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Abstract

The aim of this thesis was to investigate the role o f chemokines and their 

receptors in human pancreatic adenocarcinoma and to explore whether chemokine 

receptors and their ligands are involved in tumor dissemination. The repertoire o f 

chemokine receptors expressed in 11 pancreatic adenocarcinoma cell lines tested 

included CXCR4 and CX3CR1. Their significance was therefore further investigated.

Expression of CXCR4 was higher in lines derived from metastases. The 

chemokine CXCL12 induced chemotaxis in CXCR4-positive cell lines, which was 

inhibited by an anti-CXCR4 specific antibody and by the antagonist AMD3100. Trans- 

endothelial migration, Matrigel invasion and activation of matrix metalloproteases were 

also enhanced by CXCL12. Proliferation was stimulated by CXCL12 in CXCR4- 

positive cell lines and partially inhibited by the inhibitor AMD3100, indicating an 

autocrine loop. The addition of exogenous CXCL12 inhibited apoptosis induced by 

serum starvation. These data demonstrate that autocrine or paracrine loops centred on 

the CXCR4/CXCL12 axis promote pancreatic cancer cell migration, matrix degradation 

and invasion, proliferation and survival.

The function of the chemokine receptor CX3CR1 was investigated in the context 

o f the peculiar propensity o f pancreatic cancer to disseminate and grow along nerve 

fibers, as its chemokine ligand Fractalkine/Neurotactin/CX3CLl is expressed by 

neuronal structures. CX3CR1-positive tumour cells migrated in a dose-dependent 

manner to CX3CL1 and this effect was blocked by specific anti-CX3CRl antibodies. 

CX3CR1 -positive tumour cells adhered to endothelial and neuronal cells stimulated 

with TNFa/IFNy, known to induce Fractalkine expression. Neuronal derived 

Fractalkine elicited migration of CX3CR1-positive pancreatic tumour cells. The 

CX3CL1 chemokine was detected in vivo in surgical sections of pancreatic cancer nerve



metastasis. These results suggest that the CX3CR1/Fractalkine axis could be involved in 

the dissemination of pancreatic tumour cells via nerve structures.

In conclusion, the data presented here support the hypothesis that a selected set 

o f chemokine receptors are expressed in carcinoma of the pancreas and are involved in 

tumour cell migration and invasion. For CXCR4, promotion o f cell survival and 

proliferation was observed. For CX3CR1, a role in perineural tropism is suggested.
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1.1 Pancreatic cancer

Generalities

Human pancreatic cancer is a neoplasia primarily of ductal origin, which represents a 

major oncological challenge in the 21st century. It ranks as the fourth most frequent type 

of solid tumor in men (exceeded by lung, colorectal and prostate cancer) and the fifth 

cause of cancer death in women (exceeded by breast, colorectal, lung and ovarian- 

uterine cancer). The reasons for this high mortality rate are strictly correlated to the 

limited knowledge about the biology of this tumor. Despite advances in surgical as well 

as non-surgical treatment efforts, it remains a tumor with poor prognosis and a 5-year 

survival rate of 3-8% (1, 2).

Pancreatic cancer often presents clinically, with non-specific signs and symptoms, 

therefore difficult to diagnose. Known risk  factors for pancreatic cancer are cigarette 

smoking, age (over 80% of the cases develop between 60 and 80), chronic inflammation 

(see Paragraph  1.2), diabetes and diet; not surprisingly, it is not associated to 

consistent environmental or occupational risk factors, as the pancreas is protected from 

direct contact with the environment and does not play a significant role in detoxification 

o f xenobiotics (as in the liver) nor does it filter and concentrate toxins (as in the urinary 

system) (3).

According to the TNM system, the staging of pancreatic cancer (Stage 0 to Stage IVB) 

is determined by 3 factors: T (location and size of the tumor, ranging from TX to T4), N 

(evidence of metastases in lymph nodes close to the cancer, NX to N l) and M (evidence 

of distant metastases, MX to M l).

Specifically, there are 5 stages of tum or size in the current TNM classification:

TX: primary tumor cannot be assessed;

TO: no evidence of primary tumor;



Tis: (carcinoma in situ) is very early stage pancreatic cancer;

T l: tumor size in the pancreas is 2cm or less in any direction;

T2: tumor size is more than 2cm across in any direction;

T3: the cancer has started to grow in surrounding tissues around the pancreas, in 

the duodenum or the bile duct

T4: the cancer has grown further in the stomach, spleen, large bowel or nearby 

large blood vessels.

While the classification based on lymph node involvement is:

NX: regional lymph nodes cannot be assessed;

NO: no lymph nodes containing cancer

N l: there are cancer cells in a single lymph node (Nla) or more (N ib)

And finally, according to metastasis:

MX: distant metastasis cannot be assessed;

MO: the cancer has not spread into distant organs, such as the liver or lungs 

M l: cancer has spread to other organs 

Table 1.1 summarizes the characteristics of pancreatic cancer stages in this system.

Stage Tumor Lymph nodes M etastasis
Stage 0 Tis NO MO

Stage I Tl NO MO
T2 NO MO

Stage II T3 NO MO
T3 NO MO

Stage III Tl N l MO
T2 N l MO
T3 N l MO

Stage IV T4 Any N MO

Stage V Any T Any N M l

Table 1.1 Stage grouping for primary tumors of the exocrine pancreas.
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Therapeutic treatments

Depending upon the type and stage, pancreatic cancer may be treated with 

different therapeutic approaches. As reported by the American Cancer Society, surgery 

may be necessary to remove the tumor (a section or entire pancreas and/or the small 

intestine). The type of surgery depends on the stage of the cancer, the location and size 

of the tumor, and the person’s health. Types of surgery for pancreatic cancer include the 

Whipple procedure (if the tumor is located at the head of the pancreas (the widest 

part); the head of the pancreas, part of the small intestine, bile duct, and stomach, and 

other tissues will be removed), the distal pancreatectomy (if the tumor is located in the 

body and tail o f the pancreas, both of these sections o f the pancreas will be removed, 

along with the spleen), the total pancreatectomy (the entire pancreas, part o f the small 

intestine and stomach, the common bile duct, the spleen, the gallbladder, and some 

lymph nodes will be removed). Generally, surgery can be pursued only if  the cancer is 

localized; when cancer is found in distant lymph nodes and has spread too far to be 

cured, palliative surgery might be done to prevent or relieve symptoms if  the cancer. 

For example, palliative surgery can be used to relieve blockage o f the bile duct (which 

is cause of jaundice, pain and problems with digestion) (4). For those patients with 

adenocarcinoma of the pancreas who are not candidates for surgery or who have a 

recurrence of the cancer after surgical resection, chemiotherapy is often prescribed as a 

standard therapy. 5-Fluorouracil and Gemcitabine have been for used many years as 

chemotherapy; recently, it has been reported that Raltitrexed-Oxaliplatin regimen may 

constitute a treatment opportunity in gemcitabine-resistant metastatic pancreatic cancer



Pancreatic cancer biology

The pancreas consists of two separate functional units -exocrine and endocrine 

pancreas- that regulate the major physiological processes of digestion and glucose 

metabolism. The exocrine pancreas is formed by acinar and duct cells (Fig 1.1). The 

acinar cells represent the bulk of the pancreatic tissue and produce digestive enzymes; 

they are organized into grape-like clusters, forming the termini of the branching duct 

system. The ducts add mucus and bicarbonate to the mixture and form a network of 

increasing size that empty in the duodenum. The endocrine pancreas consists of four 

specialized cell types that are organized into islets, secreting hormones into the 

bloodstream. The a  and p cells regulate the usage of glucose through the production of 

glucagon and insulin, respectively. Pancreatic polypeptide and somatostatin that are 

produced in the PP and 8-cells modulate the secretory properties of the other pancreatic 

cell types.

Given the number of cell lineages, the pancreas can sustain several different tumor 

types, defined by their histological resemblance to the normal counterpart; all of these 

types show distinct clinical behaviour and genetic profiles (Table 1.2). Pancreatic 

adenocarcinoma -a tumor type with ductal-cell histology- is the most common type of 

cancer of the pancreas, accounting for greater than 85% of pancreatic neoplasms (6).

Acinar oeii
Figure 1.1 Anatomy of the 

exocrine pancreas. Duct cells arc 

organized into a branching network 

ending with clusters of acinar cells.
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Tum or type Frequency H istological features

Adenocarcinoma 85% Ductal morphology

Acinar-cell carcinoma 2% Zymogen granules

Endocrine tumors 2% Hormone production

Serous cystadenoma 2% Ductal morphology, cystic 
growth

Table 1.2. Types of pancreatic neoplasms. Different tumor types are defined by their 

histological resemblance to the normal counterpart

A careful molecular and pathological analysis o f evolving pancreatic 

adenocarcinoma has revealed a distinctive pattern of genetic lesions, i.e. a signature 

molecular profile of this malignancy; it consists of mutations in KRAS, CDKN2A, 

TP53 and SMAD4/DPC4 (7, 8). Ongoing studies are trying to define the contribution of 

such lesions to the biological features and evolution of the disease. Pancreatic 

adenocarcinoma is rarely observed spontaneously or following carcinogen 

administration in the laboratory mouse but genetic engineering has allowed the 

generation of strains that harbour germ line oncogenic lesions that are found in human 

pancreatic adenocarcinoma (6). For instance, transgenic mice expressing activated 

KRAS (9) or c-Myc (10) in the acini develop acinar carcinomas.

Although molecular pathology and genetic studies have provided an outline of 

the cellular perturbations associated with pancreatic adenocarcinoma, some key 

questions need to be answered; in particular what is the cell of origin of pancreatic 

cancer. As mentioned before, pancreatic adenocarcinoma cells strongly resemble 

pancreatic-duct cells, displaying cuboidal shape, ductal antigen expression and growth 

in tubular structures. Indeed, there is general agreement that the pancreatic ductal 

epithelial cell gives rise to this malignancy; recent studies of cell renewal and
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differentiation and various rodent models of pancreatic damage have lead to the 

hypothesis that pancreatic-ductal cells are potential facultative stem cells with the 

capacity to differentiate into both endocrine and exocrine lineages. Such a proliferating 

cell with unlimited replicative potential would be a prime candidate for oncogenic 

mutation and tumorigenesis (6).

Analysis on resected pancreatic tissue from cancer patients have allowed for the 

compilation of a temporal map of the genetic lesions within the ductal epithelium 

occurring during the course o f tumor progression. It has been shown that pancreatic 

adenocarcinoma progresses through a series of advancing morphological stages (now 

designated pancreatic intraepithelial neoplasia, PanIN): first, low cuboidal ductal cells 

become tall columnar due to extensive mucin production. Next, these epithelial cells 

start to show a certain degree of nuclear atypia and an enhanced proliferation rate which 

progressively increases and eventually leads to ductal cell shedding into the lumen of 

the ducts which facilitates tumor metastasis (6, 11). These morphological alterations 

correlate with increasing genetic abnormalities, among which activating KRas 

mutations are the earliest and more conserved (Fig 1.2).

Recently, the concept o f pancreatic adenocarcinoma originating from the ductal 

epithelial cells has been questioned; there is evidence (the expression of non-ductal 

lineage marker, including endocrine factors and pancreatic enzymes in pancreatic tumor 

cells) that transdifferentiation of other pancreatic cell types, such as acinar cells, might 

serve as an alternative route to pancreatic adenocarcinoma (6, 11).
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Normal duct
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cells
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• Papillary 

architecture

PanlN-2
* Nuclear abnormalities 

e.g. enlargement, 
soma loss oi polanly. 
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• Severe nuclear 
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abnormal

Adenocarcinoma
• Invasive growth
* Marked stromal 

reacton (desmopiasal

Normal —J j- PanIN-1 A }— PanIN-IB P a n IN -3

Her -2/neu 
K -ras

P53 ■
DPC4 

BRCA2

Low proliferation rate ---------------------------------► H i g h  proliferation rate

Fig 1.2. Genetic progression model of pancreatic adenocarcinoma. Pancreatic 

adenocarcinoma progresses through a series of morphological stages, each corresponding to 

distinct genetic lesions. {Adapted from Bardeesy et al (6))

1.2 Pancreatic Cancer and inflammation

Microenvironmental cellular interactions seem to be important in the

pathogenesis of pancreatic adenocarcinoma; notably, these tumors show an extensive

proliferation of stromal fibroblasts and deposition of extracellular-matrix components

(desmoplasia) that seem to promote growth and invasiveness (Fig 1.3). The molecular

basis of this phenotype is not resolved, nor it is clear whether the response is part of the

tumorigenic programme or whether it represents a form of host defence against the

tumor. This is in line with the general concept that interactions between tumor cells and

surrounding stroma play a critical role in tumor growth (12-15). Under normal

circumstances, the interaction between normal epithelium and normal stroma helps to
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maintain tissue integrity. However, in cancerous tissue, the interaction between cancer 

cells and surrounding stroma combined with cellular signals such as transforming 

growth factor p (TGFP), results in the formation of abnormal stroma, disruption of 

tissue integrity, and hence invasion and ultimately metastasis. In particular, tumor cells 

are thought to programme an oncogenic stroma that, in turn, contributes to their 

sustaining, through paracrine signalling, angiogenesis and protection from immune 

attack. The importance of tumor-stromal interactions in the aggressive behaviour o f 

pancreatic cancer is supported by experimental evidence that the invasive potential o f 

pancreatic cancer cells can be greatly enhanced by coculture with stromal fibroblasts 

(16). Moreover, this concept is supported by the observation that the less aggressive 

mucinous type of pancreatic carcinoma is associated with very little stromal reaction 

around the tumor (17).

Inflammatory cell mediators

Two cell components of the stroma can have a major role in the carcinogenic 

process: fibroblasts, and leukocytes. Fibroblasts, responsible for the synthesis, 

deposition and remodelling of much of the extracellular matrix (ECM), are recognized 

as a source of growth factors that influence the growth of carcinoma cells; most o f these 

factors are predominantly stimulators of proliferation and can play a role in promoting 

the carcinogenic process (e.g. FGF (fibroblast growth factor), IGF (insulin-like growth 

factor), EGF (epithelial growth factor), HGF (hepatocyte growth factor)). Indeed, 

several studies have shown that fibroblasts, upon modulation by cancer-derived factors 

and given the appropriate environment, can differentiate in myofibroblasts, which can in 

turn produce pro-invasive signals (13).
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Fig 1.3. A cancerous duct. The

arrow indicates the carcinoma 

(Haematoxylin and Eosin x 

100).

The second important player in the stroma-cancer cell crosstalk is represented by 

the inflammatory component, i.e. leukocytes. In fact, although it has long been known 

that cancer frequently arises in areas of chronic inflammation, only in the last few years 

has a functional relationship between inflammation and cancer been established (18); 

examples include colon carcinoma, associated with inflammatory bowel disease (19) 

and stomach cancer, following Helicobacter pylori infection (20). Inflammatory cells 

influence cancer initiation and promotion by secreting cytokines, growth factors and 

chemokines, which stimulate proliferation of epithelia and generate reactive oxygen 

species that can cause DNA damage (18). Among different leukocyte cell types, 

macrophages are the most abundant and an important component of the stroma of 

neoplastic tissues. Several lines of evidence demonstrate that tumor-associated 

macrophages (TAM) can have dual functions in their interactions with neoplastic cells 

and are a key component of inflammatory circuits which promote tumor growth and 

progression (18, 21).
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Chronic pancreatitis and pancreatic cancer

Given the link between inflammation and cancer (18, 21), it seems reasonable to 

investigate whether a connection between chronic pancreatitis and the development of 

pancreatic adenocarcinoma does exist. Chronic pancreatitis, the most prevalent 

disorder of the exocrine pancreas, is an inflammatory disease associated with a gradual 

damage of the organ (11). In patients with hereditary pancreatitis (a hereditary form of 

the disease, accounting for <1% of all forms of pancreatitis and caused by a mutation o f 

the trypsinogen gene on chromosome 7), the risk of developing pancreatic cancer is 53 

times the risk in unaffected individuals; moreover, epidemiological data suggest an 

increased risk of pancreatic cancer in patients with sporadic chronic pancreatitis that 

correlates with the duration of inflammation (22). However, despite the deleterious 

effect of chronic inflammation on tissue integrity, only a small percentage o f pancreatic 

cancers are due to chronic pancreatitis.

The pathophysiology of pancreatitis involves the aberrant release o f proteolytic 

enzymes that cause acinar cell injury and a subsequent inflammatory response which in 

most cases is associated with gradual resolution. In chronic pancreatitis, the acinar 

injury is believed to recur, causing persistent infiltration of inflammatory cells, 

eventually leading to atrophy and fibrosis. Chronic inflammation occurring 

simultaneously with cell proliferation would be an ideal landscape for malignancy to 

develop.

Cytokines: new molecular mediators in pancreatic adenocarcinoma

Also for pancreatic adenocarcinoma, the inflammatory mechanisms responsible 

for the development of the neoplasia rely on the release of several cytokines, 

transcription factors and inflammatory enzymes. Indeed, a number of cytokines are

found increased in pancreatic cancer (e.g. TNFa, IL -ip , IL-6, IL-8, CCL2) (22-27).
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Each cytokine can evoke a cascade o f events in inflammatory cells, including the 

synthesis and release of other cytokines and growth factors and affect the host response 

to tumor cells. Moreover, some cytokines can provide positive signals for pancreatic 

cancer cell growth, including EGF, IGF, IL -la , which originate in peri-tumoral 

inflammatory cells, but may also be produced by the pancreatic cancer itself, thus 

exerting an autocrine action (28, 29). TNFa has been proposed to increase survival of 

pancreatic cancer cells (30). In addition, a peculiar aspect of pancreatic cancer cells is 

their loss of responsiveness to growth inhibitory cytokines, including TGFP (28). This 

growth factor deserves attention, as it plays a dual role in cancer microenvironment; in 

fact, while promoting tumor growth through stromal and angiogenesis support and 

impairing immune surveillance, TGFp can also act as a growth inhibitor o f most 

epithelial cells. However, mutations in the TGFp signalling pathway downstream of the 

receptor may impair TGFp mediated growth inhibition, while retaining other pathway 

components, including the ones favouring tumor invasion and metastasis (14, 31). Thus, 

loss of responsiveness to TGFp as observed in pancreatic cancer, is associated 

to acquisition of a tumoral phenotype (28).

As for other carcinomas, also for pancreatic cancer a connection between 

inflammation and cancer progression is the transcription factor NFkB, which regulates 

the transcription of several inflammatory genes as well as cell cycle. Not surprisingly, 

NFkB is found constitutively activated in a high percentage o f pancreatic 

adenocarcinomas, inhibiting apoptosis in these cells and cytokines, such as TNFa, may 

favour development and growth of malignant cells through NFkB activation (30). Also 

IL-8 expression is induced in vitro through NFkB activation; this chemokine, 

constitutively expressed at high levels in pancreatic cancer cells, produces an autocrine 

growth stimulatory effect in certain cell lines (32) and inhibition of its activity in
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transplanted pancreatic tumor cells leads to suppression of tumor growth and metastasis 

in nude mice (33).

Although leukocytes are the main source of inflammatory mediators, still also 

pancreatic tumour cells can produce a number of cytokines and growth factors. In vitro 

established pancreatic cancer cell lines represent a valuable tool for the characterization 

of inflammatory mediators. The first part of results of my thesis will be focused on the 

characterization of pancreatic cancer cell lines, with attention to the release of 

inflammatory mediators (See Chapter 4).

1.3 Invasion and metastasis in pancreatic cancer

The devastating evolution of pancreatic cancer is not only due to the high 

proliferating potential of pancreatic cancer cells, but also to the ability of these cells to 

metastasize even when the primary tumor spread is limited. Metastasis is the main cause 

o f treatment failure and death for pancreatic cancer patients. This is due to the difficulty 

of removing metastasis through conventional surgery; indeed, often in pancreatic 

adenocarcinoma metastases involve vital organs, (including liver, celiac plexus, some 

lymph nodes, depending on their location and large blood vessels, such as the portal 

vein), therefore excluding surgery as a treatment option. From these considerations it is 

evident that controlling metastasis is a major goal to improve the life expectancy of 

pancreatic cancer patients.

Recently, microarray expression profiling of metastatic cells and in vivo video 

microscopy are providing new advancement in the characterization o f metastasis (34- 

36). However, despite its importance in the aggressiveness of pancreatic cancer, how 

metastatic progression develops is still unknown and very little knowledge is available 

about the molecular mechanisms regulating this process.
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A multistep process

The metastatic process consists of a series o f steps all o f which must be 

successfully completed to give rise to a metastatic tumor. As a primary tumor grows, it 

needs to develop a blood supply -the angiogenesis process- that can support its 

metabolic needs and can also provide tumor cells an escape route to leave the primary 

mass and enter the circulation (process known as intravasation). The cells need to 

survive in the circulation until they can arrest in a new organ; here they might 

extravasate from the circulation into the surrounding tissue. Once in the new site, cells 

must initiate and maintain growth to form pre-angiogenic micrometastases; this growth 

must be sustained by the development of new blood vessels in order for a macroscopic 

tumor to form (37). The same steps are supposed to take place in pancreatic cancer 

metastasis formation.

The capability o f sustained angiogenesis is a feature of cancer which dictates 

malignancy. The formation of new blood vessels is permissive for local and systemic 

expansion of the tumor mass and can be induced by multiple molecules, released by 

both cancer and stromal cells. Numerous factors controlling the formation o f tumor 

vascularisation have been found overexpressed in pancreatic cancer, including vascular 

endothelial growth factor (VEGF), IL-8 and members o f the TGF and FGF family, as 

already said. Tumor cells produce and secrete these molecules, which bind receptors 

expressed on endothelial cells, thus guiding the process of new vessel formation. In 

particular, as far as VEGF is concerned, pancreatic cancer cells express also the cognate 

receptors VEGFR-I and VEGFR-II and the ligand/receptor system consisting o f VEGF 

and VEGF-RII has been proposed to be of biologic significance in the pathogenesis o f 

pancreatic cancer growth (38, 39).

Sooner or later during the development of pancreatic cancer, some pioneer cells 

detach from the primary mass and move out, invade adjacent tissues and circulate to
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distant organs, where they may form new colonies. Migration and invasion of cancer 

cells into surrounding stroma are likely to be prevented by cell-cell and cell-matrix 

interactions, thus disruption of these adhesive connections leads to increase motility of 

tumor cells, which detach from the primary lesion. Therefore, adhesion molecules on 

the cell surface play an important role in tumor cell migration and regulate the potential 

for epithelial cells to metastasize, being adhesion molecule interactions also able to 

convey regulatory signals to the cell (40). Several classes of proteins are participating 

when cells exhibit an invasive or metastatic phenotype, including cell-cell adhesion 

molecules (CAMs), cadherins and integrins. E-cadherin function is lost in a majority 

of pancreatic tumors (41); generally, the presence of E-cadherin is considered as an 

important suppressor of invasion and metastasis and its functional elimination may 

represent a key step in the acquisition of this phenotype. ICAM-1 and VCAM-1 

expression has been found increased in pancreatic cancer samples in comparison with 

normal tissues; they likely contribute to cancer cell migration and spread to distant 

organs (42). Finally, changes in integrin expression are also evident in invasive and 

metastatic pancreatic cancer cells (43).

The role of Lymphangiogenesis in cance metastasis

Like in normal tissues, both vascular and lymphatic vessels are present in malignant 

tissues. Lymphoangiogenesis, namely the proliferation of new lymphatic vessels, is an 

important initial step in tumour metastasis. Tumour cells spread via the lymphatic 

system to regional lymph nodes and finally into larger lymphatic vessels, wich re-enter 

into the blood vascular system; therefore, similarly to angiogenesis, 

lymphoangiogenesis provides new vessels that malignant cells can use to escape the 

confines of the primary tumour (44). For several years, the study of lymphatic vessels 

has been difficult, most likely due to a lack o f appropriate molecular markers that could
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be used to discriminate between lymphatics and blood vessels. The discovery of 

lymphatic vessel cell-surface markers, such as VEGFR3, podoplanin, LYVE-1 and 

CD34 has allowed the purification and study of these vessels (45). 

Lymphoangiogenesis is controlled in part by members of the vascular endothelial 

growth factor (VEGF) family, mostly VEGF-C and VEGF-D and their cognate 

receptors on lymphatic endothelium, VEGFR-3 (44). In addition to the two VEGF 

family members, fibroblast growth factor 2 (FGF2), platelet derived growth factor B 

and hepatocyte growth factor (HGF) stimulate lymphatic vessel growth (45). Growth 

factor stimulation of lymphatic vessels enhances lymphatic metastasis. Several studies 

have found positive correlations between VEGF-C and VEGF-D expression and 

vascular invasion, lymphatic vessel and lymph node involvement and distant metastasis; 

VEGF-C expression in tumour cells may be induced by growth factors or 

proinflammatory cytokines, and some may be derived by inflammatory cells in tumours. 

Lymphatic vessels in pancreatic cancer have not been studied well, however, 

lymphoangiogenesis appears important in metastasis of pancreatic cancer (40). 

Morphological studies clearly indicate alterations of lymphatic vessels in the periphery 

o f the tumours, which can be due to overexpression of VEGF-C, as excess o f VEGF-C 

causes lymphatics to enarge. VEGF-C expression has been associated with increased 

lymphatic vessel invasion and lymph node metastasis, but not with decreased patient 

survival in pancreatic cancer (46).
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The role of extracellular proteases

The second class of players in transforming pancreatic cancer into an invasive 

and metastatic phenotype are extracellular proteases; in the 1970s it was first 

recognized that tumor-derived proteases, e.g. plasminogen activators and 

metalloproteinases, play an important role in the cleavage of basement membranes and 

extracellular matrix molecules and thus assist in the processes of invasion and 

metastasis of cancer cells (47). Later, it became accepted that also non-tumoral stromal 

cells may contribute to this process (48). Proteases can also play a role in the early 

phases of tumor development through their ability to proteolitically activate several 

molecules, releasing them from the matrix; examples include VEGF and TGFp (49-53).

The MMP family can be broadly subdivided into five groups: collagenases, 

stromelysins, elastases, membrane-type (MT) MMPs and the gelatinases. Although the 

classification system was developed on the basis of substrate specificity, it is now 

recognized that there is some overlap between some members of the family (e.g. MMP- 

2 can cleave fibrillar collagen similar to the collagenases) (Table 1.3). The multigene 

family of metal containing proteases shares several common characteristics: (a) each 

degrade at least one component of the basement membrane; (b) their catalytic activity 

depends on the presence of zinc ions at the catalytic active site; (c) they are inhibited by 

metal chelators and tissue inhibitors known as tissue inhibitors of metalloproteinases 

(TIMPs); and (d) they are secreted as zymogens and require activation extracellularly, 

usually accompanied by loss o f a 10-kDa amino-terminal domain (54-56). The 

collagenases catalyze degradation of fibrillar forms of collagen (i.e. type I, II, I I I ). The 

stromelysins have relatively broad substrate specificity, catalyzing degradation o f many 

different substrates in the ECM, including proteoglycans (core protein), laminin, 

fibronectin. The group of m em brane-type M M Ps possess a transmembrane domain 

and catalyze activation of progelatinase A and degrade a variety of ECM substrates. The
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cytokine-induced Gelatinase B (MMP-9) and the constitutively expressed Gelatinase 

A (MMP-2) are also known as type IV collagenases and degrade gelatin (denatured 

collagen) and type IV, V, VII, IX, X collagen. Type IV collagen is particularly abundant 

in basement membranes, which are the membranes separating organ parenchyma from 

the underlying stroma. Four endogenous specific inhibitors of MMPs (tissue inhibitor of 

metalloproteases, TEMP) have also been described: TIMP-1 to TIMP-4; they inhibit 

protease activity by forming high-affinity complexes with the active MMPs.

