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Abstract

This project focused on a group of active ingredients isolated from herbal medicines, 

most of them flavonoids, as a foundation for the development of new anticancer 

drugs. Interactions between these compounds and genomic DNA, synthetic 

polynucleotides, or higher order DNA isoforms (triple and quadruple helical forms) 

have been studied using a range of physicochemical and biological techniques. The 

studies demonstrated that flavonoids and isoflavonoids bind to the various nucleic 

acid forms with weak or moderate affinities and no significant specificity, apart from 

quercetin that demonstrated a differential binding for G-quadruplex structures.

Rational drug design has been subsequently employed to elucidate the mode of 

binding and novel compounds have been synthesized in order to provide precise 

structure-activity related studies and result in a second generation of 

chemotherapeutic anticancer agents with improved properties. Interaction with DNA 

is thought to involve the planar ring structures. The double bond of the O in C4 in a 

flavone scaffold gives planarity to the molecule, and this allows the molecule to 

intercalate between the bases in the different nucleic acid structures. The comparison 

between flavone, flavanone and isoflavonoid indicates that the position of the B ring 

and the double bond in the C ring are important for the interactions with DNA. 

Introduction of nitrogen in the ring did not improve the binding but tertiary amines 

improved binding 100 fold. Introduction of sulfur produced two binding constants. 

Position 7 in the A ring of the flavones is extremely relevant for the binding to the
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nucleic acids, but substitutions in the B ring did not improve the binding. 

Methoxylation or acetoxylation in positions 5 and 7 decreased the affinity for DNA. 

Novel compounds were tested for their specificity against different DNA isoforms 

and their anticancer activity in various tumour cell lines.
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1.1 .a: Cancer

The adult human is composed of approximately 1015 cells, many of which are 

required to divide and differentiate in order to repopulate organs and tissues 

(Mauelera et al., 1999). Control of cell growth is due to different pathways working 

in harmony, even though some of them are not well defined. Cells which have the 

capacity for division are called stem cells and this ability is found on germ cells and 

some specific organs that require turnover. Normal human somatic cells can divide 

30-50 times; the event limiting this replication is the erosion of the ends of 

chromosomes, which are normally capped by a repetitive six base pair sequence 

(TTAGGG) named telomere (Kamenetskii et al., 1995).

In germ and certain stem cells, the enzyme telomerase is in charge of maintaining a 

normal telomere length. This enzyme is not expressed in somatic cells; therefore, 

after 30-50 cycles of division, the cell enters quiescence. To keep cells continuously 

active, some pathways must be maintained. These pathways receive and process 

growth-stimulatory signals transmitted by other cells. Cell-to-cell signalling generally 

begins when one cell secretes growth-factors. After this event, the proteins move 

through the extra cellular matrix and bind to the specific receptor on the surface of the 

nearby cell.

When the growth-factor attaches to the receptor, the interaction conveys a 

proliferative signal to proteins in the cytoplasm. These downstream proteins emit 

stimulatory signals to a succession of other proteins. Transcription-factors respond by 

activating a group of genes that help the cell through its growth cycle.
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Normal cells have certain characteristics namely, the ability to:

> reproduce an exact copy of themselves

> terminate reproduction at the appropriate time

> attach to neighbouring cells

> self destruct if they are damaged

> specialise or mature !

Cancer is the result of the accumulation of cells that can move, survive and divide by 

passing the body’s normal control mechanisms, and its incidence increases 

dramatically with age. One of the main characteristics of cancer is its complexity. 

Clinically, cancer appears as a diverse set of illnesses with inappropriate cell growth 

(Hanahan et al., 2000). Certain mutations play critical roles in programming the 

malignant state; some mutations are inherited, while others are caused by exposure to 

radiation or to mutation-inducing chemicals. Mutations can also occur spontaneously 

as a result of mistakes during replication. When cells acquire mutations in specific 

genes that control proliferation, such as proto-oncogenes or tumor suppressor genes, 

these changes are copied with each new generation of cells (Aerssens et a l , 2001).

The key features of a malignant clone are:

> immortality -  the cells do not mature and do not die

^  independence -  the clone does not rely on signals from other cells to survive 

or to divide
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> mobility -  ability to violate boundaries between anatomical compartments and 

to seed remote colonies (metastasis)

> subversion -  malignant tumours inhibit components of the immune system, 

and may influence non-malignant cells to create a favourable milieu for the 

cancer cell

> instability -  a characteristic of virtually all malignancies is that they spin off 

ever more genetically aberrant sub-clones

> angiogenesis induction -  malignant tumours, and possibly some benign 

tumours have the capacity to induce the growth of new blood vessels to 

nourish the developing tumour (Boveri, 1914)

GENETIC ALLY ALT ERED CELL jN  JjT U  C A H C B ?
\

HYPERPLASIA DYSPLASIA
i J .  . .  j m f ,  ■ j

/
.■ v- 

BLOODVESSEL

Figure 1: Development of cancer. A genetically altered cell gives rise to an 
accumulation of altered cells that can survive by passing the body’s control 
mechanism forming an in situ cancer that can form metastases in the individual’s 
body if these cells enter the blood vessels and disperse into other organs (Weinberg et 
al.: “When cancer arises”, Scientific American, 62-70, 1996).
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l.l.b : Cell Cycle and Apoptosis

The cell cycle is a sequence of stages during which DNA is copied, the fidelity of that 

copying is checked, the cell repairs any errors (or undergoes apoptosis if they are 

irreparable), and the new DNA must be packaged into chromosomes and distributed 

within the cell such that each daughter cell will receive an appropriate complement. 

All this takes some hours in the normal cell, and in cancer cells the division time is 

frequently faster (up to 5 times).

The cell cycle is composed of 4 stages (Vourc'h et al., 1993), see Figure 2:

> G1 (gap 1): the cell increases its size and prepares to copy its DNA by 

synthesis of proteins and molecules

> S (synthesis): the cell copies the DNA and enables itself to duplicate 

chromosomes

> G2 (gap 2): the cell prepares for mitosis by synthesis of proteins

> M (mitosis): the parent cell divides in half to produce two cells

The majority of cells, when not dividing or preparing to divide, are in GO or rest 

phase. Entry into the cell cycle is controlled by a group of regulatory compounds 

(cyclins) -  these in turn transmit their messages to proteins called cyclin dependent 

kinases (Knudson, 2001).
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Cell
divides

of cycle
Beginning 
of cycle

Cell prep< 
to divide

(mitosis)
Cell enlarges 
aid makes 
new proteins

I  v'
\  .^Restriction point: cell 

decides whether 
to commit itself to 
the complete cycle

Figure 2: Cell cycle stages (Weinberg et al.: “When cancer arises”, Scientific 
American, 62-70, 1996).

The cell cycle programs this elaborate succession of events by using various 

molecules. The two essential components, cyclins and cyclin-dependent kinases, 

associate with one another and initiate each of the stages of the cell cycle.

The last stage in a cell’s life cycle is cell death. There are at least two distinct forms 

of cell death:

> necrosis: here a whole group of neighbouring cells die spilling out their 

contents which excites an inflammatory response

> apoptosis: here an individual cell packages its internal contents, breaks down 

its DNA and then displays markers on its surface promoting phagocytic cells 

to come and clear away the debris (Krontiris et al. , 1995)

There is no inflammatory response to apoptosis which is a vital physiological 

process. This is probably because apoptosis is the mechanism whereby the body 

eliminates cells that have acquired defects in their genome. This is a vital part of the



defences against cancer. There are several apoptosis-based anti-cancer agents 

currently under development. Although most cancer therapies depend to some extent 

on the induction of apoptotic pathways, these therapies are designed specifically to 

trigger apoptotic pathways. In the human genome there are approximately 3 billion 

base pairs which must be accurately replicated each time a cell divides. A proof

reading and error correction pathway ensures the accuracy of this process; this is so 

accurate that the 3 billion base pairs genome will only change by about 10-20 bases a 

year. A back-up system to ensure the integrity of the genome assesses any errors and 

ensures the success of the dividing cell in correcting these. If the cell fails this 

assessment, the apoptotic pathways are triggered and the cell self destructs. It is only 

if both the DNA repair and the apoptosis pathways are defective or suppressed that a 

cell can become malignant (Hahn et a l , 1999).

1.1. c: Signalling pathways

Genes are carried in the DNA molecules of the chromosomes. A gene specifies a 

sequence of amino acids that must be linked together to make a particular protein. 

The protein then carries out the work of the gene. When a gene is switched on, the 

cell responds by synthesizing the encoded protein. Mutations in a gene can disrupt 

this activity. Cells in a tumour descend from a common cell that at one point initiates 

inappropriate reproduction. Furthermore, the malignant transformation gives rise to 

the accumulation of mutations in specific classes of genes (Bertram et al., 2001).

Four classes of genes play major roles in triggering cancer (Weinberg et al., 1996):
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> proto-oncogenes encourage growth whereas tumour suppressor genes inhibit 

it. When mutated, proto-oncogenes can become carcinogenic oncogenes that 

drive excessive replication. Some oncogenes force cells to overproduce 

growth factors, and others perturb the signal cascade

> oncogenes typically act in a dominant fashion and can contribute to malignant 

transformation. They frequently code for tyrosine kinases (internal 

messengers), which act as intermediaries between the signal received by 

growth factor receptors at the cell surface and the sites within the nucleus 

where genes are switched in response to those growth signals. Usually, the 

normal function of an oncogene falls within one of four gene families:

■ growth factors

■ cell surface receptors

■ transcription factors

■ signal transmission proteins

Growth factors are normally produced by one cell to regulate the behavior of 

another cell; if a cancer cell develops the ability to produce its own growth 

factors it becomes independent of external signals. Under normal 

circumstances there are three types of growth factor regulation:

■ endocrine (is released into the circulation and regulates 

behavior of distant cells)

■ paracrine (acts on a close neighbour of the secreting cell)
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■ autocrine (releases a growth factor which can bind to receptors 

on the same cell) (Bertram et al., 2001)

When a cell, which should be regulated by endocrine or paracrine growth 

factors, acquires the capacity for autocrine growth factor secretion it may 

become capable of autonomous division. In some cases cancer cells will 

secrete paracrine growth factors so that they stimulate each other’s growth.

> tumour suppressor genes contribute to cancer when they are inactivated by 

mutations. Tumour suppressor genes are negative regulators of cell division. 

They are necessary for the effective operation of DNA repair mechanisms. On 

proof reading of DNA, if anything above a minimal threshold of errors is met, 

pathways are initiated which put division on hold while DNA repair is 

attempted. If repair is unsuccessful, the cell initiates apoptosis and sacrifices 

itself to save the other cells. If tumour suppressor genes are absent or 

defective then arrest of the cell division process may fail to occur and the cell 

may generate a clone of faulty daughter cells. One of the most important 

tumour suppressor genes is called p53, which monitors stress (like anoxia, 

insufficiency of nucleotides for DNA synthesis, inappropriate inactivation of 

oncogenes and DNA lesions) and directs the cell towards an appropriate 

response (Levine et al., 1997).

>  DNA repair genes are the fourth class of genes important for tumour 

development. Genomic instability is a virtually invariant feature of cancer 

cells. If it is assumed that loss of stability of the genome is an early event in 

malignant transformation, then the subsequent rate of accumulation of
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mutations will be much higher. As in other cases, the DNA repair genes are 

highly conserved across species, implying that they emerged very early in 

eukaryote evolution and are of great importance to the cell. There are various 

different pathways to DNA repair; which pathway is activated depending on 

the exact nature of the defect in the DNA molecule. In some forms of DNA 

damage the two strands will no longer fit together (DNA mismatch). The 

repair mechanism can identify the original strand because it carries methyl 

tags which identify it while the daughter strand does not acquire these tags for 

some minutes after copying occurs. During this time the repair machinery 

compares the two strands and attempts to correct any errors detected 

(Westwell et al., 2001).

To ensure a satisfactory supply of nutrients necessary for continued growth, and to 

eliminate products of metabolism which would potentially be lethal, cells create a 

new network of vessels and capillaries. This process is called angiogenesis and occurs 

through the invasion of endothelial cells from existing vessels in response to multiple 

extra cellular signals such as vascular endothelial growth-factor and fibroblast 

growth-factor. This process is controlled and balanced by inhibitors of angiogenesis, 

such as thrombospondin (Gao et al., 1995). Tumour cells enhance expression of pro- 

angiogenic factors as well as suppress negative regulators. Oncogenes and tumour 

suppressor genes are involved in both processes. Immortality is an escape from 

senescence and deregulation of cell cycle and proliferation programmes.
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l.l.d : Therapies

There is a range of different therapies (Hurley, 2000) for treating cancer, summarised 

as follows:

> surgery: removal of a localised tumour.

> chemotherapy: treatment of cancer with anticancer drugs. It is often used to 

treat patients with cancer that has metastasized and can be used as an adjuvant 

after surgery.

> radiotherapy: exposure of the tumour cells to radiation from a radioactive 

substance / source.

> angiogenesis inhibitors: these prevent the construction of new blood vessels 

for the transport of oxygen and nutrients that rapidly dividing cancer cells 

require.

> immune and vaccine therapy: treatment to stimulate and restore the immune 

system to fight the cancer cell. It normally employs antibodies and vaccines.

> bone marrow and peripheral blood stem cell transplantation: stimulation using 

growth factors of growth of stem cells in a donor blood, which are isolated 

and transplanted into the bone marrow of the patient, to stimulate the growth 

of healthy new cells.

> gene therapy: technique for correcting defective genes responsible for disease 

development. A normal gene is inserted into an abnormal gene (from cancer 

cells). For delivering the gene, a carrier vector is used (usually a virus).
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> laser and photodynamic therapy: investigational technique that employs a 

photosensitizer (e.g.haematoporphyrin), light sources (lasers), and 

oxygenation of tissues.

Chemotherapy is capable of combating the most widespread of metastases. By 

entering into the bloodstream, the chemical compounds are able to disperse 

throughout the body and attack cancer cells. Chemotherapy is not without its side 

effects, and one of the most problematic aspects of creating an anti-cancer agent is 

identifying a way to kill only cancerous cells. Therefore, a group of agents that work 

via different mechanisms has been developed. Unfortunately, most of the chemicals 

that have been found to be successful anti-cancer agents are extremely toxic and must 

be administered very carefully. The side effects incurred are numerous and include 

fatigue, hair loss, anemia, vomiting, diaorrhea, nausea, and, more seriously for the 

patient, decreased resistance to infection, increased likelihood of hemorrhaging and a 

possible need of blood transfusions and kidney -  liver -  heart failure. Many of these 

effects are temporary and can be eased by the intake of palliative medicines, but 

sometimes many of the side effects debilitate the patient so much that they can no 

longer carry on with the treatment.

1.2. a: Herbal remedies as cancer therapy

Worldwide, for many centuries different diseases have been treated with herbs or 

herbal extracts. These treatments are based on common and empiric knowledge. Over

tlithe course of the 20  century, medicinal knowledge became divided into
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contemporary (or western) and alternative medicine. Contemporary medicine mainly 

refers to the use of synthetic and semi-synthetic drugs and vaccines; alternative 

medicine includes the use of herbal medicines. The action of such herbal remedies is 

due to one or more active ingredients with therapeutic properties. In the constant 

search for new medicines, these active ingredients have been put under scrutiny for 

their therapeutic effect or have formed the basis for the generation of novel 

compounds with improved therapeutic properties.

Plant therapy was the first medical system to be used to diagnose, treat, and prevent 

illnesses (Nestler, 2002). Over the centuries, plants have been used to treat countless 

conditions, such as obesity, diabetes, high cholesterol, male (Becker et a l , 2000) and 

female fertility disorders, Alzheimer's disease, digestive disorders, recurrent cystitis, 

allergies (Armstrong et al, 1999), sinusitis, addictions, pain (Lee et a l , 2001), 

menopausal symptoms, osteoporosis, arthritis, infections, sleep disorders, stress, 

constipation, and more recently as chemo-preventative and antineoplastic agents 

(Wong et a l, 2001; Yuan et a l, 2000).

Plants are considered a vast source of anticancer agents (Craig et a l, 1999) and 

several studies have been conducted since the 1950s to test natural and synthetic 

substances for antiproliferative properties. The compounds extracted from plants 

belong to various classes of molecules, including flavonoids, phytoestrogens, 

polymers, carbohydrates, terpenes. Some of these molecules have proved to be 

powerful agents against various conditions and some of them have formed the basis 

for new therapeutic agents (Baguley et a l, 1981). Of the tested compounds, earlier 

discoveries include the vinca alkaloids from Madagascar periwinkle; etoposide
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(Kimchi-Sarfaty et a l , 2002), teniposide (Zhou et a l, 2002), semi synthetic 

derivatives of epipodophylotoxin (Kosmas et a l, 2002) extracted from Podophyllum. 

More recently, taxanes and camptothecins (Engin et a l, 2002) attracted attention as 

new anticancer agents. Another group of agents is constituted by flavonoids. They are 

a large chemical class in the plant kingdom, with over 5,000 different flavonoids 

described. One flavonoid to receive a significant attention as a potential anti-cancer 

agent is flavopiridol (Aventis) (Structure 1). This semi-synthetic compound (it is an 

N-methylpiperinidyl, chlorophenyl flavone) is based on a compound extracted from 

Rohitukine, and is a potent cyclin-dependent kinase inhibitor capable of producing 

mitotic arrest in either G1 or G2 (Murthi et a l, 2000).

Structure 1: Flavopiridol (www.oup.com/.../chl8/chl8 fig70flavopiridol.it>g , 
20/07/2006)

Various studies show flavonoids as a chemical class offering an important approach 

to cancer therapy, as they target and regulate a wide range of enzymatic pathways and 

signal transduction mechanisms in human cells. Flavonoids also appear to be 

relatively discriminating, acting predominantly on dysfunctional cells (Traganos et 

al, 1992).
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Finally, another class of compounds, isolated from plant extracts, that has found use 

in disease treatment is the terpenoids. Examples from this family are artemisinin and 

artesunate (refer to next section for a full description) which have been used in the 

treatment of malaria.

Furthermore, terpenoids have been shown to increase tumour latency, decrease tumor 

multiplicity, elicit a significant reduction in total cholesterol concentration and act as 

a strong antioxidant. Tumour cells synthesize and accumulate cholesterol faster than 

normal cells; therefore the use of terpenoids in cancer therapy would affect tumour 

growth without producing any change in blood lipid concentrations (Zheng et al., 

1992).

Due to their potential as anticancer agents, in this project we have selected for 

preliminary studies two main families of natural extracts:

> terpenoids: from this group we studied artemisinin, artesunate and cantharidin

> flavonoids: baicalein, baicalin, daidzein, puerarin, quercetin and rutin

1.2.La: Terpenoids

1.2.l.b: Artemisinin and artesunate

Artesunate or artesunic acid is the most widely available and widely used of the 

artemisinin derivatives. These drugs have become an essential component of the 

treatment of multidrug resistant Falciparum malaria. Artesunate (Compound 2) is a
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semi synthetic derivative of artemisinin (Compound 1). For structure see compounds 

1 and 2 .

9

13

o

Compound 1: Artemisinin

CH,

CHoO

OH

CH;

Compound 2: Artesunic acid (artesunate)

These compounds belong to a molecular group named sesquiterpene endoperoxides. 

Artemisinin and its derivatives are difficult to identify by standard 

spectrophotometric methods, because they have no distinct UV/Visible spectra or 

fluorescent properties (Batty et al., 1996; Green et a l, 2000). Artemisinin and 

artesunate (usually as Na-artesunate) have a range of applications in health science, 

even though the mode of action of the compounds is not yet defined. They can be 

used in the recovery of the immune system after a disease (Singh, 2001), because
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they have been found to increase the production of IL-2 (interleukin 2) from mouse 

splenocytes stimulated with ConA after bone marrow transplantation.

As an antimalarial drug, artesunate coordinates to ferriprotoporphyrin monomers in 

erythrocytes blocking the formation of hemozoin, thus allowing a significant 

concentration of heme-antimalarial complex to remain in solution, from where it 

makes a plasmo-diotoxic effect by catalysing the formation of reactive oxygen 

species (Campanale et a l , 2003). The nature of the iron atom environment in the drug 

complexes is of prime importance since the iron is the redox centre of the molecule 

and thus the catalytic point at which oxygen activation will occur. Artesunate and 

artemisinin seem to produce reactive oxygen species like hydroxyl radicals. This 

activity could be responsible for the formation of DNA strand-breaks. A study 

involving depletion of glutathione would indicate the formation of free radicals and 

subsequent DNA strand breaks as a mechanism of action. The glutathione redox cycle 

is a detoxification pathway for the elimination of DNA damage and the alkylation of 

proteins (Ho et al., 1992). The redox cycle catalyses the reduction of H2O2 and other 

hydroperoxides (Ho et al., 1992).

In vertebrates, an iron transport system involves a specific interaction between the 

serum iron binding protein transferrin and a cell surface transferrin receptor. This 

interaction results in the facilitated transport of iron across cell membranes. Due to 

their high rates of division, most cancer cells express a higher cell surface 

concentration of transferrin receptors than normal cells and have high rates of iron 

intake. Therefore, cancer cells would be more susceptible to the cytotoxic effect of
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artemisinin and its derivatives under conditions of high iron availability (Batty et al., 

1996; Efferth et al., 2000).

An experiment using dihydroartemisinin (with an OH group in carbon 10) on a 

normal breast cell line and on a human breast tumour cell line with epithelial cell 

morphologies, using holotransferrin as supplier of iron, revealed a synergistic activity 

between the artemisinin derivative and iron (Reizenstein et al., 1999). In other 

experiments involving holotransferrin combined with artemisinin and using human 

lymphoblastoid cell lines, the drug proved to be less effective as measured by cell 

death. Considering this result, an in vivo experiment was designed to determine the 

selective cytotoxic effect of oral administration of artemisinin and ferrous sulfate on 

the growth of implanted fibrosarcoma in rats. The experiment showed that the 

combination of artemisinin and ferrous sulfate acts together to slow down cancer 

growth. However, neurotoxicity has been reported with certain analogues of 

artemisinin (Moore et al., 1995).

Different mechanisms could be used to explain the results obtained from different cell 

lines. A study performed on ovarian carcinoma cell lines showed no cytotoxicity with' 

artemisinin derivatives containing carbonyl and carboxypropyl groups (probably 

because of a negative charge). However, deoxoartemisinin (with a methylene group 

in the CIO position) showed an antitumour effect in the same cell line, indicating that 

lipophilicity might be closely related to their cytotoxic activity. This explanation, 

however, can not be extended to all cases. In human epidermoid carcinoma, it seems 

that carbonyl oxygen of artemisinin acts as a hydrogen bond donor and thus 

artemisinin is able to form hydrogen bonding with tumour target proteins to improve
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cytotoxicity (Lee et al., 2000). Experiments using leukaemic cells show that 

artesunate induces apoptosis. The appearance of an additional Ao phase at lower 

concentrations is characteristic of cells treated with the drug, even though 

antineoplastic activity has not been proven (Efferth et al., 1996). This correlates with 

the fact that artesunate is active in leukaemia and colon cancer cells in vitro, as well 

as in renal, melanomas and central nervous system tumors. Compared with a regime 

composed of cyclophosphamide, methotrexate and vincristine, artesunate is more 

active for breast cancer treatment (Efferth at al., 2001).

The necessity of iron for enhancing the antitumour activity of artesunate and 

artemisinin, allowed the study of different targets, like transferrin receptors for the 

iron-carrying protein (TF). This enhancing of activity occurs in only a few types of 

human cells like basal epidermal keratinocytes, pancreatic islet cells, and liver 

parenchyma. The receptor is more abundant in tumor cells that are rapidly 

proliferating, in particular drug-resistant cells. Since the ligand-bound TF receptor is 

internalised, tumor cells exposed to TF may have increased cellular Fe2+ 

concentrations. As Fe2+ is necessary for activation of artesunate cytotoxicity, this 

suggests a hypothetical strategy for the use of the compound in drug-resistant cells: 

preload the cells with TF and then expose them to artesunate. A study testing this 

hypothesis in drug-sensitive and drug-resistant (that have double concentration of TF 

receptors) SCLC cells, showed that artesunate induced the gradual formation of DNA 

fragments in the cells (pro-apoptotic) which was confirmed by terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeled (TUNEL, method 

indicating apoptosis) staining (Sadava et al., 2002). The same principle was used in a
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holotransferrin treatment on breast cancer cells (Adams et al., 1996) and in implanted 

fibrosarcomas in rats (Beekman et al., 1997). The results obtained indicate that an 

uptake of ferrous sulfate or ferrous citrate makes cells more susceptible to the 

cytotoxic effect of artemisinin and artemisinin-like compounds, but nephrotoxicity 

was found as a side effect in some of the rats.

(
1.2.Lc: Cantharidin

Cantharidin (Compound 3) has been isolated from the dried body of the Chinese 

blister beetle Mylabris phalerata Pallas. Cantharidin showed the effect of producing 

congestion in the urethral mucosa, and because of this effect has been used in the 

treatment of impotence and as an aphrodisiac. Recent studies showed cantharidin to 

have antitumour activity, increasing the number of leucocytes and being a potent and 

selective protein phosphatase inhibitor (Wang et al. , 2000).

Compound 3: Cantharidin

Cantharidin showed toxic side effects like nephrotoxicity and severe toxicity to 

mucous membrane. Amongst the properties that cantharidin possesses, the most 

important is its ability to act as a protein phosphatase inhibitor (protein phosphatases 

are enzymes that remove phosphate groups in proteins). The result of this activity is 

the regulation of many different cellular processes (glycogen metabolism, calcium
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transport, muscle contraction, gene expression, protein synthesis, intracellular 

transport, photo-transduction, cell cycle progression and apoptosis). In compounds 

possessing the anhydride bridge of cantharidin (or a derivative like norcantharidin), a 

single carboxylic acid group and a basic residue gives rise to a new class of 

compounds with the ability to inhibit PP1 and PP2A (McCluskey, 2001).

1.2.2.a: Flavonoids and isoflavonoids

The most powerful antioxidants are to be found amongst the flavonoids and 18 

flavonoids are now known for having 20 times the potency of vitamin C and 50 times 

the potency of vitamin E. They are essential for processing vitamin C and are needed 

to maintain capillary walls as well as protect against infection (Tucker, 2003). It is 

possible that the inhibition of oxidation of low density lipoprotein supports their 

antioxidant and antibacterial properties. They also inhibit inflammation by decreasing 

the release of inflammatory mediators and stabilizing cell membranes. Many 

flavonoids possess antifungal properties, especially the nonpolar polymethylated 

flavones and the prenylated isoflavone. In mammalian biology, flavonoids have been 

implicated in immunity, inflammation and carcinogenicity. In vitro, they inhibit the 

activity of a number of enzymes including histidine decarboxylase, alleviating 

histamine-induced gastric acid secretions; hyaluronidase, responsible for the breakage 

of glucosaminidic bonds involved in tumour cell invasiveness and hypersensitivity 

phenomena; protein kinase C (serine / threonine phosphorylation) involved in a wide 

range of cellular activities including tumour promotion, mitogenesis, inflammation 

and T lymphocyte functions; and lipoxygenase which metabolises arachidonic acid 

released from membrane phospholipids to vasoactive leukotrienes that are involved in
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signal transduction and cell division processes related to immune systems and 

activated by hormones, neurotransmitters and growth.

In general they inhibit carcinogenesis by acting as blocking agents via:

> inhibiting metabolic P450 mediated activation of the carcinogen to its reactive 

intermediates

>  inducing the enzyme involved in detoxification of the carcinogen, and / or

> binding to reactive forms of the carcinogen.

They are known to inhibit several biochemical events associated with the 

transformation of non-malignant fibroblasts to sarcoma cells (Ibrahim, 2002). Many 

flavonoids exhibit high radical scavenging activity indicating that a diet rich in these 

flavonoids would reduce cancer promoting actions of these radicals and possibly 

other diseases and conditions caused by oxygen related radicals (Sawa et a l, 1999).

Flavonoids and isoflavonoids, found in higher plants constitute a large class of 

compounds containing a number of phenolic hydroxy groups attached to ring 

structures. Many of them form the flower pigments in most angiosperm families but 

they can be found in all parts of the plant. Flavonoids are multifunctional and can act 

as reducing agents, hydrogen donating antioxidants and singlet oxygen quenchers 

(Rice-Evans et a l, 1996). Amongst the medicinal properties, they are reported to 

have free radical scavenging activity and anticarcinogenic effects, to be anti

inflammatory, antiviral and antiallergic agents, and to inhibit several steps in the cell 

cascade (Ho et a l, 1992). The primary structure posses 15 carbon atoms and involves 

two benzene rings joined by a linear three carbon chain see Structure 2. The
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formation of the C ring (Structure 3) gives rise to a family of compounds, amongst 

which we can find isoflavonoids, flavones, flavonols, flavanones, anthocyanines, etc.

3'

Structure 2: Flavonoid primary skeleton, can be represented as a C6 - C3 - Ce system

Structure 3: The flavonoid chromane skeleton. The B ring can be positioned at C2 as 

well as C3 giving rise to two families of compounds (flavonoids and isoflavonoids 

respectively)

All flavonoids derive their carbon skeletons from two basic compounds, malonyl- 

CoA (synthesized from acetyl-CoA and carbon dioxide) and coenzyme A ester of a 

hydrocinnamic acid. Both of these precursors are derived from carbohydrates. The 

aromatic ring B and its adjacent 3-carbon side chain are derived from L- 

phenylalanine via the shikimate pathway, whereas ring A is formed by the head-to- 

tail condensation of three acetate units via the polyketide pathway that is proposed for
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the biosynthesis of phloroglucinol and resorcinol derivatives (Charron et al., 2000), 

leading to the formation of a C l5 chalcone intermediate (Martens & Forkmann, 

1998).

1.2.2.b: Baicalein and baicalin

Flavonoids are phenolic compounds isolated from plants, and several have been 

documented to be effective in preventing cancer. Baicalein (Compound 4) and its 

derivative baicalin (Compound 5), two flavones extracted from the root of Scutellaria 

baicalensis, are widely used as health supplements and herbal medicines in Asia. One 

of the supplements is the well known PC-SPES (PC is for prostate cancer and SPES 

is for hope), which is a potent eight - herb formulation sold directly to consumers that 

has promising efficacy in the treatment of prostate cancer (Marks, et al. 2002).

o h  o

Compound 4: Baicalein

Compound 5: Baicalin
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The preventive cancer activity of these flavones may be due to an interaction with 

drug metabolizing enzymes. This interaction has been under study on PAH 

(polycyclic aromatic hydrocarbons that are capable of forming carcinogen-DNA 

adducts), Ah receptors (located in cytosolic compartments) and the AhR nuclear 

translocators. The complex can initiate transcription of genes that contain cis-active 

lipophilic xenobiotic responsive elements in their promoter region. The cytochrome 

P450 family of enzymes (monooxygenases that generally act to protect cells) are the 

downstream responsive genes of AhR transactivation. The enzymes CYP1A1 and 

CYP1B1 are expressed in normal and cancer tissue and transform procarcinogens to 

carcinogens. Their inhibition is beneficial in the prevention of PAh-DNA adducts. 

Baicalein has shown effects on CYP 1A1 and CYP1B1 and shown an 

antiproliferative effect on prostate cancer, hepatoma cells and vascular smooth 

muscle cells. These effects have been measured by EROD (7-ethoxyresorufin O- 

ethylase) assay in breast cancer cells, using 7-12-dimethylbenz[a]anthracene 

(DMBA) as DNA damage inducing agent. The result obtained in this experiment 

allowed the conclusion that baicalein is a competitive inhibitor of EROD and 

decreases the expression of CYP1A1 & CYP1B1 through the interruption of AhR 

transactivation (Chan et a l , 2002).

Interaction with DNA has been supposed on a basis of an almost planar structure, 

which was determined by crystallography (Rossi et al., 2001). The compound exists 

in an almost planar conformation with a C-2-C-T bond distance of 1.476 A . The 

position of the three hydroxyl groups maximizes intramolecular hydrogen bonding, 

and each of the hydroxyl hydrogen atoms is a donor in a three-center hydrogen bond.
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The carbonyl oxygen, 0-4, is an acceptor in an intramolecular hydrogen bond (with 

OH-5) and is also an acceptor in an intermolecular hydrogen bond with OH-6. The 

planarity of the flavone framework is dependent on structural and/or electronic forces 

that stabilize the negative charge on the exocyclic oxygen atom, 0-4.

Baicalein and baicalin were found to have different activities, showing different 

modes of action. Both compounds exhibit inhibition of DNA polymerase. The 

glycosylation of hydroxyl groups on the flavones resulted in compounds that behaved 

gradually as weaker inhibitors as the number of substituents increased (Spampinato et 

a l , 1994).

