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Abstract

The movement of the habitable zone of 55 stars from 0.5 to 1.5 Solar masses and 0.75% to 
5% metallicity were modelled over their main sequence lifetimes. 156 stars known to have 
planetary systems had their mass and metallicity matched to their nearest model, giving 
approximate habitable zones, which were compared with their giant planet(s)’s orbital 
range and gravitational reach. Habitable zones lying outside a giant’s gravitational reach 
for one billion years (two billion years after star birth) could host an Earth-mass planet in a 
stable confined orbit long enough for life to develop. Low eccentricity giant orbits 
confined to the habitable zone could also host Earth-mass satellites. Results show 85 of 
156 exosystems could house a habitable Earth-mass body over the last billion years, 113 
could do so for at least a billion years at sometime during their main sequence lifetimes, 
excluding the heavy bombardment period.

An orbital integrator computer program modelled orbits of Earth-mass planets in the 
habitable zones of x1 Gruis, HD 196050, HD 52265, 55 Cancri, and Earth-mass giant 
planet satellites in HD 23079 and HD 28185. The integrator’s predictions for satellite 
orbits were shown to comply with restricted three-body problem theory. ‘Earths’ were 
‘launched’ at different distances from the star or planet and their orbital parameters 
monitored with time until the program concluded after either one billion years, 100 million 
years, or a cataclysmic event. Orbits lasting the full run time are assumed to remain stable 
for the star’s main sequence lifetime. Results reveal the possibility of habitable Earth-mass 
planets around HD 52265, 55 Cancri, and satellites around the giants of HD 23079 and HD 
28185. The x1 Gruis system cannot host a habitable ‘Earth’ whereas HD 196050 could, 
provided the planet’s semimajor axis was at the inner 20% of the habitable zone width.
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1. Introduction
1.1 Goal
The search for carbon based extraterrestrial life outside of our Solar System has always 
assumed the existence of Earth-mass planets in stable orbits confined within the habitable 
zones of exoplanetary systems. The goal here is to continue to authenticate the possibility 
of this assumption by examining orbits of putative Earth-mass planets within the 
exosystems x1 Gruis, HD 196050, HD 52265, 55 Cancri, and of Earth-mass satellites of the 
giant planets orbiting HD 23079 and HD 28185. The Mercury Orbital Integrator computer 
program was used to simulate the motion of terrestrial planets within known exosystems 
using Mixed Variable Symplectic or Hybrid Integrators and the motion of giant planet 
satellites using a RADAU Integrator (Chambers & Migliorini, 1997). Planets or satellites, 
which are small compared to the star and giant planet(s), are launched with almost circular 
orbits at a range of distances from the central body, which in the case of Earth-sized 
planets, are at suitable distances for them to sustain life. Orbital instabilities are caused by 
the gravitational perturbations due to the proximity of other large bodies. This results in a 
possible Earth-sized body’s close encounter with a large body, collision with a large body 
or an ejection from the system. The ranges of motion of a giant planet(s) and its 
gravitational influence in a system have been mapped onto the habitable zone, which has 
been determined over the star’s main sequence lifetime using a stellar evolution-modelling 
program (Mazzitelli, 1989). This reveals regions of potentially stable orbits, for both 
terrestrial planets, and satellites of giant planets confined to the habitable zone. If putative 
Earth-mass bodies can exist in stable orbits within these regions of exoplanetary systems, 
they may be capable of sustaining life. The possibility of their existence will then have 
been confirmed and the goal reached.

1.2 Background
Planets or satellites of giant planets, which are confined to the habitable zone in stable 
orbits for the last lGyr (109 years) or lOOMyr (108 years), around stars at least 2Gyr old, 
are good candidates for supporting any possible detectable life. The habitable zone (HZ) is 
defined as the distance from a star where liquid water, which is necessary for life, can exist 
on the surface of a planet. A stable orbit is an orbit with only small variations in 
semimajor axis and eccentricity over lGyr or lOOMyr. If stable for these times, it is 
considered to be stable for the main sequence lifetime of the star. An orbit confined to the 
habitable zone is an orbit with a semimajor axis between the habitable zone limits. These 
planets must be sufficiently large, from 0.1 M e (Earth Mass) to (Leger et al., 2003), to 
sustain an atmosphere dense enough to allow liquid water. Planets larger than 8M e  will 
retain too much hydrogen during accretion and their content may resemble that of the “ice 
giants”, Uranus and Neptune. The first extrasolar planet was discovered in 1995 (Mayor & 
Queloz, 1995) and had a surprisingly close orbit to its star, 51 Pegasi. Eleven years on 
(10th October, 2006), there are now 206 known giant planets, of the order of Jupiter’s or 
Neptune’s mass, in 178 main sequence star systems. The large majority of planets 
discovered so far are giants because their signatures on the motion of their parent star are 
much greater than that of any possible terrestrial sized planet. Since giant planets exist in 
extrasolar systems then perhaps other smaller planets, similar to Earth, exist with them. 
There could also be Earth-mass satellites of giant planets orbiting in habitable zones.

The early Earth suffered massive impacts in its first 700 million years through the period 
of heavy bombardment within the Solar System. Many of these impacts could possibly 
have evaporated the oceans and the planet may have been sterilised many times by these 
events. First detected signs of life on Earth, which may date back to shortly after this time, 
and possible fossil records 300 million years after this from Warrawoona, Australia,

1



indicate organisms capable of photosynthesis and able to build mineral mounds (Ward & 
Brownlee (2000)). This implies a period in the order of one billion years, from the birth of 
the planet, for primitive life to get started and to evolve. In other planetary systems the 
heavy bombardment period may last for different lengths of time depending on factors 
such as the stellar mass, disc density and the positions of giant planets. If life could exist 
elsewhere it may take longer to reach such stages and longer still for life to change 
significantly the contents of a planet’s atmosphere.

If carbon-based life as on Earth is to be discovered on a terrestrial planet in an extrasolar 
system it must leave atmospheric signatures, which will most likely be identified by 
spectroscopy. On Earth, these atmospheric changes began to occur from 2Gyr after the 
Earth’s origin or approximately lGyr after the period of heavy bombardment ceased. 
Since this is the only model available, it is assumed that this would be similar in other 
exoplanetary systems with life. Looking for signatures of even the simplest forms of 
extraterrestrial life, such as the presence of ozone in the atmosphere, assumes that life 
elsewhere would follow similar evolutionary trends. If such life had reached this stage, the 
planet it inhabited would be rocky, be of similar order to Earth’s mass and would have had 
an orbit with a semimajor axis within the limits of the habitable zone (i.e. confined) for at 
least 2Gyr from its birth. The stars, which have a main sequence lifetime of at least this 
duration, are of 1.5MQ (solar masses) and less.

The detection of Earth-mass extrasolar planets is, at the moment, beyond present 
technology. Satellite missions in the next few years, however, such as CoRoT (2006) and 
Kepler (2008) may facilitate this search. The detection of Earth-like planets in the infrared 
with the Darwin project, using extra-large space telescopes of 70m to 100m equivalent 
apertures, may be up to 12 years in the future (Lagrange, 2003 and Ollivier, 2003). With 
such instruments it would be possible to detect life signatures in the atmosphere of an 
Earth-sized planet at up to 10 parsecs.

1.3 Previous Research
Any exosolar terrestrial planet searches will be pursued in the exoplanetary systems known 
at the time. These searches will very likely concentrate on systems where the gravitational 
influence of any giant planet(s) would allow the existence of terrestrial bodies confined 
within the habitable zone for at least the past lGyr. The use of the Mercury Orbital 
Integrator computer program to identify these targets is part of ongoing work at the Open 
University, UK, to which the work within this thesis is a major contributor (Jones et al., 
2006, Jones et al., 2005). Exoplanet systems already investigated are p Coronae Borealis, 
Gliese 876, o Andromedae (Jones et al., 2001), 47 Ursae Majoris (Jones & Sleep, 2002) 
and 8 Eridani (Jones & Sleep, 2003). The p Coronae Borealis and s Eridani systems have 
one giant planet each, 47 Ursae Majoris and Gliese 876 have two each and v  Andromedae 
has three. Each of these systems was discovered by Doppler shifting of the star’s spectral 
lines as it moves towards and away from Earth as a reaction to the giant planets orbital 
motion. The shortfall of this technique is that the inclinations of planets’ orbits, relative to 
the plane of the sky, are unattainable. This introduces the concept of minimum mass, 
included in the previous research, and is the mass a planet would have if it orbited directly 
in an observer’s line of sight. For a planet of minimum mass, m, actual mass, Mp, orbiting 
at angle, io (see Figure 1.1):

Mp = m/sinio 1.1.
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Figure 1.1 Geometrical arrangement for an exoplanet with an inclined orbit.

The p Coronae Borealis system investigated by Jones et al., 2001, has a high probability of 
having a terrestrial planet in an orbit confined to the habitable zone. The giant planet is a 
“Warm Jupiter” (see chapter 2, section 4), i.e in an orbit closer to the star than the inner 
boundary of the habitable zone but not a “Hot Jupiter”. It has an orbit close enough to the 
star to have little or no gravitational effect on the habitable zone, even when the mass of 
the giant is assumed to be 8 times its minimum mass, since from equation (1.1), Mp > m. 
The short orbital period of the giant, however, required a much shorter time step for the 
accurate operation of the orbital integrator, then set to /nth or less of the orbital period of 
the innermost planet. This requires much more computer time for a normal run of 109 
years, so the time of integrations was reduced to 108 years. As there was little effect by the 
giant on one terrestrial planet in this system, most runs involved two terrestrial planets. It 
was found that the giant did not destabilise either of these orbits when they were near the 
inner edge of the habitable zone at 0.723AU (astronomical units), even when the launching 
semimajor axes were only 0.047AU apart. This effect was not as great near the outer edge 
at 1.4AU, where the semimajor axes needed to be 0.2AU apart for stability.

There is a high probability of a habitable planet in the habitable zone of 47 Ursae Majoris, 
(Jones & Sleep, 2002) but only near its inner edge since the gravitational influence of the 
inner giant extends across a large fraction of the outer regions of the habitable zone. Stable 
terrestrial planet orbits were found to a semimajor axis of 1.3AU for minimum mass giants, 
however as the giant planets’ masses were increased, their influence stretched further into 
the habitable zone until the only stable orbits at 4 times minimum mass were interior to the 
HZ.

Of the remaining three systems, s Eridani is a very young star, estimated to be only 500 
Myr old (Greaves et al., 1998), so even if a terrestrial planet could have a stable orbit 
within its habitable zone, it would be too young for life to have left any atmospheric 
spectroscopic signature (Jones & Sleep, 2003). There is a circumstellar disc, which 
implies orbital inclinations, io, of 46°, which when incorporated into the mass of the giant, 
allows Earth-Moon orbits confined to the HZ only to 0.44AU from the star, right on the 
very inner edge of the habitable zone. The outer two of the three giant planets in u 
Andromedae and both giants in Gliese 876 were found to affect orbits of any putative 
Earth across the entire habitable zone in both systems (Jones et al., 2001). There is little 
chance of habitable terrestrial planets being found in any of these three systems.

Research by other groups has not pursued integrations over long periods approaching 
hundreds of millions or billions of years. An extensive study by Menou & Tabachnik, 
2003 investigated all of the 85 then known extrasolar planetary systems to evaluate the 
stabilities of Earth-mass planets within the habitable zones of the stars. Their runs, using a
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second order Mixed Variable Symplectic Integrator, were over one million years using 
zero age main sequence (ZAMS) habitable zones, eliminating the need to know stellar 
ages. Their constraints for life were more stringent in that the planet must not cross the HZ 
boundary at any time during its orbit, compared to the criterion used here where the 
planet’s semimajor axis must lie in the HZ. They concluded that one third of systems 
could contain habitable Earth-like planets. Asghari et al., 2004 examined the possibility of 
the existence of stable terrestrial planets in five systems, Gliese 777A, HD 72659, Gliese 
614, 47 Ursae Majoris and HD 4208. For each system, a grid of 80 eccentricities for the 
giant and 160 semimajor axes for the terrestrial planet was examined over one million 
years each. A Lie series integration method was used with a variable time step showing 
that Gliese 777A could support stable orbits over nearly all of the HZ, and that no stable 
orbits were possible for Gliese 614. The remainder can support terrestrial planets which 
“survive for a sufficiently long time”, although how this can be determined from one 
million year integrations is open to debate.

Noble et al., 2002 performed integrations over only hundreds or thousands of years when 
investigating possible stable terrestrial planet orbits confined to the HZ in 51 Pegasi, 47 
Ursae Majoris and HD 210277. Their time step was only 10'7 year, claiming the advantage 
over mixed variable symplectic integrations being that their fourth order Runga-Kutta 
integration technique could handle close encounters. They had clearly overlooked the 
Hybrid integrator in John Chamber’s Mercury program. They found stable orbits were 
possible in 47 UMa towards the inner HZ boundary, none were possible in HD 210277 but 
all the HZ could house stable terrestrial planet orbits in 51 Pegasi, provided they survived 
the inward migration of the giant. This survival during migration was examined by Fogg 
& Nelson, 2005, whose investigations suggested that terrestrial planets can be formed from 
reaccretion after migration. Mandell & Sigurdsson, 2003 used the Mercury Orbital 
Hybrid Integrator and integrated for up to two million years during a giant planet’s inward 
migration through four terrestrial planets with the same orbits as the inner solar system. 
They found fewer terrestrial planet ejections occurred when inward giant planet migration 
was faster, leaving 40% of terrestrial bodies in the HZ after a 0.5Myr migration, dropping 
to 15% after a 2Myr migration.

Other work has examined the stability in binary systems where David et al., 2003, 
performed -40,000 numerical experiments limited to lOMyr in determining that 50% of 
binaries allow terrestrial planets to remain in stable orbits over the age of the solar system. 
Holman & Wiegert, 1999, performed numerical integrations over a period of 104 binary 
revolutions in systems where binary eccentricities and mass ratios were varied. They 
derived a relationship for a critical planetary semimajor axis, within which orbits are 
stable, and the orbited star’s mass fraction of the system, the binary’s semimajor axis and 
its eccentricity.

1.4 The OU Group’s Rapid Results Method
It is very time consuming to apply orbital integration to investigate a particular 
exoplanetary system in detail, to determine whether long term survival of a terrestrial 
planet in the habitable zone is possible. Therefore, the OU group has developed a rapid 
method of evaluating the extent to which a habitable zone could harbour a terrestrial 
planet. This method was first published by Jones et al. in 2005, but had been in use by the 
OU group for a few years before this publication appeared. The rapid method relies on 
multipliers n of the Hill radius of a giant planet (chapter 4 section 1). These give the 
distances from a giant planet within which the survival of a terrestrial planet is very 
unlikely -  the gravity of the giant will eject it within these distances.
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The rapid method does not provide the fine detail provided by orbital integration. For 
example, it does not pick out the effects of orbital resonances within otherwise stable 
distances from a giant, but detailed studies of a few systems have established that this 
usually makes little difference to the overall evaluation of habitability.

This rapid method has been applied to systems as the habitable zone (HZ) moves during 
the star’s main sequence lifetime. Underwood et al., 2003 has obtained this movement 
using a stellar evolution model (Chapter 3). Figure 1.2 shows the outcome for the Solar 
System. The values of n depend on the eccentricity of the orbits of Jupiter and Saturn, and 
on whether we are considering the region interior or exterior to the giant -  see chapter 4, 
section 4. Studies of a growing number of exoplanetary systems, using the rapid method, 
can be found in Underwood et al, 2003, Jones et al. 2005, and Jones et al. 2006.
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Figure 1.2 Variation of the Sun’s HZ with Jupiter and Saturn’s gravitational limits.

A putative terrestrial planet, or a satellite of a giant planet, may exist in an orbit where it 
spends all of the star’s main sequence lifetime within the habitable zone. If so, it would be 
in the continuously habitable zone (CHZ) and would be a very good candidate in searching 
for signs of possible extraterrestrial life. A planet may only exist within the habitable zone 
for part of a star’s main sequence lifetime, possibly due to changes in the planet’s orbit 
caused by other bodies in the system or the outward migration of the star’s habitable zone 
during its main sequence lifetime. If this period were over billions of years, the system 
would still be a good candidate for life to exist. A planet existing for only a short time or 
no time at all within the habitable zone would be a poor candidate for life.

Depending on the configuration of the habitable zone and position of the giant planet(s), a 
“score” may be attributed to the known exoplanetary systems, where “yes” = 10, “no” = 0, 
and figures from 1 to 9 represent 10 times the fraction of the HZ which could house a 
habitable Earth (see table 3.20, chapter 3, section 8). It is hoped that this information will 
ameliorate the search for extraterrestrial planets and the signatures of extraterrestrial life by 
allowing search efforts to be concentrated on the most likely candidates.
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2. Overview of Extrasolar Planets
2.1 What is a Planet?
The upper mass limit definition of a planet adopted by the International Astronomical 
Union is, “An object that is in orbit about a star and that is smaller than the -13Mj (Jupiter 
masses) limit for deuterium fusion to occur,” (Lissauer, 2002). The current lower mass 
limit is still under debate and was hoped to be resolved at an International Astronomical 
Union meeting in September, 2006. A current guided definition for low mass planets is of 
an object in orbit around a star that has sufficient mass to self-gravitate itself into a sphere 
and that has swept its orbit clear of debris. If pulsar planets are not included, the first 
detected extrasolar planet orbiting 51 Pegasi was found in 1995 by observing Doppler 
shifting of spectral lines using spectroscopy (Mayor & Queloz, 1995). As at 10 October, 
2006, 206 planets are known to exist in 178 exoplanetary systems, discovered either by 
stellar radial velocity changes or by the planet transiting the star. Ten of these planets 
transit their host star and Gliese 876 has been confirmed astrometrically (Benedict et al, 
2002).

2.2 Categorising Habitable Exoplanetary Systems
The habitable zone around any star is the distance an Earth-mass planet orbits from a star 
where liquid water can exist on its surface, provided it has a dense enough atmosphere. 
For a full definition see chapter 3, section 1. The limit of gravitational influence of a giant 
planet can be expressed in terms of multiples of its Hill radius, the distance from the planet 
where its gravitational attraction and that of the star balance in the rotating frame of the 
giant’s orbit (see chapter 4, section 1 for a full definition and also Appendices 1 and 3). 
The multiples depend on the giant’s orbital eccentricity and whether an Earth-mass planet 
is in an inferior or superior orbit (Sleep, 2005).

For an Earth-mass planet to support life, it must have a stable orbit around its star and have 
its semimajor axis confined to the habitable zone. If a system’s habitable zone is totally or 
partially clear from any gravitational influence from the giant planet, then the star in 
question could be a candidate for having a possible Earth-type planet with life. In cases 
where the giant planet’s orbital semimajor axis resides within the habitable zone, then this 
is a good candidate for a habitable Earth-mass satellite. Different general categories for 
the known systems, where giant planet orbits are overlaid with the habitable zone over a 
star’s main sequence lifetime, are shown in Figures 1.2 and 2.1 to 2.4. These examples 
include three of the nine systems investigated by orbital integration so far to show the 
diversity of these systems.

Category 1 -  The entire Habitable Zone lies interior to the gravitational influence of 
the giant planet. The first profile in Figure 1.2 is for Jupiter’s and Saturn’s gravitational 
reaches within our Solar System and shows that Jupiter’s inner gravitational reach extends 
to 3.9AU from the Sun, which confirms that it is too far away to severely perturb Earth’s 
orbit so as to make it unstable. It also shows that 3.5Gyr from now; Earth’s semimajor 
axis will no longer be confined to the habitable zone shown.

Category 2 - Part of the Habitable Zone lies inside or outside the gravitational 
influence of the giant planet. Figure 2.1 shows the configuration for 47 Ursae Majoris, 
where the gravitational influence of 47 UMa b, the inner of the two giant planets in this 
example, encroaches onto a part of the present habitable zone, in this case the outer 
region. A terrestrial planet may have existed near to the inner edge of the habitable zone in 
a confined orbit since the star’s inception and would also be regarded as a good candidate 
for housing extraterrestrial life. This category would also include inner giants with
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gravitational influences that also partially encroach into the inner regions of the habitable 
zone, allowing possible life bearing planets to exist near to its outer edge.
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Figure 2.1 Variation o f 47 Ursae Majoris’s HZ with 47 UMa b’s gravitational limits. The max. and
min. n x Hill radius refers to the extremes o f gravitational reach o f the giant on an Earth- 
Mass planet (chapter 4, section 4). Maximum Greenhouse and Runaway Greenhouse refer 
to the Habitable Zone limits (chapter 3, section 1).
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Figure 2.2 Variation o f p Coronae Borealis’ HZ with p CrB b’s gravitational limits.

Category 3 -  All of the Habitable Zone lies outside the gravitational influence of the 
giant planet. There are also many good candidates in exosystems where the giant is in an 
orbit interior to the habitable zone, such as p Coronae Borealis, shown in Figure 2.2, where 
the habitable zone is clear from any gravitational interference from the giant. The concern 
with these systems is whether the inward migration of their giant planet could have 
disrupted the orbits of any terrestrial planets already formed, or subsequently formed, in 
their habitable zone. Initial findings by Fogg & Nelson, 2005 suggest that terrestrial 
planets can be formed from reaccretion after migration. Mandell & Sigurdsson, 2003 
suggest that terrestrial planet orbits already present are disrupted during migration, of
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which a significant fraction survives, which increases as the speed of the giant’s migration 
rate increases through the habitable zone.

Category 4 -  All of the Habitable Zone lies within the gravitational reach of the giant 
planet. Figure 2.3 shows the configuration for the habitable zone and the giant’s orbital 
extremes and gravitational reach for 16 Cygni B. This is an example of a system where a 
giant planet’s orbit and gravitational influence completely engulf the habitable zone and 
where there would be no chance of a habitable planet existing at any time. The giant 
planet also has a very eccentric orbit ruling out the possibility of any habitable satellites 
around the giant.
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Figure 2.3 Variation of 16 Cygni B’s HZ with 16 Cygni B b’s gravitational limits.
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Category 5 -  A habitable satellite could exist in orbit around the giant planet. The
system shown in Figure 2.4, HD 23079, shows the giant planet sitting in the middle of the 
habitable zone with only a slightly eccentric orbit. This is an excellent candidate for the 
possibility of a habitable Earth-sized satellite orbiting the giant. The Hill radius is shown 
in this diagram as opposed to gravitational reach. This is because satellites must remain 
bound to the giant and hence within the Hill radius for their orbits to remain stable.

