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ABSTRACT

In a screen for novel genes involved in chick hindbrain development, clone 

cV ll was isolated, encoding a gene expressed in the hindbrain. Sequence 

analysis established that cV ll is a novel gene, now designated cBTBD6, 

which encodes protein containing three functional domains: BTB, BACK and 

PHR. Human, mouse and zebrafish cBTBD6 orthologs were cloned, as well 

as highly related BTBD3 genes that form  a distinct subgroup of the same 

family of genes. Within each subgroup there is a single copy of human, chick 

and mouse BTBD6 and BTBD3 and two copies of zebrafish orthologs. Spatio- 

temporal analysis of BTBD6 and BTBD3 expression patterns in chick and 

zebrafish revealed that, while BTBD3 othologs have divergent expressions, 

cBTBD6 shares some aspects of its expression pattern with its counterparts in 

zebrafish, zBTBD6a and zBTBD6b. In particular, both cBTBD6 and zBTBD6a 

are expressed in the developing central nervous system, suggesting a 

potential involvement in neurogenesis. This potential function was 

investigated in zebrafish. Comparative analysis of zBTBD6a expression with 

markers of neurogenesis revealed that zBTBD6a is expressed in cells during 

neuronal differentiation, starting from early stages labelled by proneural 

gene neurogl until later phases m arked by isll, when zBTBD6a expression 

starts to be downregulated. Knockdown experiments dem onstrated that 

zBTBD6a prom otes neurogenesis and acts downstream of neurogl and 

upstream of neurod and neurod4 in the neurogenesis cascade. I found that 

zBTBD6a interacts with Cul-3, a component of the ubiquitin ligase complex, 

and the PHR motif and to a lesser extent the BTB domain are required for 

this interaction. Overexpression experiments showed that the presence of 

both BIB and PHR is required for zBTBD6a function. Since several BTB- 

containing proteins have been recently reported to be implicated in targeting 

proteins for ubiqutination, it is proposed that zBTBD6a positively regulates 

neurogenesis by mediating ubiquitination of one or more proteins that 

regulate the formation of neurons.
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INTRODUCTION

The nervous system is an extremely complex organ. It is constituted of 

neurons and glia that must be produced in the correct numbers and 

appropriate positions for their function, in for example movement, sensory 

perception, emotion and memory. Neurons are generated in a multistep 

process of neurogenesis, which commences with neural induction and leads 

to the differentiation of functional neurons (Appel and Chitnis, 2002). 

Understanding the molecular mechanisms prom oting neuro genesis in 

embryos is one of the fundamental tasks in developmental neurobiology.

NEURAL INDUCTION 

The default model

Neurogenesis in vertebrates begins with the formation of the neural plate 

that arises from the embryonic ectoderm during gastrulation. Generation of 

the neural plate involves an activation (neuralisation) of the ectoderm, and 

its transformation (regionalisation). In all classes of vertebrate, the 

prospective neural plate -  the rudiment of the adult central nervous system 

(CNS) and a major contributor to the peripheral nervous system (PNS) -  

arises in dose proximity to the organiser (the embryonic shield in fish, the 

dorsal lip of the blastopore in amphibians and reptiles, Hensen's node in 

birds and the node in mammals) (Beddington, 1994; Gimlich and Cooke, 

1983; Shih and Fraser, 1996; W addington and Schmidt, 1933). Until recently, 

largely based on studies in amphibians, neural induction was explained by 

the "default model", which proposes that the ectoderm is pre-program m ed 

towards a neural fate (Fig. 1A). This was shown in experiments in Xenopus, 

in which when ectodermal cells are dissociated and thus unable to receive 

signals from neighbouring cells, they adopt a neural fate (Furthauer et al., 

1999; Hemmati-Brivanlou and Melton, 1997; Hemmati-Brivanlou and 

Melton, 1994; Wilson and Hemmati-Brivanlou, 1997). This autonomous 

tendency of ectoderm to differentiate into neural tissue is inhibited by BMPs
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Chordin
BMP4 |---------  Noggin
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Epidermis Neural
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FGFT ^ ------
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Figure 1. Classical and revised views of neural induction. (A) The default 

model in Xenopus: ectodermal cells that would otherwise become neural are 

driven toward an epidermal fate by BMP4, which is expressed ubiquitously. 

BMP inhibitors diffusing from the organiser block BMP4 signalling, permitting 

the neighbouring ectodermal cells to develop according to their "default" 

neural fate. (B) Model based on results of explant experiments in chick, (a) At 

the blastula stage, medial epiblast cells (prospective neural cells) express FGFs 

but not Wnts. FGF signalling represses BMP expression and also promotes 

neural fate by an independent pathway in medial epiblast cells (dashed line 

from FGF). (b) Lateral epiblast cells express both FGFs and Wnts. High Wnt 

levels block the response of epiblast cells to FGFs, thus BMPs are expressed and 

promote epidermal fate and repress neural fate. (Adapted from Wilson and 

Edlund, 2001 and Stern, 2005).
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(Bone Morphogenic Proteins), in particular, BMP4, which acts as an 

epidermal inducer. BMP activity is antagonised by organiser-derived 

neuralising signals: Follistatin (Hemmati-Brivanlou and Melton, 1994), 

Noggin (Lamb et al., 1993; Smith and Harland, 1992; Smith et al., 1993) and 

Chordin (Sasai et al., 1995; Sasai et al., 1994). However, subsequent studies in 

several vertebrates have demonstrated that BMP inhibition is not sufficient 

for neural induction. For instance, in zebrafish embryos m utant for chordin 

neural tissue is formed, and although the explanation of this may be that 

other BMP antagonists still present in these mutants are responsible for 

neural induction, surgical removal of the organiser also does not prevent 

nervous system formation (Driever et al., 1996; Schulte-Merker et al., 1997; 

Shih and Fraser, 1996). Similarly, in zebrafish mutants in which the organiser 

is lost, including double mutants for squint and cyclops (Nodal- related genes 

essential for organiser development), and mutants for one-eyed pinhead (a 

protein required for Nodal function), the neural plate is reduced but still 

forms (Feldman et al., 1998; Gritsman et al., 1999). In chick, misexpression of 

BMP antagonists, Noggin or Chordin, in non-neural epiblast is not sufficient 

to induce neural tissue (Streit et al., 1998; Streit and Stern, 1999b; Streit and 

Stern, 1999c).

Roles of FGFr Wnt and BMP signalling in neural induction

Recent data from studies in chicken and mice provided evidence that neural 

induction is initiated in the pre-gastrulation embryo before organiser 

formation, and FGF (Fibroblast Growth Factor) and Wnt signals are 

involved in this process (Bainter et al., 2001; De Robertis and Kuroda, 2004; 

Linker and Stern, 2004; Stern, 2002; Stern, 2005; Wilson and Edlund, 2001). 

Based on chick explant experiments it is postulated that FGF signalling is 

required for neural induction, while the selection of neural versus epidermal 

fate is regulated by the status of Wnt signalling (Fig. IB) (Wilson and Edlund, 

2001; Wilson et al., 2001). At the blastula stage, in the absence of W nt 

expression in the medial epiblast (prospective neural plate) FGF signalling 

promotes neural fate by a dual mechanism (Fig. IBa). It activates a pathw ay
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necessary for the progression of the neural fate, and represses BMP 

expression in an independent pathway. In the lateral epiblast, high-level W nt 

signals prevent cells from responding to FGF signalling, which in turn  

permits BMP expression and directs cells to an epidermal fate (Fig. lBb). 

Therefore, in the presence of high-level Wnt signalling, neither BMP 

antagonists nor FGF signals alone or in combination are able to induce 

neural fate in the prospective epidermal cells (Wilson et al., 2001). Studies in 

Xenopus showed that prior to organiser formation at the blastula stage, there 

is a transient expression of BMP antagonists, Chordin and Noggin, triggered 

by maternal p-catenin, which is required for neural predisposition in the 

prospective neuroectoderm (Kuroda et al., 2004). In addition, FGF signalling 

cooperates with BMP antagonists to induce a neural fate by blocking BMP 

signalling via phosphorylation of the linker region of a Smad BMP effector, 

which inhibits Smad activity (De Robertis and Kuroda, 2004; Delaune et al., 

2005; Per a et al., 2003). Specific targets of FGF signalling in the neural 

induction have been identified in chick, including ERNI (early response of 

neural induction), churchill (Sheng et al., 2003; Streit et al., 2000) and Sox3 

(Uwanogho et al., 1995).

In zebrafish, both BMP inhibition and FGF signalling have been proposed to 

function as direct neural inducers. The BMP antagonists act to induce the 

anterior CNS, FGF signals induce the posterior neural plate and a 

combination of both specify intermediate regions (Furthauer et al., 2004; 

Kudoh et al., 2004; Rentzsch et al., 2004).

PATTERNING OF NEUROGENESIS -  DEFINING DOMAINS OF 

NEUROGENESIS BY PREPATTERN FACTORS

Neural induction leads to the commitment of precursors to a neural fate. 

These precursors within the neural plate will further differentiate into 

neurons or glia in a spatially and tem porary coordinated m anner. In 

vertebrates, several transcription factors have been identified that prom ote 

neural fate downstream of neural induction. These neural effectors include
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members of Sox, Gli, POU and Iroquois families and are initially broadly 

expressed throughout the prospective neural plate (Bainter et al., 2001; Bally- 

Cuif and Hammerschmidt, 2003). They are likely to connect neural induction 

with later neuronal cell fate determination and differentiation processes. In 

zebrafish, irxlb (previously irol), irx7 (prev. iro7), and pou5fl are expressed in 

the presumptive midbrain and hindbrain regions and Irx lb l, Irx7, and 

Pou5Fl are required for the expression of the proneural gene neurogeninl 

(neurogl) (Hauptmann and Gerster, 1995; Itoh et al., 2002; Lecaudey et al., 

2001). Neurogenesis in the anterior epiphyseal proneural field is controlled 

by flh, which permits expression of neurogl as well as another proneural 

factor Ashl (Cau and Wilson, 2003).

Neurogenesis is initiated at specific sites along the anterior-posterior (AP) 

and dorsal-ventral (DV) neural plate axes, in distinct differentiation- 

competent domains, that are believed to represent the equivalent of the 

Drosophila proneural clusters (Campos-Ortega, 1993). In Drosophila, the 

proneural fields are established due to the expression of neurogenesis 

activators (proneural genes) consisting of Achaete-Scute proteins, and 

neurogenesis inhibitors, which include Hairy-like factors. These genes are 

expressed following earlier patterning events to establish a prepattern of 

neurogenesis within the neuroectoderm. Similarly, in vertebrates, domains 

of early neurogenesis are established by a prepatterning effect of inhibitory 

factors that actively block differentiation of neural precursors (Fig. 2). In the 

zebrafish and Xenopus neural plate, the neurogenesis-free domains include 

the anterior neural plate, the midbrain-hindbrain boundary (MHB), and the 

posterior longitudinal inter-proneuronal stripes in the hindbrain and spinal 

cord that separate the columns of precursors of sensory neurons, 

motorneurons and interneurons. Studies in Xenopus revealed that the inter- 

proneuronal stripes are defined by the expression of transcription factors 

such as Zic2, Xiro3, Xdbx (Fig. 2) (Bae et al., 2005; Bellefroid et al., 1998; 

Brewster et al., 1998; Gershon et al., 2000; Hans et al., 2004). In zebrafish, 

these areas are labelled by her3 and her9 that inhibit neurogenesis (Bae et al., 

2005). her3 and her9 are regulated by positional information in which BMP
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r2MN

.■I Zic2+Xdbx+Xiro3+her3

Figure 2. Patterning of neurogenesis. Schematic representation of the spatial 

pattern of neurogenesis (depicted in grey) and the expression of neurogenesis 

inhibitors (designated in coloured patterns) in the early neural plate (light 

grey) in zebrafish and Xenopus. In the domains of neurogenesis in the poste

rior neural plate, the presumptive spinal sensory neurons (s), interneurons (i) 

and motorneurons (MN) are born. ANP: anterior neural plate; h, olf: 

hypophysis and olfactory placodes; MH: midbrain-hindbrain domain; r4: 

motor- and sensory neurons of rhombomere 4; r2MN: motor- and sensory 

neurons of rhombomere 2; r2s: sensory neurons of rhombomere 2; tg: trigemi

nal placodes; vcc: ventro-caudal cluster. (Modified from Bally-Cuif, 2003).
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signalling is involved (Bae et al., 2005). In the zebrafish MHB, neurogenesis is 

prevented by expression of her5 and inhibition of Her5 function leads to an 

ectopic formation of a proneural field in the MHB area (Geling et al., 2003; 

Geling et al., 2004). her5 expression is positioned within the MHB by factors 

patterning the midbrain-hindbrain domain, including Wnts and FGFs (Geling 

et al., 2003; Reifers et al., 1998).

MOLECULAR REGULATION OF NEUROGENESIS

Proneural genes

As a consequence of prepatterning, sites of neurogenesis are established and 

prefigured by the expression of proneural genes, which are basic helix-loop- 

helix (bHLH) transcription factors that function to prom ote form ation of 

neurons (Bertrand et al., 2002). The vertebrate proneural genes are 

homologues of their invertebrate counterparts, which in Drosophila are both 

necessary and sufficient for the commitment of ectodermal cells to a neural 

progenitor fate (Campos-Ortega, 1993; Modolell, 1997). The bHLH 

transcription factors identified in vertebrates fall into two families, those 

related to the Drosophila Achute-Scute (asc) genes, and those related to 

Drosophila atonal (ato) (Guillemot, 1999; Lee, 1997). The asc family includes 

ascll, which have been found in mouse (Ascll, previously Mashl), chick 

(iCash1), Xenopus (Xashl) and zebrafish (asclla and ascllb, previously ashla 

and ashlb, respectively), and three other genes: Ascll (previous Mashl) in 

mammals, Xash3 in Xenopus and Cash! in chick. Based on the sequence 

homology of the bHLH domain only two true orthologues of Drosophila ato 

have been identified, mouse Mathl and Math5. Other vertebrate a to-related 

genes have been classified as belonging to the neurogenin, NeuroD, or the 

Olig families, each characterised by the presence of family-specific residues in 

their bHLH region (Lee, 1997; Massari and Murre, 2000).

All vertebrate asc- and a to-related bHLH transcription factors are expressed 

in the developing nervous system but only some of them  have a proneural
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function in the context of neural tissue to specify progenitors that are limited 

to a neuronal fate. In mammals, the proneural genes include Ascll, Neurogl 

and Neurog2 (Fode et al., 1998; Guillemot et al., 1993; Ma et al., 1996). In 

zebrafish, only one neurogenin gene, neurogl and two Ascll homologues, 

ascla and ascllb, genes has been identified (Allende and Weinberg, 1994; 

Blader et al., 1997; Kim et al., 1997; Korzh et al., 1998). Proneural genes are 

transcriptional activators and have multiple roles during neurogenesis that 

are discussed below.

Selection of neuronal progenitors

In both vertebrates and invertebrates, the selection of neuronal progenitors 

within the proneural domains of the neuroepithelium relies on the process of 

Delta-Notch-mediated lateral inhibition (Fig. 3). The Notch signalling 

mechanism is an evolutionarily conserved and universally used to direct 

equivalent cells (or equivalent groups) to acquire the appropriate cell fate 

during development (Heitzler and Simpson, 1991; Louvi and Artavanis- 

Tsakonas, 2006; Schweisguth, 2004). Interaction of the extracellular dom ain 

of Delta on the surface of one cell with the extracellular domain of the Notch 

receptor on an adjacent cell results in receptor activation. This leads to the 

cleavage of the Notch intracellular domain, NICD, which relocates to the 

nucleus, where it interacts with a DNA-binding protein, Supressor of 

Hairless (Su[H]). Su(H) binds to regulatory sequences of the Hairy/Enhancer 

of Split E(spl)-related (Hes and Hairy in mouse and chick, Her in zebrafish) 

genes and upregulates their expression (Bray and Furriols, 2001; Davis and 

Turner, 2001; Kageyama and Nakanishi, 1997). The H es/H er bHLH 

transcription factors, in turn, downregulate downstream targets, for 

example proneural genes, which prevents the cell from undergoing 

differentiation.

In the context of neurogenesis, proneural genes drive expression of Notch 

ligands, and thereby positively regulate their own expression (Bertrand et 

al., 2002). Proneural genes are initially uniformly expressed in cells of the
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Figure 3. Neurogenesis and the principle of lateral inhibition. (A) Molecular 

pathway of lateral inhibition. Proneural genes positively regulate their own 

expression and that of the Notch ligand delta (green arrows). Delta activates 

Notch in adjacent cells, which inhibits proneural gene expression in the receiv

ing (left) cell. This effect is reinforced over time as the signalling cell receives 

less inhibition, due to Delta expression being downregulated in the receiving 

cells. Consequently, the signalling cell initiates a programme of neuronal 

differentiation, while its neighbours remain undifferentiated. (B) Selection of a 

neuronal progenitor from an neurogenic (proneuronal) field of cells. Groups of 

cells (called equivalence groups) express equal levels of proneural genes. 

Lateral inhibition ensures that only one cell is selected to become a neuronal 

precursor. (Adapted from Bertrand et al., 2002).
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neurogenic (proneuronal) regions, such that all cells have the same potential 

to activate the Notch pathway in their neighbours and thus both deliver and 

receive lateral inhibition. If one cell expresses the ligand at higher levels, 

either randomly or by some bias, it will activate the Notch signalling more 

strongly, that is, deliver more lateral inhibition in the adjacent cells causing 

them to express less ligand and consequently deliver back less lateral 

inhibition to the form er cell. Thus, the more inhibition a cell receives from  its 

neighbours, the less it is able to deliver back to them. This gives rise to a 

feedback loop that tends to amplify any initial difference between 

neighbouring cells and allows for selection of cells expressing higher levels of 

delta and proneural genes, which are thus fated to become neuronal 

progenitors (Fig. 3) (Artavanis-Tsakonas et al., 1999; Bray and Furriols, 2001; 

Collier et al., 1996).

During early neurogenesis in zebrafish embryos, the Notch mediated 

selection of neuronal progenitors takes place in proneuronal domains of the 

neural plate where the proneural gene, neurogl, is expressed, neurogl 

induces expression of deltaA and deltaD which activate Notch pathway in the 

neighbouring cells (Appel and Eisen, 1998; Haddon et al., 1998). This leads to 

expression of at least one of the Hairy/Enhancer of Split E(spl)-related genes, 

herd, which inhibits neurogl, thus preventing cells from acquiring neuronal 

fate (Appel and Eisen, 1998; Haddon et al., 1998; Takke et al., 1999).

A number of zebrafish mutants have been identified in which components of 

the Notch signalling pathway are affected. These include the after eight 

(deltaD) and deadly seven (notchla) mutants that show weak neurogenic 

phenotypes, with a moderate excess of early-born neurons (Gray et al., 2001; 

Holley et al., 2000; Holley et al., 2002; Riley et al., 1999). The mild effects of 

these mutations m ost probably reflects partial redundancy of the multiple 

Delta and Notch homologs present in zebrafish. In contrast, another m utant 

called mind bomb (mib) is characterised by a severe neurogenic phenotype 

(Itoh et al., 2003).
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In mib mutant, a major decrease in Notch signalling results in an excess of 

early differentiating neurons in expense of the later-differentiating neuronal 

cell types (Itoh et al., 2003; Jiang et al., 1996; Park and Appel, 2003; Schier et 

al., 1996). Positional cloning identified mib as a gene encoding an E3 ubiquitin 

ligase that interacts with the intracellular domain of Delta in the signalling 

cell to prom ote its ubiquitination and internalisation (Itoh et al., 2003). Delta 

endocytosis, accompanied by transendocytosis of the Notch extracellular 

domain, facilitates final cleavage of the Notch intracellular domain from  the 

mem brane of the receiving cell and its release to the nucleus where it 

activates target genes (De Strooper et al., 1999; Parks et al., 2000). Thus, mib 

activity is essential in the signalling cell for efficient activation of Notch in the 

neighbouring cells.

Autoregulation of proneural genes

Commitment of selected progenitors to a neuronal fate is reversible and has 

to be stabilised until determination is attained. Therefore, the levels of 

proneural gene expression have to be increased and /o r maintained in 

progenitors and this is achieved by a positive feedback mechanism. This 

involves either direct autoregulation of proneural genes own prom oters or 

indirect regulation via the induction of factors such as vertebrate Hes6 and 

Xcoe2, which in turn upregulate proneural gene expression (Bae et al., 2000; 

Bally-Cuif et al., 1998; Koyano-Nakagawa et al., 2000). X-MyTl, a Xenopus 

zinc finger protein, is also activated by proneural genes and, in cooperation 

with bHLH factors, promotes neuronal differentiation and confers 

insensitivity to lateral inhibition to the selected progenitors (Bellefroid et al., 

1996).

Molecular cascade of neurogenesis

Proneural genes are both necessary and sufficient to induce neuronal 

development. For example, targeted mutations in the proneural genes such 

as mouse Ascll, Neurogl, Neurog2 and Mathl, lead to a block in neuronal
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differentiation (Ben-Arie et al., 1997; Fode et al., 1998; Guillemot et al., 1993; 

Ma et al., 1998). Conversely, misexpression of these genes promotes 

neurogenesis, as seen for example when the neurogenins are ectopically 

expressed in chick, zebrafish, Xenopus embryos or in cell lines (Blader et al., 

1997; Farah et al., 2000; Lee et al., 1995; Ma et al., 1996; Perez et al., 1999; 

Takebayashi et al., 1997). Therefore, proneural genes prom ote the switching 

from the grow th phase to the neuronal differentiation phase.

When the activity of the proneural genes is sufficiently high in progenitor 

cells, they activate expression of downstream differentiation genes, which 

then act to prom ote exit from the cell cycle and neuronal differentiation (Ma 

et al., 1996). The expression of proneural genes in individual progenitors is 

transient and downregulated before the differentiation program m e is 

initiated, and therefore the induction of downstream regulatory genes is 

prerequisite for neurogenesis to occur (Gradwohl et al., 1996; Ma et al., 1996). 

These genes, many of them structurally related to proneural genes, act in 

unidirectional cascades and their expression correlates with sequential steps 

of neuronal determination and differentiation (Bertrand et al., 2002; Kintner, 

2002; Lee, 1997). A number of these later-acting bHLH transcription factors 

have been identified in vertebrates and are capable of driving neuronal 

differentiation when expressed ectopically. One example are the NeuroD 

bHLH family, that when misexpressed induce production of ectopic neurons 

(Farah et al., 2000; Lee et al., 1995; Liao et al., 1999; Mueller and Wullimann, 

2002b). Over expression experiments in Xenopus and loss-of-function analysis 

in mouse have confirmed the epistatic relationship between the proneural 

and differentiation genes. In Xenopus, ectopic expression of X ngnrl 

(homologue of mouse N eurogl) induces NeuroD expression as well as 

expression of another bHLH gene, Xath3, which has an intermediate position 

between Xngnrl and NeuroD in the gene expression cascade (Ma et al., 1996; 

Perron et al., 1999). In contrast, neither NeuroD nor Xath3 can induce 

Xngnrl expression, indicating that Xngnrl, Xath.3 and NeuroD constitute an 

unidirectional bHLH gene cascade (Perron et al., 1999). Similarly in mouse, 

N eurogl and Neurog2 are necessary for the expression of Math3 and
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NeuroD in cranial sensory neurons and Mashl (Ascll) and Neurogl/NeuroD 

m ark successive stages of development of olfactory neurons precursors 

(Cau et al., 2002; Fode et al., 1998; Ma et al., 1998).

The differentiation process is linked to the exit from cell cycle but it is not 

known w hether proneural genes themselves regulate cyclin-dependent 

kinase inhibitors or whether the downstream differentiation genes are 

responsible. Committed postmitotic neuronal progenitors also express 

m arkers identified after cell cycle arrest, a late delta factor, deltaB, and RNA- 

binding proteins of the H u family (Haddon et al., 1998; Kim et al., 1996; 

Mueller and Wullimann, 2002a; Park et al., 2000a). During neurogenesis, 

proneural genes activate a num ber of other genes that modify cell 

metabolism, and rearrange the cytoskeletal architecture (Mattar et al., 2004; 

Reeves and Posakony, 2005). Expression of these genes enables the 

generation of basic neuronal characteristics.

Specification of neuronal subtypes

In addition to initiating the neurogenic gene program, proneural factors 

prom ote differentiation to neuronal subtypes. The ability to specify subtypes 

may be dependent on regional determinants and /o r structural differences 

between proneural factors that prom ote interactions with cofactors that 

determine neuronal subtype (Chien et al., 1996; Powell et al., 2004).

Interestingly, while the proneural factors often function redundantly in 

driving neuronal differentiation, they have unique roles in specifying 

neuronal subtype identity. The redundant function of different bHLH factors 

in inducing neurogenesis has been shown in studies of Mashl(Ascll)/Math3 

or Mashl(Ascll)/Neurog2 double mutants, in which neurogenesis is blocked, 

while it is not significantly altered in the single mutants (Tomita et al., 2000). 

On the other hand, in the dorsal embryonic spinal cord, Mathl, Neurogl and 

Mashl(Ascll) are each expressed in discrete progenitor populations and are 

required for specifying the distinct types of interneurons arising from
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progenitors m arked by their expression (Bermingham et al., 2001; Gowan et 

al., 2001).

In addition, bHLH genes that have no proneural function have been 

implicated in specification of neuronal identity. For example, Xenopus Xath5 

expression occurs in differentiating cells after expression of Xath3 and prior 

to NeuroD expression (Kanekar et al., 1997). Xath5 is expressed in the pineal 

gland, retina and olfactory placode and promotes both retinal ganglion and 

olfactory receptor cell fates (Burns and Vetter, 2002; Kanekar et al., 1997).

Inhibition of glial fates

The generation of neurons and glia occurs from a common multipotent 

precursor pool (Temple, 2001). Neurons are formed first and the glia 

precursors are neuroepithelial cells that are kept back from  neuronal 

differentiation. Proneural genes both prom ote neuronal fates and inhibit 

glial fates, and thus have a significant role in controlling the switch between 

neurogenesis and gliogenesis (Nieto et al., 2001; Vetter, 2001). For example, 

in double m utant mice for Mashl(Ascll)/Math3 and Mashl(Ascll)/Neurog2, a 

block of neuronal differentiation is accompanied by prem ature gliogenesis, 

and overexpression of N eurogl in cultured rat cortical stem cells causes 

inhibition of astrocytic differentiation (Sun et al., 2001; Tomita et al., 2000).

Negative regulators of neurogenesis

Regulation of the levels of the expression an d / or activity of proneural genes 

is critical for the temporally and spatially controlled generation of the 

appropriate num ber of neurons. This is achieved by antagonistically acting 

"anti-neuronal" proteins that repress the function of transcription factors 

and thereby negatively control neurogenesis.
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Hairy and Enhancer of Split transcriptional repressors

One class of proneural gene inhibitors is represented by the Hairy and E(spl) 

(Her)-related family of proteins (Davis and Turner, 2001; Kageyama and 

Nakanishi, 1997). While many vertebrate Her proteins function as effectors 

of the Notch signalling pathway and restrict the differentiation of neurons 

from neural precursors cells, some act independently of Notch signalling as 

prepattem ing factors that spatially control neurogenesis (Artavanis- 

Tsakonas et al., 1999; Bae et al., 2005; Geling et al., 2003). For example, in the 

developing mammalian nervous system, Hesl and Hes5 are expressed by 

precursor cells, and in the absence of Hesl differentiation of precursors in the 

telencephalon, olfactory placode, inner ear and retina is accelerated 

(Akazawa et al., 1992; Cau et al., 2000; Ishibashi et al., 1995; Sasai et al., 1992; 

Tomita et al., 1996; Zheng et al., 2000). Targeted disruption of both the Hesl 

and Hes5 genes results in disorganisation of the structural integrity of the 

nervous system due to prem ature neuronal differentiation (Hatakeyama et 

al., 2004). Conversely, constitutive expression of H esl in neural precursors, 

using a retroviral vector, inhibits neuronal differentiation in the brain and 

the retina (Ishibashi et al., 1994; Tomita et al., 1996). Similarly, ectopic 

expression of Her4 protein in zebrafish suppresses differentiation of prim ary 

neurons (Takke et al., 1999).

The principal mechanism underlying the suppression of proneural bHLH 

factors by Her proteins involves a conventional DNA-binding transcriptional 

repression. Once bound to DNA, Her proteins recruit a transcriptional co

repressor known as Groucho (or TLE proteins in vertebrates) (Fisher and 

Caudy, 1998; Grbavec et al., 1998; Grbavec and Stifani, 1996; Paroush et al., 

1994). This interaction is required for Her protein to function as 

transcriptional repressors and is mediated through a conserved tetrapeptide 

sequence, WRPW/Y, present at the extreme C terminus of all Her proteins. 

Most bHLH proteins, including the ones encoded by proneural and 

proneural-related genes, bind as either hetero- or hom odim ers to a
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consensus DNA sequence CANNTG, known as an E-box. A num ber of Her 

proteins, such as Drosophila E(spl) and mammalian H esl and Hes5, were 

initially found to bind to an alternate sequence, CACNAG, known as an N- 

box (Akazawa et al., 1992; Sasai et al., 1992; Tietze et al., 1992). However, 

subsequent studies have demonstrated that some Her proteins (for example 

mammalian Hes2 and Hesl) can bind to E-boxes as well as N-boxes (Hirata et 

al., 2000; Jennings et al., 1999). This raises the possibility that Her proteins can 

compete with positive-acting bHLH neuronal genes for binding to E-box 

target sequences. While competition for binding sites was shown in in vitro 

DNA binding assays between Drosophila E(spl) proteins and heterodimers 

of daughterless and lethal of scute bHLH activators, it has not yet been 

demonstrated in vertebrates (Jennings et al., 1999).

The other proposed mechanism of repression of neuronal bHLH activators 

is suppression of functional heterodimer formation by protein-protein 

interactions. Like other bHLH factors showing a tissue-restricted pattern of 

expression, proneural and proneural-related proteins bind DNA as 

heterodimers that are form ed with ubiquitously expressed E proteins 

(Cabrera and Alonso, 1991; Johnson et al., 1992; Massari and Murre, 2000). It 

has been suggested that Her proteins can inhibit activity of neuronal bHLH 

proteins through competitive binding to the E-proteins and formation of 

heterodimers which are incapable of activating transcription through E-box 

sequences (Davis and Turner, 2001; Hirata et al., 2000; Kageyama and 

Nakanishi, 1997; Sasai et al., 1992).

Id proteins -  inhibitors of differentiation/DNA binding

The activities of bHLH proneural genes are also regulated by Id proteins that 

act through a dominant negative mechanism. These proteins contain a HLH 

domain but lack the adjacent basic motif necessary for DNA binding 

(Benezra et al., 1990; Ellis et al., 1990). They have a high affinity for E proteins 

and can compete with bHLH proteins, forming heterodim ers that cannot 

bind DNA (Campuzano, 2001; Massari and Murre, 2000; Yokota, 2001). Thus,
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Id proteins, acting as negative regulators of bHLH factors, inhibit 

differentiation. The regulatory role of Id proteins is not limited to the 

developing nervous system, and occurs in many organs and tissues where 

bHLH factors are expressed.

There are four related mem bers of the Id family, Id l through Id4 (Benezra et 

al., 1990; Christy et al., 1991; Riechmann et al., 1994; Sun et al., 1991) which in 

mouse all are expressed in the CNS. Idl and Id3 have similar expression 

patterns restricted to proliferating neuroblasts in embryonic stages. Their 

expression is generally reduced when neuronal differentiation progresses 

and not detectable in mature differentiated neurons. No apparent phenotype 

is detected in the CNS of mice lacking either Id l or Id3, but w hen both Idl 

and Id3 genes are inactivated, the mice die in utero and have small brains, 

indicative of functional redundancy (Lyden et al., 1999). The neuroblasts in 

Id l-/-Id3-/- foetal brains prem aturely withdraw from  cell cyde and 

upregulate post-mitotic neuronal cell markers. Similar to Idl and M3, a high 

expression level of Idl is observed in proliferating neural precursor cells at 

early stages of CNS development but, interestingly, also occurs in migrating 

postmitotic neurons and in specific neurons in the adult brain (Jen et al., 1997; 

Neum an et al., 1993; Tzeng and de Vellis, 1998). Although Id l- /-  mice do not 

show an obvious phenotype, Id2 overexpression inhibits the induction of 

neuron-specific genes (Toma et al., 2000; Yokota, 2001). In addition, Id2 has a 

role in neural crest cell fate specification, since retroviral overexpression of 

Id2 within the chick embryonic surface induces the disappearance of the 

ectoderm overlying the neural tube and conversion of these cells to neural 

crest (Jen et al., 1997). Like M2, M4 is expressed in neural precursor cells as 

well as postm itotic/im m ature cells in the CNS (Riechmann et al., 1994). Adult 

M4-/- animals exhibit a drastic alteration of brain morphology, with fewer 

neurons and glia, a reduction in brain size and abnormally enlarged 

ventricules (Ruzinova and Benezra, 2003). Therefore, Id proteins are 

required as inhibitors of differentiation to maintain the immaturity of 

neuroblasts and permit their proliferation until the appropriate time during 

development.
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GENERATION OF NEURONAL DIVERSITY

The vertebrate CNS is composed of large variety of different types of 

neurons each defined by distinct morphology, axon projection and function. 

Understanding how neural progenitors acquire specific neuronal 

characteristics is an im portant issue. Several mechanisms have been 

identified that control this process. Some aspects of the involvement of 

proneural factors in specification of neuronal subtypes have been discussed 

previously. Here, I will introduce how neuronal determination is regulated 

by spatial patterning.

The CNS is patterned during development along the AP and DV axes. This 

patterning is initiated prior to the neural plate stage and becomes evident in 

the neural tube. Spatial patterning of the neuroepithelium is controlled by 

inductive signals provided in adjacent tissues by specialised cellular groups 

that act as organising centres (Echevarria et al., 2003). These signalling 

centres operate independently along the AP and DV axes of the neural tube. 

As a consequence, a grid-like coordinate system is established that provides 

positional information for every cell within the neuroepithelium (Lumsden 

and Krumlauf, 1996).

Dorsal-ventral patterning

The developing spinal cord is one of the most investigated and understood 

models of neural patterning along the DV axis. In the spinal cord, m otor 

neurons are positioned ventrally, and neurons that process sensory inputs 

dorsally, and several types of interneurons are found in various dorso- 

ventral locations. DV patterning of the spinal cord is controlled by two 

signalling centres: the medio-ventrally located floor plate and the medio- 

dorsally positioned roof plate. The floor plate, composed of specialised glial 

cell, is induced by the notochord, a mesodermal rod of cells underneath the 

neural tube. Both the notochord and floor plate secrete Sonic hedgehog 

(Shh), a morphogen, found to be necessary and sufficient in vivo and in vitro
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to induce differentiation of m ost ventral neuronal subtypes (Chiang et al., 

1996; Ericson et al., 1996; Marti et al., 1995; Placzek, 1995; Roelink et al., 1995). 

Shh acts in a graded fashion over a long distance thereby providing 

positional cues to ventral neural progenitors. Neural progenitors express 

hom eodom ain proteins that function as intermediary factors in the 

interpretation of Shh graded signalling. Based on their expression domains 

and regulation by Shh, these proteins are divided into two classes: class I 

proteins (including members of the Pax, Dbx and Irx families) are repressed 

by different thresholds of Shh activity and, consequently, their ventral limits 

of expression delineate progenitor domains; class II proteins (including the 

genes of Nkx family) require Shh signalling for their expression, and their 

dorsal boundaries of expression define progenitor domains. Selective cross- 

repressive interactions between pairs of class I and class II proteins function 

to refine boundaries, establishing five cardinal progenitor cell domains that 

give rise to distinct neuronal subtypes. Although Shh signalling is required 

for generation of most ventral neuronal subtypes, it is not necessary for 

differentiation of two most dorsal classes of interneurons. These neurons are 

induced by retinoids derived from paraxial mesoderm (Pierani et al., 1999).

Six classes of interneurons are generated within the dorsal spinal cord. 

Neural progenitors that give rise to these neuronal subtypes are defined by 

non-overlapping expression domains of bHLH transcription factors as well 

as homeodomain-containing proteins (Bermingham et al., 2001; Chizhikov 

and Millen, 2005; Gowan et al., 2001; Mansouri and Gruss, 1998). In the roof 

plate, several members of the BMP family and the Wnt family (including 

W ntl and Wnt3a) as well as Growth/Differentiation Factors (GDFs) are 

expressed that provide signals for dorsal spinal cord patterning. Genetic 

ablation of roof plate cells in mouse demonstrated that the roof plate is 

required for specification of only the three dorsal most classes of 

interneurons (Lee et al., 2000; Muller et al., 2002). The hom eodom ain 

transcription factor Lbxl which is specifically expressed in the three m ost 

ventral subtypes is critical for preventing these neurons from adopting m ore 

dorsal fates. Interestingly, even though the roof plate is responsible for
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specification of only the m ost dorsal spinal neurons, it appears also to be 

important for patterning of the ventral spinal cord. BMP signalling controls 

the range of Shh activity and prevents ventralisation of the dorsal half of the 

spinal cord (Briscoe and Ericson, 2001; Jessell, 2000). For instance, exposure of 

neural progenitors cells in vitro to a fixed concentration of Shh in presence of 

BMP proteins results in a dorsal shift in the identity of neural progenitors 

and differentiated neuronal subtypes (Liem et al., 2000).

Anterior-posterior patterning

AP patterning operates in parallel with DV patterning to specify individual 

neuronal fates. This is evident in specification of spinal m otor neurons that 

exhibit differences in their identities along the AP axis. All spinal m otor 

neurons derive from a ventral progenitor domain and acquire distinct 

identities at different axial levels so that they innervate specific targets in the 

periphery. For instance, lateral m otor neuron columns are produced at limb 

levels, whereas autonomic motor neuron columns are generated in the 

intervening thoracic region (Dasen et al., 2003; Jessell, 2000). The 

establishment of these regional neuronal subtypes is controlled by 

expression of distinct Hox genes at different AP locations, and this is induced 

by an posterior-to-anterior gradient of FGF signalling. For example, 

expression of either group 9 Hox genes or of group 6 Hox genes direct 

neurons to adopt forelimb lateral m otor column or thoracic identity, 

respectively (Dasen et al., 2003).

AP patterning is also apparent in the specification of primary m otor neurons 

in zebrafish. Zebrafish spinal motor neurons are serially distributed in 

bilateral clusters (intrasegmental) next to the adjacent somites. Three main 

subtypes can be identified by their rostrocaudal positions within each cluster 

as well as by their selective projections to different axial muscles, and by 

combinatorial expression of LIM hom eodom ain proteins, isletl, islet2 and 

lim3 (Appel et al., 1995). Transplanting individual m otor neurons into the 

new location rostrocaudal position results in adoption of neuronal fate
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appropriate for the new location, indicating the presence of positional cues 

along the AP axis (Appel et al., 1995; Eisen, 1991).

REGIONALISATION OF THE CNS

Regionalisation of the CNS is a critical phase in vertebrate neural 

development. The vertebrate nervous system that is initially induced is of an 

anterior character, and later transformed to the graded posterior character. 

Transformation occurs due to gradients of posteriorising signals, including 

FGFs, retinoic add and Wnts that transform the anterior neuroectoderm in a 

planar way, that is from posterior to anterior (Cox and Hemmati-Brivanlou, 

1995; Diez del Corral et al., 2002; Diez del Corral et al., 2003; Holowacz and 

Sokol, 1999; Kudoh et al., 2002; Maden, 2000; Yamaguchi, 2001). This involves 

localised signals that induce spatially-restricted expression of transcription, 

factors that control regional identity. Regionalisation is initiated at early 

stages by signals from the organiser but other tissues, such as the 

extraembryonic anterior visceral endoderm in the mouse, are also involved 

in this process (Beddington and Robertson, 1998; Thomas and Beddington, 

1996). Surgical ablation of the anterior visceral endoderm at early 

gastrulation stages leads to the loss of expression of forebrain markers such 

as Hesxl (Thomas and Beddington, 1996).

At neural plate and tube stages, local signalling centres form at specific AP 

locations within the neural tissue and control regional specification of the 

neuroepithelium. Three main signalling centres have been identified, the 

anterior neural ridge, the zona limitans intrathalamica and the isthmic 

organiser, which refine AP specification of domains in the brain primodium: 

the forebrain, the midbrain and the hindbrain (Echevarria et al., 2003; 

Kiecker and Lumsden, 2005; Wurst and Bally-Cuif, 2001). Two of these 

signalling centres, the zona limitans intrathalamica and the isthmic organiser, 

have been shown to be located at cell restriction boundaries.
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The anterior neural ridge, identified in mouse and chick, is located at the 

border between the anterior neural plate and non-neural ectoderm and 

patterns the anterior forebrain by expressing FGF8 (Echevarria et al., 2003). 