Given the important role played by MMPs in cancer progression, there has been 

great interest in the development of MMP inhibitors (MMPIs) (57-59); as 

metalloproteases are also involved in the migration of endothelial cells during 

angiogenesis, MMPIs can affect metastasis both by acting directly on tumor cell 

invasion, but also by inhibiting angiogenesis.

Preclinical studies testing the efficacy of MMP suppression in tumor models 

were very exciting and synthetic metalloproteinase inhibitors (MPIs) rapidly developed; 

however, the results o f some of these trials have been disappointing and the clinical 

development o f MPIs had to overcome unforeseen problems (60). Batimastat (BB-94), a 

broad spectrum inhibitor, became the first MMPI to be tested in humans (61); it was 

then replaced by Marimastat (BB-2516), another peptido-mimetic MMPI orally 

available (62-64). Despite some limitations, Marimastat has proved to be as effective as 

conventional therapy (gemcitabine) in treatment o f pancreatic carcinoma patients (65).
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MMP ECM  substrate

MMP-1 (Interstitial Collagcnase) 
MMP-8 (Neutrophil Collagcnase) 
MMP-13 (Collagenase-3)
MMP-18

Fibrillar collagens

MMP-3 (Stromelysin-1) 
MMP-10 (Stromelysin) 
MMP-11 (Stromelysin-3) 
MMP-7 (Matrilysin)

Laminin, fibronectin, non-fibrillar collagens

Metalloelastase Elastin
MMP-14 (MT1-MMP)

MMP-15 (MT2-MMP) 
MMP-16 (MT3-MMP) 
MMP-17 (MT4-MMP)

Gelatinase A, fibrillar collagens, 
proteoglycans, ECM glycoproteins
Gelatinase A
Gelatinase A

MMP-2 (Gelatinase A) 

MMP-9 (Gelatinase B)

Type I, IV, V and fibrillar collagens, gelatin 
Type IV, V collagen, gelatin

MMP-19 Gelatin

Table 1.3 The Matrix Metalloprotease Family. The original classification system was 

developed on the basis of substrate specificity.

Regulation of the MMPs occurs at three levels: alteration of gene expression  

(one of the most potent family of inducers are phorbol esters, such as PMA, as well as 

inflammatory cytokines, IL1, IL-8, TNFa), activation of zymogens (by agents such as 

trypsin 2, cathepsins, elastase) and inhibition of tissue inhibitors of metalloproteases. 

Alteration of all three levels of control have been associated with tumor cell 

progression. There is often a balancing effect within the corresponding physiological 

inhibitors of MMPs, to create the environment necessary for either physiological or 

pathological processes.

The main function of MMPs is degradation of the extracellular matrix, a 

mechanism required for many physiologic functions, including angiogenesis, wound 

healing, bone resorption and mammary involution, as well for pathological conditions, 

including cancer. Indeed, in either case the rate-limiting step is the breakdown of
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connective tissue barriers. The difference between them is that physiological invasion is 

regulated, whereas tumorigenic invasion appears to escape any limiting control. 

Correlating with this observation, MMPs are invariably upregulated in the stromal 

compartment o f invasive epithelia; for instance, MMP-2 expression is increased in 

several tumors and strongly correlates with nodal status and tumor stage (66, 67). 

MMP9 derived from hematopoietic cells o f host origin, has been shown to contribute to 

skin carcinogenesis (68). In addition, MMP9 has complex effects beyond matrix 

degradation, including promotion of angiogenesis and release o f growth factors (69, 

70). Several studies in pancreatic cancer indicate that proteases are upregulated (in 

particular MMP-2 and MMP-9), protease inhibitors are downregulated (TIMP1 is 

reduced in tumors with lymph node metastasis) and inactive zymogen forms of 

proteases are converted into active enzymes (71). Moreover, the plasminogen 

activator/plasmin system has been implicated in tumor invasion and metastasis; tissue 

type plasminogen activator (t-PA) and urokinase type plasminigen activator (u-PA) and 

their respective receptors, annexin II and u-PAR, have been demonstrated to contribute 

to the invasive behaviour o f pancreatic cancer (72)). There is also evidence that certain 

pancreatic cancer cells induce uPA expression in stromal cells, which then bind to the 

urokinase receptor (uPAR) expressed on the cancer cells (73). This likely enables 

cancer cells to migrate through tissue barriers.

Organ selective spreading

In common with many other cancers, pancreatic adenocarcinoma also displays 

preferential organ metastatization; locoregional lymph nodes, liver, especially with 

tumors in the tail and the body of the pancreas, the celiac plexus (a network o f many 

nerves grouped around the aorta, causing back pain when pressed upon by a growing 

tumor), superior mesenteric vessels, closely associated to the pancreas and portal
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vein. The location of the metastases determines whether the cancer can be surgically 

removed or not, therefore having an important impact on the outcome of the disease.

One of the principal causes of metastasis in pancreatic adenocarcinoma is the 

high frequency of local recurrence; indeed, although surgery has been shown to be an 

effective therapeutic approach, the tendency to recurrence usually leads to the death of 

the patient within 1 or 2 years after surgery. It has been proposed that pancreatic cancer 

may have a multifocal origin and that tumors left in the remaining pancreas after a 

Whipple operation may be the source of local recurrence, but this hypothesis has not 

found support, because total pancreatectomy does not change the outcome (74). 

Microscopic tumor metastases already existing in the liver at the time of surgery are a 

possible source of recurrent disease, but it is unlikely that they are the explanation for 

tumor recurrence in the retroperitoneum (75).

A possible source of recurrence may be represented by neural invasion. Detailed 

pathohistologic studies of a large series of resected pancreatic ductal adenocarcinoma 

have shown that one of the most persistent characteristics is perineural invasion (76- 

78). Although perineural invasion also occurs in other types of cancer, this phenomenon 

is most consistently observed in pancreatic cancer. This seems to be due to anatomical 

reasons; indeed, the pancreas hosts a large amount of neural tissue, including ganglia, 

and it is in close proximity to abundant neural plexi and ganglia in the retroperitoneum. 

This observation is highlighted in the hamster pancreatic cancer model, where 

perineural invasion can be found in virtually all cases (79, 80).

Fig 1.4 Pancreatic cancer perineural invasion.

Hematoxylin Eosin staining of a surgical section of 

pancreatic cancer adenocarcinoma with tumour 

cells infiltrating an intrapancrcatic nerve 

(magnification xlOO). N indicates the nerve.
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Pour et al support the idea that all pancreatic cancers show perineural invasion if 

several sections have been scrutinized histologically. This observation and other 

existing data strongly suggest that tumor cells residing in the celiac and superior 

mesenteric ganglia indeed represent the main source of pancreatic cancer recurrence 

(74).

Novel concepts on metastasis: proposed role for chemokines and their 

receptors

For many years, researchers have tried to give an explanation for the 

phenomenon of organ-specific metastasis. In particular, the observation that many types 

of cancer display organ-specific pattern of metastasis but these organs sometimes do not 

correspond to those found in the drainage site has prompted to hypothesize the existence 

of organ-specific attractant molecules. These mediators would be responsible for tumor 

cell chemoattraction, stimulating the migrating tumor cells to invade the walls o f blood 

vessels and finally enter the organs.

Chemokines, small cytokines endowed with chemotactic activity, through the 

interaction with specific receptors, have been found to perfectly fit with this theory; 

indeed, recent studies have shown that tumor cells express patterns of chemokine 

receptors that match chemokines specifically expressed in organs to which these cancers 

commonly metastasize (81-83).

In this thesis I have investigated the expression of chemokine receptors in 

human pancreatic adenocarcinoma to test the hypothesis that chemokine receptors could 

play a role in pancreatic cancer dissemination.
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Chapter 2 

Chemokines and their Receptors

32



2.1 The chemokine family

Structure and nomenclature

Chemokines are chemotactic cytokines that activate specific receptors expressed 

on cellular membranes. Chemokine reeptors sense a chemical gradient and mobilize 

cells in the gradient direction. The principal targets o f chemokines are bone marrow- 

derived cells and, as motility is an essential part of their function, chemokines play 

pivotal roles in coordinating leukocyte navigation. However, chemokines are not only 

simple chemotactic factors. These proteins can regulate several cellular activities, 

including maintainance of homeostasis, angiogenesis/angiostasis, cellular differentiation 

and activation, wound healing, tumor growth and metastasis, lymphocyte homing and 

development o f lymphoid tissue, and regulation of the immune response. All cell types, 

including structure cells, have the potential to actively participate in chemokine 

production.

The chemokine family (Table 2.1) comprises about 50 members; most are low 

molecular weight molecules (8-10 kDa), all consisting of roughly 70-130 amino acids, 

with four conserved cysteines (84-88). Two main subfamilies, CXC (a) and CC (p) 

chemokines are distinguished, according to the position of the first two cysteines, which 

are separated by one amino acid (CXC) or adjacent (CC). The cysteines form two 

disulfide bonds which confer to the chemokines their characteristic three-dimensional 

folding, with a flexible N-terminal loop connected to the more structured core o f the 

molecule (3 p-sheets) and a terminal a-helix. The CXC chemokine family can be 

further subdivided according to the presence or absence o f a conserved tripeptide m otif 

glutamic acid-leucine-arginine (ELR) at the N-terminus of the protein, before the CXC 

domain; this motif is not simply structural but seems to be linked to function, giving 

specificity for neutrophil chemotaxis and angiogenesis. Two variants of the chemokine
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structure paradigm have been described: Lymphotactin-a (XCL1) and lymphotactin-p 

(XCL2), the two members of the C (y) family, have two instead of the ususal four 

conserved cysteines and Fractalkine (CX3CL1), also called Neurotactin, has three 

amino acids between the first two cysteines, giving rise to the one-member CX3C (8) 

subfamily. A systematic nomenclature for chemokines became necessary as more and 

more new molecules were found. This classification relies on the principle established 

for their receptors, defined as CXC, CC, XC and CX3C followed by R and a number; 

thus chemokines are defined by the same structure-related acronyms followed by L (for 

ligand) and the number of their gene (designated long ago as SCY -small secreted 

cytokines- and numbered chronologically) (87, 89).

There are also differences in the genomic organisation o f the chemokine 

families. Many of the genes for the CXC chemokines, which act on neutrophils are 

located on chromosome 4, while a majority of the genes for the CC chemokines, which 

act on monocytes are clustered on chromosome 17 (89). These genes may have arisen 

by duplication and divergence from primordial chemokine genes but remained in 

clusters, supporting the idea that their functions are to some extent related. The 

remaining chemokines are in new chromosomal locations away from these two main 

clusters. These genes are more conserved between species and have highly specific 

functions, suggesting that they are older in evolutionary terms (89).

Like cytokines, chemokines are secreted proteins; only two of them, CXCL16 

and CX3CL1 are synthetized with a typical transmembrane sequence, which anchores 

them to the cell membrane, and the chemokine domain suspended by a mucin-like stalk.
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Chemokine Ligands Other Names Chemokine Receptors

CXC Subfamily

CXCL1 GROa/MGSA-a CXCR2>CXCR1
CXCL2 GROp/MGSA-p CXCR2
CXCL3 GROy/MGSA-y CXCR2
CXCL4 PF4 CXCR3B
CXCL5 ENA-78 CXCR2
CXCL6 GCP-2 CXCR1, CXCR2
CXCL7 NAP-2 CXCR2
CXCL8 IL-8 CXCR1, CXCR2
CXCL9 Mig CXCR3A
CXCL10 IP-10 CXCR3A
CXCL11 I-TAC CXCR3A
CXCL12 SDF1 a/p CXCR4/ CXCR7
CXCL13 BCA-1 CXCR5
CXCL14 BRAK/bolekine Unknown
CXCL15 Murine lungkine Unknown
CXCL16 Bonzo ligand CXCR6

C Subfamily

XCL1 Lymphotactin/SCM-1 aJATAC XCR1
XCL2 SCM-ip XCR1

CX3C Subfamily

CX3CL1 Fractalkine CX3CR1

CC Subfamily

CCL1 1-309 CCR8
CCL2 MCP-1/MCAF/TDCF CCR2
CCL3 M IP-la/LD78a CCR1, CCR5
CCL4 MIP-ip CCR5, CCR8
CCL5 RANTES CCR1, CCR3, CCR5
CCL6 CIO CCR1
CCL7 MCP-3 CCR1, CCR2, CCR3, CCR5
CCL8 MCP-2 CCR1, CCR2, CCR3, CCR5
CCL9/10 MIP-ly CCR1
CCL11 Eotaxin CCR3
CCL12 Murine MCP-5 CCR5
CCL13 MCP-4 CCR1, CCR2, CCR3
CCL14 HCC-1 CCR1, CCR5
CCL15 HCC-2/Lkn-1 /MIP-18 CCR1, CCR3
CCL16 HCC-4/LEC/LCC-1 CCR1
CCL17 TARC CCR4, CCR8
CCL18 DC-CKl/PARC/AMAC-1 Unknown
CCL19 MIP-3 p/ELC/exodus-3 CCR7
CCL20 MIP-3 a/L ARC/exodus-1 CCR6
CCL21 6Ckine/SLC/exodus-2 CCR7
CCL22 MDC/STCP-1 CCR4
CCL23 MPIF-1/CKP8-1 CCR1
CCL24 Eotaxin-2/MPIF-2 CCR3
CCL25 TECK CCR9
CCL26 Eotaxin-3 CCR3
CCL27 CTACK/ILC CCR10
CCL28 MEC CCR10

Table 2.1. The chemokine family (<adapted from Allavena et al Crit Cancer Treatment Review

2005)

35



Functional classification

Beside structure, chemokines can also be grouped according to their function; in

fact, they can be produced by leukocytes and tissue cells either constitutively or after 

induction, thus a former classification grouped chemokines into the functional 

subfamilies termed “inflammatory” and “homeostatic”. Thus, homeostatic chemokines 

usually guide the trafficking of leukocytes under steady state conditions, during immune 

surveillance of healthy peripheral tissues and control the architecture of secondary 

lymphoid organs; by contrast, inflam m atory chemokines are produced and control the 

recruitment of effector leukocytes under conditions of inflammation, immune reactions, 

tissue injury and tumors. In particular, tumors are characterized by the constitutive 

expression of inducible chemokines (90); examples include CCL2 production in breast 

and pancreatic cancer, melanoma, sarcomas and lung tumors (91)(Fig. 2.1).

CCL1
CCL2

CCL3L1

CCL5 CCL7

CCL14
CCL3CCL 15

CCL 16 CCL4
CCL 17CXCL12

CCL8CCL 19
CXCL13CCL 18 CCL I CCL 13

CCL2 CCL20
CCL23

CCL24CCL21 CCL22 CCL28
CXCL1

CCL26XCL1 XCL2CCL25
CXCL3CXCL2

CXCL5CCL27
CXCL7CXCL8

CX3CL1 CXCL9 CXCL10
CXCL11

NeoplasiaNormal 
traffic k

InducibleC onstitutive

Infection
Inflammation

Immunity

Fig. 2.1 Chemokine functional classification. Tumors are characterized by the constitutive 

expression of inducible chemokines (adapted from (90)).
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Many chemokines have broad target cell selectivity. In particular, expression of 

inducible chemokines can be elicited by almost any stimulus that alters cellular 

homeostasis; they can be thought o f as vertebrate cellular “SOS response” that recruits 

leukocytes to areas of tissue injury. Recent findings, however, indicate that several 

chemokines cannot be assigned unambiguously to either one of the two functional 

categories and therefore are referred to as “dual function” chemokines (92). Dual 

function chemokines participate in immune defense functions (i.e. are upregulated under 

inflammatory conditions, examples include the interferon-inducible chemokines 

CXCL9, CXCL10, CXCL11) and also target non-effector leukocytes, including 

precursors and resting mature leukocytes, at sites of leukocyte development and 

immune surveillance (for instance CCL1, CCL25, CXCL16) (92). Many dual function 

chemokines are highly selective for lymphocytes and have a role in T-cell development 

in the thymus, as well as in T-cell recruitment to inflammatory sites. Remarkably, dual­

function and homeostatic chemokines usually bind to a single receptor, expressed 

mainly on lymphoid cells, in contrast to inflammatory chemokines, which bind to 

multiple receptors (see below).

Chemokine and receptor specificity

Chemokines exert their biological activity on leukocytes by binding to seven 

transmembrane domain, G-protein coupled receptors (see below). The principal target 

of chemokines are leukocytes and these small proteins tightly regulate their traffick, 

such as during their recruitment into sites of inflammation or positioning in secondary 

lymphoid organs (87, 89). In general, different chemokine classes tend to exhibit 

different ranges of leukocyte specificity; schematically, CXC-ELR+ chemokines (ELR 

is a highly conserved amino acid motif: Glu-Leu-Arg) are the major chemoattractants 

for neutrophils, whereas CXC-ELR- chemokines attract lymphocytes and monocytes
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but have little or no action on neutrophils. Chemokines belonging to the CC family act 

primarily on monocytes, but they can also attract lymphocytes, NK cells, basophils and 

eosinophils. CX3C and C chemokines act on lymphoid cells (T cells and NK cells) and 

Fractalkine is also active on monocytes. Despite this specificity, redundancy in the 

action on target cells is an intriguing feature of chemokines: no chemokine is uniquely 

active on one leukocyte population and usually a given leukocyte population has 

receptors for and responds to different chemokines. This confers robustness to the 

system, as variations in the amount or quality of any chemokine or receptor would have 

bearable consequences for basal trafficking of leukocytes (85, 93, 94). Moreover, the 

interaction o f chemokines with their receptors is characterized by considerable 

promiscuity. Most ligands interact with more than one receptor and most known 

receptors have been reported to interact with multiple ligands; only CXCR4, CXCR5, 

CXCR6, CCR6, CCR9 and CX3CR1 bind to only one chemokine. Probably all cell 

types can produce chemokines under appropriate conditions and usually, a cell produces 

many chemokines concomitantly in response to the same stimulus (polyspeirism) Once 

again, this receptor promiscuity and polyspeirism contribute to the robustness o f the 

chemokine network, essential features which act to retain the chemokine system 

function, even if genetic or epigenetic alterations affecting individual components 

occur.
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Chemokine Receptors

Structure and nomenclature

Chemokines induce cell migration and activation by binding to specific G- 

protein-coupled cell surface receptors on target cells. Ten CC (CCR1-10), seven CXC 

(CXCR1-7, the last is a very recent acquisition), one CX3C (CX3CR1) and one XCR 

(CXR1) receptors have been identified (86, 89). Receptor expression is a crucial 

determinant o f the spectrum of action o f chemokines. The profile o f chemokine- 

receptor expression on an individual cell is determined by its lineage, stage of 

differentiation and microenvironmental factors, such as chemokine concentration, the 

presence of inflammatory cytokines, low oxygen tension (hypoxia). Indeed, some 

receptors are restricted to certain cells (e.g. CXCR1 is predominantly restricted to 

neutrophils), whereas others are more widely expressed (e.g. CCR2 is expressed on 

monocytes, T cells, natural killer cells, dendritic cells, and basophils). Moreover, 

chemokine receptors can be constitutively expressed on some cells, whereas inducible 

in others (e.g CCR1 and CCR2 are constitutively expressed on monocytes, but are 

expressed on lymphocytes only after IL-2 stimulation); again, the expression of some 

chemokine receptors can be restricted to a cell state of activation and differentiation 

(e.g. CXCR3 is expressed on activated Thl T lymphocytes, whereas CCR3 is 

preferentially expressed on Th2 lymphocytes) (95). Although initially studied on 

leukocytes, some chemokine receptors are also expressed in nonhematopoietic cells, 

including neurons, astrocytes, epithelial and endothelial cells. These observations 

suggest that the chemokine system has other roles in addition to leukocyte chemotaxis.

As already pointed out for chemokines, the remarkable feature o f the chemokine 

receptor family is their promiscuity as far as ligand binding is concerned; however, 

although relatively few receptors bind only one ligand, CC receptors bind only CC
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chemokines and CXC receptors bind only CXC chemokines. This ligand-receptor 

restriction may be related to structural differences between CC and CXC chemokines, 

which have similar primary, secondary and tertiary structures but different quaternary 

structures (96).
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Fig. 2.2. Chemokine Receptor family. Ligand specificity is represented, with many receptors 

binding more than one single ligand.
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Chemokine receptor signaling
The first studies on chemokine signaling showed that functional responses were

prevented by pre-treatment of the cells with Bordetella pertussis toxin, indicating that 

the receptor was coupled to GTP-binding proteins of the Gi type (97), which eventually 

turned out to be the rule for all the chemokine receptors. Although the details o f the 

chemokine signalling pathways appear to vary slightly depending on the cellular 

context, the general rule is that, on chemokine binding, the G protein activated by GTP 

dissociates in a  and By subunits, the latter activating two major signal transduction 

enzymes PLC (both the isoenzymes (32 and (33 (98) and PI3Ky. PLC cleaves PIP2 

yielding to two second-messengers: IP3, (which induces the release o f calcium ions 

from intracellular stores, leading to a transient rise of the free calcium concentrations) 

and DAG (which activates several isoforms of PKC). While the rise in the concentration 

of intracellular calcium has been widely used to test the responsiveness of chemokine 

receptors to different chemokines, activation of PKC isoenzymes is stimulated by 

almost any surface receptor and therefore is not special for chemokine-induced signal 

transduction. However, PKC activation by chemokines contributes to receptor 

phosphorylation which leads to desensitization and inhibition o f functional responses 

(99) (see later). In myeloid cells, migration is not dependent on PLC(3 activity, but 

requires activation of PI3Ky (100, 101); PI3Ky rapidly generates PIP3 and initiates the 

activation of another kinase, PKB (102). In a chemotaxing cell, signaling components 

responsible for the formation of cell polarity, directional sensing and F-actin 

polymerization, such as PI3K, PIP3, the small GTPase Rac, PKB, translocate to the 

leading edge of the cell, where they contribute to local actin polymerization, whereas 

the mediators of actomyosin contraction are recruited to the trailing edge (103)(Fig. 

2.3). Another important player is Cdc42, a small GTPase, which is recruited to the 

leading edge, where it has the essential role to exclude from the leading edge a
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phosphatase, PTEN, negative regulator of PI3Ky. Without Cdc42, cells exhibit a 

random walk, rather than directed migration (104-106). Thus, upon chemokine 

stimulation, PI3K localizes anteriorly, whereas PTEN localizes posteriorly and this 

spatial and temporal regulation determines the polarity of the migrating cell (107).

Chemokine Receptor

G a { protein

MAPK
pathway

PTEN

Cdc42

RacGTP

Cell polarity 
Gradient sensing F-actin polymerization Myosin Assembly

Leading edge

Fig 2.3. Signaling through chemokine receptors. Different signalling components localize 

either in the leading edge or in the trailing edge, determining cell movement (adapted from 

Tanaka et al, ( 108)).

There is increasing evidence that chemokine receptors can also activate several 

intracellular effectors downstream of G coupling, including the low molecular weight 

protein Ras and Rho and the mitogen-activated protein (MAP) kinase pathway (109,
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110). Recently it has been suggested that, like cytokine receptors, chemokine receptors 

are also able to signal through the JAK-STAT pathway (111, 112). Upon ligand 

binding, the receptor dimerizes and catalyses the phosphorilation of the JAK kinases 

which in turn phosphorylate the receptor itself; this event brings to STAT molecule 

recruitment, dimerization and translocation to the nucleus where it triggers the 

expression of cytokine dependent genes.

Chemokine receptor signalling is transient, and the rapid termination of receptor 

activity is achieved by three mechanisms: receptor inactivation, desensitization and 

internalization. Receptor inactivation is mediated by the intrinsic GTPase activity of 

the G a subunit, which hydrolyzes GTP and reunite with Gpy to return to the initial 

conformation of inactive heterotrimers. Desensitization is caused by receptor 

phosphorilation, through G-protein-coupled receptor kinases, among which PKC and 

finally internalization is caused by p-arrestin or adaptin-2 mediated receptor 

sequestration and internalization, through clathrin-coated pits or caveolae. The speed of 

response recovery is determined by the fate of internalised receptors, either lysosomal 

degradation or dephosphorylation and cell surface recycling; the pathway leading to 

either degradation or recycling following receptor internalization are determined by the 

guardians of all vesicular machinery, Rab GTPases (113) and by the rate o f de novo 

chemokine receptor synthesis.

CXCR4 is a unique receptor in this regard, as it does not share with the other 

chemokine receptors the common feature of rapid inactivation; indeed, it possesses the 

remarkable property o f being able to induce prolonged signalling (114). Stimulation of 

prolonged signalling of Akt/PKB and ERK2 is likely to contribute to this phenomenon 

(115). Recently, Tilton et al have raised various possibilities to explain this fact, the 

most likely being that CXCR4 remaining at the surface is not desensitised (as is usual 

with chemokine receptors) but can continue to transduce a signal in response to
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CXCL12, despite receptor internalisation. Receptor recycling could also contribute to 

this effect (115).

Signal transduction downstream chemokine receptors is much more complicated 

than the one above described; indeed, a given receptor will activate signalling pathways 

influenced by those from other receptor systems.

Beside the conventional signalling receptors, other chemokine binding molecules with 

high structural similarity to chemokine receptors have been described, namely the Duffy 

antigen receptor for chemokines (DARC) (116), D6 (117, 118) and CCX-CKR (119). 

These receptors do not elicit migration or conventional cellular responses, but still retain 

the capability to bind chemokines with high affinity. They are also referred to as “silent 

receptors” and have been suggested to favour transfer of chemokines across endothelial 

barriers and/or to act as decoy receptors which dampen inflammatory reactions (120).

2.3 In vivo biology of Chemokines and Receptors

The eponymous function of chemokines and their receptors is to mobilize cells 

in a gradient direction. This biological function is particularly important in leukocyte 

recruitment at sites of inflammation, although it is now well known that many different 

cells express chemokine receptors and are therefore able to respond to chemotactic 

stimuli. The process of recruitment o f circulating leukocytes at sites of inflammation 

begins with the chemokine and chemokine receptor interaction, which eventually 

culminates in the final cell movement.
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Multistep model of leukocyte extravasation

Binding to endothelium occurs through complex interactions of adhesion 

molecules and chemokines, exposed on endothelial cells and their receptors, expressed 

by the moving cell. Leukocytes tether to vessel walls using selectins, molecules that are 

specialized for adhesion under shear stress; these molecules have been demonstrated to 

be expressed also by other cell types, therefore presumably involved in the binding to 

the endothelium of different types of cells. This process, also referred to as rolling, is 

the first weak stop signal for circulating cells. Then a second class o f adhesion 

molecules, integrins, is responsible for firm adhesion; they are structurally designed for 

rapid conformational changes regulating their affinity and leading to firm arrest of cells 

on the vessel wall and then transendothelial migration. Chemokines, bound to 

glycosoaminoglycans on the surface of endothelium, are thought to provide the signals 

that convert the low-affinity, selectin-mediated interaction into the high-affinity, 

integrin -mediated interaction that leads to extravasation o f leukocytes.

Blocking of leukocyte adhesion to endothelium by pertussis toxin, a G-protein- 

signalling inhibitor, confirms this hypothesis (121).

Role of chemokines in physiologic processes

Chemokine biological function is particularly important in leukocyte 

recruitment at sites of inflammation and therefore, the primary role o f chemokines in 

guiding leukocyte migration bears the important consequence that blocking chemokines 

or their receptors profoundly affects all those inflammatory responses requiring 

leukocyte recruitment.