The antitumour activity of baicalin has been studied on different prostate cancer cell 

lines. The experiments were performed using growth inhibition assay, fluorescent 

staining of nuclei, cytotoxicity assay and TUNEL labeling, analysis of DNA 

fragmentation and Western blot analysis. As a result, baicalin was demonstrated to be 

cytotoxic to the majority of the studied prostate cancer cell lines. The inhibition effect 

was found in concentrations > 200 pM. The presence of baicalin in the nucleus was 

confirmed by the staining of apoptotic cells. It was found that baicalin given orally is 

not toxic, but intramuscular injection can cause fever and muscle aches (Chan et al., 

2000; Hiipaka et al., 2002) and it shows activity against human hepatoma cells 

(Motoo et a l, 1994).

Structural studies in breast cancer cell lines showed that hydroxyl groups at positions 

in carbons 3’ and 4’ decreased antitumour activity. Apparently, there must be an 

optimal pattern of hydroxylation that is necessary for a flavonoid to have estrogenic 

activity. The flavones with hydroxyl substituents at carbon atoms 4’ and 7’ were
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invariably estrogenic and an additional group at carbon 5’ increased estrogenic 

activity. Despite of having more than 4 hydroxyl groups, a methoxylated substituent 

would abolish the estrogenic activity (So et al, 1997). The antiproliferative effect 

may not be due to the effect of the binding to the estrogenic receptor, according to 

results observed in other types of breast cancer cells that do not express the estrogen 

receptor. In these, the flavones inhibited protein kinase C activity in intact cells (So et 

al., 1996; Ferriola et al., 1989).

Quercetin and rutin (Compounds 6 and 7 respectively) are present in Artemisia 

scoparia (Janbaz et al., 2002). They are found to be potent as chemopreventative 

agents (Gerhause et al., 2003) and are used in a wide range of conditions. They are 

sold as supplements and drugs. Between them, quercetin is the most known and 

different studies have been performed to test their activities.

1.2.2.c: Quercetin and rutin

O H

O H

O H

O H  O

Compound 6: Quercetin
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Compound 7: Rutin

Quercetin is an inhibitor of HIV-1 protease (Xu, 2000) and of the Vpr gene product 

(the Vpr gene encodes a protein which induces arrest of cells in the G2 phase of the 

cell cycle). Quercetin also presents a mechanism of action in haem catabolism 

(Khong et a l , 1990; Kopach et al., 1980). As a flavonoid, quercetin has been tested 

for activity as an antiallergic and anti-inflammatory agent. Studies showed that 

quercetin inhibits IgE (immunoglobulin E) mediated release from mast cells, IgG 

mediated histamine and SRS-A (slow reaction substance of anaphylaxis) from 

chopped lung fragments, as well as effective inhibition of AE5 -  lipoxygenase 

(Welton et a l , 1986). Furthermore, rutin also possess hepatoprotective activity (La 

Casa et a l , 2000).

Anticancer activity has been under study in different in vitro and in vivo assays. 

Experiments showed that quercetin inhibits the growth of several cancer cell lines and 

the antiproliferative activity of the molecule is mediated by a type II estrogen binding 

site.
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An investigation of the effect of quercetin and cisplatin, alone and in combination, on 

ovarian cancer cells showed a synergestic antiproliferative activity (Scambia et al., 

1990).

The same result was found on human promyelocytic leukemia cells as well as in 

murine leukemia cells (Cipak et a l , 2003). Probably one of the modes of action of 

quercetin for its antitumour activity is the influence on mitosis (Gawron, 1995), as 

well as inhibition of mutated p53 (Avila, 1994).

This last result was observed on breast cancer cells where an accumulation of cells at 

the G2 -  M phase was observed. The cytotoxic effect of quercetin would be via an 

intracellular metabolic activation of the compound to o-quinone (Segura-Aguilar et 

a l , 1999).

Quercetin appears to be cell-type specific, displaying a decrease in heat-induced 

synthesis of hsp27 (heat shock protein) and hsp70 in hepato carcinoma cells.

The drug displayed inhibition of HSF (heat shock factor) (1 and 2), DNA-binding 

activity and HSF expression (Hansen et a l, 1997).

Derivatives of quercetin have been under investigation on human myelogenous 

leukemia cells and adriamycin-resistant human myelogenous leukemia cells. As a 

result, a rank order of anticancer promoting activity of flavonoid derivatives has been 

established as: pentaallyl ethers > pentamethyl ethers > pentaethyl ethers > 

pentapropyl ethers > pentabutyl ethers (Ohtani et al, 2002).
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Considering the flavonol structure, quercetin could induce apoptosis by the release of 

cytochrome c to the cytosol, by procaspase-9 processing, and through a caspase-3- 

dependent mechanism (Lin M et a l , 1999).

The activity of quercetin on breast cancer cells has been extensively investigated. 

Inhibition of protein, DNA and RNA synthesis has been observed, as well as an 

increase in the amount of intracellular reduced glutathione content. Alteration on the 

cell morphology of the cells after a 24 h exposure to 25 pM of quercetin has been 

observed.

Quercetin seems to inhibit the activity of DT-diaphorase, NADPH cytochrome c 

reductase and glutathione reductase (Rodgers et a l , 1998). Quercetin appears also to 

inhibit the transcription with RNA polymerase II. This was observed in the 

transcription of a-amanitin-sensitive and resistant transcription in permeable cells 

(Rodgers etal., 1998).

Dietary iron may contribute to colon cancer risk by production of reactive oxygen 

species. To prove this premise, effects of Fe-NTA were measured with H2O2 in a 

Fenton reaction with quercetin (in concentrations of 25-100 pM) in breast 

adenocarcinoma. Inhibition of damage by quercetin reflects the potential of 

antioxidant compounds to influence this risk factor (Nose et a l , 1984; Latunde-Dada 

et a l , 2002).

Quercetin is known to inhibit heat shock protein synthesis of cancer cells and has 

being compared with the mixture of flavonoids named Sunphenon on effects on 

human cholangio-cellular carcinoma cell lines. Quercetin showed an inhibitory effect 

on tolerance to heat shock treatment. This effect may be due to a marked suppression
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of hsp72 and a delay in the reorganization of filamentous actin (F-actin) during the 

recovery period after the heat shock. As hsp90 could preserve F-actin structure during 

stress, quercetin might affect the interaction between hsp90 and F-actin without 

influencing hsp90 expression (Kudo et al., 1999).

Quercetin has been investigated as a potential chemopreventative agent against 

certain carcinogens. Acting alone, quercetin showed no interaction with DNA, but in 

the presence of Cu (II) quercetin induced DNA damage. The most effective doses of 

quercetin are 20 pM, 50 pM and 100 pM. A possible mechanism is shown in Scheme 

1(Yamashita et a l , 1999).
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Scheme 1: The mode of action of quercetin (Yamashita, 1999)

Flow linear dichroism spectra showed evidence that quercetin can intercalate DNA. 

The interaction is probably due to van der Waals interactions between the most
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hydrophobic segment of the flavonol (benzopyran-4-one) and the intercalation site 

(Zhu et a l , 2002), also 3’ and 4’ adjacent hydroxyl groups play an important role in 

the process of intercalation. This allows the chromophore to penetrate the DNA helix 

and to arrange its planar structure more or less parallel to the adjacent planes of the 

nitrogenous bases. However, the affinity is very low compared with that of a typical 

intercalating agent (Yamashita et al., 1999).

Repair effects of rutin and quercetin on purine deoxynucleotide radical cations were 

proposed as a chemopreventative activity of the flavonols. A pulse radiolysis 

technique was used for testing this premise on oxidizing deoxyguanosine 

monophosphate (dGMP). DNA damage can be caused by ionizing radiation, UV 

light, chemical agents and / or reactive oxygen species formed in the normal 

metabolism. The primary and transient forms of DNA damage are DNA base 

radicals, including radical cations and anions, which are the major products of 

ionizing radiation or oxidizing intermediates of chemical carcinogens. These radicals 

may be responsible for inducing strand breaks and form stable base lesions. Quercetin 

and rutin act as potent antioxidants, reacting with the reactive oxygen species (with 

high rate constants) and producing a stable phenoxyl radical. These properties are 

also essential for the fast repair of purine deoxynucleotide radical cations (Solimani et 

a l , 1996; Wang et al., 2001).

The mechanism of action (Zhao et al., 2002; Evgeny et al., 2003) could be explained 

by:

dGMP + • OH —> dGMP-OH* (ki)

Q (or R) + • OH —» Q(R)-PhO- (fe)
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where the reaction probability (P) is:

P=A:/[dGMP]/(&/[dGMP]+&2[Q])=0.966

This calculated result means that 96.6% of *OH produced react with dGMP to form 

dGMP-OH*. The P of dGMP reacting with *OH in repair system containing 0.1 mM 

rutin was calculated to be 97.4%. Therefore, it may be assumed that in the present 

repair system *OH reacts with dGMP predominantly to generate dGMP-OH*. 

Addition of *OH to dGMP produced two types of *OH adducts with respect to their 

redox properties, oxidizing *OH adduct (50%) and reducing *OH adduct (50%). The 

oxidizing dGMP-OH* is formed mainly by the addition of *OH to C4 (dGMP-4-OH*) 

of the purine ring. With unpaired spin density located on O atom, dGMP-4-OH* is 

oxidizing, and hence can react with quercetin and rutin. High stability of the 

complexes Q-PhO* and R-PhO* would prevent phenoxy radicals reacting with other 

biomolecules.

L2.2.d: Daidzein

Daidzein (Compound 8) belongs to a variety of organic molecules named 

isoflavonoids.

Isoflavonoids are divided into seven categories: isoflavone, isoflavane, isoflavanone, 

coumestane, pterocarpane, rotenoid, coumarone and chromone.
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Compound 8: Daidzein.

The majority of isoflavonoids are present in soybeans. Daidzein, amongst them, is 

present in the form of glycoside; esterified with malonic acid (Watanabe et al., 2002). 

Isoflavonoids are thought to be the biologically active components in soy. They play 

a role in the prevention of coronary heart disease and breast and prostate cancer. 

Mechanisms to explain how isoflavonoids mediate beneficial effects have not yet 

been clearly established.

Another characteristic of isoflavonoids is their structural similarity with estrogens. 

They are, thus, named phytoestrogens (plant substances similar to 17-beta-estradiol 

with estrogenic effects (Lei et al., 2002).

The antitumour activity of daidzein has been tested in order to elucidate a mechanism 

of action. It has been found that daidzein is active against human colon tumour cells. 

A study based on cell cycle progression and differentiation of murine and human 

cells, showed that daidzein increased the cell number at S phase and decreased the 

cell number at G1 phase.

Daidzein can inhibit certain malignant phenotype of melanomas via different 

mechanisms, and could be a potential candidate for melanoma cancer therapy (Wang 

G et a l, 2002). Some epidemiological studies suggest a protective effect on the 

development of colon cancer in humans, even though this hypothesis could not be
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proven in ApcMin mice model (Sorensen, 1998). Some dietary studies demonstrated 

that certain phytoestrogens are capable of reductase induction on the ratio of 

NADPH:quinone (NADPH is reduced P-nicotinamide adenine dinucleotide 

phosphate) in colon cells by promoting NADPH iquinone reductase mRNA 

expression. This suggests a novel mechanism by which dietary phytoestrogens may 

be implicated in colorectal cancer chemoprevention (Wang W et al., 1998).

Other targets have also been related to the activity of daidzein. Daidzein presents the 

ability to induce osteoclasts directly or indirectly from their progenitors and might be 

a tool for the study of osteoclast differentiation (Tobe et al., 1997).

1.2.2.e: Puerarin

Puerarin is the major active ingredient isolated from Radix puerriae (Compound 9). 

In China, it has long been used to treat patients with coronary atherosclerosis, because 

it has the effect of dilating coronary arteries. Puerarin decreases the myocardial 

oxygen consumption by a receptor blocking effect (Youwen et al., 1999) and 

improves the microcirculation both in animal and in patients. Puerarin also acts by 

blocking the L-type calcium channels in ventricular myocytes, thus improving 

microcirculation.
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Compound 9: Puerarin

Reactive oxygen species play an important role in the genesis and development of 

many diseases, such as ageing, hypertension, inflammation, shock and 

atherosclerosis. ROS turn LDL into oxidized LDL by oxidative modification. A new 

way to prevent atherosclerosis is the scavenging of free radicals and preventing LDL 

oxidation. To test the puerarin activity, studies were performed using a riboflavin 

system to generate superoxide anions, Fenton reactions to generate hydroxyl radical, 

hydrogen peroxide to induce strand breaks on DNA and UV radiation and Cu(II) 

sulfate to cause the oxidative modification of LDL. The scavenging activity on ROS, 

the inhibitory effects on oxidative erythrocyte hemolysis, and the inhibitory action of 

puerarin on the oxidative modification of LDL were studied. The results showed that 

puerarin is active on reactive oxygen species and inhibits the oxidative effect on 

modifications of LDL; it also decreases the content of malondialdehyde and enhances 

the activity of superoxide dismutase. Puerarin could also inhibit the oxidative 

erythrocyte hemolysis and decrease the production of LPO induced by hydrogen 

peroxide (Guerra et a l , 2000).

It seems that puerarin acts as an enzymatic inhibitor of oxygen radical production, 

mediated by the peroxidase/H202/luminol/enhancer radical reactions, rather than a
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true antioxidant. A protective effect of puerarin against myocardial reperfusion injury 

has been shown, as well as ischemic retinopathy, since oxygen free radicals are the 

major culprits in these physiopathological processes (Overstreet et al., 1996).

The isoflavonoid puerarin has been traditionally used to combat alcohol problems. A 

study using rats chronically exposed to alcohol and withdrawn, showed an anxiety

like behavior generated by a BZD agonist or a human serotonin receptor agonist in a 

social interaction test. Puerarin increased and induced significantly the level of social 

interactions in the alcohol-withdrawn rats by modifying the GABAergic (y- 

aminobutyrate receptor) and serotonergic systems that underlie alcohol withdrawal 

symptoms (Lin R et al., 1996).

1.3.a: The role o f DNA

The definition of cancer chemotherapy is the use of cytotoxic drugs either to effect a 

cure or to prolong the life of cancer patients, on their own or as an adjuvant to surgery 

or radiation.

The desired effects of an antineoplastic drug are the disruption of the cell cycle in any 

phase and the interference with the ability of malignant cells to synthesise proteins, 

enzymes or cell-support chemicals.

The targets of cancer therapies are the molecules that participate in cell reactions 

leading a cell to a carcinogenic state or molecules vital to the survival of the cancer
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cell. The three most common targets for interrupting a disease process are: enzymes, 

receptors, nucleic acids.

The genetic information stored in the DNA double helix is replicated with a high 

degree of fidelity, transcribed into messenger RNA, maintained by DNA repair, 

rearranged by recombination processes, and translated into amino acid sequences of 

proteins (this is called the “central dogma” of molecular biology (Figure 3)) (Alberts, 

1994).

We can consider that attacking the DNA will produce an effect by interrupting the 

transcription of an undesirable protein and / or the replication of the DNA in the 

dividing cancerous cell.

o

DNA

^Information^1
Replication 
D N A  dup licates

DNA

1  riENA

^ f r r ^ T tVT ii f y* * * * ̂ J1 H i/E -  nacJ ^
Information ^I  i " cy to p l

nuclear envelope t

j j w H j

Itosome

Translation 
Protein synthesis

The Central Dogma of Molecular Biology

Figure 3: The “central dogma” of molecular biology

(http://www.accessexcellence.org, 20/07/2006)
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The process starts with the replication of DNA and the transcription of the coded 

information by a transcription process involving synthesis of RNA. The information, 

as messenger-RNA and transcription-RNA crosses the nuclear membrane where is 

translated in the ribosomes into proteins.

Cancer cells divide rapidly and an anticancer agent’s task is to prevent the cell from 

dividing. Each division requires the replication of the cell’s DNA (S phase of the cell 

cycle) and the transcription and translation of genes needed for growth; therefore any 

drug that can attack DNA is a potential inhibitor of cancer cell growth.

1.3.b: Types o f  DNA interactive agents

The interaction between the DNA and a drug can be addressed according to the 

properties that the drug shows towards DNA. Drugs bind to DNA in the following 

ways:

> intercalation: a drug slips between the base pairs thereby unwinding the DNA

> covalent binding: the drug binds covalently to N2, N7, 06, etc groups. The 

preference for guanines can be attributed to the participation of the 2-amino 

group in nucleophilic substitution and addition reactions

> groove binding: the drug binds no-covalently to specific regions of the major 

and/or minor grooves of the DNA, such binding occurs via:

■ hydrogen bonding between the drug and the hydrogen bond 

acceptors / donors of the base in the major and minor groove
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■ close van der Waals1 contacts

■ electrostatic attraction between drug and DNA

These ways of binding to DNA are used to describe and divide the drugs into the 

following different categories (Figure 4):

>  alkylators: the oldest class and most widely used anticancer agents. 

Almost all of these molecules are direct acting or latent prodrug forms of 

nitrogen mustards. The prodrug forms require enzymatic activation or chemical 

breakdown to the active species. Alkylators like quinacrine, bind covalently to 

electron-rich nucleophilic moieties (Stockmana et al., 2002). The most frequent 

site of DNA alkylation is the N-7 position of guanine; however, adducts are also 

formed at the 0-6 and N-l positions of guanine; N-7, N-3, and N-l positions of 

adenine; the N-3 position of cytosine; and the 0-4 position of thymidine (Ren et 

a l , 1999).

> intercalators: the intercalation process involves the insertion of an 

agent, usually a compound containing a planar, aromatic ring between the base 

pairs of the duplex nucleic acid, together with localization of substituents on the 

ring system in opposite grooves of the helix (Ren et al., 1999). In the binding 

process, therefore, one of the side chains needs to pass through the duplex. It 

has been found that intercalation is a necessary, though insufficient, property for 

high in vivo and in vitro anticancer activity.
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> crosslinking agents: these drugs are bi-functional and are able to

covalently bind to DNA and link either the 2 strands of DNA covalently 

together or link two parts of the same DNA chain in an intramolecular way. The 

chemical groups capable of this are present in nitrogen mustards, nitrosoureas, 

hydrazines and platinum compounds.

> code reading agents: These have the ability to bind sequentially and

selectively certain segments of DNA.

> double stranded breaking agents: they are usually known as a specific

category of antibiotics.

Figure 4: DNA interactive agents (Hurley, 2000). This figure clearly shows the mode 
of binding of a crosslinker agent, and intercalator, a double stranded break, a code 
reading agent and a quadruplex interactive agent.
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1.3. c. 1: Duplex DNA strucutures

Cancers mostly originate from alterations in the DNA, leading to the expression of 

unwanted enzymes and proteins. Targeting the DNA is one possible way to stop the 

cancer cells from reproducing themselves. Some types of DNA anticancer agents 

(cisplatin, doxorubicin) are non-selective agents, targeting the whole genome, while 

others are sequence selective agents permitting the interference with an undesired 

gene (amide linked imidazole / pyrrole oligomers) (Hurley, 2000).

Different types of DNA structures can be found in cells. In the most common duplex 

DNA form (Figure 5, B-DNA), the ribose -  phosphate backbone is on the outside, 

due to the mutual repulsion of the negative charges of the phosphates; therefore the 

bases face inwards and pack together. The bases are associated by complimentary 

hydrogen bonding: A:T and G:C. The bonding C:G is stronger than A:T due to the 

formation of 3 hydrogen bonds instead of two as in A:T (Baguley, 1981). The two 

chains are held together ( Figure 6) by hydrogen bonds between these complementary 

bases. The planes of the bases are perpendicular to the fibre axis and they are joined 

in pairs. One of the pair must be a purine and the other a pyrimidine for bonding to 

occur. If it is assumed that the bases only occur in the structure in the most plausible 

tautomeric forms (that is, with the keto rather than the enol configurations) it is found 

that only specific pairs of bases can bond together. These pairs are: adenine (purine) 

with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine) (Sun et 

a l , 2003). At lower water contents the bases tilt so that the structure could become 

more compact leading to an unusual form of DNA (Figure 5, A-DNA). Another
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unusual form of DNA is the so-called Z-DNA that appears under high salt 

concentrations, low pH and the DNA contains a large amount of G-C sequence.

P  ,  Major Groove

Major Groove

'  Minor Groove*

A -fo rm  R N A  B -fo rm  D N A  Z -fo rm  D N A

Figure 5: DNA duplexes (www.tulane.edu) in 3 possible conformations. Form A 
appears under dehydration, form B is the most common, and Z appears under high 
salt concentrations.

Figure 6: Hydrogen bonding (www.chembio.uoguelph.ca) between adenine - 
thymidine and guanine -  cytosine.

B-DNA is the most stable helical form adopted by random sequence DNA in 

physiological conditions (see Figure 5) and is the one mostly targeted by DNA 

interactive agents.

A-DNA is a conformation that appears under dehydrating conditions. This 

conformation is also stable for RNA because it avoids the steric interference of 2'-0 

and phosphate as well as for DNA-RNA hybrids.
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Z-DNA is formed at high salt concentrations by sequences rich in GC and have 

alternating purine -  pyrimidine pairs (GCGCATGCGC). Its relevance is still 

controversial (Mergny et al., 1992).

L3.C.2: DNA triple structures

Intermolecular triplex DNA only forms under certain conditions and thus its normal 

appearance in cells is still a matter of research. However, the formation of this 

unusual structure is explored as part of the antigene therapy, where triplex forming 

oligonucleotides have been shown to inhibit transcription of a promoter region, 

indicating that they could be used as selective gene repressors in cells (Spitzner et a l , 

1995). Some drugs (NB-506) are known to stabilize these structures allowing a better 

repression of the genes (Ren et al., 2000). The inter-molecular DNA triplex is formed 

when pyrimidine or purine bases occupy the major groove of the DNA double helix, 

forming additional Hoogsteen pairs with purines of the Watson-Crick base pairs 

(Figure 7). Intermolecular triplexes, formed by the addition of a sequence specific 

third strand to the major groove of duplex DNA, are shown to have potential as site- 

directed mutagens, repressors of transcription and inhibitors of replication. Antigene 

therapy is based on the use of triplex forming oligonucleotides to control gene 

transcription and replication (Jenkins, 2000).
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Figure 7 - Triplex base arrangements. The first arrangement is an example of TA.T 
triplet, the second is an example of CG.C+ triplet (which is protonated). The Watson 
-  Crick hydrogen bonds are the ones between the two bases on the right (in both 
examples), and the Hoogsteen hydrogen bonds are located on the left. Reverse 
Hoogsteen bonds (antiparallel fashion) can be found when the third strand consists of 
purine bases (www.imbg.ku.dk)

The triplet AT:T is more stable than CG:C, the latter requiring a non-ground-state 

protonated form of C. There are two types of triplex motifs: parallel motif (YRY) and 

antiparallel motif (RRY). The parallel motif is characterised by a homopyrimidine 

(dT, dC) third strand that binds parallel to the homopurine strand (dA, dG) of the 

duplex (central strand of the triplex). This motif has two types of triplets: a T:AT 

triplet which is formed when a thymine in the third strand Hoogsteen base pairs with 

an adenine in the duplex; and a C+:GC triplet which is formed when a protonated 

cytosine in the third strand Hoogsten base pairs with a guanine in the duplex 

(favoured by low pH) (Lipsett, 1964). The antiparallel motif is characterised by a 

homopurine third strand that binds antiparallel to the homopurine strand of the
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duplex. This motif has three canonical triplets: a G:GC triplet which is formed when 

a guanine in the third strand reverse Hoogsteen base pairs with a guanine in the 

duplex; an A:AT triplet which is formed when an adenine in the third strand reverse 

Hoogsteen base pairs with an adenine in the duplex; and a T:AT triplet which is 

formed when a thymine in the third strand reverse Hoogsten base pairs with an 

adenine in the duplex. The canonical triplets are not isosteric (Rajagopal et a l , 1989).

1.3.C.3: Telomeres

The vast majority of cancers occurring in human adults are carcinomas of epithelial 

origin. These tumours present highly rearranged karyotypes with a high frequency of 

non -  reciprocal translocations. These events are closely linked to cancer 

development by the generation of fused genes, modification of gene copy number or 

de-regulation of the expression of various oncogenes (O’Hagan et al., 2002). 

Epithelial tumours derived from normal cell lineages undergo continual proliferation 

throughout life, even though they present low telomerase activity leading to 

progressive telomere shortening in these cells (Maser et a l , 2002). The frequency of 

chromosomal fusion events seems to be proportional to the frequency of rapid 

telomere length changes. Some chromosomes with less than 200 base pairs telomere 

sequence show a rapid and heterogenous increase in chromosomal instability 

(Mumame et al., 1994).

Telomeres are complex structures comprised of higher order chromatin loop and 

specific binding proteins at each chromosome end. Telomeres can contain repetitive
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sequences such as G4T4G4, generated by telomerase, which are species dependent. 

Their function is to extend the genomic sequence so that the loss of nucleotides from 

the 3’ end is harmless.

Telomere length may be maintained in cancer cells by:

> the ribonucleoprotein telomerase (a specialised reverse trancriptase) (Lingner 

etal., 1997) or

> an alternative lengthening of telomeres (ALT) mechanism. The significance 

of this mechanism in carcinogenesis remains unclear (Stewart, 2002), 10% of 

human tumours present no detectable telomerase activity and some of them 

display an ALT positive mechanism, meaning that ALT + cells could induce 

tumours in vivo without excluding the possibility that some telomerase 

negative tumours might not have any telomere lengthening mechanism

Cytogenetic studies suggest that telomere maintainance via an ALT mechanism or 

telomerase activity is not equivalent in tumorigenesis efficiency (Scheel et a l , 2001). 

Inherited abnormalities of telomere maintenance may contribute to cancer and ageing 

(Reddel et a l , 2003).

In normal human cells, the telomeres contain up to 15 kilobases of tandem repeats of 

the hexanucleotide, TTAGGG, and this amount decreases by an average of 50-150 

base pairs per cycle, this event limits the number of times a cell can divide and acts as 

a tumour suppressor mechanism (Desmaze et al., 2003). The great majority of 

cancers escape from the limitations on proliferation, imposed by normal telomere 

shortening, via activation of a telomere length maintenance mechanism. In most
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cancers, telomere length is maintained by telomerase, but some are telomerase- 

negative and they maintain the length of their telomeres by ALT. The telomeric DNA 

sequence is recognised by specific binding proteins, and they form a putative cap 

structure that protects the chromosome end from degradation or from attempted DNA 

repair. The telomere of normal and telomerase positive cells form a loop structure in 

which the chromosome end is effectively hidden. Uncapping results in the 

recognition of the telomere by the cell as a DNA break, and the probability of 

uncapping increases as the telomere shortens (Blackburn, 2000). Repression of 

telomere maintenance in ALT cell lines results in cell death or senescence, this 

suggests that inhibitors to telomere length maintenance mechanism may be a useful 

form of cancer treatment (Perrem et a l , 1999).

Telomere sequences are composed by four strands that associate through guanine 

quartets, (Figure 8); this structure is called a tetraplex or quadruplex. A central role 

for the whole structure is played by the single stranded 3’G -  rich overhang of around 

150 -  200 bases in length, which can form characteristic G-quadruplex secondary 

structures under physiologic ionic conditions.

DNA quadruplex and G quartets are four stranded structures, (Figure 9). They are 

found naturally as terminating sequences at the ends of eukaryotic chromosomes or 

telomeres (Wang J, 1991).
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Figure 8: Guanine quartets (www.il.mahidol.ac.th/.../quadruplex3.gif, 20/07/2006 )

Quadruplex strands may be arranged parallel or antiparallel; when they are 

antiparallel the guanines are in syn conformation on one strand and in anti on the 

other; see Figures 9 (Cheng, 1999).
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Figure 8: Guanine quartets (www.il.mahidol.ac.th/.../auadruplex3.gif. 20/07/2006 )

Quadruplex strands may be arranged parallel or antiparallel; when they are 

antiparallel the guanines are in syn conformation on one strand and in anti on the 

other; see Figures 9 (Cheng, 1999).
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The intermolecular antiparallel G -  quadruplex model and the intramolecular basket 

G -  quadruplex model are potentially involved as anaphase bridges, telomeric and 

promoter regions. It has been hypothesised that these structures might be important 

for telomere function (Sen, 1988); the 3’ overhang structure could hinder the telomere 

from elongating and inhibit the activity of the enzyme. Compounds like 3,6-bis- 

amidoacridines (Schultes et a l , 2004) stabilise G-quadruplex structures and 

stabilisation of these structures is an attractive target for telomerase (or ALT in some 

cancers) inhibition leading to a new strategy in the search of anticancer agents.

1.3.d.e: DNA -  metal interactions

Trace and ultratrace metal concentrations play a definitive role in many biological 

processes and without their intervention many reactions would not proceed. Metals 

have a natural aptitude for interacting with DNA because of their affinity for basic 

nitrogen and oxygen donors. Cellular regulation also depends on metals, in the form 

of metallonucleases, to catalyse and repair DNA strand breaks. Lewis acidic metal 

ions like Cu2+, Zn2+, Fe3+ are supposed to cleave the phosphodiester bonds as they 

would lower the pK* of coordinated water forming an active hydroxide nucleophile 

(Boemer et al., 2005).

A positively charged metal ion can interact in different ways with the negatively 

charged residues of DNA phosphates and the electron donor atoms of the bases, such
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as N and O. The predominant mode of metal binding takes place at the N7 and O6 of 

guanine, the N7 and N1 of adenine, and the N3 of pyrimidines.

Alkali metal ions prefer to interact with AT rich region of the minor groove. 

Transition metal ions usually bind directly to the bases and indirectly to the 

phosphate groups. Most of them react with the N7 atom of purine or N3 of 

pyrimidine thereby disturbing the double helix. The binding of transition metal ions 

particularly at G-C sites of DNA leads to damage through radical generation from 

oxidation by H2O2 . Figure 10 shows different possibilities of metal -  DNA binding.

Figure 10: Metal ions can bind to one or two sites of the same strand (intrastrand) or 
of the opposite strand (interstrand), or through intercalation in a complex form 
between the bases. The binding of metal ions can lead to single strand break (ssb) or 
to double strand breaks (dsb) (Anastasopoulou, 2003).
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1.4: Aims o f this PhD

The development of drugs that are highly selective and produce minimal toxicity to 

host tissue remains one of the most difficult challenges in cancer therapeutics. Since 

the majority of malignancies are treated with drugs in combination, one approach to 

solve this problem is to develop new therapeutic agents that will potentiate the 

effectiveness of current clinical treatments.

Drug discovery begins with the extraction of molecules from natural products, 

combinatorial libraries or by computer aided drug design; biophysical and biological 

tests are performed in order to identify a lead compound. Progressive modifications 

are performed in the selected scaffold with the aim of improving binding and 

anticancer activity; this is an iterative step, where tests give indications for 

synthesising a next generation of compounds, which are tested again. This leads to 

candidate compounds, to be tested in hospital facilities at clinical trials.

The intentions of this project are:

> to understand the mode of binding of selected compounds of natural origin 

with proven anticancer activity to a selected target

> to generate structure-activity studies that will provide a better insight into 

their mode of binding

> to synthesise compounds with improved affinity, selectivity and anticancer 

activity

To do this we have used a range of different biophysical and biological techniques to 

study drug -  DNA interactions. We subsequently used the results from these studies
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to propose additional structures to investigate and organic synthesis in order to obtain 

the desired molecules. We divided this project in 3 main steps:

> analysis of natural products for activity against a chosen target (Chapters 3); 

from here we selected a scaffold appropriate to use as a foundation for a first 

generation of modified compounds

> organic synthesis in order to modify the scaffold (chapters 2 and 4)

> structure-activity related studies and biological evaluation of the first 

generation of compounds with DNA (chapter 4).
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Chapter 2: Materials and methods
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2.1.a: Buffers

Buffer A: Na2HPC>4 2 mM, NaH2P04  8 mM with ImM EDTA 

(Ethylenediaminetetraacetic acid), pH 7.4.

Buffer B: Na2HP04 20 mM, NaH2P04 80 mM, NaCl 300mM, EDTA O.lmM.

Buffer C: cacodylate 50 mM, MgCh 50mM, EDTA O.lmM, pH 6.5.

Buffer D: Na2HPC>4 6 mM, Na^PCU 2 mM, NaCl 185mM, EDTA O.lmM, pH 7.4.