Shh is also expressed in the proximity of the anterior neural ridge and is 

important for the regionalisation and specification of the ventral 

telencephalon (Crossley et al., 2001; Hammerschmidt et al., 1997). In 

zebrafish during gastrulation, the first row of cells of the neural plate acts as 

a local signalling centre and is essential for forebrain patterning through its 

secretion of Wnt antagonist, Tic, which counteracts caudalising signals of 

Wnt8b emanating from  the posterior diencephalon. (Houart et al., 2002; 

Houart et al., 1998).

The zona limitans intrathalamica lies in the caudal forebrain and separates 

the prethalamus from  the thalamus. It expresses Shh which is essential for 

esablishment of the prethalamus anteriorly and thalamus posteriorly 

(Echevarria et al., 2003; Kiecker and Lumsden, 2005).

The isthmic organiser forms at the midbrain-hindbrain boundary and its 

position relies on interactions between midbrain that expresses genes of Otx 

family and the anterior hindbrain, expressing m embers of Gbx family 

(Echevarria et al., 2003; Kiecker and Lumsden, 2005). Ablation and grafting 

studies have dem onstrated that the isthmic organiser is necessary for the 

development of whole midbrain, and of the anterior hindbrain, in particular 

of rhom bomere 1 and its derived structures such as the cerebellum. The 

isthmic organiser expresses W ntl and FGF8, and FGF8 has been shown to be 

able to mimic the morphogenic activity of this signalling centre (Crossley 

and Martin, 1995; Crossley et al., 1996).

Although the forebrain exhibits some morphological subdivisions, out of 

three main regions of the vertebrate brain, forebrain, midbrain and 

hindbrain, only the hindbrain is characterised by overt segmental 

organisation.

30



HINDBRAIN PATTERNING

Metameric organisation of the hindbrain

The developing hindbrain is transiently segmented into 7 or 8 morphological 

units called rhom bomeres (r). The formation of rhom bom eres underlies the 

generation of a subsequent segmental pattern of differentiation of neurons 

and neural crest cells that have distinct positional values along the AP axis 

(Guthrie, 1996; Lumsden et al., 1991; Wilkinson, 1995).

Developing hindbrain neurons exhibit two patterns of cellular organisation: 

one of reticular neurons and the other of branchial m otor neurons. Reticular 

neurons are repeated through sequential rhom bom eres with little axial 

variation (Clarke and Lumsden, 1993). Branchial m otor neurons are also 

present in each rhom bom ere but their differentiation and axon projections 

display a two-segment periodicity pattern (Lumsden and Keynes, 1989). 

These neurons first appear in the even-numbered rhom bomeres, r2 

(trigeminal), r4 (facial) and r6 (glossopharyngeal), and then in the odd- 

numbered rhombomeres. Neurons occupying a pair of segments project 

their axons laterally from even-numbered rhom bom eres and innervate a 

single branchial arch lying in register with these segments. For instance, in 

the chick, the trigeminal nerve (Vth) made of r2 and r3 m otor neurons, 

projects through the r2 exit point to the first branchial arch, while the facial 

(Vllth) nerve composed of r4 and r5 m otor neurons, projects through the r4 

exit point to the second branchial arch (Clarke and Lumsden, 1993; Lumsden 

and Keynes, 1989; Simon and Lumsden, 1993).

A segmental periodicity is also observed in hindbrain neural crest cell 

migration. Neural crest streams form only adjacent to even-num bered 

rhombomeres and migrate ventrolaterally into the first, second and third 

branchial arches, respectively (Lumsden et al., 1991). Here they give rise to 

cranial sensory ganglia and pharyngeal mesenchyme, and contribute to the 

formation of skeletal, mascular and vascular structures specific for the
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architecture of each arch (Konteges and Lumsden, 1996; Le Douarin, 1983; 

Noden, 1988).

Although hindbrain segmentation is important for segmental specification 

and for proper patterning of cranial neural crest migration, grafting 

experiments in mouse and zebrafish have revealed plasticity of AP character 

in neural crest cells (Trainor and Krumlauf, 2000b; Trainor and Krumlauf,

2001). In heterotopic transpositions of cells within the hindbrain, graft- 

derived cells migrate into the nearest branchial arch without re-routing to 

their original axial level (Schilling et al., 2001; Trainor and Krumlauf, 2000a). 

In addition, expression of genes (Hox genes) characteristic of their original 

identity is downregulated in an ectopic branchial-arch environment but 

supported when mesoderm  from their original axial level is co-transplanted. 

Therefore, segmental organisation of the hindbrain provides neural crest 

cells with an initial AP character, which prepares them to respond to a 

particular set of environment signals, e.g. from  mesoderm, in each arch. 

Thus, neural crest cells are prepatterned but not committed.

Evidence of a functional importance for the metameric organisation of the 

hindbrain has been demonstrated in studies of respiratory rhythm  

regulation. In both chick and mouse, neuronal rhythm  generators have been 

found that match the alternate rhom bom ere pattern. By isolating 

rhom bomeres in ovo, inter-rhombomeric interactions have been identified 

that allow the formation or deletion of a specific rhythm -prom oting m odule 

(Chatonnet et al., 2002b). Perturbations of the rhombomeric pattern 

irreversibly alter a modular organisation of the rhythmogenic netw ork that 

can be reflected at birth by respiratory deficits (Chatonnet et al., 2002a; del 

Toro et al., 2001; Jacquin et al., 1996).

Segmentation transcription factors

Several transcription factors, including Krox20 and kreisler/Maf-b have been 

implicated in the process of forming hindbrain segments, whereas Hox
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transcription factors are involved both in segmentation and in specifying 

segment identity.

Krox20 encodes a zinc finger transcription factor that is expressed in r3 and r5 

(Fig. 4) (Wilkinson et al., 1989a). Targeted inactivation of this gene results in 

the deletion of r3 and r5 which in consequence leads to the fusion of 

r2 /r4 /r6  territory (Schneider-Maunoury et al., 1997; Schneider-Maunoury et 

al., 1993). Overexpression of Krox20 in chick can impose odd rhom bom ere 

character on r2, r4 and r6, indicating that Krox20 is responsible for odd 

segment identity in the hindbrain (Giudicelli et al., 2001). Krox20 is a key 

controller of the various regulatory genes in r3 and r5. It directly upregulates 

Hoxb2, Hoxa2 and EphA4, and represses Hoxbl (Giudicelli et al., 2001; 

Nonchev et al., 1996; Sham et al., 1993; Theil et al., 1998; Vesque et al., 1996).

Another gene, Mafb/kreisler (valentino in zebrafish), a mem ber of the basic 

domain-leudne zipper (bZip) family of transcription factors is expressed in r5 

and r6 and acts upstream  of Krox20 in r5 (Fig. 4) (Eichmann et al., 1997; 

Manzanares et al., 1999a; Manzanares et al., 1999b; Moens et al., 1996). Loss 

of Mafb expression in the kreisler mouse m utant results in abnormalities in 

hindbrain segmentation with the developing hindbrain posterior to the 

r3 /r4  boundary failing to exhibit morphological boundaries (Giudicelli et al., 

2003; McKay et al., 1994).

Mafb/kreisler has been found to act as a direct transcriptional activator of 

Hoxa3 and Hoxb3 as well as a repressor of Hoxbl in r5 and r6 (Giudicelli et al., 

2003; Manzanares et al., 2001; Manzanares et al., 1999a; Manzanares et al., 

1997; Manzanares et al., 1999b). In addition, Krox20 cooperates w ith 

Mafb/kreisler to regulate Hoxb3 directly in r5 (Manzanares et al., 2002). Hox 

genes are responsible for AP patterning, whereas Krox20 and Mafb/kreisler 

are segmentation genes, and thus regulation of Hox genes by Krox20 and 

Mafb/kreisler couples hindbrain segmentation with the specification of A-P 

identity.
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Figure 4. Summary of the correlation between gene expression and rhombo

mere boundary. Segmental gene expression in the hindbrain compiled from 

analyses in mouse and chick embryos. Rhombomeres are designated r l  to r7. 

The dashed vertical lines indicate rhombomere boundaries. Gene expression 

patterns are depicted in arbitrary colours, with the darkest colour indicating 

the highest level of expression. Related genes are indicated by the same 

colour: Hox homeobox genes in orange, other transcription factors in blue, Eph 

tyrosine kinase receptors in emerald green, ephrin ligands in green. (Modified 

from Lumsden and Krumlauf, 1996).
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Recent studies in zebrafish have revealed components of the genetic 

hierarchy that regulates expression of Mafb/kreisler and Krox20, and 

consequently the patterning of the caudal hindbrain. Retinoic acid signals 

from the paraxial mesoderm establish, through the control of gene 

expression along the AP axis, a signalling centre in r4 where FGF3 and FGF8 

are expressed (Gavalas and Krumlauf, 2000; Maves et al., 2002; Walshe et al.,

2002). Retinoic acid induces a homeobox gene, vhnfl, which in cooperation 

with r4-derived FGF signals activates valentino expression in r5 and r6, and 

consequently Krox20 expression in r5 (Hernandez et al., 2004). In this way 

vhnfl integrates local r4-FGF signals with global positional information 

provided by retinoic add to specify r5 and r6 identities. Interestingly, while 

vhnfl is expressed posterior to the r4 /r5  boundary and is involved in 

patterning of the posterior part of hindbrain in zebrafish, another 

transcription factor, iro7 is expressed anterior to the r4 /r5  boundary and 

promotes neurogenesis in the anterior hindbrain (Lecaudey et al., 2004). It is 

proposed that mutual repression between these two genes establishes the 

r4 /r5  boundary.

Specifying rhombomere identity

The clustered homeobox containing transcription factors of the Hox family 

are key regulators which control the specification of positional identity 

within the hindbrain (Krumlauf, 1994). Vertebrate Hox genes are the 

orthologues of the homeotic complex (HOM-C) genes which govern 

parasegment identity in Drosophila (McGinnis et al., 1984; Scott and Weiner, 

1984). They are organised in four chromosomal complexes and the genes of 

the first four paralogue groups of dusters a, b, c and d (with the exception of 

Hoxdl) are expressed in the hindbrain and the branchial region.

An important property of both Hox and HOM complexes is spatial 

colinearity, in which there is a correlation between the physical order of 

genes along the chromosome and their expression along the AP axis of the 

embryo (Lewis, 1978). In the vertebrate embryo, in general the m ore 3' the
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gene is in the complex, the more anterior is its limit of expression in the 

hindbrain, with the anterior expression boundary at the interface between 

rhombomeres. With a few exceptions, the rostral expression limits of 

paralogous groups vary with a two-rhom bomere periodicity, whereas genes 

within a paralogous group usually have the same anterior limit (Fig. 4) 

(Wilkinson et al., 1989b). In addition to spatial colinearity there is temporal 

colinearity that is characteristic for Hox genes: the genes at the extreme 3 'end 

of the clusters are activated the earliest (Izpisua-Belmonte et al., 1991).

Interfering with Hox gene expression can lead to home otic transformations, 

and defects in the neural crest and its derivatives, establishing Hox genes as 

segment identity factors (Lumsden, 2004). In general, loss-of-function 

mutations lead to anteriorisation, whereas gain-of-function mutations have a 

posteriorising effect. For instance, inactivation of Hoxbl or of Hoxbl results in 

respecification of cells occupying r4 into an r2-like identity (Barrow and 

Capecchi, 1996; Goddard et al., 1996; Studer et al., 1996). Targeted disruption 

of Hoxa2 leads to a homeotic transformation of the skeletal elements of the 

second pharyngeal arch that are derived from r4 neural crest into first arch 

derivatives (Gendron-Maguire et al., 1993; Rijli et al., 1993). Moreover, the cell 

fate of r2-r3 is partially switched towards an r l  identity (Taneja et al., 1996). 

Conversely, ectopic expression of Hoxal or Hoxbl results in the 

transformation of r2 to an r4 identity (Alexandre et al., 1996; Bell et al., 1999; 

Zhang et al., 1994).

In addition to a role in specifying A-P identity, Hox genes play a role in 

segmentation and the maintenance of specific territories or cell populations. 

Hoxal homozygous null embryos have a reduction of r4 and total or partial 

deletion of r5, Hoxal -/-/Hoxbl-/- embryos exhibit a loss of second arch neural 

crest leading to an absence of all second arch-derived structures, and Hoxa3 

mutation results in an absence of third arch derivatives (Barrow et al., 2000; 

Carpenter et al., 1993; Chisaka and Capecchi, 1991; Dolle et al., 1993).
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In addition to discussed earlier regulation of specific subsets of Hox gene 

expression by Mafb/kreisler and Krox20, retinoids act as overall regulators of 

nested Hox expression, as many of the Hox genes contain retinoid-response 

elements within their regulatory regions (Dupe et al., 1999; Gould et al., 1998; 

Maconochie et al., 1996; Marshall et al., 1996; Marshall et al., 1994). Blocking 

retinoic add signalling either by removing enzyme required for retinoic add 

synthesis or by using antagonists to retinoic add receptors results in 

anteriorisation of the hindbrain (Dupe and Lumsden, 2001; Niederreither et 

al., 2000). This is thought to reflect colinear differential sensitivities of 5' and 

3' hox genes to increasing levels of retinoic add (Papalopulu et al., 1991).

Restriction of cell mixing between rhombomeres

Subdivision of the hindbrain neuroepithelium into rhom bom eres involves the 

formation of compartments as a result of cellular properties that prevent 

mingling between adjacent segments (Fraser et al., 1990; Guthrie et al., 1993; 

Wizenmann and Lumsden, 1997). The restriction of cell m ovem ents is 

achieved through the complementary expression of Eph receptors and their 

ligands, the ephrins, within the developing hindbrain. EphA4, EphB2 and 

EphB3 receptors are expressed in r3 and r5, while their interacting ligands, 

ephrin-Bl, -B2 and -B3, are expressed in r2, r4 and r6 (Fig. 4) (Becker et al., 

1994; Flenniken et al., 1996; Gale et al., 1996; Nieto et al., 1992). Evidence for 

the role of Eph receptors and ephrins in segmental restriction of cell 

intermingling comes from receptor blocking experiments in Xenopus and 

zebrafish and mosaic over expression of these molecules in zebrafish embryos 

(Xu et al., 1995; Xu et al., 1999). This has been further confirmed by in vitro 

studies suggesting that bidirectional signalling between Eph receptors and 

ephrins at boundaries prevents intermingling of neighbouring cell 

populations (Mellitzer et al., 1999).
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A SCREEN FOR NOVEL GENES EXPRESSED DURING HINDBRAIN 

PATTERNING

Despite the progress in gaining insight into the molecular and cellular 

mechanisms of hindbrain segmentation, large gaps rem ain in the 

understanding of this process. For instance, only a few components are known 

of the regulatory pathway of signalling and transcriptional factors that 

governs the process of hindbrain patterning and segmentation. The small 

number of known segmentation genes identified makes it difficult to 

understand how the hindbrain segmental organisation occurs and how this 

process is coupled with the specification of rhombomere identity by Hox 

genes, although Mafb/kreisler and KroxlO are clearly involved. Little is also 

known how hindbrain segmentation is connected to cell differentiation and 

patterning of neural cell types. Therefore, there is a need for the identification 

and characterisation of further relevant genes and elucidation of how  they are 

linked in cascades of cell signalling and transcriptional regulation, which lead 

to hindbrain patterning.

In order to identify novel genes with a potential role in hindbrain 

development, a subtractive cDNA library was made and screened by whole 

m ount in situ hybridisation. The subtracted library consists of embryonic chick 

hindbrain cDNA library depleted of transcripts present in pre-gastrulation 

stage embryos (Harrison et al., 1995).

One of the clones, identified by this method, initially called V ll , has a 

segmentally restricted expression pattern within the developing hindbrain.

AIM OF THE PROJECT

At the start, the focus of my project was to elucidate the potential role of V ll  

in hindbrain development. As the w ork had progressed it became clear that 

V ll encodes a novel BTB domain protein, whose involvement in vertebrate 

embryogenesis is not restricted to hindbrain patterning. Characterisation
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and investigation of the function of this new gene in vertebrate development 

is the subject of my thesis.
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MATERIALS AND METHODS

CLONING AND DNA METHODS

All molecular biology protocols were carried out as described in Sambrook 

et al. (Sambrook et al., 1989). Any alterations from this source are described 

below.

Bacterial strains and bacteriophage types

E. coli genotypes

DH5 a  supE44 A lac U169(c})80 /acZAM15) hsdR17 recAl endAl

gyrA96 thi-1 relAl

SOLR™ el4'(McrA') A(mrcCB-hsdSMR-mrr)171sbcC recB reef uvrC

umuC::Tn5(Kanr)lacgyrA96relAlthi-l

endAl^[F'proABlacBZ AM15]cSu- (nonsuppressing)

XLl-BlueMRF A(mrcA)183 A(mrcCB-hsdSMR-mrr)173 endAl supE44

thi 1 recAIgyrA96relAl(lac) [F'proABlaclqZAMIS Tn 10(tetR)c 

(Stratagene Cloning Systems)

Bacteriophage types

?iZAPII 7jsbh\kl°chiA131 (T amp ColEl ori lacZ ' T3 prom oter -

polycloning site-T7promoter I) srIA3°cIfs857 sr IF4° nin5 

srIA5° (Stratagene Cloning Systems)

ExAssist™ helper (Stratagene Cloning Systems)
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Production of competent bacterial cells

10ml of Luria-Bertani (LB) broth was inoculated with a single colony of 

DH5a cells and the culture was grown overnight on a gyratory shaker (set 

to 250rpm) at 37°C. Subsequently, the 10ml culture was sub-cultured into 

200ml of fresh medium, prew arm ed to 37° C, and incubated at 37° C until an 

OD550 of 0.45-0.55 was reached. Following storage on ice for 5 minutes the 

cells were pelleted by centrifugation at 2500rpm for 10 minutes at 4°C in a 

Sorvall GS-3 rotor. The supernatant was removed and the pellet was 

resuspended in 40ml of Tfbl (30mM KOAc, lOOmM RbCl, lOmM CaCl2.2H20, 

50mM MnCkAHhO, 15% glycerol, pH adjusted to 5.8 with 0.2M acetic acid, 

filter sterilised and stored at 4°C). The cells were chilled on ice for 5 minutes 

before further centrifugation at 2000rpm for 10 minutes at 4°C in a Sorvall 

HS4 rotor. The cells were resuspended in 8ml of Tfbll (lOmMOPS, 75mM 

CaCl2.2H20, lOmM RbCl, 15% glycerol, pH adjusted to 6.5 with KOH, filter 

sterilised and stored at 4°C), placed on ice for 15 minutes, and then aliquoted 

and snap-frozen on dry ice. The tubes were stored at -70°C until use.

Transformation of bacterial cells

The cells were thawed on ice and 50gl dispensed into a prechilled 1.5ml 

microfuge tube. l-5gl of DNA solution was added and mixed gently with the 

pipette tip. Following the 20 minutes incubation on ice, the sample was heat 

shock at 42° C for 90 seconds and then cooled on ice for 2 minutes. 200ml of 

LB broth was added and the cells were incubated for a further 20-30 minutes 

at 37° C before being plated out onto selective agar. The plates of bacteria 

were incubated at 37° C for 12-16 hours. If required, "blue/w hite" selection 

was performed according to Sambrook et al (Sambrook et al., 1989).
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Isolation of plasmid DNA

Small scale preparation of plasmid DNA was performed according to the 

boiling plasmid 'mini-prep' m ethod described by Holmes and Quigley (1981) 

or using the Qiagen™ Plasmid Miniprep purification kit. Large scale 

purifications utilised the Qiagen™ Maxi-kit, according to manufacturer's 

instructions.

Restriction enzyme digestion of DNA

All restriction enzymes were used according to the manufacturers' 

instructions (Promega, New England Biolabs), using the supplied buffer.

Blunt-ending, phosphatasing and ligation of DNA fragments

If insert and vector DNA fragments required for subcloning had 

incompatible cohesive ends, the following protocol was employed to convert 

both fragments to blunt ends. The single-stranded overhangs were rem oved 

using 0.1U of Klenow per pi in a solution of lOmM Tris (pH 7.4), 5mM MgCh 

and ImM  of each of the four dNTPs, which was incubated at 37° C for 15 

minutes. The DNA was then extracted and precipitated. Blunt-ended vector 

molecules (or those that had only been cut with a single restriction 

endonuclease) were treated with calf intestinal alkaline phosphatase from  

Boehouringer Mannheim according to the manufacturer's instructions to 

inhibit intramolecular ligation of vector without insert. Ligations were 

carried out using Rapid DNA Ligation Kit (Roche Molecular Biochemicals) 

according to the method of the supplier.

DNA sequencing and sequence analysis

DNA sequencing was performed at the Advanced Biotechnology Centre, 

Imperial College, London or in the sequencing facilities at the NIMR. 

Sequences were analysed for putative open reading frames using the Mac 

Vector 5.1 and 7.1 package (Oxford Molecular). Nucleic add and protein
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sequence similarity searches were performed using the gapped BLAST 

algorithms (Altschul et al., 1997) accessed via the internet at 

http://www.ncbi.nlm .nih.gov. Protein family searches (Pfam) were 

perform ed using http:/  /pfam.wustl.edu, (TIGR) http:/  / w w w .tigr.org/tdb/ 

and (Ensembl) http:/  / www.ensem bl.org/ web based software. Sequences 

were aligned with Laser gene (DNASTAR), CLUSTAL m ethod, or Mac Vector 

5.1/7.1 softwares.

RT-PCR and PCR

Preparation of RNA from embryonic tissue

For RT-PCR total RNA was extracted from chick or zebrafish embryos using 

TRIzol Reagent (GIBCO-BRL) according to the m anufacturer's protocol.

First-strand cDNA synthesis

First-strand cDNA synthesis was generated with oligo(dT) or random  

hexamer primers using Superscript™ First-Strand Synthesis System kit 

(Invitrogen) according to the manufacturer's manual.

PCR reaction

For PCR reactions, Expand High Fidelity (Roche) polymerase was used and 

the reaction mix prepared according to the m anufacturer's instructions. 

Amplification was performed with approx 30 cycles of 30 seconds at 94°C, 1 

minute at varying annealing tem perature depending on the melting 

tem perature of the primers, and 2 minutes at 72°C. The PCR reactions were 

gel electrophoresed to check for size and purity. For cloning, the band was 

excised and purified using either the QIAEX II Agarose Gel Extraction kit 

(Qiagen) or glass beads. The purified DNA was ligated into the plasmid and 

transformed. Clones with inserts were sequenced to confirm PCR accuracy.
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Library screening

cDNA libraries in XZAPII: whole chick 12 -15  somite stage and 8.5 dpc 

mouse embryo.

Both cDNA libraries constructed in XZAPII bacteriophage were screened 

with radiolabelled probe encompassing the region of the initially isolated 

chick V ll  clone cDNA. XLI-Blue MRF- bacterial strain is a host for ZZAPII 

phage. SOLR™ bacterial strain is a host for the excised phagemid containing 

an insert. The ExAssist™ interference resistant helper phage used to excise 

the phagemid from AZAPII vector is prevented from replicating in SOLR™ 

cells.

Preparation of XLI-Blue MRF- cells

A single colony of XLI-Blue MRF- cells was cultured overnight on a gyratory 

shaker (set to 250rpm) in 20ml LB broth supplemented with 0.2% maltose 

and lOmM MgS0 4 . The cells were pelleted by centrifugation at 2000rpm for 

10 minutes at 4°C in a Sorvall GS-3 rotor. The supernatant was discarded and 

the cells were resuspended at an OD600 of 1.0 (equal to 8xl08 bacteria/ml) in 

ice-cold lOmM MgSQj.

Lambda bacteriophage library plating and lifts

Prior to plating, the titre of the library was determined. Tenfold serial 

dilutions of the phage in SM buffer were prepared. 400jul of XLI-Blue MRF7 

(OD=1.0) plating cells were mixed with an appropriate am ount of phage 

stock in a 10ml tube. The cells were left at 37°C for 15 minutes to allow 

preadsorption of phage particles and then 6.5 ml of NZCYM top agarose at 

42°C was added to each tube, quickly mixed by inversion of the tube and 

poured onto the surface of a prewarm ed NZCYM plate (55°C) with swirling 

of the plate to ensure even coverage. The top agarose was allowed to set, 

and then the plates were inverted and incubated at 37°C overnight. The 

following morning plaques of dead cells caused by phage infection were 

seen in a bacterial lawn. The titre of the library was calculated as plaque
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forming units (pfu) per unit of volume and then the library was plated at 7 x 

104 pfu per 137mm plate. In total, 0.7 x 106 pfu were plated. Two replicas of 

each plate to be screened by hybridisation were taken by overlaying 

Colony/Plaque Screen™ hybridisation transfer m embranes (DuPont NEN® 

Research Products) onto the plate and punching orientation marks through 

the filters and into the agar. The first filter was laid on the plate for 30 

seconds, the second for 60 seconds. The filters were then processed 

according to the manufacturer's instructions.

Radioactive labelling of double stranded DNA

Fragments to be used as templates were excised from 1% agarose gels. 

These were labelled using the Megaprime DNA Labelling System 

(Amersham) according to the manufacturer's instructions. The labelling 

reaction was purified by gel exclusion chromatography through Sephadex 

G-50 (Pharmacia) equilibrated with TE (lOmM Tris.Cl (pH 8.0), Im M  EDTA 

(pH 8.0), autoclaved).

Hybridisation of filters

Hybridisation was carried out overnight at 42° C in hybridisation buffer, 

containing 10% polyethylene glycol (PEG) 8000, 7% SDS, 4xSSPE, 100 pg /m l 

sheared denatured salmon sperm DNA and denatured radiolabelled chick 

V ll  probe, at 42° C. Prior to the hybridisation step, filters were prehybridised 

in the same hybridisation mix (without a radiolabelled probe) for at least an 

hour. Following hybridisation, filters were washed consecutively in 4xSSC, 

2xSSC and lxSSC at 42°C, and finally in lxSSC at 55°C for 1 hour each. 

Subsequently, the filters were wrapped in clingfilm and exposed to X-ray 

film (Kodak) at -70°C. Intensifying screens were used when required. 

Exposed film was developed in an automatic developing machine.
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In vivo exdsion of the cloned insert from XZAPII phage

Positive phage plaques were cored from the agar plate and transferred to a 

sterile tube containing 500pl of SM buffer and 40pl of chloroform. In order to 

release phage particles into the SM buffer the tube was vortexed and 

incubated for 1-2 hours at room  tem perature or overnight at 4°C. 200pl of 

XLI-Blue MRF- cells (OD6oo=1.0), 200pi of XZAFTI phage stock (containing > 

lx l0 5 phage particles) and ExAssist™ helper phage (> lxlO6 pfu/m l) were 

combined in the tube and incubated at 37°C. Following addition of 3ml of LB, 

the mixture was cultured for further 3 hours. Then the tube was heated at 

65°C for 20 minutes and spun down at 4000g for 5 minutes. The supernatant, 

containing the pBluescript phagemids packed as filamentous phage particles, 

was retained. 10 and lOOpl of phagemid supernatant were combined with 

200pi of SOLR cells (OD6oo=1.0) in two separate tubes. Following 37°C 

incubation for 15 minutes, lOOpl of the mixture was plated on LB/Ampicillin 

plate. Colonies appearing after overnight culture contained the pBluescript 

double stranded phagemid with the cloned DNA insert.

Screening of libraries provided as high-density gridded filters: st. 3-6 (HH) 

chick embryonic cDNA (RZPD) and chicken genomic BAC (UK HGMP)

After the prehybridisation step, filters were hybridised with the 32P 

radiolabelled probe in Church buffer (7% SDS, 0.5M sodium phosphate pH  

7.2, ImM  EDTA, 0.1 m g /m l yeast t-RNA) at 65°C. For screening st. 3-6 (HH) 

chick cDNA library two probes were used, one generated from the entire 

initial chick V ll clone (cVll) and the other encompassing the 1.2 kb 

(between SmaBI and Seal) of the 3'UTR region. For screening the chicken 

genomic BAC library only the first one was employed. After hybridisation, 

stringent consecutive washes were carried out with lxSSC/0.5%SDS, 

0.5xSSC/0.5%SDS and 0.1xSSC/0.5%SDS at 65°C for 1 hour each. 

Subsequently, the filters were wrapped in cling film and exposed to X-ray 

film (Kodak) at -70° C. Exposed film was developed in an automatic 

developing machine. Filters were scored for positive signals and the
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potential positive clones depicted by the calculated coordinates were 

obtained either from  RZPD or UK HGMP. The sequences of the clones 

identified in the chick embryonic cDNA library were obtained by sequence 

walking using the vector primers and gene specific primers. In case of the 

clones isolated from the chicken genomic BAC library, in order to acquire 

chick V ll 5' sequence, the sequencing was performed using three different 

upstream outwardly oriented primers:

S'-GCCTTGCCGTTTGACCTGACGCTC-S'

5'-CCCACG ATGAAGTGGACGT CAG-3' 

T-TTGCTGTTGGCGATATTGGTGTTG-S'

To verify that the obtained sequence did not contain introns, two sets of 

primers (two 5' end primers upstream of a putative V ll  ATG codon and one 

3' end primer located within the initial clone V ll cDNA sequence 

downstream of a unique Xhol restriction site) were designed and used for 

PCR on stage HH16 whole chick embryo cDNA.

5' end primers (with Sail restriction site):

S'-ACGCGTCGACCCCGCACTGCCCGGGTTC-T 

5'-ACGCGT CGACAGCCGGCGGT CCT CT CGC-3'

3' end primer

5'-GCGCTGCGGCACCAGTCC-3'

The correct sized PCR products were gel purified, as described, digested with 

Xhol and ligated into the Sall/Xhol linearised V ll/pSPO RTl plasmid for 

sequencing.

Hybridisation of filters for Northern, Southern and colony screens

For N orthern blot analysis, the procedure was essentially the same as for the 

library screen filters (Hybond-N nylon membranes, Amersham) except for 

the following differences. Hybridisation was perform ed using hybridisation 

buffer comprised of: 5xSSC, 5xDenhardt's, 50% formamide, 1% SDS. 

Following overnight incubation at 42°C, the filters were washed with 

increasing stringency up to O.lxSSC at 65°C. For Southern blots and colony
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screens, hybridisation solution consisted of 0.2 M sodium phosphate (pH 

7.2), 7%SDS, 1% BSA. Filters were hybridised overnight at 65° C.

Generation of constructs

The zBTBD6alWT, ABTB and APHR constructs were created by PCR- 

amplifying the zBTBD6al cDNA with the following primers: 

zBTBD6alWT

5'-CCGGAATrCCGTTCTCATGCCCGCTGC-3' 

5'-TACGTAACCCCCCT ACT CT CT CTT C-3'

ABTB

5'-CCGGAATTCGGAGGCGCGAAATGCATG-3'

5'-TACGTAACCCCCCTACTCTCTCTTC-3'

APHR

5'-CCGGAATTCCGTTCTCATGCCCGCTGC-3' 

5'-TACGTACACAGCGT CCACGGTAGC-3'

The primers introduced restriction sites for EcoRI and SnaBI at the 5'- and 3'- 

ends, respectively. The PCR products were digested with EcoRI and SnaBI 

and subcloned into the corresponding sites of the pCS2+MT vector, each 

creating the constructs pCS2+MT/zBTBD6alWT, pCS2+MT/ABTB and 

pCS2+MT /  APHR.

The following constructs have been already described:

Constitutively active Su(H), Su(H)-Ank (Wettstein et al., 1997) 

lacZ (Xu et al., 1999) 

neurogl (Blader et al., 1997)

ZEBRAFISH EMBRYO CULTURE AND MANIPULATION 

Fish maintenance

Adult zebrafish were maintained in lOh night/14h day cycles. Wild-type, 

mibta52h m utant (Jiang et al., 1996), and elav3/HuC-GFP transgenic (Park et al., 

2000b) zebrafish embryos were obtained by natural spawning and raised at 

28°C, as described (Westerfield, 1993). For stages earlier than 24h, em bryos
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were raised at 22°C or incubated at 28°C for first 9 hours and then at 18°C 

until the right stage. The stage was determined by num ber of somites and 

hours postfertilisation (Kimmel et al., 1995). Embryos were manually 

dechorionated after fixation.

Morpholino oligonucleotide and RNA injections

Injection protocol

0.8-6.5 ng of morpholino oligonucleotide was injected into the yolk of 1-4-cell 

stage embryos. For misexpression experiments, 0.1-0.4 ng of capped RNA 

was injected into one cell at either the 2-cell or the 1-cell stage. Injections 

were performed using a Picospritzer II (General Valve Corporation). The 

needles used for injection were constructed from 1.0mm external diameter 

glass capillaries with an internal filament (Harvard Apparatus, Kent) with a 

David Kopf Instruments needle puller.

Morpholino oligonucleotides

Morpholino oligonucleotides (MOs) were purchased from Gene Tools, LLC 

(Oregon). MOs were kept as Im M  stock solutions by adding pure water 

(Sigma) and further dilutions were made in pure water for injections. The 

following MO sequences were used:

zBTBD6al MO: 5'-CGCAGCGGGCATGAGAACGAGCGAG-3' 

zBTBD6a2 MO: 5,-GTACAGTTCCGCCGCCATCCTCTTC-3, 

neurogl MO: 5,-ATACGATCTCCATTGTTGATAACCT-3, 

her4 MO: as described (Pasini et al., 2004)

standard control MO: 5'-CCTCTTACCTCAGTTACAATTTATA-3/

Generation of capped RNA for injection

Synthesis of capped mRNA for in vivo injection was carried out as previously 

described (Moon and Christian, 1989). Briefly, sense transcripts were
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synthesised in vitro using 5 pig of linearised plasmid DNA and 50 units of SP6 

RNA Polymerase (Roche) in the presence of: 10 mM DTT; 1 mM of ATP, CTP 

and UTP; 0.1 mM GTP (Pharmacia Biotech); 0.5 mM RNA cap analog (Roche); 

10 pi 5x Transcription Optimised buffer (Promega) and 40 units of RNasin 

Ribonuclease Inhibitor (Promega) in a final volume of 50 pi. The reaction was 

incubated at 37 °C for at least 2 hours. To rem ove the DNA template after 

the RNA synthesis, 5 units of RQ1 DNase (Promega) were added to the 

reaction and incubated at 37 °C for 30 minutes. The synthetic RNA was 

purified from unincorporated nucleotides using Microspin G-50 columns 

(Amersham), ethanol precipitated, resuspended in Sigma pure water and 

analysed by agarose gel electrophoresis.

Detection of transcripts by in situ hybridisation

In situ hybridisation was perform ed using "Protocol Four" as previously 

described (Xu and Wilkinson, 1998), with the following modifications. In 

some cases BM Purple (Roche) was used instead of NBT/BCIP in the colour 

reaction. To detect transcripts with a fluorescent signal, TSA™ (Tyramide 

Signal Amplification) Plus Flourescence Systems (PerkinElmer) was used. 

This required usage of anti-digoxigenin (DIG) Horseradish Peroxidase 

antibodies (Roche). TSA system employs HRP to catalyse the deposition of a 

flourophore-labeled tyramide amplification reagent onto tissue. After the 

colour was developed, embryos were briefly fixed in 4% paraformaldehyde 

in PBS, then rinsed in PBS-0.1% Tween20 (PBST), stored and flat-mounted in 

70% glycerol in PBST. For two-colour in situ hybridisation, both DIG- and 

fluorescein-labelled probes were hybridised simultaneously. The fluorescein- 

labelled probe was detected with anti-fluorescein-AP antibodies (Roche). 

Incubations with anti-DIG and anti-fluorescein-AP antibodies, and the colour 

development for each probe were perform ed sequentially. After the first 

colour reaction carried out with BM Purple, the alkaline phosphatase was 

inactivated by treating the embryos with 100% methanol for 20 minutes. 

Then the embryos were incubated with antibodies against the second probe 

and the signal was detected with Fast Red tablets (Roche).
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Anti-sense RNA probes

The RNA probes used for detection of BTBD6/BTBD3 transcripts are listed 

below. The source of the DNA template used for probe generation, the 

vector, the restriction site used for linearization and the RNA polymerase 

used for transcription reaction are tabulated below.

Gene DNA source Vector linearisation/

polymerase

cBTBD6

cBTBD3

zBTBD6a

zBTBD6b

zBTBD3a

zBTBD3b

cloned

BU444464 EST 

BU274818 EST 

BU389269 EST 

BG308275 EST 

BI350992 EST 

AI437221 EST 

AI883008 EST

RT-PCR

pSPORTl SalI/SP6

pBluescript IIKS+ NotI/T3

pBluescript IIKS+ NotI/T3

pBluescript IIKS+ NotI/T3

pBluescript SK- BamHI /  T 7

pZIPLOX SalI/SP6

pSPORTl SalI/SP6

pME18S-FL3 subcloned to 

EcoRI/PstlDelta pCS2+ EcoRI/T7

transcription of PCR product T7

In the case of zBTBD3b, a DNA template was obtained using RT-PCR with 

primers based on the predicted cDNA sequence provided by Ensembl. The 

T7 RNA prom oter sequence was included in the 3' primer to enable 

generation of the RNA probe of the PCR product. Sequencing was carried 

out with a T7 primer to confirm PCR accuracy.

5' end primer:

5'-CGACACCGT CTTGGCAAG-3'

3' end primer:

5'-AATACGACTCACTATAGGGAGAACCACGCTGGCAGTG-3'

The following probes have been previously described: 

kroxlO (Oxtoby and Jowett, 1993)
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neurogl (Blader et al., 1997; Kim et al., 1997; Korzh et al., 1998)

pax2a (Krauss et al., 1991)

deltaA, deltaB and deltaD (Haddon et al., 1998)

neurod (Korzh et al., 1998)

neurodd (Park et al., 2003; Wang et al., 2003)

isll (Inoue et al., 1994; Korzh et al., 1993)

Fluorescent in situ hybridisation combined with immunochemistry

Fluorescent in situ hybridisation to detect zBTBD6a transcripts in elav3/HuC- 

GFP transgenic embryos was performed essentially as described above. GFP 

protein was detected with anti-GFP (1:500, Molecular Probes) rabbit primary 

and Alexa Flour 594 goat anti-rabbit (1:500, Molecular Probes) secondary 

antibodies. Following incubation with anti-DIG HRP antibodies, the embryos 

were blocked in PBST containing 5% goat serum  for at least 1 hour, then 

incubated overnight at 4°C with the anti-GFP antibody diluted in PBST with 

2% goat serum. After several washes in PBST, the embryos were incubated 

with Alexa Flour 594 antibodies in PBST with 2% goat serum, then washed in 

PBST and incubated with TSA-Plus flourescein dye for 10 minutes. Following 

several washes in PBST, the embryos w ere flat-mounted in Vectorshield 

medium (Vector) and observed with confocal microscopy.

Detection of B-galactosidase and in situ hybridisation

Embryos were fixed in 4% paraformaldehyde in PBS, then dechorionated. 

After washing several times in PBST, (3-galactosidase was detected by 

staining in X-gal. The embyos were refixed in 4% paraformaldehyde in PBS 

for 15 minutes, then in situ hybridisation was carried out using BM Purple as 

substrate.
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Detection of zBTBD6al and zBTBD6a2 transcripts by RT-PCR

Total RNA extraction was carried out, as previously described. PCR- 

amplification was performed as described previously with the annealing 

tem perature of 56°C and the following primers: 

zBTBD6al5'-G AAGCGGGCAAGCAAGCA-3'

5' -IT  CACCAGG AGGT CCA AC-3' 

zBTBD6a2 5'-CACAAGTCCAGCCCTCGT-3'

5' - AAT ACG A CT C A CT ATAGGG CT C AG ATTTTGTGGGTTAGT -3' 

(includes T7 prom oter -  not utilised)

PRODUCTION AND DETECTION OF RECOMBINANT PROTEINS 

Cell culture and stable transfection

Human embryonic kidney cells (HEK293) were grown in DMEM 

supplemented with 10% FCS, 2 mM glutamine, 50pg/m l gentamicin at 37°C, 

5% CO2. Stable cell lines expressing zBTBD6alWT, ABTB, APHR were 

generated by co-transfection of zBTBD6alWT/pCS2+MT, ABTB/pCS2+MT, 

APHR/pCS2+MT vectors along with pcDNA3 vector (Invitrogen) in 1:10 

ratio. Cells were selected in the presence of 900pg/ml of G418 for 2 weeks. 

Expression of zBTBD6alWT and its truncated versions was confirmed by 

Western blotting and immunocytochemistry using anti-myc antibodies.

Immunocytochemistry

Cell were fixed with 4% paraformaldehyde, 4% sucrose in Dulbecco-PBS (D- 

PBS) for 15 minutes at room  temperature, rinsed once with D-PBS, then 

incubated with 50 mM ammonium chloride in Dulbecco-PBS (D-PBS) for 10 

minutes at room  tem perature and rinsed again. Cells were permeabilised for 

5 minutes with ice cold 0.1% Triton X-100 in D-PBS at 4°C. After washing, 

blocking was done for 30 minutes at room  tem perature or overnight at 4 °C 

with 2% bovine serum albumin, 4% donkey serum (Jackson Im m uno 

Research). Followed by incubation with primary antibodies for 60 minutes at
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room  tem perature and then by washing, and incubation with secondary 

antibodies for 30 minutes at room  temperature. After washing, samples 

were m ounted using the ProLong antifade kit (Molecular Probes). Images 

were acquired using an inverted fluorescent microscope 1X70 (Olympus) 

equipped with a digital camera.