2.3 Discovery Methods 

2.3.1. Radial Velocities
The discovery of exoplanets, by radial velocity measurements of the primary star is likely 
to remain the primary method in the short term. The star and the planet orbit their centre 
of mass, so the star will also exhibit an orbital motion, much smaller than the planet’s 
motion. The star’s orbit is revealed by Doppler shifting of its spectral lines as it moves 
towards and away from Earth. Spectral information on the star gives its approximate age 
and mass. From the regular sinusoidal movement of these lines, the orbital period of the 
planet is determined; hence the planet’s orbital semimajor axis and minimum mass are 
obtained. For a planet with orbital period, P, around a star of mass, M , , then from 
Newton’s Gravitational Law, the orbital semimajor axis, a, is given by:

a =
GM.P2^ 2 .1,

4 7T
where G is the universal gravitational constant. For a stellar radial velocity of amplitude, 
VrA, caused by a planet of minimum mass, m, (Jones, 2003):

m 'r A

PM 1. ^  
2nG

2.2

The orbital eccentricity, e, may be found from variations in the rate of change of spectral 
line movement over several orbits. Circular orbits will give a perfect sine wave, whereas 
any departures will increase with increasing orbital eccentricity. The star 51 Pegasi’s 
spectral lines were observed by the fibre-fed Echelle Spectrograph ELODIE of the Haute- 
Provence Observatory in France. The radial velocity amplitude was found to be 56 metres 
per second, easily detectable with the instrument, which has an accuracy of about 13 
metres per second. Subsequent calculations revealed the planet to have a minimum mass 
of 0.46Mj, orbiting in 4.22 days (Mayor & Queloz, 1995). The downside to this technique 
is that Doppler shifting of spectral lines alone does not reveal the plane of the orbit. This 
may be inferred from other information such as shapes of dust rings around the central 
stars of exoplanetary systems. If such a ring is assumed to be circular, then a value for io 
may be estimated from its apparent ellipticity, as is so for e Eridani (Greaves et al., 1998), 
p Coronae Borealis and HD 210277 (Trilling et al., 2000).

2.3.2 Transits
A sure method of finding the planet’s true mass is when vrj  is known and the orbit lies 
nearly edge-on, i.e. i0« 90°. The planet then transits the star, as with ten of the discovered 
exoplanets. Surveys of nearby star clusters, such as EXPLORE and STEPSS, and all sky 
surveys such as PASS, hope to reveal more extra-solar planets in this way (Mallen-Omelas 
et al., 2002, Burke et al., 2002 and Konacki et al., 2003 respectively), whereas the Optical 
Gravitational Microlensing Experiment, OGLE, has already uncovered 59 transiting 
candidates (Konacki et al., 2003). Figure 2.5 shows the geometry for transiting planets and 
for a planet of radius, Rp, orbiting a star of radius, R*, in an orbit of radius, a9 inclined at
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angle, io, with respect to the plane of the sky, perpendicular to the line of sight to Earth,

then: cosz0 = (R .+ R ,
<=> = COS-1

a
R* + R,

a
2.3,

where io is measured in radians and 0 < io < nil. The probability, p, of transits occurring 
for a randomly orientated orbit is/? = ((W2) -  io)/(n/2) = 1 -  (2io/n), hence:

P = i f 2 ) _1f R . + R „ )
— COS

u , ) a
2.4.

This probability, /?, is the same for any angle, rotated around the line “to Earth” out of 
the plane of the page. So for example, if Jupiter, of radius « 0.1Ro (solar radii), orbited 
the Sun at 1OR0 the probability it would transit the Sun as seen from anywhere outside the 
Solar System, would be « 0.07. This is a scenario similar to known “Hot Jupiter” planets 
and clearly this probability will increase for larger Rp, larger R* and smaller a. The 
probability estimate from the example is in good agreement with current estimates that 
10% of such planets do transit their star (Charbonneau et al, 2000).

T~~

View from Earth

Rt 'o Earth

Orbital
Plane

Side View

Figure 2.5 Geometry for a transiting planet

The transit of the planet causes a drop in radiation received from the star. For Jupiter 
transiting the Sun, this would be ~1%, which is of the order of the 1.2% observed for 
OGLE-TR-56 (Konacki et al., 2003) and 1.6% for HD 209458 (Charbonneau et al, 2000). 
The time between successive transits gives the orbital period and from the stellar spectral 
information inferring the star’s mass, the planetary semimajor axis is determined from 
equation (2.1). The shape of the star’s radiation curve as the planet crosses the stellar disc 
gives the planetary radius and the transiting position, so the exact orbital inclination with 
respect to the plane of the sky is deduced leading to a better value of the planet’s true mass. 
The drawbacks of this technique are that, statistically, less than 10% of all Hot Jupiter 
giant planets in exosystems may transit their star and a much smaller percentage of giant 
planets with larger orbits. Also, Earth-type transiting bodies would cause an approximate 
stellar radiation drop of only 0.01% or less, which is currently undetectable. The big plus, 
however, is that the atmospheric content may be found for a giant planet, from spectral line 
differences between the star and planet, as it transits, and the star alone. Information on 
the lower atmosphere of HD 209458 b has already been determined (Charbonneau et al, 
2002 and Vidal-Madjar et al., 2003).

2.3.3. Astrometry
A third technique for detecting extrasolar planets is to track the proper motion of a star, 
known as astrometry. This has been used to verify the parameters of Gliese 876, with the 
mass of Gliese 876b now being established as 1.89 ± 0.34 Mj (Benedict et al., 2002). 
Positional astronomy is the oldest branch of astronomy and is the measurement of precise 
movements of objects on the celestial sphere and, therefore, includes the science of 
tracking the proper motions of stars across the sky with time. Any regular movements, 
within a star’s direction of motion, may be detected revealing the presence of any unseen 
bodies causing the effects. Information from the motion of a star, with a known mass, will 
reveal the planet’s orbital period, its semimajor axis, eccentricity and its actual mass. This 
method can, however, be only applied to stars with detectable effects of planetary
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companions on their proper motions, which restricts its use to relatively nearby objects. 
For a star at distance, d, with an angular orbital excursion in radians, fl, then, 
for M* » M p,

M*j3d=Mpa 2.5.
Substituting for a from equation (2.1) to obtain an expression for the planet mass, Mp, in 
terms of its period, P, gives:

M = p d U  it1 M l  ^ 2.6.
/GP'

Any eccentricity in the planet’s orbit can be determined from its position-time curve.

The ESA mission GALA will make high-precision astrometric measurements and will 
contribute to a database of stars within 25pc, complementing radial velocity surveys of 
nearby F, G and K type stars (Sozzetti et al., 2003). The Space Interferometry Mission 
(SIM) will also be making precise astrometric measurements of nearby stars, of which 
simulated observations estimate planets may be detected to 3M© (Ford & Tremaine, 2003).

2.3.4 Direct Detection by Observation
The most obvious technique to be considered to detect extrasolar planets would be direct 
imaging. The biggest difficulty to overcome here is one of contrast, illustrated by the 
appearance of our Solar System from a  Centauri, the nearest star, at 1.3pc. In visible light 
the Sun would have a visual magnitude of 0.4 and Jupiter would be 4 arcsec distant with a 
visual magnitude of 22, whilst the Earth would be 0.77 arcsec distant with a visual 
magnitude of 28 (Illingworth, 1985). The Sun is, hence, about 109 times brighter than 
Jupiter in visible light, however the difference is less marked in the infrared where it is 
only 105 times brighter due to the planet emitting in this spectral region. Using current 
technology, the glare from the star would make it extremely difficult to observe any 
surrounding planets, by optical, photographic or electronic processes. Projects under 
development, to circumvent this problem are based on coronagraphy, nulling 
interferometry and fixed delay interferometry. Coronagraphy occults the central object and 
can reduce scattered light by up to 104 (Kitchin, 1998), nulling removes the central object 
by destructive interference for example by using a phase mask coronagraph (Guyon & 
Roddier, 2002), and fixed delay interferometry measures the stellar fringe phase shifts (Ge, 
2002). A ground based search of selected young stars, using adaptive optics and an 
“unsharped masking” technique, with the twin Keck 10 metre telescopes on Mauna Kea, 
Hawaii, is already under way (Kaisler et al., 2003). This should find planets of l-10Mj 
within 100AU of young (t < 60Myr) nearby (d < 60pc) stars. Presently, four planet 
candidates have been found using direct imaging although two may be Brown Dwarfs. 
The space based project Darwin should find many candidates within the next fifteen to 
twenty years.

2.3.5 Gravitational Microlensing
A fifth method of finding extra-solar planets is by gravitational microlensing. Two stars 
need to be in close alignment, with the nearer one having the orbiting exoplanet. When the 
relative proper motions take the nearer star close to the background star, it distorts the 
image of the distant star as its light becomes bent around it (Figure 2.6, Carroll & Ostlie, 
1996), causing it first to brighten then dim as it moves away, giving a bell shaped light 
profile. Any planet of the nearby star will similarly affect the background star-light, only 
the planet’s Einstein ring will be much smaller than the star’s. The Einstein ring is the 
image of the background star when there is exact alignment between the observer, the 
lensing star, and the background star. The angular radius of the ring is given by (Gaudi, 
2000)
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Figure 2.6 The geometry for a gravitational microlens. Light from the source, S, passes within a
distance r0 o f a microlensing point mass at L on its way to an observer at O. The angles 
involved are actually just a fraction o f a degree, with r0 very small compared to d]̂ .

Figure 2.7

T i m e  ( t F)
A gravitational microlensing event
Left: The dashed circle is the Einstein ring. The black dot at its centre is the foreground

microlensing star with a planet at X. The open circles denote the true path o f  the 
background star, filled in at its closest angular approach. The images o f the 
background star are shown by the “lozenges”. At closest approach these are filled 
in black, otherwise they have dotted outlines.

Right: The solid line is the observed light curve with no planet at X; the dotted line is the
difference to the curve made by the planet.

0E =
4GM(ds -d , )  

c2dsd.

Yl
2.7.

Here, 0E is the Einstein Ring radius, G is the universal gravitational constant, M  is the mass 
of the lens, ds is the source distance, dj is the lens distance and c is the speed of light. If the 
alignment is not exact, then the image of the background star is not a ring. In Figure 2.7 
(left) the actual path of the background star is shown by the open circles. At the distance 
of closest (angular) approach the background star is imaged as the two black arcs. Suppose
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that the lensing star has a planet at X (Figure 2.7 (left)). As the background star moves to 
the right its upper image will move to the right as shown by the dotted “lozenges”. Clearly 
this upper image will sweep over X.

Figure 2.7 (right) shows the light curve that would be measured for this event. The smooth 
curve is the brightness of the background star, where the amplification A of its unlensed 
brightness is given by (Gaudi, 2000),

x(x 2 + 4)^
where x  is minimum angular separation between the stars as a fraction of 0 £.

The effect of the planet is to place a narrow spike in the light curve, as shown in Figure 2.7 
(right). The duration of the spike is much less than the duration of the whole event, but the 
spike will generally be clear.

Results from the MACHO project (Alcock, 2000), suggest two light curves from stellar 
sources in the galactic bulge, which are consistent with 0.05 M0  companions. Presently 
four microlensing candidates have been announced (Schneider, 2006), through the OGLE 
project. Investigations have shown that a space based gravitational microlensing survey 
for terrestrial solar planets is feasible in the near future using a 1-2 metre space telescope 
with a 2 degree field of view (Bennett & Rhie, 2002). The shortcomings of gravitational 
microlensing are that they are one off events. The planet “spike” on the bell shaped light 
curve can still give information regarding the planet’s mass and a projected value can be 
obtained of its orbital semimajor axis.

2.4 The Planets Discovered -  So Far
Ignoring planets around pulsars (Wolszczan & Frail, 1992), the discovery methods used so 
far have uncovered giant planets, of the order of Jupiter’s and Neptune’s masses, mostly in 
short period orbits around stars within 60pc of Earth (Lissauer, 2002). The short periods 
are easily detected from the sinusoidal motions of velocity curves derived from the regular 
Doppler shift of spectral lines of the accompanying star. The planets are giants, as these 
have the largest effect on the star’s movement, which are most easily detected for nearby 
stars. So far, the longest orbit has a period of more than 12 years (55 Cancri d, announced
20/12/2002 by Marcy et al., 2002), the smallest mass planet is 7 M®. (Gliese 876 d, 
announced 22/08/2005 by Rivera et al., 2005). The only stars further than 60pc are those 
discovered by the transiting technique. As individual stars are observed over longer times, 
then orbits with longer periods and hence larger semimajor axes will become apparent. 
Also, with long term observations of light curves it will be possible to discern the tiny 
alterations made to the curves by Earth-mass planets. After a few tens of years of 
observations there will certainly be more exoplanetary systems resembling the Solar 
System, of which perhaps a not inconsiderable number may be good candidates for Earth- 
type planets with life. There may also be many planetary systems found around binary 
systems, such as y  Cephei, which make up approximately half of the population of all 
stars.

Of the currently known systems around main sequence stars, 108 of the 210 planets could 
be classified as “Warm Jupiters”. These are defined in this thesis as having orbits of low 
eccentricity and orbital periods of less than 300 days. This orbital period approximately 
defines the inner limit of the habitable zone of stars with masses comparable to that of the 
Sun. Note the contrast with definitions for “Hot Jupiters”, giant planets close to a star with 
orbits of less than 16 days (Weldrake et al., 2005) or 14 days (Basri, 2004) or at 0.05AU or 
less (Shkolnik et al., 2006). Of these 108 planets, 73 have periods of less than 50 days and
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52 have periods of less than 10 days. There are 30 giants with periods of between 300 and 
600 days, in or near the habitable zone. An orbital period of 600 days approximates the 
outer limit of the habitable zone of a star. Of these 30 giants, 12 have orbital eccentricities 
less than 0.2 and would be very good candidates for habitable satellites of giant planets. 
The remaining 72 planets orbit beyond the habitable zone and would be more like the 
familiar gas giants of our Solar System. The known exoplanets have a wide variety of 
eccentric orbits, from almost circular ones to e = 0.927 for HD 80606 (Naef et al., 2001).
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3. Stellar Evolution and Habitable Zones
3.1 Defining the Habitable Zone and Continuously Habitable Zone
The smallest exoplanet around a main-sequence star that has been discovered so far orbits 
Gliese 876 and has a minimum mass of approximately 7 times that of Earth (Rivera et al., 
2005). Bodies of Earth’s mass are too small to be currently detected but they may well 
exist alongside known giant planets either as planets in their own right or as satellites of 
the giants. Some of these Earth-mass bodies may exist with liquid water on their surfaces, 
the necessity for habitability. Indeed, a first definition of the Habitable Zone is, “the 
distance from a star where a body resembling the Earth, in a stable orbit and with 
sufficient mass, can support liquid water on its surface long enough for life to evolve 
and survive.” For this to be so; the pressures and temperatures, depicted in figure 3.1, are 
required for liquid water to exist on a planet’s surface.

Solid

Liquid

Solid

Vapour

100 200 300 400 500 600 700 8000
Temperature (K)

Figure 3.1 Phase diagram for water (Chaplin, 2004)

Figure 3.1 shows the phase diagram for water over a range of temperatures and pressures 
revealing the temperature and pressure boundary for liquid water. The phases of water are 
distinct and the only unexplained boundary is between the two solid phases. This is where 
ice becomes denser above 200MPa due to a pressure induced change in its crystal 
structure. The green cross is at 1 Earth-atmosphere and 298K, the red circle is the critical 
point of water at 647K and 22.1MPa.

The diagram shows that a body with liquid water must have sufficient mass to support an 
atmosphere that exerts a surface pressure greater than that of the triple point of pure water,
i.e. 612Pa or -0.006 Earth atmospheres (Young and Freedman, 2000). Water on any size 
of planet, as is the case on Earth, is very unlikely to be pure. Living creatures in water are 
themselves a contamination and require more than pure water to survive. Dissolved 
solutes from land or the ocean-bed will depress water’s freezing point in terms of both 
temperature and pressure. When water freezes, the solutes in the remaining liquid become 
more concentrated, and through this process of sequestration, it is easily possible to retain 
liquid water down to 255K. So a planet could harbour liquid water with high solute levels 
provided, at the very minimum, it was large enough to sustain an atmosphere of a few 
hundred Pascals and a temperature of 255K over much of its orbit. Mars has an 
atmospheric pressure of about 560Pa (Jones, 2004), just below the pressure required for 
pure water to be liquid but possible for water with high solute levels to be liquid. It is also 
too cold, with temperatures ranging from 273K during an equatorial summer to 150K
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during a polar winter (Beatty et al., 1999), but a Mars sized body closer to a star in an 
exosystem would be warmer, releasing more of its volatiles into the atmosphere. This may 
increase the amount of atmosphere sufficiently to give surface pressures great enough to 
support liquid water. The minimum mass for a habitable planet could thus be taken as 0.1 
Earth-masses, i.e. around the size of Mars.

At the other extremes, vast pressures turn water to ice at any temperature where life could 
exist. This occurs at about lGPa at 300K and 200MPa at the lowest temperature of pure 
liquid water at -250K. These pressures are equivalent to a depth of approximately 100km 
of water at 300K and 20km at 250K (30km and 6km of solid silicates respectively). 
Although Earth’s oceans are “only” 11km at their deepest, they may be far deeper on 
putative exo-Earths and such oceans could exist on slightly more massive Earth-sized 
bodies which have retained the right combination of volatiles. Such planets with masses of 
6 Earths have been modelled (Leger et al., 2003) and if they formed inside the ice-line of a 
primordial system, the distance from a star beyond which ice could condense, they would 
be like a large Earth. Planets of the same mass but formed beyond the ice-line would 
resemble a small Uranus or Neptune, which have an abundance of hydrogen and helium in 
their outer layers rendering them uninhabitable. Therefore there is no reason to have 6 
Earth masses as the upper limit -  this could be 10 Earth masses or even greater. This is 
heavier than the 7 Earth-mass smallest exoplanet discovered so far, however this discovery 
was aided by it orbiting very close to its star. Its effect on the radial motion of its star is 
enhanced by its proximity, as discussed in chapter 2. A similar sized planet in the 
habitable zone would be much more distant and would have a much smaller effect on the 
radial motion of its star, making its detection far more difficult.

Pure liquid water can exist up to its critical point temperature of 647K from pressures of
22.1 MPa up to llGPa. Hence a planet could also sustain liquid water as long as its orbit 
maintained a periastron distance that did not elevate its temperature above 647K. Its mass 
would also need to be less great to produce atmospheric surface pressures greater than 
about I lGPa. Life is restricted at higher temperatures by where carbon compounds start to 
break down, at 435K (Jones, 2004). As the temperature of water approaches its critical 
point at 647K, water acts more like a hydrophobic solvent, with a lower affinity for 
electrolytes and a greater liking for non-polar molecules caused by its much lower 
dielectric constant and poor hydrogen bonding (Chaplin, 2004).

These boundaries for liquid water seem extreme when comparing them with the conditions 
for life on Earth’s surface. There are life forms which can survive under such extreme 
conditions, however. Barophiles, or pressure lovers, have been found at the bottom of 
Earth’s deepest oceans and in the crust, implying that living organisms are quite capable of 
equilibrating themselves with whatever pressure range they must endure. So pressure 
limits for life may only be constrained by the pressure boundaries for water depicted in 
Figure 3.1. If this is so then the habitability of a planet is less dependent on the mass 
related density of its atmosphere and/or its amount of volatiles. This implies that the most 
important determining factor for habitability is temperature. Psychrophiles, or cold lovers, 
have been found to survive down at 255K, provided the water is liquid and hence 
containing a high level of solutes. At the other end of the scale, extreme heat lovers, 
hyperthermophiles, have been found to survive at temperatures approaching 400K. It may 
even be possible that life could exist over an approximate temperature range from 245K to 
435K (Jones, 2004).
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So the freezing and critical temperatures of pure water are not solely regarded as defining 
habitable temperature ranges. The lower boundary seems more clearly defined by the 
freezing properties of water, but is affected by the freezing point depression effects of 
solutes. The upper boundary is more likely to be defined by the fate of liquid water at 
elevated temperatures on a planet5 s surface, not its critical temperature. On warm planets, 
water may be lost through dissociation due to reactions with UV radiation in a wet upper 
atmosphere leading to hydrogen loss. More violently, oceans may boil away due to the 
rapid onset of a Venusian type greenhouse effect. Hence the definition of the Habitable 
Zone requires some qualification and is investigated by looking at atmospheric models.

Kasting et al., 1993 introduced three definitions for each of the inner and outer boundaries 
of the Habitable Zone and they are as follows:

At the inner edges, in order of decreasing stellar flux:

1. Recent Venus. Assuming Venus formed with water, the conditions on Venus 
when water could have last flowed, approximately lGyr ago (Solomon and Head, 
1991).

2. Runaway Greenhouse Effect. For cloud cover equal to that of Earth; a runaway 
greenhouse effect where temperatures at the surface of a planet reach the critical 
point of water (647K).

3. Water Loss. For cloud cover equal to that of Earth; an atmosphere with a wet 
stratosphere, where water is lost in the upper atmosphere by dissociation and 
subsequent hydrogen loss.

At the outer edges, in order of decreasing stellar flux:

4. First Carbon Dioxide Condensation. For a surface temperature of 273K, the 
distance at which carbon dioxide clouds first form.

5. Maximum Greenhouse Effect. The maximum distance at which a surface 
temperature of273K can be maintained by a cloud free carbon dioxide atmosphere.

6. Early Mars. The conditions on Mars at the beginning of the solar main sequence 
lifetime, when free standing bodies of water are believed to have existed.

Conditions 2 to 5 are used to calculate the distance of a planet from its star deduced from 
the stellar flux at the top of its atmosphere capable of causing these scenarios. Conditions 
1 and 6 are based on what is believed to have been the situations for Venus and Mars in the 
solar system's past, the solar fluxes being derived from the distances of Venus and Mars 
from the Sun and the solar luminosity at the time.

The term “at the time” is highlighted because the Sun's luminosity is not constant. All 
main sequence stars, including the Sun, bum hydrogen to helium during their main 
sequence lifetimes. The main sequence stage of any star is when it is most stable and is the 
only time long enough for life to evolve on any of its planets. As hydrogen bums in the 
stellar core, helium levels slowly increase causing the core temperature and pressure to 
increase. These higher temperatures are transferred to the outer layers of the star resulting 
in it becoming more luminous and voluminous over its main sequence lifetime. Initially as 
it slowly grows larger, its effective temperature will increase due to the core temperature 
increase. Later in the main sequence, as it grows larger more rapidly, its effective 
temperature will hit a maximum and then decrease before it starts to enter its red giant
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phase. Figure 3.2 shows how the Sun’s luminosity, radius and effective temperature 
change over its main sequence lifetime.
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Figure 3.2 Change in the Sun’s luminosity, radius and surface temperature over the course of its main
sequence lifetime.
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Figure 3.3 Movement o f the Sun’s Habitable Zone during its main sequence lifetime.