Buffer PBS: NaCl 150 mM, Na2HP04 8.1 mM, NaH2P04 1.9 mM,

Buffer TE IX: Tris HC11 mM, EDTA 0.1 mM

Buffer TBE IX: Tris borate 89 mM, EDTA 2 mM

Buffer TAE IX: Tris acetate 0.8 mM, 0.02 mM EDTA

Buffer E: hepes (N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid)) 10 mM

2.Lb:- Nucleic acids

STDNA (highly polymerized sodium salt; 58.8% A-T and 41.2% G-C (Arrowsmith, 

1999)), was purchased from SIGMA Aldrich (United Kingdom) and used in filtered 

buffer solutions. The molar concentration was determined spectrophotometrically, 

using an extinction coefficient: £260 = 13200 M^cm'1 for STDNA (Arrowsmith, 1999) 

and expressed in base pairs. Poly(dAdT)2, poly(dGdC)2, polydAdT, polydGdC, 

polydT polynucleotides were purchased from Sigma Aldrich (United Kingdom) and 

dissolved in water to generate stock solutions. The molar concentrations were 

determined spectrophotometrically, using the following extinction coefficients: £260 = 

13100 M^cm"1, 16800 M^cm’1, 12000 M^cnT1, 14800 M^cm'1 (in the case of 

polydGdC we used maximum wavelength 253 nm, £253) and £260 = 8500 M^cm'1 

respectively and expressed in base pairs (Arrowsmith, 1999). Triplex DNA 

polydAdTdT was prepared using a ratio of 1:1 poly(dAdT):poly(dT). The molar
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concentration was determined spectrophotometrically, using the following extinction 

coefficient: 8260=17200 M^cm'1 (Arrowsmith, 1999) and expressed in base triplets. 

Triplex purine (G3A4G3:C3T4C3:G3A4G3) was prepared using a ratio of 2:1 

(G3A4G3:C3T4C3). The molar concentrations were determined spectrophotometrically, 

using the following extinction coefficient: £255=11500 for G3A4G3 and 8271=8300 

M^cm'1 for C3T4C3 (Arrowsmith, 1999). For the quadruplex DNA, the human 

telomeric sequence (AG3T2AG3T2AG3T2AG3), was used. The molar concentration 

was determined spectrophotometrically, using the following extinction coefficient: 

£260= 73000 M^cm'1 and expressed in base quadruplex (Arrowsmith, 1999). 

Oligonucleotides were purchased from MWG (United Kingdom) and SIGMA 

Genomics (United States of America).

2.1.C.1: Chemicals

All compounds used in binding studies were dissolved in DMSO in stock 

concentration solutions of 10 mM. Artemisinin, baicalein, baicalin, chrysin, 

flavanone, flavone, hemin, holotransfenin, luteolin, puerarin, quercetin, rutin and 7- 

hydroxyflavone were purchased from Sigma -  Aldrich (United Kingdom). Artesunate 

was donated by Dr Thomas Efferth (Germany). 3',4'-Dihydroxyflavone was 

purchased from Lancaster Chemicals (United Kingdom). Daidzein was purchased 

from Acros Chemicals (United Kingdom). 8,13-Diethyl-6-methylquino[4,3,2- 

&/]acridinium iodide (in the future referred to as acridine derivative) was provided by 

Prof. Malcolm Stevens (University of Nottingham), e506 nm = 11635 M'1 cm'1 

(Missailidis, 2002). FeCL, FeCl3, MgCl2, ZnCl2, CuO and MnCl2 were dissolved in 

DMSO to form stock concentration solutions of 10 mM.
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2.1.C.2: Synthesis

Instruments:

Mass Spectrometry: ESMS VG Quattro from Fisons with a Waters 7.1.7 

autosampler, solvent 10:90 watenmethanol.

JH NMR and 13C NMR: 300 MHz Jeol instrument, chemical shifts and coupling 

contants are given in ppm and J in Hz, solvent used deuterated chloroform (CDCI3). 

IR (infrared): Perkin Elmer: 1710 Infrared Fourier Transform Spectrometer, all the 

samples were measured in methanol as solvent.

Melting point: Electrothermal Digital Melting Point apparatus, all measures were 

uncorrected.

Elemental Analysis: Medac Ltd.

2.1.d.I - Isoflavone (3-Phenyl-4//-chromen-4-one)

Compound 12

We followed the protocol of Singh (Singh et al., 1990): TTA (thallium (III) acetate) 

(1.2 equiv.) was added to a solution of flavanone (0.672g, 3 mmol) in acetonitrile (20 

ml) in the presence of p-toluenesulfonic acid (p-TSA, 0.4 equiv.). The reaction 

mixture was refluxed at 95°C for 24 h and cooled to room temperature; CH2CI2 (50 

ml) was added and the solution kept at 0°C for 15 min; the reaction was followed by 

TLC. The solid obtained was filtered to remove thallium salts and washed with 

CH2CI2 (2 x 25 ml). The combined filtrate was washed with H2O (2 x 50ml), 

followed by saturated aqueous NaHCC>3 (2 x 100 ml) then dried (MgSCU). The
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solvent was evaporated under vacuum and the residue purified by semi-preparative 

HPLC (high performance liquid chromatography) in an hexane:ethyl acetate (9:1) 

eluant. ES-MS m/z (relative intensity): 223(MH+). 'H NMR: 8.29 (dd, J 8.1/8.1, 1H), 

7.99 (s, 1H), 7.66 (t, J 7 .0 ,1H), 7.55-7.34 (m, 7H); 13C NMR (CDCL3): 176.2,156.2, 

153.0, 133.6, 131.8, 128.9, 128.5, 128.2, 126.4, 125.4, 125.2, 124.6, 118.0. Melting 

point: 135-136.5°C, literature reference 134-135°C (Singh et al, 1999). Yield: 0.33g. 

Extinction coefficient: 9266 M'1 at 310nm. 1

2.1.d.2 - Thioflavone (2-Phenyl-4//-chromene-4-thione) (Abdou et a l , 1994)

Compound 14

Lawesson’s reagent was used for this simple substitution of oxygen by sulfur: 

Lawesson’s reagent (0.6 equiv.) was added to flavone (2.23g, 10 mmol) dissolved in 

toluene (100 ml) and the reaction mixture was refluxed overnight. The reaction was 

followed by TLC. The solvent was evaporated and the residue purified by silica 

column chromatography using a hexane:ethyl acetate gradient as eluent followed by 

further purification by preparative TLC using hexane:ethyl acetate (70:30) as eluents 

to give a red solid. ES-MS m/z (relative intensity): 238.01 (M). !H NMR: 8.55 (dd, J 

8.25/8.25, 1H), 7.93 (dd, J 2.01/2.01, 2H), 7.73 (s, 1H), 7.65 (m, 1H), 7.5 (m, 4H), 

7.35 (m, 1H); 13C NMR (CDCLj): 202, 154.2, 151.5, 134.15, 131.8, 131.1, 129.9,

129.2, 128.6, 126.5, 126.2, 120.3, 118.4. IR: 2924.8, 2853, 1743, 1597, 1501, 1460, 

1261, 1121.4, 928.5, 769. IR (cm'1): 2924.8, 2853.1, 1743.3, 1597.4, 1501.8, 1460,

1261.5, 1124.4, 928.5. Elemental analysis found: C 75.2%, H 4.2%, calculated: C
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15.6%, H 4.24%. Yield: 1.65g. Extinction coefficient: 7799 M'1 at 470nm. Melting 

point: 84-85.5°C, literature reference 85-86° (Abdou et al., 1994).

2.1.d.3 - Azaflavone (2-Phenyl-4//-benzo[e][ 1,3]oxazin-4-one) (Kemp et al., 1980)

Compound 15

Benzoyl chloride (1 equiv.) was added to a solution of salicylamide (0.685g, 5 mmol) 

in toluene (30 ml). The reaction mixture was refluxed till no further change by TLC 

was observed. p-TSA was added, the solution refluxed and 1 equiv. of water was 

extracted by azeotropic distillation. The remaining solution was washed with 

saturated aqueous NaHCC>3 (2 x 50 ml), followed by H2O (2 x 25ml), then dried with 

MgSCU. The solvent was evaporated and the residue purified by silica column 

chromatography using a gradient of hexane:ethyl acetate as eluent. ES-MS m/z 

(relative intensity): 241.84 (M+NH^, 263 (M+K+). *H NMR: 8.18 (dd, J 7.5/1.03, 

2H), 7.5 (m, 5H), 7.3 (t, J 7.14, 1H), 6.83 (d, J 7.86, 1). 13C NMR: 167, 163, 155.1, 

134.5,133.9,129,128.6, 128,126.4,118.3,117. Yield: 0.05g.

2.1.d.4 - Flavone (2-Phenyl-4£7-chromen-4-one) (Ares et al., 1993)

Compound 10

KOBu (1 equiv) was added to dry THF (100ml) under a nitrogen atmosphere. The 

mixture was cooled to 0-5 °C, and 2-hydroxyacetophenone (0.408g, 3 mmol) in THF 

(100  ml) was added dropwise, the ice bath was then removed and the mixture allowed 

to warm to room temperature and stirred for 50 min. The reaction mixture was re
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cooled to 0-5 °C and benzoyl chloride (1 equiv) was added dropwise, the ice bath was 

removed and the mixture stirred at room temperature for 60 min. The mixture was 

again recooled to 5 °C and KOBu (1 equiv) was added, stirred at room temperature 

for 10 min and finally refluxed overnight. The mixture was diluted with water (100 

ml) and acidified to pH 2 with 1M HC1, the diketone was extracted into ethyl acetate 

(3 x 50 ml), washed with saturated sodium hydrogen carbonate (2 x 100 ml), dried 

with MgS(>4, and evaporated. Crystallization with ethanol afforded white needles. 

This crystalline diketone was dissolved in glacial acetic acid (30 ml) containing 

concentrated sulfuric acid (2 ml) and refluxed for 40 min. The acetic acid was 

removed by high vacuum evaporation, and the residue was poured onto crushed ice 

(200 ml) and the resulted solid was filtered. The product was purified by silica 

column using a gradient of hexane:ethyl acetate as eluent to give pure flavone. ES- 

MS m/z (relative intensity): 223.5 (M+H+l). ‘H NMR: 8.29 (dd, J 7.95/1.7, 1H), 7.91 

(dd, J 8.5/1.03, 2H), 7.68 (m, 1H), 7.55 (m, 4H), 7.35 (t, J 7.1/1.1, 1H), 6.76 (s, 1H); 

I3C NMR: 178, 162, 155, 133.8, 131.6, 129, 126.2, 125.5, 125.2, 118, 107.4. Yield: 

15.4% respect to 2-hydroxyacetophenone. Extinction coefficient: 9325.8 M1 at 313nm. 

Melting point: 98.5-100°C, literature reference 99°C (Shivhare et al, 1985).

2.1.d.5 - 3’,4’-Dichloroflavone (3',4'-Dichloro-3-phenyl-4//-chromen-4-one) (Singh, 

1993)

Compound 31

KOBu (1 equiv) was added to dry THF (tetrahydrofuran) (100ml) under nitrogen 

atmosphere. The mixture was cooled to 0-5 °C, and 2-hydroxyacetophenone (0.408g,
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3 mmol) in THF (100 ml) was added dropwise, the ice bath was then removed and the 

mixture allowed to warm to room temperature and stirred for 50 min. The reaction 

mixture was re-cooled to 0-5 °C and 3,4-dichloridebenzoyl chloride (1 equiv) was 

added dropwise, the ice bath removed and the mixture stirred at room temperature for 

60 min. The mixture was again recooled to 5 °C and KOBu (1 equiv) was added, 

stirred at room temperature for 10 min and finally refluxed overnight. The mixture 

was diluted with water (100 ml) and acidified to pH 2 with 1M HC1, the diketone was 

extracted into ethyl acetate (3 x 50 ml), washed with saturated sodium hydrogen 

carbonate (2 x 100 ml), dried with MgS0 4 , and evaporated. Crystallization with 

ethanol afforded white needles. This crystalline diketone was dissolved in glacial 

acetic acid (30 ml) containing concentrated sulfuric acid (2 ml) and refluxed for 40 

min. The acetic acid was removed by high vacuum evaporation, and the residue was 

poured onto crushed ice (200 ml) and the resulted solid was filtered. The product was 

purified by silica column using a gradient of hexane: ethyl acetate as eluent to give the 

pure flavone derivative. ES-MS mlz (relative intensity): 293 (M+H+). !H NMR: 8.1 

(dd, J 8.04/8.04, 1H), 8.03 (d, J 8.16, 1H), 7.8 (dd, J 8.678.6, 1H), 7.7 (t, 1H), 7.65- 

7.55 (m, 2H), 7.4 (t, 1H), 6.78 (s, 1H). 13CNMR: 117.5, 160.46, 155.7, 135.2, 134,

131.2, 131, 127.7, 125.3, 125.2, 125, 123.4, 118, 107.7. Melting Point: 203- 205 °C. 

Yield: 11.5% respect to 2-hydroxyacetophenone. Extinction coefficient: 2439 M'1 at 

320nm.

2.1.d.6 - 2-Acetylphenyl-3’,5,-dinitrobenzoate

no2
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Under argon dry triethylamine (1 equiv) was added dropwise to 2- 

hydroxyacetophenone (0.408g, 3 mmol) in dry diethylether (50 ml) with stirring and 

cooling in ice bath. The reaction mixture was allowed to stir for 15 min and 3,5- 

dinitrobenzoyl chloride (1 equiv) dissolved in dry diethyl ether (50 ml) was added 

dropwise over 30 min. The reaction mixture was allowed to attain room temperature 

and the product was used directly for the next procedure.

2.1.d.7 - 3*,5’-Dimtroflavone (3',5'-Dinitro-2-phenyl-4//-chromen-4-one) (Marder et 

a l ,1997)

NO,

N02

Comound 30

KOBu (1 equiv) was added to dry THF (100 ml) under a nitrogen atmosphere. The 

mixture was cooled to 0-5 °C and 2-acetylphenyl-3',5'-dinitrobenzoate (0.99g, 3 

mmol) in THF (100 ml) was added dropwise. The ice bath was then removed and the 

mixture allowed to warm to room temperature for 50 min and then refluxed 

overnight. Upon cooling, the mixture was diluted with water (100 ml), acidified to pH 

2 with 1M HC1, and the diketone was extracted into ethyl acetate (3 x 50 ml). The 

extraction was washed with saturated sodium hydrogen carbonate (2 x 100 ml), dried 

with MgSC>4, and evaporated. Crystallization with ethanol afforded yellow needles. 

This crystalline diketone was dissolved in glacial acetic acid (30 ml) and concentrated 

sulfuric acid (2 ml) and refluxed for 40 min. The acetic acid was removed by high 

vacuum evaporation, the residue was poured into crushed ice (200  ml) and the 

product was extracted with ethyl acetate. After evaporation of the solvent, the product 

was purified by silica column using a gradient of hexane:ethyl acetate as eluent to
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give the pure flavone. ES-MS m/z (relative intensity): 313.03 (M+H+). *H NMR: 9.8 

(d, J 2.2, 1H), 9.1 (t, J 2.01, 1H), 9.04 (d, J 2.01, 2H), 8.17 (dd, J 7.89/1.47/1.47, 1H), 

7.7 (m, 1H), 7.4 (dd, J 6.9/1.1/1.1, 1H), 7.01 (s, 1H); 13C NMR: 182.3, 162.5, 159,

149.1. 148.3, 137.3, 134, 132.7, 128.9, 127.5, 126.8, 124.9, 120.1, 109.2, 106.8. IR 

(cm’1): 3097.3, 1709.7, 1629.4, 1544, 1343, 1160, 756. Melting Point: 127 -  129.5 

°C. Yield: 0.4g. Extinction coefficient: 2276 M'1 at 403nm.

2.1.d.8 - 2,6-Dihydroxy-3-nitroacetophenone (Cushman et al., 1994)

o 2n

OH O

Nitric acid (density=1.42 mg/ml, 1.2 ml) in glacial acetic acid (2 ml) was slowly 

added to a solution of 2,6-dihydroxyacetophenone (2.4g, 16 mmol) in glacial acetic 

acid (13 ml) with stirring and cooling using an ice-water bath. The reaction mixture 

turned a dark-red colour and was stirred for 40 min at room temperature. The mixture 

was poured onto ice-water (80 ml) to give a solid product that afforded 2 ,6 - 

dihydroxy-3-nitroacetophenone by purification with silica column using a gradient of 

hexane:ethyl acetate as eluent and used directly for the next procedure.

2.1.d.9 - 5-Hydroxy-8-nitroflavone (5-Hydroxy-3',5'-nitro-3-phenyl-4H-chromen-4- 

one) (Cushman e ta l , 1994)

Compound 26

KOBu (1 equivalent) was added to dry THF (100ml) under nitrogen atmosphere. The 

mixture was cooled to 0-5 °C, and 2,6-dihydroxy-3-nitroacetophenone (0.6g, 3mmol) 

in THF (100 ml) was added dropwise. The ice bath was then removed and the mixture
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allowed to warm to room temperature and stirred for 50 min. The mixture was again 

cooled to 0-5 °C and benzoyl chloride (1 equiv) was added dropwise, the ice bath was 

removed and the mixture stirred at room temperature for 60 min. The mixture was 

recooled to 5 °C and KOBu (1 equiv) was added, stirred at room temperature for 10 

min and finally refluxed overnight. The mixture was diluted with water (100 ml) and 

acidified to pH 2 with 1M HC1. The diketone was extracted into ethyl acetate (3 x 50 

ml) and washed with saturated sodium hydrogen carbonate (2 x 100 ml), dried with 

MgS0 4 , and evaporated. Crystallization with ethanol afforded yellow needles. This 

crystalline diketone was dissolved in glacial acetic acid (30 ml) and concentrated 

sulfuric acid (2 ml) and refluxed for 40 min. Acetic acid was removed by high 

vacuum evaporation. The residue was poured onto crushed ice (200 ml) and the solid 

filtered. The product was purified by silica column using a gradient of hexane:ethyl 

acetate as eluent to give pure flavone. ES-MS m/z (relative intensity): 324 

(M+H+2/K). ‘H NMR: 8.3 (d, J 9.3, 1H), 7.8 (d, J 2.1, 2H), 7.5 (m, 3H), 6 .6  (s, 1H),

6.3 (d, J 9 .3 ,1H); 13CNMR: 182,169.1, 164.6, 157, 139, 132.3, 131.9, 130.4, 127.9,

126.5, 121.6, 119.5, 117, 107.8. Yield: 0.37g. Extinction coefficient 3355.3 M'1 at 

410nm.

2.1.d.l0 - 5-Hydroxyflavone (5-Hydroxy-3-phenyl-4//-chromen-4-one) (Ares et a l, 

1993)

Compound 20

KOBu (1 equiv) was added to dry THF) (100ml) under nitrogen atmosphere. The 

mixture was cooled to 0-5 °C, and 2,6-dihydroxyacetophenone (0.456g, 3 mmol) in
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THF (100 ml) was added dropwise, the ice bath was then removed and the mixture 

allowed to warm to room temperature and stirred for 50 min. The reaction mixture 

was re-cooled to 0-5 °C and benzoyl chloride (1 equiv) was added dropwise, the ice 

bath removed and the mixture stirred at room temperature for 60 min. The mixture 

was again recooled to 5 °C and KOBu (1 equiv) was added, stirred at room 

temperature for 10 min and finally refluxed overnight. The mixture was diluted with 

water (100 ml) and acidified to pH 2 with 1M HC1, the diketone was extracted into 

ethyl acetate (3 x 50 ml), washed with saturated sodium hydrogen carbonate (2 x 100 

ml), dried with MgS0 4 , and evaporated. Crystallization with ethanol afforded pale 

yellow needles. This crystalline diketone was dissolved in glacial acetic acid (30 ml) 

containing concentrated sulfuric acid (2 ml) and refluxed for 40 min. The acetic acid 

was removed by high vacuum evaporation, and the residue was poured onto crushed 

ice (200 ml) and the resulted solid was filtered. The product was purified by silica 

column using a gradient of hexane:ethyl acetate as eluent to give pure flavone. ES- 

MS m/z (relative intensity): 238.75 (M+H*). *H NMR: 12.58 (s, 1H, OH), 8.2 (m, 

2H), 7.9 (m, 2H), 7.55 (m, 2H), 6.8 (dd, J 8.25/8.25, 1H), 6.4 (d, J 8.2, 1H), 6.7 (s, 

1H); 13C NMR: 183.4, 163.7, 162.9, 158.9, 137.8, 136.8, 136.2, 135.5, 132.1, 129.1, 

126.4, 111.26, 107.2, 105.8. Melting Point: 148- 150.5 °C. Yield: 0.06g. Extinction 

coefficient: 2396.8 M'1 at 330mn.

2.1.d.ll - 6-Hydroxyflavone (6-Hydroxy-3-phenyl-4//-chromen-4-one) (Aksnes et 

a l ,1996)

HO"

Compound 19
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KOBu (1 equiv) was added to dry THF (100ml) under nitrogen atmosphere. The 

mixture was cooled to 0-5 °C, and 2,5-dihydroxyacetophenone (0.456g, 3 mmol) in 

THF (100 ml) was added dropwise, the ice bath was then removed and the mixture 

allowed to warm to room temperature and stirred for 50 min. The reaction mixture 

was re-cooled to 0-5 °C and benzoyl chloride (1 equiv) was added dropwise, the ice 

bath removed and the mixture stirred at room temperature for 60 min. The mixture 

was again recooled to 5 °C and KOBu (1 equiv) was added, stirred at room 

temperature for 10 min and finally refluxed overnight. The mixture was diluted with 

water (100 ml) and acidified to pH 2 with 1M HC1, the diketone was extracted into 

ethyl acetate (3 x 50 ml), washed with saturated sodium hydrogen carbonate (2 x 100 

ml), dried with MgS0 4 , and evaporated. Crystallization with ethanol afforded yellow 

needles. This crystalline diketone was dissolved in glacial acetic acid (30 ml) 

containing concentrated sulfuric acid (2 ml) and refluxed for 40 min. The acetic acid 

was removed by high vacuum evaporation, and the residue was poured onto crushed 

ice (200 ml) and the resulted solid was filtered. The product was purified by silica 

column using a gradient of hexane:ethyl acetate as eluent to give pure flavone. ES- 

MS m/z (relative intensity): 238.85 (M+H4). *H NMR: 11.6 (s, 1H), 7.8 (m, 2H), 7.4 

(m, 3H), 7.3 (d, J 8.1, 1H), 7.2 (dd, J 7.49/1.5, 1H), 7.1 (d, J 2.5, 1H), 6.7 (s, 1H). 13C 

NMR: 179.4, 163.9, 155.1, 154.7, 150.3, 148.7, 131.4, 128.8, 126.2, 123.7, 119.2,

107.7, 106. MP: 145 -  147 °C. Yield: 0.070g.
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2.1.d.l2 - 7-Methoxyflavone (7-Methoxy-3-phenyl-47/-chromen-4-one) (Shin et al., 

1999)

Compound 24

Methyl iodide (1 equiv) was added dropwise to 7-hydroxyacetophenone (0.714g, 

3mmol) in dry THF (100ml) with stirring at 50°C in presence of K2CO3 (3 equiv). 

The reaction mixture is allowed to stir till no further change was observed by TLC. 

The product was purified by silica column using a gradient of hexane:ethyl acetate as 

eluent. ES-MS m/z (relative intensity): 253.3 (M+H+). *H NMR: 7.9 (d, J 8.4, 1H), 

7.74 (m, 2H), 7.39 (m, 3H), 6.84 (d, 2.37, 1H), 6.8 (dd, J 8.72/2.3, 1H), 6.6  (s, 1H), 

3.78 (s, 3H). 13C NMR: 177.8, 164, 162.9, 157.9, 131.3, 128.9, 126.9, 126, 117.7,

114.3, 107.4, 100.3, 55.72. Melting Point: 111 -  112.8 °C. Yield: 0.67g. Extinction 

coefficient: 27255 M'1 at 310nm.

2.1.d.l3 - 5-Hydroxy-7-methoxychrysin (5-Hydroxy-7-methoxy-3-phenyl-7/7- 

chromen-4-one) (Shin et al., 1999)

0H 0 Compound 25

Methyl iodide (1 equiv) was added dropwise to chrysin (0.766. 3mmol) in dry THF 

(100 ml) with stirring at 50°C in the presence of K2CO3 (3 equiv). The reaction 

mixture was allowed to stir till no further change was observed by TLC. The product 

was purified by silica column using a gradient of hexane:ethyl acetate as eluent. ES- 

MS m/z (relative intensity): 269 (M+H4). !H NMR: 12.65 (s, 1H, OH), 7.77 (m, 2H), 

7.43 (m, 3H), 6.54 (s, 1H), 6.48 (d, J 2, 1H), 6.25 (d, J 2 ,1H), 3.77 (s, 3H). 13C NMR:
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182.3, 165.5, 163.8, 163.8, 162, 157.6, 131.7, 128.9, 126.1, 125.4, 105.6, 98.1, 92.6,

55.7. Elemental analysis, found: C 72.09%, H 5.17%, calculated: C 71.64%, H 

4.51%. Yield: 0.48g. Extinction coefficient: 5478 M'1 at 340nm.

2.1.d.l4 -  5,7-Dimethoxychrysin (5,7-Dimethoxy-3-phenyl-4H-chromen-4-one) 

(Shin etal., 1999)

Compound 22

Sodium hydride (2 equiv) was added to 5-hydroxy-7-methoxychrysin (0.8 lg, 3mmol) 

in dry THF (100 ml) with stirring at 50°C. Methyl iodide (1 equiv) was added 

dropwise to the reaction mixture, which was allowed to stir till no further change was 

observed by TLC. The product was purified by silica column using a gradient of 

hexane:ethyl acetate as eluent. ES-MS m/z (relative intensity): 283.51 (M+H+). *H 

NMR: 7.77 (m, 2H), 7.4 (m, 3H), 6.58 (s, 1H), 6.48 (d, J 2.2, 1H), 6.28 (d, J 2.2, 

1H), 3.86 (s, 3H), 3.82 (s, 3H). 13CNMR: 177.5, 163.9, 160.8, 160.5, 131.09, 128.8, 

125.8, 108.9, 96, 92.7, 56.3, 55.7. Elemental analysis, found: C 72.13%, H 4.96%, 

calculated: C 72.33%, H 5.00%. Yield: 0.24g. Extinction coefficient: 11494.9 M'1 at 

320nm.

2.1.d.l5 -  5,7-Diacetoxychryysin (5,7-Diacetoxy-3-phenyl-4//-chromen-4-one) 

(Shin etal., 1999)

oac o Compound 23
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Acetic anhydride (2 equiv) was added dropwise to chrysin (0.762 g, lmmol) in dry 

pyridine (50 ml). The reaction mixture was allowed to stir under reflux till no further 

change was observed by TLC. The product was purified by silica column using a 

gradient of hexane:ethyl acetate as eluent ES-MS m/z (relative intensity): 338 

(M+H+). ‘H NMR: 7.78 (m, 2H), 7.45 (m, 3H), 7.3 (d, J 2 .4 ,1H), 6.79 (d, J 2.4, 1H), 

6.59 (s, 1H), 2.35 (s, 3H), 2.29 (s, 3H). I3C NMR: 184.9, 164.5, 163.9, 163, 158.5, 

157, 149, 131.6, 128.7, 125.9, 124.4, 123.6113.5, 109, 108, 57, 39.7. Melting Point: 

196.2 -  197 °C. Yield: 0.68g. Extinction coefficient: 3577.8 M 1 at 315nm.

2.1.d.l6 - 7-(2-(Dimethylamino)ethoxy)-5-hydroxy-3-phenyl-4//-chromen-4-one 

(Briggs et al., 1982)

Compound 27

N,N-Dimethylethanolamine (1 equiv) was added to chrysin (1.52g, 6mmol) in dry 

THF (30 ml) in the presence of triphenylphosphine (1.1 equiv); sonication at 40 kHz 

was carried out till the materials were soluble. DIAD (1.3 equivalent) was added 

dropwise and sonication carried out for 60 min. The solvent was evaporated and the 

product poured into acidic water (100 ml). Dichloromethane (50 ml) was used to 

extract the triphenyl oxide and hydrazine derived product. The aqueous layer was 

neutralized (pH 7), extracted with ethyl acetate (3 x 20 ml), the extract washed with a 

saturated solution of NaHCC>3 (3 x 25 ml), dried with MgSCU and the solvent 

evaporated. The product was purified by silica column using a gradient of 

hexane:ethyl acetate:isopropanolamine as eluent. ES-MS m/z (relative intensity): 

325.48 (M+H+ 4). 'H NMR: 12.5 (s, 1H), 7.8 (d, J 2 .2 ,2H), 7.4 (m, 3H), 6 .6  (s, 1H),
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6.4 (d, J 2.2, 1H), 6.3 (d, J 2.2, 1H), 4.07 (t, J 5.6,2H), 2.7 (t, J 5.7, 2H), 2.3 (s, 6H). 

13C NMR: 182.4, 164.7, 164, 162, 158, 132, 131.3,129, 126.3, 106, 98.6, 93.2, 66.7, 

58, 45.9. Melting Point: 126 - 126.8 °C. Yield: 0.55g. Extinction coefficient: 10229 

M 1 at 309nm.

2.1.d.l7 - 7-(3-(Dimethylamino)propoxy)-5-hydroxy-3-phenyl-4//-chromen-4-one

Compound 28

N,N-Dimethylpropanolamine (1 equiv) was added to chrysin (1.52g, 6mmol) in dry 

THF (30 ml) in the presence of triphenylphosphine (1.1 equiv); sonication at 40 kHz 

was carried out till the materials were soluble. DIAD (1.3 equivalent) was added 

dropwise and sonication carried out for 60 min. The solvent was evaporated and the 

product poured into acidic water (100 ml). Dichloromethane (50 ml) was used to 

extract the triphenyl oxide and hydrazine derived product. The aqueous layer was 

neutralized (pH 7), extracted with ethyl acetate (3 x 20 ml), the extract washed with a 

saturated solution of NaHCC>3 (3 x 25 ml), dried with MgSC>4 and the solvent 

evaporated. The product was purified by silica column using a gradient of 

hexane:ethyl acetate:isopropanolamine as eluent. HRMS m/z (relative intensity): 

found 340.1543, calculated 340.1544. ‘H NMR: 7.8 (dd, J 1.65/ 2.2, 2H), 7.4 (m, 

3H), 6.6  (s, 1H), 6.4 (d, J 2.2, 1H), 6.3 (d, J 2 .2 ,1H), 4.07 (t, J 5.6, 2H), 2.7 (t, J 5.7, 

2H), 2.3 (s, 6H), 1.03 (q, J 6 .6 , 2H). I3C NMR: 187, 169.7, 168.4, 162.4, 136.5,

133.7, 130.8, 128.7, 126.4, 118.4, 110.2, 103.3, 97.63, 71.53, 60.7, 37.2, 31.9. Yield: 

0.52g. Extinction coefficient: 2476 M'1 at 370ntn.
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2.1.d.l8 - 7-(2-(mMorphoImoethoxy)-5-hydroxy-3-phenyl-4//-chromen-4-one

Compound 29

2-Moipholinoethanol (1 equiv) was added to chrysin (1.52g, 6mmol) in dry THF (30 

ml) in the presence of triphenylphosphine (1.1 equiv); sonication at 40 kHz was 

carried out till the materials were soluble. DIAD (1.3 equivalent) was added dropwise 

and sonication carried out for 60 min. The solvent was evaporated and the product 

poured into acidic water (100 ml). Dichloromethane (50 ml) was used to extract the 

triphenyl oxide and hydrazine derived product. The aqueous layer was neutralized 

(pH 7), extracted with ethyl acetate (3 x 20 ml), the extract washed with a saturated 

solution of NaHCC>3 (3 x 25 ml), dried with MgSC>4 and the solvent evaporated. The 

product was purified by silica column using a gradient of hexane:ethyl 

acetate:isopropanolamine as eluent. HRMS m/z (relative intensity): found 368.1492 

calculated calc 368.1494. ‘H NMR: 7.8 (dd, J 1.65/2.2,2H), 7.4 (m, 3H), 6.6 (s, 1H),

6.4 (d, J 2 .2 ,1H), 6.3 (d, J 2 .2 ,1H), 4.09 (t, J 5.6,2H), 3.64 (t, 4H), 2.7 (t, J 5.7, 2H),

2.5 (t, 4.74, 4H). 13C NMR: 182, 164.3, 163.6, 161.6, 157.3, 131.7, 131.5, 130.7,

128.7, 128.3, 128.1, 125.9, 105.4, 98.3, 92.8, 66.4, 53.6, 53.3, 39.9. Yield: 0.50g. 

Extinction coefficient: 5495 M'1 at 314nm.

2.l.e: Tumour cell lines

Clonal populations of the MCF7 cell line and the CCRFCEM cell line were used for 

cell viability, flow cytometry and Comet assay experiments; they were donated by the



University of Nottingham. They were cultured in an initial concentration of 5 x 106 

cells per well and used 24 hours later. These cells were routinely grown in RPMI 

(Roswell Park Memorial Institute) - glutamax (SIGMA Aldrich, United Kingdom) 

supplemented with 5%, respectively of heat-inactivated foetal calf serum (GIBCO, 

United Kingdom) at 37°C, and 6% CO2 in air. The cells were subcultured twice a 

week.