Cell lysis and immunoprecipitation.

Cells or embryos were lysed in lysis buffer: 1.0% Nonidet NP-40, 50 mM 

HEPES, pH 7.5, 100 mM NaCl, 50 mM NaF, 1 mM CaCl2, 1 mM MgCl2, lx  

Halt-protease inhibitor cocktail (Pierce) for 10 minutes on ice and centrifuged 

at lOOOOg for 10 minutes For Western blot analysis 4x SDS sample buffer and 

lOx Reducing agent (Invitrogen) were added to the cell lysates and incubated 

10 minutes at 65°C. For immunoprecipitation cell lysates were incubated 

with 2pg of antibodies pre-bound to lOpl of protein-G Sepharose 

(Amersham Biosciences) for 1 hour or overnight at 4°C on a rotator. To 

remove unbound proteins, sepharose was washed 4 times with lysis buffer 

and once with 10 mM Hepes/NaOH, pH  7.0. Then lOpl of 2x SDS sample 

buffer with or without 2x Reducing agent (Invitrogen) was added to 

sepharose and samples were incubated for 10 minutes at 65°C. Sepharose 

was settled by centrifugation and eluted proteins collected by aspiration 

using gel-loading tips. Immunoprecipitates were resolved by SDS-PAGE gel 

electrophoresis under reducing or non-reducing conditions as required.

Preincubation of protein G Sepharose with antibodies

Sepharose was washed 1-2 times with Tris Buffered Saline (TBS) and 2pg of 

antibodies were added to lOpl of Sepharose in 250-300pl of PBS or TBS 

containing 0.01% Triton X-100. Samples were incubated for 1 hour or 

overnight at 4°C on a rotator. Sepharose was washed 1-2 times with the lysis 

buffer rem ove unbound antibodies and can be used immediately or stored 

overnight at 4°C.
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Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blotting

Polyacrylamide gel electrophoresis of proteins was carried out using XCell 

SureLock Mini-Cell (Invitrogen) on NuPage 4-12% Bis-Tris gels (Invitrogen) 

according to manufacturer's instructions. After SDS-PAGE electrophoresis, 

proteins were transferred to Immobilon-FL PVDF m em brane (Millipore) 

using the XCell II Blot module (Invitrogen) according to manufacturers' 

instructions. The membrane was blocked in blocking buffer (LI-COR 

Biosciences) for 1 hour at 25°C or overnight at 4°C with agitation. The 

m em brane was then incubated with primary antibodies in the blocking 

buffer containing 0.1% Tween 20 for 1 hour and then washed 4 times for 5 

minutes in TBS containing 0.1 % Tween 20 with agitation. The mem brane 

was then incubated 1 hour with IRDye800 or IRDye700DX-conjugated 

secondary antibodies in the blocking buffer containing 0.1 % Tween 20 and 

0.01 % SDS and washed 4 times for 5 minutes in TBS containing 0.1 % Tween 

20 followed by rinsing with TBS. The mem brane was then dried and the 

stained proteins were detected using the Odyssey infrared Imaging system.

Antibodies

Monoclonal 9E10 anti-myc antibodies (Cat.No. sc-40), rabbit polyclonal anti- 

myc antibodies (Cat.No. sc-788), and goat polyclonal anti-Cul-3 antibodies 

(Cat.No. sc-8556) were obtained from Santa Cruz Biotechnology. Rabbit 

polyclonal anti-MAPK antibodies (Cat.No. M-5670) were from  Sigma. 

IRDye800- and IRDye700DX-conjugated secondary antibodies were from 

Rockland.
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IDENTIFICATION AND SEQUENCE ANALYSIS OF NOVEL 
BTB DOMAIN-CONTAINING GENES

This chapter describes molecular cloning and characterisation of a novel BTB 

domain-containing gene, first isolated from embryonic chick cDNA library 

under the provisional name, V ll, and subsequently identified in mouse, 

hum an and zebrafish.

Initial w ork involving recovery of the full-length chick V ll  cDNA and 

cloning of one of the mouse homologues is presented below in a 

chronological manner that explains the logic of undertaken steps.

CLONING AND MOLECULAR ANALYSIS OF CHICK V ll  

Isolation of chick clone V ll

Clone V ll  was initially isolated in our laboratory from  a subtracted 

embryonic chick (HH stage 9 to 12 (Hamburger and Hamilton, 1951)) 

hindbrain cDNA library. This subtracted library was obtained by 

constructing a directionally cloned chick hindbrain cDNA library and 

removing ubiquitously expressed genes through a subtractive hybridisation, 

using as driver a chick cDNA library, constructed from embryos prior to 

formation of the primitive streak (Harrison et al., 1995).

The first step in the project was to obtain chick V ll (cVll) nucleotide 

sequence. The V ll clone was sequenced from each end, using the vector and 

gene specific primers, and a contiguous sequence of 2156 nucleotides in 

length was assembled. A putative stop codon and an accompanying 

upstream  open reading frame of 882 nucleotides were present, but the ATG 

start codon was not identified. The termination codon was followed by a 

1247 nucleotide long untranslated region (UTR) ending with a poly (A) tail 

that was preceded 40 bp upstream  by the AATAAA consensus 

polyadenylation signal (Fig. 5). The absence of the initiation translation
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Figure 5. Nucleotide sequence of the initial chick V ll clone isolated from a 

hindbrain cDNA library. The open reading frame is indicated in triplet 

codons and the predicted amino acids are shown by the single letter 

designation. A start codon (ATG) has not been identified and the termination 

codon (TGA) at position 879 is indicated by an asterix. A putative 

polyadenylation signal and a poly(A) tail are indicated in pink and green, 

respectively. The BACK domain and partial PHR motifs are labelled in red 

and blue, respectively.
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CC CAG AGC CGG CTC TTC GAG 2 0
Q S R L F E

GAG CCG GAG CTG ACG CAG CGC TGC TGG GAG GTG ATC GAC GCT CAG 88
E P E L T Q R C W E V I D A Q

GCC GAG ATG GCG CTC AAG TCG GAA GGG TTC TGT GAG ATC GAC CTG 1 3 3
A E M A L K S E G F C E I D L

CAG ACG CTG GAG ATC ATC GTG ACG CGG GAG GCC CTC AAC ACC AAG 1 7 8
Q T L E I I V T R E A L N T K

GAG GTG GTG GTG TTC GAG GCC GTT CTC AAC TGG GCG GAG GCC GAG 2 2 3
E V V V F E A V L N W A E A E

TGC AAG AGG CAG GGG CTG CCG GTG ACG CCG CGC AAC AAG AGG AAC 2 6 8
C K R Q G L P V T P R N K R N

GTG CTG GGG AAG GCG CTG TAC CTG GTG CGG ATC CCC ACG ATG ACT 3 1 3
V L G K A L Y L V R I P T M T

CTG GAA GAG TTC GCC AAC GGG GCG GCC CAG TCC GAC ATC CTC ACG 3 5 8
L E E F A N G A A Q S D I L T

CTG GAG GAG ACG CAC AAC ATA TTC CTG TGG TAC ACG GCC GCC AAC 4 0 3
L E E T H N I F L W Y T A A N

AAA c c c AAA CTC GAG TTT CCG CTG ACA AAG AGG AAA GGA CTG GTG 4 4 8
K p K L E F P L T K R K G L V

CCG CAG CGC TGC CAT CGC TTT CAG TCG TCT GCG TAC CGC AGT AAC 4 9 3
P Q R C H R F Q S S A Y R S N

CAG TGG AGG TAC CGG GGG CGG TGC GAC AGT ATT CAG TTT GCC GTA 5 3 8
Q W R Y R G R C D S I Q F A V

GAC AAA CGG ATA TTT ATA GCG GGA CTG GGA TTG TAT GGG TCG AGT 5 8 3
D K R I F I A G L G L Y G S S

TGT GGC AAA GCT GAA TAC AGC GTC AAA ATT GAA CTG AAG CGC TTA 6 2 8
C G K A E Y S V K I E L K R L

GGA GTC GTC CTT GCT CAG AAT CTG ACA AAG TTT ACC TCC GAC GGC 6 7 3
G V V L A Q N L T K F T S D G

TCC AGT AAT ACC TTC TCG GTG TGG TTT GAG CAC CCG GTG CAG GTT 7 1 8
S S N T F S V W F E H P V Q V

GAG CAG GAC ACG TTC TAC AAT GTA AGT GCC ATT CTG GAT GGC AAT 7 6 3
E Q D T F Y N V S A I L D G N

GAG CTC AGT TAC TTC GGG CAG GAG GGA ATG ACT GAA GTG CAG TGC 8 0 8
E L S Y F G Q E G M T E V Q C

GGG AAA GTG ACC TTC CAG TTC CAG TGC TCC TCG GAC AGT ACC AAC 8 5 3
G K V T F Q F Q C S S D S T N

GGG ACT GGG GTA CAA GGA GGA CAA ATC CCT GAG CTC ATT TTC TAT 8 9 8
G T G V Q G G Q I P E L I F Y

GCA TGATGCATTT CACCTTGATT GTATT CCAGTACT GCAACGCTGCACAT CTAAGGGAT 9 1 9
A *

TCTTCAGTTTTGCTACAGAACTGTCAAGCAGTATGGGAATGTTACGCTACTTACCTATCT 
GCTACATCANGCTATACCCAATTAAGTGAAAGGAATGCTCTCAAATTTAATCTTATTTTA 9 7 9  
TTTATTCATAAGCTATTTGACTTGATTAAGACTGCAGCGAGCAGAAAAATGTTAAATTTT 1 0 3 9  
GCACATGCAGTGCATTTATTTTGTATATAGATAACTAACTTGCAGACTGCAGCTGACTCA 1 0 9 9  
AACAGAAT GTT CTAAACTAGAGCAGT TTAT GAAC CGGTGAAATATAAAACAT TT CTACT T 1 1 5 9  
GCCCTAAATCCCGCGTACTGCCCCTTAATGATGTTAGGGCCTGTCTGCTAATGCAGCTAC 1 2 1 9  
AGC GTAGT TAACGGGT GGTAACAC CGCT GGT T GC CT GTC CT CT GCAAGGTGT GAGCAGT G 1 2 7 9  
CTGCACGTAGAAAGGCTCCCCCACCTGCAGAGCCCATCCATCAGGCAGCCCTCATTGTCC 1 3 9 9  
TTCACCGAGAAGGACAGGAGGAAGGAAGCTCAGAGGTTGGCTATGGGTCGCCCAAGCTGA 1 4 5 9  
ACAGAAAAAACCTGAGCATAACCAGCACTGATAAAACCTCGTGCTTACTGCTTGTAAGCT 1 5 1 9  
TCTTCTGTCCCTTTGCATTCTGCTTTTGGCACCACCTGTGTTAACCTCCACCCTGCCCAG 1 5 7 9  
CAAACAGCAGCAGT AACAC CT GCACT GT CAAAACACAC C AGACT T GAGCAGC CAAT GT CA 1 6 3 9  
GGACAGACAGATAAAGCCTCGT GCAGC CACAAGCTGT AGCACT GACAGC CACT ACT TTAA 1 6 9 9  
ATATACATCACAGCTCGCCTTTAGGAGCAGACAGATTTACAATACGGTCACTCAAAATTA 1 7 5 9  
CCGAGGGAAGCCACCATAAGGAAAAGCTGCCAGGCCTTTTTTCTCCCTGTGTAGTTTTGG 1 8 1 9  
GGGTATCAGTCATTTTTATAGCTAGCATCCTTCAGTTTTCTCANAGACTGACTAAGATAG 1 8 7 9  
GTGTATTCCTCAAGCATCTGACCACCTTTACAGCTGAACCAATGTAAACCAATGTACAAA 1 9 3 9  
ACATTGTAATCATGATCCAATTTACCTTTTTTTTTTTGCACATAACAGGTACCTCTACCT 1 9 9 9  
TCAACTTCAAGTTTTCTGTTTGTTTTTTTTTTTTACCTGAGCTGCATTATTTTTTTACCT 2 0 5 9  
TGAAACTAAACTGTAATAAAATTTTGCCTGTTCTCTCAGAGAAAGTAAAAACAGGAAAAG 2 1 1 9  
AAAAAAAAAAAW\AAAA!mAAAAAAAAAAAAA 2156

58



sequences suggested that V ll  represents an incomplete cDNA clone with 5' 

end sequences missing. To determine the expected transcript size of cV ll, 

N orthern analysis was performed. Total RNA isolated from HH stage 9-12 

chick embryos was hybridised with radiolabelled V ll probe cDNA and a 3 

kb transcript was detected, which suggested that about 800 nucleotides 

upstream  of the known V ll sequence were missing (Fig. 6).

In order to characterise chick V ll  it was essential to obtain the V ll  full- 

length cDNA. Finding putative V ll homologues in other species and 

acquiring their nucleotide and amino acid sequences was helpful for a 

comparative analysis of the sequentially obtained V ll 5' sequences.

The predicted, partial chick V ll  peptide sequence was used for BLAST 

similarity searches in the NCBI nonredundant protein database 

(http://www.ncbi.nlm.nih.gov/BLAST/(Altschul et al., 1997). At the time, 

both searches identified two hum an (Gen-Bank Accession Nos: BAA76796, 

gi3334982) and one Caenorhabditis elegans (Acc. Nos: CAB01179) proteins 

with significant homology scores (Fig. 7).

The hum an protein gi3334982 had 46.2% identity with the chick V ll  protein 

and represented a translation of a predicted ORF derived from a 3.5 Mb 

contiguous nucleotide sequence in hum an 19pl3.3 chromosome. A similar 

level of homology was found between the chick (39.4% identity) V ll  protein 

and the C. elegans CAB01179 protein, which represented a conceptual 

translation of the predicted coding sequences obtained from sequencing of 

random ly selected C. elegans genomic clones (Consortium, 1998).

Most related to the mouse and chick V ll predicted proteins (78% and 80% 

identity, respectively) was the hum an protein BAA76796, which was the 

conceptual translation of a random ly selected cDNA clone derived from a 

hum an brain cDNA library (Nagase et al., 1999). Comparison of the
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Figure 6. Northern blot analysis of total chick RNA. 10 jig of total RNA, 

isolated from HH stage 9-12 chick embryos was separated by denaturing aga

rose gel electrophoresis, blotted onto a filter and hybridised with a 32P 

labelled chick V ll cDNA probe. A single 3kb transcript was detected.
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Figure 7. Multiple amino acid alignment of the initial cVll and homologues. 

Multiple amino acid sequence alignment (MacVector™ software, ClustalW 

method) of the initial chick clone V ll (cVllin) and homologues identified in 

the sequence databases by a BLAST homology search. Black background indi

cates identical amino acids. Human protein BAA76796 (hBAA76796) is most 

related to the cVllin predicted partial protein (81.2% identity over the over

lapping region). Ce, Caenorhabditis elegans.
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BAA76796 amino acid sequence with the translation of the 5' extended ORF 

of the successively obtained V ll  clones was used to determine the full-length 

V ll  cDNA.

Screening of other chick cDNA libraries

Initial attempts to recover further 5' sequences of the chick V ll cDNA 

through RACE (rapid amplification of cDNA ends) proved to be 

unsuccessful. Therefore, screening of a num ber of chick cDNA libraries was 

undertaken.

Screening of an embryonic (HH stage 3-6) whole chick cDNA library 

(Resource Centre of the German Human Genome Project)

In order to isolate a cDNA clone with a longer ORF, two radiolabeled probes 

were generated from the initial clone V ll, one covering the full length of the 

isolated V ll  clone and the other spanning the 1.2 kb of the 3' end UTR. 

These two probes were used independently to screen chick (HH3-6) cDNA 

library spotted filters.

The same eleven positively hybridising clones were identified using either of 

the probes and two longest ones, V11.9G and V11.2G, had inserts of 

approximately 2.7 and 2.9 kb, respectively. Nucleotide sequences of both 

inserts, by sequence walking, using vector primers and gene specific 

primers, were obtained. A comparative nucleotide sequence analysis of the 

original V ll  and isolated clones, revealed that V11.9G extended a further 495 

bp 5' to original sequence, whereas V11.2G was longer by 730 bp. There 

were no initiation translation codons identified within the sequence of either 

of the clones and the analysis of the 5' end sequences for splice donors and 

acceptors revealed that both sequences contained introns (one intron in 

V11.9G and two introns in the V11.2G sequence), suggesting that the isolated 

clones were of genomic origin. (Fig. 8) Therefore, effectively, the V ll  cDNA
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Figure 8. Partial nucleotide sequence alignment of chick Viiin, V11.9G and 

V11.2G. Comparison of the 5' end nucleotide sequences between the initial 

chick V ll (Viiin) clone and the two longest clones isolated from a HH stage 

3-5 whole chick cDNA library, V11.9G and V11.2G. Intron sequences identified 

in both V11.9G and V11.2G are indicated with pink boxes, and the intron pres

ent in the V11.2G clone only is depicted by blue box. The 5' end sequence of 

the V11.2G transcript was extended beyond the initial V ll sequence by 364 

bp.
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sequence was extended at 5'end by only 364 bp and a further search for the 

missing 5' sequences was undertaken.

Screening of a whole chick 12 -1 5  somite stage cDNA library

A whole chick 12 - 15 somite stage cDNA library, constructed in XZAPII 

(M.A.Nieto), was screened by filter hybridisation and five positively 

hybridising clones were identified. The two longest clones, V11.7AN and 

V11.9AN, were found to encompass the inserts of approximately 3.1 and 2.9 

kb, respectively. The nucleotide sequence of done V11.7AN was identical 

with the initial V ll  sequence between the nudeotides 645 -  1884 and longer 

at the 5' end by 644 bp (Fig. 9A). However, the 3' end sequence starting from 

nucleotide 1884 did not have any homology with V ll, suggesting that 

V11.7AN represented a hybrid done. V11.9AN nudeotide sequence 

extended upstream beyond the sequence of the initial V ll  done by 753 bp 

(Fig. 5A) and was fully identical with it at the 3' end. Sequence analysis of 

both V11.7AN and V11.9AN established that the longest open reading frame 

identified was identical for both of them and a conceptual translation of this 

ORF, giving a product of 478 amino acid residues, was compared with the 

peptide sequence of the V ll  closest hum an homologue, BAA76796. This 

comparison showed that the BAA76796 protein was longer than 

V11.7AN/V11.9AN in the N-terminus as there was another more upstream- 

located methionine (Fig. 9B). This drew a possibility that neither of the 

isolated clones covered the complete V ll mRNA sequence at the 5' end.

Screening of chick genomic BAC library

Final completion of the V ll  transcript was achieved through the screening of 

the Wageningen chicken BAC (Bacterial Artifidal Chromosome) library 

(Crooijmans et al., 2000) followed with the reverse transcriptase polymerase 

chain reaction (RT-PCR) analysis. Four clones positively hybridising with a 

radiolabeled probe, generated from initial clone V ll, were sequenced using 

three different upstream  outwardly oriented primers specific to the
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Figure 9. Partial nucleotide sequence alignment of chick V iiin , V11.2G, 

V11.7AN and V11.9AN, and comparison of V iiin  and hBAA76796 proteins. 

(A) Comparison of the 5' end nucleotide sequences between the initial V ll  

(Viiin) done, the longest clone isolated from the HH stage 3-5 whole chick 

cDNA library, V11.2G, and two longest clones identified in the whole chick 

12 -  15 somite stage cDNA library, V11.7AN and V ll.9AN. Clone V11.9AN 

is the longest and its sequence extends upstream beyond the V iiin  sequence 

by 753 bp. (B) Amino acid sequence alignment of the closest hum an (h) V ll 

homologue, hBAA76796, and V11.7AN/V11.9AN (predicted open reading 

frame identical for both chick clones). hBAA76796 protein is longer than 

V11.7/9AN peptide in the N-terminus suggesting that V11.7AN and 

V ll.9AN may represent incomplete cDNA clones.
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V 11.7/9A N  | F 1  V Y  T A  A | n [ I T | k [ l ] e  (T ip  L T K l B K G L  V P  Q B C H B F Q f | g | A Y B S  N Q Y i T I G E C l l  I Q F A V  P  E  B  I F  36> 
hB A A 76796 If  1  T Y  T A  A | K |K F | E [lj<} [ f ] v  g K A [b E G I  V F  Q B C H B F  Q S | c | a  Y B  8  H Q V B Y B G B C P S  I <? F  A V  P  K B  V  F [

V11.7/9AN I  A  G L G L Y G 8 8 C G K A E Y f V X  I  E 1  I S L G V V L A Q M L T  K F T 8 D 6 I I H T F S V  V P  E H P V Q  V  E Q D
hBA A 76796 I A  G F G L Y G 8 8 C G S3 A  E Y  8  A K I E L K K 9 G V V L G Q H L 8 E Y F 8 D G 8 8 N T F P v v r  e Y P V Q  I E  | P |d |

V 11 7/9A N  | E F y | n  I v s a i l p g m e l s y f g q e g h t e v q c g e v t  P Q F I J C S S D S T H G T G V Q G G Q I P E E .  I  F Y  A  V,v  
hB A A 76796 I  F Y T  A 8 V I L P G H E L 8 Y F G < ? E G M T E V Q C G E V t 1 v | q F < ? C S B P S T H G T G V Q G C Q I P E X . I F Y a 1  • «?
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overlapping 5' end region of V11.7AN and V11.9AN sequences. The 

obtained DNA sequence allowed for the designing of primers used for 

amplification of the V ll  5'end sequences in the PCR step on the 25-28ss 

(HH16) whole chick embryos cDNA.

Final construction of V l l  full-length cDNA sequence

The final assembly of the clones isolated from different chick cDNA libraries 

and RT PCR products gave a transcript (cVll isoform 1) of 2890 bp 

containing an ORF (from n t 21-1613) encoding a 531 amino acid product (Fig. 

10). Completion of the Hum an Genome Project and recent availability of the 

entire chicken genome sequence in the databases, provided a new insight 

into the V ll  cloning results obtained at that time. Revised analysis of the 

results suggests the presence of two splice variants of the cV ll transcript. 

The identified second transcript, cV ll isoform 2, is 2909 bp long and contains 

a 1430 bp long ORF encoding a predicted protein which, compared to the 

cV ll isoform 1 putative peptide, is shorter at the N-terminus by 53 amino 

add residues (Fig. 11). Previously isolated clone V11.9AN represents cV ll 

isoform 2.

The presence of two splice variants of chick V ll  is in correlation with my 

later findings, showing that V ll  homologue in zebrafish also has two 

isoforms (see later chapter).

Identification of cV ll protein motifs

Analysis of the amino acid sequence of both cV ll splice variants with protein 

domain identification software (NCBI and PFAM; 

h ttp ://www.pfam.wustl.edu) revealed the presence of three motifs, 

BTB/POZ, BACK and PHR, spanning residues 118 to 228, 233 to 351 and 384 

to 530 in cV ll isoform 1, and 65 to 175, 179 to 298 and 331 to 477 in cV ll 

isoform 2, respectively (Fig. 12).
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Figure 10. Nucleotide sequence and predicted amino acid sequence of chick 

V ll isoform 1. The open reading frame is accompanied by the predicted 

amino acids shown by the single letter designation beneath it. A start codon 

(ATG) shown in bold is at nucleotide position 34 and the termination codon 

(TGA) at position 1611 is indicated by an asterix. A putative polyadenylation 

signal and a poly(A) tail are indicated in pink and light green, respectively. 

The BTB domain, BACK domain and PHR motif are labelled in green, red 

and blue, respectively.
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AGCCGGCGGTCCTCTCGCCGATGCCACTGCCCCATGGGTGCCTCAATGGCAGGATCATGAAGTGTTTGAC 7 0 
M P L P H G C L N G R I M K C L  

TTTTTTTCTTCTGCTTCCAGAGACCTTa a A GAAGTCCAAAAAGAGCGTCAGGTCAAACGGCAAGGCGCCA 14 0 
F F L L L P E T L K K S K K S V R S N G K A P  

GGATGCTCTGAGGCAGTGCCCCTGGCCCTGAAGAAGAAGATGGCCGCAGAACTTTACCCTGCCAACACCA 2 1 0  
G C S E A V P L A L K K K M A A E L Y P A N  

ATATCGCCAACAGCAACGCCGCCGCCGCCGGCAGCAAGAAGCCCGCGCTGCAGCTGCAGCAGAGCGCGCA 2 8 0  
N I A N S N A A A A G S K K P A L Q L Q Q S A  
GCCGCCCCCGCCGCCCCAGCTCCAGAACCTCAACAACAACAACTTGGAGAGCGCCAGCTGGCAGTCGTGC 35 0 

P P P P P Q L Q N L N N N N L E S A S W Q S C  
CACCCCACGCTGCGCGAGAGGAACGCGCTGATGTTCAATAACGAGCTCATGGCTGACGTCCACTTCATCG 4 2 0  

H P T L R E R N A L M F N N E L M A D V H  F I  
TGGGCCCGCCGGGGGCGTCCAAGAAAGTTCCTGCCCATAAGTACGTGCTGGCAGTGGGCAGCTCCGTCTT 4 90 
V G P P G A S K K V P A H K Y V L A V G S S V F  
CTACGCTATGTTTTACGGCGATCTCGCCGAGGTCAAATCCGAAATCCATATCCCAGATGTGGAACCCGCA 5 6 0  

Y A M F Y G D L A E V K S E I H I P D V E P A  
GCCTTCCTAATCCTATTAAAATACATGTACAGCGACGAGATAGACCTGGAAGCCGACACGGTGCTGGCGA 630  

A F L I L L K Y M Y S D E I D L E A D T V L A  
CGCTCTACGCTGCCAAGAAGTACATCGTGCCAGCCCTGGCGAAGGCGTGCGTCAACTTTCTGGAGACGAG 7 00 
T L Y A A K K Y I V P A L A K A C V N F L E T S  
CTTGGAGGCGAAGAACGCCTGCGTCCTGCTGTCCCAGAGCCGGCTCTTCGAGGAGCCGGAGCTGACGCAG 77 0 

L E A K N A C V L L S Q S R L F E E P E L T Q  
CGCTGCTGGGAGGTGATCGACGCTCAGGCCGAGATGGCGCTCAAGTCGGAAGGGTTCTGTGAGATCGACC 84 0 

R C W E V I D A Q A E M A L K S E G F C E I D  
TGCAGACGCTGGAGATCATCGTGACGCGGGAGGCCCTCAACACCAAGGAGGTGGTGGTGTTCGAGGCCGT 91 0  
L Q T L E I I V T R E A L N T K E V V V F E A V  
TCTCAACTGGGCGGAGGCCGAGTGCAAGAGGCAGGGGCTGCCGGTGACGCCGCGCAACAAGAGGAACGTG 98 0 

L N W A E A E C K R Q G L P V T P R N K R N V  
CTGGGGAAGGCGCTGTACCTGGTGCGGATCCCCACGATGACTCTGGAAGAGTTCGCCAACGGGGCGGCCC 1 0 5 0  

L G K A L Y L V R I  P T M T L E E  F A N G A A  
AG TCC GACAT CCT CAC GC T GGAG GAGAC G CACAACATAT TCCTGTGG TACAC GG C CGC CAACAAAC C CAA 1 1 2 0  
Q S D I L T L E E T H N I F L W Y T A A N K P K  
ACTCGAGTTTCCGCTGACAAAGAGGAAAGGACTGGTGCCGCAGCGCTGCCATCGCTTTCAGTCGTCTGCG 1 1 9 0  

L E F P L T K R K G L V P Q R C H R F Q S S A  
TACCGCAGTAACCAGTGGAGGTACCGGGGGCGGTGCGACAGTATTCAGTTTGCCGTAGACAAACGGATAT 12 60 

Y R S N Q W R Y R G R C D S I Q F A V D K R I  
TTATAGCGGGACTGGGATTGTATGGGTCGAGTTGTGGCAAAGCTGAATACAGCGTCAAAATTGAACTGAA 1 3 3 0  
F I A G L G L Y G S S C G K A E Y S V K I E L K  
GCGCTTAGGAGTCGTCCTTGCTCAGAATCTGACAAAGTTTACCTCCGACGGCTCCAGTAATACCTTCTCG 14 00 

R L G V V L A Q N L T K F T S D G S S N T F S  
GTGTGGTTTGAGCACCCGGTGCAGGTTGAGCAGGACACGTTCTACAATGTAAGTGCCATTCTGGATGGCA 14 7 0 

V W F E H P V Q V E Q D T F Y N V S A I L D G  
ATGAGCTCAGTTACTTCGGGCAGGAGGGAATGACTGAAGTGCAGTGCGGGAAAGTGACCTTCCAGTTCCA 1 5 4  0 
N E L S Y F G Q E G M T E V Q C G K V T F Q F Q  
GTGCTCCTCGGACAGTACCAACGGGACTGGGGTACAAGGAGGACAAATCCCTGAGCTCATTTTCTATGCA 1 6 1 0  

C S S D S T N G T G V Q G G Q I P E L I F Y A  
TGATGCATTTCACCTTGATTGTATTCCAGTACTGCAACGCTGCACATCTAAGGGATTCTTCAGTTTTGCT 1 6 8  0 

★
ACAGAACTGTCAAGCAGTATGGGAATGTTACGCTACTTACCTATCTGCTACATCANGCTATACCCAATTA 1 7 5 0  
AGTGAAAGGAATGCTCTCAAATTTAATCTTATTTTATTTATTCATAAGCTATTTGACTTGATTAAGACTG 1 8 2 0  
CAGCGAGCAGAAAAATGTTAAATTTTGCACATGCAGTGCATTTATTTTGTATATAGATAACTAACTTGCA 18 90 
GACTGCAGCTGACTCAAACAGAATGTTCTAAACTAGAGCAGTTTATGAACCGGTGAAATATAAAACATTT 1 9 6 0  
CTACTTGCCCTAAATCCCGCGTACTGCCCCTTAATGATGTTAGGGCCTGTCTGCTAATGCAGCTACAGCG 2 0 3 0  
TAGTTAACGGGTGGTAACACCGCTGGTTGCCTGTCCTCTGCAAGGTGTGAGCAGTGCTGCACGTAGAAAG 2 1 0 0  
GCTCCCCCACCTGCAGAGCCCATCCATCAGGCAGCCCTCATTGTCCTTCACCGAGAAGGACAGGAGGAAG 2 1 7  0 
GAAGCTCAGAGGTTGGCTATGGGTCGCCCAAGCTGAACAGAAAAAACCTGAGCATAACCAGCACTGATAA 2 2 4  0 
AACCTCGTGCTTACTGCTTGTAAGCTTCTTCTGTCCCTTTGCATTCTGCTTTTGGCACCACCTGTGTTAA 2 3 1 0  
CCTCCACCCTGCCCAG CAAACAGCAG CAG TAACAC CTGCACTGT CAAAACACAC CAGAC T T GAG CAGC CA 2 3 8  0 
ATGTCAGGACAGACAGATAAAGCCTCGTGCAGCCACAAGCTGTAGCACTGACAGCCACTACTTTAAATAT 2 4 5  0 
ACATCACAGCTCGCCTTTAGGAGCAGACAGATTTACAATACGGTCACTCAAAATTACCGAGGGAAGCCAC 2 5 2 0  
CATAAGGAAAAGCTGCCAGGCCTTTTTTCTCCCTGTGTAGTTTTGGGGGTATCAGTCATTTTTATAGCTA 2 5  90 
GCATCCTTCAGTTTTCTCANAGACTGACTAAGATAGGTGTATTCCTCAAGCATCTGACCACCTTTACAGC 2 6 6 0  
TGAACCAATGTAAACCAATGTACAAAACATTGTAATCATGATCCAATTTACCTTTTTTTTTTTGCACATA 27  30  
ACAGGTACCTCTACCTTCAACTTCAAGTTTTCTGTTTGTTTTTTTTTTTTACCTGAGCTGCATTATTTTT 2 8 0 0  
TTACCTTGAAACTAAACTGTAATAAAATTTTGCCTGTTCTCTCAGAGAAAGTAAAAACAGGAAAAG 2 8 7 0

2 8 8 9
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Figure 11. Nucleotide and amino add sequence of chick V ll isoform 2 and 

comparison of V ll  isoform 1 and V ll isoform 2 proteins. (A) Nucleotide 

sequence and deduced amino acid sequence of chick V ll isoform 2. The 

open reading frame is accompanied by the predicted amino acids shown by 

the single letter abbreviations beneath it. The putative translation codon 

(ATG), highlighted in bold is at nucleotide position 200 and the stop codon 

(TGA) at position 1680 is indicated by an asterix. A putative polyadenylation 

signal and a poly(A) tail are indicated in pink and light green, respectively. 

The BTB domain, BACK domain and PHR m otif are labelled in green, red 

and blue, respectively. (B) Alignment of chick V ll  isomer 1 (cV llisl) and 

V ll isomer2 predicted polypeptide sequences showing that the V ll isomer 2 

(cVllis2) deduced protein is shorter at the N-terminus by 53 amino acid 

residues.
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T T T T T T T T T T T T T T T T G G C TT T T T T T T T T T T T T T GGCT G G T T T T T C T T C T C T T C C T C C T CC TCG GG GGC C 7 0  

GG A G CCG CC CG C CC G CA CTG CCCGG GTTCCCCG CTG CGA GA GA CCTTAA AGA AG TCCAA AAA GA GCGTCA 1 4 0  

GGTCAAACGGCAAGGCGCCAGGATGCTCTG AGG CA GTG CCCCTG GCCCTGA AGA AG AA GATGG CCG CA GA 2 1 0

M A A E

ACTTTA CCCTG CCA A C A CC A A TA TC G C CA A CA G CA A C G C CG C CG C CG CCG G C A G CA A G A A G CCC G CG CTG  2 8  0 

L Y P A N T N I A N S N A A A A G S K K P A L  

CA G C TG C A G C A G A G CG C G CAGCCG CCCCCG CCGCCCCAGCTCCAG AA CCTCAA CA ACA ACAACTTG GA GA 3 5 0  

Q L Q Q S A Q P P P P P Q L Q N L N N N N L E  

GCGCCAG CTG GCAG TCG TG C CA C CCC A C G CTG CG CG A G A G G A A CG CG C TG A TG TTCA A TA A C G A G CTC A T 4 2 0  

S A S W Q S C H P T L R E R N A L M F N N E L M  

G G C T G A C G TC C A C TTC A TC G TG G G CCC G CC G G G G G CG TCC A A G A A A G TTC CTG CCC A TA A G TA C G TG CTG  4 9 0  

A D V H F I V G P P G A S K K V P A H K Y V L  

G C A G TG G G C A G C TC C G TC TTC T A C G C TA TG TTTTA C G G C G A TC TC G C C G A G G T C A A A TC C G A A A TC C A TA  5 6 0  

A V G S S V F Y A M F Y G D L A E V K S E I H  
T C C C A G A TG TG G A A C CCG CA G CC TTCC TA A TCC TA TTA A A A TA C A TG TA C A G CG A CG A G A TA G A C CTG G A  6 3 0  

I  P D V E P A A F L  I L L K Y M Y S D E  I  D L E  

AG CCGACACGG TG C TG G CG A CG CTC TA C G CTG CC A A G A A G TA CA TCG TG C CA G CC CTG G C G A A G G CG TG C 7 0 0  

A D T V L A T L Y A A K K Y I V P A L A K A C  
G T C A A C T T T C TG G A G A CG A G C TTG G A G G C G A A G A A C G CC TG C G TC CTG CTG TCC CA G A G CC G G C TCT TCG  7 7 0  

V N F L E T S L E A K N A C V L L S Q S R L F  

AGGAGCCGGAGCTGACG CA GCGCTGCTGGG AG GTG ATCGA CGCTCA GG CCG AG ATG GCGCTCAA GTCGG A 8 4 0  
E E P E L T Q R C W E V I  D A Q A E M A L K S E  

A G G G TTC TG TG A G A TC GA CCTG CA GA CGCTGG AG ATCATCGTG ACGCG GG AG GCCCTCAA CACCA AGG AG 9 1 0  
G F C E I D L Q T L E I I V T R E A L N T K E  

G TG G TGG TGTTCGA GG CCG TTCTCA ACTGG GCG GA GG CCG AG TGCAAG AG GCAGG GG CTG CCGGTGACGC 9 8 0  

V V V F E A V L N W A E A E C K R Q G L P V T  

CG CG CAA CA AG AGG AA CG TGCTGG GGA AG GCGCTGTA CCTGGTGCG GA TCCCCA CG ATG ACTCTG GA AG A 1 0 5 0  

P R N K R N V L G K A L Y L V R I  P T M T L E E  

GTTCG CCA ACGGG G C G G CCC A G TCC G A C A TC CTC A C G CT G G A G G A G A CG CA CA A CA TA TTCCT G TG G TA C 1 1 2 0  

F A N G A A Q S D I L T L E E T H N I F L W Y  

AC G G CCG CCAACAA ACCCA AA CTCGAG TTTCCG CTG ACA AA GA GGA AA GG ACTGG TGCCGCAG CGCTGCC 1 1 9 0  

T A A N K P K L E F P L T K R K G L V P Q R C  

A T C G C TTT C A G T C G T C TG CG TA C CG C A G TA A CCA G TG G A G G TA C CG G G G G C G G TG C G A C A G TA TTCA G TT 1 2  6 0  

H R F Q S S A Y R S N Q W R Y R G R C D S  I  Q F  

TG CCG TAG A C A A A CG G A TA TTTA TA G C G G G A CTG G G A TTG TA TG G G TCG A G TTG TG G CA A A G CTG A A TA C 1 3 3 0  

A V D K R I F I A G L G L Y G S S C G K A E Y  

A G C G T C A A A A TTG A A CTG A A G CG CTT A G G A G TCG TCC TTG CTCA G A A TC TG A CA A A G TTTA CC TCC G A CG  1 4 0 0  

S V K I E L K R L G V V L A Q N L T K F T S  
G C TCC A G TA A TA C C TTC TC G G TG TG G TTT G A G C A C C C G G TG C A G G TTG A G C A G G A C A C G T TC TA C A A TG T 1 4 7  0 

G S S N T F S V W F E H P V Q V E Q D T F Y N V  

A A G TG CC A TT CTG GATGGCAA TGA GCTCA GTTA CTTCGG GCAG GAG GG AA TGA CTG AA GTG CAG TGCGG G 1 5 4 0  

S A I L D G N E L S Y F G Q E G M T E V Q C G  

A A A G TG A CC TTCC AG TTCC AG TGC TCCTCGG AC AG TAC CAA CG GG ACTGGG GTA CA AG GAG GA CA AATCC 1 6 1 0  

K V T F Q F Q C S S D S T N G T G V Q G G Q I  

C T G A G C T C A T T T T C T A T G C A T G A T G C A T T T C A C C T T G A T T G T A T T C C A G T A C T G C A A C G C T G C A C A T C T A  1 6 8 0  

P E L I F Y A *

A G G G A TT C TTC A G TT TTG C T A C A G A A C T G T C A A G C A G TA TG G G A A TG TT A C G C TA C T TA C C TA TC T G C T A  1 7  5 0  

C A T C A N G C TA TA C C C A A TT A A G TG A A A G G A A TG C TC T C A A A TT TA A TC TT A TTT TA TT TA TT C A T A A G C T 1 8 2 0  

A T T T G A C TT G A TT A A G A C T G C A G C G A G C A G A A A A A TG TT A A A T TT TG C A C A T G C A G TG C A T TTA T TTT G T  1 8 9 0  

A T A TA G A TA A CTA A CTTG C A G A CTG CA G C TG A CTC A A A CA G A A TG TTCTA A A CTA G A G C A G T TTA TG A A C 1 9  6 0  

C G G T G A A A TA TA A A A C A TT TC TA C T TG C C C T A A A TC C C G C G TA C TG C C C C T TA A T G A TG T TA G G G C C T G T 2 0 3 0  

CTG CTA A TG CA G C TA C A G CG T A G TTA A CG G G TG G T A A CA C CG CTG G TTG CC TG TC CTC TG C A A G G T G TG A  2 1 0 0  

G C A G TG C TG C A CG TA G A A A G G C TCCC CC A CC TG C A G A G CCC A TC CA TCA G G C A G CCC TCA TTG T CCTTCA  2 1 7  0 

CCGA GAA GG ACAGG AGGAAGGAAGCTCAGAGGTTGGCTATGGGTCGCCCAAGCTGAACAGAAAAAACCTG 2 2  4 0  

A G C A T A A C C A G C A C T G A T A A A A C C T C G T G C T T A C T G C T T G T A A G C T T C T T C T G T C C C T T T G C A T T C T G C T  2 3 1 0  

TT T G G C A C C A C C TG TG TTA A CCTCCA CC CTG CCC A G CA A A C A G C A G CA G TA A CA CC TG C A CTG TC A A A A C 2 3 8 0  

A C A C CA G A C TTG A G C A G CCA ATG TCA GG ACAGA CA GA TAA AGCCTCGTG CA GCCACAA GCTGTA GCA CTG 2 4 5 0  

A C A G CCA CTA C TT TA A A TA TA C A TC A C A G C TC G C C TTTA G G A G C A G A C A G A TTTA C A A TA C G G TC A C TC A  2 5 2 0  

A A A TTA C CG A G G G A A G C CA CCA TA A G G A A A A G CTG CC A G G CC TTTTTTCTC CCT G TG TA G TTTTG G G G G T 2 5 9 0  

A T C A G TC A T TTT TA TA G C TA G C A TC C TTC A G TT TT C TC A N A G A C T G A C T A A G A TA G G T G TA TTC C TC A A G  2 6 6 0  

C A TC T G A C C A C C T TTA C A G C TG A A C C A A TG TA A A C C A A TG T A C A A A A C A TTG TA A TC A TG A TC C A A TTTA  2 7 3 0  

C C T T T T T T T T T T T G C A C A T A A C A G G T A C C T C T A C C T T C A A C T T C A A G T T T T C T G T T T G T T T T T T T T T T T T  2 8  0 0  

A C C T G A G C TG C A T TA T TTT TT T A C C TT G A A A C T A A A C TG TA A TA A A A T TT T G C C TG T TC T C TC A G A G A A A  2 8 7  0 

GTAAAAACAGGAAAAG 2 9 0 9

cvn.1 i H F L P B G C L H G I I H I C l T F F L L L r E T L I I t l l S V I S H G I i P G C I E A T F U L I I I H A A H L  S?
cVll.2 IMA A E l \  S

CV11.1 T P A H  I  H I  i K T H  A A A A 6  1 t K P A L Q L Q Q f A Q F P P P P Q L Q M L N H N M L E t A S V Q S C  HP  I  L S  e1 116 
cVll.2 l Y P A H T H I A H 8 H A A A A G 8 K K F A I Q L Q Q 8 A Q P P P P F Q L Q M I H M H H L E 8 A g V Q 8 C H P T t K E |  AT
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BTB dom ain

The BTB/POZ (broad complex, tramtrack, and bric-a-brac/poxvirus and zinc 

finger) dom ain is an evolutionarily conserved protein-protein interaction 

motif present in proteins involved in a wide variety of biological processes, 

such as transcription regulation (Ahmad et al., 1998; Zollman et al., 1994), 

cytoskeletal arrangement (Kang et al., 2004; Melnick et al., 2000), ion 

conductance (Kreusch et al., 1998) and protein ubiquitination (Furukawa et 

al., 2003; Geyer et al., 2003; Pintard et al., 2003). The BTB domain is around 

115 amino acids long and typically found as a single copy near the N- 

terminus of a variety of proteins that have one other domain at the C 

terminus. Among the identified BTB-associated C-terminal motifs are zinc- 

finger (Bardwell and Treisman, 1994), kelch (Adams et al., 2000; Bork and 

Doolittle, 1994; Prag and Adams, 2003) and recently reported PHR (Xu et al., 

2003b) domains. A general property of the BTB domain is to mediate 

homomeric dimerisation and in some instances heteromeric dimerisation 

(Bardwell and Treisman, 1994; Collins et al., 2001). The crystal structure of 

the BTB domain of human promyelocytic leukaemia zinc-finger protein 

(PLZF) has been solved and revealed that BTB monomers are tightly 

interwined as dimers (Ahmad et al., 1998). BTB domain from PLZF and 

several other zinc finger transcription proteins have been shown to mediate 

transcriptional repression (Dhordain et al., 1997; Wong and Privalsky, 1998). 