The consequence of this is that the habitable zone moves away from the star, shown in 
Figure 3.3 for the Sun, where a runaway greenhouse effect (Kasting scenario 2) gives the 
inner boundary and a maximum greenhouse effect (Kasting scenario 5) gives the outer 
boundary. So a planet that was originally within and near to the inner edge of the HZ may 
find itself on the sunward side of this region as the star ages. Provided this happened after 
life had changed the atmospheric composition of the planet, i.e. 2Gyr from the system’s 
formation, the planet would be regarded as detectably habitable. This timescale is based 
on our Solar System; however the density of a primordial dust ring around a star, itself 
dependent on a star’s metal content, will determine the length of the heavy bombardment 
time. Stars heavier in metals will have a dust ring also heavier in metals that will not be
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evaporated so readily by the young stellar radiation as in a low metal star. The 2Gyr 
consists of approximately lGyr of heavy bombardment, characteristic of early stellar 
system evolution, plus a further lGyr for life to have a significant enough time to alter the 
planet’s atmosphere. The consequences for life there, however, would be grim as it would 
inevitably be destroyed within a few lOOMyr as the star aged. Indeed this will be the fate 
of the Earth within the next 1.2Gyr to 5Gyr, depending on the inner HZ boundary criterion, 
and could be well before the Sun reaches the end of its main sequence stage. Alternatively, 
a planet that was originally beyond the outer edge of the HZ may end up within it, as has 
already happened to Mars. A planet in this situation may slowly thaw, enabling any life to 
commence, be it later than if the planet were initially within the habitable zone. As long as 
there were to be lGyr before the onset of the star’s red giant phase, such a planet would 
still be deemed as habitable, with sufficient time for life to alter the planet’s atmosphere. 
There may be some planets which are in orbits fortunate enough to remain within the HZ 
for the entire main sequence lifetime of the star. These planets will reside in the 
“Continuously Habitable Zone” (CHZ) bounded by the distances from the star of the 
inner edge of the HZ at the end of its main sequence lifetime and the outer edge of the HZ 
at the beginning of the star’s main sequence lifetime, otherwise known as zero age main 
sequence (ZAMS).

3.2 Determining Distances of Habitable Zones
As discussed in chapter 1, life on Earth took about 2Gyr from its origin to have an 
observable effect on the atmosphere. If this length of time is regarded as a requirement for 
the minimum lifetime of a star, then habitable zones need only be determined for stars with 
main sequence lifetimes longer than this, i.e. those which are less than 1.5M0 and thus of 
stellar type F and later (Kasting et al., 1993). A second reason for this upper limit is that 
hotter stars emit more radiation which is weighted towards ultraviolet wavelengths, too 
much of which destroys cellular life on a planet’s surface. The crumb of comfort in this 
case is that subsurface life would be unaffected and such intense radiation may serve to 
create a thicker ozone layer on such a habitable planet. There is no real lower limit to a 
star’s mass other than the minimum of 0.08M0 that defines a star (D’Antona and 
Mazzitelli, 1985), the mass required for hydrogen burning to take place in its core. A 
problem with low-mass M-type stars is that they exhibit flare activity, which may regularly 
sterilise planets within their normally habitable zones (Segura et al., 2006). Each flare may 
create a temporary habitable zone beyond the tidal lock distance, but for too short a time 
for life to gain any foothold. The variation in distances of such zones would also depend 
on flare intensity, which may not be consistent. So a lower limit is now introduced 
whereby a planet within the habitable zone would be far enough from the star to be 
relatively safe from such events. This is taken to be the distance where the habitable zone 
is beyond the tidal locking zone. Within a star’s tidal locking distance, one side of a planet 
faces the star at all times, and the HZ lies inside this distance for stars less than about 
0.5M0. This is depicted in figure 3.4 along with the increasing distance of the habitable 
zone as stellar mass increases. Tidal locking may not prevent planets being habitable, 
though, as atmospheric circulation may serve to reduce any thermal extremities on such a 
body. Also if an Earth-mass satellite is in synchronous rotation with a giant planet within 
this region, there will still be periods of day and night. Outside this tidal lock radius, 
planets may freely rotate about their own axis.
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Figure 3.4 Habitable Zone at zero age main sequence and Tidal Lock Radius for different stellar

masses.

It is not only the masses of stars which determine habitability of their systems. Stars must 
also contain sufficient metals for rocky Earth-type planets to have formed within the stellar 
accretion disk. The stars with known exoplanetaiy systems, most of which are within 60 
parsecs of Earth, are generally higher in metals than the Sun, which is relatively metal rich 
compared to the general population over the same volume of space (Butler et al., 2000). 
The lowest mass fraction metallicity of a star known to have exoplanets is 0.008 compared 
to a little less than 0.02 for the Sun (Zeilik and Gregory, 1998 and Carroll and Ostlie, 
1996), the most metal rich stars with planetary systems contain up to 0.06 mass fraction of 
metals. Although lower metallicity stars may have gas giant planets, the metal content at 
which rocky terrestrial planets may form is uncertain. However it is quite possible that 
Earth-like planets may form around stars with mass fraction metal contents, Z, as low as 
0.008. Higher levels of metals within a star may enhance its chances of having its own 
planetary system; they also slow down the nuclear processes within a star. For two stars of 
the same mass, the one with the higher metallicity will be slightly less luminous and its 
time on the main sequence will be longer. This effect is minor compared to getting the 
same changes by decreasing stellar mass.

For stellar mass boundaries set by habitable zones being beyond the tidal locking distance 
of a star and a minimum main sequence lifetime of 2Gyr, HZs need be determined for 
main sequence stars between 0.5M0 and 1.5Mq, i.e. F, G, K and early M type stars, with 
metallicity mass fractions from 0.008 to 0.06. Of these stars, the more luminous will 
clearly have their habitable zones at greater distances. A lesser effect on the HZ distance, 
however, is a stars effective temperature. According to Wien’s displacement law, a black 
body of absolute temperature, T, has a peak intensity wavelength, /Wx, over its emission 
profile of intensity versus wavelength, where,

7/imax = 2.90 x 10'3Km 3.1
This shows that a cooler star, with a lower effective temperature, will have a black body 
emission profile that will be weighted towards longer wavelengths of the electromagnetic 
spectrum. Secondly, according to the Stefan-Boltzmann law, for total emissive power, E, 
stellar radius, R and Stefan’s constant, <r, then

E = 4nR2oT4 3.2
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So a body with a lower effective temperature will need to have a larger surface area in 
order to have the same total emissive power as a hotter body. For stars of the same 
luminosity with equidistant planets, the greenhouse effect is greatest around the star 
emitting die greatest amount of infrared radiation. Planets with volatiles such as water and 
carbon dioxide will retain such molecules in its atmosphere if they become too warm and 
oceans evaporate. These molecules absorb infrared radiation heating a planet above the 
expected temperature for its distance from a star as if in a greenhouse. Thus for two stars 
of equal luminosity, the one which is cooler and hence larger will emit a greater proportion 
of its radiation at infrared wavelengths and will effectively increase the distance of the 
habitable zone .from that star. Figure 3.2 shows how the Sun’s radius, luminosity and 
effective temperature profile changes over its main sequence lifetime, and is typical of 
main sequence stars. The early luminosity and effective temperature increase will cause 
the habitable zone to move out slightly less than if the temperature had remained the same. 
However during later main-sequence stages, when the star’s luminosity increases but 
effective temperature decreases as it approaches its red giant phase, the outward movement 
of the habitable zone will be accelerated.

Table 3.1 Critical Solar Fluxes for Different Stellar Types.

Stellar Type MO G2 F0
Teff! K 3700 5700 7200

Habitable Zone Limit s*
Recent Venus** 1.60 1.76 2.00
Runaway Greenhouse 1.05 1.41 1.90
W ater Loss 1.00 1.10 1.25
1st C 0 2 Condensation 0.46 0.53 0.61
Maximum Greenhouse 0.27 0.36 0.46
Early Mars*** 0.24 0.32 0.41

* Values relative to the present mean solar flux at the top o f  Earth’s atmosphere (1370Wm"2).

** Recent Venus fluxes, for MO and FO stars, are derived from the product o f  their critical water loss
fluxes and the same flux ratio o f  recent Venus over water loss for the G2 star.

*** Early Mars fluxes, for MO and FO stars, are derived from the product o f  their maximum greenhouse
fluxes and the same flux ratio o f  early Mars over maximum greenhouse for the G2 star.

The six habitable zone boundaries, mentioned in section 3.1, are obtained from known 
critical stellar fluxes (power per square metre), S, at the top of planetary atmospheres. 
These are determined from one-dimensional radiative-convective atmospheric models by 
Kasting (1993), where the cloud cover for the interior boundaries is fixed at terrestrial 
levels. These critical fluxes are determined for a standard Earth-mass planet (1 M& ) and 
represent approximate average values obtained also for planets of 0.1M@ to 1-0M&. The 
habitable zone for a more massive planet will be closer to the star than for a smaller planet, 
since larger bodies, with higher surface gravities, are able to retain their volatiles more 
effectively so their “Water Loss” and “Runaway Greenhouse Effect” will occur at higher 
temperatures. The heavier atmosphere of a larger planet would also induce “1st CO2 
Condensation” at higher temperatures, although the “Maximum Greenhouse” scenario will 
occur at approximately equal fluxes for all planetary masses since a surface temperature of 
273K is required in each case. This implies that the habitable zone of a more massive 
planet would be wider than for a smaller planet. Table 3.1 gives the values of the critical 
fluxes for an Earth-mass planet, which are dependent on effective stellar temperature as 
discussed in the previous section, giving three values for each habitable zone boundary. 
From each of these six sets of three values, the critical stellar fluxes can be determined for
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effective temperatures, Teff, between the extremes of 3700K and 72Q0K, by means of 
curve-fitting.

For each of the six curves, S  is dependent on Teff> hence S —fiT ej$ which will be quadratic 
in nature as the degree of a best fit curve is always one less than its number of coordinates. 
The six equations below were calculated using Maple V Release 5 software (November
27 , 1997), by Waterloo Maple Inc. The statistical fit value, r , is 1 for all six equations 
and with S  in terms of S& the flux at the top of the Earth’s atmosphere of 1370Wm"2 
(Zeilik and Gregory, 1998), and Teff  in Kelvin, they are,

Recent Venus: 
Runaway Greenhouse: 
Water Loss:
1st CO2 Condensation: 
Maximum Greenhouse: 
Early Mars:

S  = 2.286x10'* r e/  -  1.349xl0‘4 Teff + 1.786
S = 4.190x10'* Te/  -  2.139x1c4 Teff + 1.268
S  = 1.429x10'* Te/  -  8.429x1O'5 Teg- + 1.116

5.238xl0'9 Te/
S  = 6.190x1 O'9 7 ^  
S  = 5.714xl0'9 Ttf2

-  1.424xl0'5 + 0.4410
-  1.319xl0‘5 T ^  + 0.2341
-  1.371xl0'5 Teff + 0.2125

3.3
3.4
3.5
3.6
3.7
3.8

1
Now for a star of luminosity, L, and flux, S, then S a  L, and at distance, d ,  S a  2 The

semimajor axis, a, of the Earth’s orbit around the Sun is 1.495978707 x 10um (Murray 
and Dermott, 1999), defined as the astronomical unit. Hence for L measured in terms of 
solar luminosity L q ,  S  in terms of the solar constant, S®, and d  in astronomical units, then,

L
£  = 3.9

The distance of any particular habitable zone boundary can now be determined by,
T  

i s
d= 3.10.

3.3 Modelling Stars -  Previous Work
Figure 3.2 shows the changes of the sun’s luminosity, effective temperature and radius 
over the course of its main sequence lifetime, and Figure 3.3 shows the outward movement 
of the solar habitable zone caused by these changes over this period. Programs that 
calculate these stellar parameters have often been used in studies predicting the past 
climates on Earth, and the fate of life on Earth in the future. Solar models of Newman and 
Rood (1977), Gough (1981) and Gilliland (1989) have predicted that the Sun’s luminosity 
was approximately 0.7LQ when it first formed and will be almost 3LQ at the end of its main 
sequence lifetime in 7Gyr. Models of Sackmann et al. (1993) agree with the Sun’s initial 
luminosity but predict a final main sequence luminosity of 2.2LQ in 6.5Gyr time.

Stellar models have also been applied previously to stars other than the Sun. Montalban et 
al. (2000) have investigated models of low-mass population II stars in order to improve 
agreement with data from metal rich globular clusters. Girardi et al. (2000) have used 
stellar evolution models to follow the evolution of star clusters and galaxies by means of 
population synthesis. The first person to combine stellar evolution models with habitable 
zones was Hart (1979), where he investigated continuously habitable zones around main 
sequence stars. He also included planetary atmospheric evolution in his models, 
concluding that CHZs became thinner for stars less massive than the Sun and disappeared 
for stars of spectral type K0 and later. Subsequent work by Kasting et al. (1993) also 
included atmospheric modelling in their studies, which was used to determine habitable
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zone boundaries around stars dependent on different atmospheric scenarios. They used 
stellar models from Iben (1967) and Gough (1981) to determine the changes in stellar 
parameters for stars from 0.5M0 to 1.5M0 at intervals of 0.25Mq. This work is the basis of 
the determination of habitable zones in this investigation although a more updated stellar 
evolution code, developed by Mazzitelli (1989), is used to model the stars.

Kasting’s work, however, only incorporated terrestrial levels of cloud into their simulated 
atmospheres. Forget and Pierrehumbert (1997) used models to show that the surface of 
early Mars could have been warmed by carbon dioxide ice clouds reflecting outgoing 
infrared radiation back to the surface. This may also explain how the early Earth was not 
significantly cooler, if at all, than it is now despite the Sun being less luminous. Mischna 
et al. (2000), suggest that the presence of carbon dioxide clouds in an atmosphere could 
extend the outer edge of the solar system’s habitable zone from 1.8AU, predicted by 
Kasting’s cloudless models, to 2.4AU. More recent work of Williams and Pollard (2002), 
with other models, suggests that the runaway greenhouse effect, scenario 2 of the 
atmospheric models listed in section 1 of this chapter, would occur only somewhat closer 
to the star. They also suggest that planets on highly eccentric orbits with semimajor axes 
within the habitable zone would be susceptible to large climatic variations. However their 
long-term climate stability depends on average stellar fluxes over one complete orbit and 
not the time spent within the HZ. This would allow planets to approach its star to much 
closer distances at periastron than that which may cause a runaway greenhouse effect on 
planets in more circular orbits. Williams and Kasting (1997) investigated the effect on 
climate of changing the Earth’s axial tilt up to 90°. They found that planets with small 
continents would not suffer as greatly as planets with large land masses and those planets 
further out in the HZ would also be less affected, due to an accumulation of carbon 
dioxide, which enhances atmospheric heat transportation. They conclude that an Earth 
with a high axial tilt would remain habitable at a slightly further distance than one with its 
present inclination.

The only other known current investigation of a similar nature to this chapter’s study is 
that of Turnbull and Tarter (2003), which concentrates its efforts towards the Search for 
Extraterrestrial Intelligence (SETI). They use a stellar evolution program called TYCHO 
(Young et al., 2001) to model habitable zones, also based on atmospheric models of 
Kasting. Since they are looking for communicating intelligence, they restrict their 
potentially habitable candidates to single and multiple stars known to be at least 3Gyr old 
in their pursuit to create a “Catalogue of Habitable Stellar Systems” or “HabCat”. As they 
are not considering the future, the outward movement of the HZ, due to stellar luminosity 
increase over a star’s main sequence lifetime, is effectively bypassed. Turnbull and Tarter 
regard a communicating intelligence also capable of moving to more temperate planets, 
further out in a system, when their original planet becomes uninhabitable. They use their 
elimination techniques to select 17,163 suitable “HabCat” stars from the 118,218 stars in 
the Hipparcos Catalogue. Included in these 17,163 stars are those with the then known 55 
giant planet systems. Using the criterion that a giant planet cannot approach within 3 Hill 
radii (3i?n) of an HZ boundary, introduced in chapter 1, they eliminate 34 of these 
candidates, including those with possible satellites due to high radiation from the giant. 
Hence their final list of habitable stars is reduced to 17,129.

3.4 The Computer Program
The data used to draw the curves in figure 3.2 and calculate the habitable zone curves in 
figure 3.3 are determined using Mazzitelli’s stellar evolution computer program, which can 
run on any computer using a Linux or Unix operating system. The program was written in 
the Fortran language and models the main sequence evolution of stars, from their initial
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nuclear burning of hydrogen to helium in the stellar core at zero-age main sequence 
(ZAMS), up to the onset of their red-giant phase when the core hydrogen supply is 
depleted. This program was recommended by Kolb (2003) and it has been extensively 
tried and tested in the evolutionary study of single and binary stars (Barker and Kolb, 
2003, Kolb et al., 2000, Stehle et al., 1994, Kolb and Ritter, 1992).

During a simulation, all relevant output information regarding the variations in stellar 
luminosity and effective temperature with age is stored in an output file, both of which are 
necessary for determining habitable zone distances. The time step between each 
calculation on the model’s main sequence is determined by the user. When a stellar model 
is in its infancy and at the end of its time on the main sequence, however, processes within 
the star occur more rapidly and the program will set its own time-step to allow for these 
rapid changes.

The output from each simulation can be imported to most spreadsheet programs for 
editing, calculation, plotting and analysis. For this study, the spreadsheet program used 
was Microsoft ® Excel 2002 SP3. The output of stellar age is in years, luminosity is in 
terms of logiO(Z/X0), effective temperature is given as logio(reft/K) and stellar radius is in 
terms of solar radii. The critical fluxes of habitable zone boundaries are then determined 
for each stellar age using equations 3.3 to 3.8, from which the distances of these 
boundaries can be found from equation 3.10.

3.5 The First Stellar Matrix
3.5.1 Calibrating the Matrix using the Sun
Before using the program to simulate any stars, the stellar evolution model had to be 
calibrated using the present day Sun as the standard. The maximum time interval between 
each successive modelling step was one million years for all but a few cases, which will be 
mentioned when encountered. Also no mass loss was allowed for in any stellar model as 
this is only a few hundredths of one percent for any star of mass 1.5M0 or less, over its 
main sequence lifetime (Beatty et al., 1999). The first solar model had a helium mass 
fraction of 0.27 and metals mass fraction of 0.02 (Beatty et al., 1999). The use of metals 
mass fraction in this thesis is as required by the stellar evolution program, rather than 
[Fe/H] values normally quoted in the astronomical literature. The carbon, nitrogen and 
oxygen mass fractions of the metals were 0.1308, 0.043 and 0.39 respectively (from the 
Mazzitelli program’s “reading.f’ help file). Values of mixing length, a, are presently 
indeterminable (Young et al., 2001), this term has no units as it is the ratio of the distance a 
rising gas bubble travels, before equilibrating with its surroundings, to the pressure scale 
height (p/pg, where p  is pressure, p  is density and g  is acceleration due to gravity). An 
initial suggested value for a  was set at 1.4 (Kolb, 2003). The initial solar mass (MZM0), 
luminosity (L/L0), effective temperature (Tes/K), core pressure {piPa) and core temperature 
(77K) were taken from the “starters.rk” file within the program with values of 1, -0.13, 
3.7400, 17.17000 and 7.1400 respectively, where all values are logarithmic except the 
solar mass. From these starting parameters, the sun reached its present day luminosity 
after 4.560Gyr, from its initial luminosity at zero-age main sequence (ZAMS) of O.IALq 
(1 0 However the solar radius was slightly too large at \.041Ro and the effective 
temperature was a little cool at 5640K. This was a good starting point, however, 
considering that the solar system is 4.55Gyr to 4.60 Gyr old and the present day solar 
effective temperature is given as 5787K (Cox, 2000).
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The first parameters to be changed, in order to refine the model were the carbon, nitrogen 
and oxygen mass fractions of metals. These values were reset to 0.1516, 0.05289 and 
0.5289 respectively (Jones, 1999) whilst all others remained unchanged. The difference 
was imperceptible with the Sun’s present day luminosity being attained after 4.568Gyr, 
only 8 million years later than the first model, with the radius and effective temperature 
remaining as previous. As this change had such a small impact, these new mass fractions 
of metals of 0.1516 for carbon, 0.05289 for nitrogen and 0.5289 for oxygen were retained 
in all subsequent runs for all stellar models, as these values were obtained from a more 
recent source.

The second set of parameters had a different starting luminosity, effective temperature, 
core pressure and core temperature. Alternative values were obtained from Cox (2000), 
which were -0.15230, 3.7514, 17.18510 and 7.1306 respectively. This solar model gave 
exactly the same profile as the previous one, implying that these starting values have little 
or no effect on a stellar model. The starting solar luminosity at ZAMS of 0.7LQ (where 0.7 
= 10~°'I523°) is also in better agreement with accepted values. However, the program user 
must beware of entering arbitrary numbers here, because if the values are too far from 
those expected, the model will not run at all. As this second set of parameters was also 
obtained from a more recent source, these were used for all subsequent solar runs.

Since the metals mass fraction of the sun was set at 0.02, the only two parameters left to 
change, in order to obtain an accurate solar model, were the helium mass fraction and the 
mixing length. The effect of changing the mixing length parameter, a , was investigated 
first, with further runs where a  was varied from between 1.7 and 2.0 at intervals of 0.1. 
Table 3.2 reveals how these changes affected the time required to attain present day solar 
luminosity and the values of the modelled solar radius and effective temperature at that 
time, for a constant helium mass fraction of 0.27.

Table 3.2 Effect o f mixing length on the time it takes a solar model to reach the present day solar
luminosity with modelled solar radius and effective temperature after that time, for a 
constant helium mass fraction o f  0.27.

Mixing Length Time to reach L J G a T eff/K
1.7 4.506 1.011 5740
1.8 4.486 1.002 5767
1.9 4.467 0.993 5792
2.0 4.448 0.985 5815

Literature 4.55 -  4.60 1.000 5787*
* Cox (2000).

