previous study using the whole group of these experimental 162 

plants (n=340) found no significant difference (p=0.638) between the SLA of introduced plants 163 

(mean SLA 18.50 m2.kg-1) and plants from Arniston, South Africa (mean SLA 19.04 m2.kg-1) [12]. 164 

Therefore, while we did calculate mass-based assimilation rates (Amass; Table S2, Electronic 165 

Supplementary Material) we do not consider these data in our study as they provide no additional 166 

information for our comparisons.  167 

For 30 plants (a subset of the 44 plants on which photosynthesis was measured; Table S1, Electronic 168 

Supplementary Material), we ran CO2 response curves using ten CO2 levels (CO2 = 40, 100, 200, 169 

300, 400, 550, 1000, 1200, 1500, 1800 ppm) also at saturating light and 25 °C. The equations 170 
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describing photosynthesis developed by [35] were then fitted to each curve using the ‘fitaci’ function 171 

in the plantecophys package in R [36]. From these curves, we calculated the maximum rate of 172 

carboxylation (Vcmax; μmol m-2 s-1) and the maximum rate of electron transport (Jmax; μmol m-2 s-1) 173 

also using the plantecophys package.  174 

To make counts of stomata and leaf hairs we made epidermal impressions from the upper (adaxial) 175 

and lower (abaxial) surfaces of one leaf from each plant (n=44) using clear nail polish. The imprints 176 

were observed under an Olympus CX41 microscope at x100 magnification for stomata and x40 for 177 

leaf hairs, and images were captured with an attached digital camera (QImaging MicroPublisher 3.3 178 

RTV). We viewed the images in Adobe Photoshop version 14.0 (Adobe Systems Inc., San Jose, CA, 179 

USA) and used the Eyedropper Tool to count the number of stomata and hairs present in each image. 180 

We used a stage micrometer to calculate the area of the leaf we were viewing and convert our count 181 

data to densities.  182 

We measured leaf nitrogen using a 17 LECO TruSpec CN Analyser at the Solid State and Elemental 183 

Analysis Unit at UNSW, using one dried leaf from each of 33 plants. To convert Nmass to Narea we 184 

multiplied Nmass by leaf mass per area (LMA) using leaf area and dry mass values previously 185 

recorded for those leaves [12]. Photosynthetic nitrogen use efficiency (PNUE; μmol CO2 g-1 N s-1) 186 

was calculated as the ratio of photosynthetic assimilation rate (Aarea) to leaf nitrogen (Narea).  187 

DATA ANALYSIS 188 

We compared trait values among the five populations using one-way analyses of variance 189 

(ANOVAs) with a planned contrast between the Arniston, South Africa, population and the four 190 

introduced Australian populations. To account for multiple tests, we applied a Holm-Bonferroni 191 

sequential correction [37]. This resulted in one trait changing its significance value (Table S3, 192 

Electronic Supplementary Material). Hair density on upper surface of the leaf changed from p=0.023 193 
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(significant) to p=0.115 (not significant). This has been reported as such in Results and Figures 194 

below; for all other traits the original p-values are reported.  195 

Given that the Australian populations experience a range of environments across 5° of latitude, we 196 

checked for variation in the introduced range by comparing traits among just the four Australian 197 

populations using one-way ANOVAs. After a Holm-Bonferroni sequential correction, one trait 198 

changed its significance value. Stomatal density on the bottom of the leaf changed from p=0.013 199 

(significant) to p=0.156 (not significant). All the other traits also showed no significant differences 200 

among the four Australian populations (Table S4, Electronic Supplementary Material). We have 201 

therefore presented only the contrast between South African and Australian plants in the figures in 202 

the main manuscript. Boxplots showing the data distribution within each of the five populations can 203 

be found in Figure S2.  204 

All analyses were performed using SPSS version 22.0 (IBM Corp, Armonk, NY, USA), and a Holm-205 

Bonferroni sequential correction calculator (Gaetano 2013).  206 

Results  207 

Contrary to our predictions, the introduced Australian plants had a lower photosynthetic assimilation 208 

rate than did plants from Arniston in the South African home range (Aarea 13% lower, p=0.006, Fig. 209 