However, there have been reports of the BTB domain being capable of 

mediating transcriptional activation as well (Kobayashi et al., 2000a).

BACK dom ain

The BACK domain has recently been identified and is predom inantly found 

in the BTB-kelch proteins in the intervening region separating N-terminal 

BTB from C-terminal kelch domain (Stogios and Prive, 2004). The length of 

this region is around 130 residues, and the strongest conserved sequence 

features are in the first 70 residues that immediately follow the BTB domain. 

The function of the BACK motif is not defined yet, how ever BTB-kelch
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Figure 12. Alignment of functional domains in chick BTBD6. Alignment of 

the consensus BTB (A), BACK (B), and PHR (C) domains (Pfam) with the 

corresponding domains of chick BTBD6. The upper line represents the 

consensus BTB, BACK or PHR domain with capitals denoting residues that 

are absolutely conserved and lower case letters representing residues that 

are present in a majority of proteins containing a BTB domain in that 

position. The lower line represents chick BTBD6 and the middle line shows 

absolute matches to the consensus (shown in upper and lower case letters) 

or conservative amino acid substitutions (indicated by cross). Dashes denote 

gaps that have been introduced to achieve the alignment.
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A

*- > l n e  I r e q g e  lc D V tL w g d g  s  g r y d v g k k f  kAHKavLaacSp YFka 1  
+++++ + DV + v g  +  kk++AHK vL a S ++F +a+

1 1 8  NALMFNNELMADVHFIVGPPGA-------S KKVPAHKYVLAVGS SVFYAM 16 0

F t g k f k e s i t e e e s s v s s e i e l e d v s p e d f e a l L e f i Y t g e l s i t q d q k s  
F q+ +  e  + s  e ±  ++ dv+p  + f  + lL +++ Y ++e++++

1 6 1  FYGDL AEVKS-------EIHIPDVEPAAFLILLK YMYS DEIDLE----------- 1 9 7

P s s c k s e e n v e d l L a l A d i l q i p s 1 v d a C e e f l i e s 1 < - *
+ + v  + L++A+++ + p + l  +aC + f l  + s l  

1 9 8 ------------ADTVLATLYAAKKYIVPALAKACVNFLETSL 2 2 8

B
*—> N C lg I r r F A d a y g C k e I ia e a A d d filq n F e e V s k s e E F L q L s fe e L i  

N++ +++ + ++ +eL  +++-++ i  e  k s e  F +++++ L 
2 3 2  NACVLLSQSRLFEEPELTQRCWEVIDAQAEMALKSEGFCEIDLQTLE 2 7 8

e lL ssD e L n V e sE e q V fe A v lr W v k h D v e e R k k h lp e .. . . . . . . . . .XL
++ ++ Ln++ E +V feA vl+W  ++ e +  ++ I p  +++++++ ++ L

2 7 9  IIVTREALNTK-EWVFEAVLNW— AEAECKRQGLPVtprnkrnvlgkAL 3 2 5

sn V R L p L L sp e y L v e r V e se p L ik sd p e C r d lld E A m k y h llp < -*
VR+p ++ e  +  + + +++  1+

3 2 6  YLVRIPTMTLEEFANGAAQ---------------------------------- SDILTLE 3 5 1

c
* - > n R F q r  v s  a R g g t w g y  s n g s  v D A i a F s  V D k r G i  f  i  v G f  G l Y G g i s G e y  

+ R F q +  + + R + -H -W + Y  + g + + D + I + F + V D k r  I f  i + G + G lY G + + + G  +

384  H R F 0 S 3X Y R S N Q W R Y -R G R C D S IQ F A V D K R -IF IA G L G X Y G S S C G K A  428

e y k l k X l y d l g t H a g d l d h s e k w t t L e s v t t e y s s D c G a s e t a e v r F c i e P  

e y + + k +  + 1 + - H -+ +  -H L + + +  t + - H - s D  G + S + t +  V + F + + P
429  E Y S V K I----------------------E L K R L G V — V L A Q N L T K F T S D -G S S N T F S V W F E H P  466

v l i k p n v w Y a v r a r i s  G p s  l s d c G d k e m t  s  v s t p d G k v t F q F s  s  s  s  i s n N  

V +  +  + + + Y  V + a  + + G + + 1 S  + + G + + G H L t+ V + +  G k V t F q F - H - S  S  4*S+N  
467  V Q V E gD T F Y N V S A IL D G N E L S Y F G O E G M T E V Q C  G K V T F Q F Q C 3 S D S T N  514

G T t V q r G Q I P e l L Y Y K - *

G T + V q + G Q I P e + + + Y +

515  G T G V Q G G Q IP E L IF Y A  5 3 0
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proteins have recently been implicated as substrate-specific adaptors for 

Cullin3-based protein ubiquitination with BACK domain directly involved in 

this process (Kobayashi and Yamamoto, 2005; Pintard et al., 2003; Xu et al., 

2003a).

PHR motif

The PHR motif was first identified as a 150aa-long sequence repeat found in 

the proteins: human Pam ("protein associated with My c") (Guo et al., 1998), 

Drosophila highwire (Wan et al., 2000) and C. elegans RPM-1 (Zhen et al., 

2000). These proteins are putative ubiquitin ligases and have a conserved 

role as presynaptic regulators of synapse formation an d /o r growth 

(DiAntonio et al., 2001; Fischer and Overstreet, 2002). The PHR family 

proteins are unusually large (around 500-kDA) and apart of PHR domain, 

contain several functional domains, including a guanine nucleotide exchange 

factor (GEF) domain and a RING H2 finger that likely confers E3 ubiquitin 

ligase activity. The function of the PHR domain, duplicated in PAM, highwire 

and RPM-1, is unclear. A single copy of PHR motif has also been identified in 

two hum an BTB-containing proteins, BTBD1 and BTBD2 (Xu et al., 2003b).

HUMAN BTBD6 and BTBD3 -  CHICK V l l  IS BTBD6 IN HUMAN

Initial BLAST homology searches with the partial chick V ll  predicted amino 

add sequences identified three related proteins and the one w ith the highest 

homology scores (81.2% identity over the overlapping region) was an 

unnamed hypothetical human protein (GenBank Acc. No. BAA76796) 

(Nagase et al., 1999; Strausberg et al., 2002). This protein is currently 

designated BTBD3 (BTB Domain-containing protein 3) with a new GenBank 

Accession Num ber CAC22147. Comparison of the entire cV ll amino acid 

sequence with the hBTBD3 peptide sequence reveals 69.2% identity between 

these two proteins.
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Routine sequence database analysis undertaken during this project 

identified, at the later date, a second unknown hum an BTB domain- 

containing protein, BTBD6 (Acc. No. AAK39520) which is more closely 

related to chick V ll than hBTBD3 (Wistow et al., 2002). The retrieved 

hBTBD6 predicted amino acid sequence (which appears to be incomplete in 

the N-terminus with the initial methionine lacking), when compared with the 

chick V ll  isoform l putative polypeptide, exhibits 87.1% identity (over the 

overlapping region) (Fig. 13). Therefore, as BTBD6 appears to represent a 

chick V ll  homologue in human, following the Hugo Nomenclature 

Committee instructions (h t tp :/ /www.gene.ucl.ac.uk/nom enclature/), the 

name V ll  has been replaced by BTBD6 and this name will be used from now 

on in this thesis.

IDENTIFICATION OF CHICK BTBD3

Further sequence database searches using chick BTBD6 cDNA identified 

another novel chick BTB-containing gene with a high hom ology score. The 

predicted cDNA of this gene obtained from Ensembl database 

[h ttp ://w w w .ensem bl.org /; (Hubbard et al., 2005)] contains an ORF that 

produces a deduced protein of 520 amino acids (Fig. 14). This protein exhibits 

95.6%, 72.8% and 69.9% identity with hBTBD3, hBTBD6 (overlapping region) 

and cBTBD6, respectively, the highest being with hBTBD3, suggesting that 

the characterised gene represents the chick equivalent of hum an BTBD3 

(cBTBD3) (Fig. 18). None of the ESTs for cBTBD3 available in the databases 

cover the predicted full-length cDNA. The ones acquired (GeneBank Acc. 

Nos: BU444464, BU274818, BU389269) and sequenced, encompass the 

regions: nt 327 -  1100 and nt 1340 -  1570 of a putative cDNA and also extend 

586 bp downstream into the 3' UTR. The entire sequence of the cBTBD3 3' 

UTR has not been identified as there is no poly(A) tail detected in any of the 

3' end extended ESTs.
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Figure 13. Multiple amino acid alignment of chick V ll, human BTBD6 and 

human BTBD3. The sequences were aligned using the ClustalV algorithm 

(Higgins and Sharp, 1989). Identical residues are boxed in black.
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ATACTCATGGTAGATGAGAAAGGAAAGAACATGAAATGTCTCACCTTTTTCTTGATGCTTCCAGAGACGG 7 0  
M V D E K G K N M K C L T F F L M L P E T  

TCAAGAACAGGTCCAAGAAGAGCTCTAAGAAGGGAAATAGCAACAGCAGCAGCAGCAAATTGCCTCCCGT 1 4 0  
V K N R S K K S S K K G N S N S S S S K L P P V  
TTGCTATGAAATCATTACCTTGAAGACCAAAAAGAAGAAGAAGATGGCTGCTGATATTTTTCCCCGAAAG 2 1 0  

C Y E I  I T L K T K K K K K M A A D I  F P R K  
AAACCAGCCAACACTAATACAACTGCTGTCCAGCAGTACCACCAGCAAAATCTCAATAACAACAACACTA 2 8 0  

K P A N T N T T A V Q Q Y H Q Q N L N N N N T  
T T C CAG CAC CAAAC T GGCAAGGAC T T TAT C CGAC CAT CAGAGAGAGAAAT GCAG T GAT GT T CAACAAT GA 3 5 0  
I  P A P N W Q G L Y P T I R E R N A V M F N N D  
CTTGATGGCAGATGTTCATTTTGTGGTCGGGCCACCAGGTGGGACCCAGCGGCTGCCAGGACATAAATAT 4 2 0  

L M A D V H F V V G P P G G T Q R L P G H K Y  
GTCCTGGCTGTTGGGAGCTCTGTATTCCATGCGATGTTCTATGGAGAACTTGCTGAGGACAAAGATGAAA 4 90  

V L A V G S S V F H A M F Y G E L A E D K D E  
TCCGTATACCAGATGTTGAGCCTGCTGCTTTTCTTGCAATGCTGAAATACATATATTGTGATGAAATTGA 5 6 0  
I R I P D V E P A A F L A M L K Y I Y C D E I D  
TTTGGCTGCAGATACCGTCCTGGCCACTCTTTATGCTGCCAAGAAGTACATCGTCCCTCATCTTGCCCGT 6 3 0  

L A A D T V L A T L Y A A K K Y I V P H L A R  
GCCTGCGTCAACTTCCTAGAAACAAGTCTAAGTGCAAAGAACGCCTGCGTGCTGCTTTCCCAAAGCTGCT 7 00  

A C V N F L E T S L S A K N A C V L L S Q S C  
TATTCGAGGAACCCGACCTGACCCAGCGCTGTTGGGAAGTGATTGATGCCCAAGCCGAGCTAGCTTTGAA 7 7 0  
L F E E P D L T Q R C W E V I  D A Q A E L A L K  
GTCCGAGGGCTTCTGTGACATTGATTTTCAGACGCTTGAAAGCATTCTCCGAAGGGAGACTCTGAATGCC 8 40  

S E G F C D I D F Q T L E S I L R R E T L N A  
AAAGAAATTGTTGTTTTTGAAGCGGCTCTGAATTGGGCTGAAGTGGAGTGTCAGCGACAGGAGCTAACTG 9 1 0  

K E I V V F E A A L N W A E V E C Q R Q E L T  
CCACCATAGAGAATAAGCGCAAGGTCCTCGGGAAGGCGCTGTACTTGATACGTATCCCTACCATGGCACT 9 8 0  
A T I E N K R K V L G K A L Y L I R I  P T M A L  
CGACGACTTTGCAAATGGCGCTGCTCAGTCCGGGATTCTGACTCTCAACGAAACCAATGATATCTTCCTT 1 0 5 0  

D D F A N G A A Q S G I L T L N E T N D I F L  
TGGTATACAGCTGCCAAAAAGCCAGAGCTGCAGTTTGTAAGCAAGCCCCGGAAAGGCCTTGTTCCTCAGC 1 1 2 0  

W Y T A A K K P E L Q F V S K P R K G L V P Q  
GGTGCCATCGTTTCCAGTCCTGTGCTTACCGCAGCAACCAGTGGCGTTACAGGGGCCGGTGTGACAGCAT 1 1 9 0  
R C H R F Q S C A Y R S N Q W R Y R G R C D S  I  
CCAGTTTGCTGTTGATAAGAGAGTGTTTATAGCTGGCTTTGGGCTATACGGCTCCAGCTGCGGATCAGCA 1 2  60 

Q F A V D K R V F I A G F G L Y G S S C G S A  
GAATACAGTGCCAAGATTGAACTCAAACGACAAGGAGTTATCCTAGGCCAGAACTTGAGCAAATATTTCT 1 3 3 0  

E Y S A K I E L K R Q G V I L G Q N L S K Y F  
CAGATGGTTCTAGTAACACTTTCCCTGTGTGGTTTGAATATCCAGTACAGATTGAGCCTGACACCTTCTA 1 4  0 0  
S D G S S N T F P V W F E Y P V Q I E P D T F Y  
CACAGCTAGTGTGATTTTGGATGGTAATGAACTCAGCTATTTTGGACAGGAAGGAATGACAGAAGTTCAG 1 4  7 0 

T A S V I L D G N E L S Y F G Q E G M T E V Q  
TGTGGGAAAGTGACTGTTCAGTTTCAGTGCTCTTCGGACAGTACAAATGGCACTGGGGTACAGGGAGGGC 1 5 4 0  

C G K V T V Q F Q C S S D S T N G T G V Q G G  
AAATTCCTGAACTCATATTTTATGCTTGA 1 5  6 9
Q I P E L I F Y A *

Figure 14. Putative cDNA and amino acid sequence of cBTBD3. The open 

reading frame is indicated by the predicted amino acids shown by the single 

letter designation beneath it. An initiation translation codon (ATG) is shown 

in bold and the stop codon (TGA) is indicated by an asterix. The BTB domain, 

BACK domain and PHR motif are labelled in green, red and blue, respec

tively.
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IDENTIFICATION OF MOUSE BTBD6 AND BTBD3

In order to identify a murine homologue of chick BTBD6, at the beginning of 

this project, screening of a 8.5 dpc. mouse cDNA library with a radiolabelled 

probe encompassing the initial chick V ll  clone cDNA, was undertaken.

Three clones, 1 kb, 1.3kb and 1.9 kb in size were isolated and sequenced. The 

sequence analysis revealed that the 1.3 kb insert represented a hybrid clone 

and that the 1 kb clone was a shorter version of the 1.9 kb insert. The 1.9 kb 

clone, named at the time mouse V ll  (m Vll), was chosen for further 

analysis.

Examination of the m V ll nucleotide sequence established that it was 1851 

nucleotides long and, whilst lacking a start codon, contained a partial ORF 

ending with a putative stop codon at position 1429.

The comparison of the mouse and chick V ll partial sequences revealed that 

the mouse coding sequence is extended 5' in relation to the chick clone and 

that there is 92% identity over the overlapping region at both nucleotide and 

amino acid levels, suggesting that mouse V ll is very closely related to chick 

V ll.

The entire m V ll cDNA, including missing 5' end sequences, was assembled 

using the EST sequences (GeneBank Acc. Nos. AW226647.1 and BY123280.1) 

identified later through the database BLAST searches. Within the obtained 

m V ll nucleotide sequence there is a full-length ORF detected that encodes a 

539 amino acid-deduced protein exhibiting 81.3% identity with the chick 

BTBD6 protein (Fig. 15). When compared with the hum an BTBD6 and hum an 

BTBD3 proteins, m V ll shows 90.5% and 66.6% identity, respectively, 

indicating that m V ll is a homologue of hBTBD6 and currently designated 

mBTBD6.
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Figure 15. Nucleotide sequence and predicted amino acid sequence of mouse 

BTBD6. The open reading frame is indicated by the predicted amino acids 

designated by the single letter abbreviations underneath. The putative 

translation codon (ATG) is highlighted in bold and a stop codon (TGA) is 

designated by an asterix. A putative polyadenylation signal and a poly(A) 

tail are indicated in pink and light green, respectively. The BTB domain, 

BACK domain and PHR motif are labelled in green, red and blue, 

respectively.
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GTGTGGGGTGCGGGTGGGTAGCGGGCAGGGCCGGCGTGGCCCCATGCTGCTGCCGCTCGCCTGCCTGCAT 7 0
M L L P L A C L H  

GGGCGGGTGGCGCAGTGCCTAACCTCCCTGCTGGTGCTCGCAGAGCCGTTTCCCAGGCCCCGTCGCGGCG 1 4 0  
G R V A Q C L T S L L V L A E P F P R P R R G  

CGAAGGCGCGCGGCGCAGCACCGACCAGTGCGGAGCCCGCCCCGGCAGTAGCGAAGATGGCCGCGGAACT 2 1 0  
A K A R G A A P T S A E P A P A V A K M A A E L  
GTACCCGCCCGCCAGTCCCTCTGCAGCTACTGCCACCGACATCGCCAACAGCAACGCGGCAGGCGCAGCC 2 8 0  

Y P P A S P S A A T A T D I A N S N A A G A A  
GAGAGCACGAAGGTCGGGCTTTGCTGCCCGCCCTGCCTGGCACCCGCCCCGCTGCCGCCCTTGCCCGCGC 3 5 0  

E S T K V G L C C P P C L A P A P L P P L P A  
CGCCCTTGCCAGACAACAACAATCCCGAGAGCCCCAACTGGCAGTCCTTCCATCCTACGCTGCGCGAGAG 4 2 0  
P P L P D N N N P E S P N W Q S F H P T L R E R  
GAATGCGCTCATGTTCAACAACGAGCTGATGGCTGACGTCCACTTCATCGTGGGGGCCCTGGGGGCTGCA 4 90  

N A L M F N N E L M A D V H F I V G A L G A A  
AGGCGTGTGCCCGCCCACAAGTATGTCTTGGCTGTCGGCAGCTCCGTCTTCTATGCCATGTTCTACGGGG 5 60 

R R V P A H K Y V L A V G S S V F Y A M F Y G  
ATCTTGCGGAAGTGAAGTCAGAAATCCACATTCCCGATGTGGAGCCTGCTGCCTTCTTGGTCTTGCTAAA 6 3 0  
D L A E V K S E I H I P D V E P A A F L V L L K  
GTACATGTACAGCGATGAGATCGACCTGGAGGCGGACACAGTGCTTGCCACTCTGTATGCTGCTAAGAAG 7 0 0  

Y M Y S D E I D L E A D T V L A T L Y A A K K  
TACATCGTGCCTGCCCTGGCCAAGGCCTGCGTCAACTTTCTGGAAACAAGTCTGGAAGCCAAAAATGCTT 7 7 0  

Y I V P A L A K A C V N F L E T S L E A K N A  
GTGTCCTGCTGTCCCAGAGCCGACTGTTTGAGGAGCCTGAACTGACCCAGAGATGCTGGGAAGTCATTGA 8 40  
C V L L S Q S R L F E E P E L T Q R C W E V I D  
TGCACAAGCTGAAATGGCCCTGAGGTCTGAAGGCTTCTGTGAAATTGACCGGCAGACACTGGAGATCATT 9 1 0  

A Q A E M A L R S E G F C E  I  D R Q T L E  I  I  
GTGACCAGGGAGGCCCTCAATACCAAGGAGGCTGTGGTCTTCGAGGCCGTCCTGAACTGGGCTGAGGCAG 9 8 0  

V T R E A L N T K E A V V F E A V L N W A E A  
AATGTAAGAGACAGGGCCTCCCAGTCACTCCTCACAACAAGAGGCATGTTTTGGGAAGAGCCCTCTACCT 1 0 5 0  
E C K R Q G L P V T P H N K R H V L G R A L Y L  
GGTCCGAATTCCAACTATGACCTTAGAGGAGTTTGCCAATGGTGCCGCCCAGTCAGACATCCTGACCTTA 1 1 2 0  

V R I  P T M T L E E F A N G A A Q S D I  L T L  
GAAGAGACCCACAACATCTTCCTTTGGTACACTGCTGCCAAAAAGCCCCTCCTTGACTTCCCCCTGACCA 1 1 9 0  

E E T H N I  F L W Y T A A K K P L L D F P L T  
AGAAGAAGGGCCTTGCTCCACAAAGGTGCCACCGCTTCCAGTCTTCTGCCTACCGAAGTAACCAGTGGAG 1 2  60  
K K K G L A P Q R C H R F Q S S A Y R S N Q W R  
GTACCGTGGACGCTGTGACAGCATCCAGTTTGCAGTGGACAGAAGGGTGTTCATTGCTGGGCTGGGCTTG 1 3 3 0  

Y R G R C D S  I Q F A V D R R V F I A G L G L  
TATGGGTCCAGCTCTGGGAAGGCTGAGTACAGCGTCAAGATTGAACTCAAGCGGCTAGGGATGGTCCTGG 1 4  0 0  

Y G S S S G K A E Y S V K I E L K R L G M V L  
CTCAGAACCTCACCAAGTTTGTTTCAGACGGATCCAGCAACACTTTCCCAGTCTGGTTTGAGCACCCGGT 1 4 7 0  
A Q N L T K F V S D G S S N T F P V W F E H P V  
CCAGGTGGAGCAGGACACCTTCTACACTGCCAGTGCTGTCCTGGACGGCAGTGAGCTCAGCTACTTTGGG 1 5 4 0  

Q V E Q D T F Y T A S A V L D G S E L S Y F G  
CAAGAAGGAATGACAGAGGTGCAGTGTGGGAAGGTAGCCTTCCAGTTCCAGTGCTCCTCGGACAGTACCA 1 6 1 0  

Q E G M T E V Q C G K V A F Q F Q C S S D S T  
ATGGGACTGGAGTTCAGGGTGGACAGATTCCAGAGCTCATCTTCTATGCCTGAGGCGTAAGGTTGGAGTG 1 6 8  0 
N G T G V Q G G Q I P E L I F Y A *
GACTTGCCACCAGGCTCTTCCTCCATAGAGTCCACACAGTAAGTGCAGTGGAGGTGCAGGACACTTCCAG 1 7 5 0  
CTGCCTTACTGATACCATTCAAGGCTTGGCTTTCTCTATCAGCCAGAGTCTGAAACTTGACTTCTCACAG 1 8 2 0  
CCCGTGTCCGCTGACCCTAGACAGCATTCCACAGGTGGAAGGAAGACTTGGGTCCAAGGTCGTCCCCGAT 1 8  9 0  
CCCTGCCAGTGACACCCAAGCTTCAGGACCCTTGGATTTCCCTCCCCCTTTGGATTCTAAGTGATTTCAG 1 9  60  
CCTACGTTGAGGCCTCCCATTCAAGCCACAAATTGCTGAAAAGTCACTTAAAATAGTTCCATCCTATTTA 2 0 3 0  
AGTGAAT T T T CGTAATAAAGGT TT CACAGAACAAG 2 0 7 2
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The BLAST homology searches have also identified the mouse BTBD3 

(mBTBD3) protein (97.7% identity to hBTBD3), which also exhibits 93.8%, 

73.1%, 65.9% and 69.1% identity with cBTBD3, hBTBD6, mBTBD6 and 

cBTBD6, respectively (Fig. 20).

IDENTIFICATION OF ZEBRAFISH BTBD6 AND BTBD3 GENES

The chick BTBD6 cDNA sequence was used to search for related zebrafish 

EST sequences using The Institute for Genomic Research Zebrafish Gene 

Index (TIGR; h ttp ://www .tigr.org), NCBI and Washington University 

Zebrafish Genome Resources (WUZGR;

h ttp ://w w w .g e n e tic s .w u s tl.e d u /f ish  la b /)  websites. Four highly 

related ESTs (GeneBank Acc. No. AI437221, BI350992, BG308275, AI883008) 

were identified, and their corresponding cDNAs obtained and sequenced. 

Sequencing results combined with the information obtained in the sequence 

databases as well as the data so far collected in this study allow for 

identification of four zebrafish BTB-containing genes, two of them  m ost 

related to BTBD6 and another two homologous to BTBD3.

Sequence analysis of the 2358 bp cDNA clone equivalent to the BG308275 

EST revealed that it contains a full-length ORF (nt 273-1895) for a 541 amino 

adds putative polypeptide that exhibits a 93.9%, 68.2% identity with the 

cBTBD6, cBTBD3 proteins, respectively (Fig. 16&20). This novel zebrafish 

gene is highly similar to cBTBD6 and was designated zBTBD6a.

The nucleotide sequences of two clones represented by BI350992 EST and 

AI437221 EST were partially overlapping and, when aligned, produced a 

2056 nucleotide long contiguous sequence with an ORF (nt 174-1622) 

encoding deducted protein of 482 amino add. This novel gene is also highly 

related to cBTBD6 and moderately related to cBTBD3 with 90.8% and 78.3% 

identity at the amino acid level, respectively, and was named zBTBD6b (Fig. 

17&20).
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Figure 16. Nudeotide sequence and predicted amino acid sequence of 

zebrafish BTBD6a. The open reading frame is indicated by the predicted 

amino acids shown by the single letter designation beneath it. A start codon 

(ATG) shown in bold is at nucleotide position 273 and the termination codon 

(TGA) at position 1895 is indicated by an asterix. A polyadenylation signal is 

not identified and a poly(A) tail is shown in light green. The BTB domain, 

BACK domain and PHR motif are labelled in green, red and blue, 

respectively!
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GGCACGAGGATATCTGCCTGGTCGTTTCTTGTTATCGTTGCTTGTTTGCGATTCTTAAGTGCTTTTAAAC 7 0 
CGATCTGGTTTGGATTTTCGTTATGGGATGGGAGAAGATGTGATTAAGGAAAAAGGGATGGAACATGTTT 14 0  
AAATTAGCCGGTGAAATTATTTAAGTAACAGAGAAGGGTTGTTTGTTTGCACGAATATTATTAAGAACGG 2 1 0  
ATCACGCTTGTAGCTGTTATTATTTTTCTGAACACATTTCGTCAACTTTCTCGCTCGTTCTCATGCCCGC 2 8 0

M P A
TGCGCCGGAATGCAGGCTGTCCAATCATGGCCGGATCATGAAATGTGTGACTTTTTTACTTTTGCTCCCT 3 5 0  

A P E C R L S N H G R I M K C V T F L L L L P  
GAAACGTTAAAGAAGTTGAAGCGGGCAAGCAAGCACCCCGGCAGGCTGTCTGTGTGCTATAACATCTTAA 4 2 0  

E T L K K L K R A S K H P G R L S V C Y N I L  
CTCTTTCCCTGAAGAAGAGGATGGCGGCGGAACTGTACCCGGTCAGCGATCACGCCACACTGCAGAAGAG 4 9 0  

T L S L K K R M A A E L Y P V S D H A T L Q K S  
CGGCGCCGTGATGCTGAGTTTGCCGGAGAAGAAGCGGAGCGTGGAGCCGGTATCACAGACCACCGCGTCC 5 6 0  

G A V M L S L P E K K R S V E P V S Q T T  A S  
ATCGCCACCACACCGACCACCGAGCAAAACATCAACAACAACAACGTGGAGATTCCCAGCTGGCACTCCG 6 3 0  

I A T T P T T E Q N I N N N N V E I P S W H S  
CGCACCCGACATTACGCGAAAGAAATGCACTGATGTTCAATAATGAACAAATGGCAGATGTCCATTTCAT 7 0 0  
A H P T L R E R N A L M F N N E Q M A D V H F I  
TGTTGGACCTCCTGGTGAATCTCAAAGGGTCCCGGCACACAAGTACGTGCTGGCAGTGGGAAGCTCTGTA 7 7 0  

V G P P G E S Q R V P A H K Y V L A V G S S V  
TTCTGTGCCATGTTTTACGGGGATCTCGCAGAAGGGGACTCTGATATCCATATTCCAGATGTGGAACCCG 8 4  0 

F C A M F Y G D L A E G D S D I H I P D V E P  
CTGCTTTTCTCATCCTGCTCAAATACATGTACAGTGATGAGATAGAGCTGGCACCGGACACAGTTTTGGC 9 1 0  

A A F L I L L K Y M Y S D E I E L A P D T V L A  
TACACTCTATGCTGCAAAGAAATACCTGGTATCTGCTCTGGCTCGTGCATGTGTGGGTTTCCTCGAGACG 9 8 0  

T L Y A A K K Y L V S A L A R A C V G F L E T  
AGTCTGGAGGCGCGAAATGCATGCGTTCTGCTATCTCAGAGTCGTCTGTTTGAGGAGCCGGAGCTCACAC 1 0 5 0  

S L E A R N A C V L L S Q S R L F E E P E L T  
AGAGATGCTGGGAGGTGATTGACGCCCAGGCAGAGCTCGCACTGCGCTCTGAAGGCTTCTCTGAGATTGA 1 1 2  0 

Q R C W E V I D A Q A E L A L R S E G F S E I D  
CCTGCCAACACTGGAGAGCATCTTGCAAAGGGAAACCCTGAATGTGAAGGAGTCTGTGGTGTTCCAGGCC 1 1 9 0  

L P T L E S I L Q R E T L N V K E S V V F Q A  
GTCCTGGGATGGGCCGATGCAGAATGTCGGAGACAAGGTGTAAGCCCTACCTCGCAGAACCAGCGCTCTG 1 2  6 0  

V L G W A D A E C R R Q G V S P T S Q N Q R S  
TGTTGGGAAAAGCGTTGCACCTTGTGCGCCTGCCTTCCATGACACTCCAGGAGTTTGCAGACGGAGCCGC 1 3 3 0  

V L G K A L H L V R L P S M T L Q E F A D G A A  
GCAGGTGGACATTTTAACCCTTGAGGAAACACACAGCATCTTTTTGTGGTACACAGCAGCTACAAAACCT 1 4  0 0  

Q V D I L T L E E T H S I F L W Y T A A T K P  
TCATTGGGATTCCCGGTTAATGCCAGAAAGGGTCTGACGGCGCAACGCTGCCACCGCTTCCAATCCTCTG 1 4  7 0 

S L G F P V N A R K G L T A Q R C H R F Q S S  
CCTACCGAAGCAACCAGTGGCGCTACCGTGGACGCTGTGACAGCATCCAGTTCGCTGTGGACAAGCGCGT 1 5 4 0  

A Y R S N Q W R Y R G R C D S  I Q F A V D K R V  
GTTTATTGCTGGACTTGGCCTGTATGGCTCCAGCGGAGGGAAAGCGGAATATAGTGTGAGAATTGAACTA 1 6 1 0  

F I A G L G L Y G S S G G K A E Y S V R I E L  
AAGAGACAGGGAGTGCTTCTGGCACAAAACTTGACCAAATTTGTGTCAGACGGCTCTAGCTCAACATTCC 1 6 8 0  

K R Q G V L L A Q N L T K F V S D G S S S T F  
CAGTGTGGTTCGAGCACCCTGTACAGGTTGAGCAGGATGCCTTCTACACCGTTAGCGCCGTTCTAGATGG 17 5 0  

P V W F E H P V Q V E Q D A F Y T V S A V L D G  
GAGTGAGCTAAGCTACTTTGGACAAGAGGGAATGACAGAAGTGCAGTGTGGGAAAGTGACCTTCCAGTTT 1 8 2 0  

S E L S Y F G Q E G M T E V Q C G K V T F Q F  
CAGTGTTCCTCTGACAGTACTAATGGGACAGGGGTGCAAGGGGGACAGATTCCAGAACTGATTTTTTATG 1 8 9 0  

Q C S S D S T N G T G V Q G G Q I P E L I F Y  
CATGAGTACTTGGACTGATCCATTAATGAAGAGAGAGTAGGGGGGTTCCCCTCTCAAATAAATGCCTTTA 1 9 6 0  
A *
CTCACAATTTAGCTGCAAGACACAACAGATGGAGGACATGCGACACCCTCTGATATGATTCTTTTTTTTT 2 0 3 0  
TTTGTCTCACATGTAATGGTATGCTCCCCAATGTTATTTATTTCGTAGAACATTATTTTAAAAACACACT 2 1 0 0  
TTAATTTAAACATATTATATTTCTAATTATTCATAACCTGCCTTAGTACATTAGTCAATGGGCAGTTTGC 2 1 7 0  
ACTTGAAACTAGGCAGCTTTTACTCTGTCTTATTTAATTGATCATTTGTTGACAGCTTGATGCTGAGAAA 22  4 0 
AGGGTTTCAAGAGCCTGAAAAAATATAAACATGTTGTTTTTATTCATCAAAAAA.AYAAAAAAAAAAAAAA 2 3 1 0  
AAAAAAAAAAAAAAA? 2 3 5 8
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Figure 17. Nudeotide sequence and predicted amino acid sequence of 

zebrafish BTBD6b. The open reading frame is accompanied by the predicted 

amino acids shown by the single letter designation beneath it. A start codon 

(ATG) shown in bold is at nucleotide position 174 and the termination codon 

(TGA) at position 1620 is indicated by an asterix. A putative polyadenylation 

signal and a poly (A) tail are indicated in pink and light green, respectively. 

The BTB domain, BACK domain and PHR motif are labelled in green, red 

and blue, respectively.
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ATGGCTCCTGGTTGCCAGCGAGCCTCCAAACATCAAACCTGAATGTATTTTTCCTGGCAGCTGCGCTTCG 70  
CTCGGCTCAATAAGAAACCTTAAAAAGGACTAGAAAGAGTGGGAAACAGCTCAGCAAGCTGCCAGTATGC 1 4 0  
TATGAAATCGTGACTTTGTCCTTGAGGAAGAAGATGGCTGCAGAACTCTATCCTGCCAGCATAAATACCA 2 1 0

M A A E L Y P A S I N T  
ACCTTCCAAACAGTAACAGCACAGCAGTCACAGCTGCCAGCAAAAAGACCATCGTCCAAGTCACTCAAAC 2 8 0  
N L P N S N S T A V T A A S K K T I V Q V T Q T  
GGTGACCACACCGACTACAACTGCCACTCAGCAGAACATCAACAATAATAACGTCGAGACTGCCAGCTGG 3 5 0  

V T T P T T T A T Q Q N I N N N N V E T A S W  
CAGTCCACTCACCCGACATTGCGAGAAAGGAATGCTTTGATGTTCAATAACGAACTCATGGCAGATGTTC 4 2 0  

Q S T H P T L R E R N A L M F N N E L M A D V  
ATTTTGTTGTGGGTCCTCCTGGCGCATCCCAAAAAGTTCCAGCACACAAGTATGTGCTGGCAGTGGGGAG 4 9 0  

H F V V G P P G A S Q K V P A H K Y V L A V G S  
TTCTGTTTTTGGTGCCATGTTTTATGGAGATCTAGCAGAAGGAGAATCTGAGATTCATATTCCTGATGTG 5 6 0  

S V F G A M F Y G D L A E G E S E I H I P D V  
GAACCTGCTGCTTTTTTAATTCTTTTGAAGTACATGTACAGCGATGAGATTGAACTTGAAGCGGACACAG 6 3 0  

E P A A F L I L L K Y M Y S D E I E L E A D T  
TGCTGGCCACTCTGTACGCTGCCAAAAAATATATAGTGCCTGCGCTGGCTAAGGCCTGTGTCACCTTTCT 7  0 0  

V L A T L Y A A K K Y I V P A L A K A C V T F L  
GGAGACAAGCCTGGAGGCCAAAAATGCCTGTGTGTTGTTGTCCCAGAGTAGACTATTTGAGGAGCCTGAG 7 7  0  

E T S L E A K N A C V L L S Q S R L F E E P E  
CTGACCCTGCGGTGTTGGGAGGTCATTGATGCTCAGGCTGAACTGGCGCTTCACTCTGAGGGCTTCTGTG 8 4  0  

L T L R C W E V I D A Q A E L A L H S E G F C  
AGATTGATCTTCAAACGCTGGAGATCATACTAAAGAGAGAGACTCTGAATACCCGGGAGGCAGTGGTCTT 9 1 0  

E I D L Q T L E I I L K R E T L N T R E A V V F  
TCAGGCAGCTCTTGATTGGGCTGTGGCTGAATGCAAAAGGCAAGGACTGGGACCGACCGCTCGTAATAAA 9 8  0 

Q A A L D W A V A E C K R Q G L G P T A R N K  
AGGGCAGTGCTGGGCAAGGCTCTCTACTTGGTTCGCATCCCAACCATGACCCTGGAGGAGTTCGCCAATG 1 0 5 0  

R A V L G K A L Y L V R I P T M T L E E F A N  
GAGCTGCACAGTCAGATGTATTGACTCTGGAAGAGACTCATGATGTCTTCCTTTGGTACACTGCAGCCAA 1 1 2 0  

G A A Q S D V L T L E E T H D V F L W Y T A A N  
TAAACCCAAGCTGGAATTCCCACTACAAAAAAGAAAAGGTTTGACGCCACAGCGATGCCATCGCTTCCAG 1 1 9 0  

K P K L E F P L Q K R K G L T P Q R C H R F Q  
TCTTCGGCCTACCGCAGTAACCAGTGGCGCTACCGTGGACGTTGCGATAGCATCCAGTTTGCAGTGGACA 1 2  6 0  

S S A Y R S N Q W R Y R G R C D S I Q F A V D  
AGAGGATTTTCATCGCAGGACTTGGCTTGTATGGTTCAAGTGGTGGAAAGGCAGAGTACAGCGTCAAGAT 1 3 3 0  

K R I F I A G L G L Y G S S G G K A E Y S V K I  
CGAACTCAAGCGCCAAGGAGTGACTCTGGCCCAGAACCTAACAAAATTTATCTCAGATGGATCCAGCAAC 1 4  0 0  

E L K R Q G V T L A Q N L T K F I S D G S S N  
ACCTTCTCCGTATGGTTTGAACACCCCGTCCAAGTGGAGCAGGACACCTTCTACACAGTCAGTGCTGTAT 1 4 7  0  

T F S V W F E H P V Q V E Q D T F Y T V S A V  
TGGATGGGAATGAACTTAGTTATTTTGGACAGGAGGGTATGACAGAAGTGCAGTGTGGAAAAGTGACCTT 1 5 7  0  

L D G N E L S Y F G Q E G M T E V Q C G K V T F  
CCAGTTCCAGTGTTCCTCGGACAGTACCAATGGAACTGGAGTCCAGGGGGGTCAGATCCCAGAGCTGGTC 1 6 1 0  

Q F Q C S S D S T N G T G V Q G G Q I P E L V  
TTCTATGCGTGAAATTGTCAGGATGTCCCATTGTAGTGCATTCCGCTCACTGGAATTAAGATGGATTGAA 1 6 8  0 

F Y A *
TACAGGGTCTCGTGAGGCTCTTGCCTTCATTATGTAGCAGTTGTGAACTCAATGGTTATGGCTCCTCTGT 17 50 
ACCACAATGGACTCAGATGGAAGGAATGTTCTTCAGCTTTATTTATTGCAAAAAAATATCTATATTTGAT 1 8 2  0 
TTTAATTATTGACGCTGCTGCAAGCAGATCTATATATAAATATATATAAATGAGATAGTTGTACTGCTCT 1 8 9 0  
GATAGTGGACGGAAGCCACTAGTGTGTCATGTTTTTGTACATAACGTATTTGTTTTCAGCTTGATGCTGA 1 9 6 0  
TTGACAAATAAAATGTCTTGTATTAGTGAACCGCTTCCCGAACTGCAGATTATAAATGTTTTTGTTCCTC 2 0 3 0  
GAG TC CAAAAAAAAAAAAAAAAAAA 2 0 5 6

86



Nucleotide sequence of the 2029 bp cDNA clone represented by AI883008 

contained an ORF (nt 80-1465) encoding a putative protein of 461 amino 

adds, which shows 74% identity with the cBTBD6 protein and 88.5% with the 

cBTBD3 protein. Based on the close hom ology to hum an and chick BTBD3 

this gene is designated zBTBD3a (Fig. 18&20).