The trafficking of Dendritic cells (DC) and lymphocytes through secondary

lymphoid organs is finely regulated by chemokine receptors. DC can take up antigens in
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peripheral tissues and migrate to draining lymph nodes where they present antigen to 

naive T cells, triggering the T cells to proliferate and differentiate. These activated T 

cells can then migrate to the inflamed tissues to perform their effector functions. The 

movement o f T cells and DC between lymph nodes and the periphery may be controlled 

by differential chemokine receptor expression (122). Circulating monocytes and 

immature DC can express receptors for chemoattractants such as fMLP (representative 

of bacterial proteins) and C5a (generated in the complement cascade) as well as 

chemokine receptors including CXCR4, CCR1, 2, 3, 4, 5 and 6 (123, 124). Using these 

receptors, immature DC can migrate towards sites where there is a high concentration of 

inflammatory chemokines such as CCL2, CCL3 and CCL5. Immature DC can also 

respond to constitutively expressed chemokines such as CXCL12, and this may be 

important for localising DC in tissues under normal conditions. At sites of 

inflammation, immature DC are activated by inflammatory cytokines such as TNF- 

a  and IL-1 (125), which results in DC maturation. This causes a switch in their 

chemokine receptor expression. Maturing DC lose their responsiveness to CCL3, 4, 5, 7 

and 20 (126, 127), but concomitantly upregulate CCR7 and gain responsiveness to 

CCL 19 and CCL21 which are expressed in T cell rich areas of secondary lymphoid 

organs including lymph nodes, spleen and tonsils.

Naive T cells can express CXCR4 and CCR7, which may account for their 

localisation in secondary lymphoid organs. Upon interaction with antigen-presenting 

DC, naive T cells are activated and alter their chemokine receptor profile. Activated T 

cells can express CXCR3, CXCR4, CCR1, 2, 3, 4, 5, 6, 7 and 8 (128, 129). Activated T 

cells can polarise to T helper 1 (Thl, expressing IFN-y and IL- 12) and T helper 2 (Th2, 

expressing IL-4) subsets, which differ in their cytokine production and function during 

an immune response and also express different chemokine receptors. CCR5 and
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CXCR3 are preferentially expressed on Thl cells, while Th2 cells preferentially express 

CCR3, CCR4 and CCR8 (128, 129), although this differential chemokine receptor 

expression is not clear-cut. Finally, naive B cells can express CXCR5 and CCR7 (130) 

which direct them to the follicles of secondary lymphoid organs, where the ligands 

CXCL13, CCL 19 and CCL21 are expressed. Upon maturation to plasma cells, B cells 

downregulate CXCR5 (131) and CCR7 (132), but have increased sensitivity to 

CXCL12 (through CXCR4) which regulates plasma cell positioning in the spleen and 

lodgement in the bone marrow.

Various indications in the literature suggest that chemokines have a role in the 

development of different biological responses that goes beyond cell recruitment. 

Chemokines have been shown to play a direct role also in definition of the cytokine 

milieu during both inflammatory and immune responses as well as in important 

mechanisms such as hematopoiesis. Thus, chemokines not only support differential 

leukocyte recruitment, but also directly affect target cell functions. Chip-based gene 

expression profile analysis in chemokine-activated monocytes revealed that CC 

chemokines induce specific transcriptional programs in target cells, demonstrating that 

chemokine effects on target cells include induction of transcriptional events (133).

Chemokines not only attract T cells, but they may also have roles in regulating T 

cell biology, influencing Thl/Th2 polarisation (134). CCL2 can suppress Thl 

responses and cause an increase in IL-4 (Th2 cytokine) production by activated and 

memory T cells in vitro (134, 135). CCL2 addition to macrophages in vitro can also 

decrease IL-12 (Thl cytokine) expression (136). CCL2 may therefore promote Th2 

polarisation both directly and indirectly by increasing IL-4 and decreasing IL-12 

production, respectively. In contrast, addition of CCL3 to in vitro cultures o f activated T
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cells promoted the development o f IFNy-producing cells (135) and hence Thl 

differentiation. Similarly, CCL3, 4 and 5 production by monocyte-derived DC can 

promote the development of IFNy-producing cells (137). However, experiments in mice 

deficient in the chemokines CCL2 and CCL3 and the chemokine receptors CCR1 and 

CCR2 have been less conclusive, and in some instances given opposite results, 

depending on the experimental protocols used (138-141).

More work is required to further elucidate the role of chemokines in the 

differentiation o f T cells, and also the contribution of chemokines produced by T cells 

themselves. This may have implications for the use o f chemokine receptor antagonists 

in the treatment of inflammatory disease.

Chemokines play also an important role in hematopoiesis. Stem cells and 

progenitor cells (HPC) in the bone marrow are subjected to the influence o f a variety o f 

different cytokines, resulting in either stimulation or inhibition of proliferation (142). 

Chemokine receptor expression by HPC may regulate the homing o f these cells within 

the bone marrow during differentiation and maturation, and their mobilisation into the 

circulation. In particular, haematopoietic progenitor cells express CXCR4 and can 

migrate in response to CXCL12 (143); therefore, this chemokine/receptor pair plays an 

important role in the balance between retention and mobilization of progenitor cells in 

the bone marrow and this function is accomplished through a mechanism o f receptor 

desensitization and downregulation, with CXCL12 being constitutively produced in 

high amounts in bone marrow. Moreover, they can also be important for the retention of 

HPC in the bone marrow, during B lymphopoiesis; retaining B cell precursors in the 

bone marrow would enable their regulated differentiation into mature B cells (144). 

Beside hematopoiesis, CXCR4 and CXCL12 are important in development and 

embryogenesis, as clearly demonstrated by knockout mice (145, 146). Both CXCR4 and 

CXCL12 deficient mice die in utero, pointing out their role in development and
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embryogenesis; this may also explain why CXCL12 is such a highly conserved 

chemokine. These mice have severely reduced numbers of B cell progenitors and 

myeloid progenitor cells, suggesting that the CXCL12/CXCR4 pair is responsible for B 

cell lymphopoiesis and bone marrow myelopoiesis. Surprisingly, T lymphopoiesis is 

unaffected in these mice. They also have severe heart defects, including defective 

cardiac ventricular septum formation and a disorganised cerebellum. Evidence have 

been collected that mice deficient in either CXCR4 or CXCL12 have defective 

formation of the large blood vessels supplying the GI tract, possibly due to defective 

regulation of vascular branching and/or remodelling processes in endothelial cells (145).

Chemokine in vivo functions are not limited to immunity and inflammation; given their 

broad spectrum activities, it not surprising that they play a role in several types of 

human pathologies, including asthma, cardiovascular diseases, transplantation, 

neuroinflammation, HIV-associated diseases and neoplasia (147). Here I give a general 

overview of the role of chemokines in some important pathologies.

Chemokines in Pathology

A sthm a is a chronic disease o f the small airways where chronic inflammation 

leads to reversible airway obstruction. The leukocyte infiltrate characterizing allergen 

response consists of eosinophils, mononuclear cells (particularly Th2 cells), basophils 

and mast cells. Among different chemokine receptors expressed on the leukocytes 

associated with asthma, CCR3 seems to play a prominent role (148), since it is the 

receptor for CCL 11 (eotaxin); this chemokine was first described due to its ability to 

attract eosinophils which are closely correlated with lung dysfunction clinically (149). 

Indeed, protein and mRNA expression of CCR3 are elevated in the bronchial mucosa 

and skin of patients with asthma (150), where it is expressed on eosinophils, basophils,
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mast cells and airway epithelial cells (151).

Multiple sclerosis (MS) is a demyelinating autoimmune disease mediated by 

CD4+ T cells specific for one or more autoantigens in the central nervous system, which 

produce a variety of destructive inflammatory mediators. Beside auto-reactive T 

lymphocytes, MS lesions contain a variety of cell types, including 

monocytes/macrophages and T cells which are subsequently recruited, activated 

microglia and activated cerebrovascular endothelium (152). During active MS attacks 

there are significantly increased levels of CXCL9, CXCL10, and CCL5 in cerebrospinal 

fluid (153) and CCL2, CCL7 and CCL8 have been found immunohistochemically in 

MS lesions (154). Various chemokine receptors are also expressed in MS lesions: CCR2 

and CCR5 are found on macrophages, microglia and T cells, and CCR3 is also found on 

reactive astrocytes (155). MS patients heterozygous or homozygous for the CCR5A32 

allele (which encodes a non-functional form o f CCR5) have delayed disease onset of 

approximately 3 years compared with affected siblings (156), suggesting that CCR5 

may be a target for therapy. CXCR3 is expressed by more than 90 % of CD3+ T cells in 

cerebrospinal fluid, and >99 % of T cells in perivascular accumulations in active lesions 

(153). The presence of CXCL9 and CXCL10 in MS lesions may account for the 

recruitment of CXCR3 positive T cells; CXCR3 may also be a target for therapeutic 

intervention in MS (157).

Rheumatoid arthritis is characterized by the presence of a mixed inflammatory 

cell infiltrate into synovium-lined joints, in response to autoantigens. The success of 

anti-TNF-based therapy has indicated the critical role played by this cytokine in 

arthritis, presumably mediated by the induction o f chemokines. Synovial fluid from 

pathological joints contains high levels of CCL2, CCL3, CCL5 and CXCL10 and both
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synovial-lining cells and leukocytes are the source. Leukocytes are also the target, 

expressing CCR2, CCR5, CCR2 and CXCR3 (158, 159).

Accumulating evidence indicates that chemokines play a central role in 

cardiovascular disease and in particular in atherosclerosis (160), a chronic 

inflammatory disease o f the blood vessel wall, characterized by the accumulation of 

mononuclear cells. It is a multifactorial disease, with risk factors such as smoking, 

hypertension, hypercholesterolemia, family history and diabetes; however, there is 

consensus on the origin of atherosclerotic plaques from an inflammatory response to the 

arterial damage, occurring either because of hypercholesterolemia or shear stress. One 

of the chemokines found involved in this pathology is CCL2: indeed, CCL2 and CCR2 

deficient mice have 60-85% less arterial lipid deposition than wild type mice, in 

hypercholesterolemia models and this is consistent with the role o f CCL2 in leukocyte 

recruitment. Recent evidence demonstrate that a broad spectrum CC-chemokine 

blockade reduced atherosclerosis in an Apo-E knockout mice (161, 162).

Another important chemokine in atherosclerosis is CX3CL1, namely 

Fractalkine: this chemokine is produced by endothelial cells after inflammatory 

cytokine stimulation and can mediate leukocyte adhesion and infiltration into the 

vascular wall, as well as NK-cell-mediated endothelium injury. High levels o f mRNA 

for CX3CL1 and other 16ql3-chromosome-linked chemokines have been observed in 

human arteries with advanced atherosclerotic lesions (163). The ability to recruit 

leukocytes and its expression in vascular cells strongly suggest a pivotal role for 

Fractalkine in the pathophysiology of atherosclerosis (164). Moreover, in humans, gene 

polymorphisms at amino acids 249 and 280 o f the Fractalkine receptor have been 

reported (165-167), causing amino acid substitution: valine (V) instead of isoleucine (I) 

in position 249 and methionine (M) instead of threonine (T) in 280. Homozygosity for
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V249-CX3CR1 has been found to be associated with increased risk for acute coronary 

events in comparison to 1249 heterozigosity (167). The molecular explanation is that the 

V249 variant displays higher binding affinity to the chemokine, corresponding to an 

enhanced ability of monocytes to adhere to the vascular endothelium (168).

As the chemokine system plays an essential role in host defense, it is not 

surprising that chemokines and their receptors may be involved in rejection of 

allogeneic transplants. In particular, after an early non specific release o f inflammatory 

chemokines attracting neutrophils and monocytes, CXCR3 and CCR5 ligands appear, 

several days after the transplants, consisting with their orchestrating the movement of 

cells involved in acute rejection (169). Moreover, it has been demonstrated that 

CX3CL1 expression is enhanced in rejecting cardiac allografts (170); in addition, the 

treatment of organ recipients with polyclonal anti CX3CR1 blocking antibodies 

markedly prolonged survival of MHC-mismatched heart allografts (170).

As far as bone marrow transplant is concerned, CXCR4 and its ligand 

chemokine CXCL12 are very important. As comprehensible given their role in the 

balance between stem cell precursor retention and mobilization in the bone marrow, 

CXCR4/CXCL12 play a role in bone marrow engrafment of CD34+ cells and this may 

have clinical implications with regard to therapeutic stem cell transplantation.

CD4 is the primary cell surface receptor used by human immunodeficiency virus 

(HIV) to penetrate T lymphocytes and macrophages. The chemokine receptors CXCR4 

and CCR5 function as co-receptors which, along with CD4, allow viral envelope fusion 

and entry (171, 172). A range of chemokine receptors have now been shown to have co­

receptor activity in vitro, including CCR1, 2, 3, 4, 5, 8, 9, CXCR2, 4, 5, 6 and CX3CR1
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(173), but so far only CXCR4 and CCR5 have been shown to act as co-receptors in 

vivo, hence X4 tropic and R5 tropic viruses are described. Since chemokine receptors 

act as co-receptors for HIV entry, endogenous chemokine production can regulate HIV 

replication. In 1995, Cocchi et al published that CCL3, CCL4 and CCL5 have CD8+ T- 

cell-derived HIV inhibitory activity (174). Also, individuals homozygous for the A32 

allele of CCR5, who are deficient in cell surface CCR5 expression, can remain 

uninfected despite exposure to HIV (175, 176). These observations suggest that 

chemokines and their receptors which are involved in HIV infection are potential targets 

for the development of new drugs to treat HIV. For example, small molecule 

antagonists of CCR5 and CXCR4, which can block HIV entry, are entering clinical 

trials (177, 178).

2.4 Chemokines in Cancer

Since their discovery, the field of chemokines was strongly connected to cancer 

biology. Indeed, in the early 1980s it had been noted that tumor supernatants contained 

chemo-attractants active on monocytes (179); the Tumor-derived Chemotactic Factor 

isolated in the culture supernatants of tumor cell lines was lately identified as CCL2 

(180). The role of chemokines in tumor biology has dramatically developed in the last 

decade and has expanded from the regulation of leukocyte attraction within the tumor 

mass to the promotion of tumor cell survival, proliferation and dissemination (82, 83, 

181).

As already said, primary tumor growth, invasion and metastasis to distant organs 

are dependent on a highly orchestrated series o f events, including cellular 

transformation, a pro-angiogenic environment, local tumor cell growth, invasion
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through the extracellular matrix (ECM) and vascular basement membrane, entry into the 

circulation and eventually non-random tumor-cell metastasis to distant organs. In 

addition to their role in regulating leukocyte trafficking, chemokines have been shown 

to be involved in each of these events.

Chemokines in the tumor microenvironment

In the tumor microenvironment chemokines are produced both by stromal cells 

(fibroblasts, endothelial cells and infiltrating leukocytes) and by the tumor itself. CCL2 

is probably the CC chemokine most frequently secreted by cancer cells. Human tumors 

shown to express CCL2 in vivo include sarcomas, gliomas, lung tumors, carcinomas of 

the breast, cervix and ovary, melanoma and pancreas (91) Several lines o f evidence, 

including correlation between production and infiltration in murine and human tumors, 

passive immunization and gene modification, indicate that CCL2 plays a pivotal role in 

the recruitment of monocytes in neoplastic tissues, as discussed below (91, 133).

As mentioned above, tumors are generally characterized by the constitutive 

expression of chemokines belonging to the inducible realm. The molecular mechanisms 

accounting for constitutive expression have been defined only for CXCL1 and involve 

NFkB activation. Melanoma cells display high expression of NF-kB-inducing kinase 

(NIK) and this phenotype is responsible for constitutive activation of IkB kinase and 

MAPK signaling cascades, as well as for constitutive activation of NF-kB (182, 183) 

This may represent a general mechanism underlying constitutive expression of 

inflammatory chemokines in tumors.

Role of chemokines in tumor progression.
Beside CCL2, a variety of other chemokines have been detected in neoplastic

tissues as products of tumor cells or stromal elements. These include CCL5, CXCL12,
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CXCL8, CXCL1, CXCL13, CCL17 and CCL22. CCL5 is produced by breast 

carcinoma and melanoma (184, 185). In breast cancer CCL5 expression by tumor cells 

correlates with a more advanced stage of disease, suggesting that CCL5 may be 

involved in breast cancer progression (184, 186). Melanoma is probably the most 

studied cancer type in which CXC chemokines and in particular CXCL1 and related 

molecules (CXCL2, CXCL3, CXCL8 or IL-8) have been demonstrated to play a role in 

tumor progression (187). They do so by direct stimulation of neoplastic growth, 

promotion of inflammation and induction of angiogenesis. CXCL1 was initially 

identified and purified from supernatants of melanoma cell lines and characterized as an 

autocrine growth factor (188, 189). Blocking of CXCL1, or its receptor CXCR2, with 

specific antibodies inhibited the growth of melanoma cells in vitro (189). Conversely, 

the over-expression of CXCL1 (190), CXCL2 or CXCL3 (191) in various melanoma 

cell lines increased their ability to form colonies in soft agar and their tumorigenicity in 

nude mice. A few other studies have proposed a similar role for CXCL8 related 

chemokines in head and neck (192) pancreas (193) and Non-Small-Cell Lung Cancer 

(NSCLC) (194). Autocrine and paracrine expression of CCL20 has been reported in 

pancreatic cancer (195). Finally, CXCL13 is a B cell chemokine and is highly expressed 

in Helicobacter pylori-induced lymphoma (196) and a role for CXCL13 in the 

localization of tumor cells has been suggested.

Chemokines regulate angiogenesis.

Angiogenesis is a key event in tumor growth and progression and chemokines 

have a major impact on the regulation of neovascularization in tumor tissues. As already 

said, the N-terminus of several CXC chemokines contains a highly conserved amino 

acid motif (Glu-Leu-Arg: ELR motif), which immediately preceeds the first cystein 

(197). ELR+ chemokines have potent angiogenic activity. The angiogenic members
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include CXCL1 through CXCL8, with the exception of CXCL4. These chemokines act 

through a common receptor, CXCR2. Although some ELR+ chemokines bind both 

CXCR1 and CXCR2, it is widely accepted that only CXCR2 mediates the angiogenic 

activity and, accordingly, endothelial cells express only CXCR2 (198) Another 

important ligand-receptor pair is CXCL12 and CXCR4. Even if  CXCL12 is a non-ELR 

chemokine, its activity has been implicated in neo-angiogenesis (199, 200).

The importance o f ELR+ chemokines in supporting angiogenesis during the neoplastic 

progression has been established in a variety of tumor cell types, including prostate and 

ovarian carcinoma and NSCLC (201-203). Both in mouse tumor models and in surgical 

specimens obtained from tumor patients, expression of CXCL5 and CXCL8 was 

associated with increased neovascularization and inversely correlated with survival. 

Conversely, depletion o f CXCL5 resulted in attenuation o f tumor growth and 

angiogenesis. The finding of the unique use of CXCR2 receptor, despite the redundancy 

of ELR+ chemokines, provides a good opportunity to target this receptor for therapeutic 

interventions.

On the other hand, another series o f CXC chemokines lacking the ELR m otif 

(non-ELR) are characterized by the ability to block or inhibit angiogenesis. The 

angiostatic members are CXCL4, CXCL9, CXCL10 and CXCL11. The three latter 

chemokines are interferon-inducible and bind the CXCR3 receptor (86, 204). Recent 

observation has demonstrated that CXCR3 exists in two different isoforms: CXCR3A 

and CXCR3B, which differ in their NH2 terminus (205) CXCR3B (205), which is more 

expressed than CXCR3A in endothelial cells, appears to mediate the angiostatic activity 

of IFN-inducible chemokines. In addition, CXCL4 was shown to bind to CXCR3B 

(205). Non-ELR CXC chemokines have been shown to inhibit angiogenesis in several 

tumor models. Over-expression of CXCL9 and CXL10 in tumor cells leads to
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spontaneous tumor regression in lymphoma cells (206) NSCLC (207) and melanoma 

(208).

Therefore, the balance of ELR+ versus non-ELR chemokines produced in the 

tumor microenvironment may determine the degree of angiogenesis surrounding and 

inside the tumor tissue and the consequent tumor progression.

Chemokines mediate leukocyte recruitment in tumors

The local production o f inflammatory chemokines by tumor and stromal cells 

would be expected to cause the recruitment o f various types o f leukocytes to the tumor 

tissue. Indeed, tumors are composed o f cancer and stromal cells, which sometimes are 

very developed and can even outnumber neoplastic cells. Besides fibroblasts and 

endothelial cells, leukocytes (especially macrophages and T lymphocytes) are the most 

represented cell types. Because these inflammatory cells secrete a variety o f biologically 

active molecules, they are likely to regulate neoplastic processes that affect the growth 

and spread of tumor cells.

CXCL8 and related chemokines act primarily on neutrophils. In spite of 

constitutive production of these ligands by tumor cells, neutrophils are not a major and 

obvious constituent of the leukocyte infiltrate. However, these cells, though present in 

minute numbers, may play a key role in triggering and sustaining the inflammatory 

cascade, for instance by releasing angiogenic molecules (209).

Tumor-Associated M acrophages (TAM) derive from monocytic precursors 

circulating in the blood (210) Experimental evidencesuggests that tumor infiltrating 

macrophages may facilitate tumor growth and progression, as, although they can 

potentially display tumor cytotoxicity, they are believed to have primarily pro-tumor 

functions (Fig 2.4) (21, 210, 211). In breast cancer, tumor cells produce CCL5, and the
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level of expression correlates with the extent of macrophage infiltration and lymph node 

metastasis (184). In a mouse model, the long-term administration of a CCL5 antagonist, 

Met-CCL5, significantly reduces the subcutaneous growth of CCL5-producing 

syngeneic mouse breast cancer cells without affecting their proliferative ability, but 

concurrently inhibits leukocyte infiltration in the tumor (212). In addition to being a 

target for chemokines, TAM are a source o f a selected set o f these mediators (CCL2, 

CCL17, CCL18, CCL22). CCL18 was recently identified as the most abundant 

chemokine in human ovarian ascites fluid (213). When the source o f CCL18 was 

investigated, it was tracked to TAM, with no production by ovarian carcinoma cells. 

CCL18 is a CC chemokine produced constitutively by immature DC and attractant for 

naive T cells, by interacting with an unidentified receptor (87). Attraction o f naive T 

cells in a peripheral microenvironment dominated by M2 macrophages and immature 

DC is likely to induce T cell anergy.
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Fig 2.4. Tumor-derived chemokines actively recruit circulating blood monocytes at the 

tumor site. In the tumor micro-environment monocytes differentiate into Tumor-Associated 

Macrophages (TAM), which have an ambiguous role in their relationship with cancer cells, but 

most frequently have pro-tumoral functions.

Also T lymphocyte recruitment at the tumor site has an important role and 

chemokines are part of amplification and regulation systems of polarized T cell 

responses. Some chemokines may enhance innate and specific host immunity against 

tumors but, on the other hand, other chemokines may contribute to escape from the 

immune system, by recruiting Th2 effectors and regulatory T cells (214, 215). 

Nasopharingeal and ovarian carcinoma express CCL5 and CCL3, ligands of CCR5; 

they have been proposed to regulate T cell infiltration (216, 217); transduction of CCL5

MONOCYTES
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in tumor cells resulted in loss of tumorigenicity due to activation of anti-tumor 

immunity (216). Despite this evidence, in vivo expression of CCL5 is associated with 

advanced disease in breast and cervical cancer (184, 218). Also expression of CXCL9 

has been associated with heavy infiltration of T lymphocytes in human melanoma (219) 

and in mouse tumor models (220, 221). CXCL10 was reported to be an important factor 

for IL-12-mediated anti-tumor response through the recruitment and activation o f CD8 

lymphocytes (222) and NK cells.(223) The chemokine CCL21 recruits dendritic cells 

and lymphocytes (naive T, NK cells and a subset of memory T cells), and displays anti­

neoplastic effects when transduced in tumor cells(224-226) or injected locally (227). 

Similar results were reported for CCL19, which shares with CCL21 the same receptor 

CCR7 (228).

A variety of dendritic cells (DC) subsets are also found in tumor tissues and 

chemokines are involved in their recruitment (229, 230). Although usually rare cells, 

DC have been detected in several tumor types, including lung, prostate, nasopharynx, 

kidney, thyroid, breast, ovary carcinoma and melanoma (231, 232)

Finally, another interesting example o f tumor leukocyte interaction is Hodgkin’s 

lymphoma. Reed-Stemberg cells in Hodgkin’s lymphoma have been shown to express 

CCL22 and CCL17 (233, 234). These chemokines recognize CCR4 which is 

preferentially expressed on Th2 lymphocytes and on T regulatory cells (85, 235). 

Interestingly, in the same tumor, stromal cells produce CCL11, which attracts 

eosinophils and Th2 cells. Therefore, in this human tumor, neoplastic elements and 

stroma use complementary tools to recruit immunocompetent cells associated with 

polarized type II responses, unable to mediate anti-tumor immunity. In the same vein of 

driving into tumors polarized Th2 cells, the oncogenic virus human herpesvirus 8 

(HHV8), involved in the pathogenesis of Kaposi’s sarcoma and hematological 

malignancies, encodes three CC chemokines (vMIPI, II and III) which interact with
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CCR3, CCR4 and CCR8 expressed on Th2 cells and T regulatory cells (235). 

Consistently with these in vitro observations, Kaposi’s sarcoma is infiltrated by CD8+ 

and, to a lesser extent, CD4+ cells with a predominant Th2 phenotype. Therefore, 

HHV8 virus-encoded chemokines represent a strategy to subvert antiviral/antitumor 

immunity by favouring the recruitment o f inefficient cells and cells with suppressive 

activity. In addition to viral chemokines, HHV8 encodes for a chemokine receptor 

homologue, ORF74, also known as KSHV vGPCR, showing similarity with CXCR2 

(236). This receptor triggers a constitutive signal which is further increased by CXCL8 

and CXCL1, providing a good example of a direct role of chemokines and receptors in 

neoplastic transformation. Indeed, over-expression of KSHV vGPCR alone resulted in 

the development of lesions resembling Kaposi’s sarcoma (237).

Chemokines and extracellular proteases

The field of chemokines in tumor biology has dramatically developed in the last 

decade and has expanded from the regulation of leukocyte attraction within the tumor 

mass to the promotion of tumor cell survival, proliferation and mobilization (91).

It has long been known that tumor-derived proteases can cleave the extra­

cellular matrix molecules and lead to the dissolution o f the basement membrane, thus 

facilitating the process of tumor cell invasion. What it has remained unknown until very 

recently is that chemokines are potent inducers of enzymes and receptors which degrade 

the extracellular matrix and favour tumor invasion (49, 238, 239). As I have already 

discussed before, a variety of proteolytic enzymes, in particular the tissue type 

plasminogen activator (t-PA), the urokinase-type plasminogen activator. (u-PA) and the 

large family of matrix-metalloproteinases (MMPs) have been implicated in this 

degradation (68 , 240); indeed, the activity o f these enzymes has been associated with 

more aggressive neoplastic behaviour. Confirming the role o f chemokines in the
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activation of these enzymes, in a gene expression analysis, the chemokine CCL5 

specifically induced gene expression of various MMPs, especially MMP9, along with 

the uPA receptor (133). CXCL8 expression by human melanoma cells induces 

transcriptional activation of expression of the gene encoding MMP2 and augmented 

collagenase activity in these tumor cells, which leads to increase invasiveness (241). In 

prostate cancer, CXCL8 over-expression induces the expression of MMP-9, leading to 

increased tumor cell invasiveness and metastatic potential in nude mice (242).