1a). The maximum rate of carboxylation (Vcmax) was also significantly lower in the Australian plants 210 

compared to the South African plants (12% lower, p=0.001, Fig. 1b), but there was no difference in 211 

the maximum rate of electron transport (Jmax) between the two groups (p=0.948, Fig. 1c), signalling 212 

no change in the photosynthetic capacity for the electron transport chain. The concentration of 213 

intercellular CO2 (Ci) was also significantly lower in the introduced plants (p=0.002, Fig. 1d). 214 
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Surprisingly, the water-use efficiency of the introduced Australian plants was on average 54% 215 

greater than that of plants from the South African population (p<0.001, Fig. 2a). Counts of leaf hairs 216 

showed that on the lower surface of their leaves, the Australian plants had a remarkable 84% greater 217 

leaf hair density than the South African plants (p<0.001), while on the upper surface of their leaves, 218 

there were no significant differences (Figs 2b,e). The introduced plants had a much lower stomatal 219 

conductance (gs 41% lower, p<0.001, Fig. 2c) even though there were no differences in stomatal 220 

density between the two groups on either upper (p=0.423) or lower (p=0.483) leaf surfaces (Fig. 2d). 221 

The mean value of the stomatal ratio between the upper and lower leaf surfaces was 0.93 for both the 222 

introduced plants and the plants from Arniston, South Africa (p=0.991, Figure S1 in Electronic 223 

Supplementary Material).  224 

The introduced Australian plants were only 73% as efficient at using nitrogen as the South African 225 

plants (p<0.002, Fig. 3a). This is due to the fact that even though there was no difference in the 226 

amount of leaf nitrogen per unit leaf area (Narea) between introduced plants and plants from Arniston, 227 

South Africa (p=0.382, Fig. 3b), the introduced plants still had a lower photosynthetic assimilation 228 

rate.  229 

Discussion 230 

Even though the beach daisy A. populifolia has been in Australia for less than 100 years, the 231 

introduced plants have evolved differences in leaf physiology compared to plants from the likely 232 

source population growing in Arniston, South Africa. Introduced Australian A. populifolia plants had  233 

higher water-use efficiency, lower stomatal conductance and higher leaf hair density, most likely due 234 

to evolution in response to natural selection following their introduction to Australia. These changes 235 

are consistent with exposure to drier conditions [19-22]. Using artificial hair removal on a population 236 

in its native range, the leaf hairs of A. populifolia have been shown to reduce water loss by 237 
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decreasing stomatal conductance and transpiration rates [23]. An increase in leaf hair density would 238 

therefore result in higher water-use efficiency, which is in agreement with our findings; as is the fact 239 

that the introduced plants had a much lower stomatal conductance. In addition, our previous study 240 

showed that the introduced plants have leaves that are 27% smaller than those of the plants from 241 

Arniston, South Africa [12], another change consistent with adaptation to a drier environment [38, 242 

39]. However, the introduced populations experience a much higher rainfall than does the population 243 

from Arniston [12]. The apparent responses to drier conditions and records of higher rainfall in the 244 

introduced range seemed incongruous, until field visits revealed that the plants in Arniston grow on a 245 

rocky shelf which can trap moisture, while the introduced plants grow on sandy beaches from which 246 

rain water can quickly drain away (Fig. 4., S. Creer, pers. comm.). Thus, although we cannot be sure 247 

without empirical data from the study sites, we suspect that the higher rainfall in the introduced 248 

range does not translate into increased water availability for the plants. This finding highlights two 249 

important points. First, although precipitation has been a commonly used predictive climatic variable 250 

in plant trait ecology for many years [40, 41] it may not always provide the strongest explanatory 251 

power for observed trait patterns. For example, mean annual temperature has been shown to be a 252 

better predictor of global plant height than mean annual precipitation [42]. Second, although global 253 

climate (and other) data are an invaluable resource, it is still essential to visit study sites to obtain 254 

local information. 255 

The fact that the introduced Australian plants have a lower photosynthetic nitrogen-use efficiency 256 