Further BLAST searches of the Ensembl zebrafish sequence database 

performed at a later date, using chick BTBD6 and BTBD3 cDNA, identified 

another novel gene that encodes a putative highly related protein (68.9 and 

90.1% identity, respectively). No corresponding ESTs were available for this 

gene. However the RT PCR using primers located within the coding region 

conducted on 2-13 somite stage zebrafish embryos, generated a 850 bp 

single product the sequence of which corresponds to the one obtained from 

the database. The purpose of amplifying these sequences was to generate a 

DNA template for the RNA in situ hybridisation probe (see chapter on the 

expression patterns) rather than cloning the full gene. Using the predicted 

cDNA sequence provided by Ensembl, the full ORF was identified which 

produces a deduced polypeptide of 517 amino acids (Fig. 19). This gene was 

designated zBTBD3b.

Thus, two of the identified novel zebrafish genes, corresponding to ESTs: 

BG308275 and BI350992/AI437221, are very highly related to cBTBD6 and 

less related to cBTBD3 and are designated zBTBD6a and zBTBD6b, 

respectively. Two other identified genes, one equivalent to EST AI883008 and 

the other found in the Ensembl database, are very highly related to cBTBD3 

and less related to cBTBD6 and are designated zBTBD3a and zBTBD3b, 

respectively.

PHYLOGENETIC ANALYSIS OF THE VERTEBRATE BTBD6 AND 

BTBD3 PROTEINS

To determine the relationship between the human, mouse, chick and 

zebrafish BTBD6 and BTBD3 predicted proteins, the amino acid sequences
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TGGCCTACTGTCTGAACTCCATCCGTTGCCAGATCCCCTGCCATGAAATCCTCCTTATGACTTGACATGT 7 0  

GTTGGTAAAATGGCTGCTGAGCTGTTCCCTACCAAAAAACTGCCCACCGTCAGTGCCAGCGCCGTCCAGC 1 4  0  

M A A E L F P T K K L P T V S A S A V Q  
AGTTCCAGCAGCAGAACGTCAGCAACAACAACACCATTCAGGGATGTAACTGGCAAGGCTTGTATCCCAC 2 1 0  
Q F Q Q Q N V S N N N T I Q G C N W Q G L Y P T  
AATCAGAGAAAGAAACTCAGTCATGTTCAACAACGAGCTGATGGCCGATATTCATTTTGTGGTGGGACCT 2  8 0  

I R E R N S V M F N N E L M A D I H F V V G P  
CCGGGAGGAACCCAGAGAGTGCCGGGACACAAGTATGTCCTGGCTGTGGGTAGCTCAGTTTTTCATGCCA 3 5 0  

P G G T Q R V P G H K Y V L A V G S S V F H A  
TGTTTTATGGAGAACTGGCTGAAGATAAAGATGAGATCCGGATCCCTGATGTGGAGCCACCCTCATTCCT 4 2 0  
M F Y G E L A E D K D E I R I P D V E P P S F L  
GGCCATGCTGAAGTACATCTACTGTGATGAGATCGACCTCTGCGCAGACACTGTACTGGCCACACTGTAC 4  9 0  

A M L K Y I Y C D E I D L C A D T V L A T L Y  
GCCGCCAAAAAGTACATCGTCCCCCATTTAGCCCGTGCTTGCGTCAACTTCCTAGAGACCAGCCTGAGCG 5 6 0  

A A K K Y I V P H L A R A C V N F L E T S L S  
CCAGAAACGCCTGCGTTCTGCTGTCCCAGAGCTGCCTGTTCGAGGAGCCTGACCTGACGCAGCGATGCTG 6 3 0  
A R N A C V L L S Q S C L F E E P D L T Q R C W  
GGAGGTGATTGACGCGCAGGCTGAACTTGCGCTCCGCTCTGAAGGATTCTGCGACATTGACACTCAAACG 7  0 0  

E V I D A Q A E L A L R S E G F C D I D T Q T  
TTAGAAAGCATCCTACGGCGTGAAACGCTCAACGCTAAAGAGATGGTGGTTTTCGAAGCGACGTTGAGCT 7 7  0  

L E S  I L R R E T L N A K E M V V F E A T L S  
GGGCTGAAGCCGAATGTCACCGACAGGAACTCCAACCCACAATCGAAAACAAGCGACTTGTTTTGGGAAA 8  4  0  

W A E A E C H R Q E L Q P T I E N K R L V L G K  
GTCTATTTATCTAATACGAATCCCTGCGATGGCGCTTGATGATTTTGCTAATGGCGTCGCTCAGTCAGGA 9 1 0  

S I Y L I R I  P A M A L D D F A N G V A Q S G  
GTGCTAACGCTCAACGAAACAAACGATATTTTCTTATGGTACACAGCAGCCAAAAAACCAGAGCTGAAGT 9 8 0  

V L T L N E T N D I F L W Y T A A K K P E L K  
TTGTGTGCAAACCGCGAAAAGGTTTAACGCCGCAAAAGTGCCATCGTTTTCAATCGTGCGCTTATCGTAG 1 0 5 0  

F V C K P R K G L T P Q K C H R F Q S C A Y R S  
CAATCAGTGGCGCTACCGTGGGCGCTGCGATAGCATTCAGTTCGCCGTGGACAAACGTGTGTTTATTGCT 1 1 2 0  

N Q W R Y R G R C D S I Q F A V D K R V F I A  
GGATTTGGTTTGTATGGCTCTAGCTGCGGTTCAGCGGAGTACCAGGCCAAGATTGAATTGAAGCGGCAGG 1 1 9 0  

G F G L Y G S S C G S A E Y Q A K I E L K R Q  
GAGTCACGCTCGGCATCGCCATCATCAAATATTTCTCCGACGGCTCTAGCAACACCTTCTCTGTGTTCTT 1 2  6 0  

G V T L G I A I I K Y F S D G S S N T F S V F F  
CGAGTATCCGGTGCAGATCGAGCCGGACACTTTCTACACTGCCAGCGTCATTTTGGACGGCAACGAGTTG 1 3 3 0  

E Y P V Q I E P D T F Y T A S V I L D G N E L  
AGTTATTTTGGGCAGGAGGGCATGACGGAGGTGCAGTGTGGTAAGGTGACCTTCCAGTTCCAGTGTTCGT 1 4  0 0  

S Y F G Q E G M T E V Q C G K V T F Q F Q C S  
CCGACAGCACCAACGGGACGGGTGTGCAGGGTGGCCAGATCCCCGAACTCATATTTTACGCCTGAGAGAG 1 4 7  0  

S D S T N G T G V Q G G Q I P E L I F Y A *  
AACAAAAGTCCTATTTAGGATTATTCAGAAACAAAAAGGTTTCTGTTCCTTAATGAAGTGCTGCTTTGAT 1 5 4  0  

TTTGCACAAAGGCTGCAAAAAGAATTGTAGAGATTACCGACAATCTATATATAGACTGTGTTAGAAGTAG 1 6 1 0  

GGTTGTCAAAAGTATCGAATTCGGTGCAAAAATTTAAAAAATGTCCACTTCCTGCTAGGATTTGAGTGCA 1 6 8 0  
TACTTAAACATTGGCTGATCGGCCACTGTGTTCAAATGCTCAACATAAATGACTGTGACTGGCTGTGAAG 1 7  5 0  

ATCATCGGTTCATCACTGTTCACCGAGTGCAAATGTTTCTAAAATTTTAGAACCGATTGGTATCGAACTC 1 8 2  0  

GATACTTTTGACAACCCTGGCTAGAATTGTTAGAAGCGCAAAGGAAAAGAGGAAAATTTGGTCATTTTAC 1 8  9 0  

TCAACCTCATTTAGTTATAAACCTGAAGATGATTTTAATTTTTTTTAAGTTTATTCATGCAGGTCAGTCG 1 9  6 0  

AATTTCAGAAAAAAAATCTAACTTAATAAATTAAAGATATAGTTAACCCAAAAAAAAAAAAAAAAAAA 2 0 2 7

Figure 18. Nucleotide and deducted amino acid sequence of zebrafish 

BTBD3a. The open reading frame is accompanied by the predicted amino 

acids shown by the single letter designation beneath it. A start codon (ATG) 

shown in bold is at nucleotide position 80 and the termination codon (TGA) at 

position 1465 is indicated by an asterix. A polyadenylation signal and a 

poly(A) tail are is shown in pink and light green, respectively. The BTB 

domain, BACK domain and PHR motif are labelled in green, red and blue, 

respectively.
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CTCAGCATCTTCTCTGCATGCTTTTCCACTGCTCTGCAGGTGAACACACTCATGGTGGATGCCAAGGGAA 7 0
M V D A K G

GGAACATGAAATGTCTGACGTTCTTGTTGATGCTTCCAGAATCAGTTAAGAGCAGGTCCAGTAAAGGCTC 14  0 
R N M K C L T F L L M L P E S V K S R S S K G S  
CAAAAAGGGGAGTCCCAGCAGCTCGTCCAAGCTGCCCCCTGTGTGCTATGAGATCATCACTTTGAAGACC 2 1 0  

K K G S P S S S S K L P P V C Y E I I T L K T  
AAGAAGAAGAAGAAGATGGCAGCGGAGATCTTTCCTACCAAGAAGCCGGCGTCGGCCACCACGGTGCAGC 2 8 0  

K K K K K M A A E I F P T K K P A S A T T V Q  
AGTACCAGCAGCAGAACTTGAACAATAATAACACTATCCAATGCTGCAACTGGCAGGGTCTCTACTCCAC 3 5 0  
Q Y Q Q Q N L N N N N T I Q C C N W Q G L Y S T  
CATCAGGGAGAGAAATTCTGTGATGTTTAATAATGAACTGATGGCTGACGTTCACTTTGTTGTCGGTCAG 4 2 0  

I R E R N S V M F N N E L M A D V H F V V G Q  
TCTGGAGGGACTCAAAGGCTCCCGGGACACAAGTATGTCCTTGCTGTGGGAAGCTCTGTTTTCCATGCCA 4 90 

S G G T Q R L P G H K Y V L A V G S S V F H A  
TGTTCTATGGAGAGCTGGCGGAAGACACGGATGAGATTCGTATTCCTGATGTGGAACCTCCAGCTTTTCT 5 60 
M F Y G E L A E D T D E I R I P D V E P P A F L  
GGCTATGCTAAAGTACATTTACTGTGACGAAATTGACTTAAGTGCCGACACCGTCTTGGCAACTTTATAC 6 3 0  

A M L K Y I Y C D E I D L S A D T V L A T L Y  
GCAGCCAAAAAGTACATAGTCCCACACCTGGCACGGGCTTGCGTCAACTTCTTGGAAACAAGTTTGAGTG 7 0 0  

A A K K Y I V P H L A R A C V N F L E T S L S  
CCAAAAACGCGTGTATTCTTTTATCTCAAAGCTGTCTGTTCGAAGAGCCAGACCTGACACAACGCTGCTG 7 7  0 
A K N A C I L L S Q S C L F E E P D L T Q R C W  
GGAAGTCATAGACGCTCAGGCAGAGCTGGCGCTTAAATCCGATGGCTTTTGTGACATTGACTCTCAGACC 84  0 

E V I D A Q A E L A L K S D G F C D I D S Q T  
TTGGAGAGCATCCTCAGACGGGAGACGCTGAATGCAAAGGAGATTGTAGTGTTTGAAGCAGCACTAAGCT 9 1 0  

L E S I L R R E T L N A K E I V V F E A A L S  
GGGCAGATGCCGAGTGCCAACGGAGGGAGATGAACACCTCTATTGACAACAAACGCAAGGTGTTGGGTCA 98  0 
W A D A E C Q R R E M N T S  I  D N K R K V L G Q  
GTCCATATATCTAATACGTATCCCAACAATGGGTCTTGATGATTTCGCAAATGGTGCCGCGCAGTCAGGA 1 0 5 0  

S I Y L I R I P T M G L D D F A N G A A Q S G  
GTGTTGACGTTAAACGAAACCAATGACATTTTCTTATGGTACACAGCGGCTAAGAAACCCGAACTGCAGT 1 1 2  0 

V L T L N E T N D I F L W Y T A A K K P E L Q  
TTGCCAGTCAACCTCGTAAAGGCTTGACACCACAGAAGTGCCACCGCTTCCAGTCGTGCGCCTACCGCAG 1 1 9 0  
F A S Q P R K G L T P Q K C H R F Q S C A Y R S  
CAATCAATGGCGATACCGCGGACGCTGCGACAGCATTCAGTTCGCTGTTGACAAGCGGGTGTTCATCGCC 12  60  

N Q W R Y R G R C D S I Q F A V D K R V F I A  
GGTTTTGGGCTTTACGGCTCAAGCTGTGGGTCAGCTGAGTACACCGCCAAAATCGAGCTCAAACGGCAAG 1 3 3 0  

G F G L Y G S S C G S A E Y T A K I E L K R Q  
GGGTGAATTTGGGAACCAACCTCAGCAAGTACTTTTCCGATGGATCTAGTAACACCTTCCCCGTTTGGTT 14 0 0 
G V N L G T N L S K Y F S D G S S N T F P V W F  
TGAGTATCCAGTTCAAATCGAGCCGGACACTTTCTACACTGCCAGCGTGGTTCTGGATGGAAATGAACTG 1 4 7  0 

E Y P V Q I E P D T F Y T A S V V L D G N E L  
AGCTATTTCGGACAAGAGGGTATGACGGAAGTGCAGTGTGGAAAGGTGACCTTTCAGTTTCAGTGCTCTT 1 5 4  0 

S Y F G Q E G M T E V Q C G K V T F Q F Q C S  
CGGACAGTACCAACGGCACAGGTGTGCAAGGCGGCCAGATCCCAGAGCTCATTTTCTATGCCTGA 1 6 0 5
S D S T N G T G V Q G G Q I P E L I F Y A *

Figure 19. Nucleotide sequence and deduced amino acid sequence of a pu ta

tive zebrafish BTBD3b cDNA. The open reading frame is accompanied by the 

predicted amino acids designated by the single letter abbreviations shown 

underneath. The putative translation start codon (ATG) is highlighted in bold 

and a stop codon (TGA) is designated by an asterix. The BTB domain, BACK 

domain and PHR motif are labelled in green, red and blue, respectively.
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were aligned with the ClustalW algorithm (Thompson et al., 1994) of the 

Megalign (DNAstar Inc.) program. The most notable feature of this 

alignment is that all the above-mentioned proteins are outstandingly related, 

especially in the region of the BTB, BACK and PHR domains all present in 

each of these proteins (Fig. 20). The N-terminus diverges most in all analysed 

proteins, however it is more conserved in the BTBD3 proteins.

The analysis of the phylogenetic tree constructed on the basis of the peptide 

alignment indicates that the BTBD6 proteins are clustered together as are the 

BTBD3 proteins, suggesting that they represent two subgroups of the same 

protein family. There are single human, mouse and chick homologues and 

two zebrafish homologous genes within each subgroup. In both subgroups 

the hum an BTBD6 and BTBD3 proteins are closest to their mouse and chick 

counterparts (Fig. 20).

DISCUSSION

Chick V ll  is BTBD6 and contains BTB, BACK and PHR domains

Nucleotide sequence analysis and amino acid translation of the predicted full- 

length chick V ll cDNA established that cV ll represents a novel gene 

encoding a putative protein most similar to an unknown hum an protein 

designated in the sequence databases by BTB domain-containing protein 6 

(BTBD6) (Strausberg et al., 2002; Wistow et al., 2002). Based on the very high 

homology with human BTBD6, it is believed that V ll represents BTBD6 in 

chick.

Examination of the cBTBD6 protein for conserved protein sequence motifs 

revealed, apart from the BTB domain, the presence of two other motifs, 

BACK and PHR.

The BTB/POZ domain is highly conserved through out the species and 

facilitates protein-protein interaction. This motif has been found in proteins
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Figure 20. Phylogenetic analysis of predicted BTBD6 and BTBD3 proteins. (A) 

Multiple amino acid sequence alignment of predicted BTBD6 and BTBD3 

proteins in hum an (h), mouse (m), chick (c) and zebrafish (z). Identical 

proteins are denoted by the black background. Dashes represent gaps 

inserted for maximal alignment, and num bers of amino acid residues in each 

sequence are indicated on the left. The sequences were aligned using the 

Lasergene/DNASTAR software, CLUSTALW method. (B) Phylogenetic tree 

constructed on the basis of the above alignment. Distance along the 

horizontal axis is inversely proportional to the relatedness of the input.
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involved in transcriptional regulation (Ahmad et al., 1998; Zollman et al., 

1994), cytoskeletal arrangement (Kang et al., 2004; Melnick et al., 2000) and 

ion conductance (Kreusch et al., 1998). Within the last two years, there has 

been a num ber of reports identifying a new role of BTB-containing proteins 

as the substrate-specific adaptors in protein ubiquitination (Furukawa et al., 

2003; Geyer et al., 2003; Pintard et al., 2003).

The BACK domain has recently been identified as a conserved region in the 

BTB/kelch proteins. The role of this motif is not clearly defined, however, it 

has recently been reported that in the BTB/kelch proteins which m ark 

proteins for ubiquitination, BACK domain plays a role as an interacting 

region (Kobayashi and Yamamoto, 2005).

The PHR motif was first identified in human PAM, Drosophila highwire and 

C. elegans RPM-1, proteins that do not contain BTB domain. These proteins 

are presynaptic regulators of synapse formation an d /o r grow th and, 

interestingly, are likely to act as putative ubiquitin ligases. The PHR motif 

has been identified only in two other BTB-containing proteins, hum an BTBD1 

and BTBD2 (Carim-Todd et al., 2001; Xu et al., 2002; Xu et al., 2003b). 

However, the function of the PHR motif is still unknown.

Thus, cBTBD6 represents a novel gene that encodes a protein characterised 

by the presence of three domains, BTB, BACK and PHR. BTB is a protein 

interaction domain and the other two domain have unknow n function, 

however, interestingly, the presence of all three motifs is associated with the 

protein ubiquitination process.

BTBD6 and BTBD3 gene family

Human, mouse and zebrafish BTBD6 orthologs were cloned, as well as 

highly related BTBD3 genes were identified. Comparative analysis of the 

predicted proteins encoded by the isolated genes revealed high sequence 

conservation, especially within the BTB, BACK and PHR domain regions.
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Phylogenetic examination of the BTBD6 and BTBD3 putative polypeptide 

sequences suggested that the characterised genes belong to two subgroups, 

BTBD6 and BTBD3, of the same family of genes. Within each subgroup there 

is a single copy of human, chick and mouse BTBD6 or BTBD3 genes and two 

copies of zebrafish orthologues. The presence of two zebrafish genes is most 

probably the result of a genome duplication in the zebrafish lineage (Amores 

et al., 1998; Meyer and Schartl, 1999; Postlethwait et al., 1998).

BTBD6 and BTBD3 represent novel genes, whose functions have not been 

characterised yet. Two other proteins, human BTBD1 and BTBD2, containing 

both BTB and PHR domains have previously been reported. The very little 

published data report that both BTBD1 and BTBD2 interact with 

Topoisomerase 1 (relaxes DNA supercoils generated during DNA replication 

and transcription) and co-localise with the RBCC/tripartite motif protein, 

TRIM56 (potential role as a ubiquitin ligase) (Carrim-Todd et al., 2001; Xu et 

al.,2002; Xu et al., 2003). However no specific cellular or developmental 

function of BTBD1 and BTBD2 proteins has been identified.

Since BTBD6 appears to be evolutionary conserved between vertebrates, it 

can be reasoned that the BTBD6 function during vertebrate development is 

also conserved. This project was instigated in the chick system, however, 

when the zebrafish BTBD6 orthologue was identified, the w ork continued to 

be done in zebrafish due to its amenability to gain- and loss- function studies 

(Nasevidus and Ekker, 2000; Streisinger et al., 1981; Westerfield, 1993). In 

order to obtain initial clues in relation to the BTBD6 function, the detailed 

analysis of the temporal and spatial distribution of BTBD6 transcripts in chick 

and zebrafish was performed. The expression patterns of BTBD3 in chick and 

zebrafish were also obtained. The following chapter presents the results of 

this study.
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EXPRESSION OF BTBD6 AND BTBD3 DURING 
DEVELOPMENT

Analysing the temporal and spatial expression pattern of a gene is a 

necessary step in developing hypotheses and determining the function of the 

gene product during development. Clone V ll  (now term ed cBTBD6), as 

described in the previous chapter, was identified during an in situ 

hybridisation based screen to isolate genes with restricted expression in the 

developing chick hindbrain. The initial results indicated that cBTBD6 

transcripts are expressed segmentally in rhombomeres 5 and 6 of the HH9 

stage chick hindbrain. To investigate other potential sites of cBTBD6 function 

in embryonic development, a more detailed analysis of the cBTBD6 

expression pattern during chick embryogenesis was undertaken. The 

cBTBD6 expression profile was compared with the expression sites of 

cBTBD6 orthologs during zebrafish embryogenesis. To elucidate a possible 

functional relationship between BTBD6 and BTBD3 genes, which are highly 

related, the BTBD3 expression profile in chick and zebrafish embryos was 

also determined. This chapter describes the results of these studies.

SPATIO-TEMPORAL ANALYSIS OF BTBD6 EXPRESSION PATTERN

cBTBD6 expression profile

Whole m ount in situ hybridisation was performed on chick embryos 

ranging from stage 5 to 20 with an antisense digoxigenin-labelled RNA 

probe generated from the entire initial cBTBD6 cDNA clone.

The onset of cBTBD6 expression is first observed around the HH5 stage in 

the Hensen's node (n) and in the primitive streak (ps) (Fig. 21 A). By the 

HH6- stage, expression is upregulated in the primitive streak and also 

detected in the ventral part of the developing head fold (hf), and to a lesser 

extent along the neural plate at the boundary between the neural and 

nonneural ectoderm (arrow; Fig. 21B). In the HH6+ stage em bryo cBTBD6 

transcripts are maintained in the streak, the head fold and at elevated levels
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Figure 21. Early cBTBD6 expression pattern. Expression of BTBD6 in chick 

embryos was visualised by whole mount in situ hybridisation between 

stages HH5- and 11. (A-F) Dorsal views of the embryos, anterior to the left. 

Developmental stages are indicated in the lower right corners. (E', E", E'", 

E"") Transverse sections of the embryo in E cut along the line m arked by the 

corresponding small letter. (A). Stage HH5- (early head process) embryo: 

transcripts are detected in the primitive streak (ps) and around Hensen's 

node (n). (B) Stage HH6- (head fold): expression is upregulated in the 

primitive streak and also detected in the ventral head fold (hf) as well as 

occurs in the lateral neural plate (arrow). (C) Stage HH6+: transcripts are 

maintained in the streak, the head fold and at elevated levels in the lateral 

edges of the neural tube (arrow). (D) Stage HH7 (Is): expression is just 

detectable in the developing hindbrain anterior to the level of the newly 

form ed somite (arrowhead). (E) Stage HH9+ (8s): strong labelling is 

observed in r5 and r6 (arrowhead) which in cross sections is seen to be 

confined to cell clumps scattered within the neural tube (E" and E'", 

respectively); speckled staining (arrow) is also detected in the anterior neural 

tube and spinal cord (see smaller num ber of BTBD6-positive cells in E' and 

E"", respectively); in addition, transcripts are present in the intermediate 

mesoderm  (F) Stage HH11 (12s): expression is maintained in r5 and r6 and in 

isolated cell clumps (arrow) anterior to r5 and in the spinal cord as well as in 

the intermediate mesoderm  (im). sc, spinal cord.
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in the lateral neural plate (Fig. 21C). The expression in the streak is 

downregulated at HH7, except for the most anterior region where cBTBD6 

RNA is still observed (Fig. 21D).

cBTBD6 expression is first detected within the prospective hindbrain at the 

HH7 (1 somite) stage, before the commencement of morphological 

segmentation (Guthrie, 1996; Lumsden, 1990; Vaage, 1969), and is confined 

to its posterior part at the level anterior to first somite (Fig. 21D). An initially 

weak cBTBD6 expression in this area becomes stronger as the embryo 

develops, and by the HH9+ (8s) stage is observed in the already delineated 

(Grapin-Botton et al., 1995) rhom bomeres 5 and 6 (r5 and r6). A weaker, 

patchy staining is detected in the neural tube anterior to r5, and in the spinal 

cord (Fig. 21E). Transverse sections of r4, r5 and r6 as well as of the spinal 

cord revealed that the cBTBD6 transcripts are located in cell clusters scattered 

within the neural tissue. In r5 and r6 the cBTBD6-positive cell clusters are 

much bigger and denser (Fig. 21E", E'") than those present in r4 and in the 

spinal cord (Fig. 21E', E""). In addition, cBTBD6 transcripts are detected in the 

intermediate mesoderm (im; Fig. 21E). This pattern of cBTBD6 expression is 

maintained at the HH11 (12s) stage (Fig. 21F).

In the HF116 (26-28s) stage embryos, cBTBD6 expression is observed in a 

num ber of tissues, such as the eye (e), the otic vesicle (ov), the maxillary 

process (m), the trigeminal (t) and facial-acoustic (f) ganglia, the stomach (s), 

the intersomitic spaces (arrowhead) (Fig.22A), the spinal cord (sc, shown at 

HH20, Fig. 22D.) and the hindbrain rhom bom ere boundaries (arrow; Fig. 

22B). At the HH20 (38~40s) stage, all cBTBD6 expression domains detected at 

HH16 are maintained and some additional sites of cBTBD6 signal are 

detected, including the nasal placode (n), the glossopharyngeal ganglion (g), 

the pharyngeal pouches (p) and the tail bud (t) (Fig. 22C). In the hindbrain, 

cBTBD6 expression occurs in the rhom bom ere boundaries, the basal plate of 

r l  and in cells adjacent to the floor plate in r2 and r4 (Fig. 22E, F).
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Figure 22. cBTBD6 expression pattern at later stages. Expression of cBTBD6 

in chick embryos at stages HH16 (A, B) and 20 (C, D, E, F) was analysed by 

whole m ount in situ hybridisation (A) Expression is observed in the eye (e), 

the otic vesicle (ov), the maxillary process (m), the trigeminal (t) and facial- 

acoustic ganglia (f), the stomach (s) and the intersomitic spaces (arrowhead). 

(B) Flat mount of the hindbrain: transcripts are restricted to the rhom bomere 

boundaries (arrow). (C) Expression is maintained in the eye, the otic vesicle, 

the maxillary process, the trigeminal and facial-acoustic ganglia, the stomach 

and the intersomitic spaces and is also detected in the nasal placode (n), the 

glossopharyngeal ganglion (g), the pharyngeal pouches (p) and the tail bud 

(t). (D) Trunk region: labelling is observed in the spinal cord (sc) and in the 

intersomitic spaces (arrowhead). (E) Dorsal view and flat m ount (F) of the 

hindbrain: transcripts are present in the rhom bom ere boundaries (arrow), in 

the basal plate of r l  and in cells adjacent to the floor plate in r2 and r4.
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Spatial analysis of BTBD6 orthologs during zebrafish development

As described in the previous chapter, two cBTBD6 co-orthologs have been 

identified in zebrafish, zBTBD6a and zBTBD6b. In order to identify the precise 

localisation of the transcripts, double in situ hybridisation was carried out, in 

which the expression domains of pax2a (e.g. at midbrain-hindbrain junction 

and in otic placodes) and krox-20 (in r3 and r5) were used as landmarks 

(Krauss et al., 1991; Oxtoby and Jowett, 1993).

zBTB6a expression profile

Expression of zBTBD6a is first detected at 90% epiboly in two bilateral 

clusters of the anterior future neurectoderm located posterior to the forming 

midbrain-hindbrain boundary (MHB), which is labelled with the pax2a RNA 

probe (Fig. 23A). In the early tailbud stage embryo, zBTBD6a expression 

appears in the forming neural plate: laterally, in two bilateral stripes m arking 

the edge of emerging neural plate (arrows); medially in the large patch of 

contiguous cells (arrowhead); and anteriorly in the presumptive hindbrain 

(hb), in two transverse stripes one of which is adjacent to the midbrain- 

hindbrain junction (Fig. 23B). By the 1-somite stage when the neural plate is 

well defined, the bilateral stripes of zBTBD6a expression at the m argins of the 

neural plate are wider. In the medial region of previously uniform 

expression, two paraxial bands of more intensely stained zBTBD6a-positive 

cells appear (arrow), while the transverse stripes in the future hindbrain, 

widen and extend laterally (Fig. 23C). In 2-somite embryo, the overall 

staining in the neural plate intensifies and expands caudally, and the pattern 

of transcription in the trunk neural plate is maintained, with longitudinally 

extending rows of cells expressing zBTBD6a RNA (Fig. 23D). Three 

rostrocaudal stripes of expression can now be identified: intermediate (is), 

running laterally from the level of the presumptive hindbrain in the anterior 

neural plate; lateral (Is), positioned a bit more lateral and posterior; and 

medial (ms). In the m ost posterior neural plate, zBTBD6a expression occurs in 

a group of cells positioned medially in the tailbud (tb). This pattern of
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Figure 23. zBTBD6a expression pattern in zebrafish embryos from 90% 

epiboly to 14 somite stages, krox-20 and pax2a expression shown in red are 

used as landmarks. Developmental stages are indicated in the lower right 

corner. (A) Dorsal view, anterior to the top. (B-J) Dorsal views, anterior to 

the left, yolks removed. (IT, I', ]') Lateral views, anterior to the top. (A) 

zBTBD6a expression is first detected at the 90% epiboly stage in bilateral cell 

clusters (arrows) posterior to midbrain-hindbrain boundary (MBH), which is 

marked in red by pax2a expression. (B) Transcripts are found in bilateral 

stripes marking the borders of the forming neural plate (arrows), in the 

medial region of the neural plate (arrowhead) and in two faint transverse 

stripes in the presumptive hindbrain (hb). (C) The expression expands and 

two paraxial rows of cells with elevated levels of transcripts emerge within 

the medial expression domain (arrow). (D) The overall expression of 

zBTBD6a increases, and stripes of zBTBD6a-posiiive cells with increased 

expression can be identified: two transverse stripes in the hindbrain and 

three bilateral rostrocaudal stripes in the more posterior neural plate: 

intermediate, lateral and medial; the most posterior neural plate is devoid of 

zBTBD6a transcripts except for the edges where lateral stripes of expression 

are present, and a group of cells positioned centrally in the tail bud. zBTBD6a 

expression in the posterior region remains essentially unchanged until the 6 

somite stage (F, G) and persists in the developing spinal cord (sc) in the older 

embryos between stages 8-14 somites (H-J). The anterior expression in the 

region of developing hindbrain and MHB is very dynamic in 4-14 somite 

stages. This expression occurs in transverse stripes (e.g. arrows in G) situated 

at different positions along anteroposterior axis as well as in small clusters of 

cells (e.g. arrowheads in G), whose locations correspond to forming neurons 

(F-J). Other sites of zBTBD6a expression include: MHB (see varying degree of 

staining intensity in F-J) observed from the 4 somite stage, otic placodes (op), 

ventral clusters of cells in the midbrain (me) and dorsal cluster of cells in 

telencephalon (tc), detected from the 8 somite stage (H-J).
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zBTBD6a expression in the posterior neural tube remains similar until 8- 

somite stage (Fig. 23E, F).

Similar longitudinal expression domains are observed at the tail-bud and 

early stages of somitogenesis for the neurogenic genes: neurogeninl (Blader 

et al., 1997), deltaA (Appel and Eisen, 1998; Haddon et al., 1998), and deltaB 

(Haddon et al., 1998), corresponding to the regions in which primary 

neurogenesis is taking place. The neuronal precursor cells are arranged in 

intermediate, lateral and medial longitudinal domains, where a subset of cells 

in each domain differentiates to form interneurons, sensory neurons and 

m otor neurons, respectively (Inoue et al., 1994; Kim et al., 1996; Korzh et al., 

1993).

In embryos between 13 (8 somite) to 20 hpf (hours post fertilisation), the 

posterior zBTBD6a expression is confined to the spinal cord (sc; Fig. 23G-I, 

Fig. 24A-D). Transverse sections of the spinal cord of the 19-somite (18.5 hpf) 

embryo reveal that zBTBD6a transcripts are distributed throughout the walls 

of the spinal cord and are at higher levels in ventrolateral regions (Fig. 

24A2). The expression in the spinal cord is down regulated at around 24 hpf 

with the exception of the anterior and very posterior (tailbud) part, where 

faint staining is still observed (Fig. 24E-F, E', E").

The anterior zBTBD6a expression first observed at the tail bud stage in the 

presumptive hindbrain is very dynamic during the later stages of 

embryogenesis. In addition to transverse segmental expression betw een the 

MHB and rhom bom ere 6 in different developmental stages (e. g. arrows in 

Fig. 23F), transcripts are detected in isolated clusters of cells (e.g. arrow heads 

in Fig. 23F) that may correspond to forming neurons (Fig. 23B-I & Fig. 24A- 

F). In transverse sections of r2 at 18.5 hpf, zBTBD6a transcripts are detected in 

four cell clusters, two of them located dorsolaterally adjacent to the neural 

tube and the other two positioned ventrolaterally within the neural tube, 

suggesting that they may correspond to cranial ganglia and m otor neurons, 

respectively (Fig. 24A1).
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Figure 24. zBTBD6a expression at later developmental stages. Distribution of 

zBTBD6a transcripts in zebrafish embryos between stages 18 and 24 hpf was 

revealed by whole-mount in situ hybridisation. Developmental stages are 

indicated in the lower right corner, krox-20 and pax2a expressions shown in 

red (A,B/C,D,F) and in turquoise (E), are used as landmarks. (A, C, E) Lateral 

views with anterior to the left; (B, D, F) Dorsal views with anterior to the left. 

(Al, A2) Transverse sections of r2 and the spinal cord at 18.5 hpf. (E' ,E") 

Sections of the embryo shown in E cut along the lines marked by the 

corresponding letters. (A, B) At 18hpf, zBTBD6a transcripts are highly 

expressed in the spinal cord (sc; see also transverse section at 18.5 hpt in 

[A2]) and proctodeum  (p), and weakly expressed at the midbrain-hindbrain 

boundary (MHB), telencephalon cluster (tc) and epiphysis (e); in the 

hindbrain there are bilateral clusters of zBTBD6a-positive cells in r3 and 5 

(stained in red by kr20), and in r2 and 4. Crossection through r2 (Al) in a 

slightly older embryo (18.5 hpf) shows two bilateral clusters of zBTBD6a- 

expressing cells, one located ventrolaterally adjacent to the neural tube and 

the other positioned dorsolaterally within the neural tube, which may 

correspond to the forming cranial ganglia and differentiating m otor 

neurons, respectively. (C, D) At 20 hpf, additional sites of expression include 

trigeminal ganglia (tg) and apical ectoderm (ae); staining in the hindbrain is 

more abundant as it is stronger in the MHB. (E, F) At 24 hpf expression in the 

spinal cord is down regulated except for the most anterior and posterior 

regions where low level transcripts persist, as indicated in the transverse 

sections of these areas (E' and E").

105



M H B

A l
*  i

¥

*  r2
eg

106



zBTBD6a-positive cells are also observed in the otic placode (op) in stages 

between 8 to 14 somites (Fig. 23G'-T, G-I) and in the trigeminal ganglia (tg) 

at 20 hpf (Fig. 24C, D). Additional sites of zBTBD6a expression in the central 

nervous system (CNS) include clusters of cells in the telencephalon (tc) and 

ventral midbrain (me) from the 8-somite stage onwards (Fig. 23G/-I/, G-I, 

Fig. 24A-F), and in the epiphysis (e) where transcripts are first observed at 18 

hpf (Fig. 24A-F). Other domains of zBTBD6a transcription outside the 

nervous system are found in the proctodeum  (p) and apical ectoderm (ae) of 

the tailbud from 18 hpf onwards (Fig. 24A-F).

zBTB6b expression profile

Very weak zBTBD6b expression is initially detected at 90% epiboly in bilateral 

patches located at the level of the MHB and in a single band along the 

midline of the prospective neuroectoderm (data not shown). By the 3 somite 

stage, stronger expression starts to appear at the edge of the anterior neural 

plate in two lateral bands (als), extending along the presumptive hindbrain 

(r3 and 5 detected in red by krlO expression), the midbrain-hindbrain 

junction and the posterior part of the prospective midbrain (Fig. 25A, B). 

zBTBD6b-positive cells positioned at the level of the central hindbrain exhibit 

a higher level of expression and partially overlap with the paxla staining 

which marks the otic placode (op).

The timing and location of the anterolateral expression appearing at the 

border between neural and non-neural ectoderm correspond to the 

overlapping domains where neural crest and placodes arise in the 3-somite 

embryo (Baker and Bronner-Fraser, 2001; Bronner-Fraser, 1995; Eisen and 

Weston, 1993; Halloran and Berndt, 2003; Huang and Saint-Jeannet, 2004). 

Therefore, the zBTBD6b-positive cells in this region may belong either to 

neural crest or placodal primodia or to both.

Low level expression is also detected at this stage in two stripes of cells in 

dorsal r2 (r2s) as well as in a bilateral row of cells in the posterior neural plate
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Figure 25. Analysis of zBTBD6b expression in zebrafish embryos between 3- 

to 8-somites stages. Developmental stages are indicated in the lower right 

corner, krox-20 and pax2a expression are indicated in red. (A, C, E) Lateral 

views. (B, D, F) Dorsal views of the embryos in A, C, E, respectively, anterior 

to the left. (A, B) zBTBD6b expression is detected in two anterolateral stripes 

(als) extending along the prospective hindbrain (see r3 & r5 m arked in red), 

the midbrain-hindbrain boundary (MHB, in red) and the posterior 

presumptive midbrain. High-level transcripts in the otic placode (op) 

primodium overlap with pax2a expression indicated in red. Weak staining is 

also observed in a dorsal stripe in r2 (r2s) and in a bilateral row of cells in the 

posterior neural plate (arrowheads). (C, D) In the anterior neural plate, 

labelling appears in bilateral cell clusters: dorsal in rostral r2, dorsal 

anteriorly to MHB (arrowheads) and ventral in posterior r2 (arrow). The 

horseshoe-shaped band of zBTBD6b-ipositive cells in the most anterior ridge 

of neural plate might correspond to the anterior pituitary (ap). (E, F) The 

staining in the bilateral cell patches of anterior r2 becomes prom inent while 

expression in other cell clusters recedes. Additional sites of weak expression 

include r3 (r3s) and r5 (r5s) and the forebrain-midbrain junction (FM). (p) 

pronephric anlage (stained by pax2a in red).
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(arrowheads) (Fig. 25B). The location of the posterolateral stripes of cells in 

relation to the prospective pronephros, stained in red by paxla, suggest that 

they denote differentiating Rohon-Beard (RB) sensory neurons.

zBTBD6b transcripts are maintained in the 5-somite em bryo in the 

posteriolateral rows of cells as well as in the otic placodal primodium (Fig. 