Not only tumor cells produce proteases. Leukocytes, in particular macrophages, 

are potent producers of proteases and strong evidence demonstrates that chemokines 

activate TAM to release MMPs in the tumor micro-environment. A number of studies 

have highlighted the role of TNF in the regulation o f MMP activity in monocytes and 

chemokines have been demonstrated to activate MMP activity in monocytes through 

TNFa pathway (238).

The role of CCL2 in pancreatic cancer

Several studies have indicated that CCL2 is primarily responsible for the 

recruitment of monocytes at the tumor site. Indeed, CCL2 levels correlated with the 

abundance of TAM in several types of adenocarcinoma, including ovarian, breast and 

pancreas (25, 243-245). Interestingly, CCL2 production has been detected also in TAM, 

indicating the existence o f an amplification loop for their recruitment (244). In 

accordance with the potential dual role of TAM, the gene transfer of CCL2 into tumors 

had contrasting effects. At least three reports indicated reduced tumorigenicity (246- 

248). The results of another study pointed to an opposite effect: the number of 

spontaneous lung metastases was augmented in animals injected with CCL2- 

transfectants compared to those injected with parental cells (249, 250). The impact of
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CCL2 on tumor growth in a nontumorigenic melanoma system revealed a biphasic 

effect. Low-level CCL2 secretion, with "physiological" accumulation of TAM 

promoted tumor formation, while high CCL2 secretion resulted in massive macrophage 

infiltration into the tumor mass and in its destruction (250). Similarly, a high inoculum 

of CCL-2-transfected melanoma cells showed retarded tumor growth, while a small 

inoculum was more tumorigenic (251). These results are consistent with the 

"macrophage balance" hypothesis (21, 211). Moreover work in gene-modified mice has 

shown that CCL2 can orient specific immunity in a Th2 direction; although the exact 

mechanism for this action has not been defined, it may include stimulation o f IL-10 

production in macrophages (141).

In the last couple of years, we have been interested in the role of CCL2 in 

pancreatic adenocarcinoma. As I said above, CCL2 is found in many epithelial cancers; 

we have found that CCL2 is secreted by some pancreatic carcinoma cell lines, while 

these tumor cells never express CCR2, the functional receptor for CCL2 (Fig 2.5). 

Moreover, inflammatory cytokines such as IFNy, IL ip , TNFa synergistically up- 

regulate its expression (data not shown).
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Fig 2.5. CCL2 in pancreatic adenocarcinoma cell lines. mRNA analysis revealed that 6 out of 

14 pancreatic cancer cell lines analyzed express the chemokine CCL2. ELISA assay confirmed 

the result at the protein level. None of the cell lines express the corresponding receptor (from 

Monti et al (25)).

The expression of CCL2 was detected also in supernatant of primary tumors 

(Fig 2.6) as well as in surgical sections of pancreatic cancers (Fig.2.7 (25)).

Fig. 2.6 Expression of CCL2 in 

human pancreatic cancer in vivo.

CCL2 expression was determined at 

the protein level in supernatants of 4 

human pancreatic tumor cell primary 

culture by ELISA.
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Fig. 2.7 Expression of CCL2 in human 

pancreatic cancer in vivo.

Immunoistochemical localization of CCL2 

in human pancreatic cancer cells(left) and 

normal tissues (right). Representative 

examples (x200; x400) of paraffin sections 

stained with antibodies to CCL2 (5D3-F7).

The tumor associated CCL2 is released into the circulation of tumor- bearing patients 

(Fig. 2.8) (25).
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Fig. 2.8 Median levels of serum CCL2 in 

pancreatic diseases. Lane 1, healthy subjects 

(median value=67 pg/ml). Lane 2, patients with 

pancreatic ductal adenocarcinoma (median 

value=105 pg/ml). Lane 3, patients with other 

pancreatic adenocarcinoma (median value=90 

pg/ml). Lane 4, pancreatic benign tumors (median 

value=70 pg/ml). Lane 5, pancreatic inflammatory 

diseases (median value=80 pg/ml).

Serum CCL2 levels are positively correlated with intratumoral macrophage infiltration 

(Table 2.2) (25).

C C L2 serum  
levels M(|) (CD68+)

Low
(57<pg/ml)

24 ± 4%

Normal 46 ± 8%

High
(91>pg/nil)

57 ±  12%

Table 2.2. Correlation between CCL2 serum levels 

and macrophage infiltration. (Low group, n=27; 

Normal group, n= 47; High group, n=76). The amount of 

leukocytes infiltrating the tumor was evaluated as 

immunostained cells at x200 magnification (average of 

10 random fields) by using a Leitz Diaplan microscope.
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Taken together, these data strongly indicate that CCL2 is expressed and secreted in vitro 

and in vivo by pancreatic tumor cells, thus confirming what has been observed also for 

other carcinomas, in particular in ovarian cancer. Tumor derived CCL2 could promote 

the recruitment of leukocytes, in particular monocytes/macrophages, as indicated by the 

correlation between CCL2 levels and CD6 8 -positive cells; therefore this chemokine 

could play a central role in the crosstalk between tumor cells and their 

microenvironment.

2.5 Chemokines and receptors in tumor spread 
and progression

Novel concepts in organ selective metastasis

For many years, the prevailing explanation of the metastatic process was that 

some tumor cells somehow escape from the primary mass, enter lymph or blood 

circulation and stop in small blood vessels, where they would give rise to secondary 

tumors. This mechanical model predicts that the formation of a metastatic lesion 

depends on the number o f tumor cells delivered to an organ. This does not fit with the 

observation that many types o f cancer display an organ-specific pattern o f metastasis 

but these organs sometimes do not correspond to those found in the drainage site. In 

other words, the selective metastasis pattern a particular tumor displays cannot be 

explained simply by blood and lymph flow. Examples are breast cancer preferential 

metastatization to liver, brain and lung, prostate cancer spreading to bone. Pancreatic 

cancer displays a peculiar recurrence along nerve structures.

Some theories have been put forward to explain the phenomenon of organ selective

metastasis. In 1889, an English surgeon, Stephen Paget, on the basis o f his numerous

observations of cancer patients, proposed the seed and soil theory, according to which
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the metastasis pattern is due to the dependence of the seed (the cancer cell) on the soil 

(the secondary organ). This idea was challenged in the 1920s by James Ewing, who 

suggested that circulatory patterns between a primary tumor and specific secondary 

organs were sufficient to account for organ-specific metastasis. These theories are not 

mutually exclusive, and current evidence supports a role for both o f them: both 

mechanical factors (how many cells are delivered to an organs) and seed-soil 

compatibility factors (does the organ preferentially support or suppress the growth of 

the specific cancer-cell type) contribute to the ability of specific types o f cancer to 

spread to various target organs, by acting at different stages of the metastatic process. 

The initial steps are likely to depend on blood-flow patterns, as most circulating cancer 

cells arrest by size restriction; in fact, capillaries are small (typically 3-8 pm in 

diameter) and designed to allow the passage o f red blood cells (7 pm in diameter and 

highly deformable), whereas many cancer cells are quite large (20  pm or more in 

diameter). However, once cells have been seeded to an organ, their subsequent growth 

will depend on the compatibility of the seed with the soil that they encounter in the 

organ, therefore on the molecular interactions between cancer cells and the environment 

of the new organ.

Numerous candidates have been proposed as mediator molecules o f the 

interaction between cancer cells and the organ, in particular organ specific growth 

factors and adhesion molecules. Recently, a chem o-attraction theory (also referred to 

as homing theory) has been proposed, according to which organ-specific attractant 

molecules enter the circulation, stimulating the migrating tumor cells to invade the walls 

o f blood vessels and enter the organs. Chemokines and their receptors have been found 

to perfectly fit with this theory; in fact, recent studies have shown that tumor cells 

express patterns of chemokine receptors that match chemokines specifically expressed 

in organs to which these cancers commonly metastasize. In particular, the concept that a
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particular chemokine-receptor pair may promote organ-specific tumor metastasis was 

first experimentally addressed by Muller et al (81). Therefore, the identification of 

molecular addresses (i.e. chemokines) or adhesion receptors (selectins) on endothelial 

cells in vascular beds of distal organs that specifically trap circulating malignant cells 

supports the active arrest view of the homing theory (252). As chemokines are involved 

in the homing of leukocytes, it seems reasonable to suppose that they contribute to the 

homing of cancer cells to specific secondary sites, thereby promoting organ specific 

metastasis. This theory is strengthened by the observation that chemokine signalling 

results in the transcription of target genes involved not only in cell motility, but also in 

cell invasion, interaction with the extracellular matrix and survival (91, 181).

Tumor cells express chemokine receptors

While the expression of chemokines in human and experimental tumors has been 

the object of intense investigation, the expression of chemokine receptors has been 

pursued to a much lesser extent, until very recently.

Tumor cell motility is a pivotal step in the intricate process leading to the 

formation of metastases, and tumor cells that have increased metastatic potential are 

more motile than non-metastatic tumor cells. Morphological studies of rat sarcoma cells 

have shown that the structure of the actin network relates to the degree o f the 

malignancy, and determines the cell motility (253). Moreover, in MCF-7 breast cancer 

carcinoma cell line, the level o f F-actin showed a significant increase after treatment 

with the CC chemokine M IP -la  and M IP-lp (254).. In the same work, confocal 

microscopy further indicated a redistribution of the cytoskeletal F-actin within 45 min 

after chemokine stimulation with movement of F-actin towards the periphery o f the 

cells in a polarized manner. These data suggest that chemokines can attract tumor cells.
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Medium conditioned with mouse lung microvessel endothelial cells possesses 

chemotactic activity for a highly lung metastasizing variant o f the RAW117 murine 

large cell lymphoma cell line, but not for the poorly metastatic parental cell or a liver 

metastasizing variant. The chemotactic activity was purified and identified as JE, the 

murine counterpart of CCL2 (255). Another interesting murine tumor model suggested 

the involvement of chemokines in organ selective metastatization: ESb-MP cell line, a 

variant o f the highly metastatic cell line ESb, (derived from a murine T cell lymphoma) 

displayed frequent in vivo metastasization to the kidney, while the parental cell line 

rarely infiltrate this organ; moreover, it migrated in response to kidney organ 

conditioned media, to which the parental cells did not respond. This raised the 

possibility that a kidney derived chemotactic factor may be involved in the attraction of 

ESb-MP cells in vitro and may account for the kidney specific localization o f ESb-MP 

metastases in vivo. JE/CCL2 and CCL5 chemokines were purified from murine kidney 

derived mesangial cell supernatant as inducers of in vitro migration of ESb-MP variant 

cells but not o f the parental cells (256). Further studies with radiolabeled chemokines 

revealed that cell surface expression of chemokine receptors is necessary but may not be 

sufficient for functional responsiveness. In fact, cells must possess also the proper 

molecular array to transduce a receptor triggered signalling cascade.

Earlier studies already pointed out that tumor cells express functional chemokine 

receptors. Some tumor cell lines migrated in response to CXCL8 and related 

chemokines, and antibodies against CXCR2 were able to inhibit the growth of 

melanoma cells in vitro (189). Other inflammatory chemokines have been tested and 

induced motility of malignant cells o f hematopoietic and epithelial origin (257). CCR4 

is often expressed in adult T-cell leukemias that preferentially invade the skin, where 

one of the CCR4 ligands, CCL17, can be expressed (258). CCR3 is expressed in CD30+ 

cutaneous lymphomas, and its ligand CCL11 is often expressed in the tumor cells and
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tumor-associated skin lesions (259). As far as solid tumors are concerned, the most 

potent chemoattractants for human breast adenocarcinoma cell lines were CCL3, CCL4, 

CCL5 and CCL2. Breast carcinoma cells also express CXCR4, the receptor for 

CXCL12, and this receptor has been recently implicated in the process o f metastasis 

(81). Since then, many other tumors of different lineages have been evaluated and 

shown to express chemotactic receptors (Table 2.2) (83, 91).

Tumor type Chemokine receptor expressed

M ost frequent O ther receptors

Breast CXCR4 CCR7
Ovary CXCR4 CCR9
Prostate CXCR4 CCR9
M elanoma CXCR4 CXCR3, CCR7, CCR10
NSCLC CXCR4 CCR7

Table 2.3.Chemokine receptors expressed by human tumor cells. CXCR4 is the most 

frequently found in different histological types of malignancies {adapted from Balkwill F  (91))

Overall these results support the concept that chemokines could direct tumor cell 

migration in vivo: malignant cells bearing chemokine receptors on their cell surface 

would be endowed with the capability to respond to chemokine gradients and 

selectively migrate to specific organs where the chemokine is present.

In this thesis I have investigated if  chemokines and their receptors are involved in 

human pancreatic adenocarcinoma metastasis and progression.
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Chapter 3 

Materials and Methods
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3.1 Cells and Tissues

Cell lines

All cell lines were grown in pyrogen-free conditions in a humidified atmosphere 

o f 5% CO2 and 95% air at 37°C. The cells were grown in tissue culture plastic flasks or 

plates (Falcon, Bedford, MA), passaged when confluent by trypsinization 

(trypsin/EDTA, 0.05/0.05 w/v)and seeded at an appropriate density (usually, less than 

5x l04 cells/ml).

Human pancreatic carcinoma cell lines AsPC-1, Capan-1, MiaPaCa-2, Panc-1, 

Hs766T, were purchased from the American Type Culture Collection, (Rockville, MD), 

A8184, PT45, HPAF, CFPAC, PaCa44, T3M4 were kindly provided by Prof. Scarpa 

(Department of Pathology, University of Verona, Verona, Italy). Four cell lines were 

obtained from primary tumors (PT45, PaCa44, MiaPaCa2, Panel), three from ascites 

(AsPC 1, A8184, HPAF) and four from metastasis (T3M4 and Hs766T from lymph 

node metastasis, CFPAC and Capan 1 from liver metastasis,) (26). The cell lines were 

maintained in DMEM (Gibco, Scotland, UK) supplemented with 10% FBS (Hyclone, 

Logan, UT). The immortalized epithelial cell line derived from normal human 

pancreatic ducts HPDE6 , kindly obtained from Dr. Ming-Sound Tsao (University of 

Toronto, Toronto, Ontario, Canada), has been previously shown to maintain the 

phenotypic and genotypic characteristics of normal human pancreatic ducts (260). The 

ovarian cell line OVCAR-3 (derived from primary tumour) was cultured in RPMI 

medium (Gibco, Scotland, UK); the ovarian cancer cell lines OVCAR-4 (derived from a 

primary tumour), SK23, SKN (obtained from SKOV3 p53 transfection (261)), A2780 

(derived from a primary tumour), IA9, SKOW3 (derived from ascites), the breast cancer 

cell lines MCF-7, MDA-MD435 and MDA-MD231 (derived from lung metastasis), and 

the colon cell lines HCT116 (derived from a primary tumour) and SW620 (derived from



lymph node metastasis) were cultured in DMEM 10% FBS. These cell lines were 

already available in the lab.

Prior to their use in functional assays (migration, invasion) or flow cytometry, 

cells were detached without trypsin, to avoid surface receptor cleavage; medium and 

serum were removed and cells washed thoroughly with physiological saline solution 

and left 10 minutes at 37°C in medium 1% FBS.

Neuroblastoma (SKN-BE and SY5Y), and astrocytoma cell lines, already 

available in the lab, were cultured in DMEM 10% FBS; the glioma cell line H4 in 

OptiMEM medium (Gibco), supplemented with 10% FBS. To analyze Fractalkine 

mRNA expression, cell lines were stimulated with TNFa (10 ng/ml), interferon-y (1000 

U/ml) and RNA extracted after 24 hours. For adhesion assays, cell monolayers were 

stimulated with TNFa (10 ng/ml), interferon-y (1000 U/ml) overnight and medium 

replaced before starting with the assay. Finally, to collect supernatants for CX3CL1 

measurement, cells were seeded at 106 cells/ml in six-well plates in DMEM 10% FBS 

and cultured for 18 hours before replacing medium and stimulating them with 

TNFa/IFNy. After overnight incubation, medium was replaced with serum-free medium 

and conditioned supernatants collected after 24 hours.

Primary tumors

Table 3.1 reports the origin of the surgical specimens analyzed and the clinico- 

pathological features o f the corresponding patients. Primary tumors from surgical 

specimens were cut into little pieces with a scalpel and enzymatically digested with 

trypsin (0.125%) for 2 hours at 37°C, as previously described (25); additional 

purification on a density gradient (Ficoll) and by adherence on tissue plastic were
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performed. Cells were plated on Primaria plates (Falcon, NJ) at a density o f lx l0 6 

cell/ml and maintained in DMEM supplemented with 10% FBS. Tumor cells grew as 

adherent cells with epithelial morphology and were >95% positive for expression of 

cytokeratine 7, as assessed by intracellular staining with a FITC-labeled mouse anti­

human anti-cytokeratin 7 monoclonal antibody (clone CK3-6H5, Miltenyi Biotec, 

USA). After 24-48 h, cells were prepared for RNA extraction, performed with Trizol 

(Life Technologies, Inc.), following the manufacturer’s instructions.

Patient
N° Age Sex Tumor

site
TNM
Stage

Vessel
invasion

Perineural
invasion

Lymph
node

invasion
Size
(cm) Hystology

PK 93 70 M Head II Yes Yes No 3.2 Adenocarcinoma
PK 96 76 F Head I Yes Yes No 3.6 Adenocarcinoma
PK 97 56 M Tail IH Yes Yes No 4.3 Adenocarcinoma
PK126 63 M Head I No No Yes 2.9 Adenocarcinoma
PK 132 55 F Head II No Yes No 3.5 Adenocarcinoma
PK 136 59 F Head II No No No 2.7 Adenocarcinoma
PK 135 65 M Tail III Yes Yes Yes 4.1 Adenocarcinoma

Table 3.1. Origin of surgical specimens processed to obtain primary tumors.
Clinico-pathological features of patients are listed.

PBMC

PBMC were used as internal control for RNA analysis.

To this aim, they were purified by Ficoll-Hypaque density centrifugation. Briefly, buffy 

coats from healthy donors from the Blood Transfusion Service (Desio Hospital) was 

diluted 1:1 with sterile saline and centrifuged for 10 minutes at 1000 rpm. After 

centrifugation, supernatant containing platelets was thrown away and 0.9% Sodium 

Chloride added till 35 ml. Then, 15 ml of Ficoll-Hypaque (GIBCO, Scotland UK) were 

laid underneath cell suspension using a syringe with a long needle and centrifuged for 

20 minutes at 1750 rpm. The mononuclear cell layer was removed using a sterile 

pasteur, and washed thoroughly by resuspension in sterile saline. PBMC were then used 

for RNA extraction.
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HUVEC

Human endothelial cells were obtained from umbilical vein (HUVEC) and 

cultured as described previously (262, 263). Briefly, cells were collected from umbilical 

cords, rinsed inside with physiological saline solution. A solution of collagenase 1A 

(SIGMA) was injected into the cord. After a 20 minute incubation at 37°C, the cord was 

rinsed with medium containing 20% FCS and the collected solution centrifuged. Cells 

were routinely used confluent at 2nd-6th passage. Cells were maintained in E l99 medium 

with 2 0 % bovine serum, supplemented with endothelial cell growth supplement (100  

pg/ml; Collaborative Research Inc, Lexington, MA) and heparin (100. jig/ml; Sigma 

Chemical Co, St Louis, MO). The purity of EC cultures was checked by expression of 

von Willebrand factor and found to be greater than 99% positive. HUVEC were used 

both in transmigration and adhesion assays and stimulated with TNFa/IFNy for mRNA 

analysis by Northern Blot.

3.2 Reagents

Where indicated, cell lines were treated with IL -lp (10 ng/ml), TN Fa (10 

ng/ml), interferon-y (500 U/ml), all purchased by Peprotech, for 8 hours. Hypoxia was 

generated by culturing cells for 4 hours in an atmosphere-controlled culture chamber 

(Bellco Glass) containing a gas mixture composed of 94% N2, 5% CO2 and 1% O2. 

Cells were cultured in 6 -well plates in DMEM 10% FBS. Desferrioxamine (0.4 

mmol/L, SIGMA) was used in the same experiment as chemical compound to mimic 

hypoxia.

AMD3100 (Sigma, Fig 3.1) is a byciclam compound (1,4,8,11- 

tetraazacyclotetradecane octahydrochloride)(264); it is currently used as a CXCR4 

chemokine receptor antagonist in HIV patients and for stem cell mobilization from the
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bone marrow in transplanted patients. AMD3100 is extremely specific in its affinity for 

the CXCR4 receptor: this depends at least in part on an electrostatic interaction between 

the basic (positively charged) nitrogens o f the cyclam moieties and the acid (negatively 

charged) carboxylates of the aspartic acid residues located at positions 171, 182, 193 

and 262 of the CXCR4 receptor. AMD3100 does not interact with a variety of 

chemokine receptors other than CXCR4 (265).

^  Structure of the byciclam AMD3100.
I— NH N — |  |— N  H N — |
I— NH HN — I I— NH H N — I

8  HOi 2 HsG

3.3 Methods for analysing mRNA expression

Total RNA extraction from fresh or cultured cells was performed with Trizol 

(Gibco), following manufacturer’s instructions. Three different methods were used to 

evaluate mRNA expression, depending on the sensitivity required by the analysis. 

Fractalkine expression in endothelial cells and neuronal cell lines was analyzed by 

Northern Blot. Chemokine receptors on pancreatic cancer cell lines were previously 

analyzed by RT-PCR with specific primers, followed by semi-quantitative Real-Time 

PCR, used to compare cell lines and get eventual difference between their expression 

levels. Specifically:

Northern Blot

cDNA for CX3CL1 was prepared as previously described (266), and 

subsequently used for probe labelling. 10 pg of total RNA were subjected to
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electrophoresis through a 1 % agarose-formaldehyde gel (1 % agarose [Gibco], 6 % 

formaldehyde, 20 mM MOPS, 0.5 pg/ml ethidium bromide) then blotted by capillary 

transfer onto nylon membrane (Hybond N+, Amersham, UK). After transfer, the 

membrane was heated for 2 hours to 80°C to allow crosslinking. The membrane was 

placed in a suitable hybridisation tube and pre-hybridised for 1-2 hours at 42 °C with 20 

ml of hybridisation buffer (0.2 M sodium phosphate buffer pH 7.2, 100 pg/ml salmon 

sperm, 7 % SDS 45 % formamide). cDNA probes were labelled by random priming 

using the Megaprime DNA labelingsystem (Amersham, Buckinghamshire, UK) 

according to the manufacturer’s instructions. Prior to use, the radiolabelled probe was 

heated to 100 °C for 5 minutes, then quenched on ice for up to 30 min. Probe was then 

added to 20  ml of hybridisation buffer (approximately 1 x 106 cpm/ml o f buffer), which 

was poured on to the membrane in place of the pre-hybridisation buffer. Hybridisation 

was performed overnight at 42 °C. Following hybridisation, membranes were washed 

twice with 2 x SSC, 0.1 % SDS for 5 min at room temperature, twice with 0.1 x SSC,

0.1 % SDS for 15 min at 68 °C and finally once with 2 x SSC for 10 min at room 

temperature. The membrane was then wrapped in Saran wrap and exposed overnight to 

Kodak Biomax MS film with an intensifying screen, at -70  °C.

RT-PCR

cDNA was synthesized by random priming from lp g  of total RNA with GeneAmp

RNA PCR kit (Applied Biosystems), according to the manufacturer’s instructions. The

following primers were used for the subsequent PCR: human CXCR4 (sense: 5 ’ AGC

TGT TGG CTG AAA AGG TGG TCT ATG 3 ’; antisense: 5’ GCG CTT CTG GTG

GCC CTT GGA GTG TG 3’); human P-actin (sense: 5’ AAG ATG ACC CAG ATC

ATG TTT GAG 3’; antisense: 5’ GGA GCA ATG ATC TTG ATC TTC 3’). PCR was

performed with AmpliTaq DNA Polymerase (Applied Biosystems) following the
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manufacturer’s instructions. Cycling conditions: 26 cycles (20 cycles for p-actin) o f 1 

min at 94°C, 1 min at 56°C, 1 min at 72°C. PCR products were resolved by 

electrophoresis on 2 % agarose gels and visualized by ethidium bromide staining.

Real-Time PCR

Real-Time PCR was performed using SYBR Green dye and Gene Amp® 5700 

Sequence Detection System (PE Biosystems, Foster City CA). The sequences o f primer 

pairs specific for each gene (Invitrogen) were designed with Primer Express® Software 

(Applied Biosystems). 2pi of cDNA (obtained from the amplification of 1 pg RNA in a 

total volume of 50 pl)was used as the template; 12.5pl of 2X SYBR Green PCR Master 

Mix (Applied Biosystem) was mixed with template and primers. The total reaction 

volume was 25pl. Cycling conditions were 10 min at 95° C, 40 cycles of 15 s at 95° C 

and 1 min at 60°. Experiments were performed in triplicate for each sample. mRNA was 

normalized to p-actin mRNA by subtracting the cycle threshold (Ct) value o f P-actin 

mRNA from the Ct value of the gene (ACt). Fold difference (2A-AACt) was calculated 

by comparing the ACt with either the ACt of the cell line HPDE6 or with that of 

unstimulated cells.

The sequences o f primer pairs were as follows: human CCR2 (sense: 5 ’ CAT 

CGG TTA TTT TGG CGG AA 3’; antisense: 5’ GGT GAC CGT CCT GGC TTT TAA 

3’); human CCR6 (sense: 5’ TGC CAC GTG CAA GTT GCT TAA 3’; antisense: 5’ 

AGC AGC ATC CCG CAG TTA AAG 3’); human CCR7 (sense: 5’ TGC ATC AGC 

ATT GAC CGC TA 3’; antisense: 5’ TAT CCA GAT GCC CAC ACA GGA 3’); 

human CXCR2 (sense: 5’ CAG TCC TTT GGC TTC ATC GTG 3’; antisense: 5’ GGT 

GAA TCC GTA GCA GAA CAGC 3’); human CXCR4 (sense: 5’ CAA GGC CCT 

CAA GAC CAC AAT 3’; antisense: 5’ CCC AAT GTA GTA AGG CAG CCA A 3’);
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hum an CX3C R I (sense: 5’ TGA TTT GGC TGA GGC CTG TTA T 3’; antisense: 5’ 

GGA CAG GAA CAC AGT CCC AAA G 3’); hum an p-actin (sense: 5’ TCA CCC 

ACA CTG TGC CCA TCT ACG A 3 ’; antisense: CAG CGG AAC CGC TCA TTG 

CCA ATG G 3’).

3.4 Flow Cytometry

Pancreatic cancer cells were removed from flasks non-enzymatically, after three 

washes and a 10 minute incubation at 37°C with physiological saline. Nearly 300000 

cells were then resuspended in ice cold washing buffer (phosphate-buffered saline 

(PBS) containing 1% human serum) and incubated with 10 pg/ml fluorescin-labelled 

mouse anti-human CXCR4 antibody (12G5; R&D Systems, Minneapolis, MN) or 3 

pg/ml PE-labeled mouse anti-human CX3CRI antibody (MBL, Watertown, MA) or 

antibody anti CX3CLI (clone 81506, R&D, Minneapolis, MN, USA) for 30 minutes at 

4°C. Cells were analysed with a FACScalibur flow cytometer.