Increasing the mixing length clearly shortens the time it takes the model to reach the 
present day luminosity. This implies the core energy increases with increased mixing 
length, making the star smaller and hotter. As the solar radius and effective temperature 
were close to literature values when a  = 1.9, it was fixed at this value and the helium 
content was varied from a mass fraction of 0.25 to 0.30. Table 3.3 shows the effects of 
varying the ZAMS helium content on the model age at the present day luminosity, L q , the 
solar model radius and effective temperature at that age.
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Table 3.3 Effect o f helium mass fraction on the time it takes a solar model to reach the present day
solar luminosity with modelled solar radius and effective temperature after that time, for a 
constant mixing length o f 1.9.

Mass fraction helium content Time to reach JL /̂Ga W R 0 T ^ j f K

0.25 6.856 1.032 5682
0.255 6.225 1.022 5710
0.26 5.616 1.012 5738

0.265 5.031 1.002 5765
0.27 4.467 0.993 5792

0.275 3.923 0.984 5818
0.28 3.399 0.976 5843

0.285 2.894 0.968 5867
0.29 2.409 0.960 5889

0.295 1.944 0.953 5911
0.30 1.499 0.946 5933

Table 3.3 shows the drastic effect changing the solar helium content has on the time taken 
to attain solar luminosity, remembering that the initial solar luminosity at zero-age main 
sequence is 0.7Le for all the above models. This effect of increasing helium content, 
resulting in a shorter time to reach solar luminosity, is expected. During a normal stellar 
main sequence lifetime, helium builds up in the stellar core causing the pressure and 
temperature to rise in order to maintain the rate of nuclear reactions. Increasing the initial 
helium level simply starts the star with a higher core temperature and pressure, hence 
increasing its core activity and shortening its main sequence life span. Recall that this has 
the opposite effect to when metal levels are increased (see section 2 of this chapter), which 
slow down nuclear reactions. More metals mean less initial hydrogen (as initial helium 
levels in the post solar calibration models are fixed), and a higher density. The lower 
hydrogen concentration coupled with the higher density of non-reactive metals will slow 
core nuclear reactions (Kolb, 2003).

As the models traverse the present day solar luminosity, those with higher helium contents 
will go through this value at a faster rate, due to their shorter main sequence lifetimes. 
Higher helium contents in models will give cores of higher densities, temperatures and 
pressures. As more material will be in the core, there will be less material in the outer 
envelope, and, since the same reactions are going on for the range of models in table 3.3, 
the envelope will be smaller. Hence higher helium stars of the same mass will be smaller 
and, since their luminosities are the same, higher helium will mean higher effective 
temperatures.

The closest best fit for a solar model was achieved when the initial helium content was a 
mass fraction of 0.27 for a mixing length of 1.9. To refine this slightly, a final model was 
run with a helium content of 0.269 for a mixing length of 1.9, in good agreement with 
similar previous models (Bahcall et al., 2005). This took 4.578Gyr to reach the present 
day solar luminosity, in the middle of the estimated 4.55Gyr to 4.60Gyr age of the solar 
system. The Sun’s effective temperature after this time was 5787K, in agreement with the 
literature, and it had a radius of 0.995R0. As the temperature was in exact agreement and 
habitable zones are calculated from formulae not involving stellar radii, this final run was 
taken as our standard solar model. Table 3.4 summarises the parameters used to attain this 
end result.
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Table 3.4 Parameters used in creating the final solar model,

Parameter Value
Maximum Time Step /  years 106
ZAMS Helium Content /  mass fraction o f Sun 0.269
ZAMS Metallicity /  mass fraction o f  Sun 0.02
ZAMS Carbon Content /  mass fraction o f metals 0.1516
ZAMS Nitrogen Content /  mass fraction o f  metals 0.05289
ZAMS Oxygen Content / mass fraction o f metals 0.5289
Mixing Length (no units) 1.9
Solar Mass /  M 0 1
Logi0(ZAMS Solar Luminosity /  L 0 ) -0.1523
Logio(ZAMS Effective Temperature /  T ejf ) 3.7514
Logio(ZAMS Core Pressure /  Pa) 17.1851
Logio(ZAMS Core Temperature /  K) 7.1306
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Figure 3.5 The outward movement o f  the six Habitable Zone boundaries during the solar main 
sequence lifetime.

The first seven values listed in this table, except metallicity, were used in all subsequent 
stellar simulations. The main sequence lifetime solar profile, of the model obtained from 
these parameters, is shown in Figure 3.2, along with the habitable zone boundaries for a 
runaway greenhouse effect and a maximum greenhouse effect, shown in Figure 3.3. 
Figure 3.5 shows all the habitable zone boundaries defined in section 1 of this chapter.

3.5.2 Creating the Stellar Grid
At the time of writing there are 156 known exoplanetary systems. One method of 
determining the habitable zone around each of these stars would be to model each star 
individually. An alternative method has been devised whereby stellar evolution 
simulations were performed for a selection of discrete stellar masses, with each mass 
having a small set of metallicities, both parameters of which would cover almost all stars in 
known exoplanetary systems. The mass range covered in this study was from 0.5MQ to 
1.5Mq, as established in section 2 of this chapter, with intervals of 0.1 M0 between each
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mass. Similarly, the metals mass fraction range for each mass was from 0.008 to 0.05 in 
equal logarithmic intervals.

The normal method in which astronomers quote stellar metallicity values is in terms of 
[Fe/H], the ratio of iron to hydrogen in a star, where,

[Fe/H] = log10[n(Fe*)/n(H*)] -  loglo[n(Fe0)/n(H0)] 3.11.
Here n(Fe*) and n(H*) is the number fraction of iron and hydrogen nuclei in a star, while 
n(Fe0) and n(H0) is the same fraction for the Sun. In terms of mass fraction, where m() is 
substituted instead of the number fraction,

[Fe/H] = logio[{m(Fe*)/55.845}/{m(H*)/1.008}]
-  logio[{m(Fe0)/55.845}/{m(H0)/l.OO8}]
= logio[m(Fe*)/m(H*)] -  logiotmfFe^yn^H^)] 3.12

where 55.845 is the atomic mass of iron and 1.008 is the atomic mass of hydrogen (Young 
and Freedman, 2000). Since equations 3.11 and 3.12 are the same, it is clear that [Fe/H] is 
independent of whether it is determined by either number or mass. Now the ratio of iron to 
hydrogen in a star is regarded to be representative of the mass fraction of all metals, Z, i.e. 
all elements other than hydrogen and helium (Carroll and Ostlie, 1996). Hence for a 
proportionality constant, k,

Z= &[m(Fe*)/m(H*)] 3.13.
Iron lines are readily identified in stellar spectra and so their intensity is related to 
metallicity content. Hence by putting Z for m(Fe*)/m(H*) and Zq, the solar metallicity, for 
m(Fe0)/m(Ho), where similarly

Z0 = £[m(Fe0)/m(H0)] 3.14
rearranging equation 3.12 and taking exponentials gives

Z = Z £1x l0 [Fe/H1 3.15.

In this first matrix, the Sun’s mass fraction metallicity is taken as 0.02, corresponding to 
[Fe/H] of 0. Stellar models are also made for metallicities where [Fe/H] is equal to -0.4, - 
0.2, 0.2 and 0.4, corresponding to metal mass fractions of 0.007962, 0.01262, 0.03170 and 
0.0524 respectively. These values were rounded to 0.008, 0.013, 0.032 and 0.05 
respectively, creating the grid in figure 3.6.
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Figure 3.6 Grid for the first stellar matrix.
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Table 3.5 Starting values for stellar grid models.

M / M 0 Metallicity 
mass fraction

ZAMS
\ o g w ( L / L ^

ZAMS
logio(Ttf)

ZAMS 
logio ( P cor/ P a )

ZAMS
10gio( T c o n / K )

0.5’ 0.008 -1.13600 3.6070 17.13900 7.0050
0.5’ 0.013 -1.44400 3.5750 17.07700 6.9580
0.5* 0.02 -1.44400 3.5750 17.07700 6.9580
0.5’ 0.032 -1.44400 3.5750 17.07700 6.9580
0.5” 0.05 -1.70000 3.4600 17.20000 6.9300
0.6’ 0.008 -1.13600 3.6070 17.13900 7.0050
0.6* 0.013 -1.13600 3.6070 17.13900 7.0050
0.6** 0.02 -1.00000 3.6500 16.90000 6.9800
0.6" 0.032 -1.00000 3.6500 16.90000 6.9800
0.6” 0.05 -1.50000 3.5020 17.00000 6.9550
0.7’ 0.008 -1.13600 3.6070 17.13900 7.0050
0.7* 0.013 -0.82100 3.6570 17.20500 7.0550
0.7* 0.02 -0.82100 3.6570 17.20500 7.0550
0.7* 0.032 -0.82100 3.6570 17.20500 7.0550
0.7” 0.05 -1.50000 3.5020 17.00000 6.9550
0.8*** 0.008 -0.57420 3.7016 17.06510 7.0603
0.8*** 0.013 -0.57420 3.7016 17.06510 7.0603
0.8*** 0.02 -0.57420 3.7016 17.06510 7.0603
0.8*” 0.032 -0.57420 I 3.7016 17.06510 7.0603
0.8’** 0.05 -0.57420 3.7016 17.06510 7.0603
0.9’” 0.008 -0.15230 3.7514 17.18510 7.1306
0.9’** 0.013 -0.15230 3.7514 17.18510 7.1306
0.9’” 0.02 -0.15230 3.7514 17.18510 7.1306
0.9” * 0.032 -0.15230 3.7514 17.18510 7.1306
0.9’” 0.05 -0.57420 3.7016 17.06510 7.0603
1.0*** 0.008 -0.15230 3.7514 17.18510 7.1306
1.0’” 0.013 -0.15230 3.7514 17.18510 7.1306
1.0’” 0.02 -0.15230 3.7514 17.18510 7.1306
1.0” ’ 0.032 -0.15230 3.7514 17.18510 7.1306
1.0’*’ 0.05 -0.15230 3.7514 17.18510 7.1306
1.1"’ 0.008 -0.15230 3.7514 17.18510 7.1306
1.1” * 0.013 -0.15230 3.7514 17.18510 7.1306
1.1’” 0.02 -0.15230 3.7514 17.18510 7.1306
1.1’” 0.032 -0.15230 3.7514 17.18510 7.1306
1.1*** 0.05 -0.15230 3.7514 17.18510 7.1306
1.2” 0.008 0.22500 3.7800 17.30000 7.1700
1.2’” 0.013 0.23250 3.7964 17.26540 7.1936
1.2’” 0.02 0.23250 3.7964 17.26540 7.1936
1.2’’’ 0.032 0.23250 3.7964 17.26540 7.1936
1.2*” 0.05 0.23250 3.7964 17.26540 7.1936
1.3’* 0.008 0.22500 3.7800 17.30000 7.1700
1.3” 0.013 0.40000 3.8100 17.29000 7.2150
1.3*** 0.02 0.23250 3.7964 17.26540 7.1936
1.3*** 0.032 0.23250 3.7964 17.26540 7.1936
1.3** 0.05 0.55000 3.8200 17.33000 7.2000
1.4*** 0.008 0.55620 3.8355 17.32740 7.2500
1.4*’* 0.013 0.55620 3.8355 17.32740 7.2500
1.4*** 0.02 0.55620 3.8355 17.32740 7.2500
1.4” * 0.032 0.55620 3.8355 17.32740 7.2500
1.4** 0.05 0.55000 3.8200 17.33000 7.2000
1.5" 0.008 0.80000 3.8855 17.34000 7.3000
1.5’** 0.013 0.55620 3.8355 17.32740 7.2500
1.5’*’ 0.02 0.55620 3.8355 17.32740 7.2500
1.5*** 0.032 0.55620 3.8355 17.32740 7.2500
1.5*” 0.05 0.55000 3.8200 17.33000 7.2000

* Taken from the “starters.rk” file within the stellar evolution program.
** Estimated and extrapolated from the “starters.rk” file and from Cox, 2000.
” * Taken from Cox, 2000.
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Table 3.6 Summary of the outcomes of the stellar grid models.

M/M0 Metallicity
mass

fraction

Time on 
Main 

Sequence 
in Ga

Habitable Zone Distance from Star in AU, from ZAMS (top)to the onset of the 
red giant phase (bottom). *

Recent
Venus

Runaway
Greenhouse

Water
Loss

1st co2
Condensation

Maximum
Greenhouse

Early
Mars

0.5 0.008 >65.5 0.160857 0.196984 0.203482 0.298997 0.387439 0.411037
0.209537 0.255524 0.265062 0.388885 0.502086 0.532699

0.5 0.013 >65.5 0.153179 0.188315 0.19377 0.285168 0.370819 0.393377
0.190065 0.233093 0.24043 0.353489 0.458646 0.48657

0.5 0 . 0 2 >65.5 0.147 0.181319 0.185955 0.274057 0.357478 0.379197
0.176925 0.217897 0.223809 0.329625 0.429339 0.45544

0.5 0.032 >65.5 0.14102 0.174545 0.17839 0.263333 0.34465 0.365557
0.165829 0.205057 0.209774 0.309518 0.404716 0.429278

0.5 0.05 >65.5 0.136343 0.169276 0.172474 0.255001 0.334799 0.355074
0.158168 0.196242 0.200082 0.295715 0.387986 0.411491

0 . 6 0.008 65.2 0.223176 0.270828 0.282314 0.413512 0.531701 0.564151
0.810333 0.969659 1.02505 1.495272 1.90151 2.017731

0 . 6 0.013 >65.5 0.209662 0.255902 0.26522 0.389239 0.502922 0.53358
0.40419 0.482445 0.511288 0.745345 0.946042 1.003871

0 . 6 0 . 0 2 >65.5 0.199373 0.244435 0.252205 0.370758 0.480923 0.510205
0.32857 0.397107 0.415635 0.608013 0.779219 0.826804

0 . 6 0.032 >65.5 0.190168 0.234149 0.240561 0.35426 0.461323 0.489371
0.286192 0.348948 0.362029 0.531121 0.685636 0.727443

0 . 6 0.05 >65.5 0.18395 0.227284 0.232696 0.343211 0.448422 0.475647
0.266204 0.326231 0.336745 0.494955 0.641779 0.68086

0.7 0.008 36.8 0.309566 0.369148 0.391592 0.570715 0.723872 0.768121
1.02296 1.21436 1.294012 1.883835 2.381414 2.526997

0.7 0.013 42.5 0.288862 0.34748 0.365404 0.533795 0.681569 0.723211
0.908058 1.085236 1.148668 1.675047 2.128103 2.258182

0.7 0 . 0 2 47.5 0.273195 0.330761 0.345587 0.505816 0.64916 0.688793
0.823769 0.989642 1.042048 1.521701 1.940993 2.059597

0.7 0.032 52.2 0.259847 0.31641 0.328702 0.482009 0.621544 0.659452
0.753578 0.909227 0.953261 1.393771 1.783824 1.89278

0.7 0.05 54.4 0.251906 0.307916 0.318658 0.467916 0.605348 0.642236
0.710085 0.858263 0.898243 1.314026 1.684129 1.786973

0 . 8 0.008 2 2 . 0 0.420102 0.488813 0.531411 0.77034 0.960075 1.018714
1.241961 1.464279 1.571037 2.283544 2.872417 3.047999

0 . 8 0.013 25.4 0.391507 0.460653 0.495242 0.719529 0.90377 0.95901
1.105386 1.311248 1.398278 2.035272 2.571469 2.728671

0 . 8 0 . 0 2 28.3 0.370005 0.439111 0.468045 0.681338 0.861122 0.913765
1.006244 1.199259 1.272869 1.854853 2.351658 2.495414

0 . 8 0.032 31.0 0.351991 0.420777 0.445259 0.649342 0.825131 0.875566
0.924038 1.105371 1.168883 1.704944 2.167626 2.300114

0 . 8 0.05 32.1 0.342245 0.410791 0.432932 0.632053 0.805652 0.854885
0.880431 1.054397 1.113722 1.624972 2.067728 2.194103

0.9 0.008 13.7** 0.554038 0.626929 0.700825 1.011271 1.237149 1.31243
1.189733 1.357849 1.504948 2.174363 2.674966 2.837966

0.9 0.013 16.1 0.516813 0.592369 0.653741 0.945172 1.166072 1.237171
1.303488 1.53655 1.648866 2.396578 3.014222 3.198471

0.9 0 . 0 2 17.8 0.489046 0.566037 0.61862 0.895885 1.112524 1.180439
1.197165 1.41716 1.514375 2.203182 2.779386 2.949297

0.9 0.032 19.4 0.465854 0.543647 0.589286 0.854722 1.06741 1.13262
1.104701 1.31187 1.397412 2.034543 2.572611 2.729883

0.9 0.05 19.9 0.453802 0.531962 0.574042 0.833362 1.043995 1.107794
0.955176 1.132545 1.208267 1.758511 2.221051 2.356831

1 . 0 0.008 9.21** 0.709453 0.781841 0.897407 1.290708 1.552649 1.646619
1.388936 1.594677 1.756933 2.540854 3.1382 3.329589

1 . 0 0.013 10.5** 0.668113 0.745155 0.845118 1.217164 1.475275 1.564799
1.268027 1.464562 1.603994 2.322031 2.87942 3.055156

1 . 0 0 . 0 2 1 1 .6 ** 0.635918 0.715997 0.804397 1.159922 1.414431 1.500423
1.180381 1.369321 1.493129 2.16324 2.690507 2.85479

1 . 0 0.032 1 2 .6 ** 0.59655 0.679433 0.754603 1.08991 1.339011 1.420578
1.106616 1.288586 1.399822 2.02949 2.530675 2.685252

1 . 0 0.05 12.9** 0.579354 0.663457 0.732852 1.059396 1.306213 1.385847
1.060432 1.235403 1.341401 1.944971 2.42609 2.574285

1 .1 0.008 6.41*** 0.858436 0.929289 1.085851 1.55907 1.854811 1.966566
1.631051 1.797844 2.063161 2.967437 3.570119 3.786201

1 .1 0.013 7.26*** 0.810047 0.887104 1.024648 1.472764 1.764714 1.871357
1.488963 1.653909 1.883436 2.711265 3.277749 3.47648

1 .1 0 . 0 2 8 .0 0 *** 0.772884 0.854289 0.977643 1.406564 1.695185 1.797852
1.384939 1.547603 1.751857 2.523671 3.062568 3.248486

1 .1 0.032 8.63*** 0.740982 0.825871 0.937293 1.349807 1.635348 1.734572
1.296247 1.457411 1.639671 2.363921 2.879984 3.055029

1 .1 0.05 8.84*** 0.721765 0.808737 0.912986 1.315671 1.59939 1.696537
1.239408 1.397422 1.567776 2.261123 2.759723 2.927547
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M/M0 Metallicity
mass

fraction

Time on 
Main 

Sequence 
in Ga

Habitable Zone Distance from Star in AU, from ZAMS (top)to the onset of the 
red giant phase (bottom). *

Recent
Venus

Runaway
Greenhouse

Water
Loss

1st co2
Condensation

Maximum
Greenhouse

Early
Mars

1 . 2 0.008 4.63*** 1.018504 1.086429 1.288316 1.847659 2.178374 2.309082
1.884876 2.053606 2.38422 3.425239 4.091177 4.338093

1 . 2 0.013 5.21*** 0.962377 1.038023 1.217326 1.747311 2.074109 2.198954
1.722643 1.888898 2.179013 3.13237 3.756264 3.983329

1 . 2 0 . 0 2 5.71*** 0.919476 1.000663 1.163064 1.670719 1.994157 2.114476
1.602757 1.767496 2.027372 2.91611 3.509412 3.721843

1 . 2 0.032 6.15*** 0.882802 0.968579 1.116678 1.605341 1.9258 2.042231
1.497957 1.660118 1.89481 2.726926 3.291955 3.491447

1 .2 **** 0.05 6.43*** 0.861153 0.949809 1.089297 1.566836 1.885797 1.999952
1.431786 1.590423 1.811111 2.607156 3.151919 3.343021

1.3 0.008 3.51*** 1.189285 1.252726 1.504331 2.155757 2.522246 2.673007
2.147855 2.317865 2.716856 3.899852 4.630689 4.909459

1.3 0.013 3.93*** 1.125188 1.198258 1.42326 2.040961 2.403869 2.548036
1.967757 2.134816 2.489053 3.574471 4.258227 4.51494

1.3 0 . 0 2 4.29*** 1.075937 1.155809 1.360967 1.952861 2.312342 2.45137
1.833564 1.999022 2.319314 3.332199 3.981681 4.222028

1.3**** 0.032 4.69*** 1.113341 1.19854 1.408282 2.021089 2.396255 2.540414
1.718742 1.882208 2.174078 3.124876 3.744291 3.970561

1.3**** 0.05 4.88*** 1.009416 1.098669 1.276831 1.834162 2.189396 2.321499
1.642945 1.80469 2.078202 2.987988 3.587068 3.803998

1.4 0.008 2.76*** 1.372595 1.42913 1.736192 2.486576 2.88897 3.061002
2.423459 2.590954 3.06546 4.397083 5.191304 5.503001

1.4 0.013 3.07*** 1.298495 1.367463 1.642471 2.353686 2.753462 2.918032
2.23014 2.39709 2.820936 4.047961 4.794815 5.083147

1.4 0 . 0 2 3.35*** 1.243009 1.320496 1.572292 2.254308 2.651199 2.810083
2.08415 2.251634 2.636276 3.784535 4.496852 4.767647

1.4 0.032 3.60*** 1.207421 1.291716 1.527281 2.190829 2.587581 2.742974
1.956872 2.122077 2.475284 3.554561 4.233365 4.48855

1.4 0.05 3.77*** 1.167631 1.256974 1.476954 2.119642 2.513089 2.664276
1.875317 2.039745 2.372127 3.407336 4.065547 4.310809

1.5 0.008 2 .2 0 *** 1.567346 1.61207 1.982522 2.838059 3.273149 3.467241
2.706194 2.872963 3.423086 4.90771 5.7694 6.115086

1.5 0.013 2.44*** 1.484311 1.546852 1.877501 2.689068 3.125944 3.312144
2.504548 2.669205 3.168027 4.543198 5.35349 5.674627

1.5 0 . 0 2 2.64*** 1.42054 1.494035 1.796844 2.574721 3.009654 3.189462
2.349329 2.516763 2.971695 4.263214 5.039449 5.342204

1.5 0.032 2.82*** 1.367383 1.449909 1.729612 2.479572 2.91281 3.087274
2.213003 2.380352 2.799259 4.017077 4.760296 5.046609

1.5 0.05 2.89*** 1.336125 1.424734 1.690078 2.423794 2.857022 3.028433
2.125908 2.291398 2.689094 3.859619 4.579503 4.8551

N.B. Main sequence times with no asterisk qualifier were determined by the time taken from ZAMS ( t  =  
0) to an apparent minimum effective temperature before a final effective temperature increase 
followed by more rapid surface cooling towards the red giant phase, see figure 3.9 (below).