25C, D). Staining is also observed in three pairs of cell clusters; out of the two 

cell clusters located more lateral (arrowheads), one is located rostrally and 

the other caudally to the MHB, while the third ventral cluster (arrows) is 

positioned in r2. In addition, zBTBD6b-positive cells are detected in a 

horseshoe-shaped band in the most anterior ridge of neural plate, which is 

probably the anterior pituitary (ap; Fig. 25D).

At 8 somites (Fig. 25E, F), weak staining in bilateral rows of cells in the 

posterior neural plate is still visible, while in the anterior regions, faint 

expression is observed segmentally in r3 and r5 of the hindbrain and in the 

forebrain-midbrain junction (FM). Intense labelling is also detected in the otic 

placodes, and in two lateral patches of cells located posteriorly to the MHB 

(arrowheads). This latter site of expression might correspond to clusters of 

sensory neurons of trigeminal ganglia or, alternatively, to the trigeminal 

nerve exit point primodia.

At 16.5 hpf (15 somites), zBTBD6b expression has spread mediodorsally in 

the midbrain and central hindbrain regions and at the level of the anterior 

trunk (Fig. 26A, B; arrowheads). By 18 hpf (18 somites), expression in these 

areas has narrow ed and become m ore restricted to the dorsal midline (Fig. 

26C, D; arrowheads). In addition, zBTBD6b RNA is detected in the rostral 

somites (s). A similar pattern of expression in the roof plate and the somites 

is observed in the 23 hpf embryo (Fig. 26E, F), except that, at this stage, the 

midline expression occurs in the anterior trunk only, and all somites (s) 

express zBTBD6b, with the anterior ones expressing more weakly than the 

posterior ones (compare Fig. 26E" with E'"). Transverse sections of
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Figure 26. Spatial pattern of zBTBD6b expression in zebrafish embryos 

between stages 16.5 hpf and 24 hpf. Developmental stages are indicated in 

the lower right corner, krox-20 and pax2a expression revealed in red are used 

as landmarks. (A, C, E, G) Lateral views. (B, D, F, H) Dorsal views of the 

embryos in A, C, E, G, respectively, anterior to the left. (C', C", C'" & E', E", 

E'") Sections of the embryos in C and E, respectively, cut along the line 

m arked by the corresponding letter. (A, B) zBTBD6b-positive cells are found 

mediodorsally in the midbrain, central hindbrain and anterior trunk 

(arrowheads) as well as in the bilateral cell clusters in the hindbrain (arrows). 

The expression in the otic placode (op) is very intense and is maintained until 

24 hpf. (C, D) Mediodorsal staining is maintained (arrowheads) and labelling 

in the anterior somites (s) appears (see the exact locations of transcripts in C', 

C" & C'"). Expression is also observed at the midbrain-hindbrain boundary 

(MHB). (E, F). Expressing cells are detected in the roof plate of the most 

anterior trunk (arrowhead) and in all somites (s); see crossections in E', E" & 

E'". Staining is also observed in the forebrain (f) and in the trigeminal ganglia 

(tg). (G, H) The expression in the anterior somites is down regulated, 

whereas it is maintained in the posterior somites. Forebrain expression is still 

observed (f).
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the trunk at different axial levels reveal that at 18 (Fig. 26C, C", C'") and 23 

hpf (Fig. 26E', E", E'"), zBTBD6b-positive cells are in the dorsal edge of the 

neural keel in the anterior-most trunk (arrowheads). In the m ore posterior 

region of the trunk, expression occurs along the outside of the neural tube 

and in the somites, while in the central trunk region transcripts are solely 

observed in the somites. At 24 hpf (Fig. 26G, H) the staining in the somites is 

maintained only in the caudal trunk.

Other sites of zBTBD6b expression observed between stages 16.5 and 24 hpf 

include the otic placode (op) (Fig. 26A-F1). zBTBD6b RNA is also detected in 

the midbrain-hindbrain boundary (MF1B) between stages 18 and 24 hpf (Fig. 

26C-H) and in telencephalon (t) at 23 and 24 hpf (Fig. 26E-H). In addition, at 

16.5 hpf, expression is observed in pairs of lateral cell clusters in the 

hindbrain region (Fig. 26A, B; arrows).

SPATIO-TEMPORAL ANALYSIS OF BTBD3 EXPRESSION PATTERN 

cBTBD3 expression profile

In order to determine the sites of cBTBD3 expression during avian 

development, three different digoxigenin-labeled antisense RNA probes 

were synthesised, using chick EST cDNAs as templates (Genebank Acc. No. 

BU444464, BU274818, BU389269). The generated probes w ere employed in 

whole m ount in situ hybridisations carried out on chick embryos ranging 

from stage HFI5 to 21, and the results obtained with each of the probes were 

compared. The three probes gave very similar results, and the presented 

data was obtained with the one that produced strongest signals.

cBTBD3 is first detected at the 1 somite stage in two bilateral stripes (arrows) 

posterior to the newly forming second somite (Fig. 27A, A'). Both stripes of 

expression are located at a distance of approximately one somite length 

apart from each other. With ongoing somitogenesis, these stripes of cBTBD3 

expression move in an anteroposterior direction in register with the forming
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Figure 27. cBTBD3 pattern between stages HH7 and 12. cBTBD3 expression 

was revealed by in situ hybridisation. Dorsal views, anterior to the left, devel

opmental stages are indicated in the lower right corner. (A', B', C , D') High- 

magnification views of the posterior part of embryos shown in A, B, C, D, 

respectively. In the H7 stage embryo (A, A') expression is observed as two 

bilateral stripes posterior to the forming somites (arrow), the posterior stripe 

labeling being very faint. These two stripes of expression have similar inten

sity in the slightly older embryo (B, B') and the posterior stripe is expanded in 

the embryos in C (HH10) and D (HH12). In the H10 (C, C') and H12 (D, D') 

stage embryos cBTBD3 transcripts are also detected in the pronephros 

(arrowhead in C  and D').
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somites, and reach the tailbud by stage 21 (Fig. 28D). The size of these 

expression domains and the amount of cBTBD3 transcripts within them, are 

varied. For example, the cBTBD3 positive stripes are of the same size in some 

embryos (Fig. 27A, A', B, B'), whereas in some other embryos the posterior 

stripe is broader than the anterior one (Fig. 27C, C , D, D'; Fig. 28B, D). While 

in some embryos, the expression of the anterior stripe is stronger than that 

of the posterior one (Fig. 27A, A'), in other embryos both stripes of 

expression are of similar intensity (Fig. 27B, B', D, D'; Fig. 28B). However, the 

location of cBTBD3 transcripts with respect to the forming somites remains 

the same: the anterior stripe is situated immediately next to the newly 

emerged somite and the posterior one, at a distance of approximately one 

prospective somite.

A second site of cBTBD3 expression observed at HH10 and HH12, occurs in 

bilateral stripes (arrowheads) lateral to the somites and caudal to the fifth 

somite (Fig. 27C, C' and D, D', respectively). This staining appears to 

correspond to the developing pronephros and correlates with the induction 

of the pronephros in the intermediate mesoderm posterior to the fifth 

somitic level (Abdel-Malek, 1950; Kuure et al., 2000; Mauch et al., 2000; Vize 

et al., 1997). cBTBD3 expression persists in the mesonephros in HH17 and 

HH21 embryos (Fig. 28A, B and E, respectively). In addition, at HH21 

cBTBD3 expression is observed in the developing stomach (Fig. 28F)

Spatial analysis of BTBD3 orthologs during zebrafish development

Two cBTBD3 co-orthologs, zBTBD3a and zBTBD3b, were identified by 

database searches in zebrafish and I analysed their expression patterns by 

whole-mount in situ hybridisation.

zBTBD3a expression profile

Preliminary analysis of the zBTB3a expression with antisense RNA probe 

generated from a 2 kb EST done (GeneBank Acc. No. AI883008) was
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Figure 28. cBTBD3 expression pattern between stages HH17 and 21. Whole 

mount in situ hybridisation was performed on chick embryos of stages HH17 

(A, B) and 21 (C, D, E, F). (B) Posterior part of the embryo in A viewed at 

higher power magnification showing bilateral stripes of cBTBD3-positive cells 

posterior to the last formed somite (arrows). (D) Tail-bud of the embryo shown 

in C at high-magnification: the more posterior stripe of cBTBD3 expression is 

wider than the anterior one (arrows). (E & F) Higher magnification of C show

ing expression in the mesonephros and developing stomach, respectively.

A
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performed in 3-19 somite stage zebrafish embryos and showed ubiquitous 

transcript distribution (Fig. 29A, C-I). To exclude the possibility that the 

observed staining represents non-specific background rather than a specific 

signal, a sense RNA probe, covering the identical cDNA region was used and 

no labelling was detected (Fig. 29B).

zBTBDSb expression profile

To analyse zBTBD3b expression pattern, double in situ hybridisation with 

pax2a and krox-20 probes was carried out.

zBTBD3b transcripts are first detected in the 2-somite stage embryo in the 

midline (arrow) posterior to the midbrain-hindbrain boundary (MHB) 

m arked by pax2a expression (Fig. 30A). A similar distribution of transcripts is 

observed at the 8-somite stage (Fig. 29B&C). Later in development, around 

the 19 hpf (19 somite) stage, expression is detected in clusters of cells in the 

anterior trunk (arrowheads), and a similar localisation of transcripts is 

observed at 23 hpf (Fig. 30F&G). Transverse sections through the trunk of 

the 23 hpf embryo (Fig. 30F"&F'") showed that expression is confined to the 

spinal cord (sc). In the most anterior spinal cord, zBTBD3b transcripts are 

situated in bilateral ventral cell clusters (Fig. 30F") that may correspond to 

m otor neurons, whereas in the more posterior regions, expression is also 

found in more dorsal cells in the spinal cord that are likely to be interneurons 

an d /o r sensory neurons (Fig. 30F"). In addition, at 23 hpf, the zBTBD3b 

expression is detected in the otic placodes (op; see transverse section) and in 

the diencephalon (d) and tectal (t) ventricular zones (Fig. 30F,G).
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Figure 29. zBTBDBa expression pattern analysed by whole-mount in situ hybri

disation. Developmental stages are indicated in the lower right corner. (A, B, D, 

F, H) Lateral views. (C, E, G, I) Dorsal views of the embryos in A, D, F, H respec

tively, anterior to the left. (A, C-I) Antisense RNA probe; transcripts are ubiqui

tously distributed. (B) Sense RNA probe, no signal detected.
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Figure 30. Developmental changes in zBTBD3b mRNA expression. 

Embryonic stages are indicated in the lower right corner, krox-20 and pax2a 

expressions revealed in red are used as landmarks. (B, D, F) Lateral views. 

(A, C, E, G) Dorsal views, anterior to the left, C, E and G corresponds to the 

embryos in B, D and F, respectively. (F',F",F'") Sections of the embryos in F 

cut along the lines m arked by the corresponding letters. (A) Transcripts are 

detected in the midline (arrow) of the neural plate posterior to midbrain- 

hindbrain boundary (MHB) are still present in this location in older embryo 

(B, C). (D, E) Clusters of zBTBD3b-positive cells (arrowheads) are found in 

the spinal cord. (F, G) In the anterior spinal cord (sc) expression is located in 

the ventral cell clusters (F") and situated laterally in the posterior spinal cord 

(F'"). Transcripts are also found in the otic placodes (op, see transverse 

section in F'), and in the diencephalon (d) and tectal (t) ventricular zones.
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DISCUSSION

Divergent expressions of BTBD3 orthologs in chick and zebrafish

cBTBD3 expression is predominantly confined to domains associated with 

two processes in chick embryogenesis: development of the urogenital 

system and somitogenesis. In the urogenital system, expression is located in 

the developing early kidney, first in the pronephros and then in the 

mesonephros. In somitogenesis, a highly dynamic domain, cBTBD3 

transcripts are found in the area immediately posterior to the next 

prospective pair of somites. Intriguingly, this expression is reminiscent of the 

expression of the segmental genes cMeso-1 and cMeso-2, the bHLH 

transcription factors, which are periodically activated in a segment-wide 

domain in the anterior presomitic m esoderm  (PMS), preceding the 

morphological segmentation process (Buchberger et al., 2002; Buchberger et 

al., 1998; Pourquie, 2004). Somite form ation is controlled by a molecular 

oscillator, the segmentation clock, which acts in presomitic mesoderm  and 

appears to be driven by Notch signalling (Cooke, 1998; Pourquie, 2003). 

Periodic activation of Notch in the PMS acts as a signal rhythmically initiating 

the process of somite boundary specification and subsequent establishment 

of the somitic rostro-caudal polarity (Buchberger et al., 2002; Takahashi et al., 

2000). Transcription factors of the M esp/M eso family act upstream  of a 

genetic cascade involving the Notch pathway and their periodic activation, as 

demonstrated in frog and mouse, requires Notch signalling (Jen et al., 1999; 

Moreno and Kintner, 2004; Takahashi et al., 2000). Therefore, it would be 

interesting to determine whether there is a regulatory relationship betw een 

cBTBD3 and cMeso-1 an d /o r cMeso-2 and, consequently, whether cBTBD3 has 

a role in the process of somitogenesis.

Neither expression of the BTBD3 co-orthologs in zebrafish was similar to the 

expression profile found in the chick system. zBTBD3a is ubiquitously 

expressed between the stages of 3-19 somites, while zBTBD3b is expressed at
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different time points in notochord, otic placodes, midbrain, forebrain and in 

a population of cells in the spinal cord.

cBTBD6 is expressed in the developing nervous system

The earliest expression of cBTBD6 is detected at the end of gastrulation and 

confined to the Hensen's node and the primitive streak. The primitive streak 

is first identified morphologically at the posterior margin of the epiblast as 

the site of ingression for endodermal and mesodermal cells. Subsequently, it 

undergoes progression during which it elongates rostrocaudally. When the 

cBTBD6 expression is first observed, the primitive streak is fully extended, at 

which time the epiblast adjacent to the streak is destined to form the medial 

part of the neural plate (Lemaire and Kessel, 1997; Schoenwolf and Smith, 

2000a; Schoenwolf and Smith, 2000b). Hensen's node is a specialised cluster 

of cells at the anterior tip of the primitive streak, a transient structure 

through which cells move during gastrulation (Boettger et al., 2001; 

Narasimha and Leptin, 2000). It is a source of secreted signals Chordin, 

Noggin and Follistatin, which induce the neural plate (Hemmati-Brivanlou et 

al., 1994; Lamb et al., 1993; Sasai et al., 1995; Sasai et al., 1994; Smith and 

Harland, 1992; Smith et al., 1993).

With the formation of the neural plate, cBTBD6 transcripts demarcate its 

lateral edges, at initially low and then gradually increasing levels. In these 

domains and at the same time, BMP4, BMP7 and the BMP target genes, 

MSX1 and DLX5, are expressed and specify the boundary betw een the 

neural and non-neural ectoderm (McLarren et al., 2003; Streit, 2002; Streit 

and Stern, 1999a). These regions also express early neural m arkers such as 

Sox3 or Sox2 (Streit and Stern, 1999a). The border cells are unique because, 

unlike cells inside the future neural plate or in the neighbouring prospective 

epidermis, they can be diverted to either a neural or a non-neural fate by 

BMP and its inhibitors (Streit and Stern, 1999a).
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The edges of the neural plate include also the territory fated to give rise to 

epidermal placodes and neural crest (Baker and Bronner-Fraser, 2001; 

Marchant et al., 1998; Schlosser, 2005; Streit, 2004; Tribulo et al., 2003). Thus, 

in the border or intermediate region between the neural plate and the 

epidermis, precursors of four tissues: neural, epidermal, placodal and neural 

crest, are intermingled (Streit, 2002). To determine which precise cell 

population cBTBD6 is expressed in, a comparative analysis of cBTBD6 

expression with neural (e. g. SOX3 (Uwanogho et al., 1995)), epidermal (e. g. 

epidermal keratin; (Sato and Yasugi, 1997) ), placodal (e. g. SIX4; (Esteve and 

Bovolenta, 1999; McLarren et al., 2003)) and neural crest (SLUG; (Nieto et al., 

1994) markers, is required.

At the onset of somitogenesis, cBTBD6 RNA is detected in the posterior 

prospective hindbrain, adjacent to the newly formed somites. Within this 

area the first neurons of the CNS are born (McConnell and Sechrist, 1980; 

Sechrist and Bronner-Fraser, 1991). cBTBD6 expression in this location is 

similar to that of the Notch ligand Delta!, which foreshadows the spatio- 

temporal pattern of neuronal differentiation and labels neuronal progenitor 

cells that have left the cell cycle (Henrique et al., 1995). Subsequently, cBTBD6 

expression is detected within the neuroepithelium of the forming hindbrain 

and the spinal cord in a pattern similar to Deltal and genes, e.g. N gnl and 

NeuroM, which participate in the process of neurogenesis (Akai et al., 2005; 

Henrique et al., 1995; Perez et al., 1999; Roztocil et al., 1997). Detailed 

examination of the location of cBTBD6 transcripts revealed that cBTBD6 

expression in the hindbrain is confined to clusters of cells in the neural tissue. 

Single cells and small clusters of cBTBD6-expressing cells are also observed 

anterior to r5 and in the spinal cord. This suggests that cBTBD6 transcripts 

are present in a specific population of differentiating cells within the neural 

tube. Double in situ hybridisation with cBTBD6, and Deltal, N gnl, NeuroM 

and other neuronal differentiation markers would assess whether there are 

overlapping expression patterns and would help to reveal the character of 

cBTBD6-positive cells.
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In addition, at the later stages, cBTBD6 transcripts are detected in the cranial 

sensory nerve ganglia (trigeminal, facial-acoustic and glossopharyngeal) that 

are derived partially from both the neural crest and epidermal placodes. No 

cBTBD6 expression is however detected in the migrating neural crest.

Thus, it appears that cBTBD6 is expression accompanies development of the 

CNS, both at the early stages of neurulation and establishment of the neural 

plate and at the later stages of neuronal differentiation. cBTBD6 expression 

may also be associated with the formation of the PNS as it is detected at sites 

where placodes and neural crest arise and later in development, in the cranial 

ganglia that originate from these tissues.

The cBTBD6 ortholog in zebrafish, zBTBD6a, is expressed predominantly 

in the forming CNS

Analysis of the spatiotemporal expression of a cBTBD6 ortholog in zebrafish, 

zBTBD6a, revealed that zBTBD6a transcripts are primarily detected in the 

developing CNS, in the developing hindbrain, spinal cord and the anterior 

brain.

zBTBD6a expression is first detected at the late gastrula stage in two bilateral 

cell clusters in the future neuroectoderm in the anterior epiblast. Once the 

neural plate is well defined, zBTBD6a-positive cells are distributed along three 

longitudinal stripes in the posterior neural plate: lateral, intermediate and 

medial, which m ark the domains of primary neurogenesis (Blader et al., 

1997). A subset of cells within each of these domains will differentiate into 

sensory neurons, interneurons, and m otor neurons, respectively (Inoue et 

al., 1994; Kim et al., 1996; Korzh et al., 1993). zBTBD6a transcription 

accompanies neuronal differentiation throughout the time of spinal cord 

formation until 24 hpf and then is downregulated. In the hindbrain, zBTBD6a 

expression is very dynamic and detected initially segmentally and then in cell 

clusters corresponding to forming neurons.
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Therefore, it appears that zBTBD6a, similar to its counterpart in chick, 

cBTBD6, is expressed in the forming CNS at the sites where neuronal 

differentiation occurs. Other similar sites of expression include otic placodes 

and trigeminal ganglia.

zBTBD6b has a mostly non-overlapping expression pattern with zBTBD6a

Whereas zBTBD6a expression occurs in the neuroepithelium of the CNS, the 

expression of zBTBD6b appears to be associated with sites of neural crest 

and / or placodal induction and neural crest migration.

At the early neurula stage, similar to cBTBD6, zBTBD6b RNA is detected at 

the edges of the neural plate where the neural crest and placodes arise 

(Baker and Bronner-Fraser, 2001; Bronner-Fraser, 1995; Eisen and Weston, 

1993; Halloran and Berndt, 2003; Huang and Saint-Jeannet, 2004). Double 

staining with premigratory neural crest markers, e.g. foxd.3 (formerly Jkd6) 

(Odenthal and Nusslein-Volhard, 1998) or sox9b (Li et al., 2002) or one of the 

placodal markers, e.g. six4.1 (Kobayashi et al., 2000b), would acertain the 

identity of cells labelled by zBTBD6b.

At later stages, zBTBD6b expression is observed in the mediodorsal regions 

of the midbrain, hindbrain and anterior trunk, and subsequently along the 

dorsal and lateral edges of the neural tube in the trunk. The location and 

timing of the appearance of zBTBD6b transcripts suggests that the expressing 

cells correspond to the neural crest, which, around the 12 somite stage 

(15hpf), commences migrating from the dorsal neural keel in a characteristic 

rostrocaudal sequence. In the trunk, neural crest cells migrate on a medial 

pathway between the neural tube and somite, and on a lateral pathway 

between ectodermal epithelium and the somite-derived derm om yotom e 

(Eisen and Weston, 1993; Halloran and Berndt, 2003). The zBTBD6b signal 

observed in the analysed embryos may correspond to the neural crest of the 

medial pathway. However, the labelling within the somites is very broad 

which indicates that the zBTBD6b transcripts are also in the somitic tissue and
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not solely restricted to the neural crest cells. Double in-situ hybridisation 

with migrating crest markers, e.g. crestin (Luo et al., 2001) or snailb (Knecht 

and Bronner-Fraser, 2002), would verify the identity of the zBTBD6fr-positive 

cells.

zBTBD6b expression is also detected in the otic placode primodia and 

maintained there until the last stage analysed (24 hpf). In addition, there is 

transient zBTBD6b expression in the trigeminal ganglia. These expression 

sites are common for all three cBTBD6, zBTBD6a and zBTBD6b orthologs.

Therefore, zBTBD6a and zBTBD6b have mostly non-overlapping expression 

profiles but share some aspects of their expression patterns with cBTBD6.

Gene duplications and BTBD3 and BTBD6 expression profiles

BTBD3 and BTBD6 belong to a novel family of genes characterised by the 

presence of BTB, BACK and PHR domains. Many gene families within a 

species are constituted of paralogous genes derived from a common 

ancestral gene. These paralogous genes arise as a result of regional gene 

duplications or whole genome duplications (increases in ploidy) (Lundin, 

1993; Ohno, 1970; Taylor and Raes, 2004). Some gene duplicates acquire a 

new function and others may lose their capacity to make a functional protein 

(Kuo et al., 2005). Whole genome duplications in ancestral vertebrates 

generally appear to have occurred before the separation of fish and 

tetrapods (including chicken). However, many gene families of zebrafish 

consist of more members than in tetrapods (Amores et al., 1998; Ekker et al., 

1997; Holland and Garda-Fernandez, 1996; McClintock et al., 2001). The 

greater num ber of genes in zebrafish was probably caused by additional 

genome-wide duplication which happened in the lineage leading to m odern 

ray-finned fishes (including zebrafish) but not along the lineage leading to 

tetrapods (Hoegg et al., 2004; Postlethwait et al., 2004; Postlethwait et al., 

2000; Postlethwait et al., 1998).
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Phylogenetic analysis assigned zBTBD6a and zBTBD6b as being the co

orthologs of cBTBD6, while zBTBD3a and zBTBD3b are orthologs of cBTBD3. 

A detailed spatio-temporal analysis of the expression patterns of cBTBD3 and 

zebrafish orthologs, revealed no common sites of expression, suggesting 

that the zebrafish BTBD3 genes do not represent functional orthologs of 

cBTBD3. This could be explained in a num ber of ways: there are additional 

(duplicated) members of the chick BTBD3 subfamily that are expressed 

similar to zBTBD3a and /o r zBTBD3b during embryogenesis; zBTBD3a and 

zBTBD3b represent an equivalent of other duplicated chick BTBD3 

genes/gene, which were lost during an evolution of the chick lineage while 

they were maintained in the zebrafish; or a different BTB gene family 

member, a predecessor of BTBD6 and BTBD3, has the role of zBTBD3a 

an d /o r zBTBD3b.

Comparison of the cBTBD6, zBTBD6a and zBTBD6b expression profiles 

showed that whereas zebrafish BTBD6a and BTBD6b have distinct 

developmental expression, they share some aspects of their expression 

patterns with cBTBD6. These data suggest that some features of the cBTBD6 

function may be divided up between these two co-orthologs, each having a 

m ore restricted function than the original one. zBTBD6a, similar to cBTBD6r is 

expressed in sites of neuronal differentiation, suggesting that its role might 

be associated with the process of neurogenesis. This aspect of potential 

function was chosen for further investigation in zebrafish.
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FUNCTIONAL ANALYSES OF zBTBD6a

Analysis of the zBTBD6a expression profile in zebrafish embryos up to 24 hpf 

revealed that zBTBD6a transcripts are detected in the developing CNS. 

During zebrafish neurogenesis, two populations of neurons are successively 

generated, early primary, and later secondary (Blader and Strahle, 2000; 

Chapouton and Bally-Cuif, 2004). Primary neurogensis begins during late 

gastrulation and continues during embryogenesis to produce neurons 

required for the m ovements of larvae after hatching. Secondary 

neurogenesis takes over the primary system and occurs particularly from 

post-embryonic stages (2 days post fertilisation, dpf) onward, but the first 

secondary neurons are already born at about 16 hpf (Appel et al., 2001; 

Kimmel et al., 1994; Mueller and Wullimann, 2003).

zBTBD6a expression occurs in the CNS throughout the process of primary 

neurogenesis. It is not clear whether zBTBD6a expression accompanies 

secondary neurogenesis as it is downregulated in the spinal cord at 24hpf 

and later stages of development were not analysed for zBTBD6a expression. 

At the onset of primary neurogenesis, zBTBD6a is expressed in paraxial 

domains of the posterior neural plate, a region m arked by proneural gene 

expression. In these proneuronal or neurogenic domains Notch-mediated 

lateral inhibition controls selection of neuronal progenitors that 

subsequently differentiate into prim ary neurons (Appel, 2000; Mumm and 

Kopan, 2000). The expression of zBTBD6a during neurogenesis and this early 

pattern of expression and timing suggests the possibility that zBTBD6a plays 

a role during early neuronal determination and /o r differentiation. In order 

to investigate this possibility, zBTBD6a expression was first compared in 

detail with early and late m arkers of neurogenesis. The relationship between 

the Notch signalling pathway and the zBTBD6a expression was then 

analysed. Finally, a potential function of zBTBD6a in the process of primary 

neurogenesis was tested by gene knockdown and misexpression 

approaches.
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COMPARATIVE ANALYSIS OF zBTBD6a EXPRESSION WITH 

SELECTED PRONEURAL AND NEURONAL MARKERS

zBTBD6a and deltaA, B and D  expression

zBTBD6a expression in the neural plate was compared with the distribution 

of transcripts of deltaA (dla), deltaB (dlb) and deltaD (did) (Appel and Eisen, 

1998; Haddon et al., 1998). In the late gastrula and early segmentation stage, 

these genes are expressed in proneuronal domains in the neural plate and 

are involved in the process of selection of individual progenitor cells to 

become neurons through lateral inhibition (Appel and Eisen, 1998; Appel et 

al., 2001). dla and did are expressed widely in these regions, in large groups of 

contiguous neural cells, exhibiting initially uniform and then varied levels of 

transcript accumulation that are due to lateral inhibition. All cells expressing 

dla and did have the potential to become primary neurons, but only the cells 

with high-level expression, will differentiate, dlb expression is nested within 

the dla and did expression domains and confined to the nascent neurons 

m arked by strong dla and did expression, dlb expression correlates with 

withdrawal from the cell cycle and labels early differentiating (early 

postmitotic) neurons.

Comparative in situ hybridisation perform ed at 1-2-somite (Fig. 31A, C, E, 

G) and 5-6-somite (Fig. 31B, D, F, H) developmental stages revealed that the 

zBTBD6a expression pattern is reminiscent of all three delta gene expression 

profiles and is most similar to dla. zBTBD6a transcripts are distributed in 

patches comprising of many contiguous cells in the lateral and medial 

regions of the neural plate; in some of these cells the expression is strong, in 

others weak. This is different to dlb that is detected in fewer scattered 

isolated cells instead of cell clusters in the lateral and medial domains.

This suggests that zBTBD6a transcripts, similar to dla, mark all cells within the 

proneuronal domains rather than only the early postmitotic neurons. Similar
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Figure 31. Comparison of the early expression patterns of zBTBD6a and 

deltaA, B and D genes. Dorsal views, anterior to the left. At 1-2-somite (A, C, E, 

G) and 5-6 somite (B, D, F, H) stages, zBTBD6a expression in the neural plate is 

reminiscent of the expression pattern of all three delta genes, and is most simi

lar to deltaA (C, D).
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to dla and did, the cells with higher accumulation of zBTBD6a transcript are 

likely to correspond to the selected neuronal progenitors.

zBTBD6a and neurogl expression

If zBTBD6a is expressed in cells which have the potential to become primary 

neurons, one would expect that its expression is concomitant with the 

expression of proneural genes, e.g. neurogl (Blader et al., 1997; Kim et al.,

1997) that marks cell populations in the neural plate, from which individual 

neuronal precursor cells will be singled out.

In order to compare zBTBD6a and neurogl early expression domains and 

establish whether both transcripts are located in the same cells, two-colour 

double in situ hybridisation was carried out on embryos between 80% 

epiboly and the 4-somite stage. This analysis revealed that neurogl 

expression, first observed at around 90% epiboly (data not shown, (Blader et 

al., 1997), precedes the onset of zBTBD6a expression, since in the youngest 

embryos exhibiting neurogl expression, no zBTBD6a transcripts were 

detected. Between the tailbud and 4-somite stages, both genes are expressed 

in overlapping domains in the posterior neural plate (Fig. 33A-F). zBTBD6a 

expression occurs in longitudinal stripes of cells where high levels of neurogl 

transcripts are detected (arrows) and in some adjacent areas exhibiting weak 

neurogl expression (arrowheads). Examination of the expression domains at 

single cell resolution confirmed that both the m ost highly and weakly 

expressing neurogl-positive cells in the lateral posterior neural plate express 

zBTBD6a (Fig. 32E,-E,,,).

In addition, these data suggest that in the hindbrain of tailbud and 1-somite 

stage embryos (Fig. 32A-D), neurogl is expressed in the forming m otor 

neurons (MN; Fig. 31A, C) and sensory neurons (SN; Fig. 32A, C) in r2 and 

r4, while the zBTBD6a transcripts appear to be distributed throughout the 

hindbrain posterior to r l  (hb; Fig. 32A-D). neurogl is also expressed in the 

trigeminal ganglia (tg; Fig. 32A, C) and in midbrain ventrocaudal cluster at
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Figure 32. Comparison of neurogl and zBTBD6a expression in the neural 

plate at early stages of zebrafish embryogenesis. neurogl and zBTBD6a are 

co-expressed as revealed by double in situ hybridisation for neurogl and 

zBTBD6a. Developmental stages are indicated in the lower right corner. 

Dorsal views, anterior to the left. (A, C, E) neurogl transcripts revealed in 

dark blue with BM Purple, zBTBD6a detected in red with Fast Red. (B, D, F) 

Fluorescent Fast Red staining of zBTBD6a viewed by epifluorescence . (E', E", 

E'") bright field, fluorescence and merge of the enlarged box region in E, 

respectively. zBTBD6a expression is found in cells exhibiting high (arrow) and 

low (arrowhead) levels of neurogl transcript, as confirmed at single cell 

resolution (E'-E'"). In the hindbrain of tailbud and 1-somite embryos (A-D), 

neurogl is expressed in the developing m otor (MN) and sensory (SN) 

neurons, while zBTBD6a expression occurs posterior to r l  (hb). neurogl but 

not zBTBD6a is expressed in the trigeminal ganglia (tg) (A, C, E), whereas in 

the midbrain-hindbrain boundary (MHB) of 4-somite stage embryos, 

zBTBD6a but not neurogl RNA is detected (E, F).
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the tailbud and 1-somite stage (vcc; Fig. 32A, C), and zBTBD6a is not 

expressed in these regions, whereas at 4-somite stage only zBTBD6a but not 

neurogl signal is detected in the MFtB (MHB; Fig. 32E,F).

In conclusion, although zBTBD6a expression pattern is not identical to 

neurogl in the anterior neural plate, in the posterior neural plate there is co

localisation of zBTBD6a and neurogl expression in cells within the 

proneuronal domains.

zBTBD6a and islet-1 expression

In order to determine whether zBTBD6a expression occurs in cells that have 

completed the neuronal differentiation process, double in situ hybridisation 

was performed with a probe for isletl (isll), a m arker of specific postmitotic 

terminally differentiating neurons (Fig. 33).

isll expression is first detected in the neural plate at the 1-2-somite stage 

(data not shown, (Inoue et al., 1994; Korzh et al., 1993), while zBTBD6a 

expression can already be detected at the late gastrula stage (see Fig. 33A). 

isll transcripts label primary Rohon-Beard sensory and m otor neurons 

differentiating in lateral and medial proneural clusters, respectively (Inoue et 

al., 1994; Korzh et al., 1993). Examination of 3-somite stage em bryos 

revealed that almost all zsZl-expressing primary neurons co-express zBTBD6a 

(arrows; Fig. 33A, B & A'-A'"). However, zBTBD6a expression is also found in 

many cells in the medial and lateral neural plate that are not expressing isll 

(arrowheads; Fig. 33A, B), which are likely to correspond to either 

undifferentiated proliferating neural cells or prospective neurons at earlier 

stages of neurogenesis. This suggests that zBTBD6a expression precedes isll 

expression an d /o r alternatively that zBTBD6a expression occurs in cells 

specified for other neuronal fates. In addition, a few isll-expressing neurons 

do not contain zBTBD6a transcripts, suggesting that zBTBD6a expression is 

down regulated once neuronal differentiation occurs.
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Figure 33. Expression of zBTBD6a and isll in the posterior neural plate. 

zBTBD6a is expressed in most is ll-positive primary neurons as assessed by 

double in situ hybridisation at the 3-somite stage. Dorsal views, anterior to 

the left. (A) isll transcripts revealed in dark blue with BM Purple, zBTBD6a  

detected in red with Fast Red. (B) Fluorescent Fast Red staining of zBTBD6a  

viewed by epifluorescence. (A', A", A"') bright field, fluorescence and merge 

of both of the enlarged box region in A, respectively. Most differentiated 

primary neurons labelled by isll co-express zBTBD6a, as shown in the lateral 

sensory neurons (arrows; A'-A"'). zBTBD6a expression is found in many more 

cells in the neural plate outside the isll expression domain (arrowheads; A, B, 

A"). A few is ll-positive cells that do not express zBTBD6a are indicated by an 

asterix (A7, A"').
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zBTBD6a and ELAV-like3/HuC expression

The ELAV-like3 (elavl3)/HuC gene encodes a neuron-specific RNA binding 

protein that is expressed in all post-mitotic, differentiating neurons at all 

stages of neuronal development (Kim et al., 1996; Park et al., 2000a). To 

determine whether zBTBD6a expression occurs at later stages of neuronal cell 

differentiation, a comparative analysis of the zBTBD6a and elavl3 expression 

profiles at 18 and 22 hpf was undertaken. To this end, zBTBD6a transcripts 

were detected by in situ hybridisation in elavl3/HuC-GFP transgenic embryos 

(Park et al., 2000b), in which green fluorescent protein (GFP), was revealed 

by immunochemistry. zBTBD6a and elavl3/HuC expression were detected 

with different fluorescent signals and the images were taken using the same 

focal plane.

At 18 and 22 hpf, zBTBD6a RNA is found in a subpopulation of differentiating 

neurons m arked by the presence of elavl3 protein (arrows; Fig. 34A", B", C", 

D") in the hindbrain (hb) and the spinal cord (sc). zBTBD6a expression is also 

observed in some neural cells in which elavl3 protein is absent (arrowheads; 

Fig. 34B", C", E"). Neurogenesis in the spinal cord progresses in an anterior 

to posterior sequence (Appel et al., 1995). Accordingly, in the caudal spinal 

cord (tsc) of the 22 hpf embryo, elavl3 protein is distributed in a decreasing 

num ber of cells more caudally. Conversely, zBTBD6a transcripts are found in 

an increasing num ber of cells more caudally, suggesting that zBTBD6a marks 

neuronal progenitors at earlier stages than elavl3 expression. N ot all 

differentiating neurons marked by elavl3 protein express zBTBD6a 

confirming the result with isll, which suggests that neurons downregulate 

zBTBD6a as they differentiate.
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Figure 34. Comparison of zBTBD6a and elavl3/HuC expression. Partially 

overlapping expression of zBTBD6a and elavl3/HuC was detected in the 

hindbrain (hb) and the spinal cord (sp) of 18 (A-A77, B-B", C-C") and 22 hpf 

embryos (D-D", E-E"). zBTBD6a mRNA, shown in green (A, B, C, D, E), was 

detected by whole m ount in situ hybridisation in elavl3/HuC-GFP zebrafish 

transgenic embryos, using TSA fluorescent substrate. Subsequently, in the 

same embryos, elavl3/HuC protein, labelled in red (A7, B7, C , D7, E7), was 

revealed with anti-GFP antibody. (A", B", C", D", E") are m erges of the 

corresponding single staining images. All images are of the same single focal 

plane. zBTBD6a transcripts are found in the subpopulation of neurons where 

elavl3/HuC protein is detected (arrows), m arked in yellow, and in other cells 

devoid of elavl3/HuC protein (arrowheads). Note that in the caudal spinal 

cord (tsc; E-E7), zBTBD6a signal is located in an increasing num ber of cells 

towards the tail tip, while the num ber of neurons expressing elavl3/HuC 

protein is declining.
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REGULATION OF zBTBD6a EXPRESSION

zBTBD6a is under the control of Notch signalling

Early zBTBD6a expression is punctate in longitudinal domains in the neural 

plate. This distribution of transcripts is characteristic of neurogenic genes 

subjected to Notch-mediated lateral inhibition (Blader et al., 1997; Haddon et 

al., 1998; Takke et al., 1999). This suggests the possibility that zBTBD6a may 

also be Notch dependent.

zBTBD6a expression is suppressed by Notch-mediated signalling

Notch activation occurs upon binding to Delta or Serrate ligand by a 

proteolytic cleavage that releases an intracellular fragment of Notch that acts 

as a co-factor for Suppressor of Hairless [Su(H)], which then can drive 

expression of target genes (Bray and Furriols, 2001; Mumm and Kopan, 

2000; Struhl and Adachi, 1998). Major Notch targets are Enhancer of Split 

[E(spl)] bHLH proteins that act as repressors of the proneural genes that 

drive neurogenesis (Artavanis-Tsakonas et al., 1999; Fisher and Caudy,

1998).

To investigate whether zBTBD6a expression is modulated by the Notch 

pathway, a constitutively active [Su(H)-Ank] form of Suppressor of Hairless 

1, was expressed (Wettstein et al., 1997). A strong reduction of zBTBD6a 

expression was observed at the 4-5-somite stage in the injected embryos 

compared with uninjected control embryos (Fig. 35).

This result suggests that the zBTBD6a expression is down-regulated by 

Su(H)-dependent Notch signalling. It cannot be excluded that this effect of 

Notch activation on zBTBD6a expression is indirect, especially that the 

misexpression was performed in 1-cell stage embryos, which can potentially 

perturb earlier developmental processes. However, as zBTBD6a appears to 

be a m arker of neurogenesis, it is likely that zBTBD6a expression is affected
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Figure 35. zBTBD6a expression is under control of the Notch pathway. (B-G) 

Embryos injected at one-cell stage with RNA encoding a constitutively active 

form of the Notch effector Suppressor-of-Hairless [Su(H)] and analysed at the 

4-5-somite stage for zBTBD6a expression by whole-mount in situ hybridisa

tion. zBTBD6a expression is reduced (14/16 embryos) compared to uninjected 

control embryo (A).
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by Notch signalling in a similar m anner as an expression of all other 

neuronal markers: downregulated upon Notch activation and upregulated 

when the Notch signalling is blocked. There is some retention of zBTBD6a 

expression in the middle of the neural plate, which may suggests that spinal 

cord neurogenesis is less sensitive to increased Notch signalling than in the 

hindbrain.

zBTBD6a expression is suppressed through the [Su(H)] target genes

To verify that the observed repression of zBTBD6a expression is caused by 

Notch-mediated activation of transcriptional repressors, zBTBD6a expression 

was analysed in embryos with a knockdown of her4, a mem ber of the E(spl) 

family (Takke et al., 1999). her4 is a direct target of Notch signalling 

expressed in the proneuronal domains in the neural plate where it inhibits 

neuronal differentiation. Prevention of the synthesis of Her4 protein by 

injecting antisense morpholino oligonucletides (MO) (Ekker, 2000; Ekker and 

Larson, 2001; Erickson, 1993; Nasevidus and Ekker, 2000; Pasini et al., 2004) 

resulted in up-regulation of zBTBD6a expression, especially in the neural keel 

region, as observed in 4-5-somite stage embryos (Fig. 36). zBTBD6a 

expression in the open neural plate region seems to be unaffected and this 

could be explained by the presence of other Her proteins (eg. Her2, Herl2; 

Bae, 2005) activated by Notch that are still functional and prevent up- 

regulation of zBTBD6a expression in this area. This result indicates that 

zBTBD6a expression is modulated by Notch signalling through activation of 

at least the her4 target gene.
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Figure 36. Effect of the her4 knockdown on zBTBD6a expression. Loss of 

Her4 induces increased expression of zBTBD6a w ithin the neural plate 

(21/26 embryos). Control (A) or her4 MO-injected (B, C, D) embryos probed 

for the expression of zBTBD6a gene at the 5-somite stage.
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zBTBD6a expression is up-regulated in the Notch defective embryos, mib

To further probe the significance of the above observations, zBTBD6a 

expression was analysed in embryos with loss of Notch signalling. To this 

end a neurogenesis mutant mind bomb (mib) (Jiang et al., 1996), was used, 

which displays a strong reduction in Notch signalling due to a mutation in 

the gene encoding a ubiquitin ligase for Delta (Itoh et al., 2003). In the mib 

mutant, reduced lateral inhibition permits excessive num bers of cells to 

become neurons and depletes the population of progenitors needed for 

neurogenesis in the CNS to continue.