3.5 ELISA assay

CCL2 was measured with antibodies developed in our laboratory; sensitivity o f 

the test was 4 pg/ml. Commercial kit by R&D were used for all the other cytokines; the 

sensitivity of the assays was as follows: CCL5: 2 pg/ml, CCL22: 1 pg/ml, CXCL8 : 4 

pg/ml, CXCL12: 4 pg/ml, VEGF: 4 pg/ml, HGF: 16 pg/ml, TGFb: 4 pg/ml, IL lb: 2 

pg/ml, IL6 : 1 pg/ml, IL10: 4 pg/ml, TNFa: 2 pg/ml. Cells were plated at the same 

density and medium replaced when 80% confluence was reached; supernatants were 

collected after 24 hours. At least three different experiments were performed and the 

median of the values calculated.
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To measure CX3CL1 in supernatants, neuroblastoma cells were seeded at 106 

cells/ml in six-well Costar plates (Coming, Inc.) and cultured for 18 hours before 

replacing medium and stimulating them with TNFa/IFNy in DMEM without FBS. After 

overnight incubation, medium was replaced with serum-free medium and conditioned 

supernatants collected after 24 hours. The amount o f CX3CL1 released in the 

supernatant after 24 hours was quantified by ELISA with commercial kit (R&D, 

Minneapolis, MN, USA). At least three experiments were performed and the media ± 

SE calculated; p value was calculated with Student t Test analysis.

3.6 Immunohistochemical analysis

Paraffin sections of three pancreatic cancer patients (PKwere deparaffinised in xylene (2 

x 10 min) and taken down through graded alcohols (100%, 90%, 70%, 5 min each). 

Endogenous peroxidase was blocked by adding 100 pi o f 3% H2O2 (in H2O) to each 

section for 30 minutes, in the dark.

Sections were then microwaved in boiling 0.01M sodium citrate pH 6.0 for 10 min to 

retrieve antigen, and rinsed in 400 ml PBS. The slides were laid out in a humidified box 

and excess PBS was blotted from around each section using a tissue.

To each section, 100-200 pi primary antibody at appropriate dilution was added to 

cover the section, specifically, the rabbit polyclonal anti human CX3CR1 antibody was 

diluted 1:350 in PBS, while the goat anti-human anti CX3CL1 Ig 1:50 in PBS. The 

slides were incubated for 1 hour in a humidified box at room temperature.

Sections were washed twice in PBS for 3 min, prior to incubate them with 100-200 pi of 

secondary antibody (EnVision HRP rabbit/mouse, DakoCytomation).
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After washing, the peroxidase substrate 3,5-diaminobenzidine (DAB; Liquid DAB + 

Substrate Chromogen System, DakoCytomation) was prepared, by diluting one drop in 

500 pi o f buffer and incubated for 5 minutes with the slides.

Sections were washed in distilled water and counterstained for 2 seconds in 

Hematoxilin (Mayer, DIAPATH) diluted 1:5 in H20.

The slides were dipped in distilled water and dehydrated through graded alcohols (70%, 

90%, 100%, 2 min each).

3.7 Methods for analysing cell migration

Chemotaxis

Many different assays are available to measure and quantify the process o f in 

vitro cell migration; they basically depend on the principle that chemokine signals 

transmitted through their GPCR cognate receptors provide directional cues and 

stimulate an enhanced rate of cell locomotion. These in vitro assays have been designed 

to reflect the guiding principle and the driving force of leukocyte migration from the 

blood to the tissues and in the extravascular tissues. Mechanistically, this entails the 

ability of chemokines to activate leukocyte integrins and to convert the initial loose, 

rolling interaction of leukocytes with the endothelial cells into firm adhesion and 

spreading.

The method o f chemotaxis is based upon active migration o f test cells through a filter 

with pores of a precise size. The filter is placed in a chamber to create two 

compartments, as originally introduced by Boyden (267). Cells are added to the upper 

compartment, whereas the lower compartment is filled with the chemotactic substance 

(Fig 3.2).
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Fig 3.2 Chemotaxis assay with a modified Boyden chamber.

As a consequence, a chemotactic gradient is created and cells penetrate through the 

pores of the filter to the lower compartment. The number of migrated cells indicates the 

potency of the chemotactic substance. A commercially available commonly used device 

is the 48-well chemotaxis chamber (the so called modified Boyden Chamber, 

Neuroprobe), which allows to test different cells and cheinoattractant in the same assay. 

The microchamber consists of a top and bottom acrylic plate, sealed by a silicon gasket. 

The upper wells, containing cells are separated from the lower wells (containing 

chemoattractant) by a micropore membrane. The filter separating the two chamber 

compartments can vary; depending on the cell type, different filter materials and pore 

sizes should be used. Cellulose ester filters allow to measure the migration distance into 

the filter, whereas polycarbonate membranes are used to determine the number of cells 

migrated through the pores. Usually, PVP (polyvinyl pyrrolidone)-pretreated 

membranes are used, while for cells displaying reduced adhesion, PVP-free membranes 

can be used whose lower surface has been coated with matrix proteins (collagen, 

fibronectin, gelatin). Different size pores are available, ranging from 3 to 13 jam. At the 

end of the assay, whose time can vary depending on cells (lh  to overnight), filters are 

fixed and stained. Usually the final result is calculated from the average counts of at

82



least three wells. The chemotactic activity can be expressed either as chemotactic index 

(percentage of the maximal number of cells migrated to the control cheinoattractant 

(e.g. assay medium)) or as net migrated cells (the number o f cells migrated to the 

control medium is subtracted from the number of cells migrated to the 

chemoacctractant). As expected, all the assays used to measure chemotaxis have been 

set up for different leukocyte populations, therefore established protocols are available. 

As cancer cell chemotaxis is a relatively recent acquisition, we have adapted a classical 

protocol to our purposes (Protocol 1). Basically, larger pores and longer migration time 

have been required for cancer cells to get an appreciable migration.
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Protocol 1: Chemotaxis

1. resupend cells in appropriate medium (DMEM, 1% FCS) and dilute to 

700000 cells/ml;

2 . prepare serial dilutions of cheinoattractant in the same medium;

3. add 28-30pl of the cheinoattractant to the lower compartment o f the

microchamber;

4. put the filter (13pm pore for Hs766T, 8pm pore for the other cell lines) on 

the bottom plate and reassemble the microchamber;

5. add 50 pi of the cell suspension to each well (corresponding to 20000-40000 

cells);

6 . incubate chamber at 37°C in a 5% CO2 incubator for the time required 

(Overnight for Hs766T, 8h for the other cell lines)

7. dismount the microchamber unit, wet the non-migrated cell side of the

membrane with PBS and wipe the cells off this filter side;

8 . fix the cells which adhere to the lower surface of the membrane with 70% 

methanol, dry and stain with Diff-Quick;

9. place the membrane on a microscope slide to dry and count cells at 400X 

magnification, in 10 oil immersion fields for each well.

For each cell line, I standardized migration conditions and applied minor modifications. 

In particular, filters were always coated with fibronectin (5 pg/ml, Sigma); pore size 

ranged from 13pm to 8 pm ,depending on the cell line properties. Chemokines used as 

chemoattractants in the lower compartment were purchased from Peprotech, (Rocky 

Hill, NJ). Net migrated cells over control cells were counted in ten microscope high 

power fields (magnification:xl000). At least eight spots were counted for each
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experimental group; values are the mean ± SE of three different experiments and p 

value calculated by Student T Test. Where indicated, cells were incubated with a 

blocking anti-CXCR4 mAb (12G5, R&D; lOpg/ml), or with AMD3100 (Sigma, 

1 pg/ml) or anti-CX3CRl/CX3CLl mAb (polyclonal, Torrey Pines, Houston, TX and 

clone 81506, R&D, respectively).

Transmigration assay

Human endothelial cells were grown to confluence on polyvinylpyrrolidone (PVP)-free 

polycarbonate filters (12 pm pore) and mounted on Boyden chambers over a second 

filter (Fig. 3.3).

9

Boyden chamber

Filters

Cheinoattractant

Fig 3.3 Transmigration assay with a Boyden chamber. Endothelial cells are grown on the 

filter.

'^Cr-labeled tumour cells were seeded in the upper compartment and coincubated with 

endothelial cells monolayers for 16 hours at 37°C. Nonadherent cells were gently 

washed away and adherent cells were removed with a cotton swab. The radioactivity in 

the double filter and in the lower compartment referred to transmigrated cells. The 

adherent cells were considered to comprise both cells bound to endothelial cells as well 

as those that had transmigrated. Values are the mean ± SE of three different experiments 

and p value calculated by Student T Test.
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Invasion Assay

Cell invasion protocol was a kind gift of Dr. Maura Poli (Mario Negri Institute 

Bergamo, Italy); briefly, it was examined using a 48 well modified Boyden chamber 

and a reconstituted extracellular matrix membrane (Matrigel, Becton Dickinson) (Fig.

filter

Cheinoattractant

Fig 3.4 Invasion assay with a modified Boyden chamber. A Matrigel layer is deposed on top 

of the filter.

Cell invasion chambers were prepared by carefully placing onto a polycarbonate 

PVP-free filter 10 pi of Matrigel (0.5 pg/ml) and incubating at 37°C for 30 minutes to 

allow Matrigel polymerization; then 45 pi of cell suspension was added to each well 

and incubated at 37°C overnight. Migrated cells were evaluated as for the chemotaxis 

experiment.

The activity of selected metalloproteases in pancreatic cancer cell and monocyte 

supernatants was assessed by using a MMP Gelatinase Activity Assay Kit (Chemicon, 

International, Inc.), according to manufacturer’s instructions. Fig 3.5 illustrates the test 

principle. Briefly, the kit utilizes a biotinylated gelatin substrate, which is cleaved by 

active MMP-2 and MMP-9 (gelatinase) enzymes. Remaining biotinylated fragments are

3.4).
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Matrigel-coated

3.8 Gelatinase activity assay
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then added to a biotin-binding 96-well plate and detected with streptavidin-enzyme 

complex. Addition of enzyme substrate results in a colored product, detectable by its 

OD (450 nm). The activity detected in the supernatants can be easily quantified by 

comparison with a MMP-2 positive control, (APMA-activated human MMP2 enzyme). 

This kit provides a quick and sensitive system for evaluating the gelatinase activity in 

cell supernatants and other biological fluids. Moreover, unlike traditional zymography, 

this assay measures MMP activity in solution, which is often different than the apparent 

activity observed on zymographs, where the MMP enzymes are physically separated 

from their natural inhibitors. Pancreatic cancer cell lines were cultured and stimulated 

with CXCL12 100 ng/ml for 24 hours and supernatants collected for the MMP assay. 

Values are the mean ± SE of three different experiments performed. P value was 

calculated by Student T Test.

MMP

MMP

- E
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-  B

G elatinase
C leavage
Activity

Shortens
Biotinylated

Gelatin
M olecules

Enzyme- Streptavidin

-  B

Detection o f  
Rem aining 

Biotin

■ni i m  ■ ■ ■ ■
96 W ell Biotin-Binding Plate

Fig 3.5. MMP activity assay. Gelatinase activity in supernatants is measured by assessing their 

capability to cleave a biotin-labeled gelatine substrate.
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3.9 Adhesion assay
Adhesion of tumour cells to neuroblastoma cell monolayers was studied as described 

previously, with minor modifications (263, 268). Neuroblastoma cells were grown to 

confluence in flat-bottomed 6 -well plates. 51Cr-labeled tumour cells (Amersham, UK) 

were coincubated with neuroblastoma monolayers at 37°C for 1 hour in DMEM 1% 

FBS, under slow agitation, to prevent aspecific attachment. At the end, nonadherent 

cells were washed away and adherent cells were solubilized with 1 mL o f 0.1% sodium 

dodecyl sulfate and radioactivity was counted in a gamma counter. Results represent the 

percent of adherent cells ± SE of three replicates/group. P value was calculated by 

Student T test.

3.10 Methods for analysing cell proliferation and 
apoptosis

CFSE dilution assay

Proliferation was measured in vitro using the vital dye 5-(and-6)- 

carboxyfluorescein diacetate succinimidyl ester, mixed isomer (5-(6)-CFDA, SE 

[CFSE], Molecular Probes, Inc., Eugene, OR); this method is currently used to 

investigate lymphocyte proliferation and based on the dilution of the dye incorporated, 

upon serial cell division (269, 270). Briefly, cells were labelled with CFSE (0.5 juM) 

before seeding in 12-wells plates. Stimuli were given after 12 hours o f resting in 

medium without serum. After 3 days, cell division was indicated by decreased CFSE 

fluorescence intensity, as assessed by flow cytometry. At least three different 

experiments were performed and one representative reported.
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Cell Cycle Analysis

For cell cycle analysis, cells were seeded in 12 well plates and let adhere for 12 

hours, after which medium was replaced with DMEM 1% FBS. After 72 hours, they 

were collected, washed once with PBS and fixed with 70% ethanol at -20°C for 24 

hours. Fixed cells were washed three times with PBS and incubated for 1 hour with a 

Propidium Iodide (PI) solution (Sigma Chemical Co.; 20pg/ml) containing RNAase A 

(Sigma Chemical Co.; 0.1 pg/ml). Cells were then subjected to cell cycle analysis for 

determining DNA contents by flow cytometry. Cell debris were excluded on the basis 

o f forward versus side scatter. Doublets and clumps were excluded by gating on a 

bivariate distribution of AUX (PI peak pulse) versus the PI integrated signal. Data from 

10,000 events were collected in the final gated histograms. The cell histogram was 

divided into 3 regions according to cell cycle phase: G0/G1, G2/M and sub-Gl peak (PI 

fluorescence from fractional DNA content of apoptotic cells), which defined the 

proportion of apoptotic cells. At least three different experiments were reported and one 

representative was reported.

Apoptosis Assay

Staining with Annexin V is the method to evaluate earlier apoptotic events, such 

as loss of plasma membrane asymmetry.

The percentage of cells undergoing apoptosis was determined using fluorescein- 

conjugated human annexin-V (Pharmingen, BD Biosciences). Cells were plated in 12- 

well plates and cultured for 18 hours. Then they were incubated for 24 hours under 

apoptosis-inducing conditions (serum deprivation) with or without CXCL12 (100 

ng/ml). Cells were collected and stained at room temperature in the dark for 15 minutes 

in 200 pi buffer containing FITC-annexin-V (5 pi); after incubation they were subjected
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to FACS analysis. Annexin-V+ cells correspond to apoptotic cells. Values are the mean 

± SE of three different experiments performed.

3.11 Stable infection with a CX3CR1-GFP viral 
vector

A viral vector carrying the sequence coding for human CX3CRI fused to the 

sequence for the reporter gene GFP was prepared. A former plasmid vector was 

generated and tested and subsequently inserted into the viral vector.

Plasmid encoding the CX3CR1-GFP fusion protein preparation

Human CX3CRI cDNA (encoding the Ile249-Met280 variant) subcloned in the 

mammalian expression vector pCDNA3 was a kind gift of Philippe Deterre (Pasteur 

Institute, Paris, France). To generate the fusion protein CX3CRI-GFP, the pEGFP-Nl 

vector and CX3CRI cDNA were prepared by digestion with restriction enzymes to 

generate complementary ends. Briefly, a forward primer was appositely designed to be 

specific to the 5’ end of CX3CRI cDNA and Hindlll tailed; by the same way, a reverse 

primer specific for the 3’ end was designed and BamHl tailed. The vector was 

amplified by PCR with the primers, digested with Hindlll/BamHl and subcloned in the 

mammalian vector pEGFP-Nl (BD Biosciences, Clontech, Milan, Italy) therefore 

codifying for a chimeric protein CX3CRI-GFP.

After ligation of the foreign DNA and pEGFP-Nl with the enzyme DNA ligase, 

the resulting vector was introduced into bacterial cells (DH5a) by transformation and 

cells containing foreign DNA selected by screening for kanamycin.

A receptor-negative pancreatic tumor cell line, MiaPaCa2, known to grow in 

nude mice, was then transiently transfected with the construct and checked for transgene
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expression by FACS analysis; both GFP and CX3CRI expression were analysed, the 

latter by PE-labeled anti human CX3CRI antibody.

Viral vector construction

The generated CX3CRI-PEGF-NI vector was expanded by transformation o f bacterial 

cells and purified with Marligen Columns (Marlingen, Heidelberg, Germany), yielding 

endotoxin free DNA. Final concentration was approximately 1 jug/pl. The viral vector 

(pRRLsinPPT.CMV.GFPpre) was then kindly prepared by Maria Luisa Malosio in 

collaboration with Naldini’s group (San Raffaele Hospital, Milan). Briefly, 293T cells, 

selected as good recipients of DNA, are cotransfected with four plasmids (each carrying 

a sequence for a viral particle component: two 3rd generation core packaging plasmid, a 

Self Inactivating transfer vector plasmid, an Envelope plasmid and the plasmid 

CX3CRI-PEGF-NI). This passage allows the rescue of the recombinant HIV genome 

with the gene of interest, CX3CR1-GFP and packaging into viral particles. The 

calcium-phosphate precipitation method is used to transfect cells. After 16 hours, 

medium is replaced with a fresh one to begin virus collection; after 48 hours, 

supernatant, containing viral particles, is collected and concentrated by 

ultracentrifugation; the final pellet is resuspended in a very small volume (1/500 of the 

starting volume of medium), splitted into small aliquots and stored at -80°C. The 

subsequent passage is titration of the lentiviral vector: Hela cells are plated and ten-fold 

dilutions o f the viral stock are added. After 72 hours, cells are harvested and analyzed 

by flow cytometry to calculate the titer. The infectivity of the vector preparation is 

calculated by the ratio of transduction units (TU)/ml and should be >104. TU/ml value is 

calculated by (N° of cells analyzed) x (% of cells GFP+) x (10N), N=(-) viral dilution factor (see 

(271-274) for reference). After titration, the appropriate amount of vector (3x106 TU in 

2 ml medium) was used to infect MiaPaCa2 cells. Due to the high efficiency of
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infection procedure, no selection was required and CX3CRI-GFP MiaPaCa2 almost 

9 9% pure were obtained and used for experiments.
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Aim of the Study
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In the last two decades there has been increasing evidence for a role of 

chemokines in tumour biology. Tumours constitutively produce chemokines, which 

have been found to exert a variety of biological activities, including leukocyte 

recruitment, promotion or inhibition of angiogenesis, activation o f matrix 

metalloproteases, growth promoting activity and inhibition o f apoptosis. While the 

significance of chemokine expression in human and experimental tumours has been the 

object of intense research activity, the expression of chemokine receptors on tumour 

cells has been investigated to a lesser extent. The hypothesis that tumour cells may use 

chemokines to determine metastatic destinations has recently begun to be investigated. 

If  this hypothesis is correct, a corollary is that the expression of chemokine receptors in 

tumour cells could not be random, but selective chemokine receptors might be 

expressed, which recognize ligand chemokines present in high amounts at the site of 

metastasis

Human pancreatic adenocarcinoma is a highly aggressive, early metastatic 

disease; at the time of diagnosis, more than 80% of the patients show tumours locally 

extended beyond the pancreas and metastases in regional lymph nodes. Peculiar of this 

tumour is its dissemination to peripheral nerves. Surprisingly, in spite o f the clinical 

importance of this process, the molecular events driving the tumour cell spreading are 

only in part understood.

The principal aim of this thesis was to investigate the role of chemokines and 

their receptors in pancreatic cancer and to understand if receptors and their ligand 

chemokines are involved in tumor dissemination.

Specifically, I have extensively analyzed the expression of a number of 

chemokine receptors on tumor cell lines o f pancreatic adenocarcinoma and on freshly
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isolated tumour cells obtained from surgical specimens. Later on, I have concentrated 

my efforts on the significance and biological role of receptors/ligands in this tumor. The 

process of metastasis involves the escape of tumor cells from the primary mass via 

lymphatic and blood vessels, transport to and arrest in a target organ and growth of 

metastasis in the target organ; all o f these steps are strictly regulated by chemokines. 

Therefore, I have tried to investigate whether chemokines and their receptors could 

affect each of these processes. I have performed in vitro studies of adhesion o f tumor 

cells to endothelial cell monolayers, transendothelial migration assays and invasion 

assays through Matrigel-coated filters. Finally, I have investigated whether selected 

chemokines can increase resistance to apoptosis in injured tumor cells or regulate their 

cell cycle progression.

After a preliminary biological characterization of eleven pancreatic adenocarcinoma cell 

lines, focused on molecular properties and capability of releasing cytokines and 

chemokines, I screened a panel of chemokine receptors on these tumor cell lines and 

also on freshly isolated tumor cells from pancreatic adenocarcinoma surgical specimens.

CXCR4 emerged as the most expressed receptor in human pancreatic 

adenocarcinoma, I have focused on the role of this chemokine receptor in pancreatic 

tumor cells. mRNA expression, regulation and functional activity have been analyzed 

with available in vitro assays.

The initial screening has revealed that some pancreatic cancer cell lines and freshly 

isolated tumor cells express also the chemokine receptor CX3CR1. Given the 

peculiarity to disseminate along nerve fibers, I have tested the hypothesis that the 

chemokine Fractalkine/Neurotactin, highly expressed in neuronal tissues, and its
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receptor CX3CR1 expressed by tumor cells, are involved in the peculiar tropism of 

pancreatic adenocarcinoma cells for neural tissues. After mRNA analysis on cell lines 

and primary tissues, the functional role o f the receptor has been investigated. Moreover, 

the CX3CR1 receptor has been successfully infected into a CX3CR1-negative cell line 

and functional assays are being performed with CX3CR1- and parental cell line. 

Specifically, I’m going to use CX3CR1-transfected turnout cells in in vivo experiments 

aimed at investigating the role of CX3CR1 in the growth and metastatic potential of 

pancreatic cancer.

The obtained results reveal for a role of chemokines and their receptors in pancreatic 

cancer cells migration and growth; these finding contributes to a better understanding of 

the biology of this carcinoma and raises the possibility that the system of 

chemokines/receptors may be a valuable therapeutic target.
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Chapter 4

Preliminary characterization of 
pancreatic adenocarcinoma cell lines 
and isolation of pancreatic tumour 

cells from surgical specimens

98



4.1 Collection and characterization of pancreatic 
cancer cell lines

During my project, I have based the study of cell biology of ductal 

adenocarcinoma of the pancreas on in vitro investigations, employing various stable 

pancreatic ductal carcinoma cell lines (PDCL), commonly available through cell culture 

collections. The use of cell lines is necessary to obtain information on a homogeneous 

population of pancreatic tumour cells that are common to researchers worldwide. 

However, the various cell lines can reveal a great deal of diversity, so that generalized 

interpretation of results needs to be viewed cautiously. Therefore, the characterization 

of PDCL used in in vitro experiments has been a necessary preliminary step of the 

project.

The molecular and biological analysis of 11 established cell lines is shown in 

Table 4.1. Most cell lines (9/11) were grade G2/G3 and only 3 G l.
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Cell Line Source Grade In vitro 
grade

Tumorigenic 
(nude mouse)

Transplanted 
tumor grade

Panc-1 Primary
tumor

G3 G3 Yes G3

MiaPaCa2 G3 G3 Yes G3

Paca44 G2 Nt Yes G2/3

PT45 G3 G3 Yes G3

Capan-1 Metastasis G1 G1 Yes G1

CFPAC G1 Nt Yes ?

Hs 766T G2 Nt Yes 9

T3M4 G2 G3 Yes G2/G3 j

AsPC-1 Ascites G2 G2 Yes G1/G2/G3

HPAF G1 G2 Yes G1

A8184 G2 G2 Yes G2

Table 4.1. Biological analysis of 11 human pancreatic adenocarcinoma cell lines. For each 

cell line, source, grade, in vivo tumorigenicity and grade of trasnplanted tumour are 

reported.(Adapted from (26))

All the cell lines expressed many of the typical genetic lesions which represent 

the molecular profile of pancreatic adenocarcinoma (7, 8 ), including mutation in KRAS, 

p53, p 16 SMAD4/DPC4 (Table 4.2).
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Cell Line K -ra s p53 p l 6 DPC4/smad

Panc-1 + + + -

M iaPaCa2 + + + -

Paca44 + + + -

PT45 + + + —

Capan-1 + + + +  j
CFPAC + + + +

Hs 766T 9
• + 9

• +

T3M4 4- + 4-

AsPC-1 + + + +

HPAF + + + -

A8184 + + + -

Table 4.2. Molecular profile of pancreatic adenocarcinoma cell lines. All the cell 

lines express many of the typical genetic lesions representing the molecular profile of pancreatic 

adenocarcinoma (275, 276).

1 next focused my attention on the release of immunoregulatory molecules, i.e. 

cytokines, angiogenic and growth factors, chemokines. In fact, self-sufficiency of 

growth-promoting factors and release of immuno-modulatory and pro-angiogenetic 

factors are hallmarks of the pathogenesis of pancreatic cancer. Tumour cell lines 

cultured for 24h under standardized conditions have been tested for the ability to secrete 

soluble factors using ELISA. I have measured the following molecules:

- chemokines: CCL5, CCL2, CXCL8 , CXCL12, CCL22;

- cytokines: IL-6 , IL-10, TNFa, IL-1 (3;

- pro-angiogenetic and growth-promoting factors: VEGF, TGFJ3, HGF
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A summary o f the results is reported in Table 4.3 and Table 4.4.

Cell Line CCL2 CCL5 CCL22 CXCL8 CXCL12

Panc-1 2290 107 0 0 28

M iaPaca2 0 847 20 20 24

Paca44 0 91 70 0 24

PT45 2290 27 0 480 19

C apanl 970 107 60 10 17

CFPAC 0 14 20 40 27

Hs766T 580 n .t . 20 0 1326

T3M 4 0 n . t . 1200 130 28

A sP C l 0 n . t . 20 0 59

HPAF 0 0 20 0 27

A8184 n . t . 42 n . t . n . t . 28

Table 4.3. Chemokine production by human pancreatic adenocarcinoma cell lines. CCL2, 

CCL5, CCL22, CXCL8, CXCL12 were measured by ELISA. Results are expressed as pg/ml for 

tumour cell monolayers (24h culture), n.t. not tested {Adapted from (26)). Data are the median 

of three different experiments.

VEGF, CCL2, CCL5 and TGFp are the more frequent factors released by 

pancreatic cancer cell lines; less frequent is the secretion of CXCL8 , CCL22, IL- 6  and 

the secretion of CXCL12, IL-10 and HGF. TNFa and ILl(3are always undetectable. 

Some of these tumor-derived factors, including VEGF, TGFp, IL-10 and IL- 6  have 

immunomodulatory effects and have been well described as relevant in pancreatic 

cancer progression, inducing angiogenesis, metastasization and stroma reaction (40). 

Moreover, chemokines may influence the extent and phenotype of the leukocyte

102



infiltrate within tumour mass but also may have multiple effects on tumor growth, 

angiogenesis and metastasis.

Cell Line VEGF HGF TGFp IL -lp IL-6 IL-10 TNFct

Panc-1 140 0 40 0 0 0 0

M iaPaca2 60 0 40 0 0 0 0

Paca44 110 310 180 0 0 0 0

PT45 1070 0 90 0 530 0 0

C apanl 190 0 30 0 40 0 0

CFPAC 90 0 260 0 600 40 0

Hs766T 0 0 0 0 0 80 0

T3M 4 90 0 0 n . t . 90 0 0

A sP C l 70 0 0 0 0 0 0

HPAF 40 0 40 0 0 0 0

A8184 n .t . n . t . n . t . n . t . n . t . n . t . n . t .

Table 4.4. Secretion of soluble factors by human pancreatic adenocarcinoma cell lines.

Inflammatory cytokines (IL-1(3, IL-6), IL-10, pro-angiogenetic factor (vascular endothelial 

growth factor (VEGF)), growth promoting factor (transforming growth factor P (TGFP)), 

hepatocyte growth factor (HGF) were measured by ELISA. Results are expressed as pg/ml for 

tumour cell monolayers (24h culture), n.t. not tested . (Adapted from (26)). Data arc the median 

of three different experiments.