All o f these models predict an initial drop in luminosity immediately after nuclear reactions commence 
in the stellar cores. The time to reach minimum luminosity, before helium build-up in the core causing 
luminosity increase, varies in the extremes from 122 million years for a 0.5M e  star with 0.05 mass 
fraction o f  metals to 7,190 years for a 1.5M 0  star with 0.008 mass fraction o f  metals. It is the habitable 
zone distances when each model’s luminosity is at its initial minimum, which is quoted as the ZAMS HZ 
distances in this table. For models with main sequence lifetimes greater than 65.5Ga, the final HZ 
distances quoted are those after 65.5Ga, not at the end o f the main sequence lifetime.

The times on the main sequence for these stellar models are determined by the time taken from ZAMS ( t  

= 0) to the apparent minimum luminosity in the dip that follows the apparent maximum luminosity just 
before the onset o f the red giant phase, see figure 3.8 (below).

The times on the main sequence for these stellar models are determined by the time taken from ZAMS ( t 
=  0) to the minimum distances o f  HZs in the dip that follows the quoted maximum HZ boundary values, 
see figure 3.7 (below).

These models required maximum time steps o f  107 years for the 13 M 0  stars and 108 years for the 1.2M 0  

star in order to complete successfully (see section 3.5.1). Normal time steps o f 106 years for these 
models lead to a division by zero midway through the main sequence, hence terminating the runs.
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Now the most metal rich stars have metal mass fractions, Z, of up to 0.06, but these are 
rare, so stellar models were created only up to 0.05 to retain a degree of logarithmic 
symmetry either side of the solar metallicity. Mass fractions were used for metallicities in 
this first stellar matrix as it is these values that are required as part of the program’s input 
file. The starting input values of all variable parameters, with their information sources, 
for each of the stellar grid runs are revealed in table 3.5.

A summary of the outcomes of these stellar models, illustrating the time the models remain 
on the main sequence and the distance of their habitable zone boundaries determined from 
the formulae in section 3 of this chapter, are shown in table 3.6.

The three methods for determining the main sequence lifetime of a star, mentioned in the 
footnotes of table 3.6, are now described. The method used for larger mass stars, is when 
the distances of the habitable zone boundaries start to rapidly recede from the star. HZ 
boundaries are the main attribute which determines the existence of possible life in an 
exosystem and at the end of the main sequence lifetime of a larger star, they reach a 
maximum distance. This is followed by a slight movement inwards just before the onset of 
the red giant phase, resulting in a set of minimum distances for each of the six HZ 
boundaries, shown in figure 3.7. This movement mirrors the luminosity curve of the star. 
It is the time after zero-age main sequence, when this minimum is reached, that is taken as 
the main sequence lifetime of the star here. Less massive stars do not have this profile, 
since their habitable zone boundaries continually increase and a second method is required.
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G reen h o u se

 C 02
Condensation 

 H 2 0 L o ss

—  R unaw ay 
G reen h o u se  

■ R ecent 
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 HZ Maximum
V alues
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S e q u e n ce

0
O.OOE+OO 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Time in years

Figure 3 .7 Habitable zone boundaries for a 1.1M 0 star with 0.02 mass fraction o f metals.

This second method uses the luminosity curves, from which the HZ distances are primarily 
calculated, since it is the rapid onset of luminosity increase which is the major factor in 
determining the commencement of a star’s red giant phase. Luminosity changes affect 
habitable zones most of all and this method is employed for intermediate mass stars. 
Figure 3.8 shows the luminosity profile of an intermediate mass star, showing a luminosity 
maximum followed by a minimum just before the red giant phase starts. The time on the 
main sequence, shown, is from ZAMS to when this minimum is reached. Low mass stars 
have luminosity profiles which continually increase, so this second method can no longer 
be used. A third technique, of monitoring rapid changes in a star’s effective temperature is
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used and is the least reliable method since effective temperature only slightly affects 
habitable zones. It is better, however, than gauging the onset of the red giant phase of a 
star merely by visual inspection of a curve on a graph. Figure 3.9 shows a typical effective 
temperature versus time profile for a low mass star. The time on the main sequence is 
taken to be from ZAMS to when an effective temperature minimum is reached, before an 
increase in temperature followed by a subsequent further decrease as the star evolves into a 
red giant.
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Figure 3.8 Luminosity profile over the main sequence lifetime for a 1M 0  star with 0.008 metals mass
fraction
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Figure 3.9 Effective temperature profile over the main sequence lifetime for a 0.7M 0  star with 0.05 metals 
mass fraction.

Table 3.6 shows that for stars with the same metallicity, lifetime on the main sequence 
decreases with increasing mass. Also for stars with the same mass, a star’s lifetime on the 
main sequence increases with increasing metallicity, although this trend is much less
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marked than the mass effect. For lower mass stars up to 1 Me, all five stars of different 
metallicity and with a lower mass have longer main sequence lifetimes than any higher 
mass counterpart. This is not so for stars of 1.1 M0 and above where, for example, a 
heavier \.xM0 star with a metallicity mass fraction of 0.05 will have a longer main 
sequence lifetime than a star of with a metallicity mass fraction of 0.008. Also
the ratios of distances for the same habitable zone boundary, at the end of the main 
sequence and ZAMS, change with increasing mass. For the lowest mass stars, the same 
boundaries are more than 3.5 times as far from a star at end of main sequence than at 
ZAMS, whereas for the highest mass stars, this ratio decreases with increasing mass to 
about 1.6. The trend is much less for stars with the same mass but with different 
metallicities, but generally, the distance ratio for the end of the main sequence and ZAMS 
for any same habitable zone boundary will be less for a star with a higher metallicity. 
Graphical representations of each of these models would require approximately 28 pages, 
and are hence omitted. However a flavour of their appearance is given at the end of the 
next section where the stars of actual exoplanetary systems are modelled and which have 
been studied in detail using orbital integration (Chambers, 1999).

3.5.3 Modelling Stars of Exoplanetary Systems
The exoplanetary systems studied in detail by the Open University team so far, using the 
Mercury Orbital Integrator (Chambers, 1999), have been 47 Ursae Majoris (Jones and 
Sleep, 2002), Gliese 876, Rho Coronae Borealis, Upsilon Andromedae (Jones et al., 2001), 
Epsilon Eridani (Jones and Sleep, 2003), and HD 72659 (Sleep, 2005). Exoplanetary 
systems under investigation within this study (see chapters 4 to 7) are 55 Cancri, HD 
196050, HD 23079, HD 28185, HD 52265 and Tau1 Gruis (HD 216435). In order to 
accurately characterise these systems, stellar evolution models of each star were made, 
along with the Sun. The methods used were exactly the same as already outlined in section
5.2 of this chapter, using published metallicities and masses (Schneider, 2006) unless 
otherwise indicated. This determined their habitable zones over the course of their main 
sequence lifetimes. The starting parameters of each stellar model are shown in Table 3.7. 
The movement of their habitable zones over their main sequence lifetimes is summarised 
in Table 3.8, of which examples are shown graphically in Figures 3.10 to 3.14. The Sun’s 
HZs over its main sequence lifetime are shown in Figure 3.5.

Table 3.7 Starting values for the investigated exoplanetary system stars.

Star M M @ Metallicity 
mass fraction

ZAMS
log,0(Z/Z,rJ

ZAMS
tog lo (T efl)

ZAMS 
iOglO (Pcor/Pa)

ZAMS 
1 ogwiTcor/K)

47 Ursae Majoris 1.03 0.01664 -0.15230 3.7514 17.18510 7.1306
1st 55 Cancri 1.03 0.039 -0.15230 3.7514 17.18510 7.1306

2nd 55 Cancri* 0.95 0.039 -0.15230 3.7514 17.18510 7.1306
1st Epsilon Eridani 0 . 8 0.01589 -0.57420 3.7016 17.06510 7.0603

2nd Epsilon Eridani* 0.77 0.01589 -0.57420 3.7016 17.06510 7.0603
1st Gliese 876 0.32 0 . 0 2 -1.9020 3.5570 17.10600 6.9230

2nd Gliese 876* 0.336 0 . 0 2 -1.9020 3.5570 17.10600 6.9230
1st HD 196050** 1 .1 0.03557 -0.15230 3.7514 17.18510 7.1306
2nd HD 196050** 1 .1 0 . 0 2 -0.15230 3.7514 17.18510 7.1306
3 rd HD 196050** 1.2546 0.03557 0.23250 3.7964 17.26450 7.1936
4th HD 196050** 1.2546 0 . 0 2 0.23250 3.7964 17.26450 7.1936

HD 23079 1 .1 0 . 0 2 -0.15230 3.7514 17.18510 7.1306
HD 28185 0.99 0.03476 -0.15230 3.7514 17.18510 7.1306
HD 52265 1.13 0.02576 0.23250 3.7964 17.26450 7.1936
HD 72659 0.95 0.01449 -0.15230 3.7514 17.18510 7.1306

1st Rho Coronae Borealis 0.95 0.01291 -0.15230 3.7514 17.18510 7.1306
2nd Rho Coronae Borealis* 1 . 0 0 0.01291 -0.15230 3.7514 17.18510 7.1306

Sun 1 . 0 0 0 . 0 2 -0.15230 3.7514 17.18510 7.1306
Tau1 Gruis 1.25 0.02825 0.23250 3.7964 17.26450 7.1936

Upsilon Andromedae 1.3 0 . 0 2 0.23250 3.7964 17.26450 7.1936
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These stellar masses are calculated from the orbital periods o f the planets around the stars and differ 
slightly from the literature masses given by Schneider, 2006.
HD 196050 has two literature metallicities (Schneider, 2006) and a literature mass o f 1.1M0  The 
mass o f 1.2546M is derived from the reported orbital period and distance o f the planet (Schneider, 
2006). All combinations o f these masses and metallicities give four possible models for HD 
196050.

Table 3.8 Summary of the outcomes o f the exoplanetary system stellar models.

Star Time on 
Main 

Sequence 
in Ga

Habitable Zone Distance from Star in AU, from ZAMS (top)to the onset of the red 
giant phase (bottom).

Recent
Venus

Runaway
Greenhouse

Water
Loss

Is* C 0 2 

Condensation
Maximum

Greenhouse
Early
Mars

47 Ursae Majoris 9.93 0.689877 0.769235 0.872648 1.256775 1.523043 1.61546
1.265089 1.460931 1.600278 2.316585 2.872351 3.047652

1st 55 Cancri 11.4 0.638062 0.722248 0.807111 1.164695 1.425147 1.511873
1.138052 1.295878 1.439573 2.079174 2.553996 2.70957

2nd 55 Cancri* 16.0* 0.522114 0.603293 0.66045 0.956175 1.186037 1.258427
1.16781 1.383262 1.477242 2.149467 2.712837 2.87868

1st Epsilon 
Eridani*

26.6’ 0.380961 0.450143 0.481903 0.700802 0.882915 0.936888
0.92941 1.101016 1.175673 1.710718 2.159289 2.291293

2nd Epsilon 
Eridani*

31.1* 0.348561 0.414766 0.440919 0.642266 0.813336 0.863056
1.000573 1.192255 1.265696 1.844305 2.337926 2.480844

1st Gliese 876 -500** 0.092099 0.114109 0.116505 0.172066 0.225429 0.239097

0.257137 0.313048 0.325275 0.47695 0.614917 0.652423
2nd Gliese 876 -440** 0.095842 0.11871 0.121239 0.179032 0.234484 0.248703

0.326699 0.397951 0.413269 0.606089 0.781771 0.829449
1st HD 196050 8.73 0.735413 0.820934 0.930249 1.339915 1.624961 1.723586

1.280183 1.439457 1.619351 2.334649 2.844456 3.017345
2nd HD 196050 8 . 0 0 0.772884 0.854289 0.977643 1.406564 1.695185 1.797852

1.384939 1.547603 1.751857 2.523671 3.062568 3.248486
3rd HD 196050 5.37 0.957186 1.043843 1.210766 1.739572 2.07898 2.204483

1.596669 1.75922 2.01967 2.904757 3.493807 3.70525
4th HD 196050 4.90 1.00375 1.084312 1.26966 1.82266 2.165595 2.296001

1.727926 1.892616 2.185695 3.141631 3.764802 3.992322
HD 23079 8 . 0 0 0.772884 0.854289 0.977643 1.406564 1.695185 1.797852

1.384939 1.547603 1.751857 2.523671 3.062568 3.248486
HD 28185 13.2 0.579152 0.6619 0.732597 1.05869 1.303614 1.383067

1.081324 1.240024 1.367819 1.977737 2.440765 2.589595
HD 52265 7.54 0.796345 0.880055 1.007319 1.44923 1.746399 1.852163

1.394994 1.557254 1.764575 2.541673 3.082418 3.269503
HD 72659 13.2*** 0.579249 0.656961 0.732717 1.057639 1.295799 1.37468

1.151939 1.309578 1.457138 2.104034 2.581806 2.739034
1st Rho Coronae 

Borealis
1 2 .8 *** 0.58825 0.665138 0.744101 1.073603 1.312757 1.392628

1.175796 1.334187 1.487314 2.147011 2.63131 2.791503
2nd Rho Coronae 

Borealis
10.5 0.668662 0.745647 0.845813 1.21814 1.476308 1.565892

1.268887 1.46209 1.60508 2.322649 2.875599 3.051053
Sun 1 1 . 6 0.626495 0.707024 0.792478 1.143097 1.395997 1.480905

1.185545 1.34742 1.499647 2.165329 2.656553 2.818325
Tau1 Gruis 5.27 0.966096 1.050613 1.222034 1.755308 2.094154 2.220482

1.494219 1.722821 1.890115 2.73541 3.388065 3.594803
Upsilon

Andromedae
4.29 1.075937 1.155809 1.360967 1.952861 2.312342 2.45137

1.833564 1.999022 2.319314 3.332199 3.981681 4.222028

N.B. All main sequence lifetimes were determined using habitable zone boundary profiles unless 
otherwise stated below.
The 2nd 55 Cancri model and Epsilon Eridani’s main sequence lifetime were determined using their 
effective temperature profiles.
The main sequence lifetime for Gliese 876 could not be determined by any o f the three previously 
mentioned techniques using habitable zones, luminosity or effective temperature. The value here 
was determined by graphical inspection o f its luminosity profile.
The main sequence lifetimes o f HD 72659 and the 1st Rho Coronae Borealis model were determined 
using their luminosity profiles.
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Figure 3.11 HZ boundaries for Epsilon Eridani over its main sequence lifetime.
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Figure 3.14 HZ boundaries for Upsilon Andromedae over its main sequence lifetime.

Notice the curious bump in each of the HZ boundaries for Upsilon Andromedae shown in 
Figure 3.14. This is found in all stellar models of 1.2M0 and above and is a peculiarity of 
the Mazzitelli program when modelling higher mass stars (Kolb, 2003). The true curves 
are the ones that connect the zero-time value with the top left-hand comer of the bump as 
illustrated in the figure using the CO2 Condensation curve only for clarity. Notice that the 
rate of increase of HZ distances steadily increases as a model progresses along the main 
sequence of every other example shown in Figures 3.10 to 3.13. This is not so for Upsilon 
Andromedae, where the rate of increasing HZ boundary distance decreases up to about 
3.2Gyr where there is a sudden sharp rise to meet the true main sequence curve. The rate 
of increase of HZ distance then increases as in all other models. Again this is 
characteristic of all stellar models above 12M Q. It may initially appear that the model is 
correctly predicting the stellar evolution before 3.2Gyr but it is actually correct after 
3.2Gyr in this example (and all other models showing this characteristic). This is verified 
when the end of main sequence HZ distances for each of the six boundaries are plotted 
against stellar mass for 0.02 mass fraction metal stars, shown in figure 3.15 using results 
extracted from table 3.6. The discontinuity between 0.9M0 and 1.0M0 is due to the change 
in method used for determining the end of the main sequence. Stellar masses of 0.1Mo to 
0.9Mq use changes in effective temperature to determine this, 1.0M0 stars use luminosity, 
and higher stellar masses use habitable zone boundaries based primarily on luminosity. 
Effective temperature varies more wildly at the end of a star’s main sequence, which 
explains the apparent discrepancy between using effective temperature and luminosity or 
habitable zones. However, the important trend shown in this figure is that there is no 
discontinuity between end of main sequence HZ distances of models between 1.0M0 and 
1.5M0, whether there is a bump in HZ boundaries (for 1.2MQ to 1.5M0 stars) or not (for 
1.0M0 and 1AMQ stars).
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Combining the 55 grid stars with the modelled stars of the investigated exoplanetary 
systems, the stellar grid now consisted of 75 reference points, shown in Figure 3.16. There 
are fewer than 75 points shown in the figure, however, as some of the grid models coincide 
with the modelled exoplanetary systems and some modelled exoplanetary systems coincide 
with each other.
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Figure 3.16 The 55 stellar grid points combined with those o f the modelled (and investigated) 
exoplanetary system stars representing all stellar evolution simulations.

3.6 The Second Stellar Matrix
The aim of this exercise was to see the effect alternative values for solar helium and metals 
content had on the models in the stellar matrix, their habitable zones, and consequently the 
likelihood that the known exosystems could support habitable Earth-type planets. Here the
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solar metallicity mass fraction is ZQ -  0.0188 (Cox, 2000) instead of 0.02 (Beatty, 1999). 
This second stellar matrix is also comprised of the same range of eleven masses as 
previous and five different metallicities for each mass. Whereas the helium mass fraction 
of all modelled stars in the first matrix were the same, at a mass fraction of 0.269, this is 
not so for the second. This stellar matrix allows for a change in helium mass fraction of 
models as metals mass fraction changes according to the relation (Pagel et al., 1992),

dYY - Y p +-—-Z  3.16,
P dZ

where Y  is the stellar helium mass fraction, Yp is the primordial helium mass fraction of the 
Universe and Z is stellar metals mass fraction. Here, Yp is taken to be 0.243 (Tsangarides, 
2003, Pagel et al., 1992), Y  and dY/dZ remain to be determined. This empirical 
relationship is useful in that it represents a linear increase in helium abundance with 
increasing metallicity. We can thus easily calculate Y from Z.

3.6.1 Calibrating the Matrix using the Sun
The procedure here was a rerun of that carried out in section 5.1 of this chapter, starting 
with a solar calibration to reproduce the Sun’s present day luminosity, radius and effective 
temperature as closely as possible for its current age. The first varied parameter was the 
mixing length where the initial helium mass fraction of the Sun was 0.2875 and metals 
mass fraction was 0.0188 (Cox, 2000). The remaining starting parameters were as in table
3.4, giving the results in table 3.9.

Table 3.9 Effect o f  mixing length on the time it takes a solar model to reach the present day solar
luminosity with modelled solar radius and effective temperature after that time, for a 
constant initial helium mass fraction o f  0.2875.

Mixing Length Time to reach Lg/Ga R / R . 0 T e g /K
1.6 2.472 0.988 5808
1.7 2.457 0.977 5838
1.8 2.443 0.968 5866
1.9 2.428 0.960 5891
2.0 2.413 0.953 5914
2.1 2.400 0.946 5935

Literature 4 .5 5 -4 .6 0 1.000 5787*
♦ Cox (2000).

Clearly these values are way off the mark. The helium mass fraction of the Sun from Cox, 
2000 is higher than previous solar models (Bahcall et al., 2005) and requires major 
adjustment as the current solar parameters would not be achievable by varying the mixing 
length alone. Table 3.3 shows that by maintaining the mixing length at 1.9 (the value from 
the first solar calibration in section 5 of this chapter), lowering the helium mass fraction of 
the Sun lengthens the time to reach current solar luminosity. The results of this procedure 
with this new solar calibration model is shown in table 3.10 indicating that the initial 
helium mass fraction is in agreement with models of Bahcall et al., 2005, and likely to be 
between 0.26 and 0.27 in order to allow the model to accurately predict the present day 
solar parameters. Table 3.11 verifies this by homing in on the correct helium value.

Table 3.11 shows there is good agreement with the present day solar luminosity when the 
helium mass fraction is 0.267 for a 0.0188 metals mass fraction sun, very similar to the
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final helium mass fraction of 0.269 in the first solar calibration. However, the solar radius 
is too small and the effective temperature too high, so the next step is to decrease the 
mixing length gradually, which table 3.9 implies may correct these values. The outcome 
of this is shown in table 3.12.

Table 3.10 Effect o f  helium mass fraction on the time it takes a solar model to reach the present day 
solar luminosity with modelled solar radius and effective temperature after that time, for a 
constant mixing length o f  1.9.

Mass fraction helium content Time to reach L J Ga R m 0 T e f j f K

0.25 6.568 1.026 5698
0.2525 6.255 1.021 5712
0.255 5.947 1.016 5726

0.2575 5.644 1.011 5739
0.26 5.348 1.006 5753

0.2625 5.057 1.002 5767
0.265 4.771 0.997 5780

0.2675 4.491 0.993 5793
0.27 4.216 0.988 5806

0.2725 3.946 0.984 5819
0.275 3.681 0.980 5832

0.2775 3.420 0.975 5844
0.28 3.165 0.971 5856

0.2825 2.914 0.967 5868
0.285 2.668 0.964 5879

0.2875 2.428 0.960 5891

Table 3.11 Refining the effect o f  helium mass fraction on the time it takes a solar model to reach the 
present day solar luminosity with modelled solar radius and effective temperature after that 
time, for a constant mixing length o f 1.9.

Mass fraction helium content Time to reach Z ^G a R / R o T e/j f K

0.26 5.348 1.006 5753
0.261 5.231 1.005 5759
0.262 5.114 1.003 5764
0.263 4.999 1.001 5769
0.264 4.885 0.999 5775
0.265 4.771 0.997 5780
0.266 4.659 0.995 5785
0.267 4.547 0.993 5791
0.268 4.436 0.992 5796
0.269 4.325 0.990 5801
0.27 4.216 0.988 5806

Note that the time to reach LQ is within error limits for all of these runs. The solar 
effective temperature according to Cox, 2000 is 5787K, however the solar radius at this 
temperature is a little small after 4.55Gyr. The final values taken to be those of the present 
day sun were where the mixing length is 1.83 and after 4.56Gyr the solar radius is 0.999 
and the effective temperature is 5774K, in good agreement with other sources (5770K 
given by Carroll & Ostlie, 1996 and Zeilik & Gregory, 1998 and 5780K given by Beatty, 
1999 and Phillips, 1994). The starting parameters used to attain this result are in table 3.13 
and give solar profiles imperceptibly different from those shown in figures 3.2 and 3.3 for
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the first solar matrix, including a main sequence lifetime of 11.6Gyr, the same as the first 
calibration model.
Table 3.12 Effect o f mixing length on the time it takes a solar model to reach the present day solar 

luminosity for a helium mass fraction o f 0.267.