In 3-somite stage mib embryos, w hen compared with wild type controls, 

zBTBD6a expression is increased and becomes homogenous within the 

neurogenic domains (Fig. 37A, B). Similarly, at 24 hpf, compared with 

controls, mib mutants exhibit elevated levels of zBTBD6a expression in the 

hindbrain, the forebrain and the spinal cord (Fig. 37C-F). This result together 

with the outcome of the previous experiments indicates that zBTBD6a is 

under the negative control of Su(H)-dependent Notch signalling.

Neurogl controls zBTBD6a expression

neurogl is a proneural gene that is negatively regulated by the Notch 

signalling. Since zBTBD6a expression is also suppressed upon Notch 

activation, the next question to address was whether this suppression is due 

to the loss of N eurogl activity.

Morpholino-mediated neurogl inactivation abolishes zBTBD6a expression

First, zBTBD6a expression was examined when neurogl translation was 

blocked by specific MO oligonucleotodes injected into the yolk of 1-4-cell 

embryos. Whole mount in situ hybridisation revealed a major reduction or 

complete absence of zBTBD6a expression in neurogl MO-injected em bryos at
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Figure 37. Expression of zBTBD6a is elevated in the neurogenic mindbomb 

(mib) zebrafish mutant. (A, C, E) Wild-type siblings (B, D, F) mib m utant 

embryos, showing an increase of zBTBD6a-expressing cells.
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the 3-somite stage (Fig. 38; compare A to B-I)), indicating that N eurogl is 

required for the expression of zBTBD6a.

Misexpression of neurogl induces ectopic zBTBD6a expression

To examine whether N eurogl is capable of inducing zBTBD6a expression, 

misexpression was carried out by injection of neurogl RNA into zebrafish 

embryos. Overexpression of N eurogl leads to the ectopic formation of isll- 

expressing cells in the ectoderm outside the neural plate (Blader et al., 1997; 

Takke et al., 1999). To check the efficiency of the neurogl RNA construct, a 

control experiment was carried out. Embryos were injected into 1-cell with 

neurogl RNA and analysed for isll expression at the 3-somite stage. I found 

that the injected embryos have ectopic isll- positive cells in the yolk 

ectoderm (Fig. 39). Additionally, the neural plate of the injected embryos 

appears to be slightly expanded, and in some embryos there is an 

accumulation of isll- positive cells at the edges of the neural plate, both 

anteriorly and laterally (arrows; Fig. 39B & D), while the norm al isll 

expression pattern within the neural plate is distorted an d /o r reduced.

Injection of neurogl RNA into 1-cell embryos induced ectopic expression of 

zBTBD6a within the neural plate at sites where zBTBD6a transcripts are not 

normally present (Fig. 40 and 41). As observed in the previous experiment, 

the neural plate is slightly enlarged. zBTBD6a expression occurs throughout 

entire neural plate except for the very posterior part. Ectopic zBTBD6a 

expression is punctate suggesting that it might be subjected to lateral 

inhibition.

Overexpression of N eurogl in 1-cell stage embryos may have an indirect 

effect on zBTBD6a expression. However, taking into consideration that 

zBTBD6a and neurogl expression overlaps in the posterior neural plate and 

that neurogl knockdown results in abrogation of zBTBD6a expression, it is 

most likely that N eurogl activates zBTBD6a transcription in the neural plate.
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Figure 38. Effect of loss of Neurogl on zBTBD6a expression. Knock dow n of 

neurogl is accompanied by loss of zBTBD6a transcripts (31/31 embryos). 

Embryos injected at the 1-4 cell stage with either control (A) or neurogl (B-I) 

morpholino and analysed at the 3-somite stage for zBTBD6a expression by in 

situ hybridisation.
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Figure 39. Effect of Neurogl overexpression on isll expression. Misexpression 

of neurogl induces ectopic isll expressing cells in the non-neural ectoderm of 

the yolk sac and causes disruption and/or reduction of the normal isll expres

sion pattern within the neural plate (41/41 embryos). 3-somite stage embryos 

processed through in situ hybridisation with isll RNA probe. (A) Anterior 

(Ant), posterior (Pos) and lateral (Lat) views of an uninjected control. (B, C, D) 

Examples of three embryos injected with neurogl RNA at the 1-cell stage. Note 

the accumulation of the isll-positive cells at the edges of the neural plate 

(arrow, B, D).
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Figure 40. Effect of neurogl misexpression on zBTBD6a expression. Overexepression of 

Neurogl induces ectopic expression of zBTBD6a within the neural plate (28/28 

embryos). 3-somite stage embryos subjected to in situ hybridisation with zBTBD6a 

RNA probe. (A) Anterior (Ant), posterior (Pos) and lateral (Lat) views of an uninjected 

control. (B, C, D) Examples of three embryos injected with neurogl RNA at 1-cell stage.
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Figure 41. Dorsal views of embryos injected with neurogl RNA. Flat mount prepara

tions of 3-somite stage ebryos, uninjected (A) and injected at 1-cell stage with neurogl 

RNA (B-G). Expression of zBTBD6a was detected by in situ hybridisation. Note the 

spotty appearance of ectopic expression of zBTBD6a located throughout the whole 

neural plate except for the most posterior part.
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This activation could be direct, or indirect executed through another factor 

acting downstream of N eurogl.

FUNCTIONAL DISSECTION OF zBTBD6a

zBTBD6a is expressed in neuroepithelial cells that have the potential to 

become neurons as well as in differentiating neurons during primary 

neurogenesis. At early stages of primary neurogenesis, zBTBD6a expression 

is confined to neurogenic territories in the neural plate where early neurons 

are born. This expression is dependent on Notch signalling and activated by 

N eurogl. Therefore, taking all these data into consideration, there is a 

possibility that zBTBD6a function may be involved in the process of 

neurogenesis.

Neurogenesis is a progressive process that leads to the production of 

differentiated neurons (Bertrand et al., 2002; Blader and Strahle, 2000; Brunet 

and Ghysen, 1999). During primary neurogenesis, neurogl expressed in the 

proneuronal domains of the neural plate promotes neuronal differentiation 

through the activation of a cascade of genes that control successive steps of 

this process (Blader et al., 1997; Ma et al., 1996). The expression of these 

genes underlies the consecutive stages of neuronal differentiation.

In order to elucidate whether zBTBD6a plays a role in primary neurogenesis 

and, if this is the case, at what stage zBTBD6a activity is required in this 

process, morpholino-mediated zBTBD6a knockdown and zBTBD6a 

misexpression were used.

I first analysed the effects of zBTBD6a knockdown on the expression of late 

and then of progressively earlier markers of neurogenesis (Fig. .42). These 

include: late marker, isll, expressed in specific differentiated neurons (Inoue 

et al., 1994; Korzh et al., 1993); intermediate markers, neurod4, neurod, and 

dlb, that are expressed in the early postmitotic neurons and label the
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Figure 42. Elucidating the position of zBTBDa activity in the molecular path

way leading to neuronal differentiation. This involved analysis of the effects 

of zBTBD6a knock down on the expression of selected markers, indicated in 

blue, underlying successive steps of neurogenesis, neurogl and dla are the 

earliest markers of the neuroepithelial cells of the neurogenic regions from 

which neuronal progenitors arise. Postmitotic early neurons are labelled by 

neurod4, neurod and dlb, while specific terminally differentiated neurons are 

marked by isll.
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transition between the proliferating and differentiation stage (Korzh et al., 

1998; Park et al., 2003; Wang et al., 2003); and early markers of 

neuroepithelial stem cells, neurogl and dla, taking part in neuronal 

selection/determination (Blader et al., 1997; Haddon et al., 1998; Kim et al., 

1997; Korzh et al., 1998).

Effect of zBTBD6a knockdowns on neuro genesis

zBTBD6a knockdown reduces the number of differentiated primary 

neurons labelled by is ll

To test whether zBTBD6a is required for neurogenesis, antisense MO 

oligonucleotides against the zBTBD6a ATG region, were injected into the 

yolk of 1-4-cell stage embryos to specifically block translation of zBTBD6a 

mRNA. MO standard control oligonucleotides that should have no target 

and no significant biological activity were injected as a control. The specific 

and control morpholino-injected embryos were analysed at early 

somitogenesis stages for the presence of differentiating neurons, as 

identified by in situ hybridisation with the isll RNA probe. When compared 

with controls, morphants exhibited a reduction in the num ber of primary 

neurons at the 2-3-somite stage (Fig. 43A-G). The severity of this phenotype 

varied from embryo to embryo, and ranged from differentiated neurons 

being almost completely absent (Fig. 43F, G) to a slight decrease in num bers 

of medially positioned motorneurons and laterally located sensory neurons 

(Fig. 43B, C).

The neuronal expression of isll is first detected at around the 1-2-somite 

stage in a small num ber of differentiated neurons and increases gradually as 

a larger num ber of progenitor cells undergo differentiation. To test w hether 

decreased neurogenesis occurs at late stages, the analysis was also 

performed in older embryos of 5-6 somites (Fig. 43H-N). Similar results 

were obtained, but the effects of the zBTBD6a inactivation were milder, with
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Figure 43. Effect of zBTBD6a knockdown on isll expression.The number of 

cells expressing the neuronal differentiation marker isll is decreased in 

zBTBD6a MO-injected embryos at the, 2-3 somite (B-G; 45/51 embryos) and 

5-6 somite (I-N; 20/28 embryos) stages. (B-G) and (I-N) are examples of 

injected embryos with varying phenotypes. (A & H) 2- and 5-somite stage 

embryos, respectively, injected with the control morpholino.
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most morphants having a reduction in the num ber of neurons rather than 

being completely absent.

In a num ber of zBTBD6a MO-injected embryos sensory neurons appeared to 

be more affected than m otor neurons at 2-3 somite stage, while at 5-6 somite 

stage there was a more severe reduction of m otor neurons than sensory 

neurons. This could suggest a differential effect of zBTBD6a loss on neuronal 

populations, however no clear quantitative evidence is available at present to 

confirm it.

Loss of zBTBD6a results in a decrease of neurod expressing cells

To ascertain whether zBTBD6a activity is required at earlier stages of 

neuronal differentation, the effect of loss of zBTBD6a on neurod expression 

was examined (Fig. 44A-L). In 2-3-somite zBTBD6a MO embryos, the num ber 

of neurod-expressing cells is strongly diminished (Fig. 44B-E), compared with 

the control (Fig. 44A). Similary, at the 5-6-somite stage, a reduction of 

new rod-positive cells in the morphants is observed but to a lesser degree (Fig. 

44; compare F with G-L).

Loss of zBTBD6a causes a decrease of deltaB  (dZZ;)-expressing cells

To test whether the zBTBD6a knockdown affects dlb expression, zBTBD6a 

MO-injected embryos, were analysed at the 2-3- and 5-6-somite stages (Fig. 

45). At both developmental stages, the m orphants showed mild reduction of 

dlb expression compared with the control embryos, which was due to the 

decline of a num ber of dlb-positive cells rather than to the overall levels of 

dlb expression being decreased (see higher magnification; Fig. 45F, G). In 

addition, at 5-6-somite stage zBTBD6a MO-injected embryos exhibited a 

slight reduction of dlb expression in the forebrain region, where zBTBD6a is 

not normally expressed. This could suggest an indirect effect of zBTBD6a 

loss on dlb expression in the forebrain.
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Figure 44. Effect of loss of zBTBD6a on neurod expression. zBTBD6a knock

down results in reduction of neurod-expressing cells in 2-3-somite (B-E; 21/23 

embryos) and 5-6-somite (G-L; 26/31) stage embryos. (A & F) 2- and 5-somite 

stage embryos, respectively, injected with the control morpholino.
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Figure 45. Effect of zBTBD6a knockdown on deltaB expression. Loss of 

zBTBD6a results in decreased deltaB expression in 2-3-somite (A-G; 15/18) and 

5-6-somite (H-L; 20/25) stage embryos. (A &H) 2- and 5-somite stage embryos, 

respectively, injected with the control morpholino. (F & G) Higher magnifica

tion of the posterior neural plate of the control and zBTBD6a MO-injected 

embryos, respectively, showing that the number of deltaB-expressing cells is 

decreased in the morphant embryos.
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Blocking of zBTBD6a translation results in reduction of neurod4 

expression

I next tested whether neurod4 expression is dependent on zBTBD6a (Fig. 

46A-L). The zBTBD6a morphants were analysed at the 2-3- (Fig. 46A-G) and 

5-6- (Fig. 46H-L) somite stages. This analysis revealed a mild reduction of 

neurod4 expression at the 5-6 somite stage, which was more pronounced in 

the 2-3-somite embryos. The observed decrease of neurod4 signal was due to 

both a decrease in the num ber of neurod4-iposi\ive cells and a reduction of 

the expression levels, as shown in the higher magnification views of the 

posterior neural plate (Fig. 46F, G).

zBTBD6a knockdown does not affect expression of neurogl and dla

Experiments testing the effect of MO-induced zBTBD6a inactivation on the 

expression of genes involved in selection/determination of neuronal 

progenitors, neurogl (Fig. 47) and dla (data not shown), revealed no change 

to their expression patterns.

Taken together, the data obtained in the zBTBD6a knockdown experiments 

showed that zBTBD6a is required for neurogenesis to progress at the norm al 

rate and extend. Loss of zBTBD6a does not affect expression of the earliest 

neuronal markers involved in neuronal determination/selection, neurogl 

and dla and, but negatively affects expression of early postmitotic markers, 

neurod4, neurod and dlb and consequently the neuronal differentiation 

marker, isll. These results indicate that zBTBD6a is involved in the process of 

neuronal differentiation subsequent to the selection of neuronal progenitors.

However, to further validate the above results, rescue experiments in which 

zBTBD6a is overexpressed in the zBTBD6a MO-injected embryos should also 

be performed. Rescue of the phenotype resulting in normal neurogenesis 

would confirm a specific effect of the MO oligonucleotides on blocking 

zBTBD6a translation and zBTBD6a role in neuronal differentiation.
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Figure 46. Effect of loss of zBTBD6a on neurod4 expression. Expression of 

neurod4 is reduced in zBTBD6a MO-injected embryos at both the 2-3-somite 

(B-G; 22/25) and 5-6-somite (I-L; 17/20) stages. (A &H) 2- and 5-somite stage 

embryos, respectively, injected with the control morpholino. (F & G) Higher 

magnification of the posterior neural plate of the control and zBTBD6a MO- 

injected embryos, respectively, showing that the level of neurod4 expression 

and the number of neurod4-expressing cells are decreased in the morphant 

embryos. 15g
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Figure 47. Effect of zBTBD6a knockdown on neurogl expression. No change to 

neurogl expression was observed in 2-3-somite zBTBD6a MO-injected em

bryos (B-E; 28/31) compared with the control morpholino-injected embryos 

(A).
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Alternatively, splice-blocking MO oligonucleotides that span the exon/intron 

junction and inhibit pre-mRNA splicing could be used to inactivate zBTBD6a 

(Draper et al., 2001).

Second splice variant of zBTBD6a transcript

zBTBD6a knockdown causes a reduction in differentiated primary neurons, 

but the resulted phenotype is mild. One possible explanation for this is the 

presence of another molecule that functions redundantly with zBTBD6a. 

While this project was well under way, further DNA sequence database 

searches revealed the presence of a second splice variant of zBTBD6a 

transcript. According to the computer analysis provided by the Ensembl 

zebrafish sequence database, it is predicted that the cDNA of the first 

described zBTBD6a splice variant, now called zBTBD6al, contains 4 exons, 1-4 

(Fig. 48A). Based on the sequencing results of the corresponding ESTs, 

GenBank Acc. Nos BG308275 and XP682998, exon 1 includes a 5' end UTR 

and the initiation translation codon located approximately half way through 

the exon. The exact beginning of this exon is not known as no gene structure 

analysis was performed and the data obtained from Ensembl is currently 

incomplete in this regard.

The other zBTBD6a splice variant, designated zBTBD6a2, contains 5 exons, 0-4 

(Fig. 48B), with last three exons (2-4) being identical to zBTBD6alf and exon 1 

being shorter at the 5' end but the remaining part is identical to its 

counterpart in zBTBD6al. The additional exon 0 contains a 5' UTR and a 

potential translation initiation codon located at the beginning of a truncated 

exon 1; this was confirmed by sequencing of the corresponding two 

zBTBD6a2 EST clones (GenBank Acc. Nos. BM025225 and BM023959). Since 

the zBTBD6a2 initiation ATG is in frame with the zBTBD6al ATG, the amino 

add sequence of a putative protein encoded by the zBTBD6a2 isoform, is 

identical to zBTBD6al, but shorter at the N-terminus by 56 amino acids (Fig. 

48C). All three structural motifs - BTB, BACK and PHR - are present in the 

predicted zBTBD6a2 polypeptide.
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Figure 48. Two splice variants of zBTBD6a transcript. (A, B) Intron-exon 

organisation of zBTBD6al and zBTBD6a2, respectively. Exons are indicated as 

boxes, and intronic sequences as thin lines. The dashed line boxes illustrate the 

5' UTR. The initiation of translation codon ATG is indicated with arrows. The 

positions of the encoded protein domains (BTB, BACK and PHR) with respect 

to the exon boundaries, are indicated. The two morpholino oligonucleotides, 

designed against zBTBD6al and zBTBD6a2, are indicated in green. (C) An 

alignment of the N-terminus of zBTBD6al and zBTBD6a2a predicted pro

teins. As the result of alternative splicing, the first 56 amino acids present in 

the zBTBD6al protein are missing in the zBTBD6a2 variant.
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The MO oligonudeotides used in the previous experiments target only one 

of the zBTBD6a isomers, potentially leaving the product of the other one 

functional (Fig. 48A). If proteins encoded by zBTBD6a splice variants both act 

during zebrafish neurogenesis that could explain why the obtained 

phenotypes were mild.

Expression of zBTBD6a splice variants during zebrafish developm ent

The spatio-temporal expression profile of zBTBD6a described in the previous 

chapter was obtained by in situ hybridisation utilising the RNA probe 

represented by BG308275 EST (the whole 2358 bp long zBTBD6a cDNA 

clone). Since the nucleotide sequences of both zBTBD6al and zBTBD6a2 

isomeres are identical over the 1924 bp long 3' end region, the probe detects 

the sum  of both zBTBD6a splice variants. To discriminate between these two 

splice variants, RNA probes complementary to the nudeotide sequences 

unique for each of the zBTBD6a isomeres were generated and used for in situ 

hybridisation. These sequences encompass the 360 bp long 5' end region of 

exon 1 specific for zBTBD6al, and 100 bp long exon 0 specific for zBTBD6a2a. 

The sensitivity of both RNA probes in detecting specific signal was poor, 

most probably due to the probes being short. The in situ hybridisation 

perform ed with the zBTBD6al RNA probe provided barely satisfactory 

results, but no reliable signal was obtained with the probe specific for 

zBTBD6a2. Nevertheless, the expression pattern acquired for the zBTBD6al 

splice variant appears to be similar to the zBTBD6a expression profile 

described in the previous chapter (data not shown).

To examine whether both splice variants are expressed at the time of early 

neurogenesis, analysis of their temporal expression profiles was perform ed 

using RT-PCR. The PCR reaction was carried out on cDNA from pools of 

embryos ranging between 1000 (lK)-cell and 9-somites w ith two different 

pairs of primers specific for each zBTBD6a isomer. The results with one set of 

primers producing 334 bp and 100 bp bands specific for zBTBD6al and 

zBTBD6a2, respectively, are presented (Fig. 49); similar results were obtained
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Figure 49. Analysis of the expression levels of the splice variants zBTBD6al 

and zBTBD6a2 during early stages of zebrafish development. Total RNA 

extracted from pools of individuals, of the indicated developmental stages, 

were subjected to RT-PCR. Reverse transcription was carried out with random 

hexamers, and pairs of primers were used for amplification of the two splice 

variants. Amplification of Elongation factor l a  (Elfla) served as a control for 

cDNA synthesis and loading. Lane M contains a 100-bp ladder molecular size 

marker, hpf, hours post-fertilisation.
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with the other primer pair (data not shown). These results show that while 

zBTBD6al is detectable throughout the whole period of development 

examined, zBTBD6a2 transcripts appear at low levels at 80% epiboly and 

increase in level until the 9-somite stage.

These data indicate that both genes are transcribed when early neurogenesis 

is taking place and in the time window analysed in this study. In addition, 

there is a possibility that zBTBD6al is maternally expressed. zBTBD6al 

transcripts are already detected at lK-cell stage, the time point in 

development when the midblastula transition (MBT) commences, marking 

the time of activation of zygotic genome (Dosch et al., 2004; Kane and 

Kimmel, 1993; Newport and Kirschner, 1982; Pelegri, 2003). In zebrafish 

embryos, this transition occurs gradually and throughout a period of 

approximately 2 hours, therefore it is likely that the zBTBD6al transcript 

detected at lK-cell stage, is of maternal origin. Analysis of earlier 

developmental stages would clarify this issue.

Effect of zBTBD6a2 ablation on primary neuronal differentiation

The oligonucleotides used in the previously described knockdown 

experiments target the translation initiation of zBTBD6al mRNA, but the 

translation of zBTBD6a2 would remain intact (Fig. 48A). To elucidate the 

effects of zBTBD6a2 inactivation on neuronal differentiation, an antisense MO 

against the zBTBD6a2 ATG region was designed (Fig. 48B) and injected into 

embryos. The outcome was analysed by in situ hybridisation to detect isll in 

3-4-somite stage embryos.

Initial experiments carried out with the same dose of MO oligonucleotides as 

for zBTBD6al knockdowns (6.5ng), produced developmental arrest of the 

injected embryos. The use of a lower dose (3.2ng) resulted in 90% of 

morphants arrested at the 80-90% epiboly stage. Further reducing the 

amount of MO oligonucleotides to 1.6ng was required to obtain viable 

embryos. The phenotype observed in embryos injected with 1.6ng of
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zBTBD6a2 MO included reduction (Fig. 50C) or total loss (Fig. D, E) of 

primary neurons, marked by isll expression (Quantification in Table 1). 

Occasionally, an increase of isll expression in trigeminal ganglia was also 

observed (arrow, Fig. 50B; Table 1). There were also some morphological 

alterations accompanying the effects on the primary neurogenesis. About 

half (23% of the total number; see Table 1) of the embryos with total absence 

of differentiated neurons, were shorter along the AP axis (Fig. 50D). In some 

embryos (15%) the neural plate appeared slightly expanded (Fig. 50C). These 

data indicate that zBTBD6a2 is required for primary neuronal differentiation 

to occur.

Synergistic effects of zBTBD6alMO and zBTBD6a2MO on primary 

neuro genesis

To determine whether zBTBD6al and zBTBD6a2 have overlapping roles in 

the process of primary neurogenesis, injections of individual or combined 

oligonucleotides against both splice variants were perform ed and the 

embryos were analysed using isll as a marker. The MO doses were selected 

based on the results of the pilot experiments, which when injected 

separately, elicited very mild phenotype, but when co-injected, still did not 

cause any toxic effect.

Injection of 3.2ng of zBTBD6alMO (6.5ng caused an obvious phenotype) 

elicited a slight decrease in the num ber of isll-expressing cells in 13% of 

embryos and the remaining embryos did not display any phenotype (Fig. 

51B; Table 1). Embryos injected with 0.8ng of zBTBD6a2MO (1.6ng elicited 

severe phenotype; Table 1) showed a weak phenotype, in which 49% have a 

mild reduction in the num ber of zs/l-positive cells, 7% have a total loss of isll 

expression and 12% have increased isll expression in the trigeminal ganglia 

(Fig. 51; Table 1). In contrast, when these amounts of zBTBD6alMO and 

zBTBD6a2MO were injected together, the morphants showed a much more 

severe depletion or complete loss of differentiated neurons. These am ounted
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Figure 50. Effect of the zBTBD6a2 ablation on zebrafish primary 

neurogenesis. Embryos injected with antisense morpholino oligonucleotides 

against zBTBD6a2 were subjected to in situ hybridisation for isll. (A) 

Anterior (Ant), posterior (Pos) and lateral (Lat) views of a 3-somite stage 

embryo injected with the control morpholino. (B, C, D, E) Corresponding 

anterior, posterior and lateral views of four 3-4 somite stage morphant 

embryos showing a range of phenotypes resulting from the knockdown of 

zBTBD6a2.
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Figure 51. Cumulative effect of zBTBD6al and zBTBD6a2 knockdowns on 

zebrafish primary neurogenesis. Morpholino-injected embryos were 

subjected to in situ hybridisation for isll. (A, A', A") Anterior (Ant), posterior 

(Pos) and lateral (Lat) views of a 4-somite stage embryo injected with the 

control morpholino. (B-B") 4-somite stage embryo injected with 3.2ng of 

BTBD6alMO. (C-C") Embryo injected with 0.8ng of BTBD6a2MO. (D-D", E- 

E") Examples of two m orphant embryos resulting from the combined 

injection of both morpholinos against zBTBD6al and zBTBD6a2.

No. (%) of embryos with:

no isM epression reduced isl-1 increased isl-1 w ild  type isl-1 
MO injection in the n.plate expr. in the n. pi. expr. in tgm g. expression

BTBD6al (3.2ng, n=45) 0 6(13) 0 39 (87)
BTBD6a2 (1.6ng, n=50) 23 (46) 17 (34) 12 (24) 10 (20)
BTBD6a2 (0.8ng, n=41) 3 (7) 20 (49) 5(12) 13 (32)
BTBD6al+2 (3.2ng+0.8ng, n=60) 53 (88) 7(12) 0 0

n indicates the total number of embryos injected

Table 1. Quantification of the effect of morpholino-mediated knockdown of 

zBTBD6al and zBTBD6a2 on neuronal differentiation.
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to 12% (Fig. 51D) and 88% (Fig. 51E) of m orphants with strongly reduced or 

completely absent is ll-positive cells, respectively (Table 1).

These results show that the loss of both zBTBD6al and zBTBD6a2 has a 

cumulative effect in preventing primary neurogenesis. This suggests that the 

proteins encoded by the zBTBD6a splice variants have overlapping functions 

in promoting primary neuronal differentiation.

Ectopic zBTBD6a does not elicit increased neurogenesis

In order to test w hether misexpression of zBTBD6a would elicit an increase in 

neuronal differentiation, zBTBD6al was overexpressed in zebrafish embryos 

and the outcome was analysed by in situ hybridisation for isll. zBTBD6al- 

Myc-tagged RNA was injected together with |3-galactosidase RNA, as a 

m arker for the presence of injected RNA. The injections were perform ed 

into 1 blastomere of 2-cell embryos, and the embryos with unilateral X-gal 

staining permitting comparison with the other control side were selected for 

further analysis. The generation of zBTBD6a protein in the injected embryos 

was confirmed by W estern analysis (Fig. 52B). Misexpression of zBTBD6a did 

not produce any change in isll expression on the injected side of the 

embryos, indicating that zBTBD6a over expression is not sufficient to increase 

neuronal differentiation (Fig. 53).

The misexpression and subsequently described experiments involve only the 

zBTBD6al isoform, as at the time they were carried out, the zBTBD6a2 

isoform had not yet been identified.

Ectopic expression of zBTBD6a deletion mutants elicits defects similar to 

those of zBTBD6a knockdowns

zBTBD6a encodes a protein characterised by the presence of three domains, 

BTB, BACK and PHR. As will be discussed later, these motifs suggest that 

BTBD6a may act as an adaptor protein that assembles a protein complex.
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Figure 52. Construction and expression of wild type (WT) and mutant 

BTBD6a proteins. (A) Schematic illustration of constructs used for the genera

tion of BTBD6a recombinant proteins in zebrafish embryos and HEK293 cells. 

(B) One-cell stage zebrafish embryos were injected with capped RNA encod

ing Myc-tagged WT or mutant BTBD6a, cultured until the 3-somite stage, 

lysed and the fusion protein detected by immunoprecipitation(IP) and West

ern blot analysis. The molecular weights of the BTBD6aWT, APHR and ABTB 

recombinant proteins correspond to their predicted sizes based on conceptual 

translations of the open reading frames (asterix). IB, immunobloting; a-Myc, 

anti-Myc antibody.
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Figure 53. Effect of zBTBD6a misexpression on primary neurogenesis. Overex

pression of the full-length zBTBD6a does not affect isll expression (39/39 

embryos). Embryos at the 2-cell stage were injected into one blastomere, either 

with lacZ RNA alone (A) or co-injected with zBTBD6a V\7T and lacZ RNA (B-E) 

and stained at the 3-4-somite stage for (3-gal activity (turquoise) before in situ 

hybridisation with isll antisense probe (dark blue).
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This predicts that its function will be impaired by deletion of domains, and 

this may have a dominant negative effect. To gain insight into the 

requirements of these domains for zBTBD6a function, two deletion variants 

of the zBTBD6al cDNA, ABTB and APHR, lacking sequences encoding for BTB 

and PHR motifs, respectively, were constructed (Fig. 52A). The expression of 

m utant proteins in the injected embryos was confirmed by W estern blot 

analysis (Fig. 52B). The m utant RNAs were co-injected with p-galactosidase 

RNA into 1-blastomere of 2-cell embryo and the effects on neuronal 

differentiation was monitored at 3-4-somite stage by isll expression. The 

misexpression of either ABTB (Fig. 54) or APHR (Fig. 55) has similar effects. 

Both result in a reduction in the num ber of isl 1-expressing cells an d /o r a 

slight expansion of the neural plate on the injected side of the embryos. The 

severity of this phenotype depends on how far laterally the truncated 

zBTBD6a protein is expressed in relation to the neural plate, as m arked by X- 

gal staining. In embryos where the m utant zBTBD6a protein extends m ore 

laterally, the decrease in the num ber of isll-positive cells is more profound 

(arrow; Fig. 54D-G & Fig. 55E, F, H).

These defects are similar to those obtained in the experiments with MO- 

mediated zBTBD6a inactivation, indicating that removal of any of the 

domains blocks zBTBD6a activity. Therefore, the presence of both BTB and 

PHR domains is indispensable for zBTBD6a function in neuronal 

differentiation.

Subcellular localisation of zBTBD6al

To shed some light on the potential molecular mode of zBTBD6a function, 

the subcellular localisation of the full-length and truncated forms of zBTBD6a 

protein was examined. To this end, stable HEK293 cell lines expressing Myc- 

tagged, wild-type (BTBD6alWT), PHR domain-deleted (APHR) and BTB 

domain-deleted (ABTB), zBTBD6al proteins, were established. The 

expression of the recombinant proteins was confirmed by W estern blotting 

(Fig. 56A). Immunocytochemical staining with anti-Myc antibodies showed
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Figure 54. Effect of ABTB overexpression on primary neurogenesis. ABTB RNA 

was injected, together with lacZ RNA as a marker, into one blastomere of 2-cell 

embryos. Dorsal views of 3-4-somite stage embryos, with isll expression in 

dark blue, and lacZ marker in turquoise; anterior to the top. The number of 

differentiated neurons, labelled by isll is reduced on the injected side (59%; 

24/41 embryos, A-I). This reduction is more severe where the overexpressed 

protein extends more laterally in the neural plate (arrow; D-G). A slight expan

sion of the neural plate on the affected side is also observed (60%; 25/41 

embryos).
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Figure 55. Effect of APHR overexpression on primary neurogenesis. (A-I) 

Dorsal views of 3-4-somite stage embryos injected into one out of two blasto- 

meres with APHR RNA, together with lacZ RNA as a marker, and stained for 

p-galactosidase (turquoise ) and isll (dark blue); anterior to the top. The 

number of primary neurons marked by isll expression is diminished on the 

injected side (63%; 17/27 embryos) and more severely decreased where the 

overexpressed protein extends more laterally in the neural plate (arrow; D-G). 

A slight expansion of the neural plate on the affected side is also observed 

(89%; 24/27 embryos).
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Figure 56. Subcellular localisation of norm al and truncated zBTBD6al 

recombinant proteins. (A) Detection of Myc-tagged wild-type (BTBD6alWT), 

BTB domain-depleted (ABTB) and PHR domain-depleted (APHR), BTBD6al 

proteins expressed in HEK293 stable cell lines. Total cell lysates were 

resolved by SDS-PAGE, followed by immunoblotting (IB) with anti-Myc (a- 

Myc) antibodies. MAPK in red is a loading control, while the relevant 

zBTBD6al proteins are labelled in green. (B) Subcellular localisation of 

BTBD6al WT and mutant proteins was detected immunohistochemically 

with anti-Myc antibodies (first row). Nuclei are shown with DAPI staining in 

the second row and merged views are shown in the third row.
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that BTBD6alWT protein was localised in the cytoplasm, APHR protein was 

found only in the nucleus, whereas ABTB protein was detected in both 

cytoplasm and nucleus (Fig. 56B, first row). The cytoplasmic expression of 

both BTBD6alWT and ABTB proteins has a granulated appearance.

These data show that the subcellular localisation of the full-length zBTBD6a 

protein confined normally to cytoplasm, is altered with the rem oval of the 

BTB and PHR domains. These changes may reflect zBTBD6a function at the 

molecular level and may depend on other proteins that zBTBD6a associates 

with.

BTBD6al associates with Cul3 in vivo

Recent reports showed that a subset of BTB proteins are involved in the 

ubiquitination process and function as an adaptor for the Cul3-type E3 

complex (Furukawa et al., 2003; Geyer et al., 2003; Kobayashi et al., 2004; 

Pintard et al., 2003; Xu et al., 2003a). To determine whether this is the case for 

zBTBD6a, the potential interaction of zBTBD6al with Cul3 in vivo was tested 

by immunoprecipitation analysis. Stable HEK293 cell lines expressing Myc- 

tagged full-length, BTBD6alWT, and the truncated forms, APHR and ABTB, 

were used for this purpose. Endogenous Cul3 was immunoprecipitated with 

an anti-Cul3 antibody and immunoblot analysis for zBTBD6a was perform ed 

with an anti-Myc antibody (Fig. 57). This analysis showed that BTBD6alWT 

and to a much lesser degree ABTB were co-immunoprecipitated with Cul3, 

indicating that both, the wild-type and BTB-depleted zBTBD6al proteins, 

associate with Cul3.

These results indicate that zBTBD6al specifically interacts with Cul3 and this 

interaction is dependent on the presence of the PHR domain. The presence 

of BTB domain may be dispensable as the ABTB m utant co- 

immunoprecipitated, albeit to a low extend. Therefore, zBTBD6al may be 

involved in ubiquitination functioning as a substrate-specific adaptor for the 

Cul3-type E3 ubiquitin ligase.
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Figure 57. zBTBD6a associates with Cul-3. Ectopically expressed wild-type 

zBTBD6al, but not PHR domain-deleted zBTBD6al, interacts with endog

enous Cul-3 in HEK293 cells. HEK293 cells, not transfected (Control) or 

expressing Myc-tagged wild-type (BTBD6alWT), BTB domain-deleted (ABTB) 

or PHR domain-deleted (APHR) zBTBD6al proteins, were lysed and the 

lysates were immunoprecipitated with anti-Myc (a-Myc, left panel) or anti- 

Cul-3 (a-Cul-3, right panel) antibodies. Generation of the correctly sized 

wild-type and truncated BTBD6al proteins (left panel) and complex forma

tion between ectopically expressed proteins and endogenous Cul-3 (right 

panel), was checked by immunoblotting with anti-Myc antibodies. Cul-3 

binds BTBD6alWT (arrow) and to a lesser extent ABTB protein (arrowhead), g, 

goat; m, mouse; r, rabbit.
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DISCUSSION

Based on the data presented in this section and on published literature, the 

following model for zBTBD6a role in zebrafish neurogenesis is proposed 

(Fig. 58). zBTBD6a acts downstream of neurogl and prom otes neurogenesis 

by enabling degradation/deactivation of a factor that represses 

neurogenesis. This factor could be an Id, Sox or other protein that 

antagonises a transcription factor that promotes neuronal differentiation, 

such as neurod4 or neurod. As will be discussed later, an alternative possibility 

is that zBTBD6a activates a transcription factor that promotes neurogenesis.

zBTBD6al expression and regulation

My studies have shown that zBTBD6a is expressed in the developing CNS. At 

early neurula stages, zBTBD6a transcripts are detected in the prospective 

hindbrain and in longitudinal domains in the posterior neural plate. This 

posterior zBTBD6a expression is similar to the expression pattern of the 

Notch ligand, dla, and overlaps with expression of the proneural gene, 

neurogl. Expression of dla and neurogl in the posterior neural plate 

prefigures primary sensory neurons, interneurons and m otor neurons 

(Blader et al., 1997; Chapouton and Bally-Cuif, 2004; Haddon et al., 1998). 

Therefore, zBTBD6a expression marks the posterior 

neurogenic/proneuronal regions where primary neurogenesis takes place. 

The proneuronal domains are separated by inter-proneuronal domains 

which do not undergo neurogenesis while it is occurring in the proneuronal 

domains. It has recently been proposed that the position of proneuronal and 

inter-proneuronal regions is controlled by Hairy- and Enhancer of split 

E(spl)-related (Her) genes her3 and her9 that function as prepattern genes 

(Bae et al., 2005). These genes are expressed in the inter-proneuronal stripes 

where they actively inhibit neurogenesis. Combined knockdown of Her3 

and Her9 induces expansion of the proneuronal domains of neurogl, dla, 

neurod4 and elav3 expression into the inter-proneuronal domains, neurogl 

and zBTBD6a are co-expressed in the posterior neural plate, and neurogl
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Figure 58. Working model for the role of zBTBD6a in zebrafish neurogenesis. 

Direct relationships are shown as solid lines, and unknown or indirect rela

tionships as dashed lines. See the text for detailed descriptions.
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misexpression and knockdown experiments demonstrated that zBTBD6a 

expression is regulated by N eurogl. Therefore, it is likely that the restriction 

of zBTBD6a expression to the neurogenic regions is spatially controlled by 

her3 and her9 via repression of neurogl.

Within the neurogenic regions, neurogenesis is initiated by high level 

expression of neurogl in a subset of progenitor cells (Bertrand et al., 2002; 

Blader et al., 1997; Chapouton and Bally-Cuif, 2004). The selection of 

progenitors relies on the process of lateral inhibition controlled by the Notch 

signalling pathway (Appel and Chitnis, 2002). Cells with high neurogl 

expression express the Notch ligands, e.g. Delta, which activate Notch 

signalling in the neighbouring cells (Appel and Eisen, 1998; Haddon et al.,

1998). As a result of Notch receptor activation, these neighbouring cells 

express H er transcriptional repressors that, in turn, directly suppress neurogl 

expression (Takke et al., 1999). In this way neurogl restricts its own activity 

to single progenitor cells by inhibiting its expression in adjacent cells, thereby 

preventing these cells from differentiating. Thus, the initial uniform neurogl 

expression in proneuronal domains becomes restricted to single cells that 

enter a differentiation pathway. zBTBD6a expression in the posterior neural 

plate has a punctate appearance, similar to neurogl. Analysis of the 

relationship of zBTBD6a with Notch signalling suggests that zBTBD6a 

expression occurs in this pattern due to sensitivity to Notch-mediated lateral 

inhibition. The regulation of zBTBD6a expression by Notch signalling is 

executed through the activation of Notch target, E(spl) her4 repressor which 

represses neurogl (Takke et al., 1999). As will be discussed below, zBTBD6a is 

downstream of neurogl, and this explains its regulation by Notch-mediated 

lateral inhibition. Since zBTBD6a knockdown does not affect neurogl or dla 

expression, it appears that zBTBD6a is not playing a direct role in the Notch 

regulatory feedback loop.
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zBTBD6al expression during neuronal differentiation

Proneural genes promote neuronal differentiation by inducing a sequence of 

downstream regulatory genes implementing successive stages of neuronal- 

differentiation program m e (Bertrand et al., 2002; Lee, 1997). They are the 

earliest markers of neurogenesis and are expressed transiently in the 

proliferating neural progenitors. In the vertebrate neural tube, proneural 

genes are downregulated before progenitor cells exit the proliferation zone 

and begin to differentiate (Gradwohl et al., 1996; Ma et al., 1996). isll is one of 

the latest markers and is characteristic of a subset of terminally differentiated 

neurons (Inoue et al., 1994; Korzh et al., 1993). In the proneuronal domains 

of the neural plate, zBTBD6a expression is detected concomitantly with the 

proneural gene neurogl in neural cells that are at early phases of 

neurogenesis, as well as in differentiated neurons m arked by isll. zBTBD6a 

expression appears to be downregulated at later phases of neuronal 

differentiation, as some fsZl-positive and elavl3/HuC-expressing neurons do 

not contain zBTBD6a transcripts. Analysis of the caudal spinal cord suggests 

that initiation of zBTBD6a expression in the neuronal progenitors precedes 

the onset of elavl3 expression, concomitant with the withdrawal from the cell 

cycle, confirming that zBTBD6a expression accompanies early stages of 

neuronal differentiation.