2.2.a.l: Methods

Drug - DNA ligand associations can be achieved via a combination of electrostatic 

forces, hydrogen-bonding, hydrophobic interactions, van der Waals forces, etc. Other 

factors, like neighbour exclusion and cooperativity, also play a role. The result of 

these interactions is the formation of a nucleic acid -  drug complex.

The interactions of salmon testes DNA, polynucleotides, DNA triple helix and DNA 

quadruplex structures with a range of compounds were studied using a range of 

physicochemical techniques such as spectrophotometric analysis, thermal 

denaturation and competition dialysis. These techniques allow us to study the strength 

of binding, mode of action and stability. Biological techniques, such us nucleic acid 

damage assay and footprinting, make it possible to identify the sequence specificity 

of the drugs towards nucleic acids structures. Some nucleic acid intercalators have 

been shown (Liu, 1989) to alter topoisomerase activity. Therefore topoisomerase I / II 

inhibition assays were performed to elucidate any activities of our compounds as 

verified by DNA unwinding. CYP1A1 belongs to the Cytochrome P450 family, and 

is involved in detoxification -  metabolic pathways. An analytical assay has thus been
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performed in order to find possible metabolites resulting from the metabolism of 

some of our compounds by CYP1 Al.

Cell work on breast cancer (MCF7) and leukemia (CCRFCEM) cell lines was 

performed for certain compounds in order to evaluate biological activity.

2.2.a.2 -  Spectroscopic methods for the study o f DNA-drug

interactions

There are several available methods for the study of the intercalation process, 

allowing the determination of the nature and affinity of the binding. Intercalation is 

an equilibrium binding process. To determine the association constant for this 

process, the concentration of free and bound drug in the DNA-drug mixture must be 

determined. This can be done by a number of techniques including 

spectrophotometric methods and equilibrium dialysis. Intercalation also causes 

changes in the physical properties of the molecules. These changes include the 

stabilization of the DNA double helix against thermal denaturation and the unwinding 

of the double helix, which can be monitored through changes in the absorbance of the 

DNA during melting.

2.2. a. 3 - Temperature denaturation studies

When the temperature of a solution containing helical nucleic acid is raised 

sufficiently, strand separation occurs, through a process called melting. The 

temperature that marks the midpoint of the melting process is termed the melting 

temperature (Tm), it is defined as the point where 50% of the DNA is in duplex form 

and 50% of the DNA is denaturated into single strands. Single strand DNA absorbs
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more UV light than double strands and as the bases unwind an hyperchormic shift can 

be observed in the absorbance at 260 nm during the melting assay.

The equilibrium for this is:

Helical nucleic acid ^ ^  Single stranded nucleic acid

For triple helix, two Tm values can be found; the equilibria are as follow:

Triple n. ----- ► Helical n. a. + single stranded n.a. <----- ► Single stranded n. a.

Association of ligands to nucleic acids can have dramatic effects on the helix -  coil 

transition, leading to an increase or decrease in the melting temperature. The bonding 

between AT bases is the first to break (as these bases are connected through two 

hydrogen bonds), followed by the CG pairs (as they have three); the ionic strength of 

the buffer also plays an important role, as salts can shield repulsion of negatively 

charged phosphate groups. The melting curve is sigmoid, which is an indication of a 

cooperative process; this increase in absorbance is because of the reduction in 

electronic interactions through base stacking and the final absorbance therefore 

approaches that of the nucleic acid bases taken as monomers. The inflection point in 

the curve is the Tm.

To determine the drug -  NA (nucleic acid) complex stability, the drugs were 

evaluated for their ability to stabilise or destabilise STDNA and polynucleotides 

against thermal denaturation. A positive result in this experiment indicates a 

stabilization of the nucleic acid through the drug interaction, while a negative result 

indicates that the drug destabilises the DNA structure.
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Optical thermal denaturation experiments were performed in stoppered quartz 

cuvettes using a UVIKON spectrophotometer fitted with a temperature control unit 

and a programmable heated cell holder capable of maintaining the temperature to 

within ±0.1 °C over a temperature range of 25 to 98°C in a 1 cm pathlength, 3 ml 

quartz cell. DNA-drug solutions were prepared by addition of the ligand compound 

to give a final drug concentration of 2 x 10'6 M and a final DNA concentration of

10'5M in the appropriate buffer. A fixed DNA:drug molar ratio of 5:1 was used. 

Heating was applied at l°C/min until the denaturation process was completed, the 

optical absorbance at 260 nm was recorded throughout the process. The data were 

plotted using the software program Origin (Microcal, USA) giving a sigmoid curve, 

the first derivative was used to identify the maximum which is the Tm (melting 

temperature; Tcompiex ). In each case the drug -  DNA complex was compared with 

DNA alone and ATm were obtained, where AT=Tb0UndDNA -  TfreeDNA-

2.2. a. 4 -  UV titrations

When light -  either visible or ultraviolet -  is absorbed by valence (outer) electrons 

these electrons are promoted from their normal (ground) states to higher energy 

(excited) states (Sheffield, 2004). Absorption of ultraviolet and visible radiation by 

organic molecules is restricted to certain functional groups (chromophores) that 

contain valence electrons of low excitation energy. The spectrum of a molecule 

containing these chromophores is complex because the superposition of rotational 

and vibrational transitions on the electronic transitions gives a combination of 

overlapping lines appearing as a continuous absorption band. Most absorption 

spectroscopy of organic compounds is based on transitions of n or n electrons to the
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7i* excited state (200 - 700 nm). These transitions need an unsaturated group in the 

molecule to provide the n electrons fhttn://www.cem.msu.edu. 20/07/2006).

The majority of flavones and flavonols exhibit two major bands in the UV/Vis region. 

Band I is in the 320-385 nm range representing B-ring absorption, and band II is in 

the 250-285 nm range representing the A-ring absorption. An increase in the number 

of hydroxyl groups induces a red shift, for instance baicalein (with hydroxyl groups 

in the 5-, 6- and 7-positions) has a maximum at 359 nm whereas quercetin (3-, 5-, 7-, 

3’-, 4’-positions) has a maximum of absorbance at 375 nm. The absence of a 3-OH 

group in flavones (which distinguish flavones from flavonols) means that band I is 

always at a shorter wavelength by about 20-30 nm. O-Methylation and glycosylation 

produce hypsochromic shifts (Markham, 1989).

2.2.a.5: Data fitting and experimentation

Measurement of NA-drug interactions using spectroscopic methods is based on the 

fact that electronic absorption spectrum of the unbound drug is altered upon binding 

to the nucleic acid. The optical changes, due to the binding process, can be 

quantitatively measured by performing a titration and a binding curve can be plotted 

(Connors, 1987). It is relevant to consider the drug’s absorption spectrum; as it would 

need to be in the UV/Visible region, but outside the range of 200 -  300 nm, where the 

nucleic acid absorbs, so any changes in the spectrum are attributed solely to changes 

in the drug spectrum (McGhee, 1974).

For most spectra, the sample solution obeys Beer’s law, which states that the light 

absorbed is proportional to the number of absorbing molecules (concentration of
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absorbing molecules); this is true for dilute solutions. A second law, Lambert’s law, 

says that the fraction of radiation absorbed is independent of the intensity of the 

radiation. The Beer -  Lambert law is expressed as:

A = ecl = \ogiolo/1

where A is the absorbance, e is the extinction coefficient, 1 is the cell path length (in 

this project it will be considered as 1cm) and c is the concentration of the analyte, Io is 

the intensity of the incident radiation and I is the intensity of the transmitted 

radiation. The absorbance of the free drug and NA must be linearly dependent upon 

concentration, and the extinction coefficient must be invariant. The flavonoid 

compounds and the NA obey the Beer - Lambert law in the range between 10'6 -  10'3 

M. Considering this fact, any changes observed during the titration can be related to 

the drug-DNA binding process.

The data obtained by this assay have been fitted in the following equation 

(Missailidis et a l 2002, Arrowsmith, 1999), using automated fitting in the Origin 

program:

(Absf -  jl + KnD + KAbso- yj(l + KnD + KAbso)2 -  AKKnDAbso j
Absc=--------------------------------------------------------------------------------------- \-AbsonD

2KnD

where:

Absc is the absorbance calculated (by the above equation); Absf is the final 

absorbance of the drug after titration (parameter 1, PI); Abs0 is the initial absorbance 

of the drug before titration (parameter 2, P2); K is the binding constant which
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indicates the strength of binding (parameter 3, P3); D is the drug concentration in the 

solution (parameter 4, P4); n is the number of drugs per base pair when fully bound 

(parameter 5, P5; see Figure 11 for an explanation)

n=1 n=2 n=3

\s\ \^\
L ^ J  i / k S J

Figure 11: DNA binding sites. The drug is represented by the green ball, and the 
binding site (n) is the number of base pairs per drug when fully bound, base on the 
nearest neighbour model. For n=l, the drug intercalates on each base pair, that 
situation would make the DNA to extend 100%, a very unstable situation.

Absorption spectra of the compounds were obtained using a UVIKON UV/Visible 

spectrophotometer. The Beer-Lambert law was obeyed within the concentration 

ranges used for both drug and DNA solutions. The extinction coefficients of the 

compounds were determined using the following procedure: measurement of 

intensity of absorbed light for solutions with various concentrations of the test drug; a 

plot of A vs c was constructed and the line-of-best-fit through the experimental points 

was obtained. The slope of the line passing through the origin (this intercept is zero) 

was taken as the molar absorptivity. To study the changes in the UV-visible 

absorption spectra of the drugs upon interaction with NA, the following general 

method was used for a fixed volume (1 ml for each compound in appropriate buffer) 

of an aqueous drug solution (unless stated differently, the concentration were made 

up to give an absorbance between 0.5 -  1, this resulted in values of 50 pM for 

duplexes and 25 pM for triplexes and tetraplexes). The concentration of the nucleic



acids was increased by sequentially adding 2 pi of a 0.02M nucleic acid stock 

solution. The concentration of the drug in the cuvette consequently varies and the 

absorbance was therefore corrected using a standard formula: Abscorr = Abs0ng x 

(1000 + V) / 1000; where V is the volume of nucleic acid added. The UV spectrum of 

the free drug was initially measured and its UV absorbance was included in the 

calculations of association binding constants as the initial titration point. The final 

titration point was the absorbance recorded as the completely bound ligand; 

experimentally, this point was obtained by adding volumes of nucleic acid till there 

was no further observed change in the absorbance or any increase in the absorbance 

was solely due to the nucleic acids’ absorbance.

2.2.a.4 - Fluorescence titrations

Absorption of UV radiation by a molecule excites it from a vibrational level in the 

electronic ground state to one of the many vibrational levels in the electronic excited 

state; this excited state is usually the first excited singlet state. A molecule in a high 

vibrational level of the excited state will fall to the lowest vibrational level of this 

state by losing energy to other molecules through collision. Fluorescence occurs 

when the molecule returns to the electronic ground state, from the excited singlet 

state, by emission of a photon, see Figure 12.
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Figure 12: Electronic states during different fluorescence processes. The blue line 1 
is the absorption process and the blue line 2 is the fluorescence process.
(Modification o fkerouac.pharm.ukv.edu/ASRG/HPLC/fluorescence.html. 
20/07/2006).

To study the changes in the fluorescence emission spectra of the drugs upon 

interaction with NA, the following general method was used for a fixed volume (3 ml 

for each compound in appropriate buffer) of an aqueous drug solution in a 3 ml quartz 

cuvette with 1 cm path length ; the excitation and emission slit widths were set at 5 

nm; the excitation and emission values were set by scanning of the free drug and 

emission wavelengths were chosen where there was no overlap with emission from 

STDNA or the buffer A. The concentrations of the nucleic acids were increased by 

adding 6 pi of a stock solution. The concentration of the drug in the cuvette varies 

and the emission was corrected using: Abscorr = Absorjg x (3000 + V) / 3000; where V 

is the volume of nucleic acid added. Fluorescence intensity values were monitored at 

the emission maximum of the free drug, the change in the emission maximum was 

followed during the titration and the values were recorded in a FluoromaxP (Jobin 

Yvon, Japan) equipment. The fluorescence emission of the free drug was initially 

measured and was included in the calculations of association binding constants as the 

initial titration point. The final titration point was the emission recorded as the 

completely bound ligand; experimentally, this point was obtained by adding volumes
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of nucleic acid till no further change in the emission was observed. Data were plotted 

to obtain binding constants as explained in 2.2.C.2.3

2.2.a.5: Competition dialysis

The competition dialysis is based on the thermodynamic principle of equilibrium 

dialysis. In the competition dialysis experiment, a volume of NA is dialysed against a 

solution containing the drug under study. After equilibrium is reached (usually in 24 

hours), the amount of drug bound to NA is measured by UV absorbance.

The amount of analyte bound is directly proportional to the association constant for 

ligand binding to a particular structure. In 200 ml of buffer D containing 1 pM of the 

test drug, a disposable dialyser membrane (DispoDialyzer® cat: 135506, cut off of 

1000 MW) was placed with 0.5 ml of 75 pM concentration of nucleic acids. The 

beaker was covered with Parafilm and wrapped in foil, and its contents were allowed 

to equilibrate with continuous stirring at 4 °C overnight. At the end of the 

equilibration period, nucleic acid samples were carefully removed to microcentrifuge 

tubes, and were made to a final concentration of 1 % (w/v) SDS (sodium dodecyl 

sulfate) by the addition of appropriate volumes of a 10 % stock solution of SDS up to 

1 ml. The total concentration of each test sample (Ct) was determined 

spectrophotometrically, the free ligand concentration (Cf) was determined 

spectrophotometrically using an aliquot of the dialysate solution. The amount of 

bound drug (Cb) was determined by difference, Cb = Ct - Cf
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2.2.b: Determination o f pKa in an automatic titrator

Many of the interactions between drugs and receptors are dependent on the ionization 

state of the functional groups involved in the interactions, the protonation state of an 

amino group will change the type of hydrogen bonding interactions it can be involved 

in, as well as allow for it to be involved in ionic or ion dipole interactions. The 

protonation state will also affect the solubility and availability.

Determination of the pKa values of the drugs was realized according the method 

developed by Seijeant, 1984. The measures were performed in an ETS822 end-point 

titration system (Radiometer, Copenhagen). The titrations started at approximately 

pH=2, with a concentration of each drug at 0.001 M and were performed using 

aliquots of 0.1 ml from a stock solution of 0.01M NaOH. After reaching the pKa, the 

titrations were continued till a basic pH was reached and no further change was 

observed. pKa values were calculated by plotting pH vs [NaOH] in Origin 6.0, the 

inflection point being the pKa value.

2.2.c: Nucleic acid damage

Oxidative DNA damage appears to play an important role in carcinogenesis, 

commonly as a result of mutations. This damage can become apparent as alterations 

in base pairs, adduct formation, strand breaks, and cross linkages. The most common 

is the DNA single strand break. In an agarose gel, circular and open NA runs with 

different speed. Open nucleic acid runs faster than nicked nucleic acid, and they can 

be seen as separate bands. Different band lengths in a same gel will allow us to 

identify interactions between the nucleic acids and the compounds.
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The samples were incubated for 30 min at 37°C. Standard solutions of STDNA, 

polydAdT, poly(dAdT)2, polydGdC, poly(dGdC)2 and polydAdTdT at 10'5M in 

buffer A and in buffer B for triple helix, were mixed with the various drugs (2 x 10' 

6M). The gel was 1% agarose, stained with ethidium bromide (2pg/ml) in buffer 

TAE, visualized under UV light and photographed. Gel electrophoresis was 

performed at room temperature at 75 volts in an electrophoretic tank (model Passed 

MPSU-125/200 submarine gel unit). The gel was photographed using Polaroid 

Black& White film #667.

2.2.d- Linear Taqpolymerase stop PCR and Footprinting assays

Footprinting analysis provides a means of identifying the sites of equilibrium binding 

drugs on DNA. The most frequently used probe in footprinting studies is the 

endonuclease DNase I. The enzyme not only reports the sites of ligand binding but, 

since it is sensitive to local changes in DNA structure, it has also been used to 

determine the sites of ligand-induced structural changes in DNA. These are reflected 

in enhancements in the DNase I cleavage rate, appearing as sites on the DNA lattice 

bind ligand. The rate of cleavage by DNase I at a phosphodiester linkage of DNA, is 

governed by rate expression. In the drug-DNA footprinting experiment, the drug may 

influence the cleavage rate by blocking the enzyme from cleaving at certain sites, 

altering DNA structure away from the sites of binding, or causing redistribution of 

the enzyme to regions where no drug binding is occurring. The redistribution of 

enzyme should lead to increases in the rate of cleavage associated with all sites not 

involved in binding. If the total amount of cleavage on the fragment remains constant 

as drug loading occurs, the amount of enzyme on the fragment is also constant. Thus,
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drug binding shifts enzyme to unblocked sites, increasing DNAse I concentration at 

these sites. This mechanism predicts that all unblocked sites will exhibit the same 

fractional enhancement, the magnitude of which is related to the fraction of the total 

number of enzyme cleavage sites which are blocked by drug (Ward et al., 1988).

The DNAsel footprinting protocol is based on the principle that DNAsel digests the 

DNA that is not bound to the drug. The result is gaps on the sequence of the DNA. A 

basic protocol is: incubation with the drugs, incubation with the DNAsel and loading 

of samples into a denaturating polyacrylamide gel for reading. In Figure 13 a 

footprinting scheme is shown.

Autoradiogram

X  '
DNA fragment

DNAsel

drug

iddqbII laJfa  i Jli =

footpmt

radios.ctiwe fragment

Figure 13: Dnase I footprinting representation. The drug is incubated with the DNA 
and the complex is digested with DNAsel that after radiography shows a gap in the 
bases when run in a polyacrylamide gel; this gap is called a footprint and represents 
the drug -  DNA binding site (Musciatti, 1995).
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DNA polymerase assay also determines the specificity of binding of drugs for DNA 

sequences. In this procedure the drug is incubated with the DNA and then the DNA is 

extracted from an agarose gel in order to remove any unwanted drug and buffer. A 

PCR (polymerase chain reaction) cycle is performed on the sample using a DNA 

polymerase (ex: Sequenase); after the sample is load in a denaturating polyacrylamide 

gel, the result is similar to the one obtained by footprinting as it is shown in Figure 

13. Topo 2.1 plasmid (390 pg) was linearised with EcoRl restriction enzyme (10 

Units) in lOx reaction buffer SH (50pl) and water (450pl), 1 hour at 37°C. The 

sample was precipitated with NaOAc (3M) and ethanol 95%. Linearised DNA (0.5 

pg) was incubated with 50 and 100 pM of each drug for 30 minutes at 37°C, in buffer 

A. The DNA was extracted from a 1% agarose gel using the gel extraction Qiagen 

Kit. Linear amplification was performed in a premix total volume of 17 pi containing 

0.5 pg of DNA, primer M13 Forward -21 (5'-TGTAAAACGACGGCCAGT-3') 

(lpl), primer M13 Reverse (5'-CAGGAAACAGCTATGACC-3') (lpl), 3.5x 

sequencing PCR buffer (7.2pl) and Sequenase (lpl); 4 pi of this premix was divided 

in 4 and added in a 0.2 ml eppendorf containing each one 2 pi of dATP -  dCTP -  

dGTP -  dTTP. The amplification procedure was carried out for 30 cycles, each 

consisting of 30 sec denaturation at 94°C, 15 sec annealing at 48°C and 1 minute 

chain elongation at 72°C. The samples were taken up in formamide dye (5 pi), 

denaturated at 95°C (4 min) and removed onto ice. The DNA fragments were 

separated on 0.4 mm, 41 cm, 6% polyacrylamide gels with buffer TBE at 50°C, 

3000V for approx. 10 hours. Results were observed on LI COR 4200 sequencing 

series. The sequence specificity of covalent DNA modification by the drugs has been 

determined using footprinting assays. Oligonucleotides were purchased from SIGMA



Genomics (United States) on a scale of 0.2 pM. Duplex DNA fragments were 

prepared by PCR reaction. Linear amplification was performed in a total volume of 

100 pi containing 0.5 pg of DNA (5- 

GGGAGACAAGAATAAACGCTCAAGCAGTTGATCCTTTGGATACCCTG GG

CCTGTTGTGAGCCTCCTGTCGAA-3'), primer M13 Forward -21 (5'-

GGGAGACAAGAATAAACGCTCAA-3') (lpl), primer M13 Reverse (5'- 

GCCTGTTGTGAGCCTCCTGTCGAA-3') (lpl), lOx PCR buffer (lOpl), 0.4 mM 

dNTP mix, 0.6 pi MgCk and 2U Taq polymerase. The amplification procedure was 

carried out for 35 cycles, each consisting of 1 minute denaturation at 94° C, 1 minute 

annealing at 48°C and 1 minute chain elongation at 72°C, with a final step of 10 

minutes at 72°C. The DNA was extracted by ethanol precipitation and incubated with 

100 pM of each drug for 60 minutes at 37°C, in lOmM phosphate buffer. DNAse I 

digestion was performed for 5 minutes at 37°C using 2 pi DNAse I diluted solution to 

achieve O.Olunits/ml. The solution was stopped with DNAse I stop solution (3 pi) 

and the DNA was heated to 95°C for 10 minutes and frozen immediately in liquid 

nitrogen. The samples were stored at -20°C.

Ladder: permanganate oxidizes the C5-C6 double bond in thymines and renders the 

DNA backbone sensitive to cleavage by piperidine. The 40 mM KMnC>4 solution is 

prepared in 0.01 M phosphate buffer and stored on ice. KMnC>4 stop solution consists 

of 20 mM Tris pH 7.4, 20 mM NaCl, 40 mM EDTA, 1% SDS, 0.4M B-MeOH and 

stored at room temperature so the SDS doesn't precipitate. DNA (0.5 pg) was mixed 

with 10 pi of ice cold 40 mM KMnC>4 and incubated for 2 minutes. The reaction was 

finished by adding 20 pi of stop reaction. The DNA is extracted by ethanol
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precipitation. The DNA was subsequently resuspended in 10 pi of 10% piperidine 

and incubated at 95°C for 30 minutes. The digested DNA was extracted by ethanol 

precipitation and resuspended in 2 pi of 0.05% bromophenol blue [w/v]; 20 mM 

EDTA in formamide) and 8 pi of distilled water.

Gel electrophoresis: the smallest glass plate was treated with 4 pi of PlusOne Bind 

Silane (Amersham Pharmacia Biotech, Sweden), in 1 ml of acidic ethanol (0.5% 

glacial acetic acid in 95% ethanol) to covalently attach the gel onto the glass plate, 

and let to dry for 5 min and remove the excess using a paper tissue moistened with 

95% ethanol. The larger glass plate was treated with 1 ml of a 2% solution of 

PlusOne Repel-Silane ES (Amersham Pharmacia Biotech, Sweeden) to assure gel 

release and let to dry for 5 min. A solution was prepared for 8% polyacrylamide 

sequencing gel; 7 M urea; 15 ml of RapidGel, 4 ml of formamide, 7.5 ml of 5X TBE 

with 525 pi of freshly prepared 10% ammonium persulfate and 112.5 pi of TEMED; 

and distilled ultra pure water added to make 50 ml of solution. The gel solution was 

applied to the assembled gel plates (0.4 mm thickness) and allowed 120 min for the 

gel to polymerize. The sequencing gel run at 80 W (42 mA; 1500 V) for 20 min or 

until the gel temperature reaches 55°C in 1 X TBE) 2 pi of 0.05% bromophenol blue 

[w/v]; 20 mM EDTA in formamide was added to the 10 pi reaction. The samples 

were denaturated for 10 min at 94°C in the thermocycler and placed on ice. Samples 

(5 pi) were loaded onto and run at 50 W for 80-100 min at 50-55°C.

Silver staining: the gel apparatus was disassembled carefully, separating the glass 

plates. The glass plate with the bound gel was placed onto a plastic tray. 1 L fixing 

solution (10% ethanol, 1% acetic acid) was applied and shaken gently for 10 min.
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The gel was washed with distilled H2O for 1 min. The oxidised gel was pretreated 

with 1 L of 1.5% nitric acid for 3 min, shaking gently. The gel was rinsed with 1000 

ml distilled H2O for 1 min. The gel was impregnated with 1 L of 0.2% AgNC>3 

solution for 20 min, shaking gently. The gel was rinsed with 1 L distilled H2O for 30 

s, twice. The gel was developed by applying 1 L of developing solution (30 g/1 

Na2CC>3; 0.54 ml 37% formaldehyde) and gently shaken until the solution is dark. 

The developing solution was subsequently removed. The developing reaction was 

stopped by adding 1 L of 5% acetic acid for 5 min. The gel was air dried overnight 

and scanned.

2.2. e : Topoisomerase I  and II inhibition -  DNA unwinding

DNA topoisomerases are a class of enzymes involved in the regulation of DNA 

supercoiling. Type I topoisomerases change the degree of supercoiling of DNA by 

causing single-strand breaks and re-ligation (see Figure 14). Type II topoisomerases 

cause double-strand breaks (see Figure 15). The different roles of DNA 

topoisomerase I and II may indicate an opposing pair of roles in the regulation of 

DNA supercoiling. Both activities are crucial during DNA transcription and 

replication, when the DNA helix must be unwound to allow proper function of large 

enzymatic machinery, and topoisomerases have been shown to maintain both 

activities. Inhibition of any of them would interrupt the processes of transcription and 

replication. Compounds like camptothecin and ureas are known inhibitors of these 

enzymes (Esteves-Souza, 2005)
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Figure 14: DNA binds to topoisomerase I and the double strand is nicked allowing 
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different supercoil DNA (http://bioweb.wku.edu/courses/biol220Q0/14Topoisomerase

/default.htmk 19/07/2006)
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Figure 15: Topoisomerase II interconverts topological isomers of DNA by breaking 
and resealing phosphodiester bonds (http://bioweb.wku.edu/courses/biol 
22000/14Topoisomerase/default.htmk 9/07/2006)

The topo I and II inhibition assays were carried out according to the manufacturer’s 

protocol of the topo I and topo II assay kit (TopoGen Inc., USA).

The kits used for these experiments were:
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TopoGEN Topo I Drug Screening Kit (representative for 100 assay kit size: 

supercoiled plasmid substrate DNA, 25 pg; relaxed and nicked plasmid DNA 

markers; 10X Topoisomerase I assay/cleavage buffer, 300 pi; sodium dodecyl sulfate 

(SDS) termination buffer (10%); 10X gel loading dye). Purified human 

topoisomerase was purchased from TopoGen and used according to the protocol 

provided by TopoGen. The control inhibitor was camptothecin, purchased by SIGMA 

Aldrich (United Kingdon), in a final concentration of 100 pM. Proteinase K was 

purchased by SIGMA Aldrich (United Kingdom).

TopoGEN Topo II Drug Screening Kit (representative for 100 assays: supercoiled 

DNA [pRYG DNA] 25 pg; markers are linear pRYG DNA and open circular DNA; 

10X Topoisomerase II relaxation assay buffer; 10X Topoisomerase II cleavage 

buffer; sodium dodecyl sulfate (10%); 10X Gel loading buffer (bromophenol blue, 

glycerol); control inhibitor, etoposide. Purified human topoisomerase II was 

purchased from TopoGen (USA) and used according to the protocol provided in the 

kit. Proteinase K was purchased by SIGMA Aldrich (United Kingdom). For 

toposiomerase II, cleavage as well as relaxation experiments were performed. kDNA 

/ topol and pRYG DNA / topo II were incubated at 37°C for 60 minutes with 

different concentrations of the drugs: 50 pM, 75 pM and 100 pM.

The reactions were stopped by adding 2 pi of SDS 10% and were followed by 

digestion with proteinase K, with an incubation time of 15 min at 37°C. The samples 

were run on a 1% agarose gel in TAE buffer, visualized under UV light and 

photographed. Gel electrophoresis was performed at room temperature at 75 volts in 

an electrophoretic tank (model Passed MPSU-125/200 submarine gel unit). For topol
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drug screening assay, the gel was stained after running in a solution of EtBr 5 jug/ml 

and destained in distilled water prior to be photographed using Polaroid 

Black%&White film #667.

For topo II drug screening assay, the agarose and buffer gel were containing EtBr 

(ethidium bromide) 5 pg/ml during running.

2.2./.1: Evaluation o f compounds in tumour models

The preclinical screening of potential anticancer drugs in tumour models involves in 

vitro and in vivo systems. This screening is based on the assumption that a correlation 

exists between the activity of a compound against human cancer cell lines and its 

therapeutic effect in human cancer.

2.2.f.2: Flow cytometry

The term "flow cytometry" derives from the measurement (meter) of single cells 

(cyto) as they flow past a series of detectors. The concept is that cells flow one at a 

time through a specific region where biophysical properties of each cell can be 

measured at rates of over 1000/sec. These biophysical properties are then correlated 

with biological and biochemical properties of interest. The cells are stained with 

fluorescent dyes which bind specifically to cellular constituents and the dyes are 

excited by the laser beam, emitting light at a longer wavelength. This emitted light is 

picked up by detectors, and these analogue signals are converted to digital so that
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they may be stored, for later display and analysis (Jaroszeski, 1997). Light scatter is 

utilized to identify the cell population of interest, while the measurement of 

fluorescence intensity provides specific information about individual cells. The 

measurement of the DNA content of cells was one of the first major applications of 

flow cytometry, the DNA content of the cell can provide information about the cell 

cycle, apoptosis, etc and consequently the effect of drugs on the cell cycle. This 

technique also provides percentages of cells on each cycle stage. The percentage of 

cells in the S-phase gives an indication of the proliferative activity of that cell 

population, as in this stage the cell synthesizes DNA. Another major stage is preGl, 

during which the cells prepares for RNA and protein synthesis and grows in size.

The ability of four structurally related flavonoids (baicalein, baicalin, daidzein and 

quercetin) to affect chemotherapy-induced apoptosis and cell cycle arrest of breast 

cancer MCF7 and leukemia cancer CCRFCEM cell lines was studied. The antitumour 

ability of flavonoids has been extensively documented, but the effect on cell cycle 

distribution is still unclear. Flow cytometry has been performed in order to elucidate 

the effect of our compounds to the cell cycle stages and induction of apoptosis.

MCF7 breast cancer and CCRFCEM leukemia cell lines were grown in 6 well-plates 

in an initial concentration of 3 x 105 cells/ml in the appropriate medium for 24 hours 

at 37°C and 6% CO2 in air. A period of 24 hours of incubation with 100 pM of the 

test compounds and similar concentration of DMSO, followed the initial step. MCF7 

cells were trypsinised, and both cell lines were collected in FACS tubes. After a 

centrifugation period of 8 minutes at 1200 rpm and decantation of supernatant, the 

cells were kept at 4°C overnight in a Fluorochrome solution (0.1 % Triton X I00,

94



0.1% Na-citrate, 50 fxg/ml Propidium Iodide, 0.1 mg/ml RNAseA), this solution is 

used as a dye for the DNA content in cells (the propidium iodide intercalates into the 

major groove of the DNA and produces a highly fluorescent adduct that can be 

excited at 488 nm with a broad emission around 600 nm) the samples were read in a 

Beckam Coulter Epics XL equipment employing a EXP032 (Applied Cytometry 

Systems) software.

2.2.f.3: MTS cell proliferation assay

Viability assays measure the percentage of a cell suspension that is viable. This is 

generally accomplished by a dye exclusion stain, where cells with an intact 

membrane are able to exclude the dye while cells without an intact membrane take up 

the coloring agent. The MTT/S cell proliferation assay is a colorimetric assay system 

which measures the reduction of a tetrazolium component into an insoluble formazan 

product by the mitochondria of viable cells. After incubation of the cells with the 

reagent, a detergent solution is added to lyse the cells and solubilize the colored 

crystals. The samples are read using an ELISA plate reader at a wavelength of 570 

nm. The amount of color produced is directly proportional to the number of viable 

cells. The system is a quantitative test, and because there is a linear relationship 

between cell activity and absorbance, the growth or death rate of cells can be 

measured. The Cell Titer 96® AQue0us Non Radioactive Cell Proliferation Assay 

(Promega, United Kingdom) is a colorimetric method for determining the number of 

viable cells in proliferation. The tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)- 

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2//-tetrazolium, inner salts) was
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dissolved in buffer PBS and electron coupling reagent (phenazine methosulfate) was 

added according to the protocol supplied. MCF7 breast cancer and CCRFCEM 

leukemia cell lines were grown in 96 well-plates in an initial concentration of lx l0 4 

cells/ml -  0.2 ml in the appropriate medium for 24 hours at 37°C and 6% CO2 in air. 

A period of 24, 48 and 72 hours of incubation with 0, 1,5, 10, 50, 100, 500 and 1000 

pM of the test compounds followed the first step. According to the protocol 40 pi of 

MTS -  PMS solution was added and incubated at 37°C and 6% CO2 in air for 2 hours 

prior to reading. Readings were recorded at 490 nm in a plate reader (model Anthos 

Labtec 2001), employing a Deltasoft3 (Biometallics Inc) software.