Mixing Length Time to reach L J G n W R 0 T e j / K

1.80 4.565 1.002 5767
1.81 4.563 1.001 5769
1.82 4.562 1.000 5771
1.83 4.560 0.999 5774
1.84 4.558 0.998 5776
1.85 4.556 0.998 5779
1.86 4.554 0.997 5781
1.87 4.552 0.996 5783
1.88 4.550 0.995 5786
1.89 4.549 0.994 5788
1.90 4.547 0.993 5791

Table 3.13 Parameter used in creating the final solar model for the second matrix,

Parameter Value
Maximum Time Step /  years 106
ZAMS Helium Content /  mass fraction o f Sun 0.267
ZAMS Metallicity /  mass fraction o f Sun 0.0188
ZAMS Carbon Content /  mass fraction o f metals 0.1516
ZAMS Nitrogen Content /  mass fraction o f  metals 0.05289
ZAMS Oxygen Content / mass fraction o f metals 0.5289
Mixing Length (no units) 1.83
Solar Mass /  M 0 1
Logio(ZAMS Solar Luminosity /  Z0) -0.1523
Logio(ZAMS Effective Temperature /  T ef ) 3.7514

Putting these values into equation 3.16, where YQ = 0.267, Yp = 0.243 and ZQ -  0.0188, 
then dY/dZ = 1.2766, gives values much smaller than previously published of at least 3 
(Pagel, 1992). For the use of equation 3.16 in this procedure, the solar metallicity is 
assumed high for its helium content in the calibration model. If the helium mass fraction 
were 0.2875 (Cox, 2000), then dYldZ would be 2.367, which is closer and within the error 
boundaries of 2.8 ± 0.6 of Lequeux et al., 1979. The final value used here is dY/dZ = 2 and 
the solar helium mass fraction is assumed low for a metals mass fraction of 0.0188. This 
now allows a second stellar grid to be created.

3.6.2 Creating the Second Stellar Grid
This second stellar grid has many features which differ from the first. The main difference 
is that only the mixing length of all modelled stars is fixed. The metals mass fraction of 
the solar reference is 0.0188 instead of 0.02 and the helium mass fraction varies with 
metals mass fraction according to equation 3.16, where 7p = 0.243 and dY/dZ = 2. The 
[Fe/H] values for each mass were again -0.4, -0.2, 0.0, 0.2 and 0.4. However when ZQ = 
0.0188, then by using equation 3.15, these metallicities correspond to metals mass fractions 
of 0.007484, 0.01186, 0.0188, 0.0298 and 0.04722 respectively. Also by using equation 
3.16, where 7p = 0.243 and dYldZ = 2, these models will have helium mass fractions of 
0.258, 0.2667, 0.2806, 0.3026 and 0.3374 respectively. Apart from the metals mass 
fractions, the starting parameters for the stellar grid models are exactly the same as in table
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3.5. For the correct metals mass fractions in table 3.5 for this second grid, simply 
substitute 0.007484 for 0.008, 0.001186 for 0.013, 0.0188 for 0.02, 0.0298 for 0.032 and 
0.04722 for 0.05. A summary of the outcomes of these stellar models, illustrating the time 
the models remain on the main sequence and the distance of their habitable zone 
boundaries, determined from equations 3.3 to 3.8, are shown here in table 3.14.

Table 3.14 Summary of the outcomes o f the stellar grid models.

M M e Metallicity
mass

fraction

Time on 
Main 

Sequence 
in Ga

Habitable Zone Distance from Star in AU, from ZAM S (top)to the onset o f the red 
giant phase (bottom). *

Recent
Venus

Runaway
Greenhouse

W ater
Loss

1st co2
Condensation

Maximum
Greenhouse

Early
M ars

0.5 0.007484 >65.5 0.158872 0.194592 0.200972 0.295331 0.382754 0.406066
0.203278 0.248133 0.257144 0.377399 0.487663 0.517391

0.5 0.01186 >65.5 0.153852 0.189055 0.194622 0.286367 0.37222 0.394867
0.191507 0.234737 0.242254 0.356097 0.461813 0.489933

0.5 0.0188 >65.5 0.150261 0.185205 0.190079 0.280044 0.365035 0.38722
0.184692 0.227159 0.233634 0.3439 0.447378 0.474589

0.5 0.0298 >65.5 0.149012 0.18417 0.1885 0.278064 0.363409 0.385469
0.184763 0.227792 0.233724 0.344387 0.449018 0.476304

0.5 0.04722 >65.5 0.152666 0.189008 0.193122 0.285116 0.373256 0.395895
0.201765 0.248545 0.255232 0.37594 0.489769 0.519541

0.6 0.007484 >65.5 0.218976 0.266002 0.277001 0.405864 0.522307 0.554177
0.525469 0.620027 0.664699 0.966329 1.216221 1.290566

0.6 0.01186 >65.5 0.210742 0.25708 0.266585 0.391167 0.505179 0.535978
0.413326 0.492851 0.522845 0.761996 0.966444 1.025522

0.6 0.0188 >65.5 0.206121 0.252277 0.260741 0.383055 0.496123 0.526346
0.382402 0.458533 0.483729 0.70602 0.899246 0.954202

0.6 0.0298 >65.5 0.206996 0.25383 0.261848 0.384962 0.499436 0.529843
0.419433 0.501349 0.530571 0.773738 0.983128 1.04322

0.6 0.04722 59.1 0.218457 0.267506 0.276346 0.406055 0.52614 0.558187
0.694583 0.832588 0.87863 1.282277 1.632797 1.732585

0.7 0.007484 39.0 0.302639 0.361702 0.38283 0.558268 0.709283 0.752637
1.004222 1.1958 1.270311 1.85072 2.344887 2.488232

0.7 0.01186 42.1 0.290428 0.349116 0.367385 0.53658 0.684748 0.726587
0.918368 1.098131 1.161711 1.694297 2.153411 2.285033

0.7 0.0188 43.1 0.284654 0.343396 0.360081 0.526454 0.673703 0.714853
0.864818 1.03623 1.093973 1.596376 2.032133 2.156329

0.7 0.0298 40.3 0.28857 0.348326 0.365035 0.53379 0.683414 0.725154
0.850954 1.017981 1.076434 1.570112 1.996255 2.118269

0.7 0.04722 32.3 0.310871 0.372952 0.393244 0.574034 0.731426 0.776124
0.899451 1.067737 1.137777 1.656385 2.093879 2.221884

0.8 0.007484 23.4 0.40972 0.478308 0.518278 0.751782 0.939084 0.996457
1.219376 1.442328 1.54247 2.243656 2.828847 3.001779

0.8 0.01186 25.2 0.393629 0.462832 0.497926 0.723322 0.908092 0.963595
1.116117 1.325088 1.411853 2.055441 2.598549 2.757406

0.8 0.0188 25.6 0.386848 0.456625 0.489349 0.711464 0.895679 0.950431
1.057348 1.257329 1.337513 1.947968 2.465585 2.616312

0.8 0.0298 23.8 0.39491 0.465645 0.499547 0.72612 0.913432 0.969268
1.041981 1.236696 1.318073 1.918773 2.425228 2.57349

0.8 0.04722 19.0 0.428206 0.49995 0.541663 0.785721 0.981563 1.041531
1.103928 1.300859 1.39643 2.029516 2.55193 2.707918

0.9 0.007484 14.9 0.539684 0.613291 0.68267 0.985682 1.209186 1.282819
1.435304 1.688187 1.815607 2.637662 3.312202 3.514648

0.9 0.01186 15.9 0.519514 0.595113 0.657158 0.950021 1.171594 1.243023
1.317178 1.554413 1.666184 2.422344 3.049053 3.235438

0.9 0.0188 16.2 0.512038 0.58895 0.647703 0.936982 1.158661 1.229341
1.24836 1.475126 1.579132 2.296459 2.893318 3.070188

0.9 0.0298 15.0 0.522997 0.600613 0.661565 0.956785 1.181912 1.253996
1.231283 1.452148 1.557529 2.264068 2.848564 3.02269

0.9 0.04722 12.0 0.558251 0.635496 0.706157 1.01986 1.252541 1.328835
1.314994 1.540876 1.663416 2.414659 3.024136 3.208939

1.0 0.007484 9.78** 0.695705 0.769174 0.880017 1.266141 1.52619 1.618627
1.368055 1.576295 1.730523 2.504156 3.100235 3.289394

1.0 0.01186 10.4** 0.671425 0.748483 0.849308 1.223126 1.482041 1.571966
1.278514 1.479212 1.617261 2.341949 2.907495 3.084978

1.0 0.0188 10.5** 0.659431 0.738931 0.834139 1.202054 1.461322 1.550083
1.221304 1.415795 1.544894 2.237948 2.782085 2.951948

1.0 0.0298 9.71** 0.666497 0.747324 0.843076 1.215033 1.477701 1.567469
1.203643 1.393216 1.522553 2.204981 2.738288 2.905451

1.0 0.04722 7.75** 0.702619 0.783395 0.888767 1.279979 1.551103 1.645222
1.240505 1.427028 1.569177 2.270058 2.807379 2.978635
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M/M0 Metallicity Time on Habitable Zone Distance from Star in AU, from ZAMS (top)to the onset of the red
mass Main giant phase (bottom).

fraction Sequence Recent Runaway Water r‘ co2 Maximum Early
in Ga Venus Greenhouse Loss Condensation Greenhouse Mars

1 .1 0.007484 6.81*** 0.84271 0.91504 1.06596 1.530917 1.82473 1.934762
1.552244 1.782236 1.96351 2.839619 3.507282 3.721182

1 .1 0.01186 7.22*** 0.814043 0.891242 1.029702 1.479989 1.773078 1.880219
1.449245 1.669579 1.833225 2.652698 3.283786 3.48414

1 .1 0.0188 7.26*** 0.800159 0.880808 1.012143 1.455555 1.749716 1.855584
1.383109 1.596803 1.749567 2.532582 3.139614 3.331221

1 .1 0.0298 6 .6 8 *** 0.808283 0.890846 1.022419 1.470525 1.769072 1.876143
1.360457 1.568563 1.720912 2.490527 3.084714 3.272941

1 j**** 0.04722 5.66*** 0.850954 0.933741 1.076393 I.547444 1.856476 1.968719
1.395085 1.599867 1.764711 2.551613 3.149039 3.341059

1 . 2 0.007484 4  92*** 1.00017 1.069833 1.265127 1.814759 2.143205 2.271907

1.733604 1.989918 2.192921 3.171247 3.916163 4.15499
1 2 **** 0.01186 5.29*** 0.967132 1.043003 1.22334 1.755923 2.08415 2.209595

1.620756 1.866288 2.050177 2.966393 3.670953 3.894917
1 . 2 0.0188 5.20*** 0.951098 1.031452 1.203061 1.727631 2.057625 2.181659

1.53885 1.77491 1.946571 2.817287 3.490311 3.703297
1 . 2 0.0298 4  9 9 *** 0.96074 1.043845 1.215259 1.745435 2.081212 2.206729

1.511505 1.741063 1.91198 2.766593 3.424458 3.633391
1 . 2 0.04722 4.10*** 1.010333 1.094386 1.277988 1.835037 2.183941 2.315548

1.544056 1.76942 1.95315 2.823747 3.483209 3.695585
j 3**** 0.007484 3.79*** 1.168327 1.233779 1.477823 2.118078 2.481979 2.630451

1.91106 2.189499 2.417392 3.494793 4.31033 4.573128
1.3 0.01186 3.91*** 1.130784 1.204052 1.430338 2.051093 2.4156 2.560465

1.773464 2.038503 2.243343 3.244911 4.010848 4.255494
j 3+*** 0.0188 4.03*** 1.112897 1.191938 1.407717 2.019485 2.386854 2.53024

1.691775 1.945853 2.140011 3.095778 3.828154 4.061675
1.3 0.0298 3.72*** 1.124163 1.206963 1.421969 2.040307 2.415087 2.56027

1.656342 1.903291 2.095189 3.030457 3.745003 3.973424
1.3 0.04722 3.09*** 1.182174 1.267006 1.495347 2.145308 2.53663 2.689043

1.701991 1.946091 2.152929 3.111472 3.832503 4.066102
1 4**** 0.007484 2.98*** 1.348567 1.407373 1.705801 2.443307 2.842674 3.012079

2.083545 2.380596 2.635573 3.808557 4.688822 4.974584
1.4 0.01186 3.05*** 1.305305 1.374288 1.651085 2.365998 2.767441 2.932833

1.933259 2.215309 2.445472 3.535485 4.36101 4.626904
1.4 0.0188 3.08*** 1.285435 1.361827 1.625955 2.330841 2.736642 2.900511

1.841187 2.110851 2.329007 3.367379 4.155019 4.408371
1.4 0.0298 2.87*** 1.299757 1.381185 1.644073 2.357271 2.772782 2.938968

1.809398 2.071937 2.288794 3.308601 4.079269 4.32796
1.4 0.04722 2.35*** 1.367634 1.452027 1.729931 2.480231 2.915844 3.090558

1.864556 2.125764 2.358561 3.407111 4.188596 4.443789
1.5 0.007484 2.33*** 1.538582 1.585946 1.946141 2.786177 3.217536 3.408476

2.25045 2.568183 2.846697 4.112867 5.059425 5.367718
j 3**** 0.01186 2.48*** 1.492324 1.554367 1.887637 2.70352 3.141724 3.32883

2.104024 2.405816 2.661479 3.846451 4.737844 5.026626
1.5 0.0188 2.43*** 1.469865 1.541484 1.859234 2.663714 3.108282 3.293812

1.997537 2.286094 2.52678 3.652297 4.501351 4.775753
1.5 0.0298 2.24*** 1.48679 1.564859 1.880645 2.694908 3.151542 3.339871

1.966933 2.247281 2.488065 3.59538 4.426272 4.696032
1.5 0.04722 1.83*** 1.566159 1.647835 1.981039 2.838716 3.319033 3.51735

2.035769 2.316267 2.575134 3.718823 4.565736 4.843818

See table 3.6 for footnotes, with the exception that the times to reach minimum luminosity varies from 96.3 
million years for a 0.5M0 star with 0.0298 mass fraction o f metals to 7,250 years for a 1.5M Q star with 
0.007484 mass fraction o f metals.

The trends in table 3.14 are almost identical to those in the corresponding table 3.6 for the 
first stellar matrix. The ratio of final HZ to ZAMS HZ distances remains 3.5 for the lowest 
mass stars but decreases to 1.3 for the 0.04722 metallicity model of \.5MQ, lower than the 
1.6 ratio in the first matrix. This can be attributed to the higher levels of helium in the 
higher metallicity models, which shortens their main sequence lifetimes considerably, as 
discussed in section 5.1 of this chapter. One interesting trend is that, due to the elevated 
helium levels in the higher metallicity stars, the most metal rich stars for the same mass do 
not have the longest main sequence lifetime. This is verified by figure 3.17 which shows 
the trends in stellar main sequence lifetime for all masses above 0.7MQ in a plot of main 
sequence lifetime versus metallicity.
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3.6.3 Modelling Stars of Exoplanetary Systems
The stars of the exosystems listed in section 5.3 of this chapter, which have been 
investigated using the Mercury Orbital Integrator for the possibility that they may house 
habitable Earths, were also modelled using this second matrix method. This would allow a 
“second opinion” of their habitable zone boundaries as it does for the grid modelled stars. 
The starting parameters of these models are listed in table 3.7, except for the helium and 
metals mass fractions, which are listed in table 3.15. The outcomes of these models are 
listed in table 3.16 and a diagram showing the entire reference star model points are in 
figure 3.18.

Table 3.15 The starting helium and metals mass fractions for the stars in the exoplanetary systems 
using the second stellar model.

Star Metals Mass Fraction Helium Mass Fraction
47 Ursae Majoris 0.01564 0.2743
1st and 2nd 55 Cancri 0.03666 0.3163
1st and 2nd Epsilon Eridani 0.01493 0.2729
1st and 2nd Gliese 876 0.0188 0.2806
1st and 3rd HD 196050 0.03343 0.3099
2nd and 4th HD 196050 0.0188 0.2806
HD 23079 0.0188 0.2806
HD 28185 0.03267 0.3083
HD 52265 0.02422 0.2914
HD 72659 0.01362 0.2702
Rho Coronae Borealis 0.01214 0.2673
Sun 0.0188 0.267
Tau1 Gruis 0.02656 0.2961
Upsilon Andromedae 0.0188 0.2806
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Table 3.16 Summary o f the outcomes o f the exoplanetary system stellar models.

Star Time on 
Main 

Sequence 
in Ga

Habitable Zone Distance from Star in AU, from ZAMS (top)to the onset of the 
red giant phase (bottom).

Recent 
Venus *

Runaway
Greenhouse

Water
Loss

1’* co2
Condensation

Maximum
Greenhouse

Early
Mars

47 Ursae Majoris 9.42 0.70381 0.782895 0.890272 1.28179 1.551003 1.64507

1.289711 1.490836 1.631423 2.362083 2.93072 3.109603
1st 55 Cancri 7.98 0.720263 0.801992 0.911085 1.311909 1.588446 1.684804

1.259251 1.451485 1.592892 2.305147 2.854588 3.028768
2nd 55 Cancri 10.8 0.603273 0.682075 0.763104 1.101009 1.346205 1.42811

1.130399 1.279866 1.429888 2.063462 2.525312 2.678994
1st Epsilon Eridani 25.6** 0.38888 0.458341 0.491919 0.714966 0.899128 0.954089

1.087263 1.292284 1.375355 2.002847 2.534152 2.689072
2nd Epsilon Eridani 29.7** 0.355754 0.42235 0.450017 0.655152 0.828246 0.878879

1.027029 1.22323 1.299161 1.892856 2.398671 2.545304
1st Gliese 876 -476*** 0.092623 0.114726 0.117168 0.173021 0.226615 0.240357

0.322612 0.391372 0.408098 0.59769 0.768323 0.815216
2nd Gliese 876 -415*** 0.096385 0.119348 0.121926 0.18002 0.235709 0.250005

0.384192 0.467005 0.485997 0.712243 0.917084 0.973038
1st HD 196050 6.42 0.815218 0.89802 1.031191 1.48306 1.783568 1.891502

1.363308 1.571675 1.724518 2.495698 3.090886 3.279487
2nd HD 196050 7.26 0.800159 0.880808 1.012143 1.455555 1.749716 1.855584

1.383109 1.596803 1.749567 2.532582 3.139614 3.331221
3rd HD 196050 4.13**** 1.057221 1.14078 1.337296 1.919576 2.279154 2.416357

1.591783 1.827584 2.013524 2.911936 3.596538 3.81588
4th HD 196050 4.50**** 1.038045 1.11783 1.313039 1.884449 2.234677 2.369127

1.621072 1.86493 2.050576 2.966507 3.668824 3.892632
HD 23079 7.35 0.795136 0.876336 1.005789 1.446603 1.740268 1.845595

1.369992 1.582464 1.732975 2.508788 3.111184 3.301067
HD 28185 9.78 0.65719 0.737863 0.831303 1.198272 1.458551 1.547177

1.189164 1.371942 1.504236 2.17719 2.697778 2.862406
HD 52265 6.33 0.845323 0.927376 1.06927 1.537173 1.843923 1.955401

1.411017 1.627755 1.784868 2.583332 3.200848 3.396175
HD 72659 12.8* 0.586392 0.664076 0.741752 1.07045 1.310231 1.389971

1.170537 1.356138 1.480676 2.144689 2.665073 2.827782
1st Rho Coronae Borealis 12.7* 0.589998 0.667071 0.746312 1.076783 1.316589 1.396693

1.186637 1.373805 1.501041 2.173905 2.700061 2.864894
2nd Rho Coronae 

Borealis
10.4 0.670546 0.747754 0.848196 1.221574 1.480477 1.570313

1.274148 1.470806 1.611736 2.33301 2.891939 3.068428
Sun 11.6 0.63666 0.717086 0.805336 1.161331 1.416471 1.502593

1.182424 1.375029 1.495715 2.167969 2.700878 2.865832
Tau1 Gruis 4.44***** 1.035133 1.11759 1.309356 1.879559 2.232433 2.366844

1.586692 1.824403 2.007086 2.90333 3.589409 3.808358
Upsilon Andromedae 4 07***** 1.106127 1.186105 1.399155 2.007381 2.374282 2.516961

1.675898 1.926974 2.119927 3.06656 3.791211 4.02247

N.B. All main sequence lifetimes were determined using habitable zone boundary profiles unless
otherwise stated below.

* The main sequence lifetimes o f the 2nd 55 Cancri model, HD 72659 and the 1st Rho Coronae
Borealis model were determined using their luminosity profiles.

** Epsilon Eridani’s main sequence lifetimes were determined using their effective temperature
profiles.

*** The main sequence lifetime for Gliese 876 could not be determined by any o f the three previously
mentioned techniques using habitable zones, luminosity or effective temperature. The value here
was determined by graphical inspection o f its luminosity profile.

**** Maximum time steps o f 107 years were used to enable this model to complete.
Maximum time steps o f 108 years were used to enable this model to complete.
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Figure 3.18 The 55 stellar grid points combined with those o f the modelled (and investigated) 
exoplanetary system stars for the second model.

3.7 Determining Present Day Exosystem Habitable Zones from Stellar 
Data

A third, and probably most reliable metbod, of calculating present-day distances of 
habitable zone boundaries of known exoplanetary systems is to use data from stellar 
observations. Stellar parallax shifts of the nearby stars with planetary systems give their 
distances, with inaccuracies up to 30% (Turnbull and Tarter, 2003). The systems 
discovered by radial velocity changes or astrometry are all within 100 parsecs of Earth. 
Their bolometric luminosities can then be easily determined from the stellar apparent 
visual magnitude and spectral type, where bolometric refers to radiation flux over all 
wavelengths, not just visible. For a solar absolute bolometric magnitude, M\y0\o -  4.74 
(Cox, 2000), then we get L from

—  = 0.787rf2x l0 '°4(" ’+BC) 3.17,
Le

Table 3.17 Effective Temperatures and Bolometric corrections for spectral stellar types (Cox, 200).