Position of zBTBD6a in the neuronal differentiation gene hierarchy

As a step towards defining the role of zBTBD6a during neurogenesis, I have 

positioned zBTBD6a function in the gene cascade underlying neuronal 

differentiation. zBTBD6al knockdown does not affect expression of neurogl 

or dla, early markers of neurogenesis which take part in the process of the 

determination and selection of neuronal progenitors. Moreover, zBTBD6al 

expression is activated by N eurogl.

In contrast to the lack of effect on neurogl expression, zBTBD6al knockdown 

leads to decreased expression of neurod and neurod4. neurod and neurodd are
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bHLH genes that m ark the transition between the proliferation and 

differentiation stages in the process of neurogenesis (Korzh et al., 1998; Park 

et al., 2003; Wang et al., 2003). Gain of function experiments in Xenopus 

embryos have revealed that Ngnrl (a Xenopus neurogl gene), Xath3 (a 

Xenopus neurod4 gene) and NeuroD (a Xenopus neurod gene) are expressed 

sequentially, and ectopic expression of Ngnrl induces the expression of both 

Xath3 and NeuroD, whereas Xath3 and NeuroD can cross-activate each other, 

but do not induce Ngnrl expression (Ma et al., 1996; Perron et al., 1999). 

Similarly, NeuroM, a neurodd hom ologue in chick, is transiently expressed in 

the spinal cord after Neurogenin, but before NeuroD, and labels 

differentiating neurons that have left the cell cycle but have not yet started 

migration to their final positions (Diez del Corral et al., 2002; Roztocil et al., 

1997). The relative position of neurod and neurod4 in the molecular hierarchy 

of neuronal differentiation in zebrafish has not been analysed. However, it is 

expected that there is the same epistatic relationship between these two 

genes, which places zBTBD6a upstream  of neurod4 followed by neurod.

The loss of zBTBD6al function also results in a reduction of the num ber of 

cells expressing dlb. This delta gene acts downstream of neurogl and marks 

committed progenitors after their withdrawal from the cell cycle (Haddon et 

al., 1998). However, the exact position of dlb in the neurogenesis cascade in 

relation to neurod4 and neurod has not been established. The expression 

pattern of dlb in the early neurula embryo resembles the expression of 

neurod4 rather than neurod, which appears to be expressed in a 

subpopulation of dlb- and neurod4-positive cells. Therefore, one would 

assume that dlb and neurod4 m ark similar stages of neuronal development 

and both act upstream of neurod. However, as discussed previously, the 

zBTBD6al knockdown results need to be further confirmed with the rescue 

of the neurogenesis deficit in morphants by injecting zBTBD6al RNA. This 

approach seems to be plausible, as zBTBD6al overexpression does not elicit 

any phenotype.
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Although loss of zBTBD6al decreases, rather than completely inhibits 

neurogenesis, knockdown of both zBTBD6al and zBTBD6a2 splice variants 

almost completely prevents neuronal differentiation. Thus, the proteins 

encoded by both zBTBD6a isoforms appear to have overlapping functions 

and together are required for neural progenitors to undergo neuronal 

differentiation.

However, the relationships between the zBTBD6al and zBTBD6a2 proteins 

in their roles in neurogenesis are yet to be determined. Ablation of the 

zBTBD6a2 splice variant alone results in a reduction or total absence of 

primary differentiated isl 1-expressing neurons. It is not clear why the high 

level of BTBD6al expression, as determined by RT-PCR, cannot compensate 

for the loss of BTBD6a2 in neurogenesis and this issue is difficult to resolve 

without a cell-resolution expression analysis. These expression data might 

also explain the basis for the morphological defects observed in some 

BTBD6a2 morphants. If zBTBD6a2 is required for some other earlier 

developmental processes, the observed neurogenic phenotype might be a 

secondary effect. Therefore, it is possible that zBTBD6a isoforms are 

expressed in different cells and /o r alternatively, that there are quantitative 

an d / or qualitative differences between these two proteins.

Overexpression of wild-type zBTBD6al does not alter the num ber of 

differentiated neurons labelled by isll. Therefore, while zBTBD6a seems to 

be required for neuronal differentiation, it appears not to be sufficient to 

drive progenitors to a neuronal fate. This suggests that zBTBD6 plays a 

permissive role in neurogenesis. However, it should be noted that these 

overexpression experiments have yet to be carried out with both zBTBD6al 

and zBTBD6a2 proteins.

Both overexpression of truncated forms of zBTBD6al protein and combined 

loss of zBTB6al and zBTBD6a2, results in severe decrease in or total absence 

of isl 1-expressing cells. Frequently, the loss of differentiated neurons is 

accompanied by an expansion of the neural plate. The same effect has been
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reported after misexpression of a Xenopus Notch variant, and following 

misexpression of her4 in zebrafish (Coffman et al., 1993; Takke et al., 1999). 

In these reports, similarly to my work, an enlargement of the neural plate is 

concomitant with a reduction in the numbers of cells expressing neuronal 

markers, including isll. The explanation for this phenom enon is unclear. One 

possibility is that there is increased proliferation in the neural plate as the 

neuronal differentiation is blocked/decreased and /o r delayed. Indeed 

studies of the Xenopus neural-specific transcription factor XBF-1 (now 

term ed FoxGl) have shown that misexpression of XBF-1 at high doses 

results in suppression of neuronal differentiation and an expansion of 

undifferentiated neuroectoderm and this expansion is in part due to an 

increase in cell proliferation (Bourguignon et al., 1998; Hardcastle and 

Papalopulu, 2000). Another possibility is that there is a disruption of the early 

morphogenic movements that results in the neural plate being wider. If this 

was a case, there is a possibility that the observed loss of neurogenesis in 

embryos with impaired zBTBD6a function represents a secondary effect. 

However, currently such a mechanistic link between morphogenic 

movements and the progression of neurogenesis downstream of proneural 

genes seems a more complex model since similar enlargement of the neural 

primodium have been reported in experiments with molecules that have 

proven involvement in the neurogenesis. Further experiments would clarify 

this issue.

Proposed model of zBTBD6a function

Immunoprecipitation analysis showed that zBTBD6al associates with Cul-3. 

Cullins (Culs) are subunits of a class of RING ubiquitin ligases that are part of 

the ubiquitin system primarily directing substrates for proteosome-mediated 

degradation (Hershko and Ciechanover, 1998; Kipreos et al., 1996). Three 

enzymes are involved in the ubiquitin transfer reaction: El, which mediates 

the ATP-dependent activation of ubiquitin, an E2 ubiquitin conjugating 

enzyme, and an E3 ubiquitin ligase, which transfers ubiquitin to the target 

protein. Cullin-based E3 ubiquitin ligases recruit protein substrates to a
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ubiquitin machine through substrate-specific proteins. Recent studies have 

identified members of the BTB-domain protein family as substrate-specific 

adaptors of Cul3-based E3 ubiquitin complexes (Furukawa et al., 2003; Geyer 

et al., 2003; Kobayashi et al., 2004; Krek, 2003; Pintard et al., 2004; Xu et al., 

2003a). Since zBTBD6al immunoprecipitates with Cul-3, a component of E3 

ubiquitin ligase, it may act as one of these adaptor proteins involved in the 

ubiquitination process.

The reported BTB adaptor proteins contain, in addition to the N-terminal 

BTB domain, an interaction motif located in the C-terminus: kelch, MATH or 

ankyrin. However, the interaction of BTB proteins without additional 

recognisable motifs with human Cul-3 has also been reported (Xu et al., 

2003a). Two initial studies in human and yeast showed that the BTB domain 

interacts directly with Cul-3 (Furukawa et al., 2003; Xu et al., 2003a), while a 

study in C. elegans demonstrated that the interaction with substrate is 

mediated through a MATH domain (Pintard et al., 2003). However, a recent 

report on the ubiquitination of the transcription factor Nrf2 mediated by the 

BTB protein Keapl identified yet another domain responsible for the 

association with Cul-3 (Kobayashi et al., 2004; Stogios and Prive, 2004). This 

domain, called the intervening-region or BACK domain is located in Keapl 

protein between the N-terminal BTB and C-terminal kelch motifs. Therefore, 

the role of each of the domains in formation of the ubiquitin complex may 

differ in each specific BTB adaptor protein and may also depend on the 

substrate protein and /o r other components contributing to the ubiquitin 

complex. zBTBD6a protein contains BTB, BACK and PHR domains. I found 

that removal of the PHR domain prevents zBTBD6al from interacting with 

Cul-3, while zBTBD6a lacking the BTB domain has a weaker interaction. 

Therefore, it appears that while zBTBD6al association with Cul3 is 

dependent on the presence of the PHR domain, the BTB domain appears to 

not be essential for this interaction. It is interesting that full-length zBTBD6al 

localises to the cytoplasm, while PHR- and BTB-deleted zBTBD6al proteins 

are confined either to the nucleus or both the nucleus and cytoplasm, 

respectively. Thus, perhaps interaction with Cul-3 ubiquitin ligase a n d / or
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substrate is what keeps zBTBD6a in the cytoplasm. Hence, deletion of PHR 

domain prevents this interaction and as a consequence zBTBD6a protein 

localises to the nucleus; removal of BTB domain results in a weak interaction, 

which causes partial zBTBD6a localisation in the nucleus. Both zBTBD6al 

m utant proteins used in this study contain a BACK motif. At the time when 

the immunoprecipitation analysis was carried out, this motif had not yet 

been identified as a protein functional domain and therefore was not 

included in the analysis. Further investigation is required to elucidate the role 

of the BACK domain in zBTBD6a function.

An involvement of the protein domains of zBTBD6a in mediating an adaptor 

function is supported by the results of misexpression experiments. While 

ectopic expression of full-length zBTBD6al did not affect neuronal 

differentiation, overexpression of either the BTB- or PHR-deleted zBTBD6al 

proteins, resulted in decreased neurogenesis. Therefore, the removal of 

these zBTBD6al domains may act in a dom inant negative manner as it 

elicited a similar result as MO-mediated zBTBD6al knockdown. An adaptor 

function requires that the domains interacting with target protein and the 

degradation machinery are linked to each other. Thus, truncation of one or 

other of the domains is predicted to act in a dominant negative manner, as 

the target protein will not be brought to the degradation machinery in the 

cytoplasm. When the PHR domain is removed, the truncated zBTBD6al 

protein traverses to the nucleus, but low levels of the ectopic protein are still 

present in the cytoplasm. As described above, the degree of nuclear 

localisation of wildtype and truncated zBTBD6al correlates with the ability to 

bind Cul-3. The shift in localisation can be m ost easily explained as being 

consequence of the dominant negative action of truncated zBTBD6al, in 

which it binds to a target protein (e.g. transcription factor) but fails to 

sequester it to the cytoplasm for degradation. Such a dominant negative 

effect is concordant with the phenotype being seen as caused by knockdown 

of zBTBD6al.

188



Taking these data together, I propose that the role of zBTBD6a in 

neurogenesis is executed through Cul-3 mediated degradation of one or 

m ore proteins that affect formation of neurons. zBTBD6a positively 

regulates neurogenesis as loss of zBTBD6a results in an impaired neuronal 

differentiation. Therefore, it is likely that the molecule subjected to zBTBD6a- 

mediated ubiquitination affects neuronal differentiation in a negative 

manner. The zBTBD6a target may be a repressor of one of the bHLH 

transcription activators, involved in the neurogenesis cascade.

One example of a protein regulating transcriptional repression during 

neuro genesis that, similar to zBTBD6a, is required but not sufficient for 

neuronal differentiation, term ed MTG, has recently been reported in chick 

(Koyano-Nakagawa and Kintner, 2005). The MTG gene family was originally 

identified at chromosomal translocation points and deletions associated with 

acute myelogenous leukaemia (Davis et al., 2003). Biochemical and molecular 

studies in mammalian cells have demonstrated that MTG proteins act as 

transcriptional corepressors by linking interactions between multiple 

proteins, including proteins with histone deacetylase activity (Amann et al., 

2001; Lutterbach et al., 1998; Zhang et al., 2001). MTG proteins regulate 

transcription when recruited to the specific sites by DNA binding proteins as 

shown with the promyelocytic leukaemia zinc-finger (PLZF), growth factor 

independence-1 (Gfi-1), and B-lymphoma 6 (BCL-6) proteins (Chevallier et 

al., 2004; McGhee et al., 2003; Melnick et al., 2000). In the chick spinal cord, 

MTGR1, MTG8, and MTG16 are sequentially expressed during neuronal 

differentiation. A similar sequence of MTG gene expression induced by 

Xngnl during primary neurogenesis, has been reported in Xenopus (Cao et 

al., 2002). Misexpression of wild-type forms of MTG proteins in the 

developing chick spinal cord does not alter neuronal differentiation, whereas 

when a dominant-negative m utant of MTG proteins is expressed, the 

num ber of differentiated neurons is markedly reduced (Koyano-Nakagawa 

and Kintner, 2005). Although direct targets of the MTG proteins during 

neurogenesis have not been identified, it has been suggested that in the chick 

spinal cord MTG proteins, acting as corepressors, downregulate genes
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whose expression needs to be extinguished for neuronal differentiation to 

occur. Therefore, zBTBD6a, similar to MTG proteins, may be involved in 

regulation of a repressor of neuronal differentiation, although through a 

different mode of action. Some potential candidates for zBTBD6a targets are 

discussed below.

Potential targets of the zBTBD6a promoted ubiquitination 

Id proteins.

One family of candidates for the zBTBD6a-mediated degradation are Id 

proteins. These proteins have a HLH domain but lack an adjacent motif for 

DNA binding (Benezra et al., 1990; Ellis et al., 1990). As they have a 

preferential affinity for ubiquitously expressed E proteins, they compete 

with bHLH proteins by forming heterodimers that cannot bind DNA 

(Campuzano, 2001; Massari and Murre, 2000; Yokota, 2001). Therefore, Id 

proteins act as negative regulators of bHLH factors, including proneural 

genes and the downstream  activators of neurogenesis, and consequently 

inhibit differentiation and stimulate proliferation (Campuzano, 2001; Massari 

and Murre, 2000; Yokota, 2001). Studies with Id knockout mice revealed that 

Id proteins are required to maintain the immaturity of neuroblasts and 

permit their proliferation until an appropriate time point during 

development (Lyden et al., 1999; Ruzinova and Benezra, 2003; Yokota, 2001). 

In Xenopus, Id proteins can differentially inhibit the activities of neurogenin 

and neuroD, as shown in the animal cap explant experiments (Liu and 

Harland, 2003). The distinct expression of some Id proteins (Id2 and Id4 in 

mouse) in both proliferating and differentiating neural cells implies that 

these proteins are involved in the timing of various stages of neuronal 

differentiation (Neuman et al., 1993; Riechmann et al., 1994; Tzeng and de 

Vellis, 1998). It is likely that each Id protein regulates neurogenesis by 

antagonising co-expressed cell-specific bHLH transcriptional activators that 

control successive stages of neuronal differentiation.
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Regulation of the stability of the Id proteins within the cell is im portant for 

controlling the balance between E-box binding bHLH protein dimers and 

inactive dimers, allowing the cell to fine-tune the regulatory activities of the 

transcription factors. Id proteins are generally very short-lived, with half- 

lives ranging from 20 to 60 min depending on the cell types, and are 

stabilised by formation of dimers with bHLH factors (Bounpheng et al., 1999; 

Deed et al., 1996). The rapid degradation suggests the importance of precise 

regulation of Id protein function and this is achieved by proteolysis through 

the ubiquitin-proteosome pathway (Bounpheng et al., 1999). It is possible 

that zBTBD6a takes part in this regulation and mediates degradation of one 

or more of the Id proteins inhibiting neuronal differentiation by recruiting it 

to the ubiquitination machinery. However, currently, it is unknown whether 

the ubiquitination of Id proteins is prom oted by Cul3 ubiquitin ligase.

Based on experiments with Id3, it has been proposed that the E proteins 

chaperone the Id proteins (which lack a nuclear localisation sequence) into 

the nucleus and increase the half-life of an otherwise unstable protein (Deed 

et al., 1996). In the absence of its E protein partner, the Id3 protein is localised 

exclusively in the cytoplasm/perinuclear region. Interestingly, zBTBD6a 

subcellular localisation is altered depending on the presence of BTB and PHR 

domains: wild type zBTBD6a localises to the cytoplasm, while PHR- and BTB- 

depleted zBTBD6al proteins are confined either to the nucleus or both 

nucleus and cytoplasm, respectively. Therefore, the presence or absence of 

these two domains is required to restrict zBTBD6a protein to specific 

compartments within the cell. This may reflect how zBTBD6a acts at the 

molecular level and where the potential molecules for zBTBD6a interaction, 

are located in the cell. Therefore, the proposal of Id protein traversing 

between nucleus and cytoplasm as a zBTBD6 binding partner is an appealing 

possibility.
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Sox proteins

The HMG-box transcription factors Soxl, Sox2 and Sox3, which constitute the 

Bl-subgroup of the Sox gene family, are co-expressed in most proliferating 

progenitor cells of the vertebrate embryonic and adult CNS. It has been 

demonstrated that Sox2 and Sox3 have a role in maintaining the 

undifferentiated state of embryonic chick neural progenitors and preventing 

them from neuronal differentiation (Bylund et al., 2003; Graham et al., 2003; 

Pevny and Placzek, 2005). Interestingly, it has been shown that Sox3 protein 

inhibits neurogenesis in the neural primodia by repressing the differentiation 

cascade downstream of proneural activity, whereas the capacity of proneural 

proteins to drive progenitors toward differentiation, in turn, is based on 

their ability to suppress Sox3 expression (Bylund et al., 2003). For example, 

forced expression of Sox3 does not repress expression of the proneural 

genes Cashl, Ngnl and Ngnl, whereas the expression of NeuroM, a marker 

of subsequent step of neurogenesis, is reduced. Cells that are about to 

differentiate express higher amounts of preneural protein that inhibit Sox3 

expression. Thus, when proneural gene activity reaches the threshold 

necessary to repress Sox3 expression, the neuronal differentiation cascade is 

activated. Transient transfection studies have shown that SoxBl proteins 

primarily function as transcriptional activators and therefore it is suggested 

that the Sox2- and Sox3-mediated inhibition of neurogenesis is executed 

through induction of the expression of a factor/s that repress the expression 

of proteins required for neuronal differentiation (Bylund et al., 2003; 

Kamachi et al., 2000).

Therefore, there is a possibility that a m em ber of SoxBl protein subfamily or 

alternatively the downstream activated factor/s may represent a target for 

zBTBD6a function. The identification of six zebrafish sox genes, soxla, soxlb, 

soxl, sox3, soxl9a and soxl9b, comprising apparently the full complement of 

zebrafish group B1 sox genes, have recently been reported (Okuda et al., 

2006). The expression patterns of each of these genes suggest their 

involvement in the development of the nervous system. Further detailed
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analysis of the expression and function of these genes would establish 

whether any of them  might represent a candidate for interaction with 

zBTBD6a.

Groucho and Her proteins

Another family of repressors of neurogenesis are represented by Hairy- and 

E(spl)-related (Her) bHLH transcription factors (Davis and Turner, 2001; 

Kageyama and Nakanishi, 1997). These proteins have been shown to act as 

classical DNA-binding repressors of proneural-gene transcription, but they 

are also thought to inhibit the activity of proneural proteins by interfering 

with proneural-E-complex formation (Davis and Turner, 2001; Kageyama 

and Nakanishi, 1997; Ohsako et al., 1994). Their activity as sequence-specific 

transcriptional repressors depends upon their interaction with co-repressors 

of the Groucho/TLE family (Davis and Turner, 2001; Paroush et al., 1994). In 

zebrafish, her2, her4, herl2 and hes5 (hairy and enhancer of split5), are 

expressed in proneural domains in the neural plate, similar to the expression 

of the neurogl and zBTBD6a (Bae et al., 2005; Raya et al., 2003; Takke et al.,

1999). In addition, one of the zebrafish homologues of groucho co-repressor, 

grol, is expressed in the neurogenic regions of the neural plate (Wulbeck and 

Campos-Ortega, 1997). Therefore, grol and her genes of the first subgroup 

expressed at the sites of primary neurogenesis, could be classified as 

potential targets of zBTBD6a activity. However, these genes products act 

upstream of neurogl and are thus less likely candidates for interactions with 

zBTBD6a that acts downstream of neurogl.
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GENERAL DISCUSSION AND PERSPECTIVES

This study identified a novel gene, zBTBD6a, encoding a putative substrate 

adaptor for the Cul-3 E3 ubiquitin ligase, which is involved in zebrafish 

neurogenesis. In this section, the general aspects of ubiquitination system 

and how my w ork relates to the published data on this subject are discussed. 

I also propose the future work required to gain further understanding of the 

role of zBTBD6a in neurogenesis and to get insight into the function of other 

members of the BTBD6/3 protein family identified in this study.

PRINCIPLES OF UBIQUITINATION

Proper control of growth and differentiation during development requires 

regulation of gene expression at many different levels. One level of 

regulation is achieved through the ubiquitin machinery.

Ubiquitination, a covalent attachment of one or more molecules of the 

protein ubiquitin to another protein, plays major roles in regulating a broad 

range of biological processes in eukaryotic cells, including cell-cycle 

progression, signal transduction, transcriptional regulation, receptor down- 

regulation, protein trafficking and quality control. Ubiquitin is a small 

protein of 76 amino acids that is highly conserved in all eukaryotes. 

Ubiqutination in general takes three steps: the first two involve activation 

and conjugation of ubiquitin and the third one promotes covalent ligation of 

ubiquitin to the target protein and is E3 ubiquitin ligase-dependent (Hershko 

and Ciechanover, 1998; Pickart, 2001). E3 proteins are im portant for the 

selection of specific targets for ubiquitination and consist of two m ain classes: 

HECT domain E3s and RING E3s.

Monoubiqutination, the linkage of a single ubiquitin molecule to a protein, 

has been shown to be important for regulation of endocytosis of cell surface 

receptors, DNA-repair mechanism, as well as for direct m odulation of 

protein function (Bonifacino and Weissman, 1998). Poly ubiquitination, that is
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addition of at least four ubiquitin units to the substrate, is predominantly 

used to target proteins to the 26S proteasome for degradation. The 

proteasome-dependent ubiquitination pathway is known to degrade short

lived regulatory proteins and to rem ove abnormal or improperly assembled 

proteins, protecting cells against the potential toxic effects of protein 

aggregation. Protein degradation through the ubiquitin-proteasome system 

may be essential to ensure irreversibility of temporally controlled processes. 

In developmental processes, such as neuronal differentiation the rapid 

degradation of protein regulators is especially important when the regulator 

should act for a short period of time or when a process is initiated by the 

degradation of an inhibitor.

NOTCH PATHWAY IS REGULATED BY UBIQUITINATION AT MANY 

LEVELS

A prom inent example of ubiquitination in regulation of a molecular pathway 

has been demonstrated for the Notch receptor, whose activity is modulated 

by ubiquitin at different levels in the signalling pathway (Hirata et al., 2002; 

Lai, 2002).

Sel-10 is a negative regulator of Notch signalling first identified in C. elegans, 

and then in mammals (termed Fbw7) and Drosophila (named Archipelago 

[Ago]) (Maruyama et al., 2001; Moberg et al., 2001; Sundaram and 

Greenwald, 1993; Winston et al., 1999). Sel-10/Fbw7/Ago is related to the F- 

box/WD40 repeat proteins, which are components of Skpl Cull F-box (SCF) 

E3 ubiquitin ligases (Hubbard et al., 1997). Sel-10/Fbw7/Ago inhibits Notch 

signalling by targeting the nuclear intracellular domain of Notch receptor for 

proteasome-dependent degradation (Gupta-Rossi et al., 2001; Oberg et al., 

2001; Wu et al., 2001). Interestingly, in addition to regulating Notch, Sel- 

10/Fbw 7/A go facilitates the ubiquitin-mediated degradation of Cyclin E, c- 

Jun and Myc, indicating that a single F-box protein can facilitate 

ubiquitination of multiple target proteins that are components of multiple 

pathways that control growth and cell cycle progression (Koepp et al., 2001;
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Moberg et al., 2001; Moberg et al., 2004; Nateri et al., 2004; Strohmaier et al., 

2001; Tetzlaff et al., 2004; Welcker et al., 2004; Yada et al., 2004). Cyclin E is a 

key regulator of the Gl-to-S-phase transition of the cell cycle, c-Jun is 

implicated in neuronal apoptosis, while Myc promotes cell growth and 

proliferation. All these proteins subjected to the Fbw7-mediated degradation 

have oncogenic potential and inactivating mutations in Fbw7 have been 

found in num ber of hum an malignancies, indicating that Fbw7 m ay act as a 

tum or suppressor.

Suppressor of Deltex [Su(dx)] and its homolog Nedd4 are HECT-type E3 

ubiquitin ligases and act negatively on Notch signalling (Cornell et al., 1999; 

Fostier et al., 1998; Rotin et al., 2000). They are proposed to inactivate Notch 

molecules by directing them to an intracellular compartment for degradation 

(Sakata et al., 2004; Wilkin et al., 2004). Another molecule, Deltex (Dx) is a 

putative RING-type E3 ubiquitin ligase and has been shown to be a positive 

regulator of the Notch pathway (Hori et al., 2004; Matsuno et al., 1995; 

Takeyama et al., 2003). Suppression of the dx mutant phenotype by Su(dx) 

mutation indicates that these two proteins representing two different classes 

of ubiquitin ligase act antagonistically with regard to Notch signalling 

(Cornell et al., 1999).

In addition to proteasome-dependent ubiquitination, ubiquitination followed 

by endocytosis is also involved in Notch pathway regulation. Mindbomb (mib) 

and neuralized (neur) characterised in Drosophila and Xenopus, both  encode 

RING-type E3 ubiquitin ligases (Deblandre et al., 2001; Itoh et al., 2003; Koo 

et al., 2005; Lai et al., 2001; Lai et al., 2005; Le Borgne et al., 2005). They 

monoubiqutinate Notch ligands, the Delta/Serrate/LAG-2 (DSL)-type 

proteins, leading to their endocytosis in signal-sending cells, which is 

necessary to activate Notch in adjacent cells (Lai et al., 2005; Pitsouli and 

Delidakis, 2005; Wang and Struhl, 2005). In addition, an endocytic adaptor 

protein, Epsin (that recognises the ubiquitin moiety), which in Drososphila is 

encoded by the liquid facets (Iqf) gene, is required in the signaling cell for 

Notch activation and for DSL protein endocytosis (Overstreet et al., 2003).
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REGULATED UBIQUITIN/PROTEASOME-DEPENDENT PROCESSING

The target protein subjected to ubiquitin-proteasome degradation is in most 

cases proteolysed into small fragments. However, in a few cases, the 

proteasome only degrades specific protein segments, leaving other parts of 

the substrate intact and this process is referred as regulated 

ubiquitin/proteasom e-dependent processing. This is one of the mechanisms 

used by cells for activation of dorm ant transcription factors that are initially 

made as inactive, often mem brane-bound precursors. It was first shown to 

be essential for the processing of pl05, the cytosolic precursor of the p50 

subunit of the NF-kB1 transcription factor, involved in immune, 

inflammatory, stress, and developmental processes (Baeuerle and Baltimore, 

1996; Fan and Maniatis, 1991). Processing of ubiquitinated p i 05 leads to 

degradation of its C-terminal portion by the proteasome, whereas the N- 

terminal transcription factor portion, p50, is left intact. The processed 

transcription factor is retained in a latent form in the cytoplasm of 

nonstimulated cells via association with inhibitory protein IkBol Upon receipt 

of appropriate signal, IicBa is phosphorylated, ubiquitinated and degraded 

by proteasomes, which permits the active NF-kB1 protein to translocate to 

the nucleus where it exerts its transcriptional advity (Ghosh et al., 1998). Two 

distant homologs of NF-kB1 pl05, SPT23 and MGA2, in the yeast 

Saccharomyces cerevisiae, are activated in a similar fashion. However, in 

contrast to pl05, which is a cytosolic soluble protein, the precursors of SPT23 

and MGA2 are anchored to the membrane of the endocytoplasmic 

reticulum. Upon ubiquitination, both proteins are partially cleaved to 

generate the active transcription factors, which can subsequently migrate 

into the nucleus to drive transcription (Hitchcock et al., 2001; Hoppe et al., 

2000; Hoppe et al., 2001). A third protein that has been identified to be 

regulated in this way is Drosophila Cubitus interruptus (Ci), which is essential 

for Hedgehog-mediated cellular differentiation (Aza-Blanc et al., 1997; Jiang 

and Struhl, 1998; Noureddine et al., 2002). Ci is processed into Ci75, in a 

reaction that requires the ubiquitin ligase SCF and the proteasome. 

Therefore, regulated ubiquitin/proteasom e dependent processing can
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control both the activation of transcription factors and their trafficking into 

different cellular compartments. zBTBD6a could prom ote neurogenesis by 

permitting, in a ubiquitin-dependent manner, activation of one of the factors 

required for neuronal differentiation. In addition, zBTBD6a subcellular 

localisation is altered upon rem oval of the functional domains, which might 

reflect the changes of the localization of its binding partner.

CULLIN-RING UBIQUITIN LIGASES

zBTBD6a interacts with Cullin-3 protein, a component of one type of the 

Cullin-RING E3 ubiquitin ligases (CRLs). The superfamily of CRLs comprises 

the largest known class of ubiquitin ligases found throughout eukaryotes. 

These multisubunit ubiquitin ligases are characterised by an enzymatic core 

that contains a cullin-family m em ber and a zinc-binding RING-domain 

protein, which is known as either ROC1, RBX1 or HRT1 (Ohta et al., 1999; 

Seol et al., 1999; Tan et al., 1999). Hum an cells express seven different cullins 

(CUL1, 2, 3, 4A, 5, and 7), each used as scaffold in assembling various CRL 

complexes, which appear to share a similar modular architecture.

Different Cullin proteins present in a common enzymatic core can recruit 

num erous substrates by employing various adaptor proteins and substrate- 

receptors (or domains). Recent studies have demonstrated that in the case of 

CRLs nucleated by Cul3, substrate recognition is facilitated by BTB-domain- 

containing proteins (Furukawa et al., 2003; Geyer et al., 2003; Pintard et al., 

2004; Pintard et al., 2003; Xu et al., 2003a). The association of zBTBD6a with 

Cul3 suggests that zBTBD6a may have this function. Several BTB Cul-3 

adaptor proteins have been reported to date and most of them, similar to 

zBTBD6a, possess at least one more protein-protein interaction dom ain in 

addition to the BTB motif located at the N-terminus. However, no substrate 

recognition protein containing the same domains as zBTBD6a - BTB-BACK- 

PHR - have been identified yet. One example of a BTB-domain protein acting 

as an adaptor for Cul-3-based E3 ligase that has similar structure to zBTBD6a 

is Keapl. Keapl, like zBTBD6a has BTB and BACK domains but at the C-
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terminus, contains a kelch repeat instead of the PHR motif. Keapl has been 

found to be required for the degradation of the transcription factor Nrf2, 

which is a major regulator of genes encoding phase 2 detoxifying enzymes 

and antioxidant stress proteins (Furukawa and Xiong, 2005; Kang et al., 2004; 

Kobayashi et al., 2004; Zhang et al., 2004). In the absence of stress stimuli, 

Nrf2 is inactive as Keapl sequesters it in the cytoplasm and targets it for Cul- 

3-mediated rapid degradation through the proteasome system. In this way 

when the toxic environmental stresses are not present, Nrf2 is repressed and 

the unnecessary gene activation is avoided allowing cellular homeostasis to 

be maintained. Keapl and Nrf2 are so far the only reported mammalian 

substrate and adaptor, respectively, of the Cul-3-based ubiquitination 

system.

PHR DOMAIN-CONTAINING PROTEINS AND UBIQUITINATION

The PHR domain was first identified in human PAM and is also present in its 

highly conserved homologes: Drosophila Highwire (Hiw), C. elegans RPM-1, 

and murine Phrl (Burgess et al., 2004; Guo et al., 1998; Schaefer et al., 2000; 

Wan et al., 2000; Zhen et al., 2000). These large proteins are neuron-specific, 

contain RING domains, and act as E3 ligases. RPM-1, Hiw and Phrl have 

been shown to be involved in regulating protein stability in presynaptic 

differentiation. Drosophila hiw is a negative regulator of synaptic growth 

and loss of Hiw results in synaptic overgrowth and impaired synaptic 

transition (Wan et al., 2000). Overexpression of the deubiquitinating enzyme 

Fat Facets (Faf) results in a nearly identical phenotype suggesting that a 

balance between the ubiquitination and deubiquitination of a key target 

molecule regulates synaptic growth. Similarly, mutations in C. elegans rpm-1 

disrupt synaptic morphology in the worm  (Schaefer et al., 2000; Zhen et al.,

2000), and Phr-1 deficient mice show abnormalities in synapse organisation 

(Burgess et al., 2004). Biochemical studies in C.elegans have shown that RPM- 

1 associates into the CRL complex, which also includes Cul-1 and the 

substrate recognition F-box protein FSN-1. The RPM-1/CRL complex 

represents one example of the use of multiple domains and components
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from other ubiquitin-ligase pathways, since RPM-1 possesses numerous 

RING domains and does not have a typical ROC1/RBX1/HRT1 E3 ligase 

structure (Liao et al., 2004). Interestingly, within the RPM-1/CRL complex, 

the PHR domain is located in the RPM-1 E3 ligase protein, whereas zBTBD6a 

is a putative substrate recognition module, representing a different CRL 

component. Thus, the domains involved in CRL assembly can be in different 

components of the complex.

UBIQUITINATION AND NEURODEGENERATIVE DISEASES

Ubiquitin-dependent processing and degradation of proteins has a 

fundamental role in cellular processes, and consequently aberrations in the 

ubiquitin system have been implicated in the pathogenesis of many diseases 

such as certain malignancies and neurodegenerative disorders. For example, 

a common feature of several chronic neurodegenerative diseases, for 

instance Alzheimer's disease, Parkinson's disease and m otor neuron disease, 

is abnormal deposition of insoluble protein aggregates or inclusion bodies 

within CNS neurons (Ciechanover, 2006; Ciechanover and Brundin, 2003). 

These intracellular inclusions are believed to result from accumulation of 

ubiquitinated proteins that occurs due to the malfunctioning of the ubiquitin- 

proteasome pathway or changes in the protein substrates, which make them  

resistant to degradation. Impaired proteolysis might also contribute to 

synaptic dysfunction, which is also seen in neurodegenerative diseases, since 

the ubiquitin-proteasome pathway plays a role in synaptic function and 

plasticity.

FINAL PERSPECTIVES

Further investigation into the function of zBTBD6a

Identifying the zBTBD6a target protein(s) in the zebrafish nervous system 

will be one of the next crucial steps for understanding the mechanism of 

zBTBD6a function. One approach is to investigate interactions with the
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candidates discussed in the previous chapter. However, since it may turn out 

that none of them are relevant, it is important to use a more general 

approach.

This could be achieved by protein affinity purification coupled with mass- 

spectrometric protein identification (proteomics) (Kaiser and Huang, 2005; 

Kirkpatrick et al., 2005). A potentially amenable approach would be to detect 

differences in protein concentrations between uninjected zebrafish embryos 

and embryos in which truncated zBTBD6a proteins, ABTB and APHR, are 

overexpressed. zBTBD6a protein lacking specific domains presumably has an 

impaired ability to mediate degradation of its substrate. Therefore, a protein 

which is present in extracts of embryos expressing truncated zBTBD6a 

protein at elevated levels compared with the control could represent the 

potential zBTBD6a target. This analysis can be carried out using two- 

dimensional gel electrophoresis and mass spectrometry.

The two-hybrid assay has been successfully used to identify some substrates 

of ubiquitin ligases and is another m ethod to identify zBTBD6a target 

proteins (Pintard et al., 2003; Uetz et al., 2000; Xu et al., 2003a).

There are also some other questions that need to be addressed to better 

understand the role of zBTBD6a in zebrafish neurogenesis. Further w ork is 

required to address the involvement of the splice variants of zBTBD6a in 

neuronal differentiation. For example, loss of both zBTBD6a isoforms leads 

to severe reduction or complete absence of terminally differentiated neurons 

labelled by isll, but the effect of combined zBTBD6al and zBTBD6a2 

knockdown on earlier m arkers of neuronal differentiation is still to be tested. 

Overexpression of zBTBD6a does not affect the num ber of differentiated 

primary neurons and it would be interesting to test whether or not the 

misexpression of both zBTBD6a splice variants elicits the same result. 

Elucidating the differential spatial expression of zBTBD6a isoforms is essential 

for this work.
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Both the BTB and PHR domains are required for zBTBD6a function but the 

role of BACK domain remains to be assessed. This would involve ectopic 

expression of BACK-deleted zBTBD6a protein in zebrafish and analysis of 

the effect on primary neurogenesis. Testing w hether zBTBD6a protein 

lacking BACK domain associates with Cul3 would determine the role of the 

BACK domain in forming the Cul-3-zBTBD6a complex.

Elucidating the potential role of cBTBD6 in chick neurogenesis

Similar to its homolog in zebrafish, cBTBD6 is expressed at sites of neuronal 

differentiation. Establishing the identity of cBTBD6-positive cells and 

determining whether cBTBD6 is involved in neurogenesis in a similar way as 

zBTBD6a in zebrafish would be another interesting issue to address. This 

would involve electroporation of full length and truncated, domain-deleted, 

cBTBD6 DNAs into the developing neural tube, and analysis of the outcome 

with the markers of neuronal differentiation. Another method to assess 

cBTBD6 function would be to use gene knockdown techniques, such as 

morpholino oligonucleotides or RNA interference (RNAi) (Brown et al., 

2003; Heasman, 2002; McManus and Sharp, 2002).

BTBD6/D3 proteins - common mechanism of function, different targets?

Although BTBD6 and BTBD3 genes share some aspects of their expression 

during chick and zebrafish development, for example in the regions of 

neuronal differentiation, in general they have divergent expression profiles, 

indicating that they may play diverse roles in different tissues during 

embryogenesis. However, considering the highly conserved structure of 

these proteins, there is a strong possibility that their activities are executed 

through the same mechanism. Since all BTBD6/D3 proteins contain BTB, 

BACK and PHR domains, it is likely that they all serve as substrate 

recognition molecules for the ubiquitination process.
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Another intriguing question is whether there is a common substrate for each 

of these putative adaptor proteins in the different tissues where they are 

expressed, or whether each BTBD3/D6 protein has different specific targets 

in various sites of their expression. Cases of adaptor proteins targeting 

multiple substrates for ubiquitination have been reported. One of them is the 

F-box protein Sel-10/Fbw7/Ago that, as described previously, has been 

found to mediate the ubiquitin-dependent degradation of four proteins: 

Notch, Cyclin E, c-Jun and Myc, components of various pathways (Koepp et 

al., 2001; Moberg et al., 2001; Moberg et al., 2004; Nateri et al., 2004; 

Strohmaier et al., 2001; Tetzlaff et al., 2004; Welcker et al., 2004; Yada et al., 

2004). The phenomenon of one substrate-recognition protein having 

numerous targets may result from the combinatorial complexity of the E3 

ubiquitin ligase complexes, in which the change of one binding partner may 

influence the affinity of the complex for a specific target protein. The proteins 

present in the ubiquitin ligase complexes may depend on the availability of a 

particular component in the specific cell type. Therefore, it is likely that 

BTBD6/D3 proteins have num erous tissue-specific targets rather than one 

common substrate protein. Identifying BTBD6/D3 target proteins will be a 

challenging and exciting task.

The identification of BTBD6/D3 genes and the experiments that have been 

presented in this thesis represent a significant first step in characterising this 

novel family of genes and elucidating their function during development. 

Clearly, further investigation is required to fully understand the roles of 

BTBD6/D3 genes in biological processes both during embryogenesis and in 

the adult and their relationship with or involvement in the ubiquitination 

process.
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