4.2 Primary tumour isolation

It is known that cell lines may display different cell behaviour with respect to the 

original tumor and in order to overcome this problem, the use of freshly isolated 

pancreatic cancer cells in short-term culture (primary cultures) may represent a valid
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alternative. It may be a more representative model of in vivo conditions compared to 

long standing cell lines. Therefore, I have tried to isolate pancreatic tumor cells from 

surgical specimens of resected patients. Due to the high stromal reaction characterizing 

pancreatic adenocarcinoma tumor, surgical samples are generally enriched in 

fibroblasts, leukocytes and non-tumoral cells, which make tumor cell isolation very 

hard. Moreover, leukocyte contamination may be very confusing in the type of analysis 

I was udertaking, as they express chemokines and their receptors in very high amounts. 

To this aim, I have set up a method to isolate the minority of tumor cells from the bulk 

of stromal cells. Tumour is cut in little pieces and subjected to mechanical agitation 

with trypsin (0.125%); this way neoplastic ducts detach from the rest o f the tissue in 

groups of cells which can be separated on a density gradient (Ficoll). The obtained cells 

(usually 90% tumour cells and 10% fibroblasts) are further purified by adherence on 

tissue plastic, by taking advantage of the strong adherence of fibroblasts. They can be 

either immediately lysed for RNA extraction or stained with antibodies.

CK7 is a specific marker of epithelial cells which is not present on fibroblasts (277, 

278). To assess the purity of pancreatic tumor ducts preparations, I stained cells with an 

anti-cytokeratin 7 antibody and performed a FACS analysis. Most all the cells were 

Cytokeratin-7 positive. Two representative profiles are shown in Fig 4.1.
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Specimen 1
( 9 9 %  C y 7 + )

Specimen 2 
( 9 4 %  C y 7 + )

©

Cytokeratin-7
Fig. 4.1. Cytokeratin expression in pancreatic cancer tumor cells from surgical samples.

Two surgical specimens (PK93 and PK96, see Table 3.1 for clinico-pathological features) are 

represented of at least 8 analyzed; 94-99% of cells are Cytokeratin-7-positive.

4.3 Chemokine receptor overview

Recent evidence demonstrate that tumour cells themselves express chemokine 

receptors, which possibly supports tumour cell survival and invasion. Therefore, it 

seemed interesting to investigate the expression of a number o f chemokine receptors in 

human pancreatic adenocarcinoma cell lines

RNA was extracted by tumour cell lines grown in monolayers and subjected to 

analysis by Real-Time PCR for the expression of different chemokines receptors. A first
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experiment was designed to obtain an overview of the chemokines receptors expressed 

by tumour cell lines. To this aim, we evaluated CCR2, CCR6 , CCR7, CXCR2, CXCR4 

and CX3CRI. The chemokine receptor CXCR4 was expressed in more than half of cell 

lines (6/11), in some of which it was present in high amounts. Also CX3CR1, the 

chemokine receptor binding Fractalkine was expressed in 6/11 cell lines, although in 

lower quantity. The chemokine receptor CCR7 was expressed in 4 cell lines and CCR6  

was significantly expressed only in two cell lines. CCR2 and CXCR2 were not 

significantly expressed. Table 4.4 summarizes these results.

CCR2 C C R 6 CCR7 CXCR2 CXCR4 CX3CR1

P anC l - - - - - +

M iaPaC a2 - - - - - -

PaCa44 - - - - - -

PT45 - - - - - -

C ap an l + + + + + +

C FPA C - - - - + -

Hs766T - - + - + + +

T3M 4 - - + - + -

A sP C l - + + - + +

H PA F - - - - + +

A8184 - - - - + +

Table 4.4 Chemokine receptor analysis in eleven pancreatic tumor cell lines. mRNA 

extracted by cell lines was analysed by Real-Time PCR with specific primers. Chemokine 

receptor amount, normalized to the housekeeping gene (3-actin, was expressed as a fold increase 

over the cell line with the lowest expression; fold below 10 was considered negative (-), fold 

above 10 was considered positive (+); (++) indicates fold above 1000.

After this preliminary analysis, we decided to focus our attention on CXCR4 and

CX3CRI and their role in pancreatic cancer progression.
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I will discuss these results more in detail in the following Chapters.



Chapter 5

CXCR4 in Pancreatic 
Adenocarcinoma

108



5.1 Introduction and goal

This chapter will focus on the expression and function of the chemokine receptor 

CXCR4 and its chemokine ligand CXCL12 in human pancreatic adenocarcinoma. My 

preliminary experiments clearly indicated that CXCR4 was the most frequently 

expressed among the chemokine receptors tested. Therefore, the aim o f the experiments 

I am going to present was to gain some insight into the possible role of this chemokine 

receptor in tumor spreading. Metastasis is a complex multi step process in which 

migration to a distant site is only one of the passages; indeed metastatic tumor cells may 

also have a variety of properties endowing them with tissue invasion and growth ability; 

I have therefore extensively analyzed possible functions exerted by CXCL12 in 

pancreatic cancer cell lines, trying to reproduce in vitro the main steps involved in 

metastasis.

5.2 CXCR4 mRNA analysis

CXCR4 expression in pancreatic tumor cell lines

I first evaluated the expression o f CXCR4 by RT-PCR in eleven established 

PDCL. CXCR4 mRNA expression was clearly detected in six out of eleven lines, with 

different amounts of CXCR4 transcripts; in particular, Hs766T showed a very high 

expression, quite comparable to the expression in normal PBMCs, used as positive 

control (Fig 5.1).
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Fig 5.1 CXCR4 in pancreatic cancer cell lines. RT-PCR expression of CXCR4 and (3-actin 

mRNA in human pancreatic adenocarcinoma cell lines and in the immortalized epithelial cell 

line HPDE6, derived from normal human pancreatic ducts. Human PBMCs were used as 

positive control. Reaction was stopped at 26 cycles for CXCR4 and at 20 cycles for P-actin. One 

representative analysis of three performed is reported.

I tested the expression of CXCR4 mRNA also in an immortalized epithelial cell line 

derived from normal human pancreatic ducts (HPDE6 ). This cell line has been 

previously shown to maintain the phenotypic and genotypic characteristics of normal 

human pancreatic ducts (260). HPDE6  showed no detectable expression of CXCR4 

transcripts.

To better appreciate the differences between cell lines, the expression of CXCR4 

mRNA was evaluated by semi quantitative Real Time PCR; the cell line HPDE6  was 

used as a reference. This second analysis confirmed the expression of CXCR4 in the six 

positive tumor cell lines (at least 20-fold compared with HPDE6  cells). The cell lines 

Hs766T, AsPCl and Capanl showed the highest expression (1165-, 122- and 8 6 -fold, 

respectively (Fig 5.2).
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Fig 5.2 CXCR4 in pancreatic cancer cell lines. Semi quantitative Real-Time PCR was used to 

better appreciate differences between cell lines. For each cell line, the amount of CXCR4 

mRNA, normalized to P-actin, is expressed as relative to the cell line HPDE6 . One 

representative analysis of three performed is reported.

This second analysis proved to be very important and revealed that, 

interestingly, CXCR4 is expressed at higher levels in cell lines originating from 

metastatic or ascitic lesions, compared to cell lines derived from primary tumors.

Regulation of CXCR4 expression in pancreatic tumor cell lines

Cytokines are potent modulators of chemokine receptor expression and are 

frequently present in the tumor microenvironment. Also some tumor cells, as I 

discussed in Chapter 4, are able to secrete cytokines and chemokines. I was therefore
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interested in evaluating the effect o f some inflammatory or immunomodulatory 

cytokines on CXCR4 expression in pancreatic tumor cells. RNA was analyzed after cell 

stimulation with IL-10, IL-6 , HGF, IFNy, IL -lp  and TNFa . Modulation by HGF is of 

interest as it has been demonstrated that HGF increases the expression o f chemokines 

by papillary carcinoma of the thyroid (279). In two cell lines tested (AsPCl and 

H766T), IL-10, IL-6 , HGF, and the combination o f IL -lp and TNFa did not modify 

CXCR4 expression (not shown), while IFNy consistently down regulated CXCR4 

transcript (Fig 5.3).

Xfl

□  Control
M IL-l/TNFot 
■  IFNy

Hs766T AsPCl

Fig 5.3 CXCR4 modulation. Regulation of CXCR4 mRNA by inflammatory cytokines in cell 

lines was assessed by Real-Time PCR. Cells were treated for 8 hours with a combination of 

TNFa (10 ng/ml) and IL-ip (10 ng/ml) or IFNy (500U/ml). One representative analysis of two 

performed is reported.

Regulation of CXCR4 expression by Hypoxia

Recently, our group (280) demonstrated that hypoxia, a low oxygen tension

condition frequently present in tumoral necrotic areas, regulates the expression of
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CXCR4 in monocytes as well as in ovarian cancer cells. Hypoxic conditions can be 

reproduced in vitro by colturing cells in an atmosphere-controlled culture chamber 

containing a gas mixture composed of 94% N2, 5% CO2 and 1% O2. I tested the effect 

of hypoxia in pancreatic cancer cell lines and found that, in line with the previous 

results, hypoxia up regulated CXCR4 mRNA in pancreatic cancer cell lines (Fig 5.4). 

As the use of the culture chamber implies some manipulation, an internal control is 

usually recommended; we used Desferrioxamine, an iron chelator, which mimics 

hypoxia conditions. In 4 out of 6 cell lines, the effect was similar to the one observed in 

low oxygen colture, as CXCR4 was upregulated compared to control conditions. In 

Hs766T and A8184, the upregulation was much higher than in hypoxic culture, possibly 

meaning that the effect due to the culture chamber was underestimated and further 

confirming that hypoxia upregulates CXCR4.

Fig 5.4 CXCR4 modulation by hypoxia in cell lines, as assessed by Real-Time PCR. Cells 

were cultured in low-oxygen tension (Hypoxia) or treated with Desferrioxamine as a control 

(0.4 mmol/L) for 4 hours. Hypoxia consistently up regulated CXCR4 mRNA in pancreatic 

cancer cell lines. One representative analysis of two performed is reported.

□ Control 
□ Desferrioxamine 
■ Hypoxia
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Expression of CXCR4 in freshly isolated pancreatic tumor cells

Pancreatic tumour cells from surgical specimens (see Table 3.1 for clinico- 

pathological features) of resected patients were isolated and routinely checked for purity 

from stromal components (see Fig.4.1). In 7 different tumor samples, the amount of 

CXCR4 mRNA, normalized to p-actin, was evaluated by Real Time PCR, and expressed 

as relative to the cell line HPDE6 , used as reference, as for the above experiments. 

Moreover, I also analyzed the RNA derived from a preparation of freshly isolated 

normal pancreatic ducts.

46000

nooo K

pancreatic tumor surgical samples

Fig 5.5 CXCR4 mRNA expression in tumor cells from surgical samples of resected 

pancreatic cancer patients. The amount of CXCR4 mRNA, normalized to P-actin, is expressed 

as relative to the cell line HPDE6 (white bar). Human epithelial pancreatic ducts were isolated 

from the pancreatic tissue of a multiorgan donor (grey bar). For some tumor samples, numbers 

on top of bars indicate the fold increase relative to expression of CXCR4 in HPDE6. One 

representative analysis of two performed is reported.
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As shown in Fig. 5.5, freshly isolated tumor cells showed much higher levels of 

CXCR4 compared to HPDE6 cells. Freshly isolated normal pancreatic ducts expressed 

substantial amounts of CXCR4, although always at lower levels compared with tumor 

samples.

CXCR4 surface expression

To confirm that mRNA transcripts correspond to receptor expression on the 

surface of tumor cells, I evaluated CXCR4 cell-surface expression by FACS analysis. 

Five cell lines that were scored positive by RT-PCR (Hs766T, AsPCl, Capanl, A8184, 

and CFPAC) had high surface expression of CXCR4. Representative FACS profiles are 

shown in Fig 5.6.

Hs766T AsPC-1 C a p a n l A8184 CFPAC
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Fig.5.6 Surface expression of CXCR4 on pancreatic cancer cell lines detected by flow 

cytometry. Cells were removed from flasks non-enzimatically and incubated with 10 mg/ml 

FITC-CXCR4 anti-human antibody (clone 12G5). One representative analysis of four 

performed is reported.
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5.3 CXCR4 functional activity

Setting up migration assays

Chemotaxis (migration towards a chemical gradient) is the eponymous function 

of chemokines. Therefore, the first functional assay I performed was the migration of 

tumour cells in response to chemokines, in chemotaxis assays.

Here, I report chemotaxis experiments performed for the cell line Hs766T. 

Different pore filters, (8 and 13 pm), were used and three times o f migration (4, 8 and 

16 hours). As shown in Fig 5.7, an appreciable migration was achieved with 13 pm pore 

filters in 16 hours, as the CXCL12-elicited migration was significantly higher than the 

basal one, while no appreciable migration was observed with 8 pm pores and a shorter 

time was not optimal. For other cell lines (e.g. MiaPaCa2, PT45, CFPAC), in contrast, 

migration in this condition was not optimal and an aspecific migration was observed 

also in response to the control medium. For these cell lines, 8 hour/8  pm pore was the 

best combination (data not shown). Finally, A8184 cell line migration was performed in 

4 hour/8  pm pore conditions, as basal migration was too high, if  longer times were used.
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Fig. 5.7. Setting up of migration assay for Hs766T cell line. Two different pore sizes (8 and 

13 pm) and two times (8 and 16 hours) were combined and the best condition selected for future 

assays.

CXCL12 stimulates pancreatic cancer cell chemotaxis

To verify that CXCR4 is functional in pancreatic cancer, selected cell lines were 

tested in chemotaxis as well as other migration assays. The cell line Capanl was 

excluded for its characteristic to disaggregate in large clusters. Fig 5.8 shows that the 

CXCR4-positive cell lines Hs766T, A sPCl, A8184 and CFPAC did migrate in response 

to CXCL12 in a classical chemotaxis assay, with an optimal response at 300 ng/ml. In 

contrast, the CXCR4-negative cell lines PT45 and MiaPaCa2 did not migrate to 

CXCL12 (Fig. 5.8). We recently reported that none o f the 11 pancreatic tumour cell 

lines express CCR2 (25). In line with this finding, different concentrations o f CCL2 did 

not induce a chemotactic response neither in Hs766T nor in AsPCl cells.
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Fig 5.8 CXCL12 stimulates pancreatic cancer cell chemotaxis. CXCR4-positive cell lines 

(Hs766T, AsPCl, CFPAC, and A8184) migrated in classical chemotaxis assays to different 

concentrations of CXCL12 in a dose-response manner, whereas CCL2 did not induce a 

chemotactic response in the cell lines Hs766T and AsPCl. The CXCR4-negative cell lines, 

PT45 and MiaPaCa2 did not migrate to CXCL12. Shown are net numbers of migrated cells 

counted in 10 high power fields over basal migration (in the absence of chemokine). Basal 

migration was 120 cells/10 HPF for Hs766T, 23 cells/10 HPF for AsPCl, 27 cells/10 HPF for 

CFPAC, 25 cells/10 HPF for A8184, 47 cells/10 HPF for MiaPaCa2 and 27 cells/lOHPF for 

PT45 (*p<0.02 versus control; **p<0.001 versus control, calculated by Student t Test). 

Migration conditions were as follows: 16 hours and 13 pm pore filters for Hs766T; 16 hours 

and 8 pm pore filters for AsPCl; 8 hours and 8 pm pore filters for CFPAC, PT45 and 

MiaPaCa2; 4 hours and 8 pm pore filtrs for A8184. Values are the mean ±SE of eight replicates. 

One representative experiment of three performed is shown.

To confirm that the migratory activity observed in chemotaxis assays was 

specifically mediated by CXCR4 engagement, I tried to inhibit it by incubating cells



with an anti-CXCR4 monoclonal antibody. Pretreatment o f Hs766T cells with the 

blocking antibody completely blocked cell migration in response to CXCL12 (Fig. 5.9). 

A similar effect was observed by pretreating cells with a CXCR4-selective inhibitor, 

AMD3100.

AMD 3100Control
CXCR4

Fig. 5.9 CXCL12 induced migration is mediated by CXCR4. Pre-treatment of Hs766T cells 

with a blocking anti-CXCR4 mAb (10 fig/ml) or with AMD3100 (1 pg/ml) significantly 

reduced cell migration in response to 300 ng/ml of CXCL12 (**p<0.01 versus control, Student t 

Test). Values are the mean ± SE of eight replicates. One representative analysis of two 

performed is reported.

CXCL12 stimulates pancreatic cancer cell adhesion and 
transmigration

Tumor cell adhesion to endothelial cells and transendothelial migration are key steps in 

the process o f tumor invasion and metastasis. CXCL12 significantly enhanced adhesion 

to human umbilical vascular endothelial cells and transendothelial migration o f the 

CXCR4-positive cell line Hs766T (Fig 5.10).
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Fig 5.10 CXCL12 stimulates adhesion and transmigration through endothelial cells in the 

CXCR4-positive cell line Hs766T. HUVEC were grown on polycarbonate filters. 51Cr- 

labeled tumour cells were seeded in the upper compartment and trans-endothelial migration 

assessed after 16 hour incubation in the presence of CXCL12 (300 ng/ml) in the lower 

compartment. Nonhaderent cells were washed away and the radioactivity in the filter referred to 

adhered cells, while the radioactivity in the filter and in the lower compartment referred to 

transmigrated cells. Values are the mean ± SE of three different experiments performed 

(**p<0.02 versus control, Student t Test).

CXCL12 stimulates gelatinase activity

Chemokines are potent activators of matrix metalloproteases (MMPs) (49, 133, 

238, 239). Hence, it was of interest to measure the activity o f MMP2 and MMP9 in the 

supernatants of CXCL12-treated tumor cells. Freshly isolated human monocytes were 

used as positive control. The gelatinase activity of MMPs from untreated tumor cells 

was very low (Fig. 5.11). CXCL12 significantly increased MMP activity in Hs766T and 

AsPCl, with levels o f activity similar or higher than human monocytes, while CXCL12 

did not affect the MMP activity in the CXCR4-negative cell line MiaPaCa2. The 

activity of metalloproteases is of major importance in the digestion of the extracellular 

matrix and has been implicated in the metastasizing ability of tumor cells
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Fig 5.11 CXCL12 stimulates the activity of selected metalloproteases. Induction of MMP2 

and MMP9 gelatinase activity; the assay used does not discriminate between MMP2 and MMP9 

and measures the overall gelatinase activity of supematantts tested. Three pancreatic cancer cell 

lines were stimulated with 100 ng/ml CXCL12 for 24h, in synthetic medium (X-Vivo) and 

supernatants were tested for metalloprotease activity in ELISA. CXCL12 induces 

metalloprotease activity in two CXCR4-positive cell lines (AsPCl and Hs766T) but not in the 

CXCR4-negative cell line (MiaPaCa2). Human monocytes were used as positive control. 

Values are the mean ±SE of three different experiments performed (*p<0.01 versus control, 

Student t Test).

In line with the finding that CXCL12 induces MMP activity, tumor cells 

stimulated with CXCL12 showed enhanced ability to invade Matrigel-coated filters 

(Fig. 5.12).
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Fig 5.12 CXCL12 stimulates invasion. Invasion of Matrigel coated filters was assessed after 

16 hours (*p<0.01 versus control, Student t Test). Shown is one representative experiment of 

two performed.

5.4 The axis CXCR4/CXCL12 role in pancreatic 
cancer cell proliferation and survival

CXCL12 stimulates pancreatic cancer cell line proliferation

I investigated whether the expression of CXCR4 on tumor cells had an effect on 

their proliferation. Tumors frequently produce chemokines, thus I previously evaluated 

whether pancreatic cancer cells produced CXCL12 (Chapter 4). O f eleven cell lines 

tested, only Hs766T produced significant amounts of the chemokine (1326 pg/ml/106 

cells, Table 4).

The effect of CXCL12 on tumor cell proliferation was assessed on CFSE- 

labelled cells. Under optimal culture conditions (in the presence of 10% serum), 

addition of CXCL12 increased proliferation in the cell line AsPCl (CXCR4-positive, 

CXCL12-non producing), but not in Hs766T cells, which produces the chemokine.
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Treatment with AMD3100 greatly inhibited spontaneous proliferation only in Hs766T 

cells, which is in line with the presence of the endogenous chemokine (Fig. 5.13).

Hs766T ASPC1
0-i ° 1

1 0 -2 0 -

Fig 5.13. CXCL12 enhances proliferation in Hs766T and AsPCl cell lines, under optimal 

conditions. Cells were labeled with CFSE and fluorescence measured after 3 days. Proliferation 

is indicated by decrease in mean fluorescence (MFI). In the presence of 10% serum, CXCL12 

enhances the proliferation of AsPCl cells (compare black bar with white bar) and addition of 

the CXCR4-antagonist AMD3100 reverts this effect (grey bar). In the CXCL12-producing cell 

line Hs766T, AMD3100 inhibits proliferation (compare dashed bar with white bar). Each 

sample was obtained by mixing a triplicate, to get a representative number of cells. One 

representative of three experiments is shown.

Under suboptimal culture conditions (absence of serum), the presence o f 

CXCL12 greatly enhanced cell proliferation in both Hs766T and AsPCl cell lines (Fig. 

5.14). This is in agreement with our finding that CXCL12 release was reduced by 90% 

in serum-free conditions (not shown). The enhancing effect of CXCL12 on cell
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proliferation was strongly inhibited by treatment with AMD3100 in AAsPCl cells and 

to a lesser extent in Hs766T cells.
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Fig 5.14. CXCL12 enhances proliferation in Hs766T and AsPCl cell lines, under sub- 

optimal conditions. Under conditions of serum deprivation (culture in medium 1% FBS), 

CXCL12 restores the proliferation of Hs766T and AsPCl cells (black and white bar); this effect 

is partially inhibited by the AMD3100 inhibitor (grey bar). Each sample was obtained by 

mixing a triplicate, to get a representative number of cells. One representative of three 

experiments is shown.

These results indicate that CXCL12 stimulates pancreatic cancer cell line 

proliferation, and, in at least one representative CXCR4-positive cell line, the 

chemokine acts as an autocrine growth factor.
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CXCL12 promotes survival of pancreatic cancer cells

An important feature of metastatic cells is the ability to regulate their survival. I 

therefore tested whether CXCL12 could rescue Hs766T and AsPCl tumor cells from 

serum deprivation-induced death. Treatment of cells cultured in serum-free medium 

with CXCL12 reduced the percentage of propidium iodide (PI) positive cells by 46% in 

Hs766T and by 50% in AsPCl (n=4, data not shown). We next performed cell cycle 

analysis. As shown in Fig.5.15, serum deprivation enhanced the proportion o f apoptotic 

cells, as indicated by the sub-Gl peak detection (from 13% to 27% in Hs766T and from 

2% to 11% in AsPCl). We used also IL -ip as an apoptotic stimulus, as we previously 

observed that this cytokine induces apoptosis in these cell lines (26). Addition of 

CXCL12 (100 ng/ml) significantly reduced spontaneous DNA degradation, as shown by 

decrease of sub-Gl peak (from 27% to 16% and from 11% to 4% for Hs766T and 

AsPCl respectively; where IL-1(3 was used, from 21% to 16% and from 6% to 2%, in 

Hs766T and in AsPCl respectively).
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Fig 5.15 CXCL12 rescues Hs766T and AsPCl cells from apoptosis induced by serum 

deprivation and IL-1 p. Cell cycle analysis of cells cultured in normal or apoptosis-inducing 

conditions, with or without 100 ng/ml CXCL12. After 72 h cell cycle analysis was performed, 

by staining cells with PI. In all the apoptosis inducing conditions, addition of CXCL12 

decreased sub-Gl peak. One representative of three experiments is shown.

To further address the question whether CXCL12 regulates survival o f pancreatic 

cancer cell lines, we evaluated the percentage of annexin-V* cells under serum-deprived 

culture conditions. In both Hs766T and AsPCl cell lines, treatment with CXCL12 

decreased the percentage of apoptotic annexin-V+ cells (from 19% to 15% in Hs766T
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and from 17% to 12% in AsPCl), while CXCL12 had no significant effect in the 

CXCR4-negative cell line MiaPaCa2 (Fig.5.16).
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Fig.5.16. CXCL12 rescues Hs766T and AspCl from apoptosis. Percentage of AnnexinV* 

positive cells in cell lines cultured in serum-free medium for 24 h with or without CXCL12. In 

Hs766T and AsPCl, CXCL12 (100 ng/ml) decreased number of apoptotic annexing cells, 

while CXCL12 had no significant effect in the CXCR4 negative cell line MiaPaCa2. Values are 

the mean ± SE of three different experiments performed (*p <0.01, Student t Test).
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5.5 Discussion

In this Chapter, I presented data on the expression and functional role o f the 

CXCR4/CXCL12 axis in human pancreatic adenocarcinoma.

From the first mRNA screening of eleven pancreatic tumor cell lines, I found 

that CXCR4 is the chemokine receptor mostly expressed. In particular, 6 o f 11 cell lines 

tested express considerable levels o f CXCR4 transcripts, that was confirmed at the 

protein level in selected cell lines.

Interestingly, I found that CXCR4 is differentially expressed in the pancreatic 

cancer cell lines depending on their origin. Only one out o f three cell lines derived from 

primary tumors expresses the transcript, in very low amounts, while all but one cell 

lines derived either from ascites or metastasis express higher amounts o f CXCR4 

mRNA. This result suggests an association between the expression of the receptor and 

the in vivo origin (either primary tumour or metastatic site) of tumor cells.

Also surgical specimens from pancreatic adenocarcinoma express CXCR4 in 

higher amounts compared with an immortalized cell line derived form human pancreatic 

ducts (HPDE6) as well as compared to freshly isolated normal pancreatic ducts. The 

finding that tumor tissues have higher expression o f CXCR4 compared to the normal 

counterpart is in agreement with previous reports (281-283).

Surprisingly, the preparation of freshly isolated pancreatic ducts that was tested 

had relatively high levels o f CXCR4. One possible explanation is that these pancreatic 

ducts were isolated from a multi-organ donor in irreversible coma. Although it is 

unknown whether this specific pathological condition affects the expression of 

chemokine receptors, it is well known, and I also confirm it in this report, that hypoxia
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up-regulates CXCR4. It may be possible that the high CXCR4 expression is the result o f 

hypoxic conditions surely occurred before pancreas explants. High expression of 

CXCR4 in pancreatic ducts has also been recently reported by Kajali et al in NOD-IFN- 

y-transgenic mice, as well as in parental NOD mice (284). These authors also highlight 

the importance of the CXCR4-CXCL12 ligand-receptor axis in the survival 

proliferation and migration of ductal pancreatic ells.

CXCR4 is expressed on a variety o f tissues and cell types, including leukocytes, 

haematopoietic progenitor cells, endothelial cells, epithelial cells and cells o f the central 

nervous system (285). Its chemokine ligand, CXCL12, is a homeostatic chemokine; it is 

expressed constitutively in a range of tissues and does not appear to be regulated by pro- 

inflammatory cytokines (286, 287). Its ubiquitous expression may be due to the 

presence of a GC-rich sequence in the 5’-flanking region of the CXCL12 gene, a feature 

which is associated with ‘housekeeping’ genes (287).

Both CXCR4- and CXCL 12-deficient mice have been generated and have 

contributed to the comprehension of the very broad spectrum of actions o f this 

receptor/ligand pair (145, 146). Both the transgenic mice die in utero and present very 

similar phenotypes, a feature confirming that CXCL 12 only acts through CXCR4; this 

has been the general consensus till some months ago, when another receptor for 

CXCL 12 has been cloned, named CXCR7 (288).