2.2.f. 4: COMET ASSAY -  Alkaline electrophoresis

Analysis of Oxidative DNA damage using the Comet assay: Oxidative DNA damage 

was measured in both cell lines using the Trevigen Comet assay. The assay is a 

sensitive technique for detection of DNA damage.

The samples are treated for 24 hours with the test drugs and for positive control, H2O2 

is used. When the samples are loaded in an agarose gel and electrophoresis is carried 

out, the DNA (negatively charged) will run towards the positive pole. The cells will 

remain in their position. If the DNA has been damaged, a smear band (like comet) 

will be observed coming out of the cell representing the various DNA fragments. In a 

negative result, the cell remains intact.

An explanation of the comet assay is shown in Figure 16.
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Figure 16: Comet Assay. In presence of a DNA damage agent (like hydrogen 
peroxide) the nucleus experience a retardation when the cell is run in an agarose gel, 
giving rise to a shape of a comet tail.

Protocol was based on the Trevigen Comet Assay manufacturer’s specifications 

provided in the respective kit. Briefly, both cell lines were grown overnight in an 

initial concentration of 3xl05 cells/ml in the appropriate medium for 24 hours at 37°C 

and 6% CO2 in air. A period of 24 hours of incubation with 100 pM of the test 

compounds followed the initial step. Treatment with H2O2 was used as positive 

control. Cells were suspended in LM Agarose, lOpl of sample per 70pl low melting 

Agarose (Trevigen) and pipetted (75 pi) onto each sample well of Trevigen Comet 

Slides. Subsequently, all slides were refrigerated at 4°C for 1 hour to allow adherence 

of the agarose to the slide, then immersed in lysis solution (Trevigen). Following 

lysis, all slides were placed in alkali buffer (0.3 M NaOH, 200mM EDTA, pH>13) 

for 40 minutes at 4°C to unwind the DNA. Next, the slides were electrophoresed at 

25V, 300mA for 30 minutes. After electrophoresis, slides were neutralized in 0.4M 

Tris-HCl buffer (pH 7.4), deionized water / ethanol and allowed to dry overnight.
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Slides were then stained with SYBR green in buffer TE pH 7.4. Samples were viewed 

on a fluorescent microscope with FITC filters (excitation 494 nm, emission 521 nm).

2.2.g: CYP1A1: Analytical assay for metabolites products

The cytochrome (CYP) P450 family of enzymes is responsible for the metabolism of 

the majority of drugs and xenobiotics, consisting in subfamilies of CYP1A, 2C, 2D 

and 3A. P450s most commonly catalyse monohydroxylation, but other reactions can 

be catalysed as well. CYP1A1 is an extrahepatic enzyme responsible for bioactivating 

several classes of food or environmental procarcinogens (polycyclic aromatic 

hydrocarbons (PAHs)) like cigarette smoking products and other products of 

combustion. The CYP1A enzymes are substrate inducible; and this induction occurs 

at the level of transcription and is mediated by the cytosolic aryl hydrocarbon 

receptor. Ligand binding to the receptor induces conformational changes (named 

transformation) which allow the AhR to translocate to the nucleus and dimerize with 

the AhR nuclear translocator protein. The complex AhR-ARNT functions as a 

transcriptional activator by binding to consensus sequences present in the 5’ flanking 

DNA of numerous genes (Williams, 2001). Decreased activation of carcinogens due 

to modulation of the CYP1A enzymes has been proposed as a possible chemo- 

preventive mechanism. Flavonoids are present in the daily diet, therefore we studied 

the possible number of hydroxylations for compounds 3, 4, 6 and 8 after incubation 

with CYP 1A1, as this enzyme is the one responsible for the majority of flavonoid 

metabolism in the human body. Solutions of substrates were prepared in DMSO at a 

concentration of 10 mM. Microsomal fractions of CYP1A1 were incubated in the
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presence of a NADPH-generating system at 37°C for 60 min in test tubes. The 

incubation mixture consisted of 0.2 g/L microsomal protein, 0.1 M potassium 

phosphate buffer (pH = 7.4), 0.066 mol/L glucose 6-phosphate, 0.026 M NADP+, 

0.065 M MgCL26H2 0 , 40 IU/ml glucose 6-phosphate dehydrogenOOase and 

concentrations of 0, 25, 50 and 100 pM of test compounds in final volume of 0.5 ml. 

The metabolic reaction was initiated by the addition of microsomal protein. After 

incubation for 60 min, the reactions were stopped by cooling on ice and the mixtures 

were vortexed for 1 min, centrifuged at 12,000 g for 10 min and the reaction 

supernatants were transferred to a clean tube and freeze dried. Samples required to be 

derivatised with BFTSA (N-methyl-N-(trimethylsilyl)-trifluoroacetamide) to enable 

analysis by GC-MS; as carbohydrates cannot withstand derivatisation, baicalin 

underwent acid hydrolysis prior to treatment with BFTSA.

Acid hydrolysis: H2SO4 (0.5 M) (1 ml) was added to each sample of baicalin. The 

solutions were incubated at 37 °C for 1 h. Double distilled water (1.0 ml) was added 

and the solutions were acidified by addition of concentrated HC1 (20 ml) and 

extracted twice with diethyl ether (2.0 ml). Diethyl ether was removed under a 

reduced pressure. Derivatisation: dried samples were derivatized by addition of 

BSTFA (100 ml) at 80°C for 12 hours.

Gas chromatography coupled with mass spectrometry (GC-MS): Analyses were 

performed using a HP 5973 mass spectrometer coupled to a HP 6890 gas 

chromatograph. Separation of the analytes was achieved using an HP 5MS capillary 

column, (30 m x 0.25 mm I.D., 0.25 mm film thickness). Helium was used as carrier 

gas with a linear velocity of 0.9 ml/s. The oven temperature program was: initial
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temperature 100°C, 100-270°C at 4°C/min, 270°C for 20 min. The GC injector 

temperature was 250°C; the transfer line temperature was held at 280°C. The mass 

spectrometer parameters for El mode were: ion source temperature: 230°C; electron 

energy: 70 eV; filament current: 34.6 mA; electron multiplier voltage: 1200 V.

2.2.h: Hemin sesquiterpenes interactions

The mechanism of action of artemisinin is still unclear, but most likely involves the 

formation of free radical intermediates, originating from the direct interaction of the 

endoperoxide group with the heme iron (Messori, 2003). Artemisinin becomes 

cytotoxic in the presence of ferrous iron. Since iron influx is high in cancer cells, 

artemisinin and its analogs selectively kill cancer cells under conditions that increase 

intracellular iron concentrations.

Solutions of 1 ml of hemin 18x1 O'6 M in buffer E were titrated with 0.01 M stock 

solutions of STDNA, artesunate and artemisinin in different ratios; with and without 

stock solutions of FeCh 0.01M. Absorption spectrums of the complexes were 

obtained with a UVIKON UV/Visible spectrophotometer. Data were plotted to 

analyse interactions.
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Chapter 3: Preliminary results
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3.1: Screening o f natural compounds

As explained in Chapter 1, a group of compounds isolated from herbal extracts was 

selected for biophysical and biological testing in order to establish if there is an 

interaction between these compounds and DNA.

3.2: Drug -  DNA interactions

3.2. a: Melting temperature

A stabilising DNA agent would increase the melting point of a DNA motif, a process 

that would interfere with the replication of DNA and would not allow the cell to 

synthesise DNA and replicate, eventually leading the cell to apoptosis. On the other 

hand a destabilising agent would shift the melting point to lower temperatures 

promoting the DNA structure to open. For STDNA and polynucleotides polydAdT 

and poly(dAdT)2, one transition from double helix to single stranded is present. In the 

case of triple helix polydAdTpolydT, two transitions are observed, from triple to 

double helix, and from double to single strands.

The experiments were conducted at pH 7.4 (physiological conditions) and pH 6.5 for 

purine triplex motif (environment required to facilitate the triple structure formation) 

and in the appropriate buffer according to the nucleic acid used; buffer A for 

duplexes, buffer B for polydAdTdT, buffer C for purine triplex motif and buffer D for 

quadruplex DNA (see section 2.2.a.l); all structures were monitored by melting 

denaturation to assess formation (refer to Figures 17 a , 17 b and Appendix). Melting
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points have been calculated as the maxima of the first derivative (or differential) of 

the sigmoide curve observed when measuring the UV spectra of DNA at various 

temperatures and fitting the data in Origin 6.0 (Figure 17). The results are shown in 

Table 1.

S T  D N A  m e l t i n g  c u r v e  w i t h  f i rst  d i f f e r e n t i a l  c u r v e
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Figure 17a: Representation of STDNA alone melting curve and the first differential 
indicating the maxima in the curve (pink) is the inflexion point in the melting curve 
(blue).
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Figure 17b: Representation of G-quadruplex alone melting curve and the first 
derivative (1st differential) indicating the maxima in the curve (pink) is the inflexion 
point in the melting curve (blue). The first inflexion point is the transition of the TTA 
bases belonging to the loop of the tetraplex and the second point is the transition of 
the G-tetrads in the tetraplex.
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Melting points for polydGdC and poly(dGdC)2  could not be calculated as the strength 

of the GC bonds is so high that denaturating points can not be measured in the range 

of 25 - 98°C. For STDNA quercetin and rutin showed a slight destabilising effect. In 

the case of polydAdT, none of the drugs showed any activity. For polydAdT-dAdT 

the drugs proved to be non-effective (Figure 18). Quercetin (Figure 19) and baicalein 

showed to stabilised the triplex helix polydAdTdT in the first transition, by 3.2°C for 

baicalein and 7.3°C for quercetin. However, the drugs provoked a slight 

destabilisation of the second transition (Figure 19 and Table 1). An acridine 

derivative was used as the positive control for melting stabilisation of STDNA 

(AT=12°C).

melting point for polydAdT-dAdT -ar tesuna te

0 .0 1 7 5  n

0 .0 1 6 5  -

8 
£
■e
w 0 .0 1 4 5  -
TO

0 .0 1 5 5  -

0 .0 1 3 5  -

0 .0 1 2 5

3 5 4 5 6 52 5 5 5 7 5 alone
tem perature artesunate

Figure 18: The results of the temperature denaturation studies for polydAdT-dAdT -  
artesunate show how artesunate (pink) does not affect the double helix melting profile
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Figure 19: The results for the temperature denaturation studies for polydAdTdT -  
quercetin show clearly that quercetin stabilises the first transition from triplex to 
double strand.

G-quadruplex oligonucleotides presented two transitions, the opening of the TTA 

loop, with a first melting point at 35.9°C and the opening of the G-bases forming the 

tetraplex strucutre with a second melting at 69.1°C. Artesunate, artemisinin, 

cantharidin and rutin do not have an effect on the stability of any DNA structure. 

Baicalein made the first melting point of the G-quadruplex disappear but did not 

affect the second, which indicates that baicalein binds preferentially to the TTA 

sequence. Baicalin and daidzein destabilised the G-quadruplex and caused its 

denaturation at a lower temperature. Puerarin did not affect the first transition of the 

G-quadruplex but stabilised the second one, implying a preference for the G-bases 

forming the quadruplex strucutre. Quercetin did not affect considerably the melting 

points of the G-quadruplex but it affected the denaturation pattern, producing the 

appearance of a third melting point (refer to Appendix).

105



Ta
bl

e 
1: 

Th
e 

re
su

lts
 

of 
the

 
te

m
pe

ra
tu

re
 

de
na

tu
ra

tio
n 

ass
ay

 
and

 
ou

r 
or

ig
in

al
 s

et 
of 

co
m

po
un

ds
 

are
 

sh
ow

n.
 In

 
the

 
ca

se 
of 

po
ly

dA
dT

dT
, 

all
 t

he 
co

m
po

un
ds

 
ap

pe
ar

ed
 

to 
in

te
ra

ct
, 

in 
so

me
 

ca
se

s 
sta

bi
lis

in
g 

the
 

fir
st 

tra
ns

iti
on

 
po

in
t 

(li
ke

 
ba

ica
lei

n 
and

 
qu

er
ce

tin
) 

and
 

in 
so

m
e 

ca
se

s 
di

sta
bi

lis
in

g 
the

 
fir

st 
tra

ns
iti

on
 

po
in

t 
(li

ke
 

ar
te

su
na

te
, 

ar
te

m
isi

ni
n,

 b
ai

ca
lin

, 
ca

nt
ha

rid
in

, 
da

id
ze

in
 

and
 

ru
tin

). 
In 

the
 

ca
se 

of 
G

- 
qu

ad
ru

pl
ex

, 
the

 
fla

vo
no

id
s 

ba
ic

al
ei

n,
 b

ai
ca

lin
, 

da
id

ze
in

, 
pu

er
ar

in
, 

qu
er

ce
tin

 
and

 
rut

in 
sh

ow
ed

 
re

m
ar

ka
bl

e 
ef

fe
cts

 
in 

di
ffe

re
nt

 p
oi

nt
s 

of
 

the
 

te
tra

pl
ex

, 
sta

bi
lis

in
g 

or 
de

sta
bi

lis
in

g 
the

 
tw

o 
tra

ns
iti

on
s 

ob
se

rv
ed

, 
or 

ad
din

g 
a t

hir
d 

on
e, 

in 
the

 
ca

se 
of 

qu
er

ce
tin

.

S
H

d
•Pdua
o

•pd

"wd
£

ddoou«
d
O'

ua
odPk

V
Nd

•Pdd
Q
d
d•c03pd
d
03
u

03o
• Pd
03
PQ
d

• Pd

73o*s
d•Pdd• P4cn
V
u
<
o
03
ddon4>
t:<

CM CM

CM

co
©

r-
d

oo
©

co
©

CM
©

co
©

©

C"-
© ©

CM
©

in
©

VO
©

tQ
Hyj

U
o

00
vo

vo
d

Hd
<d
©Oh

u
o
in

CM
d

£  O
<  O n

3  oo 
3© H 

Pk

On

co
■d-

in

co

CM
d
vo
d

l";
cm'

i
00
in

co
CMi
vd

co
cm’i
ON
vd

CMi
CM
CO

CM
CMi
vd

oo

in

in
d
OV
d

co
o
On
CM

On

CM
d

CM
o

ON

O n

COI
00
vd

o

/—\ M
<DH U o

d o o
H QU

p
d O n I* O n

VO d vo
d in 03 ON

o
d
O '
i

in
CO

a H U H

vo
o



3.2.b.l: Association binding constants

Artesunate, artemisinin and cantharidin have no UV/visible spectrum and fluorescence 

emission; thus this experiment was performed only for the remaining compounds. 

Extinction coefficients were determined for those peak maxima that lay outside the range of 

the absorbance of nucleic acids.

Compound Wavelength (nm) Extinction coefficient (M" 
*)

Baicalein 359 14898

Baicalin 315 15556

Daidzein 310 15639

Puerarin 340 14572

Quercetin 375 11806

Rutin 365 16956

Table 2: Extinction coefficients for baicalein, baicalin, daidzein, puerarin, quercetin and 
rutin in buffer A.

The appropriate concentration of drug for binding interactions was obtained after titrations 

were performed using different drug concentrations, based on a range of absorbance/drug 

concentrations. The best results were obtained for values of 0.5 of absorbance giving a 

general concentration of 5x1 O'5 M.

To examine the DNA binding properties, we performed UV/Vis and fluorescence titrations 

(see section 2.2.a.2. to 2.2.a.4). In practice, a solution containing the test compound is 

placed into a quartz cuvette, an initial spectra is recorded (Abso), nucleic acid aliquots are 

added and stirred into the test solution and a spectra is recorded after each addition; aliquots 

are added till no further change in the aborbance. The results are initially plotted into Excel 

(Figure 20, 22). Absorption measurements at the absorption maxima wavelength vs. DNA
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concentration were fitted into the binding equation (see section 2.2.a.3) to result in a 

binding curve points and a best fitted curve coresponding to a binding constant value (full 

line) (Figure 21).

A bathochromic shift was found in all cases, except for baicalein which exhibited a 

hypochromic shift. Isosbestic points are an indication of a two-state situation, one involving 

the drug unbound and the other the drug-DNA complex (drug bound); poorly defined 

isosbestic points may indicate an interaction involving more than two states (multiple 

binding motifs). For our preliminary set of compounds we observed the following 

isosbestic points: baicalein (312, 413 nm), daidzein (297, 365 nm), quercetin (302, 464 nm) 

and rutin (311, 420 nm).

baicalein STDNA

0.9 T

0.7

0.2

362 382 402302 322 342 422

nm

Figure 20: The results of the titration of baicalein with STDNA is shown and the arrows 

indicate two defined isosbestic points; a clear indication of the formation of a sinlge drug
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-  DNA complex.

Data: baicalein - polydAdT 
Model: missailidis

0 .4 6 - ChiA2 = 9.8976E-6 
RA2 = 0.9874

±0.00479
±0.00167

0.35708 
0.45464 
13823.62303 ±2688.07637

±0
±0

0 .4 4 - P2
P3
P4
P5

0.00005

'(0 0.42 -
X!

-Q 0 .4 0 -

JD
0 .3 8 -

0.36
0.00040.0001 0.0002 0.00030.0000

poly[dAdT]

Figure 21: The results of fitting the data into the binding association equation is shown

for baicalein -  STDNA complex. Please refer to see section 2.2 in Methods for an 
explanation of the parameters and the formula used.
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quercetin polydAdTdT

Figure 22: The results of the titration of quercetin with polydAdT-dT show two clear 
isosbestic points indicating a single binding of the drug to DNA triplex.

3.2.b.2: Duplex binding

The compounds do not have a strong binding affinity to any sequence A-T / G-C, with 

association constants in the range of 104 M"1. These results are in agreement with the 

melting temperature studies, where the AT of compounds for STDNA was not found to be 

> 1°C. The duplex binding data are presented in Table 3 for duplex binding constants and 

Figures 20a and 20b for fitting curves. All figures are shown in the Appendix section.

An acridine derivative was used as positive control for binding to STDNA (K lx l0 6 M '1) 

(Missailidis, 2002).

Other techniques besides UV/Vis titrations were employed in order to assess the binding 

association constants, like ethidium bromide displacement and quenching but they did not
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provide conclusive results. Another technique that would provide information is 

fluorescence (see section 2.2.a.4), this technique requires the compound to have 

fluorescence properties. For the fluorescence titrations with STDNA, the following 

excitation and emission wavelengths were used respectively: baicalein, daidzein and 

puerarin were excited at 450 nm and emitted at 530 nm, baicalin and rutin were excited at 

450 nm and emission was recorded at 531 nm, quercetin was excited at 450 nm and the 

emission recorded at 532 nm.
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Baicalein and quercetin presented similar values in magnitude for the different duplex 

forms in the order of 104M'1, with quercetin showing a slight preference for polydAdT. 

Baicalin, daidzein, puerarin and rutin presented low values for association constants, in the 

order of 103M'1, only rutin and puerarin presenting slightly higher values. With the results 

obtained from the duplex binding experiments we decided to investigate further the activity 

of the compounds on other DNA structures. Alternative DNA structures offer significant 

differences in terms of shapes and rigidity, compared to double stranded DNA. Specific 

recognition of higher order DNA, such as triplexes and quadruplexes by small ligands has 

been demonstrated in a number of studies (Ren, 1999).

3.2.b.3: Competition dialysis

To evaluate the selectivity of the drugs for different DNA structures, we performed a 

competition dialysis experiment using eight nucleic acid structures against a common drug 

solution. It is possible to correlate the amount of the bound dye to a given structure with the 

affinity of the dye for that sample (Ren, 2000), this means that the more drug found to be 

bound to the nucleic acid the more this drug will prefer that structure over the others. Each 

solution compound was placed in a beaker with the eight different nucleic acid structures 

(each structure was placed into a membrane in where the drug can cross the membrane 

freely but the nucleic acid will remain inside) and left to reach equilibrium for 24 h at 4°C. 

After this period of time the bound drug (the amount of drug inside the dialysis membrane) 

was measured by UV/Vis absorbance.
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Amongst the group of compounds, baicalein and quercetin proved to have the strongest 

activity when related to the amount of bound drug. Baicalein bound to all the structures in 

the same proportion while baicalin showed a slight preference for polydAdT and 

polydAdTdT. Daidzein and puerarin showed strongest selectivity for G-triplex, possibly 

due to the isoflavone skeleton penetrating easily the base pairs by having the B ring in 

position C-3. From these results we can pressume that hydroxyl groups in the A and B ring 

help to improve the binding; and sugar substitutions as in the case of baicalin and rutin, 

decrease the binding activity. In the case of the isoflavonoids, the B ring situated in C-2, 

decreases the binding activity. See Figures 23 a, b, c, d, e, f  for results.

b a ic a le in

polydGdC~dGdC r-T.r, . . ?̂ . r;̂ r.7,.V i.- r r i
polydGdC

polydAdT-dAdT
polydAdT

polydAdT-dT
Gquadruplex

STDNA

C 0.2 0.4 0.6 0 bound[u

Figure 23 a: Competition dialysis for baicalein showed preference for STDNA, this 
indicates a lack of selectivity of this compound for any precise sequence.

b a ic a lin

p o ly d G d C

p o ly d A d T

p o ly d A d T - d T

______________ 0-09 0.1 0.105 b o u n J ^ q

Figure 23 b: Competition dialysis for baicalin showed preference for polydAdTdT and 
polydAdT.
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polydGdC-dGdC 
polydGdC 

polydAdT-d AdT 
polydAdT 

polydAdT-dT 
Gquadruplex 

Gtrlplex 
STDNA

0.15  boundfiiM ]

Figure 23 c: Competition dialysis for daidzein showed preference for purine triplex and 
polydAdTdT. It might be triple structures can accommodate a plain isoflavonoid scaffold 
with the B ring facing outwards.

polydGdC-dGdC
polydGdC

polydAdT-dAdT
polydAdT

polydAdT-dT
Gquadruplex

Gtriplex
STDNA

° '15 b o u n tftA l]

Figure 23 d: Competition dialysis for puerarin showed preference for triplex purine. 
Puerarin has a similar structure that daidzein, indicating that isoflavonoids can interact 
better with G-triplex structures.

q u erce tin

polydGdC-dGdC

polydGdC
polydAdT-dAdT

polydAdT

polydAdT-dT

Gquadruplex
Gtrlplex

STDNA . .......... ,

C 0.5 1 boundpj H]

Figure 23 e: Competition dialysis for quercetin showed a high preference for G- 
quadruplex, this coincides with the binding constant this compound has exhibited for this 
structure.
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polydGdC-dGdC 

polydGdC 
polydAdT-dAdT 

polydAdT 

polydAdT-dT 

Gquadruplex 

Gtrlplex 
STDNA

0.02 0.04 0.06 0.08 0.1 0.12 O&tofcindEuM]

Figure 23 f: Competition dialysis for rutin showed preference for triplex purine, G- 
quadruplex and polydGdC-polydGdC. This compound seems to prefer GC sequences at 
any structure, as rutin is similar to quercetin except for rutinoside segment in OH-3 we can 
presume this sugar substituent plays a relevant role in binding to different DNA isoform.

3.2. b. 4: Triplex binding

Baicalein and quercetin showed higher affinity for both purine and pyrimidine triplexes 

therefore we selected these two compounds for binding studies to triplex and quadruplex 

DNA. Temperature denaturation studies confirm the hypothesis that these two flavonoids 

stabilize the triplex DNA structures. In the case of polydAdT, no significant increase on AT 

was observed, but when we performed the experiment with polydAdTdT, we found an 

increase of 3.2°C for baicalein and 7.3°C for quercetin (Table 2; see also Table 4 for 

binding constants). Baicalein presented similar values for both structures, which are similar 

to the one of quercetin for polydAdTdT; but quercetin exhibited very low binding for the 

GAG triplex.
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Table 4: The results of the binding constants for triplexes structures show baicalein and 
quercetin to have similar values

Compound dAdTdT
(UV)

GAG triplex 
(UV)

K (M'1) n R1 K (M'1) n R2
Baicalein 22704.5 4 0.98 23361.8 3 0.94

Quercetin 27058.1 3 0.99 2446.1 1.4 0.98

3.2.b.5: G-quadruplex binding

G-quadruplexes are a family of high order DNA structures formed in the presence of 

cations and consist of four strands of guanines stabilized in quartets. The 3’ terminal region 

of the G-rich strand of human telomeres is single stranded and may adopt a G-quadruplex 

conformation. This structure has been shown to inhibit telomerase elongation activity in 

vitro. Telomerase is expressed in germinal, but not somatic cells, as well as almost 80% of 

all cancers. Therefore, stabilization of G-quadruplex could interfere with telomerase 

elongation and replication of cancer cells. Competition dialysis suggests that some of the 

flavonoids interact with tetraplexes. To confirm this observation we performed UV-visible 

titrations for baicalein and quercetin. The chosen oligonucleotide mimics the repeats of 

human telomeric motif, and is supposed to adopt an intramolecular quadruplex structure 

(Sen, 1988). Titrations were performed using quercetin that showed moderate activity in the 

magnitude of near 105M_1 for the G quadruplex which is in agreement with quercetin’s 

stabilising effect to the melting denaturation pattern of the tetraplex strucutre. Baicalein
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presented a lower binding activity with a K of 19012.3 M"1, similar to the values obtain for 

the triplex structures. See Table 5 for binding constants.

Table 5: The results of the binding constants for G quadruplex show quercetin to be the 
more active compound.

Compound Quadruplex
(UV)
K /M '1 n R2

Baicalein 19012.3 2 0.98

Quercetin 85417.6 2 0.96

3,2.b.6: DNA-drug-metal interactions

In nucleic acids there are two classes of binding sites available for metal interaction: the 

heterocyclic bases and the negatively charged phosphate groups. As metals are positively 

charged we would expect them to interact with the phosphate groups. However, metal ions 

have been shown to interact also directly with the DNA base or through hydrogen bonding 

via water moleclules (Anastopoulou, 2003). Quercetin has shown to interact with copper 

and produce DNA damage (Yamashita et al., 1999). We decided to investigate if the 

carbonyl bond and hydroxyl group in the ortho position really produces this effect, or at 

least increase the binding activity. Four compounds from our original group have been 

investigated for their binding to STDNA (see section 2.2.a.2 and 2.2.a.3) in the presence of 

metal ions. Baicalein, baicalin, quercetin and rutin all have at least one OH group in the 

ortho position respectively to the carbonyl in C4 (for structures please refer to 

Introduction). Six cations (as oxides) were investigated as these are commonly found in the 

cell environment: Fe2+: as part of haems (Grandorri et al., 2000); Fe3+: as part of the
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94-transferrin family (Lambert et al., 2005); Cu : already described in drug -  DNA

94 - •interactions (Asadi et al., 2005); Mg : as the second most abundant intracellular cation 

modulating many processes (Mooren et al., 2005); Mn2+: active role in mitogen activated 

protein (MAP) kinase dependent pathways (Touyz et al., 2003); Zn 2+: as part of the zinc 

finger DNA binding proteins (Sepp et a l , 2005). Monovalent cations like Na+ and K+ do 

not bind directly to the DNA, the bind by the inner water sphere and they are also less 

reactive than divalent cations (Anastopoulou, 2003); for this reason we decided to study 

only divalent and trivalent cations. Spectrophotometry was the methodology of choice and 

we performed UV-Vis titrations as described before. We approached these experiments in 

two main ratios: metal -  drug, ratio 1:1 and then titrated with STDNA and metal -  drug, 

ratio 2:1 (when two unsubstituted hydroxyls are in ortho position) and then titrated with 

STDNA, in this way we saturated all the possible hydroxyl groups in the ortho positions of 

the drugs.

Results are presented in Table 6. For quercetin the binding was not improved overall 

compared with the binding to the STDNA alone, but it is possible that the hydroxyl in 

position 3 interacts with the carbonyl and the hydroxyl in position 5 forms a complex with 

the metal cation. In the case of rutin, the binding was increased dramatically for interactions 

with Fe2+ / Fe3+ / Zn2+ in ratios 1:1, probably due to the interaction of the metals in position 

7; it is also possible the rutinoside sugar in position 3 would allow the carbonyl to interact 

alone with the hydroxyl in position 5 and form a complex with the cation. The binding of 

baicalein to DNA was decreased in all situations, which shows that hydroxyls in ortho 

position of the A ring clearly form complexes with the metal that does not allow the 

molecule to intercalate the double helix; only with Fe2+ in ratio 2:1 did the binding constant
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for STDNA remained unchanged. Baicalin maintained in the same value for STDNA 

binding constant in presence or not of any metal cation.

Table 6: The results of the titrations of the metal -  drug -  DNA complexes. The ratios of 
drug: metal are indicated under the name of the drug, the binding association constants are 
expressed in M'1, the n value appears between brackets.

Cation Baicalein Baicalein Baicalin Quercetin Quercetin Rutin Rutin

1:1, K
/M*1

1:2, K
/M*1

1:1, K
/M*1

1:1, K/M* 
i

1:2, K/M*1 1:1, K/M*1 1:2, K/M*1

Cu2+ 2395 (2.2) 1388 (2.3) 1674 (2) 12132 (2) 16222.6 6.6) 1202.7 (2.7) No interaction 
observed

Fe2+ 1117(2.7) 15385
(2.3)

2027 (2) 12899 (2) 14447.8(8.4) 130794 (2.6) 1049.2 (2)

Fe3+ 1258 (2) 1164 (2.1) 2794 (2) 9504 (2.7) 10868 (7.7) 75787 (3.2) 1154(2.1)

Mg2" 1139(2.5) 1334 (2.2) 1523(2.6) 10959 (2) 7413 (4.8) 1121 (2.5) 1119.3 (2.4)

Mn2+ 1210 (2.5) 1235 (2.3) 1086(1.9) 7885(3.3) 11307 (6.9) 10129(2) 1091.9(2.3)

Zn2+ 1625 (2.1) 1170(2.2) 1884(2.1) 10739(2.1) 10101.3 3.3) 46157 (2.5) 927(2.1)

3.2.c: Nucleic acid damage assay

Nucleic acid damage was examined by gel electrophoresis. This experiment would allow us 

to see if there is any interaction between the different nucleic acid structures and all the 

compounds, including artesunate, artemisinin and cantharidin that could not be tested by 

UV/Vis spectroscopy. Samples of complexes formed between the different nucleic acid 

isoforms and the test drugs were incubated for 30 minutes at 37°C (see section 2.2.c).

For artesunate and artemisinin, we used Fe2+/Fe3+ redox couple (ratio 1:1:1, 

metal:metal:DNA) to allow a possible mechanism of stand break as was postulated by Dr
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Efferth (recommendation by personal communication). Unfortunately, the redox couple 

damages the nucleic acid by itself and no further improvement was found when the drugs 

were added. We tested all the compounds with all the nucleic acid isoforms and no 

remarkable interaction was found for the different nucleic acid structures. In Figure 24 an 

example can be seen for the case of polydAdTpolydT.

polydAdT

holotransferrin 
+ferrosanol

Figure 24: The results of the nucleic acid damage of the drugs on polydAdTdT are shown 
in this figure with no apparent positive results. 1- NA; 2- NA+artesunate; 3- 
NA+artesunate+ Fe2+/Fe3+; 4- NA+artemisinin;5- NA+artemisinin+ Fe2+/Fe3+; 6-
NA+baicalein7-NA+baicalin; 8 -NA+cantharidin; 9 -NA+daidzein; 10- NA+puerarin, 11- 
NA+quercetin; 12- NA+rutin; 13- holotransferrin+ferrosanol

3.2.d: Linear Taq Polymerase stop PCR and Footprinting assays

The study using the Taq stop PCR (see section 2.2.f) polymerase assay did not produce 

positive results. Different PCR conditions and different treatments for purification were 

performed in order to get appropriate result. Two conclusions can be drawn, either the 

drugs are taq DNA polymerase inhibitors in the concentrations tested, or the strength of 

binding between the drugs and the plasmidic DNA is not strong enough to remain bound 

during the consecutive purification steps.

Footprinting (section 2.2.f) provides the identification of the binding sites between the 

drugs and the DNA. We used Dnase I footprinting to allocate the interaction between the

'w
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drugs and the bases. Dnase I digests the DNA that is not protected by bound drug, through 

cleaving of the phosphodiester bonds. The bound sites will appear as holes in the 

photographed gel. We used KMn0 4  and piperidine cleavage for the ladder as they cleave 

thymidine bases. As positive control we used acridine, that shows preference for (dAdT)2  

and dGdC. Our oligo was designed to have dGdC and dTdA sequences. Unfortunately 

radioactive footprinting could not be performed, which would provide a clear gel; and 

silver staining was used to replace this technique. As shown in Figure 25, the quality of the 

gel is really poor, and no precise results were obtained.

ladder

Control (-)

daidzein

puerarin

baicalein  

baicalin

quercetin

rutin

chrysin  

x a n th o n e  

acrid ine

Figure 25: The results of the footprinting assay showed silver staining is not an appropriate 
technique to use in this experiment. Two more compounds were added in this experiment, 
xanthone and chrysin, which will be explained in Chapter 4.
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3.23.e: Topoisomerase I  & II inhibition assay

We tested all the compounds for inhibition of both enzymes. The samples were tested at 

different concentrations of the test drug (50, 75 and 100 pM) for both enzymes. As in the 

case of the nulceic acid damage, the samples were run in agarose gels and they were 

visualised as bands under UV light with ethidium bromide staining. Different lengths in the 

bands are an indication of inhibition processes. Negative controls were taken as samples 

with the same volume of DMSO used in order to demonstrate the solvent has no effect by 

itself on inhibiting the enzymes. For the topo I inhibition assay camptothecin was used as 

positive control and etoposide was used for topo II. For topo II positive result, we should 

find 3 bands in the gel (open circular DNA, linear DNA and form I DNA) and the medium 

band should be in the same length as the linearised DNA. In the topo II inhibition test, we 

tested cleavage (if then drug affects the cleavage relegation cycle) and relaxation activities 

(section 2.2.g, Figures 14 and 15).