(PNUE) is not surprising once we consider the increase in water-use efficiency. Plants optimise how 257 

they obtain and use both water and nitrogen in the process of carbon assimilation [43] and there is a 258 

trade-off between these two resources. When CO2 diffuses into open stomata for photosynthetic 259 

assimilation (with enzymes that require nitrogen), water is unavoidably lost due to transpiration. 260 

Plants that are able to conserve water with high water-use efficiency tend to have low photosynthetic 261 
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nitrogen-use efficiency [20, 44-46]. Differences in how introduced plants and plants from Arniston, 262 

South Africa allocate their leaf nitrogen could also contribute to the lower PNUE in the introduced 263 

plants. The bulk of leaf nitrogen is either allocated to cell walls or to photosynthetic proteins, with a 264 

trade-off occurring between these allocations [47, 48]. Plants investing more mass in cell walls can 265 

have less nitrogen to invest in photosynthetic proteins, and can also show reduced CO2 diffusion to 266 

areas of carboxylation due to thicker mesophyll cell walls [48]. Increased allocation to cell walls 267 

might have evolved in introduced A. populifolia to provide the rigidity and strength needed by the 268 

mesophyll structures to maintain photosynthetic capacity in habitats with lower water availability 269 

[48]. An increase in the mass of cell walls could then lead to decreased photosynthetic nitrogen-use 270 

efficiency [47-49] as per our results. Further support for this idea is that plants with thicker 271 

mesophyll cell walls show reduced CO2 diffusion to areas of carboxylation [42] which is also in 272 

agreement with our findings.  273 

Finally, the introduced A. populifolia plants in Australia have a lower photosynthetic assimilation 274 

rate than plants from Arniston, South Africa. This finding is contrary to our predictions based on 275 

previous studies and the EICA hypothesis which predicts increased growth in introduced 276 

populations, including an increase in photosynthesis [47]. The lower photosynthetic assimilation rate 277 

occurred via a decrease in the maximum rate of carboxylation (Vcmax). Since Vcmax is limited by the 278 

supply of CO2, and since CO2 must diffuse from the air outside the leaf to the site of carboxylation 279 

inside the leaf [50], it seems likely that the lower stomatal conductance of the introduced plants is 280 

limiting the supply of CO2 and thus contributing to their lower photosynthetic assimilation rate, 281 

shown by the lower concentration of intercellular CO2 (Ci) in the introduced plants (Fig. 1d). The 282 

relationship between low stomatal conductance and low photosynthetic assimilation rate is well 283 

understood [43, 51]. The artificial hair removal experiments which have previously shown that leaf 284 
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hairs in A. populifolia decrease intercellular CO2 concentrations (Ripley, Pammenter & Smith 1999), 285 

indicate a link between the lower photosynthetic capacity and increased water use efficiency. 286 

The east Australian and South African A. populifolia now differ in many ways. It seems likely that 287 

many of these differences result from evolution in response to novel selective pressures encountered 288 

by the plants in their introduced range. However, there are other possibilities. For example, because 289 

the founding population was probably very small (see above), differences could be partly due to 290 

initial random chance (founder effect). The founding individuals may also have been deliberately 291 

selected for characteristics such as being larger or more vigorous, having dune stabilising properties 292 

or having showy flowers. Some of these characteristics could be associated with the traits we have 293 

investigated; meaning that our results may have been affected by selection or introduction bias. 294 

Unfortunately, we do not know why A. populifolia was introduced to eastern Australia and so we 295 

have no information as to whether any characteristics were deliberately selected for the purpose of 296 

introduction. Another possibility is that the populations might have undergone genetic drift since 297 

their introduction. Further it is possible that plants in the home range have changed since the 298 

founding individuals were introduced to Australia in the 1930s, perhaps as a result of land use 299 

change, climate change, or pressure from introduced species. We do not have the historical data 300 

required to tease these possibilities apart. However, we have some indication of the relative 301 

magnitude of change in native vs introduced populations from a study of herbarium specimens in 302 

New Zealand [4]. This study showed that 16 out of 23 (70%) introduced species had undergone 303 

significant morphological change since their arrival in New Zealand, while only one of five native 304 