Besides the usual functions attributed to a homeostatic chemokine/receptor pair, 

both CXCR4 and CXCL 12 play a critical role in other physiological processes, 

including foetal development and organogenesis (severe heart defects, disorganised 

cerebellum are observed in knockout mice), vascularisation, and mobilization of 

haematopoietic stem cells (285). Moreover, they also have importance in pathological
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conditions as HIVinfection, being CXCR4 a co-receptor for the virus entry, and in 

tumour metastasis, as here discussed.

Modulation of chemokine receptors has not been extensively investigated on 

tumor cells. It has been recently reported that hypoxia (low oxygen tension) up- 

regulates CXCR4 expression in endothelial and tumor cells (280). Indeed CXCR4 is an 

hypoxia inducible gene, being a target o f Hypoxia-inducible factor 1 alpha (HIF) (289). 

In line with this finding we observed that CXCR4 expression was enhanced in two cell 

lines cultured under hypoxic conditions. As low oxygen tension is likely to occur in the 

neoplastic mass; hypoxia-induced up-regulation of CXCR4 may have direct in vivo 

relevance.

To assess whether cytokines present in the tumor microenvironment could 

modulate CXCR4,1 tested IL-10, IL-6 and hepatic growth factor (HGF), (known to be 

produced by human pancreatic tumor and stromal cells) (290, 291). CXCR4 mRNA 

transcripts were never affected by the above cytokines (data not shown). The 

inflammatory cytokines, TN Fa and IL -lp  were also ineffective; in contrast, treatment 

with IFNy consistently reduced CXCR4 expression. It is well established that IFNy plays 

a crucial role in immune resistance against tumors (292). Therefore the IFNy-mediated 

down modulation o f CXCR4 may contribute to inhibition o f tumor growth and 

metastasis.

In line with other results that CXCR4 is implicated in promoting the migratory 

phenotype of a variety o f tumors (81, 281-283, 293) in this study CXCL 12 induced a 

chemotactic response in CXCR4-positive cell lines and this response was inhibited 

when CXCR4 receptors were blocked by a specific monoclonal antibody or by the
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CXCR4 antagonist AMD3100. Tumor cell adhesion to endothelium and 

transendothelial migration are key events in the process of tumor invasion and 

metastasis and are chemokine-regulated steps. Adhesion to endothelial cells and 

transendothelial migration were enhanced by CXCL 12 in CXCR4-positive pancreatic 

tumor cells.

Cancer dissemination can be viewed as a tissue remodeling process that involves 

proteolytic degradation o f ECM in the surrounding normal tissue. Metalloproteases are 

a family of enzymes activated by chemokines, involved in the degradation o f ECM and 

known to mediate cancer invasion and metastases (50-53, 55, 238). The initial interest 

in proteases was on their critical role in degrading the basement membrane, to permit 

the penetration by tumor cells of surrounding connective tissues and blood vessels; 

moreover, the ECM blocks tumor metastasis not only in the sense of being a physical 

barrier but also because it forms a self-protective, apoptosis resistant microenvironment 

(50). Later on it has been clear that proteases, and in particular matrix 

metalloproteinases, can target many non-ECM proteins, including growth factor 

receptors, cell-associated molecules, and cytokines VEGF and TGFp represent two 

examples of such factors that are stored in a latent complex within the ECM and can be 

released by MMP proteolysis (53, 70), enhancing their bioavailability. As a result, the 

activity of proteases in cancer is far more complex than initially anticipated and 

includes tumor promoting as well as tumor-suppressive effects (52). Moreover, several 

lines of evidence suggest also a supportive role for ECM components in metastasis, 

possibly due to the capability of ECM components (e.g. fibronectin, laminin-5) of 

promoting migration and MMPs have been demonstrated to have a role in exposing 

cryptic domains within ECM molecules that can promote migration and metastasis



Among the eleven types of metalloproteases, MMP-2 and MMP-9 participate in 

the degradation of type IV collagen, which is one of the major components of cellular 

basement membranes, whose elimination is essential to invade stroma and vessels; 

indeed, expression of MMP-2 and MMP-9 has been associated with venous invasion 

and hematogenous metastasis (72). Pancreatic cancer is strongly invasive, usually 

directed to large vessels, such as the portal vein, and the development of liver metastasis 

is generally dependent on venous invasion by primary tumor cells. Proteases are 

expressed in the extracellular milieu as inactive proforms that become activated through 

a variety of mechanisms that often involve a close collaboration among several families 

of proteases. Thus overexpression o f proteases as detected by antibody staining does not 

necessarily mean an increase in proteolytic activity. For this reason, the availability o f a 

functional assay measuring metalloprotease activity rather than expression, as the one I 

used in this work, acquires much importance.

In this study, I found that in the absence of chemokines, the gelatinase activity of 

MMPs from untreated tumor cells was very low. In contrast, in CXCL12-treated tumor 

cell lines, MMPs were significantly more active. In line with these findings, CXCL 12 

triggered tumor cell invasion through a Matrigel layer. Collectively, these results 

indicate that CXCR4 expression confers tumor cells with increased motility and 

invasion ability.

Although the functional significance of chemokine receptor expression by tumor 

cells has largely being investigated, in general, few biological assays have been 

performed, mainly aimed at demonstrating that chemokines enhance the migratory 

phenotype of tumor cells bearing their cognate receptor.
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It is now well established that chemokines play other important roles besides 

chemotaxis; in particular, they may have direct or indirect growth stimulating effects on 

tumor cells. There is evidence that CXCL8 and CXCL1 are implicated as endogenous 

growth stimulating factors in melanoma as well as in tumors o f different 

histologies(187, 188). A promoting effect of CXCL 12 on tumor cell proliferation was 

reported also for ovarian carcinoma (295). Our group has extensively analyzed the 

expression and production of different chemokines in pancreatic cancer; some of the 

cell lines produce CCL2, CCL5 and CXCL8, with a heterogeneous pattern (25, 26). In 

this work, I found out that CXCL12 is produced only by Hs766T, the cell line 

expressing the highest levels of CXCR4. Interestingly, the CXCR4 antagonist 

AMD3100 inhibited proliferation in Hs766T, suggesting that the endogenous CXCL 12 

may function as an autocrine or paracrine factor. In vivo, CXCL 12 can be produced by 

several cell types, including stromal and endothelial cells (283); moreover, this 

chemokine is produced in lymph nodes, where secondary localization of tumors, 

including pancreatic carcinoma, occurs. In in vitro experiments, CXCL 12 enhanced the 

proliferation of the CXCR4-bearing cell lines, especially under sub optimal culture 

conditions. When the Hs766T cell line was cultured in serum-free medium, CXCL12 

release was dramatically reduced and exogenous CXCL 12 significantly stimulated cell 

growth, both in Hs766T and in A sPC l.

AMD3100 has been originally tested in HIV patients as CXCR4 is one o f the 

major receptor for the virus, and showed to have a good safety profile (296, 297); 

moreover, it has been considered as a therapeutic tool for other pathologies in which 

CXCR4 may play a role. For instance, it has been shown to mobilize CD34+ stem cells 

from the bone marrow into the bloodstream; indeed, AMD3100 is actively pursued as a 

stem cell mobilizer for transplantation in patients with multiple myeloma and non-
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Hodgkin’s lymphoma (297). Some recent data have provided the scientific rationale for 

the clinical evaluation of AMD3100 also in cancer. In cells from adult glioblastoma and 

pediatric medulloblastoma, CXCR4-CXCL12 signalling induced chemotaxis and 

enhanced proliferation and survival (298). When tested in vitro in cell cultures, the 

selective CXCR4 antagonist (AMD3100) was shown to reverse these effects. When 

AMD3100 was used to treat mice bearing intracranial glioblastoma or medulloblastoma, 

tumor burden was significantly smaller in AMD3100-treated animals (298, 299).

An essential feature of tumour cells is the ability to regulate their survival and to 

resist to apoptosis. The chemokine CXCL12 has been shown to be involved in 

promoting survival o f CD34+ hematopoietic progenitors and T lymphocytes (132, 300) 

and of several types of cancer, including glioma, melanoma, NSCLC, renal and thyroid 

(91,282,299).

In this study, CXCL 12 has been shown to protect CXCR4+ pancreatic tumor 

cells from serum starvation-induced death or IL-1-induced damage, by decreasing the 

rate of apoptosis.

Collectively, these results show that expression o f CXCR4 by pancreatic tumour 

cells mediates migration and invasion in the surrounding tissues and also promotes 

survival and proliferation of cancer cells.
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5.6 Summary of results in Chapter 5

The results presented here demonstrate that metastatic pancreatic carcinoma cells 

express CXCR4 and that autocrine or paracrine loops centered on this chemokine 

receptor promote tumor cell migration, matrix degradation and invasion, proliferation 

and survival.

Specifically, the following results have been presented:

- pancreatic cancer cell lines express CXCR4 mRNA; the expression is higher in cell 

lines derived form metastatic lesions compared with those derived from primary tumors;

- different inflammatory cytokines do not modify the expression, whereas IFNy down 

regulates and hypoxia up regulates CXCR4 transcripts;

- transcript expression is associated to surface expression in pancreatic carcinoma cell 

lines;

- CXCR4 is expressed also in pancreatic cancer cells from primary tumors; all surgical 

(N=7) carcinoma samples tested express higher levels o f CXCR4 than normal pancreatic 

duct cells

- CXCR4 on pancreatic cancer cells is functional and mediates their migration to 

CXCL 12; migration is selectively inhibited by anti-CXCR4 monoclonal antibody and by 

the antagonist AMD3100;

- CXCL 12 also mediates transendothelial migration, Matrigel invasion and activation of 

metalloproteases;

- in CXCR4-positive cell lines CXCL 12 stimulates cell proliferation and protects from 

apoptosis induced by serum starvation.
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Chapter 6

CX3CR1 and Pancreatic 
Adenocarcinoma
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6.1 Introduction and goal

This chapter will focus on the expression and function of the chemokine receptor 

CX3CR1 and its chemokine ligand CX3CL1/Fractalkine in human pancreatic 

adenocarcinoma. In the preliminary screening of chemokine receptors in pancreatic 

adenocarcinoma cell lines, I found that some cell lines express the receptor CX3CR1; 

its chemokine ligand, CX3CL1, also called Neurotactin, is found expressed in neurons 

and nerve fibers (301-304). Besides local and lymph node metastasis, hallmark of 

pancreatic cancer is a peculiar propensity to disseminate and grow along nerves. 

Therefore, the presence o f CX3CR1 can assume a particular relevance in the context of 

pancreatic cancer tropism for neural structures. Hence, I wanted to test the hypothesis 

that CX3CR1 and its ligand CX3CL 1/Neurotactin could have a role in pancreatic 

adenocarcinoma dissemination to nerves.

6.2 CX3CR1 mRNA analysis

CX3CR1 expression in pancreatic tumor cell lines

In a first series of experiments, I evaluated the expression of CX3CR1 in eleven 

pancreatic adenocarcinoma cell lines by semi quantitative Real Time PCR. The 

immortalized epithelial cell line (HPDE6) derived from normal human pancreatic ducts 

was used as a reference o f normal tissue. This analysis revealed that 6 pancreatic tumor 

cell lines express CX3CR1, with three cell lines (Capan-1, A8184, A sPCl) showing the 

highest expression (Fig. 6.1). Moreover, in each cell line, the expression o f CX3CRJ is 

higher than in the normal ductal epithelium, in which CX3CR1 expression is not 

detected.
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I reported in the previous chapter that human pancreatic tumor cells express 

functional CXCR4, it was of interest to verify whether CX3CR1 is co-expressed with 

CXGR4 on the same cell lines; two cell lines with the highest amount o f CX3CR1 

(Capan-1 and AsPCl) are also high CACR4-expressing, while A8184 expresses only 

CX3CR1 at high levels. I also confirm in this analysis what was observed for CXCR4, 

i.d. the cell lines expressing the chemokine receptors are more frequently derived from 

metastatic lesions or ascites, while the negative cell lines derive from a primary tumor. 

This evidence, although based on a low casistic, seems to confirm our hypothesis that 

an association exists between chemokine receptor expression and the malignant 

potential of tumor cells (Fig.6.1).

Origin Primary Tumors Ascites Metastasis

Fig 6.1 CX3CR1 in pancreatic cancer cell lines. Semiquantitative Real-Time PCR of 

pancreatic cancer cell lines. For each cell line, the amount of CX3CR1 mRNA, normalized to f3- 

actin, is expressed as relative to the cell line HPDE6. One representative analysis of two 

performed is reported.
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As no data are available in the literature regarding the expression of CX3CR1 by 

tumour cells, we asked whether the results described above were specific to pancreatic 

cancer. Therefore, I screened a panel of cell lines derived from other adenocarcinoma, 

including ovarian cancer cells, breast cancer and two colon carcinoma cell lines and 

found out that the expression is much lower compared to pancreatic cancer cells (Fig 

6.2).
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Fig 6.2 CX3CR1 in pancreatic and other tumour type derived cell linesc. Semiquantitative 

Real-Time PCR. For each cell line, the amount of CX3CR1 mRNA, normalized to fi-actin, is 

expressed as relative to the cell line HPDE6. One representative analysis of two performed is 

reported.

Expression of CX3CR1 in freshly isolated pancreatic tumor cells

I next examined tumor cells from surgical samples o f resected patients (see 

Table 3.1 for clinico-pathological features). Tumor cells isolated by density gradients 

from the stromal component and checked for purity by staining with cytokeratin-7 were 

analyzed. In 7 different tumor samples, the amount of CX3CR1 mRNA, normalized to
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/3-actin, was evaluated by Real Time PCR, and expressed as relative to the cell line 

HPDE6, used as reference, as for the above experiments. As shown in Fig.6.3, freshly 

isolated tumor cells showed much higher levels of CX3CR1 compared to HPDE6. In 

addition, a cell preparation o f freshly isolated pancreatic ducts was tested, in which 

CX3CR1 expression is much lower than in primary tumors, although higher than the 

HPDE6 cell line.
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Fig 6.3 CX3CR1 mRNA expression in tumor cells from surgical samples of resected 

pancreatic cancer patients. The amount of CX3CR1 mRNA, normalized to /3-actin, is 

expressed as relative to the cell line HPDE6 (white bar). Human epithelial pancreatic ducts were 

isolated from the pancreatic tissue of a multiorgan donor (grey bar). Shown is one representative 

analysis of two performed.

CX3CR1 surface expression

As for CXCR4, before starting to investigate the functional activity o f CX3CR1 

expressed by tumor cells, it was necessary to verify the expression o f the receptor on the
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surface of tumor cells. I evaluated CX3CR1 cell-surface expression by flow cytometry. 

Representative profiles of the cell lines A8184, AsPCI, Panel, found to express the 

CX3CR1 are presented in Fig. 6.4, showing that CX3CR1 is expressed on the 

membrane of pancreatic tumour cell lines.
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Fig 6.4 CX3CR1 is expressed at the surface of pancreatic cancer cell lines. Flow cytomety 

analysis of cell lines was performed with a PE-labeled anti-CX3CRl antibody (3 pg/ml, clone 

2A9-1). A PE-labeled mouse anti human isotype control (3 pg/ml) was used as control. 

Representative profiles are shown.

CX3CR1 in vivo expression

We also investigated, by immunohistochemistry, CX3CR1 protein expression in three 

surgical sections of pancreatic cancer patients (PK 93, PK96 and PK97, see Table 3.1 

for clinico-pathological features) and verified that CX3CR1 is expressed in vivo in 

pancreatic adenocarcinoma (Fig 6.5, Panel B-D). Most importantly, the expression of 

the receptor was detected in normal pancreatic ducts obtained from a multi-organ donor 

(Fig 6.5, Panel A).
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Fig 6.5 CX3CR1 expression by pancreatic cancer cells in vivo. Immunohistocheinical 

analysis of three surgical sections of human pancreatic adenocarcinoma (PK 93, PK96, PK97, 

Panel B-D) and of a section of normal pancreatic ducts (Panel A) with an anti-CX3CRl specific 

antibody.
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6.3 CX3CR2 functional activity

CX3CL1 stimulates pancreatic cancer cell chemotaxis

To confirm that CX3CR1 expressed in tumor cells is functional, I selected the 

cell lines with the highest receptor expression, A8184 and AsPC-1 (Capan 1, as said 

previously, was excluded for its characteristic to disaggregate in clusters) and tested in 

classical chemotaxis assays. Fig. 6.6 shows that CX3CL1 elicited migration of tumor 

cells in a dose-response manner in both cell lines.
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Fig 6.6 CX3CL1 stimulates pancreatic cancer cell chemotaxis. Selected CX3CR1-positive 

cell lines, A8184 and AsPCl migrated in classical chemotaxis assays to different concentrations 

of Fractalkine in a dose-response manner. 8 pm pore filters were used and time of migration 

was 8 hours. Shown are net numbers of migrated cells over basal migration (in the absence of 

chemokine). Basal migration was 15 cells/10 HPF for A8184 and 7 cells/10 HPF for AsPCl, 

(*p<0.02 versus control; **p<0.001 versus control, Student t Test). Values are the mean ±SE of 

eight replicates. One representative experiment of three performed is shown

Moreover, cell migration was drastically inhibited by a blocking anti-CX3CRl 

monoclonal antibody while was not affected by an irrelevant antibody (Fig.6.7).
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Fig. 6.7 CX3CL1 induced migration is mediated by CX3CR1. Pre-treatment of A8184 cells 

with a blocking anti-CX3CRl mAb (10 jig/ml) drastically reduced cell migration in response to 

300 ng/ml of CX3CL1 (**p<0.01 versus control; Student t Test); an irrelevant antibody did not 

block CX3 CL 1-induced migration.

CXC3CL1 stimulates pancreatic cancer cell adhesion to endothelial 
cells

CX3CL1 is an unusual chemokine which can also function as an adhesion 

molecule. It was first described as produced by endothelial cells upon stimulation with 

inflammatory cytokines, the most potent stimulus being the combination o f TN Fa and 

IFNy (266). CX3CL1 on endothelium mediates initial capture, firm adhesion and 

activation of circulating leukocytes. Therefore it was of interest to test a CX3CR1- 

expressing pancreatic cell line in adhesion assays to endothelial cell monolayers

Firstly, I verified by Northern Blot analysis that TNFa and IFNy treatment of 

HUVECs (Human Umbilical Endothelial Cells), isolated following well established 

methods set up in our laboratory, (262) induced Fractalkine expression, and this was the 

case (Fig. 6 .8).

145



CX3CL1 
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Fig. 6.8 TNFa/IFNy induce CX3CL1 expression in endothelial cells. HUVEC cells were 

stimulated with TNFa (10 ng/ml) and IFNy (1000 U/ml); RNA extracted after 24 hours was run 

in Northern Blot analysis. CX3CL 1 -specific mRNA was detected with cDNA 32P-labeled probe.

Pancreatic tumor cell adhesion to the endothelial cell monolayer was enhanced 

upon stimulation of HUVECs with a combination of TNFa and IFNy; this increase 

(nearly 70%) was partially reverted by pre-treatment of pancreatic cells with a CX3CR1 

blocking antibody, thus demonstrating a specific role for CX3CL1 in adhesion to 

endothelial cells (Fig 6.9). In the same assay, adhesion of the cell line PaCa44, not 

expressing CX3CR1, to TNFa and IFNy stimulated endothelial cells was not enhanced, 

thus supporting that the CX3CR1/CX3CL1 pair mediates pancreatic cancer cell 

adhesion to endothelial cells.
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i IFNy,

Endothelial cells
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Fig 6.9 CX3CL1 mediates pancreatic cancer cell line adhesion to endothelium. Monolayers 

of HUVEC cells were stimulated with TNFa (10 ng/ml) and IFNy (1000 U/ml) overnight and 

pancreatic cancer cell adhesion to the endothelial cell monolayer was assessed, at 37°C, for 1 

hour. A8184 adhesion to the endothelial cell monolayer was enhanced upon stimulation of 

HUVECs with TNFa/IFNy and this increase (nearly 70%) was partially reverted by pre­

treatment of pancreatic cells with a CX3CR1 blocking antibody. Adhesion o f the cell line 

PaCa44, not expressing CX3CR1, to TNFa and IFNy stimulated endothelial cells was not 

enhanced. (*p<0.02 versus control **p<0.001 versus control, Student t Test). Mean values of 

two different experiments are reported.

6.4 in vitro pancreatic cancer cell nerve tropism

Human neuronal cells express and release CX3CL1

Our hypothesis of an involvement of CX3 CL 1 /Neurotactin and its receptor in 

pancreatic cancer tropism for neuronal tissues arises from the observation that CX3CL1 

is expressed in neurons (301-304). To better characterize the molecular mechanisms 

responsible for affinity of pancreatic tumor cells for neural structures, we tried to
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generate an in vitro a model of nerve tropism. To do this, I screened a panel of 4 

different cell lines of neuronal origin for the production of CX3CL 1/Neurotactin, two 

neuroblastoma (SKN-BE, SY5Y), one glioma (H4) and one astrocytoma (TGSG). I 

measured CX3CL1 production both in basal conditions and after stimulation with 

inflammatory cytokines like TNFa, IFNy, IL-ip.

A first Northern Blot analysis evidenced a neuroblastoma cell line (SKN-BE) 

producing CX3CL1 upon stimulation with TNFa/IFNy (Fig. 6.10), while IL -ip  did not 

exert this effect. Microglia is known not to produce CX3CL1, so it was not expected in 

the cell line H4.
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Fig. 6.10 TNFa/IFNy induce CX3CL1 expression in SKN-BE cell line. Different neuron- 

derived cell lines were stimulated with TNFa (10 ng/ml) and IFNy (1000 U/ml); RNA extracted 

after 24 hours was run in Northern Blot analysis. CX3CL1-specific mRNA was detected with 

cDNA 32P-labeled probe.

The results were confirmed at the protein level, by analyzing chemokine 

production both in its membrane-bound and soluble form. CX3CL1 surface expression 

was upregulated by the concomitant treatment with TNFa and IFNy in the 

neuroblastoma cell line SKN-BE (Fig. 6.11).
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Fig 6.11 TNFa/IFNy upregulate the surface expression of Fractalkine/Neurotactin in 

neuroblastoma cells. SKN-BE cells were stimulated for 24 hours and phenotype analysis 

performed with a CX3CL1 specific antibody, by FACS analysis. Percentage of positive cells 

(%age gated cells) and mean fluorescence intensity (MFI) are reported. One representative of 

three experiments is shown.

Moreover, CX3CL1 measurement in conditioned media of stimulated SKN-BE 

cells revealed that these cells are also able to release the chemokine in its soluble form. 

In line with the result obtained with Northern analysis, other neuronal cell lines did not 

produce the chemokine (Fig.6.12).
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Fig 6.12 Fractalkine is released in the supernatant of neuroblastoma cells after 

TNFa/IFNy stimulation. Only the cell line SKN-BE secreted CX3CLl/Neurotactin in the 

supernatant. The chemokine amount was measured by ELISA. Bars represent mean numbers of 

three different experiments.

CX3CL1 expression in human nerves and nerve metastasis

After I had verified in vitro that human neural cells express the chemokine 

Fractalkine, we thought it could be important to examine the expression o f CX3CL1 in 

vivo. In particular, we focused our attention on surgical sections o f pancreatic 

adenocarcinoma nerve metastasis and examined CX3CL1 protein expression by 

immunohistochemistry. Figure 6.13 depicts CX3CL1 staining o f sections 

corresponding to pancreatic cancer cells infiltrating nerve fibers.
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Fig 6.13. CX3CL1 is localized in vivo in pancreatic cancer nerve metastasis.

Himmunoistochemical staining with a CX3CL1 specific antibody of a surgical section (PK93, 

see Table.3.1 for clinico-pathological features) of pancreatic cancer tumour cells infiltrating 

nerve fibers. Picture on the right is the negative control (without primary antibody).

More specifically, Schwann cells inside the nerve are negative, while the staining is 

localized in intra axonal vesicles (Fig 6.13, close-up). Surprisingly, CX3CL1 seemed

Fig 6.13, close-up.

CX3CL1 staining is 

localized in intra axonal 

vesicles (black arrow); 

Schwann cells inside the 

nerve (red arrow) are 

negative, while staining 

is localized also in 

carcinoma cells (green 

arrow).

localized also in carcinoma cells (green arrow).
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In the same analysis, we stained sections for the marker of proliferation Ki67; notably, 

cancer cells closed to nerves were highly stained, differently from other cells (Fig. 

6.14).

Fig 6.14 Ki67 staining on a surgical 

section of pancreatic cancer cells 

infiltrating nerves. Cancer cells close to 

nerves were highly stained, differently 

from other cells, indicating a higher 

proliferation rate.

This result suggests that the interaction between cancer cells and neural structures may 

positively affect pancreatic cancer cell proliferation.

M igration of Human Pancreatic tum or Cells to Neuronal Cell 
conditioned medium

As I had assessed that CX3CRI positive pancreatic tumor cell lines migrate to 

recombinant CX3CL1, and that neuroblastoma cells are able to secrete 

CX3CLl/Neurotactin in vitro, it was of interest to verify if the natural, neuron-derived 

chemokine was functionally active and able to exert pancreatic cancer cell migration. 

Fractalkine concentration was measured in SKN-BE cell line supernatant, both in basal 

condition and after stimulation with TNFa/IFNy (Fig 6.12); appropriately diluted (1:5) 

supernatants were tested as chemoattractants for A8184 cell line.

Nerve
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Fig 6.16 Neuroblastoma-derived supernatant containing CX3CLl/Neurotactin stimulates 

pancreatic cancer cell chemotaxis. A8184 cells migrated in classical chemotaxis assays to 

SKN-BE conditioned supernatant, diluted 1:5; migration was higher in the presence of 

TNFa/IFNy stimulated supernatants. A8184 cell incubation with an anti CX3CR1-antibody 

partially blocked migration. Shown are net numbers of migrated cells over basal migration (in 

the absence of supernatant). Basal migration was 15 cells/10 HPF (*p<0.02 versus control, 

Student t Test). Values are the mean ±SE of eight replicates. One representative experiment of 

three performed is shown

TNFa/IFNy stimulated SKN-BE conditioned supernatant elicited a chemotactic 

response in A8184 cells; migration was higher than the one observed in response to 

basal supernatant. Moreover, in the presence of a monoclonal anti CX3CL1 antibody 

migration in response to TNFa/IFNy stimulated supernatant was decreased, 

demonstrating that A8184 migration was mostly Fractalkine mediated (Fig.6.16).

Human Pancreatic Tumor Cells adhere to Neuronal Cells expressing

One peculiarity often clinically observed in pancreatic adenocarcinoma is their 

perineural invasion. Strikingly, cancer cells appear confined within the nerves, all along 

their route, even following their branching and without invading the surrounding tissue.

CX3CL1
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To investigate whether this interaction with nerves was CX3CL1, dependent I tested 

A8184 adhesion to neuroblastoma conditioned supernatant.