The results showed the drugs are not topo I inhibitors. Artesunate, artemisinin and baicalein 

appeared to have inhibition for topo II cleavage activity (appearing as the two upper lines in 

the gel). The rest of the compounds showed negative results.
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1 2 3 4  5 6  7 8 9 10 11 12 1314 15 16 17 18 19 20

load in g  v \d l

lin earised  pR Y G  

pR Y G

Figure 26a: The results of topoisomerase II cleavage activity showed a light activity of 
artesunate and artemisinin.

1: artesunate 50 pM + pRYG + topoll. 2: artesunate 75 pM + pRYG + topoll. 3: 
artesunate 100 pM + pRYG + topoll. 4: artemisinin 50 pM + pRYG + topoll. 5: 
artemisinin 75 pM + pRYG + topoll. 6: artemisinin 100 pM + pRYG + topoll

7: free.

8: pRYG + topoll. 9: pRYG + 0.5 pL DMSO. 10: pRYG + topoll + 0.5 pL DMSO. 11: 
linearised pRYG. 12: pRYG + topoll + VP-16 (etoposide, inhibitor). 13: free. 14: free. 15: 
baicalein 50 pM + pRYG + to po ll. 16: baicalein 75 pM + pRYG + topoll. 17: baicalein 
100 pM + pRYG + topoll. 18: baicalin 50 pM + pRYG + topoll. 19: baicalin 75 pM + 
pRYG + topoll. 20: baicalin 100 pM + pRYG + topoll
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Figure 26b: The results of topoisomerase II cleavage second part.

1: cantharidin 50 pM + pRYG + topoll. 2: cantharidin 75 pM + pRYG + topoll. 3: 
cantharidin 100 pM + pRYG + topoll. 4: daidzein 50 pM + pRYG + topoll. 5: daidzein 
75 pM + pRYG + topoll. 6: daidzein 100 pM + pRYG + topoll

7: puerarin 50 pM + pRYG + topoll. 8: puerarin 75 pM + pRYG + topoll. 9: puerarin 100 
pM + pRYG + topoll. 10: pRYG + topoll. 11: pRYG + topoll + 0.5 pL DMSO 12: 
linearised pRYG + 0.5 pL DMSO.

13: pRYG + topoll + VP-16 (etoposide, inhibitor). 14: quercetin 50 pM + pRYG + topoll. 
15: quercetin 75 pM + pRYG + topo ll. 16: quercetin 100 pM + pRYG + topoll. 17: rutin 
50 pM + pRYG + topoll. 18: rutin 75 pM + pRYG + topoll. 19 rutin 100 pM + pRYG + 
topoll. 20: pRYG + topoll + VP-16 (etoposide, inhibitor)
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Figure 26c: The results of topoisomerase II relaxation activity showed non conclusive 
results for any compound.

1: artesunate 50 pM + pRYG + topoll. 2: artesunate 75 pM + pRYG + topoll. 3: 
artesunate 100 pM + pRYG + topoll. 4: artemisinin 50 pM + pRYG + topoll. 5: 
artemisinin 75 pM + pRYG + topoll. 6: artemisinin 100 pM + pRYG + topoll

7: free.

8: pRYG + topoll. 9: pRYG + 0.5 pL DMSO. 10: pRYG + topoll + 0.5 pL DMSO. 11: 
linearised pRYG. 12: pRYG + topoll + VP-16 (etoposide, inhibitor).

13: free. 14: free. 15: baicalein 50 pM + pRYG + topoll. 16: baicalein 75 pM + pRYG + 
topoll. 17: baicalein 100 pM + pRYG + topoll. 18: baicalin 50 pM + pRYG + topoll. 19: 
baicalin 75 pM + pRYG + topoll. 20: baicalin 100 pM + pRYG + topoll 21: cantharidin 
50 pM + pRYG + topoll. 22: cantharidin 75 pM + pRYG + topoll.

23: cantharidin 100 pM + pRYG + topoll. 24: daidzein 50 pM + pRYG + topoll. 25: 
daidzein 75 pM + pRYG + topoll. 26: daidzein 100 pM + pRYG + topoll 27: puerarin 50 
pM + pRYG + topoll.

28: puerarin 75 pM + pRYG + topoll. 29: puerarin 100 pM + pRYG + topoll. 30: pRYG 
+ topoll. 31: pRYG + topoll + 0.5 pL DMSO 32: linearised pRYG + 0.5 pL DMSO. 33: 
pRYG + topoll + VP-16 (etoposide, inhibitor). 14: quercetin 50 pM + pRYG + topoll. 35: 
quercetin 75 pM + pRYG + topoll. 36: quercetin 100 pM + pRYG + topoll. 37: rutin 50 
pM + pRYG + topoll. 38: rutin 75 pM + pRYG + topoll. 39 rutin 100 pM + pRYG + 
topoll. 40: pRYG + topoll + VP-16 (etoposide, inhibitor)
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3.2.f: Flow Cytometry

Within the cell cycle, before cells can multiply and divide, they have to make copies of 

their DNA. Normally, most cells are not actively growing and dividing and are in the GO or 

resting phase of the cell cycle and have a diploid (two series of chromosomes, 2N DNA) 

content. Cells in G1 phase are cycling, and also have diploid content. A smaller percentage 

of cells are undergoing DNA synthesis during S phase (having between 2N and 4N DNA 

content). A few cells completed their DNA synthesis and are in G2 phase (having 4N DNA 

content). After cells double their DNA, they undergo mitosis (M phase) dividing into two 

daughters (Weinberg et al., 1996).

The ability of four structurally related flavonoids (baicalein, baicalin, daidzein and 

quercetin) to affect chemotherapy-induced apoptosis and cell cycle arrest of breast cancer 

MCF7 and leukemia cancer CCRFCEM cell lines was studied. The antitumour ability of 

flavonoids has been extensively documented (Efferth et al., 1996; Gerhauser et al., 2003; 

Wong et al., 2001), but the effect on cell cycle distribution is still unclear. Flow cytometry 

(see section 2.2.f.l) has been used in order to define in which step of the cell cycle the 

flavonoids induce apoptosis. Treatment of MCF7 breast cancer cells with the drugs showed 

that baicalein, baicalin and daidzein block in phase G1 and quercetin blocks in phase G2.

The same treatment with CCRFCEM leukemia cell lines proved that baicalein and daidzein 

act as blockers for phase Gl, daidzein also affects preGl stage and quercetin acts on preGl 

and G2 stages. See Table 7 for results.

It is noticeable these flavonoids block during the steps where the proteins are being 

synthesised (Gl) implying they can bind to earlier steps of protein cascades (by binding
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proteins and receptors) or DNA (duplex and triplex forms -  during replication). Even more, 

our postulation of these flavonoids binding DNA can be explained by the fact that quercetin 

is affecting G2 phase in MCF7 and CCRFCEM cell lines. During this stage the content of 

DNA in the nucleus is double, and this means more DNA available to be targeted; if a drug 

is said to bind preferentially DNA it will possibly do so during the stage where more DNA 

is available.

Table 7: The results of flow cytometry on both cell lines showed quercetin to be a G2 
blocker in MCF7 cell line, baicalin a preGl blocker in CCRFCEM cell line and daidzein a 
Gl blocker in both cell lines.

Stages
MCF7

Baicalein Baicalin Daidzein Quercetin Blank with 
DMSO

P reG l 3.8% 5.0% 5.7% 6.4% 8.5%
G l 57.3% 57.2% 48.5% 20.9% 58.3%
S 21.0% 20.5% 21.9% 10.3% 18.1%
G2/M
Stages
CCRFCEM

18.3% 17.7% 24.2% 62.6% 15.4%

P re G l 21.4% 53.9% 1.3% 29.6% 38.3%
G l 29.3% 22.0% 49.5% 19.5% 16.6%
S 35.4% 19.8% 30.1% 33.4% 30.5%
G2/M 14.9% 4.8% 19.8% 18.2% 15.1%

3.2.g: MTS Cell Proliferation Assay

MCF7 breast cancer cell line is an epithelial cell line while CCRFCEM is a cancer cell line 

in suspension; the interest of testing our compounds in these two cell lines relies also on the 

interest of studying if the compounds prefer epithelial cancer cell lines or cells in 

suspension (leukemias and lymphomas). Cell proliferation assay (see section 2.2.f.2) 

measures the cell proliferation rate and conversely, when metabolic events lead to apoptosis
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or necrosis, the reduction in cell viability. Data obtained from the present study indicate 

that flavonoids with very similar structures may not produce an identical biological 

response. At 24 hours of incubation, the compounds have IG50 near 100 pM in both cell 

lines. When the incubation period was prolonged to an incubation of 48 hours, the IG50 

values dropped to around 65 pM for baicalein and baicalin on MCF7, and 50 pM for 

baicalin and daidzein on CCRFCEM cell line. The incubation period of 72 hours showed 

that baicalein has some activity against MCF7 (33.12 pM) but not CCRFCEM cancer cell 

lines. Baicalin has activity in both cell lines at 72 h (63 and 44 pM for MCF7 and 

CCRFCEM cell lines respectively). Daidzein promotes growth of MCF7, something that 

could be expected as this line expresses estrogenic receptors and daidzein has estrogenic 

structure; moreover the compound does not have a strong anticancer activity on 

CCRFCEM. Quercetin showed to have anticancer activity on both cell lines when the 

incubation period was 72 hours (83.6 pM for MCF7 and 38.15 pM for CCRFCEM cell 

lines). The results are shown in Table 8.

Table 8: The results of the MTS proliferation assay demonstrated that the compounds are 
not good anticancer drugs in both cell lines. Baicalein proved to have some activity in 
MCF7 cell line at 72 h of incubation and quercetin showed some antiproliferation activity 
on CCRFCEM cell line after 72 h of exposure.

Compound IG50 MCF7 (pM) IG50 CCRFCEM (pM)

Baicalein > 100 (24); 69.65 (48); >100 (24); >100 (48); >100
33.12 (72) (72)

Baicalin >100 (24); 78.83 (48); 63.3 >100 (24); 63.98 (48);
(72) 44.56 (72)

Daidzein 93.14 (24); >100 (48); >100 59.66 (24); 44.5 (48); >100
(72) (72)

Quercetin >100 (24); >100 (48); 83.6 >100 (24); >100 (48); 38.15
(72) (72)
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Good anticancer drugs have IC50 values in the order of 1 - 5 jxM (Czyz, 2005), this group of 

compounds clearly do not show a remarkable anticancer activity, it is possible they are 

metabolised to a less active compound, or they can’t reach properly the DNA inside the 

nucleus.

3.2. h: COMET ASSAY -  Alkaline electrophoresis

The experiment (see section 2.2.f.3) has been performed in both cell lines. Daidzein 

showed no result on MCF7 cell line, but baicalein and quercetin showed to be active in this 

cell line indicating these compounds entered into the nucleus and produced some DNA 

damage. For CCRFCEM cell line, only quercetin showed to be active and entered into the 

nucleus while baicalein, baicalin and daidzein were negative. Comparing with the results 

obtained from the cell proliferation assay and flow cytometry we can stipulate that 

quercetin may effect its anticancer activity in both cell lines by entering into the nucleus 

and affecting the DNA, this hypothesis could also apply for baicalein on MCF7 cell line but 

not on CCRFCEM, which may indicate this compound binds to another target rather than 

DNA in this cell line. Baicalin was negative on both cell lines for the comet assay, but it 

produced significant anticancer activity when compared to the other compounds, this can 

be explained either because baicalin does not enter into the nucleus and / or it has another 

target in the cells rather than DNA. See Figures 27 a, b and c for examples.
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Figure 27 a: MCF7 cell line control, no modification in shape is found.

Figure 27 b: MCF7 cell line positive control, the presence of hydrogen peroxide produces 

comet tails in the cells, a clear indication of entrance into the cell and DNA damage.

Figure 27 c: MCF7 cell line in the presence of baicalein produces comet tails in the cells, a 

clear indication of entrance into the cell and DNA damage

5.2. j: Hemin sesquiterpenes interactions

The mechanism of action of artemisinin is still unclear. Most likely it involves the 

formation of free radical intermediates, originating from the direct interaction of the



endoperoxide group with the heme iron (Messori, et al. 2003). Artesunate and artemisinin 

have no UV spectra, and it is reported that they interact with hemin as a mechanism of 

action for their antimalarial activity (Meschnick et al., 1991). We have, thus, decided to use 

hemin as a revealing agent for any DNA -  drug interaction. Hemin has a main peak at 385 

nm that shifts to 414 nm in oxidizing conditions and to 529 -  565 nm when the ferric ion is 

in low spin (Grandori et a l , 2000). Therefore, we expected that any shift in the UV 

spectrum of hemin would be an indication of a binding between DNA and artesunate / 

artemisinin if the mechanism of action involved the drugs acting as peroxides.

With artesunate (or artemisinin), hemin acts as a catalyst, reducing artesunate (or 

artemisinin) in the same way it reduces hydrogen peroxide by cleaving the oxygen-oxygen 

bond (Chen et al., 1998)

Hemin-Fe3+ + e‘ ----------► Hemin-Fe 2+
*------7-------------------------------------- 1

Hemin-Fe 2+ + artesunate (oxidised)  ►Hemin-Fe3+ + artesunate (reduced)

We used hemin as a revealing agent of any activity between artesunate / artemisinin and 

DNA. Titrations were performed between: drug -  hemin, hemin -  DNA, hemin -  DNA- Fe 

2+, hemin -  drug -  Fe 2+, hemin -  drug -  DNA -  Fe 2+, hemin -  DNA -  drug. From the 

results we obtained we can conclude that artesunate / artemisinin interacts with hemin in 

the presence or abscence of Fe 2+, but the complexes formed do not show any interaction 

with DNA in the conditions used here. In Figures 28 a, b, c, d, e the results for artesunate 

binding titrations are shown.
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Hem In (18exp-6M ) t it ra te d  w ith  DNA
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Figure 28a: Hemin titrated with DNA, there is a small increase in the absorbance upon the 
first addition of DNA and no more changes after it.

Hemin (18exp-6M) titra ted  w ith  a rte su n a te
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Figure 28 b: Hemin titrated with artesunate, interaction is observed as a decrease in the 
absorbance of hemin.
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Hemin 18ep-6M titrated with artesunate In presence of 18exp-6M of Fe2+
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Figure 28 c: Hemin titrated with artesunate in presence of Fe, moderate interaction is 
observed but not the one expected as a shift in the hemin absorbance spectrum.

Hemin (18exp-6M) + DNA (18 exp-6M) titrated with artesunate
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Figure 28 d: Hemin titrated with DNA in presence of artesunate, only a random interaction 
is observed.
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Hemin (18exp-6M) + Fe2+(18oxp-6M) + DNA (18oxp-6M) titrated with artesunate
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Figure 28 e: Hemin in presence of Fe2+ and artesunate titrated with DNA, no defined 
interaction is observed.

3.3.j: CYP1A1 metabolites assay

Flavonoids are known for inhibiting the CYP family of enzymes (Chan et al., 2002), and as 

explained in section 2.2.g, CYP1A1 is responsible of bioactivating a vast amount of 

compounds of the daily diet.

We decided to study the effect this enzyme has on our group of four flavonoids and to 

investigate a possible mechanism of metabolization for baicalein, baicalin, daidzein and 

quercetin.

We found that at high concentration of drug (>50 pM) the enzyme CYP1A1 (see section

2.2.g for methodology) is inhibited and no metabolites are found. While baicalein, daidzein 

and quercetin gave a positive response at a concentration of 25 pM; baicalin gave a positive
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response at a concentration of 50 pM, probably because the carbohydrate hinders the 

interaction with the substrate pocket of CYP1A1.

Table 9 shows the results obtained in this experiment. Derivatisation of flavonoids with 

BSTFA produces a main peak that is the molecular weight of the compound minus 15, a 

methyl group of the derivatising agent, and a second peak that is the molecular weight 

(Owen et al., 2003).

Table 9: CYP1A1 results for baicalein, baicalin, daidzein and quercetin. All compounds 
showed some kind of interaction after being incubated with the enzyme.

Compound Retention
time
(min)

Main 
peak (M- 
15)

Second 
peak( M)

Concentration 
of drug with 
positive 
response

Main 
peak (M- 
15)

Second 
peak( M)

Baicalein 15.3 471 486 25 pM 441 456

Baicalin 34.3 471 486 50 pM 247 262

Daidzein 18.5 383 398 25 pM 345 360

Quercetin 17.5 647 661 25 pM 264 279

Hydroxylation is the main metabolic pathway to follow, but other possibilities can be 

contemplated; in our experiment baicalein seems to follow methylation or addition of an 

acetyl group, see Scheme 2. Baicalin does not seem to follow any specific pattern and the 

only peak we can assign would be the one for the carbohydrate, which contradicts the fact 

that carbohydrates can not be derivatised by BSTFA (Owen et al., 2003), see Scheme 3. 

Daidzein seems to undergo double hydroxylation, see Scheme 4. Quercetin did not show 

any proper hydroxylation or transformation pattern in the whole molecule. This could be



due to the high hydroxylation pattern it already has. Interestingly, the peak we obtained 

seems to be some sort of modification in one ring, Scheme 5 shows different possibilities 

explaining the result obtained.

Scheme 2: baicalein after CYP1 Al, methylation is a possible process.
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Scheme 3: baicalin after CYP1A1, it is possible that CYP1A1 would act on the sugar.
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Scheme 4: daidzein after CYP1A1 produced hydroxylation
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Scheme 5: quercetin after CYP1A1 seemed to have produced different patterns of 
modifications in either A ring or B ring.

None of these results can be definitive as we would also need NMR spectra of each 

metabolite to define the real structure of the peaks. Unfortunately the material left from the 

incubation was not enough to perform an NMR assay. We could only presume based on the 

results of the mass spectrometry and literature. The binding studies showed that the number 

of hydroxyls is extremely relevant when considering the interaction with STDNA; the more 

number of hydroxyls a flavonoid has, the higher the binding constant. In the case of 

daidzein, hydroxylation seems to follow as metabolic pathway; but for quercetin, baicalein 

and baicalin this pathway seems to not appear. These results could explain the fact that 

some of the compounds (like baicalein and quercetin) can bind reasonably tight to DNA but 

not show a strong anticancer activity, even though they may enter to the nucleus; we can 

assume these compounds are subjected to some kind of inactivation before entering into the



nucleus or binding some other target. Baicalin showed to be slightly active in the cell work 

when cells were exposed for 72 h, but the binding to STDNA was quite weak. According to 

our results from the CYP1A1 assay, baicalin is metabolised by the enzyme and loses the 

carbohydrate. It is possible that the metabolism of baicalin results in a more reactive agent 

as anticancer agent against MCF7 and CCRFCEM cell lines, through binding to a different 

target than DNA.

3.2k: Determination o f pKa

DNA is a molecule negatively charged. We would therefore that assume a positively 

charged compound would be favoured for DNA binding. In order to know if our 

compounds are protonated on not in the conditions we used for our binding studies we 

performed appropriate studies to determine the pKa of our compounds. Artemisinin and 

cantharidin have no ionisable protons, so the experiment was performed for artesunate, 

baicalein, baicalin, daidzein, puerarin, quercetin and rutin (see section 2.2.b). According to 

the results obtained, the flavonoids are neutral at physiological pH (pH=7.4). This would 

would improve its binding to a negatively charged molecule such as DNA. Therefore, all 

our experiments are being conducted at pH 7.4, except in the case of the purine triplex 

(pH6.5) that requires a light acid pH for the conformation. In Table 10 the results of the pKa 

experiments are shown.
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Table 10: The data obtained by the pKa determination assay are presented. The compounds 
showed to be protonated at physiological pH, with the exception of artesunate and baicalin.

Artesunate Baicalein Baicalin Daidzein Puerarin Quercetin Rutin

pKa 5.67 7.57 6.33 8.42 8.57 10.3 8.02

percentage of 5.0 50.0 10.0 90.0 90.0 99.0 80.0
neutral molecule
at pH 7.4 (%)_____________________________________________________________________

The possible aqueous equilibrium for the compounds when titrated with NaOH are shown 

in Schemes 6.

CHoQC H ,0

.0

0 -N a +OH

CHCH

Scheme 6 a: artesunate loses the acidic proton

HO,HO

HOHO

HO

HO

Scheme 6 b: baicalein loses the more acidic proton
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OHHO HO OHHO OH

Scheme 6 c: baicalin loses the more acidic proton

OH

HO NaO

Scheme 6 d:daidzein loses the more acidic proton

HO n

OH ONa

Scheme 6 e: puerarin loses the more acidic proton

Scheme 6 f: quercetin loses the more acidic proton. On position 4, probably we can find an 
enolic equilibrium with arrangement (in presence of an alkali like NaOH), on positions 3’, 
4’ we can find resonance structures in the same medium
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Scheme 6 g: rutin loses the more acidic proton
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3.3 Conclusions for the foundation compounds

This study has provided a quantitative molecular basis for the DNA binding behaviour and 

biological activity of the types of intercalating compounds that formed our initial set of 

compounds. Stabilisation studies by temperature denaturation demonstrated that the 

compounds interfere mainly with the stabilization of triplex polydAdTdT and G- 

quadruplex. While the majority of the compounds destabilise the structure by 

approximately 6°C for the first melting transition point in polydAdTdT, baicalein and 

quercetin stabilized this structure by 3.2 and 7.3°C respectively. In the case of G- 

quadruplex, baicalein stabilised the first melting point transition and allowed the G- 

quadruplex to melt in a single transition. Baicalin and daidzein destabilised the structure 

and while quercetin affected the denaturation pattern.

Many techniques were employed to study the drug-DNA binding interactions in addition to 

the UV-Vis and fluorescence titrations. Ethidium bromide displacement and quenching 

were used but they did not provide any result, possibly due to the low affinity these 

compounds have for DNA. Nuclear magnetic resonance was also considered as an option, 

unfortunately this kind of experiment requires high concentrations of DNA and drug; the 

drugs need to be solubilised in DMSO prior to dilution into the aqueous buffer and at the 

concentration required for NMR studies the percentage of DMSO was over 10% in final 

volume. As this would affect the DNA (personal communication Dr. Gary Parkinson), this 

series of experiments had to be abandoned. Binding constants obtained by UV 

spectrophotometry were in the order of 103 - 104M The results indicate that baicalein and 

quercetin emerge as the most potent among the set of flavonoids, with the binding constants 

in the range of 2-8x104 M'1. Interaction with DNA is thought to involve the planar ring
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structures. The double bond of the O in C4, gives planarity to the molecule, and this allows 

the molecule to intercalate the bases in the different nucleic acid structures. The number of 

hydroxyl groups in the flavonoid also plays an important role, 3 or more hydroxyl groups 

seem to allow a better binding to different forms of nucleic acids and the position of them is 

also relevant as quercetin, with two hydroxyl groups in the B ring, showed a remarkable 

binding activity to G-quadruplex.

Competition dialysis provided us with data on the affinity of the dyes for triplex, 

quadruplex and duplex structures. We confirmed with this study the observation that 

baicalein and quercetin binds preferentially to triplexes and quadruplex by UV-visible 

titrations. Baicalein shows specificity for the AT bases, triplex and quadruplex and proved 

to be active in MCF7 cell line by arresting in G1 phase. Baicalin and Rutin have activity 

towards AT bases and baicalin arrests the preGl/Gl phase in CCRFCEM cell line. 

Daidzein and Puerarin are weak binders with specificity for GC bases. Daidzein is 

considered a phytoestrogen, promotes activity where estrogen receptors are located; that 

would explain the promotion of growth effected on MCF7 cell line.

Quercetin has interaction with tetraplex and triplex, presented activity on CCRFCEM cell 

line by arresting in G2 stage. The hydroxyl groups in positions 5, 7, 3’ and 4’ seem to have 

a strong influence on the interaction with the nucleic acids.

There is no strong correlation between the DNA -  binding and antiproliferative activity 

against the two cell lines. These facts clearly indicate that binding to DNA is not the only 

determinant for anticancer action, but other factors such as cellular uptake and protein 

inhibition may also contribute. In conclusion, quercetin can be chosen as a leading
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compound from our original set of compounds and the flavone skeleton has been 

considered for the design of a new generation of higher order DNA binding agents.

The results for topo I and II assay showed the drugs are not topo I inhibitors, and only 

artesunate and artemisinin appeared to have inhibition for topo II cleavage activity. The rest 

of the compounds showed negative results.

The employment of metal cations did not appear to improve the binding association 

constant in most cases. Moreover, they decreased by 10 fold the binding association 

constant of baicalein on STDNA; probably by reacting with some centre in the molecule 

that is involved in the binding. In the case of rutin, however, when the ratio is 1:1 the 

cations Fe (II), Fe (III), Mn and Zn improved the binding from 10 to 103 fold depending on 

the metal.

pKa values obtained for the family of flavonoids showed that they are weakly acidic which 

means they are predominantly neutral at pH 7.4 (cellular environment).

CYP1A1 metabolites experiments gave a positive response for a hydroxylation pattern in 

daidzein and a possible methylation for baicalein. For quercetin and rutin, no definitive 

response could be intepreted.
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4.1: Obtaining DNA intercalating ligands

In order to get a successful DNA intercalating agent, some properties need to be taken into 

account:

> degrees of freedom: the major requirement for intercalating agents is the planar 

aromatic ring structure. This structure fits between adjacent base pair planes and can 

have some, rotational freedom within the plane of the ring. The ligand itself may 

have flexibility of structural parts outside the DNA binding site and may contain 

more than one intercalating side chain (Laughton et al., 1999)

> role of base pair sequence: base pair sequence does not play a large role on the 

specific nature of most intercalating complexes, but some affinity has been found 

for some intercalating agents, as in the case of acridines for GC bases. (Belousov et 

al., 2004)

> counter ion effect: DNA is a negatively charged polyanion attracting counter ions, 

positively charged Na+, or Ca2+ and Mg2+ ions as well as protonated basic residues 

of proteins. The presence of small counter ion affect drug binding, since the counter 

ions can screen and shield the negative backbone surface allowing non electrolytes 

as well as positively charged ligand to interact more strongly with the DNA target. 

High ionic strength, however, reduces non-covalent interaction mediated by 

hydrogen bonds and electrostatic interactions. (Olmsted et al., 1996)

> role of solvent: there are three general classes of interactions to be considered 

during binding
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• ligand solvent interaction

• DNA solvent interaction

• ligand-DNA complex with solvent interaction (Blankenship et al., 2002)

> rational drug design: when a compound intercalates into nucleic acids, there are 

changes that occur on the DNA and the compound during the complex formation 

that can be used to study the ligand DNA interaction. The binding is an equilibrium 

process because no covalent bond formation is involved and the binding constant 

can be determined by measuring the free and DNA bound forms of the ligand. In the 

present project the intercalating substrates are aromatic chromophores, therefore the 

binding constants were obtained spectroscopically.

In addition to these properties, a consensus definition of an intercalator (Ashbey, 1985) 

requires molecules having a combination of several of the following groups: benzene ring, 

heterocyclic ring (both aromatic and aliphatic), aliphatic amine (preferably tertiary), 

carboxamide group, alcoholic hydroxyl group, carboxy ester, keto group.

We decided to further investigate chromophores constituted by a flavonoid skeleton with 

substitutions in the A and B ring for studying the mode and affinity as DNA binding 

ligands; some other chemical forms, such as isoflavonoids, flavones and 3 aromatic fused 

rings were also studied on DNA binding interactions. The data obtained allowed us to 

formulate some structure-activity relationships for this second generation of compounds.
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Amongst the steric constraints that control the interactions, the presence of methoxy or 

acetoxy substituents on the molecule is relevant as far as the drug -  DNA binding is 

concerned.

For a general study, we decided to use primarily STDNA, as it contains both A-T and G-C 

sequences, and would provide preliminary information about the changes in the binding. 

The techniques used were UV-Vis absorbance and fluorescence spectrophotometric 

titrations, as they can give an indication of the binding affinity, and orientate in the mode of 

binding of the molecule, as well as information on which specific moiety plays a major role 

during the interaction. For this part of the project some compounds were purchased from 

Sigma Aldrich (United Kingdom), Acros (United Kingdom) and Lancaster Chemicals 

(United Kingdom) and some others were synthesized and characterized by NMR (nuclear 

magnetic resonance), mass spectroscopy and IR (infrared) Spectroscopy.

4.2: Organic synthesis

With the intention of deciphering the way of binding, we modified our chosen scaffold by 

placing substituents at different positions in the three rings.

From the preliminary results we concluded that a flavone skeleton would be suitable and 

this should enable us to gain an insight into the binding interactions with DNA. 

Consequently, we envisaged a model composed by the parent chromone (A and C rings) in 

which the B ring is appended in different positions and in which the level of saturation of 

the chromone is changed. These are described in Scheme 7.
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i s o f l a v o n e

O c h ro m o n e
f la v o n e x a n th o n e

f la v a n o n e

Scheme 7: Different chromone possibilities. Rings A and C are fused to provide a planar 
molecule that could intercalate between stacked nucleic acid bases. Flavone has the B ring 
located at C-2, while isoflavone has the B ring in C-3. Xanthone has a C-2 / C-3 ring 
fusion, maintaining a planar system. In the case of flavanone, a distortion appears as a 
result of the saturation of the C ring.

Flavanone, xanthone and flavone were purchased; the synthesis of isoflavone (Scheme 8) 

employed thallium (III) acetate (TTA) and 4-toluenesulfonic acid. The product was easily 

purified by HPLC.
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H +

OH

T T A

TIAC;HO j
SO,

OH

Scheme 8: Isoflavone synthesis. Acid catalysed enolization of flavanone followed by 
alkoxythallation leads to two unstable intermediate thallium adducts (syn and anti to the 
aryl group). The anti adduct is predominant and dethallation proceeds via migration of the 
aryl group resulting in the formation of isoflavone.

To examine the role of the carbonyl group we proposed to synthesise flavothione (Hafez 

1991; Kataoka, 2004). We used 2,4-bis(4methoxyphenyl)-l,2,3,4-dithiophosphetan-2,4- 

disulfide (Lawesson’s reagent) as a thiating agent as shown in Scheme 9. The reaction was 

straightforward and the product was easily purified by preparative TLC plates giving a red 

powder.
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L a w e s s o n 's r e a g e n t ,  t o lu e n e ,  
r e f l u x ,  O N

O

Sheme 9: Flavothione synthesis. The carbonyl in position 3 is replaced by sulfur.

We also investigated the role of nitrogen, as many DNA binding agents have nitrogen in 

their scaffold (Wang et a l , 1994). We used several protocols, as shown in Schemes 10, and 

11.

QEI

fA v / C0’H
S02C12,DMF

kJ —  v

X N . .C02Et i. c
f  acetophenone, /  V /

NaNH2, etherEtOHrfx 
 ►

Py+Cl'

EtOH, H+, 2 acetophenone in THF,LDA»n ,78CAcCl C0CH2C0C6H5
1)LDA
2)RT
3) reflux

Scheme 10: Nitrogen introduction in A ring. The upper reaction uses sulfonyl dichloride to 
produce substitution in the acid; the reaction did not pass step 3. The lower reaction 
employed ethanol and acetyl chloride to produce acid chloride and ethyl acetate as first 
step, but the reaction did not proceed as expected.
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For the C ring, salicylamide was mixed with benzoyl chloride in toluene, the generation of 

HC1 provided the acid environment needed for the O- to N- rearrangement to proceed; the 

addition of p-toluenesulfonic acid led to dehydration that resulted in the desired product 

(Scheme 11). The water of the dehydration step was collected in the Dean-Stark apparatus.

Cl .OH.OH

N,NH2

O o

p T S A
a z e o t r o p ic  d i s t i l l a t i o n

O

Scheme 11: Synthesis of 3-azaflavone.