New Zealand species had undergone change over the same time period.  305 

In summary, evidence indicates that introduced A. populifolia plants have rapidly evolved 306 

physiological changes consistent with exposure to drier conditions. A promising future direction for 307 

this work would be to test whether these trait changes result in a direct selective advantage for A. 308 
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populifolia experiencing drier conditions in the introduced Australian range. The physiological 309 

changes we observed have simultaneously led to increased water-use efficiency, decreased 310 

photosynthetic nitrogen-use efficiency and a lower photosynthetic assimilation rate in the introduced 311 

range. This outcome is the opposite to our predictions and highlights three important points: (1) it is 312 

important to compare introduced species to their original source population for the most accurate 313 

assessment of evolutionary change; (2) rainfall may not always be a suitable proxy for water 314 

availability; and (3) introduced species often undergo evolutionary changes, but without detailed 315 

ecological information we may not be able to accurately predict the direction of these changes [52].  316 
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Figures  461 

 462 

Fig. 1. a) Photosynthetic assimilation rate (Aarea), b) maximum rate of carboxylation (Vcmax), c) 463 

maximum rate of electron transport (Jmax) and d) concentration of intercellular CO2 (Ci) comparing 464 

source and introduced plants showing mean values (+/- standard error). The p-values for each trait 465 

are from a planned contrast between the most likely South African source population and the four 466 

Australian introduced populations following a one-way analysis of variance (ANOVA). This type of 467 

analysis takes into account the defined comparison of plants from one South African population with 468 

plants from four Australian populations. The y-axes have been truncated. 469 
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 470 

Fig. 2. a) Water-use efficiency (WUE), b) leaf hair density, c) stomatal conductance (gs), and d) 471 

stomatal density comparing source and introduced plants showing mean values (+/- standard error). 472 

The p-values for each trait are from a planned contrast between the most likely South African source 473 

population and the four Australian introduced populations following a one-way analysis of variance 474 

(ANOVA). This type of analysis takes into account the defined comparison of plants from one South 475 

African population with plants from four Australian populations. Fig. 2e) is a diagrammatic 476 

representation of the differences in leaf hair density between source and introduced plants, and Fig. 477 

2f) shows the underside of a leaf where strips of leaf hairs have been removed with nail polish peels. 478 

The y-axes have been truncated. *After applying a Holm-Bonferroni sequential correction, there was 479 

no significant difference in leaf hair density on top of the leaves.  480 

 481 
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 482 

Fig. 3. a) Photosynthetic nitrogen-use efficiency (PNUE) and b) nitrogen per leaf area (Narea) 483 

comparing source and introduced plants showing mean values (+/- standard error). The p-values for 484 

each trait are from a planned contrast between the most likely South African source population and 485 

the four Australian introduced populations following a one-way analysis of variance (ANOVA). This 486 

type of analysis takes into account the defined comparison of plants from one South African 487 

population with plants from four Australian populations. The y-axes have been truncated. 488 

 489 

Fig. 4. The most likely source population in Arniston, South Africa (photograph on the left), where 490 

A. populifolia grows on a rocky shelf; an introduced population at Treachery Beach, Australia (one 491 
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of our sampled populations; photograph on the right) where A. populifolia grows on an exposed 492 

sandy beach. Photographs taken by S. Creer (Arniston) and C. Brandenburger (Treachery Beach).  493 
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Electronic Supplementary Material 494 

 495 

Table S1. Latitude and longitude for the source population and the four introduced populations; 496 

sample size with maternal line information for each stage of the experiment. 497 

Table S2. Calculations of mass-based photosynthetic assimilation rates (Amass). 498 

Table S3. A contrast for each trait between the South African source population and the four 499 

Australian introduced populations using one-way analyses of variance (ANOVAs) with a planned 500 

contrast.  501 

Table S4. A contrast for each trait among only the four introduced populations in Australia using 502 

one-way analyses of variance (ANOVAs). 503 

Figure S1. Mean ratio of stomata on the upper and lower leaf surfaces.  504 

Figure S2. Graphs showing distribution of data within each population for all traits in Figures 1-3.  505 

 506 

Appendix S1. Raw data.  507 
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