Spectral Type Effective Temperature /  K Bolometric Correction (.B C )

Luminosity Class 
V

Luminosity Class 
III

Luminosity Class 
V

Luminosity Class
in

F0 7300 - -0.09 -

F2 7000 - -0.11 -

F5 6650 - -0.14 -

F8 6250 - -0.16 -

GO 5940 - -0.18 -

G2 5790 - -0.2 -

G5 5560 5050 -0.21 -0.34
G8 5310 4800 -0.4 -0.42
K0 5150 4660 -0.31 -0.5
K2 4830 4390 -0.42 -0.61
K5 4410 4050 -0.72 -1.02
M0 3840 3690 -1.38 -1.25
M2 3520 3540 -1.89 -1.62
M5 3170 3380 -2.73 -2.48
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where d  is the stellar distance, Mv is apparent magnitude and BC is the bolometric 
correction, i.e. bolometric magnitude less visual magnitude. This may not work, however, 
for some systems discovered by transiting, which are much further away, hence making 
any parallax data unreliable or non-existent. Four of these distant systems have had 
magnitudes measured as M/, hence V-I corrections are required. For OGLE-TR-113 Mv - 
M/ = 1.06, for OGLE-TR-132 Mv - M7 = 0.47, for OGLE-TR-10 Mv - M/ = 0.89 and for 
OGLE-TR-111, Mv - Mi = 0.89 (Cox, 2000). The bolometric correction values for stars of 
different spectral type are shown in table 3.17 and graphically in figure 3.19, also with the 
change in effective temperature with spectral type, shown graphically in figure 3.20.

GO M0

Stellar
Type

0.5

-2.5 -

Spectral Type

Figure 3.19 Bolometric corrections (V magnitudes) for different spectral types o f star

8000

7000 -

6000 Stellar
C lass

5000 -

S  4000 -

3000 -

2000  -

1000  -

GO M0
Spectral Type

Figure 3.20 Effective temperature variation for different spectral types o f  star
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The trend lines shown in figure 3.19 may be converted into formulae by making 
nomenclature substitutions by letting F=0, G=l, K=2 and M=3. Hence for the Sun of 
spectral type G2, the spectral type would be valued at 12, and a K7 star would have a 
spectral type value of 27. So for numerical spectral type being substituted by x , this gives 
the following two equations for luminosity class stars V and III respectively:

BCV = -0.00000376337*4 + 0.0000968025*3 - 0.00071309/ - 0.00805* - 0.09006 3.18a

BCm = -0.0000278623*4 + 0.00236*3 - 0.07606*2 + 1.05582* - 5.61628 3.18b.

This enables the bolometric correction for any class V and class III star between spectral 
types F0 and M5 to be accurately determined. For any rare class IV star, the mean 
bolometric correction value of those calculated for classes V and III is taken. The 
formulae were determined by statistical fit, omitting the K5III star, using Microcal Origin 
Plot v. 6 by Microcal Software Inc, Northampton, MA, 01060 USA.

Similarly, curves may be obtained for effective temperature with spectral type, which are 
useful for determining the critical stellar flux, S, at the top of a planet’s atmosphere, 
subsequently used to determine habitable zone distances with equations 3.4, 3.7 and 3.10. 
Again substituting numerical spectral type with*, the following two equations are obtained 
for spectral class type V and III stars respectively,

r eWV) = 0.00384x4 - 0.33037x3 + 8.86743X2 - 189.4866x + 7332.32809 3.19a

7’eHdii) = -0.02109*4 + 2.26609x3 - 87.33353x2 + 1337.084x -1941.82128 3.19b.

The unclear nature of habitable zone boundaries, which are widely open to interpretation, 
justifies these crude methods for determining bolometric corrections and stellar effective 
temperature in this way. Although not entirely correct, it does enable the use of a 
mathematical solution to estimate these values.

3.8 Determining the Habitability of Known Exosystems
The information from the stellar grids was applied to each of the 143 exoplanetary systems 
known on 31st August, 2005, using the following procedure. The star of each system was 
matched with its nearest grid model, in terms of mass and metallicity, and the HZs of each 
particular nearest grid model were applied back to the corresponding starting exoplanetary 
system. As six habitable zone boundaries have already been defined (see section 1 of this 
chapter), of which three mark the internal boundaries and three the external boundaries, the 
middle boundary of each set of three was chosen to define the habitable zone limits of the 
systems, i.e. the Runaway Greenhouse and Maximum Greenhouse HZ boundaries. These 
two boundaries were overlaid onto the orbital and gravitational reaches of the giant(s) in 
each system. Regions existing beyond the reaches of any giant planet but within the 
habitable zones are where habitable Earth-sized planets could exist in stable orbits 
confined to the habitable zone. If these areas have been within the habitable zone for more 
than 2Gyr from the zero-age of the system or lGyr otherwise, then life could have existed 
long enough on a possible planet for it to have made an appreciable enough change in the 
planet’s atmosphere for it to be detected. If this is the situation now, then an exoplanetary 
system is currently capable of supporting detectable life. If this situation arises at any time 
during the main sequence lifetime of a star at the centre of a system, then such a system is 
capable of supporting detectable life at some time in the past or future.

An alternative method to determine present-day habitable zones uses information from the 
observed stellar data, see table 3.18. This was applied to each of the 150 then known
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exoplanetary systems, 111 of which were first investigated by P.N. Sleep, (2005), with 
additions and revised calculations here. Clearly there are examples where stellar distances 
are uncertain and these stars could not have their HZ boundaries determined by this 
method. The bolometric luminosity of a star is determined from its distance, apparent 
visual magnitude and bolometric correction from equation 3.17. The bolometric 
corrections and effective temperature for each star are found from their published spectral 
types (Schneider, 2006) using equations 3.18a & b and 3.19a & b. Using the star’s 
bolometric luminosity and effective temperature, equations 3.4 and 3.7 will give its fluxes 
at the inner and outer habitable zone boundaries. Equation 3.10 is then applied to find the 
distances of these fluxes, and hence the present day inner and outer habitable zone 
boundary distances from the star. By comparing these with the gravitational reach of any 
giant planet(s) around the star, it may be determined whether the system could currently 
support a potentially habitable Earth-like planet. For any potentially habitable Earths, it is 
not possible to accurately determine whether such a planet will have been inside the HZ for 
the lGyr (or 2Gyr from ZAMS) required for life to have made an appreciable effect on the 
planets atmosphere to enable its detection. However, this may be estimated from the width 
of potentially habitable regions beyond a giant4 s gravitational reach.

■7R(H) beyond 
apastron
Apastron

2.5

Periastron

■3R(H) inside 
periastron
-Maximum
Greenhouse
Runaway
Greenhouse
Now

0.5

0.00E+00 2.00E+09 4.00E+09 6.00E+09

Time in years

8.00E+09

Habitable Zone boundaries for HD 188015 using the first grid with the orbital extent andFigure 3.21
limits o f gravitational reach o f its giant planet.

To illustrate how this works, a star, HD 188015 and its giant planet, have been randomly 
chosen as an example. This star has a mass of 1.08M&, a metallicity of [Fe/H] = 0.29 and 
an estimated age of 6.6Gyr (Schneider, 2006). Using equation 3.15, this metallicity is 
equal to a metals mass fraction of 0.039 in the first stellar grid and 0.03666 in the second 
stellar grid. Hence the nearest grid model for this star is that with a mass of 1.1 M q and 
metals mass fraction of 0.032 (1st grid) or 0.0298 (2nd grid). However, figure 3.16 shows a 
nearer point which is a model of HD 196050, with a metals mass fraction of 0.03557 or 
0.03343. So the HZs of this model will be used as those for our example, HD 188015. 
Figure 3.21, therefore, shows the runaway greenhouse and maximum greenhouse HZ 
boundaries of this star, from the first stellar grid, along with the periastron and apastron 
limits of the giant planet’s orbit. Also plotted are the internal and external limits of the 
giant’s gravitational influence on smaller orbiting bodies, inside periastron and beyond 
apastron respectively (this will be explained fully in chapter 4, section 4). The plot shows 
that no part of the HZ could have had a habitable Earth confined to a stable orbit early in
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the stars main sequence lifetime. Currently there is a narrow region beyond the limit of 
gravitational reach of the giant, which has been in the HZ for the last billion years (see 
section 1 of this chapter for more detail). So it is possible that a habitable Earth-type rocky 
planet could currently exist in this system, where life has lasted long enough for it to have 
chemically altered the planet’s atmosphere. In the future and up to the end of its main 
sequence lifetime, this habitable narrow region will grow wider so the chance will increase 
that a planet may exist in a stable orbit confined to the habitable zone. This system would 
thus be classified as capable of housing a currently habitable planet.

In order to establish the potential habitability of each system, a list of the exoplanetary 
systems is now presented in Table 3.18, showing the stellar parameters and planetary 
parameters. The individual models for each star, from which the stellar parameters are 
derived, can be determined by checking the two stellar times on the main sequence, one for 
each model type. These can be matched with the models listed in Tables 3.6 and 3.8 for 
the first model type, where helium mass fractions are the same, and Tables 3.14 and 3.16 
for the second model type, where helium mass fractions vary with metals mass fraction. 
Table 3.19 lists data of those same systems derived from Table 3.18. It shows the extent of 
their giant planet’s gravitational reach determined from formulae 4.2 and 4.3, which will 
be explained in chapter 4, section 4. Planetary minimum masses were used as this 
minimises gravitational reach and maximises the proportion of the habitable zone offering 
long-term confinement. Also listed are the runaway greenhouse and maximum greenhouse 
habitable zone boundary distances at zero-age main sequence (ZAMS) and end of the main 
sequence (EoMS) for both stellar grid models. Finally the current HZ boundaries are 
presented, where the stellar age is known, for both stellar grids and from calculations 
involving measured stellar parameters.

Table 3.20 lists an assessment, from analysing the data in Table 3.19, of whether each 
system could house a potentially habitable Earth-like planet now and at any time during 
their main sequence lifetimes. Where there is a “yes” entry, then all of a star’s habitable 
zone could house a habitable Earth-mass planet in a confined orbit either now or at any 
stage of a star’s main sequence lifetime. A “no” entry means that no part of the habitable 
zone could house an Earth-like planet either now or at any stage of a star’s main-sequence 
lifetime. A “moon” entry shows that a habitable Earth-mass satellite of a giant planet may
exist within a system either now or at some time.

Entries where only part of the habitable zone may house a detectable habitable Earth-mass 
planet in a confined orbit are indicated by xl, xO or xB, where x is an integer and 1 < x  < 9. 
Here, “I” refers to a part of the habitable zone interior to a giant planet’s orbit, “O” refers 
to a part of the habitable zone beyond a giant planet’s orbit and “B” refers to a part 
between the orbits of two giants. For parts of the habitable zone capable of housing a 
habitable “Earth” interior to the gravitational reach of a giant for stars older than 2Gyr, the 
value “xl”, rounded to the nearest integer, is determined by,

xl = 10 x (giant’s inner gravitational reach -  HZ inner boundary)/(HZ width) 3.20.

For similar regions of the habitable zone beyond the gravitational reach of a giant planet, 
the value “xO”, to the nearest integer, is determined by,

xO = 10 x (HZ outer boundary -  giant’s outer gravitational reach)/(HZ width) 3.21.

In equation 3.21, however, the planet must have been within the habitable zone for lGyr, 
so the HZ outer boundary value will be that of lGyr prior to its present age. Regions
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between two giants for stars older than 2Gyr, where habitable Earths may exist are given 
by,

jcB = 10 x (Outer giant’s inner gravitational reach -  Inner giant’s outer gravitational 
reach)/(HZ width) 3.22.

All values in these three equations are clear for each system when determining the * values 
for the present day boundaries where a star’s age is known.

Stellar ages are taken from the literature where published. Where a star’s age is not listed 
in the literature or its literature age is greater than the age of the Universe (13.7Gyr), it is 
determined from the nearest stellar models in both Mazzitelli matrices, using its observed 
data. The habitable zone distances determined from the observed data, using equations 
3.4, 3.7 and 3.17, are matched to the same distances for the nearest model. The mean age 
at which these HZ distances occur in the two models is deemed to be the age of the star. If 
only one of the Mazzitelli models gives a sensible stellar age, that one is taken as the star’s 
age. A star’s age is not listed if the stellar data gives HZ boundaries which lie outside 
those ZAMs or End of Main Sequence (EoMS) boundaries as predicted by the nearest 
Matrix models. In such cases where the star’s age is not known, the star is presently rated 
as not capable of supporting habitable life (in table 3.20) as it is either less than 2Gyr old 
(where the calculated HZ boundaries are nearer to the star than the ZAMS ones) or it is 
beyond the end of its main sequence life time (where the calculated HZ boundaries are 
beyond those at EoMS). Some stars have literature ages and ages determined from 
observed stellar data that are greater than that of the Universe. As this is not possible, their 
ages have been left blank. A small number of stars, such as Gliese 876, have an 
indeterminable age. However, their HZs are currently moving so slowly as to not be of 
any significance. In such cases the assessment of habitability is the same for both ‘now’ 
and‘at some time’.

For x calculated over the main sequence lifetime of a star, the largest and most optimistic 
values are taken. Any xl value is greatest after 2Gyr in any system, when the habitable 
zone boundaries are closest to the star and any possible life has had long enough to make 
detectable changes to a habitable Earth-mass planet’s atmosphere. Any *0  value is 
greatest lGyr before the very end of a star’s main sequence lifetime, and assuming the 
orbits of more then one giant in a system are invariant, *B values do not change over the 
main sequence lifetime of a star. Where there is more than one entry in a box, then they 
are in chronological order. If a “moon” entry is followed by a bracketed letter, this refers 
to the giant planet designation in a multi-giant system around which the moon would orbit.

52



Ta
bl

e 
3.1

8 
Ex

op
la

ne
ta

ry
 

Sy
ste

m 
Pa

ra
m

et
er

s

O
ut

er
 

H
ill

 
R

ad
iu

s 
M

ul
tip

lie
r

(W
««

)

co co CO CO
P°vo
K 3.

73 CO
r-oo
cd

OO0©
go 6.

71 Osvn
cd 8.

59
5 SO

’8 CO CO

60‘S

rb
rb

£E
9

V
t 00

cd
CO

b̂ocq
cd

CO co co CO CO

4.
49

4

CO CO CO
OOOrb
cd

roVO*"o
d̂ 7.7

55
 

1
7.

68
2

CO CO

3.
30

4

In
ne

r 
H

ill
 

R
ad

iu
s 

M
ul

tip
lie

r
CO CO CO CO t\

N
*0Os
<N

CO
CN
on
CN

VOrq
CN

CO
CN

N*Os
N 2.

66
9

2.
71

1

CO CO
CN00
CN

Osoo
CN

uor-*
CN

00
CN

CNOs
CN

co

2.
97

0

CO CO CO co co
COSOOO
CN*

co CO CO

s 
2.

95
3 VOOs

CN

| 
2.

71
1

2.
71

1

co CO

2.
97

0

tu o o o C>
i \
<N
d 0.

02
49

 
1

o
cop
©

CN
© 0.

17
4

I 
2610 

0

N-N*

0.
32

7 
1

o o
00o
d

rbO
d 0.

13
5 voo

d
COp
d

o O
d

o o o o o
rbGOo
d

o o o
VO
O
d

Z10 
0 

|

ooCN
d

CN
<05

o o O
d

u
/A

U

0.
02

25
0.

02
28

0.
03

06

m
o

o

CO
C> 0.

20
8

0.
03

6
0.

03
7

0.
02

78
0.

03
8

0.
11

5 N-CN
cd 5.

25
7 

i
0.

03
6 

!

CNrbo
d

rbo
d

rbp
d 0.

03
93 "̂bp

d 0.
04

2
0.

04
16

2

voo
d 0.

04
46

0.
04

3 r-rbo
d

rbrbo
d 0.

04
6 SOrbO

d

GOrbo
d

I 
0.

04
9 rbp

d

COGOO
d 0.

05
9

0.
52

9 c'O
CN 0.

05
2

0.
05

68
0.

06
35

C to S.5
S | S

g->rb goCO On

0.
02

3 
|

VO**0

1.9
35

 
1

0.
04

5 b"00

0.
06

7 
1

0.0
45

 
|

0.7
84

 
|

| 
0.

21
7  

]
Os
cd

00co
©

voCO
©

rb
d 0.

24
9

VO
d

00ON
d

CNGO
d

7̂bGO
d

CO VObq
d

CN
CN
d

oorb
d

00rb
d

CNrb
d

Osso
d 0.

19
7 coGO

d
COcq OsVO

Q>
Onoo {Q

°d

| 
0.

46
8 CN

d
OO
CN
d

Pl
an

et

X) X X O •O X X X <5 o X X X X * X X X X X X X X X X X X X X X X X

MS
 

tim
e 

/ G
a %

M

go

©
00
CO
CN

goCO
CN

vot\N-
go

©
ooOs
bd

GO

rb
8?Os
K

oo
cd
CN

OsO
cd

o
Os

00
ON

CN
vd CN

vd
00vq
vd

ONOs CNbq
cd

VO
CN
rd

CN
vd

o
rb

p
GO*

vovq
GO

00os
bd

GO
d

GO
d

oo
cd
CN

ON
ON
rb*

o
N*

Gq
d

oob-
Os

Os
ON
rb*

1s
t

m
od

el VO
CO

b-bq
cd

O
•o

vq rb orfrb
N> O

co
0000
rb CNCO

CN
cd

00 r-;
«d

COvq
oo’

VO
vd

ON
VO
Tf

op
oo

OO
bd

COrb
vd

rb
Os

rbOO
00

rb vq vq p
co

GO

vd
Os
<N
N*

p CN
cd

GO

vd

A
ge

/
G

yr To tq
© <N

bq
Os

°co00
©

'co
O *cq

Os
h>rb
CN

’vo
vd

vn
b̂

uq
CN

CO
cd ■O" vq

cd
o
CN vq

>d
CN
vd

■'b
cd

*vq
CN CN*

CN
GO = ",

1a
2
<
N

"vo
N

*Gq
oo

fZq
rb

if
VO
vd

oorb
GO 16

.19
 

|

10
.1

7

bq
bd

oop
oo

ooso
©

£Os
go

CO
ON

go

00
CO
CN
00

rb
ON

I 
11

.79
 

|

CN
vd

VO00
b*-’

| 
15

.82
 

!

vq
rb

COrb
bd

voCO
ON

p
00*

rbrb
ON

00o
d

GOcq
vd

GOvo
bd

CO
oo

| 
16

.4
4

ON
bd

Osp
N-

ONrb
vd

o
oo* oo

d/
P

c oo
go

do
g ->

oo
go

£ tq
CN
GO

GO
vdco

CN
©

>
cd °®idco

Os
00

43
.5

4

cdCO CN
oVO

ooVO GO

44
.8

2 CN
do

GO
rbb̂ 53

.7
1 oo

CNV 28
.9

4

rb
b̂
ON
GO

oo
GO

CO
VO 13

.4
7 bq

r b
bq
drb

ON
GO

B
C

oo
©

VOCO
d

ONO
O

N*
<N

b'*
O

oCO
d

OO
o s

oCO
p

ovq
d

00
d

VOcq
d

oo
d

VOco
d d

b̂
CN
d

■̂bfN
d

vo
d

voco
d

r b
CN
d

Os
CN
d

rb
CN
d

CN
CN
d

00
d

00
d

GO
CN
d

rb
CN
d

oo
d p

o
CN
d

rb
CN
d

CN
p*

Sp
ec

tr
al

T
yp

e

>
O

> >Ph s
>00Uh

oo
o

go

CN

s
Oo >

2 G
O

IV >o
>

5
>o >00u,

vr>
a o

>b̂Urn §
VO
o G

5I
V GO

O
>rb
a

>o
a

>o
a

>vo
a a

| 
G

O
IV

£ G
2I

V >vn
a G

3I
V

M
et

al
lic

ity
 

m
as

s 
fr

ac
tio

n

"53
! ,  *  

2
",

0.
02

59
 

|

VOO
gop
©

26100

",

0.
03

67
 

|
0.

01
75

 
1

0.
03

67
0.

02
42

 
|

0.
04

31
 

|

CNOrbp
d

rbCOCOp
d

0000
p
d

| 
0.

01
97

 
|

| 
0.

02
72

 
|

oo■̂b
CNo
d

\ 
0.

03
58

 
|

| 
0.

04
11

 
!

I 
0.

02
72

1 
0.

05
95

| 
0.

03
67

| 
0.

02
06

 
1

", | 
0.

02
48

| 
0.

03
42

0.
02

31 s oco
p

[ 
0.

03
34 r bCOCOO

d

15
‘

M
od

el

0.
02

76
 

1

CO
co
goO
©

60Z0 
0 0.

03
90

 
|

0.
01

87
 

|

0.
03

90
0.

02
58

 
|

| 
0.

04
58

 
|

0.
04

28
 

|
| 

0.
03

56
 

|
I 

0.
02

00
 

|
I 

0.
02

09
 

|
I 

0.
02

89
 

|

s o
CN
O
d

| 
0.

03
81

 
|

| 
0.

04
38

 
|

ON
OO
CN
O
d

| 
0.

06
32

| 
0.

03
90

| 
0.

02
19

| 
0.

02
64

| 
0.

03
64

0.
02

46 o
CO
CNp

1 
0.

03
56

| 
0.

03
56

SB “ Q

I *

rbp r-rq
©

CO
<N

C>

COp
GOO rb

©

COp
’-H

00
©

CO OStq
d

OO r̂00
d

CN
VOO CN

CN cq VOp GO
Os
d

CN CO
OS
d d-

GOO GOO op CN00
d

CN c q
***H

* p
o
p CN

St
ar

| 
O

G
LE

-T
R

-5
6 

|
| 

O
G

L
E

-T
R

-l 
13 

|
1 

O
G

L
E

-T
R

-l
32 

[

G
lie

se
 

87
6

HD
 

21
23

01
HD

 
73

25
6

GJ
 

43
6

55 
C

nc
HD

 
63

45
4

HD
 

14
90

26
HD

 
83

44
3

HD
 

46
37

5
T

rE
S-

l
HD

 
17

99
49

HD
 

18
71

23
| 

O
G

LE
-T

R
-I

O
 

|
Ta

u 
B

oo

<coVO
OOoo

HD
 

33
00

75
HD

 
88

13
3

HD
 

26
38

BD
-1

0 
31

66
HD

 
75

28
9 00

GO
r b
OsO
CN

o
X

oob-vor-
Q
X

| 
O

G
L

E
-T

R
-l 

11 CO
r b

O'
r b

Up
s 

A
nd

51 
Pe

g
HD

 
49

67
4

HD
 

10
97

49



O
ut

er
 

H
ill

 
R

ad
iu

s 
M

ul
ti

pl
ie

r
(^

ei
l)

m

7.
89

0
6.