4.2,a: Flavone and its derivatives

The literature regarding flavonoids synthesis is vast, but not all protocols prove to be 

effective, in the presence of hydroxyl and chloride substituents. We tried a range of 

methodologies as shown in Schemes 12, 13 and 14.
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.OH
nTBU, K2C03, Tol

a z e o tr o p ic  d is t i l l a t io n  in  
to lu e n e

.OH

p T S A ,  T o l

Scheme 12: The Baker-Venkataram approach. This scheme is appropriate for MeO or 
unsubstituted systems, but in the case of -OH groups the main product is an over 
benzoylated derivative that interferes with the rearrangement process (Jain, 1982). Yields of 
the desired product were typically in the range of 1 -  2 %.
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Pyridine

O
'O

.OH

N a H  in  T H F  o r  K O H  i n  p y r id in e

.OH

Scheme 13: Another possibility that would replace toluene with pyridine, acting as catalyst 
too (Ares et al., 1995). This scheme works with a high yields (total 60 %) on unsubsituted 
systems or with MeO substitutions. The second step can be performed with NaH in THF 
giving higher yields than the variant KOH in Py. Rearrangement in acidic conditions leads 
to 50% of yield in this last step.

Cushman resolved in part the problem of -OH or other substituents in the 2-hydroxy 

acetophenone as starting materials by employing 4 equivalents of lithium 

bis(trimethylsilyl)amide (Cushman et al., 1994). This forms lithium enolate from the acetyl 

group in the 2-hydroxyacetophenone. Treatment of the lithium enolate with 1 equivalent of 

aroyl chloride affords a 1,3-diketone that is subsequently cyclised in acidic conditions 

(Scheme 14). Unfortunately we found this methodology to be inconvenient due to the low 

yield when scaling up.
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.O H
LiN(SiM e3)2, THF

rO

.O H

Scheme 14: Cushman’s approach for synthesis of flavones.

Ares resolved the scale up problem by using potassium tert-butoxide (Ares et al, 1993). 

The first equivalent of KOBu forms a potassium aroxide anion and treatment with benzoyl 

chloride forms the benzoyl ester; a second equivalent of KOBu promotes rearrangement to 

the diketone by forming an intermediate enolate as shown in Scheme 15. Treatment of the 

diketone with sulfuric acid and acetic acid gives the flavone (general yield after purification 

10%).
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1) KOBu, THF

1)KOBu
2)reflux, ON

H2S 0 4) HO A c

Scheme 15: Ares’ approach for synthesis of flavones.

We used this protocol successfully for several compounds (6) and we also used an 

adaptation for introducing nitro substitutions as shown in Schemes 16 and 17. In the case of 

3’,5’-dinitroflavone, the 3,5-dinitrobenzoyl chloride would react in any conditions forming

3.5-dinitrobenzoic acid and would not react later on with the 2-hydroxyacetophenone. To 

overcome this problem we reacted the 2-hydroxyacetophenone with triethylamine (TEA) 

and then with 3,5-dinitrobenzoyl chloride forming 2-acetylphenyl-3,5-dinitrobenzoate and 

triethylamine chloride which precipitated as white pellets. For 5-hydroxy-8-nitroflavone, 

we first reacted the 2-hydroxyacetophenone with nitric acid in glacial acetic acid forming

2.5-dihydroxy-3-nitroacetophenone as a yellow powder. We tried to nitrate flavone and 7- 

hydroxyflavone in order to reduce them and to form amino flavones, but we had no success 

as the yields were extremely low (< 1%) only detectable as traces in mass spectrometry.
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.OH

O

i ■

+ TEA

NO;

O

O

N O ,

NOo H +

KOBU, ice bath
RT
reflux

NO;

O H

NO;

O O

Scheme 16: 3'5'-Dinitroflavone synthesis. In this synthesis the first step was carried in 
presence of triethylamine (TEA) to replace the first equivalent of KBuO as following the 
complete Ares approach did not work when benzoyl chloride has nitro substitutions. The 
rest of the synthesis follows Ares’ approach.



OH O O

n o 2

OH

1) K O B u, TH FH N 0 3, H O A c

2) BzCl
3) K O B u

Sheme 17: 5-Hydroxy-8-nitroflavone synthesis. In this synthesis we first nitrated the 2,5- 
dihydroxyacetophenone with HNO3 in HOAc. The purified 2,5-dihydroxy-3- 
nitroacetophenone was reacted with benzoyl chloride following Ares’ approach.

Since hydroxyl groups are likely to be extremely relevant for the binding of the compounds 

to the DNA, as they are essential for intercalating the bases and form complexes 

(Yamashita et al., 1999), we decided to study different hydroxyl positions in the A and B 

rings. Chrysin (5,7-dihydroxyflavone), 7-hydroxyflavone and 3'4'-dihydroxyflavone were 

purchased from Sigma-Aldrich UK Ltd and Lancaster Chemicals UK. 5-Hydroxyflavone 

and 6-hydroxyflavone were synthesised by Ares’ protocol using 2 ,5-dihydroxyacetophone 

and 2,4-dihydroxyacetophenone respectively; 5-hydroxyflavone was also synthesised as in 

Scheme 14 but the yield was so low (< 1%) it could not be enough for the binding studies; 

fortunately the use of KOBu helped to increase the yield. 6 -Hydroxyflavone was also 

synthesised by using the Scheme 14 but the yield was so low we had to try another 

protocol; as the same case as 5-hydroxyflavone, the employment of KOBu helped to
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increase the yield and to obtain the desired product. Unfortunately we could not obtain 

flavones with hydroxyl groups in positions 8 and 7 & 8; most likely due to the formation of 

unreactive species. Different approaches involving protecting groups were tried but no 

success was had.

Chlorine atoms can provide an electronegative environment in a flavone while enhancing 

lipophilicity. We used Ares’ approach to synthesise 3'4’-dichloroflavone. We also tried to 

synthesise 2’6,-dichloroflavone, but the chlorines in 2,6-dichlorobenzoyl chloride would not 

allow the reaction to proceed; we were always obtaining 2,6-dichlorobenzoic acid that 

would not react with the 2-hydroxyacetophenone. Different approaches were employed but 

with no success.

One or two methoxy groups, similarly, could provide a lipophilic environment and, 

moreover, may remove important interactions present in the parent hydroxy groups that are 

relevant to the binding of the flavone to DNA. Therefore, we employed a methylation 

strategy (Scheme 18) for chrysin and 7-hydroxyflavone. Position 7 proved to be easily 

methylated as it is the most acidic. The hydroxyl group in position 5 forms a hydrogen 

bond with the carbonyl in position 4, this bond decreases the acidity of the hydroxyl 

making it less likely to react to extract the proton and accept substitutions; to overcome this 

problem we employed a second step using sodium hydride in tetrahydrofuran to increase 

the acidity of position 5 and make it able to react.
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HO. MeO. OMe-

Mel, NaH 
THFTHF

R=OH=H R1=OMe or H

Scheme 18: Methylation of ring Ahydroxylated flavones.

Adding extra carbonyl groups could provide some more information about steric 

impediments as well as selectivity of DNA for certain groups. We used acetoxylation in 

chrysin in order to obtain an acetoxy derivative.

HO
Ac20 , Pyridine

OH

AcO

OAc O

Scheme 19: Acetoxylation synthetic route

Tertiary amines could provide a completely different environment, as at pH 7.4 they would 

be protonated, making them more suitable for binding to the negatively charged phosphates 

of the DNA. For tertiary amines we used dimethylaminoethanol, dimethylaminopropanol 

and morpholinoethanol as subsituent agents for chrysin. Only position 7 could be 

substituted.
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Mitsunobu reaction was used with chrysin as starting material in order to create other 

possibilities for studying DNA - drug interactions. An insight of the process is shown in 

scheme 2 0 .

PPh3

©
©

.Ri
I O 4 PPh^-^

-VC'f f r
Rf  'PPh3 

© V , Y r

I O H

^ 0^N'Ny V
$  O I

R’'o 'pr 3 ©
o

V

Rj is the 5,7-dihydroxychrsyin, and R2 is the substituent

Scheme 20: Mitsunobu reactions. The reactions were carried out under sonication where 
TPP (or PPI13) (triphenylphosphine) combines with DIAD (diisopropyl azodicarboxylate) to 
generate a phosphonium intermediate that binds to the alcohol oxygen, activating it as a 
leaving group. Substitution by a nucleophile completes the process.
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With this reaction we employed chrysin as a flavone starting material to produce 3 

compounds, as shown in scheme 21.

N

TPP, 2-morpholinoethanol 
DIAD, sonication

TPP, N.N-dimethylethanolamine 
DIAD, sonication OH O TPP, N,N-dimethyIpropanolamine 

DIAD, sonication

OH O OH O

Scheme 22: Tertiary amine derivatives

4.3: Obtaining binding association constants
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In order to chose an appropriate scaffold to make modifications and study suitable 

substituents, we employed UV-Vis and fluorescence titrations (see section 2.2.C .2 to

2.2.C .4) to get binding constants and to be able to determine which strucuture preferentially 

binds to STDNA. We also used these same methodologies to assess if the addition of 

cations assists on the binding to nucleic acids of flavonoids with hydroxyl groups in close 

positions to the carbonyl. As well as studying binding constants, we also studied the 

thermal stability of this new batch of compounds with STDNA using thermal denaturating 

studies (see section 2.2.C .1). To assess an improvement in the biological activity we studied 

some of the compounds for cell proliferation activity (see section 2.2.h.2)

4.3. a: Localization o f the B ring and the relevance o f the double carbon

bond in the C ring

The B ring can be either in C-2 forming the flavonoid family or in C-3 forming the 

isoflavonoid family, and these structures can affect the mode of binding. The double bond 

C-2 to C-3 makes a small distortion in the molecule, and also changes the saturation of the 

C ring. See compounds 10, 11, 12.

flavone O isoflavone 0flavanone Q
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Compounds 10,11, 12: The different possibilities of localization of the B ring are shown, 
in flavone (10) the B ring is in C2, as is in flavanone (11) but with a saturated C ring; in 
isoflavone (12) the ring is in C3.

I

The binding constants obtained are shown in Table 11. From these results we can conclude 

that the binding constants are quite similar and at such low values that we can not rely on 

this method to choose a scaffold. However, if we consider the results in chapter 3 and we 

based our choices in the results of the binding constants, of the initial compounds the 

flavone scaffold appears to be the preferred choice for further structure activity relationship 

studies.

Table 11: The results of the binding association constants for flavone, flavanone and 
isoflavone proved to be quite similar in the magnitude of 103 M'1. Flavone and isoflavonoid 
presented fluorescence properties, but showed no measurable change in the emission signal 
upon titration with DNA.

Compound STDNA (UV) 

KCMT1) N

STDNA (Fluorescence) 

K(M') N

Flavone 1221.7 2.6 No interaction observed

Flavanone 1237.8 2.5 1238.92 (exc 300, emis 375) 2.04

Isoflavonoid 1767 10 No interaction observed

4.3.b: Three fused rings

Intercalating agents share the common feature of the planar polyaromatic systems which 

bind by insertion between the DNA base-pairs, with preference for 5f-pyrimidine-purine-3' 

steps. The chromophores are linked to basic chains that might also play a role in the affinity 

and selectivity shown by this class of agents. The planar structure of acridines (Hutchins, 

2003) confers to the molecules the ability to bind DNA by intercalation. A large number of
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synthetic acridine derivatives have been tested as anticancer agents and only a few 

molecules have entered clinical trials and have been approved for chemotherapy. Based on 

this premise, we tested a compound with three fused rings, see compound 13, maintaining 

the central structure of the C ring (see Compound 13). This molecule is known as xanthone 

and has been found to act as antimalarial agent (Dua, 2004), antidepressant working as a 

MAO (monoamime oxidase) inhibitor (Nunez et al,  2004), anticancer agent on HL60 

leukemia cell line (Matsumoto et a l , 2004) and chemopreventative agent (Jiang et a l,  

2003).

O xanthone

Compound 13: Xanthone with its three fused rings.

The binding constant of xanthone with DNA, was measured by UV-Vis spectroscopy and 

fluorescence quenching, and the results are shown in Table 12.

Table 12 : The binding association constants for xanthone proved to be similar to the one 
for flavone.

Compound STDNA (UV)

k  pvr1)
STDNA (Fluorescence)

N K n

Xanthone 2323.31 2 2283.7 (exc 340 emis390) 2.1
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From the analysis of the plain molecules, we can conclude the strength of binding for 

STDNA is the same for the system with three fused rings (xanthone) as for the system with 

the third aromatic ring (B ring) in C-2 (flavone) or in C-3 (isoflavone). Therefore, we will 

retain the flavone structure as the scaffold for our further modifications.

4.3.c: Sulfur and nitrogen in the 3-ring system

Nitrogen, sulfur and electronegative atoms, added into a naked scaffold would produce a 

small distortion into the planar structure and a charged molecule when it is tested at pH 7.4; 

see compounds 14 and 15. In the case of aza-3-flavone (azaflavone), no interaction was 

observed by UV-Vis spectroscopy, but a binding association constant was obtained by 

fluorescence spectroscopy, giving a very low value, see Table 13. For flavothione (or 

thioflavone) we observed in the UV-Vis spectrum an isosbestic point at 304 nm, see Figure 

29, further on the curves end on a single line without showing any clear isosbestic point. 

This could indicate a two binding mode for this compound and STDNA. The fitting of the 

UV-Vis results gave a sigmoid curve (Figure 30) that could not be fitted into our one mode 

of binding equation, possibly other binding models would be able to fit this results. On the 

other hand, fluorescence titrations gave a general binding association constant for 

flavothione on STDNA which showed that flavothione had the highest binding association 

constant for an unsusbsituted compound, with an association constant of 15550 M '1.

O azaflavones
thioflavone
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Compounds 14,15: Thioflavone (14) has a sulfur anion in C4 while azaflavone (15) has a 
nitrogen replacing C3.

thioflavone - STDNA

Figure 29: The results of the titration of thioflavone on STDNA shows an isosbestic point 
at 304 nm.

a b s o rb a n c e  o f fla vo th io n e  a t 470 nm

0.45 n 

0.4

c  0.35 re
€
8 0.3

-Qre
0.25

0.2
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

STDNA (M)

Figure 30: The titration of flavothione on STDNA produced a sigmoid curve when the 
absorbance at a specific wavelength was plotted against the concentration of STDNA.
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Table 13: The results of the binding association constants for flavothione and aza-3- 
flavone are shown, indicating a very high binding constant for flavothione.

Compound STDNA (UV) STDNA (Fluorescence)

K (M'1) K ( M l) N

Flavothione Not defined 15538.7 (exc 420 , emis 464 ) 9.3

Azaflavanone No interaction observed 876.9 (exc 340, emis 422) 2.1

4.3. d: The difference between flavones andflavonols

Flavonoids are polyphenolic secondary metabolites widely dispersed throughout the plant 

kingdom. In plant tissues, flavonols and flavones are found conjugated to sugars, primarily 

glucose, rhamnose and rutinose, and most conjugation occurs at the 3 position of the B 

ring. The main difference between these two families is the presence of one hydroxyl group 

in C-3, see compound 16. We tested the relevance of this hydroxyl for the binding to 

STDNA, and we found that 3-hydroxyflavone is not soluble in phosphate buffer, even in 

presence of 10% of DMSO (dimethylsulfoxide).

O
3-hydroxyflavone

Compound 16: 3-hydroxyflavone is not soluble in buffer A at a 10% DMSO concentration
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4.3.e: Modifications on the A ring

The basic flavonoid structure originates from two sources: The A ' ring is formed from 

three acetate units (via the malonic acid pathway) and the 'B' ring with the 3-carbon bridge 

is constructed of a phenylpropane unit via the shikimic acid pathway. As antioxidants, these 

phytochemicals can donate an electron, accompanied by a hydrogen nucleus, from the -OH 

groups attached to their phenolic rings, to a free radical. This electron stabilizes and 

inactivates the damaging radical, in the process, the polyphenolic reducing agent becomes 

an aroxyl radical which is considerably more stable than the free radical that it has reduced; 

the result is the cessation of damaging oxidative chain reactions (Skaper et al., 1997). From 

our previous results, we found hydroxyl groups in flavonoids were crucial for promoting 

DNA binding. Some compounds such as luteolin, see compound 17, already have reported 

DNA binding activities, have been found to have antioxidant properties by neutralizing 

peroxides, as well as work as anti-inflammatory, anticancer, antiallergic agents and have 

immune-modulating properties (Hyuncheol et al., 2004).

OH

.OH

HO.

OH O luteolin

Compound 17: luteolin has two hydroxy groups in each of the A and B rings.

We studied the importance of key positions of hydroxyl groups like in positions 5, 6 and 7, 

see compounds 18,19, 20,21.
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q  7-hydroxyflavone
OH O

chrysin

o
6-hydroxyflavone

5-hydroxyflavone

Compounds 18, 19, 20 and 21: 7-hydroxyflavone (18), 6-hydroxyflavone (19) and 5- 
hydroxyflavone (20) have one hydroxyl in the A ring. Chrysin (21) has two hydroxyls in 
positions 5 and 7.

As a further step, we studied substitution in the A-ring, and we postulated some specific 

positions with hydroxyl groups.

We also investigated the relevance of hydroxyl groups as electron donors by methylating 

and acetylating the hydroxyls, see compounds 22, 23, 24, 25; this study would give an 

indication o f :

> the presence of a group increases the binding and helps to the intercalation

> the chemical characteristic of the substituted promotes stability and binding to the 

complex.
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OMe O 5,7-dim ethoxy chrysin
OAc O

5,7-diacetoxychrysin

MeO MeO

JL lj 11 5-hydroxy-7-methoxy chrysin UH Uo
7-m ethoxy fl avone

Compounds 22, 23, 24 and 25: We approached studied substitutions, subsituting in the 
case of 5,7-dimethoxychrysin (22) the two hydroxyls with methoxy groups, as well as in 
the case of 5,7-diacetoxychrysin with the acetoxy groups (23). In 7-methoxyflavone (24) 
and 5-hydroxy-7-methoxyflavone (25) we have substituted only the position 7.

As the DNA is negatively charged a protonated drug would bind stronger or the complex 

would be more stable, a tertiary amine would be protonated in an environment of pH 7.4, 

offering the drug a positive charge. Therefore we studied the substitution of 7 hydroxyl 

with N,N-dimethylethanolamine, N,N-dimethylpropanolamine and 2-morpholinoethanol 

(by Mitsunobu reactions); as well as the position 8 with a nitro substitution, see compounds

26, 27, 28, 29.

173



OH O

5-hydroxy-8nitro flavone

7-(3-(dimethylamino)-ethoxy)- 
t-phenyl-4H-chrom

il

q j _ j  q  7-(3-(dimethylamino)-propoxy-
5-hydroxy-3-phenyl-4H-chromen-4-one

OH O
7-(2-(morpholinoethoxy)-
3-phenyl-4H-chromen-4-one

Compounds 26, 27, 28 and 29: We studied the relevance of a nitro group in the A ring 
with 5-hydroxy-8-nitroflavone (26). In the group of tertiary amines we studies an ethyl 
chain in 7-dimethylaminoethoxy-5-hydroxyflavone (27), a propyl chain in 7- 
dimethylaminopropoxy-5hydroxyflavone (28) and morpholine substitution in 7- 
morpholinoethoxy-5-hydroxyflavone (29).

In Table 14 we can see the results obtained for this group of compounds with modifications 

in the A ring. The highest association binding constants for 7-dimethylaminoethoxy-5- 

hydroxyflavone and 7-morpholinoethoxy-5-hydroxyflavone clearly show a tertiary amine 

with a two carbon chain is really appropriate for the binding increasing the binding of the 

unsubstituted molecule (chrysin) by 100 fold. It also showed that two methyl groups joined 

to the tertiary amine assist to the binding in a more favourable way than a morpholine 

substitution. In contrast, 7-dimethylaminopropoxy-5-hydroxyflavone in which the tertiary
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amine was on a three carbon chain, show a binding in the order of 103 M'1, this could 

indicate that the flavone intercalates the base pairs of the DNA by positions 7 and 8. A two 

carbon chain could probably seal this intercalation, but a three carbon chain would inhibit 

the binding probably by steric hindrance. Chrysin, considering it only has two hydroxyls (in 

positions 5 and 7) also showed a strong binding activity (104 M'1) when compared to other 

flavones with the same number of hydroxyls but in different positions. Considering that 7- 

hydroxyflavone presents only one third of the binding of chrysin and 5-hydroxyflavone did 

not show any binding activity, we can conclude the most relevant position in the A ring is 

position 7. 5-Hydroxyflavone did not show any interaction with STDNA, but when we 

added a nitro group in position 8, the binding increased giving a binding constant of 

7781.4 M_1. Hydroxyl groups in position 6 did not help the binding to STDNA. Methoxy 

and acetoxy substitutions inhibit the binding to the DNA as it was shown by the drecrease 

of the binding constant of the unsubstituted parent compound (chrysin) when methoxy and 

acetoxy groups were added. Some compounds did not provide identical results in the UV- 

Vis calculated binding association constants and fluorescence association constants, but this 

is possibly due to the fact that the equation is not appropriate for very low binding 

constants, obtained by compounds such as the one in the order of 103 M'1, like 5-hydroxy- 

7-methoxychrysin, 5,7-diacetoxychrsyin, chrysin and luteolin.
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Table 14: The results of the biding association constants show 7-dimethylamino-ethoxy-5- 
hydroxyflavone and 7-morpholino-ethoxy-5-hydroxyflavone as the strongest binders 
followed by chrysin and luteolin. These results clearly show the relevance of a subsituent in 
the 7 position.

*Nio: no interaction observed.

Compound Uv -Vis 
K(M-1) N

Fluorescence
K(M-1) N

5-hydroxyflavone N i o* N i o*
6-hydroxyflavone 1155.4 2.6 1266.8 (exc 

420, emis 481)
2

7-hydroxyflavone 8134.9 3.4 N i o*
7-methoxyflavone 1567.4 2 1575.9 (exc 

340, emis 534)
2.6

5-hydroxy-
7-methoxychrysin

714.2 1.7 5865.4 (exc 
340, emis 442)

2

5,7-methoxychrysin 1474.6 2.3 1947.4 (exc 
340, emis 442)

2

5,7-acetoxychrysin 3200 2.7 1695.4 (exc 
340, emis 528)

2

chrysin 28460.5 4 7499.4 (exc 
340, emis 442)

3

5-hydroxy-8-
nitroflavone

N i o* 7781.4 (exc 
340, emis 383)

4

luteolin 11193.8 12.9 2214.6 (exc 
340, emis 383)

4

7-dimethylamino-
ethoxy-5-
hydroxyflavone

189714.6 2.3 N i o*

7-dimethylamino-
propoxy-5-
hydroxyflavone

2189.5 1.5 1728.2 (exc 
420, emis 490)

3.3

7-morpholino-ethoxy-5-
hydroxyflavone

110679.3 0.85 N i o*
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4.3.f: Modifications on the B ring

In quercetin, the B ring seems to play an important role when bound to the DNA 

(Yamashita, 1999) so we studied different substitutions on this ring. Electron-withdrawing 

groups are present in many anticancer drugs (Chu, 1980) so we studied other substituents 

like Cl- and NO2’. See compounds 30, 31 and 32.

OHNO;
OH

N O ;

3'5' nitroflavone 3'4' dihydroxyflavone

Compounds 30,31, 32: We studied nitro substitutions in 3,5,-dinitroflavone (30), hydroxyl 
groups in 3'4’-dihydroxyflavone (31) and chloride groups in 3’4-dichloroflavone (32).

In Table 15 we can appreciate the results of the binding association constants. We would 

expect hydroxyl groups in the B ring to be responsible of a reasonable part of the DNA- 

drug interaction. However, after analyzing results from luteolin and chrysin we can 

conclude that hydroxyl groups in 3’ and 4’ positions decrease the binding. Moreover, if we 

extend the assumption to the original set of compounds we can speculate that the hydroxyl 

in position 3 in quercetin helps to improve the binding or does not affect the binding in any 

way. Chlorine and nitro substitutions did not improve the binding as it would be expected.
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Table 15: The results of the binding association constants show clearly that substitutions in 
the B ring do not assist in a remarkable way the interaction with STDNA.

Compound STDNA (UV) 

K fM '1) N

STDNA (Fluorescence)
Kflvr1) n

3',5'-dinitroflavone 1138.9 2.2 1181.1 (exc 340, emis 384) 2

3',4'-dihydroxyflavone 1978.9 7.2 1217.9 (exc 320, emis 467) 3

3’,4’-dichIoroflavone 763.6 1.9 1345 (exc 420, emis 464) 5.4

4.3.g: DNA -  drug -  metal interactions

Drugs can bind to metals directly or indirectly by using the hydration water; and metal 

cations have preferences for the bases in the DNA, helping the selectivity of the drug for 

the nucleic acid structure and modifying its conformation from B to Z or A -  DNA 

(Anastassopoulou, 2003).

From the structural related studies we have two main groups with hydroxyl groups that 

show relatively high binding association constants:

> tertiary amines, with the substituted chrysin

> chrysin, luteolin and 7-hydroxyflavone with free hydroxyl groups.

From these two groups, the second one provided compounds with hydroxyl groups in ortho 

position to the carbonyl in position 4 and hydroxyl groups in position 7 which showed to be 

relevant to binding with DNA; these 3 drugs were studied for metal -  drug -  DNA 

interactions (see section 3.3.b.4). Chrysin and luteolin have hydroxyl groups next to the 

carbonyl, but 7-hydroxyflavone has not, so that would be possible to have a negative
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control in this study if it corroborates what Yamashita {et al, 1999) observed about copper 

interacting first with quercetin and then with DNA. As the drugs have only one hydroxyl 

next to the carbonyl we used a ratio 1:1 of drug:metal. In Table 16 the results for this study 

are shown, and they indicate that Fe3+, Mg2+and Mn2+ increase by 1000 times the binding 

constants of 7-hydroxyflavone for DNA. This clearly shows the metals bind to the drug and 

allow it to better interact the DNA. For chrysin Cu2+, Fe2+, Fe3+, Mn2+and Mg2+ helped to 

increase 100 times the binding constant, but Zn2+ increased only by 75%. In the case of 

luteolin, no metal helped with the bindings. These results indicate the flavones bind 

preferentially using the 7-hydroxy position and metal cations improved remarkably this 

process. The fact that chrysin has stronger binding than 7-hydroxyflavone can be due to the 

hydroxyl in position 5, which could interact forming bonds with a metal joined to the 

carbonyl. Only crystallization of this complex would elucidate the actual structure.

Table 16: The results of the titrations of the metal -  drug -  DNA complexes. The binding 
association constants are expressed in M'1, the n value appears between brackets.

Cation 7-hydroxyflavone 
1:1, K (M 1)

Chrysin 
1:1, KCM*1)

Luteolin 
1:1, K f M 1)

Cu2+ 10541 (2.29) 136723(1.9) 1390.4(2.3)
Fe2+ 10932.3(2.1) 589632 (4) 1428.4 (2.4)
Fe3+ 200550 448189.5 (2.5) 1366.2

(2.09) (2.6)
Mg2+ 1032439(1.4) 1179875(1.5) 1518.4

(2.8)
Mn2+ 107741 (2) 251482 (2.7) 1372.7

(2.2)
Zn2+ 9935.5(2.18) 74901 (5) 1447.6 (3)
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4.4: Selectivity for different structures

4.4.a: Competition dialysis

Selectivity for different isoforms of DNA is always relevant when drug -  nucleic acid 

interactions are under study. We studied this second set of compounds on 8 different 

isoforms of nucleic acids (STDNA, polydAdT, poly[dAdT]2, polydGdC, poly[dGdC]2,
i

polydAdT-dT, purine triplex, G-tetraplex) using competition dialysis (see Chapters 2 and 3) 

Figures 31 a -  s show the results of these experiments. Thioflavone showed remarkable 

preference for G-quadruplex and polydGdC-dGdC. It is possible that thioflavone prefers 

quadruplex DNA as these strucutures present more available space for intercalation and the 

sulfur in thioflavone could possibly play an important role in the stabilization of the 

complex. For duplex DNA structures, thioflavone clearly prefers GC sequences. Flavone 

also showed preference primarily for G-quadruplex, with high affinities for poly[dGdC]2 

and purine triplex (GCG). This is a clear indication of preference for GC. Presence of a 

nitrogen as part of the ring, as in the case of azaflavone, changed the preference for G- 

quadruplex to GCG triplex and polydAdT-dAdT. It appears that the flavone scaffold 

interacts preferentially with high order DNA structures. However, when the skeleton 

changes, the marked preference for GC bases also changes to AT bases. As well as 

thioflavone and and flavone, 3,,4'-dichloroflavone, luteolin, 3',5'-dinitroflavone, chrysin, 7- 

morpholinoethoxy-5-hydroxyflavone, 7-dimethylaminoethoxy-5-hydroxyflavone and 7- 

dimethylaminopropoxy-5-hydroxyflavone showed a remarkable preference for G- 

quadruplexes in first place, followed by preference for GCG triplex and polydGdC-dGdC 

for second place. 5-Hydroxy-8-nitroflavone showed preference for polydGdC-dGdC and 

secondly for G-quadruplex, in this case the preference was inverted when compared with
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the previously described compounds. 3',4'-Dihydroxyflavone showed preference for G- 

quadruplex followed by equal preferences for GCG triplex, polydGdC-dGdC, polydGdC 

and polydAdT-dAdT. Adding two methoxy groups in chrysin started to change the 

preference for G-quadruplex to STDNA, but adding only one methoxy group kept the 

initial preference for G-quadruplex and added a remarkable preference for polydAdT. 

Introduction of two acetoxy groups in chrysin inverted the preference of G-quadruplex and 

polydGdC-dGdC to polydGdC-dGdC primarily and G-quadruplex secondly. 7- 

hydroxyflavone and 5-hydroxyflavone showed a clear preference for STDNA, but when we 

added a methoxy group to 7-hydroxyflavone the preference changed dramatically to 

polydAdTdT. 6-Hydroxyflavone showed preference for poly[dGdC]2 and polydAdT. It 

appears that any preferential binding to GC rich duplex DNA is for the alternating purine- 

pyrimide GC step and not for the polydGpolydC homopurine-homopyrrimidine strands, in 

agreement with previous data of intercalators showing a preference for GC steps (Ren and 

Chaires, 1999).

flavone

po ly (d G d C )2  ; ; ~ ~ . - . - I

P o ly d G d C  |

P o ly (d A d T )2  f ~   ■ ~ , I

P o lydA dT  |

T e tra p le x  - > . > |

G CG >  ̂ ■ !

ATT I

STDNA 

in itia l |

r—     1 ----------------------------- \------------------------------- 1-------------------------------1.........................................1.......  1 -1

0 2 4 6 8 10 1£ound (u M ^

Figure 31 a: Flavone shows preference for G-quadruplex and poly[dGdC]2
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thioflavone

p o l y ( d G d C ) 2

P o ly d G d C

P o ly ( d A d T ) 2

P o ly d A d T

Tetraplex

S T D N A

initial

10 1£ound (u M )

Figure 31 b: Thioflavone shows preference for G-quadruplex, poly[dGdC]2  and purine 
triplex.

po ly (dG dC )2

P olydG dC

Poly (dA dT )2

PolydA dT

T e tra p le x

GCG

ATT

STDNA

Initial

aza -3 -flavo n e

8 b o u n d  (u tfP

Figure 31 c: Aza-3-flavone shows preference for purine triplex and poly[dAdT]2
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3',4'-dichloro flavone

poly(d G dC )2

PolydG dC

Poly(dA dT )2

PolydAdT

GCG

ATT

STDNA

initial

0 1 2 3 4 5 6 bi&und (ul\$

Figure 31 d: 3',4'-Dichloroflavone shows preference for G-quadruplex, poly[dGdC] 2  and 
purine triplex.

poly(dGdC)2 

FblydGdC 

Fbly(dAdT)2 

FtolydAdT 

Tetraplex 

GCG 

ATT 

STDNA 

initial

0 2 4 6 8  10 bound (ul\$

3',5'-dinitroflavone

Figure 31 e: 3',5' -Dinitroflavone shows preference for G-quadruplex, poly[dGdC] 2  and 
purine triplex.
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poly(dGdC)2 

PolydGdC 

Poly(dAdT)2 

PolydAdT 

Tetraplex 

GCG 

ATT 

STDNA 

initial

0 5 10 15 20 bound (uM^

5-hydroxy-8-nitroflavone

— i

~l

~~l

1

Figure 31 f: 5-Hydroxy-8-nitroflavone shows preference for poly[dGdC]2  and G- 
quadruplex.

poly(dGdC)2 

PolydGdC 

Poly(dAdT)2 

PolydAdT 

Tetraplex 

GCG 

ATT 

STDNA 

initial

0 2 4 6 8 10 12 14 b^ nd {u^

luteolin

Figure 31 g: Luteolin shows preference for G-quadruplex, poly[dGdC]2  and purine triplex.