Pancreatic tumor cell adhesion to the neuroblastoma monolayer was enhanced 

upon stimulation of neuroblatoma with a combination of TNFa and IFNy; this increase 

(nearly 100%) was partially reverted by pre-treatment of pancreatic cells with a 

CX3CR1 blocking antibody, thus demonstrating a specific role for 

CX3CLl/Neurotactin in the adhesion to neuroblastoma cells (Fig.6.17). In the same 

assay, SY5Y cells, the neuronal cell line not expressing the chemokine was tested and 

did not elicit pancreatic cancer adhesion after TNFa and IFNy stimulation.
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Fig 6.17 CX3CLl/Neurotactin mediates pancreatic cancer cell line adhesion to 

neuroblastoma cells. Pancreatic tumor cell line A8184 adhesion to a monolayer of the CX3CL1 

producing cell line SKN-BE was enhanced upon stimulation of SKN-BE with a combination of 

TNFa and IFNy, known to upregulate its CX3CL1 expression (see Fig 6.11); this increase 

(nearly 100%) was partially reverted by pre-treatment of pancreatic cells with a CX3CRI 

blocking antibody. Adhesion was assessed after 1 hour of coincubation at 37°C. Adhesion of 

A8184 to the cell line SY5Y, not producing CX3CL1, was not enhanced by TNFa/IFNy
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stimulus. Values are the mean ± SE of two different experiments (*p<0.02 versus control 

**p<0.001 versus control, Student t Test).

6.5 Generation of a pancreatic cancer cell line 
stably expressing CX3CR1

To study the in vivo role of CX3CR1 in pancreatic tumor cells, we decided to 

generate a pancreatic cell line expressing exogenously the receptor CX3CR1.1 prepared 

a viral construct carrying the sequence coding for human CX3CR1 fused to the 

sequence for the reporter gene GFP. This device would facilitate the recognition of 

tumor cells during the experiments, thanks to the fluorescence emitted by the green 

fluorescence protein. A similar GFP vector, lacking the CX3CR1 gene, was used as 

control (mock); the resulting parental MiaPaCa2 mock-infected cell line will be used in 

functional assays as control population.

For this experiment, I selected a receptor-negative pancreatic tumor cell line, 

MiaPaCa2, known to grow in nude mice and screened for the absence o f chemokine 

receptors (e.g. CX3CR1, CXCR4, CCR2, CCR6) and stably infected it with the 

construct. After infection, cells were collected, expanded and tested for transgene 

expression.

To our purposes, the Fractalkine receptor should be expressed on the cell 

membrane, thus I selected FACS analysis to test the result of MiaPaCa2 infection; both 

GFP fluorescence and CX3CR1 presence on the surface membrane were checked 

(CX3CR1 by PE-conjugated anti-CX3CRl antibody).

Figure 6.18 reports profiles of MiaPaCa2 not infected (left), infected with GFP 

(middle) and CX3CR1-GFP (right) vector respectively. Both the latter cell populations 

were 99% positive for the transgene.
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Fig 6.18 Transgene expression analysis of MiaPaCa2 stably infected. FACS profiles of 

MiaPaCa2 not infected (left), infected with GFP (middle) and CX3CR1-GFP (right) vector 

respectively. Both the latter cell populations were 99% positive for the transgene

MiaPaCa2 CX3CR1-GFP migration to CX3CL1

CX3CR1-GFP Miapaca2 and GFP-MiapPaCa2 were tested in vitro in chemotaxis 

assays for their capability to migrate to CX3CL1 gradients. CX3CL1 elicited migration 

only in the CX3CR1 positive cell line; notably, CX3CL1 was active at much lower 

doses (30 ng/ml and 100 ng/ml) than on A8184 and A sPCl, naturally expressing 

CX3CR1 (Fig. 6.19).
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Fig 6.19 CX3CL1 elicits dose-response migration of MiaPaCa2 stably expressing 

CX3CR1. Shown are net numbers of migrated cells over basal migration (in the absence of 

chemokine). Basal migration was 27 cells/10 HPF for MiaPaCa2-CX3CRl-GFP and 40 cells/10 

HPF for MiaPaCa2-GFP, Values are the mean ±SE of eight replicates (**p<0.001 versus 

control, Student t Test). One representative experiment of two performed is shown.

MiaPaCa2 CX3CR1-GFP sub-lines selection

We decided to select CX3CR1-GFP MiaPaCa2 growing sub-lines on the basis of 

surface expression of CX3CR1; this tool will help us in future experiments to better 

understand the relative importance o f CX3CR1 expression in pancreatic cancer cells 

and the role in nerve tropism; in fact, at least two CX3CR1-transfected sub-lines and the 

parental cell line will be characterized both in vitro and in in vivo models of pancreatic 

cancer.

Instead o f cloning the whole cell population to select sub-lines, we started from 

the subpopulation migrated to a CX3CL1 gradient in a Transwell migration assay. This 

strategy represents a cloning on functional basis. Cells passed through the filter during 

migration assay were collected and cloned to limiting dilution. Fig. 6.20 reports FACS
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profiles of two clones with similar in vitro growth kinetics (data not shown) and 

different levels of transgene expression.
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Fig. 6.20 Different CX3CR1 surface expression of two MiaPaCa2 CX3CR1-GFP clones.

MiaPaCa2 CX3CR1-GFP cloned by limiting dilution and two sub-clones selected for having 

different surface expression of the receptor. Mean fluorescence intensity was 10 x 103 for Clone 

D6 and 25 x 103 for Clone A7.
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6.6 Discussion

In this Chapter I presented data on the expression and functional role o f the 

chemokine receptor CX3CR1 in pancreatic adenocarcinoma and its possible 

involvement in the tropism of this cancer type for neuronal tissues.

The screening of pancreatic cell lines revealed that 6 o f 11 cell lines tested 

express heterogeneous levels of CX3CR1, with three cell lines (Capan-1, A8184, 

AsPCl) showing the highest expression transcripts, that was confirmed at the protein 

level in selected cell lines. The expression of this particular receptor in pancreatic 

cancer had never been reported up to now; recently, CX3CR1 expression in prostate 

cancer has been documented and associated to prostate metastasis to bone marrow 

(305).

As observed for CXCR4, also CX3CR1 seemed most frequently expressed in 

those pancreatic cancer cell lines derived either from ascites or metastasis, supporting 

the hypothesis that CX3CR1 may be involved in tumour dissemination.

Also surgical specimens from pancreatic adenocarcinoma express CX3CR1 in 

higher amounts compared with the immortalized cell line derived from human 

pancreatic ducts (HPDE6) as well as compared to freshly isolated normal pancreatic 

ducts.

In the world of chemokines, C and CX3C chemokines have been long regarded 

as two minor components, but the interest in these two classes has recently gained a 

new impetus, resulting from the identification o f their receptors and the accumulation o f 

data about their expression in several human diseases. Differently from the other
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chemokines, XC and CX3C chemokines show less redundancy (303); 

CX3CLl/Fractalkine/Neurotactin binds only the receptor CX3CR1.

CX3CL1 is encoded as a transmembrane molecule, consisting o f a chemokine 

domain linked to a mucin-rich stalk domain (299, 304); the cleavage of the full-length 

molecule results in the soluble form. As expected, the two different forms correspond 

two distinct biological functions: soluble CX3CLlacts as a chemoattractant, while the 

membrane-bound molecule, found expressed predominantly by epithelial cells (306), 

mediates adhesion of CX3CR1-bearing cells to cells expressing the ligand (304, 307, 

308). We wanted to confirm that CX3CR1 expressed in tumor cells is functional, by 

testing both the biological activities mediated by the chemokine. Thus, we firstly 

verified that CX3CL1 elicits migration of pancreatic tumor cell lines in a dose-response 

manner (Fig 6 .6 ) and this response was prevented by a CX3CR1 antibody (Fig 6.7).

Fractalkine was first described on endothelial cells upon stimulation with 

inflammatory cytokines (304, 309), the most potent stimulus being the combination of 

TNFa/IFNy (266). CX3CL1 on endothelium mediates initial capture, firm adhesion and 

activation of circulating leukocytes. In our studies, CX3CL1 expressed on endothelial 

cells promoted CX3CR1 positive pancreatic tumor cell adhesion; the effect was 

CX3CL 1 -dependent, as blocked by a specific antibody and not observed in a CX3CR1- 

negative cell line (Fig 6.9). This result is particularly important as tumor cell adhesion 

to endothelium is a key event in the process of tumor invasion and metastasis; 

moreover, and most important, pancreatic cancer is particularly invasive through the 

hematogenous route, often giving metastasis to large vessels (72) and the involvement 

of CX3CL1 in tumor cell adhesion to endothelial cells might represent a possible 

mechanism o f venous invasion.
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Other cell types have been reported to produce the chemokine CX3CL1. In 

particular, the relatively high levels of Fractalkine in the brain and nerve terminations 

(310) has raised questions related to the function o f this chemokine in the central nervous 

system; it has been proposed that CX3CL1 regulates cellular communication between 

neurons, producing the ligand and microglia, expressing the receptor (302, 311).

The expression of CX3CLl/Neurotactin in cells of the nervous system triggered 

our interest in the perspective of pancreatic cancer nerve tropism. Indeed, detailed 

pathohistologic studies of large series of resected pancreatic ductal adenocarcinoma 

have shown that one o f the most persistent characteristics is perineural invasion (72). In 

studies conducted in a large series of patients with pancreatic cancer, the incidence of 

perineural invasion resulted to be 100%, most o f which extended also to extrapancreatic 

nerves. Some other studies indicate that all pancreatic cancers show perineural invasion 

if  several sections are histologically considered (74, 79), and this pattern o f tumor 

spreading seems to be an early event, occurring in 75% of cases of stage I disease (77, 

78). Collectively, many different observations support the idea that a tropism of 

pancreatic cancer cells to neural tissues really exists, observation confirmed also in a 

hamster model (74). The aggressive and unchecked spread through haematogenous and 

perineural routes accounts for the rapid and fatal progression o f the disease; invasion of 

vessels and nerves is associated with poor prognosis in this disease and tumor growth 

along nerve fibers is the cause of severe pain in tumor patients. Moreover, growth of 

tumor foci around root ganglia in the spinal cord, is the first cause of tumor recurrence 

after surgery.
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The peculiar tropism of pancreatic tumors for vessels and nerves prompted us to 

investigate whether Fractalkine and its receptor on tumor cells confer the ability to 

invade and disseminate along nerve fibers expressing the ligand CX3CL1.

To better characterize the molecular mechanisms responsible for affinity of 

pancreatic tumor cells for neural structures, we tried to reproduce in vitro a model of 

nerve tropism. We analyzed the biological interaction between a neuronal cell line 

expressing the chemokine and CX3CR1-positive pancreatic cancer cells and found out 

that neuronal-derived CX3CL1 is chemotactic for pancreatic cancer cells (Fig 6.16) and 

mediates their adhesion to neurons (Fig 6.17). Moreover, by immunohistochemistry we 

had evidence of the in vivo role of CX3CL1 in pancreatic cancer cell crosstalk with 

nerves; in surgical sections of intrapancreatic nerves infiltrated by pancreatic cancer 

metastasis, neural cells contain CX3CL1. Up to now, the chemokine has been reported 

in central neurons as well as in peripheral nerves (302, 310), but has never been 

analyzed in intra-pancreatic nerves.

Other molecules have been involved in the neural tropism of pancreatic cancer 

cells. In particular, the neurotrophin family of growth factors and their receptors, which 

have been found to be implicated in the paracrine growth and regulation of a number of 

neuronal as well as non-neuronal tumor types, including pancreatic adenocarcinoma. 

The expression of various neurotrophins (BDNF (brain-derived nerve growth factor), 

NT-3, NT-4, NT-5) and their receptors (Trk A, B, C) in pancreatic cancer cells have 

been demonstrated to play a role in their invasiveness (312). By the same way, Zhu and 

coll. have found that the expression of nerve growth factor and its receptor TrkA 

correlates with perineural invasion and pain in pancreatic cancer (313).
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Part of the results in this Chapter is focused on the generation of a pancreatic 

tumour cell line stably expressing exogenous CX3CR1. This tool would be 

indispensable to define the involvement of the chemokine receptor CX3CR1 in the 

pattern of migration, adhesion and growth of tumor cells. The preliminary in vitro 

characterization of the CX3CR1 expressing cell line has confirmed what previously 

observed that CX3CR1 mediates pancreatic cancer cell chemotaxis to CX3CL1 

gradient, as well as the parental mock cell line did not migrate to the chemokine (Fig 

6.19). This cell line will be used in future in vivo models of nerve tropism.

To investigate whether receptor expression confers tumor cells with enhanced ability to 

spread and grow along nerve structures in vivo, we are planning to set up a model of 

nerve injury. Right sciatic nerves of immunodeficient mice will be crushed at the mid 

height and after 24 hours tumor cells (CX3CRI-GFP MiaPaCa2 and mock GFP 

MiaPaCa2 tumor cells) will be injected in the tail vein. After 24-48 hours, sections of 

the injured (and control-lateral) nerves closed to the crush site will be taken and 

analyzed for the presence of GFP transgene by Real-Time PCR.

The crush model should maximize the expression of the chemokine ligand by 

nerves; as reported in the literature (310, 311, 314), in fact, a transient crush o f sciatic 

nerve induces CX3CL1 expression. If the axis Neurotactin/CX3CRl is indeed involved 

in the adhesion and dissemination o f pancreatic tumor cells along nerve fibers, 

CX3CR1-transfected cells should localize preferentially to the site o f nerve injury, 

where Neurotactin is upregulated.

We are also planning other in vivo experiments, in which CX3CR1-GFP MiaPaCa2 sub­

clones expressing the surface receptor in different amounts will be transplanted
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orthotopically in nude mice and the growth characteristics, pattern o f tumor 

metastatization and overall survival will be evaluated.

The observation that perineural invasion occurs earlier than lymph node has recently 

lead to the suggestion that considering neural invasion as an independent factor would 

better correlate with survival (74). Targeting nerve invasion would therefore represent a 

valuable therapeutical tool; indeed, given the lack o f success of conventional surgical 

intervention, less aggressive procedures targeting the tumor cells within the nerve could 

be a valid alternative strategy. Our results pointing out a role of CX3CR1 and its ligand 

CX3CL1 in pancreatic cancer nerve invasion suggest that this chemokine/ receptor pair 

could be considered as good candidates.
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6.7 Summary of results in Chapter 6

In this Chapter, I have presented data suggesting a role of CX3CR1/ CX3CL1 

axis in human pancreatic cancer neural tropism.

Specifically, the following results have been presented:

- pancreatic cancer cell lines express CX3CR1 mRNA; the expression is higher in lines 

derived form metastatic lesions compared with those derived from primary tumors;

- transcript expression is associated to surface expression in pancreatic carcinoma cell 

lines;

- CX3CR1 is expressed also in pancreatic cancer cells from primary tumors; all surgical 

carcinoma samples tested express higher levels o f CX3CR1 than normal pancreatic duct 

cells; moreover, CX3CR1 is expressed in vivo in pancreatic cancer cells, as assessed by 

immunohistochemical analysis;

- CX3CR1 on pancreatic cancer cells is functional and mediates their migration to 

CX3CL 1/Fractalkine; migration is selectively inhibited by anti-CX3CRl monoclonal 

antibody

- CX3CR1-positive tumor cells adhere to endothelial cells stimulated with TNFa/IFNy, 

stimuli known to induce CX3CL1 expression; adhesion was prevented by pre incubation 

with an anti-CX3CRl specific antibody

- in an in vitro model o f nerve tropism, neuronal derived Fractalkine elicits CX3CR1- 

positive pancreatic tumor cell adhesion and migration

- in surgical sections of pancreatic metastasis to nerves, CX3CL1 is found localized in 

neuronal cells, suggesting a role in tumour cell and nerve crosstalk.
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Chapter 7 

Conclusions and future directions
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7.1 Summary and overall conclusions

In the last decade, the role o f chemokines in tumor biology has dramatically 

developed and has expanded from the regulation o f leukocyte attraction within the 

tumor mass to the promotion of tumor cell survival, proliferation and dissemination (82, 

83, 181). Experimental evidence have supported the concept that chemokines could 

direct tumor cell migration in vivo: malignant cells bearing chemokine receptors on the 

cell surface would be endowed with the capability to respond to chemokine gradient and 

selectively migrate to specific organs where the chemokine is present.

The data presented here demonstrate that a selected set of chemokine receptors 

are expressed in carcinoma of the pancreas and are involved in tumour cell migration 

and invasion. We found that the chemokine receptors CXCR4 and CX3CRI are 

functional in pancreatic adenocarcinoma. In particular, the CXCR4/CXCL12 axis 

promotes pancreatic tumor cell migration, matrix degradation and invasion, 

proliferation and survival. For CX3CR1, a role in perineural tropism is suggested as 

CX3CR1/Fractalkine axis seems to be involved in the dissemination o f pancreatic 

tumour cells via nerve structures.

An increased understanding of the mode of action of chemokines on tumor cells 

and their microenvironment would be important to achieve significant therapeutic 

results in the management of cancer patients. If chemokine and receptor expression is an 

advantage for tumor cells, it is possible that these molecules will become target o f 

therapeutic interventions. Indeed, chemokine and receptor antagonists are being 

developed and actively investigated. In the case of pancreatic adenocarcinoma, if  

CX3CR1 and CXCR4 receptors are really involved in invasion and metastasis, their
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inhibition could potentially result in a controlling the metastatic behaviour of this 

aggressive cancer.

7.2 Targeting the chemokine system

Beside the results presented in this thesis, concerning the role of chemokine 

receptors in human pancreatic adenocarcinoma, an increasing number of studies have 

clearly shown that several types of cancers express various chemokine receptors, and 

that these receptors may be implicated in the process of distant metastasis and even 

organ specific metastasis. In addition, chemokines have been demonstrated to deliver 

growth signals to tumor cells and therefore may be directly involved in their survival 

and progression. As a consequence, chemokines and their receptors are now regarded a 

valuable molecular target for the treatment of malignant tumors. Indeed, disrupting the 

interaction between the receptor and its ligand chemokine may prove to be a useful 

approach for treating cancers.

Several drugs targeting the chemokine system are being developed and actively 

investigated in inflammatory and autoimmune diseases and could be useful to treat 

cancer patients. In several pre-clinical studies, these molecules have shown activity both 

as inhibitors of leukocyte recruitment, as well as inhibitors o f metastatic spreading. 

These studies provide a scientific rationale for the use of anti-chemokine or anti­

receptor agents in human cancer (81, 83, 91, 315, 316).

Some of these drugs are chemokine antagonists and prevent the binding and/or 

the signalling of the right ligand through its specific receptor. Recent pre-clinical studies 

have reported anti-cancer activity of chemokine receptor specific antibodies, in several 

murine cancer models. For instance, an anti-CXCR4 monoclonal antibody significantly
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inhibits the metastasis of human breast carcinoma cells to the lymph node of SCID mice 

(81). Pretreatment of non-Hodgkin lymphoma cells with anti-CXCR4 antibody also 

inhibits subsequent growth of the cells in immunodeficient mice (317). In a model of 

non-small-cell lung cancer, immunodeficient mice inoculated with CXCR4-positive 

human NSCLC had lower organ metastasis if  mice were injected with antibodies to 

CXCL12 (318). However, whether the inhibitory effects observed with these antibodies 

are caused only by the inhibition o f chemotaxis remains unclear, because antibody- 

bound tumor cells are likely to be subject to Fc-mediated trapping by the liver and/or 

lung and to Fc-mediated killing by macrophages.

Other studies have focused on selective inhibitors, including the CXCR4 

antagonist AMD3100, originally tested in HIV patients and shown to have a good safety 

profile (296, 297); these studies have provided the scientific rationale for the clinical 

evaluation of AMD3100 in malignant brain tumors (298, 299). We interestingly found 

that AMD3100 inhibits the CXCL12-stimulated proliferation o f CXCR4-positive 

pancreatic tumour cell lines. Consistently with our results, recently, Saur et al found out 

that AMD3100 effectively blocks in vivo the enhanced metastatic potential o f CXCR4- 

expressing pancreatic cancer cells (319). Another CXCR4 inhibitor, the synthetic 

polypeptide TN I4003, was recently demonstrated to block breast cancer metastasis in 

an animal model (320),- as well as the CXCR4 inhibitor TCI 14012 strongly 

counteracted lymphoma development in SCID mice with lymphomas (321, 322).

Murine breast cancer cells express also the chemokine CCL5 and the leukocyte 

infiltrate bears the corresponding receptors CCR1 and CCR5 (212). In a recent work, 

treatment of mice with Met-CCL5, a CCR1/CCR5 receptor antagonist, significantly 

reduced the volume and weight of tumors. Furthermore, this treatment strongly
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decreased the total number of tumor-infiltrating macrophages, supporting the hypothesis 

that macrophages contribute to tumor development (2 1 2 ).

An original strategy to inhibit chemokine and receptor binding is to prevent their 

cell surface expression. Cells transfected with a modified CXCL12 bearing an 

endoplasmic reticulum (ER) sequence (KDEL), retained both ligand and receptor 

(CXCR4) in the ER, thus preventing CXCR4 from reaching the cell surface (323). 

When a T cell hybridoma was transfected, the CXCR4-negative cells failed to 

disseminate to multiple organs upon intravenous injection, indicating a decisive role for 

CXCR4 in the dissemination of haematopoietic malignancies (323). Another example 

comes from colon carcinoma cells transfected with the ER-retention sequence. As a 

matter of fact, CXCR4-deficient cells did colonize the lungs to the same extent as 

control cells, however, they proliferated significantly less and did not expand (324). 

Once more, these results underline the important role o f CXCL12 in the survival and 

proliferation of cancer cells in vivo.

Recently, RNA interference technology has also been used to prevent 

tumorigenesis in different mouse models. In mice injected with breast cancer cells 

expressing CXCR4, a reduction in lung metastases was observed, by silencing CXCR4, 

either by transfecting breast cancer cells with interfering RNA molecules or weekly 

injecting them in the animals (325). In other works, RNAi reduced expression of 

CXCR4 in a murine highly metastatic mammary cancer cell line, thus limiting the 

growth of orthotopically transplanted breast cancer cells (326) and in nasopharyngeal 

human carcinoma cell lines injected in mice, limiting metastasis to the lungs (327).

Finally, viral proteins could represent promising molecules for the chemokine
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system targeting. Such proteins, used as immune escape mechanism by the virus, in 

some instances can bind and inhibit chemokine activity. Among others, the protein M3 

has been described to bind several human and murine CC chemokines (including CCL2, 

CCL13, CCL5, and CCL21), some CXC chemokines, such as CXCL1 and CXCL10 

and also Fractalkine. Binding of chemokines is associated with inhibition of their 

activity (328-330) Finally, more recently, the vaccinia virus soluble protein 35K, which 

binds to and inactivates a broad spectrum of CC-chemokines, has been shown to inhibit 

macrophage recruitment and atherosclerosis in ApoE-/- mice (161, 162).

These and other strategies based on emerging mechanistic data represent some 

o f the promising new directions in the therapy of metastatic disease. However, some 

problems need to be faced: although CXCR4 has been found to be the most expressed 

chemokine receptor in cancer cells from different histological types, tumors display 

heterogeneity in respect to chemokine receptor expression and selective inhibitors might 

be required to treat different cancers. In this perspective, gene-array analyses are 

revealing important tools in defining tumour subsets based on specific marker 

heterogeneity (331).

Another important consequence of the use o f chemokine inhibitors to treat 

cancer arises from the complexity of the chemokine system and their role in normal 

physiology; disrupting this system could bear important clinical side effects. However, a 

peculiarity of the complex system of chemokines and their receptors is their 

redundancy, which guarantees the chemokine system performance, even if  alterations 

affecting individual components occur.

It is more probable that chemokine-receptor-based agents could contribute 

significantly to the control of tumor cell invasion and metastasis, making cancer 

clinically manageable, when used in conjunction with other therapeutic regimens. In
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fact, in many tumor types, including pancreatic cancer, classical surgical intervention is 

often impossible or not successful, due to the persistence of micrometastatic lesions and 

chemokines, used as adjuvant therapy, might be useful to limit tumor dissemination.

This could be even more important in the case of pancreatic adenocarcinoma 

nerve invasion, which is a source of severe pain in tumour patients; indeed, if  the 

CX3CR1 receptor is involved, as supported here, blocking it could represent an 

alternative, less aggressive procedure, targeting the interaction of tumour cells with 

nerves.
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7.3 Future plans

A number of questions arose from this thesis and we are now planning further 

experiments necessary to investigate in detail the role of chemokine and receptors in 

human pancreatic adenocarcinoma.

Specifically, some tasks we would like to achieve in the future:

- localisation of CXCR4 in vivo, by immunohistochemistry on surgical sections. It 

would be interesting to analyze different pancreatic cancer stages and investigating if  a 

correlation exists between the progression of the disease and CXCR4 tumor expression 

This would give us a confirmation o f the role of CXCR4 in human pancreatic 

adenocarcinoma dissemination in vivo.

- assess the therapeutic benefits o f CXCR4 antagonists; we have already used 

AMD3100 in vitro and to assess its effect in in vivo models could be an interesting task. 

We have several pancreatic adenocarcinoma cell lines that will grow as a xenograft in 

nude mice. The effect of AMD3100 or other CXCR4 antagonists on tumour growth 

could be assessed.

- functional in vitro characterization of CX3CR1-GFP MiaPaCa2, to verify if  the 

CX3CR1 receptor confers pancreatic tumor cells with an enhanced capability to spread 

to nerves. To this aim, adhesion assays and other functional activities will be tested.

- investigate if proliferation and survival of CX3CR1 positive pancreatic cancer cell 

lines are affected by the receptor expression. To this aim, the proliferation rate o f the 

infected cell line, upon stimulation with the ligand CX3CL1, compared to the 

uninfected cell line will be assessed, to test whether a possible autocrine loop exists.

- optimize the model of sciatic nerve crush and perform in vivo experiments with the 

CX3CR1-GFP MiaPACa2 cell line
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- perform other in vivo experiments; CX3CR1-transfected tumor cells will be inoculated 

orthotopically in nude mice and their growth and metastatic potential will be 

characterized and compared to parental cells.

- assess the therapeutic benefits of CX3CR1 antagonists. As up to now there are no 

selective CX3CR1 inhibitors; we could plan to silence the receptor with the available 

tool o f RNA interference.
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List of Abbreviations

(m)Ab (monoclonal) antibody

bp base pair

BSA bovine serum albumin

CAM cell-cell adhesion molecules

CCL, CXCL, XCL, CX3CL ligands

CCR, CXCR, XCR, CX3CR receptors

DNA deoxyribonucleic acid

cDNA complementary DNA

CK7 cytokeratin 7 .

DC dendritic cell

ECM extracellular matrix

EDTA ethylenediaminetetraacetic acid

EG F epidermal growth factor

ELISA enzyme-linked immunosorbent assay

ELR tripeptide motif glutamic acid-leucine-arginine

FACS fluorescence activated cell sorter

FBS foetal bovine serum

FGF fibroblast growth factor

HGF hepatocyte growth factor

HHV8 human herpes virus 8

H IF hypoxia inducible factor

HPC haematopoietic progenitor cell

HPF high power field

HUVEC human umbilical vascular endothelial cells

ICAM intercellular adhesion molecule

IG F insulin-like growth factor

IFN interferon

Ig immunoglobulin

IL interleukin

Kb kilobase

kDa kilodalton

LPS lipopolysaccharide
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M APK mitogen activated protein kinase

M FI mean fluorescence intensity

M HC major histocompatibility complex

M M P matrix metalloproteinase

M M PI matrix metalloproteinase inhibitor

MS multiple sclerosis

NF-kB nuclear factor kappa B

NK natural killer

NSCLC non small cell lung cancer

PanIN  pancreatic intraepithelial neoplasia

PBMC peripheral blood mononuclear cells

PBS phosphate buffered saline

PDCL pancreatic ductal carcinoma cell lines

PKB/C protein kinase B/C

PLC phospholypase C

PM A phorbol myristyl acetate

RNA ribonucleic acid

mRNA messenger RNA

RT-PCR reverse transcription polymerase chain reaction

SE standard error

SSC sodium chloride, sodium citrate buffer

SD standard deviation

SDS sodium dodecyl sulphate

TAM tumour associated macrophage

TGF transforming growth factor

TIM P tissue inhibitor of matrix metalloproteinases

TNF tumour necrosis factor

tPA  tissue plasminogen activator

uPA urokinase-type plasminogen activator

uPAR urokinase-type plasminogen activator receptor

VCAM vascular cell adhesion molecule-1

VEGF vascular endothelial growth factor
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