184



3 ' , 4 ' -dihydrox  y f l a v o n  e

p o ly (d G d C )2

PolydGdC

Poly(dAdT)2

PolydAdT

Tetraplex

GCG

ATT

STDNA

Initial ^

10 15 20 25 3£ound (ultif

Figure 31 h: 3',4'-Dihydroxyflavone shows preference for G-quadruplex and purine

triplex.

chrysin

poly(dGdC)2

PolydGdC

Poly(d AdT)2

PolydAdT

Tetraplex

GCG _________

ATT

STDNA

Initial

2 60 4 8 10

Figure 31 i: Chrysin shows preference for G-quadruplex, purine triplex and poly[dGdC]2 .
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5-hydroxy-7-methoxychrysin

poly(dGdC)2

PolydGdC

PolydAdT

Tetrap lex

GCG

ATT

STDNA

In itia l

Figure 31 j: 5-Hydroxy-7-methoxyflavone shows preference for G-quadruplex,
polydAdT, poly[dGdC] 2  and purine triples.

5,7 -d im  e th o x y c h ry s  in

poly(dG dC )2

PolydG dC

Poly (dA dT )2

P olydA dT

T e tra p le x

STDNA

in itia l

10 b o u n d (u t f£

Figure 31 k: 5,7-Dimethoxychrysin shows preference for STDNA, G-quadruplex and 
purine triplex.
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5,7-diacetoxychrysin

poly(dGdC)2

PolydGdC

Poly(dAdT)2

PolydAdT

Tetrap lex

STDNA

in itia l

10 15 20 25 bound (ultfP

Figure 311: 5,7-Diacetoxychrsyin shows preference for poly[dGdC]2 .

7-dimethylaminoethoxy-5-hydroxyflavone

poly(dGdC)2

PolydGdC

Poly(dAdT)2

PolydAdT

Tetraplex

GCG

ATT

STDNA

initial

0 2 4 6 8 bound (u tfj

Figure 31 m: 7-Dimethylaminoethoxy-5-hydroxyflavone shows preference for G- 
quadruplex, poly[dGdC] 2  and purine triplex

187



poly(dGdC)2

PolydGdC

Poly(dAdT)2

PolydAdT

Tetraplex

GCG

ATT

STDNA

initial

0

7-dimethylaminopropoxy-5-hydroxyflavone

_________

'  1

8 bound (uMp

Figure 31 n: 7-Dimethylaminopropoxy-5-hydroxyflavone shows preference for G-
quadruplex, poly[dGdC] 2  and purine triplex

7-morpholinoethoxy-5-hydroxyflavone

poly(dG dC )2

PolydGdC

Poly(dAdT)2

PolydAdT

Tetraplex

GCG

ATT

STDNA

initial

14 bd§nd (utff

Figure 31 o: 7-Morpholinoethoxy-5-hydroxyflavone shows preference for G-quadruplex,
poly[dGdC]2  and purine triplex.
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7-hydroxyflavone
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Figure 31 p: 7-Hydroxyflavone shows preference for STDNA.
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Figure 31 q: 7-Methoxyflavone shows preference for polydAdTdT.
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Figure 31 r: 5-Hydroxyflavone shows preference for STDNA.
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Figure 31 s: 6-Hydroxyflavone shows preference for poly[dGdC]2  and polydAdT.



4.5: Stabilisation o f  the double helix

4.5.a: Melting points

Alongside binding association constants binding preference and metal contributions to the 

binding, we studied the effect of the modified set of compounds on the stabilization of 

STDNA. 6-Hydroxyflavone, luteolin and azaflavone showed extremely low binding 

constants, but these 3 compounds stabilised the DNA by an average of 2 -  3 °C, 

demonstrating that association binding does not correlate with DNA stabilisation. 5- 

Hydroxy-7-methoxyflavone, 5,7-dimethoxyflavone, 5-hydroxy-8-nitroflavone, 7- 

dimethylaminopropoxy-5-hydroxyflavone, 3 '4'-dichloroflavone and flavothione destabilise 

the duplex helix of STDNA. 7-Dimethylaminoethoxy-5-hydroxyflavone, 7- 

morpholinoethoxy and 3'5'-dinitroflavone produced some effect in the STDNA that 

affected its melting profile, resulting in an inabiltiy to accurately calculate melting points, 

see Figure 32.

3 ',5 '-dinitroflavone
0.096

0.094
0.092 -

0 .09 -

0 .088 -
0.086

0.084
0.082 -

te m p e ra tu re

Figure 32: The result of the melting point of 3',5'-dinitroflavone on STDNA showed the 
drug to destabilise the double helix in a way not possible to measure or produce colloids in 
the test solution.
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The results from the temperature denaturation studies are shown in Table 17 and indicate 

that the compounds do not have a clear effect on the double helix.

Table 17: The results of the melting points for these compounds show luteolin and aza-3- 
flavone have a small stabilisation effect on the double helix while the rest of the 
compounds do not affect it. 7-Dimethylaminoethoxy-5-hydroxyflavone, 7- 
morpholinoethoxy-5-hydroxyflavone and 3 5'-dinitroflavone produced some effect in the 
STDNA that made the assay impossible to perform.

Compound AT (°C)

5-hydroxyflavone 0

6-hydroxyflavone 2.5

7-hydroxyflavone 0

7-methoxyflavone 0

5-hydroxy-7-methoxychrysin -3

5,7-dimethoxychrysin -1

5,7-diacetoxychrysin -1.9

5-hydroxy-8nitroflavone -1.5

luteolin 3.4

7-dimethylaminoethoxy-5-hydroxyflavone No defined interaction

7-dimethylaminopropoxy-5-hydroxyflavone -1.5

7-morpholinoethoxy-5-hydroxyflavone No defined interaction

3',5'-dinitroflavone No defined interaction

3',4-dihydroxyflavone 0.4

3',4-dichloroflavone -1.5

flavothione -0.6

azaflavanone 3.4
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4.6: Biological evaluation

4.6. a: Cell viability results

To evaluate the anticancer activity of these compounds we tested the most relevant ones 

against the two cell lines studied in chapter 3, MCF7 breast cancer cell line and CCRFCEM 

leukemia cell line. We compared the results obtained here with flavone in order to see if we 

could get some improvement based in our rational drug design studies. We studied the 

inhibition of growth by 50 % of the population of cells at 24, 48 and 72 hours of incubation 

of the cells with the test drugs at 0, 1, 5, 10, 50, 100, 500 and 1000 pM. Unfortunately none 

of the compounds proved to be an effective anticancer drug with the majority of them 

having a IG50 > 100 pM. Only 7-dimethylaminoethoxy-5-hydroxyflavone and 7- 

dimethylaminopropoxy-5-hydroxyflavone presented IG50 in the order of 65 -  85 pM. It is 

worth noting that nitro substitutions promote growth in these two cell lines, possibly by 

forming some metabolites that assist cell growth. This effect does not appear to be related 

to estrogenic activity, previously seen by daidzein (see Chapter 3), as the molecules have a 

similar effect on both cell lines tested. In Table 18 the results are shown.
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Table 18: The results of the MTS proliferation assay showed the compounds are not 
cytotoxic in both cancer cell lines. 7-Dimethylaminoethoxy-5-hydroxyflavone proved to 
have some activity in CCRFECM cell line at 72 h of incubation and 7- 
dimethylaminopropoxy-5-hydroxyflavone showed some antiproliferation activity on both 
cell lines after 72 h of exposure. 5-Hydroxy-8-nitroflavone, 3',5,-dinitroflavone and flavone 
promote growth.

IGso MCF7 (pM) at 72 
hours

IGso CCRFCEM (pM) at 
72 hours

5-hydroxy-8-nitroflavone Promotes growth > 100
luteolin > 100 > 100
7-dimethylaminoethoxy-5- > 1 0 0 69.9
hydroxyflavone
7-dimethyIaminopropoxy- 88.6 65.9
5-hydroxyflavone
7-morphoIinoethoxy-5- > 1 0 0 > 100
hydroxyflavone
3',5'dinitroflavone Promotes growth Promotes growth
3',4’-dihydroxyflavone > 1 0 0 > 1 0 0
3',4'-dichloroflavone > 1 0 0 > 1 0 0
flavothione > 1 0 0 > 100
azaflavanone > 1 0 0 > 1 0 0
flavone Promotes growth > 1 0 0
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4.7: Conclusions to Chapter 4

Several protocols can be employed with the purpose of synthesizing flavonoids, 

unfortunately majority of them work given rise to very small yields or do not work at all, 

and this is even worse when some hydroxyl groups are present in the flavone scaffold. The 

employment of potassium terbutoxide as catalyst did help for getting better yields in the 

synthesis of the study compounds. Other synthetic routes like Mitsunobu reactions, 

methoxylation and acetoxylation were employed with successful results. Drug design can 

be employed to understand analogues of drugs which best utilise a particular feature of the 

DNA structure to maximise the interactions. The rational design has indicated the overall 

order of DNA affinity, suggesting that the intercalation model has relevance for the mode 

of action and tertiary amines are the most appropriate groups, by giving binding constants 

in the order of 106 M '1. The length of the carbon chain in the substituted chrysin for 

obtaining the amine derivatives plays a major role when binding to DNA, demonstrating 

that this particular position (7) binds directly to the DNA bases and with a particular length; 

it resulted to be more important having a length of 2 carbons instead of 3 carbons, rather a 

morpholino group replacing a dimethylamine group. The relevance in the introduction of 

hydroxyl groups into the flavone sekeleton could not be analysed by denaturation melting 

studies, as almost all flavonoids did not show any stabilisation of the double helix. 

Introduction of chloride and nitro groups did not improve the binding or stability in the 

duplex helix of STDNA. The competition dialysis experiments showed a remarkable 

preference for high order structures of DNA (like G-quadruplexes and triplexes) in majority 

of the cases as it was already found for the group of compounds in chapter 3. Metal cations
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did assist on improving the binding of the drugs to DNA when the compounds have 

hydroxyls in position 7. The results for the cell viability assay showed the anticancer 

activity could not be improved even though the binding has been improved by 100 folds. 

Other factors such as metabolism, cellular uptake, drug persistency, cytotoxicity, and other 

possible reactions with cellular components could be responsible of the apparent lack of 

anticancer activity on the cell lines tested.
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Chapter 5: Conclusions and further work
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Cancer chemotherapeutic drugs may be classified according to their mechanism of action 

into several classes: hormones, immunological agents, radiosensitisers, antimetabolites, 

mitotic agents and those that interact with nucleic acid. The choice of a feasible target has 

been made considering a big diversity of treatments for antitumour cells and nucleic acids 

showed to be a workable target for antitumour activity. DNA interactive agents can bind to 

the nucleic acids in different ways. We have studied the mode of action of a group of 

compounds on nucleic acids and their biological anticancer activity and we have used 

different approaches to improve both their binding to the nucleic acids and their antitumour 

activity.

For that purpose we have chosen two families of herbal extracts (sesquiterpenes and 

flavonoids) and studied their binding to different isofoims of DNA in order to assess any 

sequence or structural preference and strength of binding.

Our group of sesquiterpenes was composed of artesunate, artemisinin and cantharidin; 

unfortunately these compounds did not have any UV-Vis spectrum or fluorescence; 

therefore we were limited to a small set of techniques we could employ to test any DNA- 

drug activity. Amongst these methodologies we used denaturating points, footprinting, 

DNA damage, topoisomerase I & II, and hemin as an indicator of any activity between 

artesunate and artemisinin on STDNA. Unfortunately none of these compounds appeared to 

interact with STDNA in any way. Artesunate and artemisinin, however, showed to have 

some inhibition of topoisomerase II activity, maybe by acting on the enzyme toposiomerase 

rather than the nucleic acid.
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From our preliminary set of compounds, the flavonoids baicalein, baicalin, daidzein, 

puerarin, quercetin and rutin demonstrated preference for higher order DNA structures like 

G-quadruplex, and purine and pyrimidine triplexes; with baicalein and quercetin giving 

binding association constant values in the order of 2-8x104M '\ In the cell work, the 

compounds baicalein, baicalin, daidzein and quercetin proved not to be active anticancer 

agents by giving very high values of GI50 for the two cell lines employed (MCF7 breast 

cancer and CCRFCEM leukaemia cell lines). Baicalin showed very low binding constants 

for the nucleic acids, but had the slowest GI50 values on both cell lines, possibly by acting 

as an anticancer agent in these two cell lines through binding to some other target or by 

being metabolised to a more active intermediate. In the metabolite CYP1A1 assay only 

baicalein and daidzein gave results that would allow speculation of hydroxylation and 

methylation patterns. Baicalin and quercetin proved to be unstable during the assay or to 

produce results that we could not interpret in our assay.

From this screening of activities we could conclude that the flavonoids are DNA 

intercalator agents and the flavone skeleton is a useful scaffold to explore binding sites on 

the DNA.

The synthesis of flavones is not an easy task as it is shown in the literature or in the design 

of a mechanism of reaction. Different approaches were considered and the use of a strong 

base as potassium tert-butoxide helped to drive the reaction to completion. In the case of 

the substitutions with tertiary amines, the employment of Mitsunobu reactions helped to 

produce some novel compounds as 7-dimethylaminopropoxy-5-hydroflavone and 7- 

morpholinoethoxy-5-hydroflavone and the known 7-dimethylaminoethoxy-5-hydroflavone.
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In this second generation of compounds, the majority of the compounds kept the preference 

for higher order of DNA structures like G-quadruplexes, purine triplex and the duplex 

poly[dGdC]2. Unfortunately the anticancer activity in the cell lines used (MCF7 and 

CCRFCEM cell lines) did not appear to improve. We can speculate that this class of 

compounds is metabolised inside the cell and are thus not able to bind to DNA inside the 

nucleus and effect their anticancer activity. Furthermore, molecules they also possibly bind 

to protein or receptor targets inside the cell.

The binding association constants provided invaluable information about the mode of 

binding of the flavonoids to the STDNA, which can be summarised as follow:

> the binding is improved when the B ring is located in the C3 position

> insertion of nitrogen into the skeleton did not improve the binding, but insertion of 

sulphur improved the binding 6 -fold

> substitutions of nitro and chloride moieties did not improve the binding, but 

substitutions of nitro plus hydroxyl groups in the same molecule improved the 

binding

> methoxylation and acetoxylation reduced the original binding association constants

> tertiary amines helped to improve the binding association constants, when 

associated in a two carbon chain like is the case of 7-morpholinoethoxy-5- 

hydroflavone and 7-dimethylaminoehtoxy-5-hydroflavone where the binding was 

improved 100-fold, but in the case of 7-dimethylaminopropoxy-5-hydroxyflavone 

where the carbon chain is 3 carbon atoms, the binding was reduced 10-fold
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> position 7 in the A ring is the most important for interacting with STDNA; and

when position 5 is added the binding is improved 4 folds, even though the binding

of position 5 alone is non-existent

> substitution in B ring did not prove to be too effective

> metal cations did improve the binding when added to 5 ,7 -dihydroxyflavone 

(chrysin) and to 7-hydroxyflavone; which agrees with the speculation of position 7 

as extremely relevant in the binding.

More studies are needed in order to get a better understanding of the interaction between 

flavones and DNA and to improve this binding, some possibilities to explore are:

> substitutions with amino groups

> substitutions with piperazine groups

> substitutions with fluoride

> running the same panel of compounds but with a flavothione scaffold

> running similar panel of compounds but with a xanthone scaffold

> exploring substitutions in the B ring employing Mitsunobu reactions

> formation of dimers in different positions (like in 7, 3 and 3’)

> test of the drugs in other cell lines

All the information provided by this project and all the information that would be 

provided by the suggested items, could assist in the design of novel agents with 

improved bioavailability and anticancer activity.
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Figure 33: Acridine -  STDNA (UV-Vis)
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Figure 34: Acridine -  STDNA (fluorescence)
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Figure 39: Daidzein - STDNA (UV-Vis)
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Figure 41: Puerarin - STDNA (fluorescence)
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Figure 46: Rutin - STDNA (fluorescence)
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Figure 49: Quercetin - polydAdT
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Figure 50: Baicalein polydAdT-dAdT
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Figure 51: Baicalin -  polydAdT-dAdT

0.500

0.495 -

_  0 .490-C
*1—

2
^ 0 .485-

dJ
^ 0.480- (TJip
o

0.475 -\

0.470 -

0.465
0.0000

D a ta : P u e ra r in  - p o ly d A d T -d A d T  
M o d e l: m is s a il id is

C h iA2 =  2 .0 0 6 1  E -6
R A2 =  0 .9 8 4 2 4

P1 0 .4 0 7 1 5 ± 0 .2 1 7 8 8
P 2 0 .4 9 8 0 2 ± 0 .0 0 0 9 8
P 3 1 2 6 3 .5 1 1 3 7 ± 8 1 3 6 .4 2 0 8 8
P 4 0 .0 0 0 0 3 ±0
P 5 2 .4 1 9 6 3 ± 1 0 8 .3 6 7 4 9

0.0001 0.0002 0.0003

polydAdT-dAdT (M)

 1---
0.0004

 1
0.0005

Figure 52: Puerarin -  polydAdT-dAdT
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Figure 58: Baicalein -  PolydGdC-dGdC
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Figure 61: Puerarin -  PolydGdC-dGdC
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Figure 62: Quercetin -  PolydGdC-dGdC
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Figure 64: Baicalein -  PolydAdT-dT
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Figure 65: Quercetin -  PolydAdT-dT
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Figure 71: 7-Hydroxyflavone -  STDNA -  Mn
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Figure 73: 7-Hydroxyflavone -  STDNA -  Fe(II)
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Figure 74: 7-Hydroxyflavone -  STDNA -  Fe(III)
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Figure 75: 7-Hydroxyflavone -  STDNA -  Cu
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Figure 76: Baicalein -  STDNA- Mn
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Figure 77: Baicalein -  STDNA -  Zn
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Figure 78: Baicalein -  STDNA -  Mg
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Figure 79: Baicalein -  STDNA -  Fe(III)
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Figure 80: Baicalein -  STDNA -  Fe(II)
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Figure 81: Baicalein -  STDNA -  Cu
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Figure 82: Baicalein -  STDNA - Zn
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Figure 83: Baicalein - STDNA -  Mn
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Figure 84: Baicalein -  STDNA -  Mg
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Figure 85: Baicalein - STDNA -  Fe(II)
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Figure 86: Baicalein -  STDNA -  Cu
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Figure 87: Baicalin -  STDNA -  Fe(II)
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Figure 88: Baicalin -  STDNA -  Fe(III)
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Figure 89: Baicalin -  STDNA -  Cu
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Figure 90: Baicalin -  STDNA -  Zn
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Figure 91: Baicalin -  STDNA -  Mn
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Figure 92: Baicalin -  STDNA -Mg
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Figure 93: Chrysin -  STDNA- Zn
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Figure 94: Chrysin -  STDNA -  Mn
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Figure 95: Chrysin -  STDNA -  Mg
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Figure 96: Chrysin -  STDNA- Fe(III)
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Figure 97: Chrysin -  STDNA -  Fe(II)
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Figure 98: Chrysin -  STDNA -  Cu
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Figure 99: Luteolin -  STDNA -  Zn
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Figure 100: Luteolin -  STDNA- Mn
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Figure 101: Luteolin -  STDNA -  Mg
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Figure 102: Luteolin -  STDNA -  Fe(lII)
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Figure 103: Luteolin -  STDNA -  Fe(II)
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Figure 104: Luteolin -  STDNA -  Cu
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Figure 105: Quercetin -  STDNA -  Cu
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Figure 106: Quercetin -  STDNA- Mn
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Figure 107: Quercetin -  STDNA -  Zn
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Figure 108: Quercetin -STDNA -  Mg
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Figure 109: Quercetin -  STDNA -  Fe(II)
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Figure 110: Quercetin -  STDNA -  Fe(III)
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Figure 111: Quercetin - STDNA -  Zn
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Figure 112: Quercetin -  STDNA -  Mn

Data: 1:1 Quercetin - Mn - DNA 
Model: missailidis

ChiA2 = 0.00012
RA2 = 0.98482

P1 0.89181
P2 1.19461
P3 7885.16649
P4 0.00005
P5 3.29357

±0.09965
±0.01078
±12767.70094±0
±3.88358
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Figure 113: Quercetin -  STDNA -  Mg
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Figure 114: Quercetin - STDNA -  Fe(III)

Data: 1:1 Quercetin - Mg - DNA
Model: missailidis

ChiA2 = 0.00016
RA2 = 0.98728

P1 0.88497
P2 1.21424
P3 10959.8877
P4 0.00005
P5 2.31898

±0.06014
±0.01231
±11838.47479±0
±2.33299

Data: 1:1 Quercetin - Fe (III) - DNA 
Model: missailidis

ChiA2 = 0.00009
RA2 = 0.99318

P1 0.78416 ±0.05867
P2 1.14384 ±0.00913
P3 9504.0908 ±8442.88923
P4 0.00005 ±0
P5 2.76066 ±2.00791
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Figure 115: Quercetin - STDNA -  Fe(II)
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Figure 116: Quercetin -  STDNA -  Cu

Data: 1:1 Quercetin - Fe(ll) - STDNA
Model: missailidis

ChiA2 = 0.00042
RA2 = 0.9619

P1 0.9313 ±0.08563 
P2 1.24799 ±0.02019
P3 12899.60462 ±22186.20719
P4 0.00005 ±0
P5 2.49065 ±3.30436

Data: 1:1 Quercetin - C u - DNA
Model: missailidis

ChiA2 = 0.00025
RA2 = 0.9906

P1 0.81912 ±0.06274
P2 1.30986 ±0.01568
P3 12132.4825 ±9768.88807
P4 0.00005 ±0
P5 1.94341 ±1.68602
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Figure 117: Rutin -  STDNA -  Mn
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Figure 118: Rutin -  STDNA- Zn

259



0 .9 2 -

0 .90 -

•j= 0.88-
(D
203a;
00 c 
CO JQ 1 o
CO-Q<

0.86-

0 .84 -

0 .82 -

0 .80 -

Data: 1:1 Rutin - Fe (III) -DNA j
Model: missailidis

ChiA2 = 0.00003
RA2 = 0.98712

P1 0.91602 ±0.00673
P2 0.79921 ±0.00503
P3 75787.43574 ±71314.46241
P4 0.00005 ±0
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Figure 119: Rutin -  STDNA -  Fe(II)

Data: 1:1 Rutin - Fe(ll) - DNA 
Model: missailidis

ChiA2
RA2

0.00002
0.9919

1.02598 ±0.00426
0.90251 ±0.00432
130794.82247 ±115529.6048 
0.00005 ±0
2.65854 ±0.4449

0.0002 0.0003

STDNA(M)

Figure 120: Rutin -  STDNA -  Fe(III)
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Figure 121: Rutin -  STDNA -  Cu
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Data: 1:2 Rutin - Zn (II) - STDNA 
Model: missailidis
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Figure 122: Rutin -  Zn -  STDNA

Data: 1:1 Rutin - Cu - DNA 
Model: missailidis with n

ChiA2 = 2.7179E-6 
RA2 = 0.94452

P1 0.93493
P2 0.88355
P3 1202.67644
P4 0.00005
P5 2.76448

±0.53906
±0.00495
±35269.9328±0
±317.37133

 1 » 1 ' 1 ' 1 ' 1 » 1---
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
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Data: 1:2 Rutin - Mn (II) - STDNA 
Model: missailidis

ChiA2 = 8.0275E-6 
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Figure 123: Rutin -  STDNA -  Mn
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Data: 1:2 Rutin - Mg (II) - STDNA 
Model: missailidis
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RA2 = 0.98124
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Figure 124: Rutin -  STDNA -  Mg
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Data:1:2 Rutin - Fe (III) - STDNA
Model: missailidis

ChiA2 = 0.00001
RA2 = 0.95531
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Figure 125: Rutin -  STDNA -  Fe(III)
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Data: 1:2 Rutin - Fe(ll) - DNA 
Model: missailidis

ChiA2 = 6.0953E-6
RA2 = 0.97289

P1 1.10173 ±1.00965
P2 0.99041 ±0.00737
P3 1049.26802 ±25919.40926
P4 0.00005 ±0
P5 2.06782 ±306.254

Figure 126: Rutin -  STDNA -  Fe(II)
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Figure 127: Rutin -  STDNA -  Cu
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Data: Luteolin 
Model: missailidis

ChiA2 = 5227285.80353
RA2 = 0.98615

P1 150109.73797 ±42346.76015
P2 89915.98337 ±1884.22835
P3 23484.39649 ±97171.41999
P4 0.00005 ±0
P5 12.03172 ±4.16404
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Figure 128: Luteolin -  STDNA
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Data: 3'5'-Dinitroflavone 
Model: missailidis
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P2 346787.75399 ±13882.8672
P3 2599.25899 ±16667.30473
P4 0.00005 ±0
P5 1.96061 ±41.4563
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Figure 129: 3’5’- dinitroflavone - STDNA
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Data: 3'4'-Dihydroxyflavone 
Model: missailidis

ChiA2 = 683025948.67245
RA2 = 0.92561

P1 677838.11484 ±580830.75519
P2 307472.29347 ±24198.49825
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P4 0.00005 ±0
P5 7.39757 ±16.34959
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Figure 130: 3’4’-dihydroxyflavone -  STDNA
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Figure 131: 3’4’-dichloroflavone -  STDNA
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Data: 7-Moprholinoethoxy 5-hydroxyflavone 
Model: missailidis
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Figure 132: 7-morpholino, 5-hydroxyflavone -  STDNA
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Data: 3'4'-Dichloroflavone 
Model: missailidis

ChiA2 = 14374030.1732
RA2 = 0.76516

P1 67361.196
P2 22992.8881
P3 1345.06597
P4 0.00005
P5 5.40264

±602523.5506
±3592.45862
±51271.57923
±0
±324.53578
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Data: 6-Hydroxyflavone 
Model: missailidis

ChiA2 = 386837688 .7307
RA2 = 0 .9519

P1 556460 .43458 ±2343044.97241
P2 22994.9372 ±18848.15414
P3 1266.77176 ±15852 .61059
P4 0.00005 ±0
P5 2.05126 ±131.59377
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Figure 133: 5-hydroxyflavone -  STDNA
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Data: 5-Hydroxy 8 -nitroflavone 
Model: missailidis

ChiA2 = 16016494.17308
RA2 = 0.85958

P1 206996.50477 ±25421.47149
P2 174145.71452 ±3846.99261
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Figure 134: 5-hydroxy,8-nitroflavone - STDNA
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Figure 135: Aza-3-flavone - STDNA
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Data: Flavothione 
Model: missailidis

ChiA2 = 130653291.34833
RA2 = 0.8987

P1 617239.40444 ±117187.46173
P2 722902.90758 ±9899.32569
P3 15538.77308 ±103772.25136
P4 0.00005 ±0
P5 9.32864 ±4.75291

600000
0 .0 000  0.0001 0 .0 002  0 .0 003  0 .0 0 0 4  0 .0 0 0 5  0 .0 006  0 .0 0 0 7

STDNA(M)

Figure 136: Flavothione - STDNA
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Figure 137: 7-dimethylaminoethoxy,5-hydroxyflavone -  STDNA
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Data: Flavanone
Model: missailidis
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RA2 = 0.67861
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Figure 138: Flavanone - STDNA

Data: 7-Dimethylaminoethoxy 5-hydroxyflavone 
Model: missailidis

ChiA2 = 1702787674.91511  
RA2 = 0.97182

P1 1344213.9033 ±296695.37981
P2 667869 .8 9 4 5  ±32997.8122
P3 4 4 468 .13092  ±172134.66494
P4 0 .00005  ±0
P5 10.46487 ±2.18129
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Figure 139: Xanthone -  STDNA
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Data: 7-Methoxyflavone
Model: missailidis

ChiA2 = 8834782.07442
RA2 = 0.97953

P1 61646.22153 ±807278.794
P2 225184.92461 ±22906.06748
P3 1575.95472 ±23984.43527
P4 0.00005 ±0
P5 2.57723 ±143.35961
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Figure 140: 7-methoxyflavone - STDNA
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Figure 141: 5,7-dimethoxyflavone - STDNA

55000 -

50000 -

45000 -|

0o
§  40000
oco
£
O 35000 A

30000 -

25000 -

20000

Data: Chrysin
Model: missailidis

ChiA2 = 6950393.85877
RA2 = 0.95884

P1 71011.99854 ±28428.27702
P2 22408.83699 ±2344.17321
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Figure 142: Chrysin -  STDNA
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Figure 143: 5-hydroxy,7-methoxyflavone -  STDNA
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Figure 144: 5-hydroxyflavone -  STDNA

Data: 5-Hydroxy 7-methoxyflavone
Model: missailidis

ChiA2 = 18250368.3808 
RA2 = 0.80419

P1 71725.0786 ±66947.78429
P2 111399.49228 ±17915.64839
P3 5865.38239 ±46970.39286
P4 0.00005 ±0
P5 2.07407 ±33.80329

Data: 7-Hydfroxyflavone - STDNA 
Model: missailidis

ChiA2 = 0.00002
RA2 = 0.97973

P1 0.45376
P2 0.56583
P3 8134.98205
P4 0.00005
P5 3.4071 ±1.0711

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
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Data: 5-Hydroxy 7methoxyflavone
Model: missailidis

ChiA2 = 0.00005
RA2 = 0.88096

P1 0.4484 ±2.56147
P2 0.27086 ±0.0066
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P4 0.00005 ±0
P5 1.68912 ±632.22555

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

STDNA(M)

Figure 145: 5-hydroxy,7-methoxyflavone -  STDNA

Data: 3'5-Dinitroflavone 
Model: m issailidis
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Figure 146: 3’,5’-dinitroflavone -  STDNA
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Figure 147: Flavanone -  STDNA
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Figure 148: Chrysin - STDNA

Data: Chrysin 
Model: missailidis

ChiA2 = 0.00021
RA2 = 0.98418

P1 0.11101 ±0.01436
P2 0.47267 ±0.01011
P3 28460.53959 ±10472.58004
P4 0.00007 ±0
P5 4 ±0
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Data: 5,7-Dimethoxychrysin
Model: missailidis

ChiA2 = 0.00001
RA2 = 0 .99626

P1 0.33144 ±0.26312
P2 0 .67233 ±0.00331
P3 1474.60747 ±3411.81053
P4 0 .00005 ±0
P5 2 .34754 ±21.7237
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Figure 149: 5,7-dimethoxychrysin -  STDNA
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Data: 5,7-Diacetoxychrysin
Model: missailidis

ChiA2 = 8.9562E-6
RA2 = 0.95945

P1 0.10944 ±0.06556
P2 0.17184 ±0.00288
P3 3200.01563 ±12506.25016
P4 0.00005 ±0 |
P5 2.67134 ±19.82323
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Figure 150: 5,7-diacetoxychrysin -  STDNA
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Data: 3'4'-Dihydroxyflavone
Model: missailidis

ChiA2 = 0.00001
RA2 = 0.99294
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Figure 151: 3’,4’-dihydroxyflavone -  STDNA
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Data: 3’4-Dichloroflavone 
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Figure 152: 3’,4’-dichloroflavone -  STDNA
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Data: 7-Morpholinoethoxy 5-hydroxyflavone
Model: missailidis

ChiA2 = 0.00002
RA2 = 0.98818

P1 0.15717 ±0.00227
P2 0.26684 ±0.00397
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Figure 153: 7-morpholinoethoxy,5-hydroxyflavone - STDNA
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Data: Xanthone
Model: missailidis

ChiA2 = 5.1003E-6
RA2 = 0.97491
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Figure 154: Xanthone -  STDNA
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Figure 155: 7-dimethlyaminopropoxy,5-hydroxyflavone -  STDNA
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Data: 7-Dimethyaminoethoxy 5-hydroxyflavone 
Model: missailidis

ChiA2 = 0.00005
RA2 = 0.97741

P1 0.387 ±0
P2 0.52184 ±0.00682
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P5 2.35273 ±0.37319
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Figure 156: 7-dimethlyaminoethoxy,5-hydroxyflavone -  STDNA

Data: 7-dimethylaminopropoxy 5-hydroxyflavone 
Model: missailidis
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Data: Flavone 
Model: missailidis0.51
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Figure 157: Flavone -  STDNA
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Data: Luteolin
Model: missailidis
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Figure 158: Luteolin -  STDNA

279



0 .4 5 2

0 .4 5 0  -

<U 0 .4 4 8  
c o 
>

_CD

O  0 .4 4 6  w
<DO
c§ 0 .4 4 4  
.a
Ow

<  0 .4 4 2

0 .4 4 0  -

Data: Isoflavone
Mode missailidis

ChiA2 = 1.6135E-6
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Figure 159: Isoflavone -  STDNA
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Figure 160: Melting denaturation curve of polydAdT alone
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Figure 161: Melting denaturation curve of polydAdTdT
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Figure 162: Melting denaturation curve of polydAdT-dAdT
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G-quadruplex and 1st derivative
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Figure 163: melting denaturation curve of G-quadruplex with the 1st derivative
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Figure 164: melting denaturation curve of G-quadruplex in the presence of quercetin
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