21
4 »o

»o 6.
05

1
9.

25
4

7.
73

3

co

7.
95

2 
| \ 

IZV
6

torrcq
rf

OVOS00
00 7.

82
4

I 
zzzs CO

4.
29

5
4.

39
6 

1
3.3

04
 

1
1 

8.2
22

 
1

!>cq

4.
39

6 
;

CO

1 
7.

89
0

co

I 
6.

37
0

1 
7.

89
0

4.
14

1 
j

\ 
10

.1
36

 
|

tr> VOcq
oo

• 
10

.7
36

 
|

! 
9.

09
8 

;

CNCNcq

i 
10

.0
59

6.
05

1
5.

69
7

! 
5.

95
4

! 
7.

13
9

m

! 
18

.3
70

In
ne

r 
H

ill
 

R
ad

iu
s 

M
ul

ti
pl

ie
r

(«
!„

,)

m
2.

71
1 

!
2.

74
7 

!
2.

81
5

2.
75

5 
i

to00
<N*

j 
I \L

Z CO

2.
71

2 
|

2.
42

8
2.

87
6 

|
2.5

96
 

!
2.

71
1 

i
2.

70
8

co

2.
88

0 
j

r-00
CN 2.

97
0 

!
1 

2.
70

8 CO
oo
CN

00
CN

CO

W
L

Z CO

! 
2.

73
9

CN 2.
89

3
| 

2.
17

6
1 

2.
38

7
! 

2.
70

0
1 

1.
96

3
I 

2.
53

6
1 

2.
71

2
! 

2.
20

4 t/Dto
r q
CN

tr>r-
t q
CN

| 
2.

76
0

| 
2.

71
5

m

! 
-0

.6
13

© 0.
3

© 0.
08

1 
1

0.1
3 

j
0.5

5 
1

0.
27

7
■ 0.3

1 
i

0.5
7 

I
0.

04
8 00OV

© 0.2
9 

i

VOcq
©

o

0.
04

6 toO
o

©
©

VOcq
o 0.

04
9 top

o
o cq

© o

i 
0.

15 cq
o ’

POO 
1 | 

0.
63

6
1 

0.
58

3
i 

0.
39

0.
67

7
| 

0.
52

9
I 

0.
22

8
| 

0.
63

! 
0.

13
0.

11
1 

0.
12

43
! 

0.
21 o

| 
0.

92
7

< o
o

| 
1900

r-o
o 0.

06
5 

|
0.

07
4 

j

cq

0.
07

2

! 
600 to

4.1
7 

|
00oop
©

o
o* 0.

12
9 

1
3.

68
0.

11
4

© 0.
11

9
0.

12
8

I 
3.

92

ZZVO

'O-
o

! 
0.

14
9 sro

| 
0.

15
i 

0.
22

9
! 

3.
16

7 ZZ0

| 
0.

29
4 v

z

| 
0.

28
! 

0.
25

| 
0.

29
| 

2.
87

| 
0.

28
4

1 
0.

32
j 

0.
30

2
! 

0.
32

| 
0.

35
| 

0.
3

! 
0.

43
9

C a
s 0.0

56
 

1

vq OV

0.2
3 

j
1.3

7 
I

<N 13
.75

 
1

0.0
44

 
|

1.6
7 

1

CO
00p rf

© 0.7
8 

i
12

.7 
1

0.
04

7
O
•O’

| 
ZZV 

0
| 

0.
05

7 
1

1 
1.5

02
 

1

Z
90

CO
cd

H
'O

00•O’
o

1 
0.

72

n
o rq

cd

I 
1.

86

LI 
9 

| 1 
0.

19

...........™
 

! | 
7.

2
17

.1
! 

0.
2

0.
89

| 
0.

3
| 

6.
29

2
! 

0.
23

! 
11

.0
2

i 
3.

41

P
la

ne
t

X X) x> X> X> o x> "O x> O x> X X O x> X x> o X X X X) X X X o -C> X o X X X (J X X X x> X X X

M
S

ti
m

e/
G

yr 2n
d

m
od

el
<4

76
 

i

CM
V

4.9
9 

;
16

.2 
|

7.
75

43
.1 

|

6.
42

25
.6 

!
4.1

3 
i

2.
35

23
.4 

|
25

.2 
1

19
.0 

i
- 

... 
. 10
.8 cq

©
tq
©

IL'6 9.7
8 

i
CN
toCN 7.

26

L 
m

.........

6.
68

tq
O

o
OV 9.

71
| 

25
.6 tq

Ov

I 
40

.3
15

.0
I 

9.
71

vzz 
1 ! 

12
.0

l5
'

m
od

el ooto
V 6.1

5 
i

17
.8 

|

12
.9

47
.5 

!

COrq
00 28

.3 
i

5.3
7 

1

r-
r q
cd 22

.0 
j i 

v
sz VO CN

CNto
vo vq

CN CN
Ov

! 
rsz

op
00

| 
8'Z

l 8.
63 vq vzz 12
.6

i 
28

.3
i 

12
.6

I 
52

.2
| 

19
.4

| 
12

.6
! 

22
.0

i 
19

.9

A
ge

/
G

a *cn
V

a)
ow

zS> 04
A

T
Tq
to VO

Tncq
©

r-
T-
CN

",
o
Tq
vd

Ov
cd

cq
cd

©
A

1______

-
To
t^

%
cd

tq
r̂ ", OO ", "oo

CN
",

,rei 
|

rq
vd

O
to

Tnvq
o

S 10
.55

 
|

<no
so 8.

2i
 

;
7.9

5 
1

6.
16

9.1
8 

|

5.
15

8.0
5 

i ; 
669 5.

94

| 
n

-9

vd
r-to

5.
71 voCO

OV
Ov
VO*

LV
L

ZL’L 
! ! 

7.
79

Z
Y

9 >
•o 7.

62 00

| 
8.

69

6.
92 00

tr>
| 

7.
54

| 
8.

21
1 

7.
98

i 
6.

78
| 

7.
30 COas

oo

d/
P

c

| 
9Z

9 88
.6 

|
58

43
.12

 
|

37
31

.26
 

|

15
.3

30 
i

38
.57

 
I

42
.4

3
21

.9

-
00

15
.8

9
42

.3
7 oz zv

40
.3

2 Ov
Ov’

33
.9

8
! 

16
.7

64
.5

6 ooCO

| 
42

.9 33

; 
44

.3
7

! 
30

.4
9

46
.7

3
| 

35
.9

i 
28

| 
58

.3
8

B
C

-2
.12

 
|

O
o -0

.18
 

|
-0

.24
 

|

-0
.3

6
-0

.46
 

|

-0
.2

1
-0

.36
 

|
-0

.09
 

|

-0
.2

8

3© p

| 
-0

.46
 

|

Ocq
p -0

.46
 

|
I 

-0
.36

 
|

j 
-0

.2
5

| 
-0

.2
1

| 
-0

.46
 

|

-0
.2

9 oo
p -0

.1
8

| 
-0

.2
0

| 
-0

.3
6

-0
.2

4
| 

-0
.3

6
I 

-0
.2

0
1 

-0
.4

1
! 

-0
.2

4
| 

-0
.2

9
| 

-0
.1

7
! 

-0
.2

4

Sp
ec

tr
al

T
yp

e co o
u

I 
oo

G5
 

|

G
8I

V >
2

G
3I

V
/V

KO
V 

|

>Os
tu G

4I
V

G5
V 

1 ! 
A

I’M
| 

AZVl G
61

V >
2

1 
G

31
V

/V
G

6V
G

31
V

| 
K

2V G
5

i 
G

O
V

GO
[ 

G
2V

| 
K

O
V

G
5 >o

1 
G

2V >
5

tO
a

I 
G

5I
V

| 
F9

V to
a

M
et

al
lic

ity
 

m
as

s 
fr

ac
ti

on

•a -o
M °  

£

I 
9010'0 0.

02
37

 
|

0.
03

27
 

| | 
0910 

0 0.
03

75
0.

01
92

 
|

0.
03

58 oOO
©
o 0.

02
98

 
|

0.
03

86
0.

00
92

 
|

00O
O
© 0.

04
31

 
|

O
TfCOcop

t 
0.

03
75

 
|

",

to00CNo
©

r̂too
o

1 
0.

01
19

 
|

",

\ 
IZIO

O

0.
02

54
| 

0.
02

06
| 

0.
04

61

0.
02

37
| 

0.
02

11
1 

0.
02

72
| 

0.
02

78
1 

0.
03

58 CN
cnp
o

| 
0.

00
59

| 
0.

05
06

I5
'

M
od

el CN

©
© 0.

02
52

 
|

OOo-cop
o

o

p
o 0.

03
99

0.
02

05
 

|

OOCOp
o 0.

01
91

 
|

0.
03

17
 

1

T}-O
o

1 
86000

to

p
o

OOtoTfO
o

o
TotoCOo

| 
0.

03
99

 
|

i 
0.

03
03

 
1

| 
0.

00
60

 
!

| 
0.

01
26

 
| \ 

6ZI0 
0 

1

0.
02

70
| 

0.
02

19
1 

0.
04

91

0.
02

52
| 

0.
02

24
| 

0.
02

89
I 

0.
02

96 OOonp
cd

| 
0.

03
32

| 
0.

00
63

OOrntop
cd

0.3
1 

|

CO
(N

0.
92

0.
98 0.7
 

1

oop

0.7
9 

;
1.2

7 
|

1.
39

0.8
3 

i
0.7

9 
j

0.7
8 

|

960

tor̂
o

CNO to
Ov
©

op

0.
79

1.
12

5

Os
<3) 1.

05 toO oo
cd O

0.
79 op

; 
0.

74
0.

87 OO

0.
82 0.
9

St
ar

! 
G

15
81

 
!

i 
HD

 
11

82
03

| 
HD

 
68

98
8

| 
HD

 
16

87
46

 
|

HD
 

21
71

07
1 

HD
 

16
20

20
 

!

HD
 

16
06

91
: 

HD
 

13
03

22
| 

HD
 

10
81

47

HD
 

38
52

9
! 

HD
 

43
08

 
!

G
18

6 
|

HD
 

99
49

2

HD
 

19
03

60
i 

HD
 

27
89

4
I 

HD
 

19
50

19
1 

HD
 

10
21

17
HD

 
64

34
HD

 
19

22
63

HD
 

11
96

4
1 

rho
 

C
rB

HD
 

74
15

6
| 

HD
 

11
76

18
HD

 
37

60
5

HD
 

16
84

43
HD

 
36

51
| 

HD
 

12
15

04
HD

 
10

19
30

| 
HD

 
17

89
11

 
B

[ 
HD

 
16

14
1

| 
HD

 
11

47
62

| 
HD

 
80

60
6



O
ut

er
 

H
ill

 
R

ad
iu

s 
M

ul
tip

lie
r

(«
».

) o

00*
CN
00 7.

S2
4

©
00

©

00
rf
ON
OO 6.

21
4

4.
51

9
6.

21
4 OOCN© co CN

00
r-oo
CO 9.

17
7 NOlO

OO 7.
95

2 r-
NO©
OO

©

00* 8.
57

1
7.

65
9

10
.6

24
7.

43
4

8.
17

2
7.

02
8 00

CO
00* 7.

34
2

CO

7.
43

4 OO
CO
oo

CN00
NO

; 
4.

87
2

7.
89

0

ON
00 8.

54
7

00
tT*

1 
7.

52
2 

1
8.

97
2

8.
69

2
7.

89
0

6.
65

5

In
ne

r 
H

ill
 

R
ad

iu
s 

M
ul

tip
lie

r
(H

in
t) On

N©
CN 2.

70
6

2.
71

1
2.

71
2 to

ON
NO
CN 2.

58
4

2.
74

7
2.

86
1

2.
74

7
2.

71
7

co

i 
W

L'Z 2.
91

7
2.

51
0

2.
69

0 
1

2.
71

2

CN

to
ON
NO
CN 2.

67
3

£
CN*

CO©©
CN

W
L'Z

! 
2.

71
0

2.
71

7
2.

70
3

2.
71

2

CO £
CN 2.

70
3

2.
71

1 °ôOoo
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Table 3.20 Potential Habitability o f the Known Exoplanetary Systems

Star First Stellar Grid Second Stellar Grid Stellar
Habitability Habitability Parameters

Habitability
Now At some time Now At some time Now

OGLE-TR-56 Yes Yes Yes Yes Yes
OGLE-TR-113 Yes Yes Yes Yes Yes
OGLE-TR-132 No Yes No Yes No

G l i e s e  8 7 N o Y e s N o Y e s N o

HD 212301 Yes Yes Yes Yes Yes
HD 73256 No Yes No Yes No

GJ 436 Yes Yes Yes Yes Yes
55 C n c Y e s Y e s Y e s Y e s Y e s

HD 63454 Yes Yes Yes Yes Yes
HD 149026 Yes Yes Yes Yes Yes
HD 83443 Yes Yes Yes Yes Yes
HD 46375 Yes Yes Yes Yes Yes

TrES-1 Yes Yes Yes Yes Yes
HD 179949 Yes Yes Yes Yes Yes
HD 187123 Yes Yes Yes Yes Yes

OGLE-TR-10 Yes Yes Yes Yes Yes
Tau Boo Yes Yes Yes Yes Yes

HD 188753 A Yes Yes Yes Yes Yes
HD 330075 Yes Yes Yes Yes Yes
HD 88133 Yes Yes Yes Yes Yes
HD 2638 Yes Yes Yes Yes Yes

BD-10 3166 Yes Yes Yes Yes Yes
HD 75289 Yes Yes Yes Yes Yes

HD 209458 Yes Yes Yes Yes Yes
HD 76700 Yes Yes No Yes Yes

OGLE-TR-111 Yes Yes Yes Yes Yes
HD 149143 No Yes No Yes No

51 Peg Yes Yes Yes Yes Yes
U p s  A n d N o N o N o N o N o

HD 49674 Yes Yes Yes Yes Yes
HD 109749 No Yes No Yes No

G1581 No Yes No Yes No
HD 118203 No No No No No
HD 68988 Yes Yes Yes Yes Yes

HD 168746 Yes Yes Yes Yes Yes
HD 217107 31 41 No 11 No
HD 162020 Yes Yes Yes Yes Yes
HD 160691 No No No No No
HD 130322 No Yes No Yes No
HD 108147 Yes Yes Yes Yes Yes
HD 38529 No No No No No
HD 4308 Yes Yes Yes Yes Yes

G186 No Yes No Yes No
HD 99492 Yes Yes Yes Yes Yes

HD 190360 Yes Yes 91 Yes 61
HD 27894 Yes Yes Yes Yes Yes

HD 195019 Yes Yes Yes Yes Yes
HD 102117 Yes Yes Yes Yes Yes

HD 6434 Yes Yes Yes Yes Yes
HD 192263 No Yes No Yes No
HD 11964 21 81 No 71 11

r h o  C r B Y e s Y e s Y e s Y e s Y e s

HD 74156 No No No No No
HD 117618 Yes Yes Yes Yes Yes
HD 37605 < 60 Yes Yes Yes Yes
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Star First Stellar Grid 
Habitability

Second Stellar Grid 
Habitability

Stellar
Parameters
Habitability

Now At some time Now At some time Now
HD 168443 No IB No No No

HD 3651 < 90 Yes Yes Yes Yes
HD 121504 Yes Yes Yes Yes Yes
HD 101930 < 80 Yes Yes Yes Yes

HD 178911 B Yes Yes Yes Yes Yes
HD 16141 Yes Yes Yes Yes Yes

HD 114762 Yes Yes Yes Yes Yes
HD 80606 No 3 0 No 5 0 No

70 Vir Yes Yes Yes Yes Yes
HD 216770 5 0 Yes 7 0 Yes Yes
H D  5 2 2 6 5 Y e s Y e s Y e s Y e s Y e s

HD 208487 Yes Yes Yes Yes Yes
HD 34445 Yes Yes Yes Yes Yes

GJ 3021 No 8 0 No 9 0 No
HD 93083 No Moon & Yes 2 0 Moon & Yes 9 0
HD 37124 6B 7B & Moon (c) 6B 7B & Moon (c) 4B

HD 219449 No No No No No
HD 73526 4 0 8 0 9 0 9 0 Yes

HD 104985 No Yes No Yes No
HD 82943 No No No io No

HD 169830 No No No No No
HD 8574 4 0 9 0 4 0 9 0 4 0

HD 202206 No No No No No
HD 89744 No 4 0 10 5 0 4 0

HD 134987 2 0 8 0 4 0 8 0 6 0
HD 12661 No No No No No

HD 150706 No Yes No Yes No
HD 40979 No 8 0 No 8 0 No
HD 59686 No No No No No

HR 810 No 8 0 No 9 0 No
HD 142 No 6 0 No 6 0 No

HD 92788 10 4 0 5 0 5 0 No
H D  2 8 1 8 5 M o o n M o o n  &  5 0 M o o n M o o n  &  6 0 M o o n

HD 196885 2 0 7 0 3 0 7 0 3 0
HD 142415 No No No 10 No
HD 177830 3 0 6 0 4 0 7 0 6 0
HD 108874 Moon (b) Moon (b) No Moon (b) No
HD 154857 4 0 4 0 4 0 4 0 4 0

HD 4203 2 0 2 0 3 0 3 0 No
HD 128311 No No No No No
HD 27442 5 0 9 0 7 0 9 0 9 0

HD 210277 No No No 10 No
HD 19994 2 0 6 0 4 0 5 0 4 0

HD 188015 4 0 Moon & 6 0 5 0 Moon & 5 0 Moon
HD 13189 No No No No No
HD 20367 No Moon & 2 0 No Moon & 2 0 No

HD 114783 41 51, Moon & 2 0 11 & Moon 21, Moon & 4 0 41
HD 147513 No No No No No
HIP 75458 No No No No No
HD 222582 No No No No No
HD 65216 No No No No No

HD 183263 No No No No No
HD 141937 No No No No No
HD 41004 A No 21 No 21 No
HD 11977 No No No No No
HD 47536 No Moon No Moon No
H D  2 3 0 7 9 M o o n 1 1  &  M o o n M o o n 1 1  &  M o o n M o o n
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Star First Stellar Grid 
Habitability

Second Stellar Grid 
Habitability

Stellar
Parameters
Habitability

Now At some time Now At some time Now
16 CygB No No No No No
HD 4208 9T Yes & Moon 91 Yes & Moon 6T

HD 114386 71 81 61 81 61
HD 45350 No No No No No

Gamma Cephei No No No No No
HD 213240 No No No No No
HD 10647 21 41 & Moon 21 41 & Moon 21
HD 10697 Moon 31 & Moon No 21 & Moon Moon

4 7  U M a N o M o o n  ( b ) N o M o o n  ( b ) N o

HD 190228 No No No No No
HD 114729 61 71 61 71 No
HD 111232 51 61 51 61 11

HD 2039 No No No No No
HD 136118 No No No No No
HD 50554 No No No No No

H D  1 9 6 0 5 0 N o 2 1 N o 2 1 N o

HD 216437 11 31 No 11 No
H D  2 1 6 4 3 5 N o N o N o N o N o

HD 106252 No No No No No
HD 23596 No No No No No

14 Her 21 41 No 11 31
HD 142022 A No No No No No

HD 39091 No No No No No
HD 70642 Yes Yes Yes Yes Yes
HD 33636 No No No No No

E p s i l o n  E r i d c m i N o 6 1 N o 6 1 N o

HD 50499 71 81 51 61 61
HD 117207 Yes Yes 91 Yes Yes
HD 30177 51 Yes 51 Yes 31
HD 89307 No 61 No 51 No
H D  7 2 6 5 9 Y e s Y e s Y e s Y e s 7 1

Qualification Footnotes:
Yes The entire habitable zone may house a habitable Earth-like planet.
No No part o f the habitable zone may house a habitable Earth-like planet.
Moon A  habitable moon may exist around a giant within the habitable zone,
xl orxO 10x% o f  the habitable zone may house a habitable Earth-like planet inside (I) or outside

(O) the giant planet’s orbit (to the nearest 10%). 
xB 10x% o f  the habitable zone may house a habitable Earth-like planet between the orbits o f

two giant planets (to the nearest 10%).
Bold systems have multiple planets; i t a l i c i s e d  s y s t e m s  have been studied in detail, with the orbital integrator.

Some of the stellar ages in Table 3.18 are subject to discussion and do not match the 
predictions of both stellar grids used here. The priority was given, however to the 
literature values. There appears to be no indication that one stellar grid is more “correct” 
than the other. Generally there is good agreement between the two, with the first grid 
(constant helium mass fraction) giving longer main sequence lifetimes for higher 
metallicity stars of the same mass. Consequently the second grid, with varying helium 
mass fractions, gives longer main sequence lifetimes for stars with lower metallicity.

Present day habitable zone boundaries in Table 3.19, calculated from stellar parameters, 
are for the most part in good agreement with those determined from both stellar grid 
models. However, it must be remembered that HZ boundaries are a rather imprecise 
concept and very much open to differing definitions and interpretation. Hence the 
uncertain nature of habitable zones and stellar ages must be bom in mind where conflicts 
do occur.
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In determining whether systems could house habitable Earth-like planets in orbits confined 
within habitable zones, it is assumed that those systems with hot or warm Jupiter planets 
would still have smaller planets within their systems. The inward migration of the giant 
planets to their present positions may well have dispersed primordial protoplanets and dust. 
However such bodies may re-assemble in orbits within a system’s ice-line, after migration, 
to form Earth-sized rocky planets (Fogg & Nelson, 2005 and Mandell & Sigurdsson, 
2003). It is assumed, therefore, that any system with a hot or warm Jupiter planet could 
house habitable Earth-like planets.

It should be noted from Table 3.19 that for either stellar grid model, if the inner HZ limit 
(defined by the runaway greenhouse effect) at the end of the main sequence of any star is 
less than the outer HZ limit (defined by the maximum greenhouse effect) at ZAMS, then 
that star will have a continuously habitable zone bounded by these limits. However, CHZs 
are only found in stars of 1M0 or greater. As a general guiding rule, at any time during any 
star’s main sequence lifetime, the outer HZ is approximately twice the distance from the 
star than the inner HZ. As a rough guide the orbital periods of planets at these boundaries 
for any star would be approximately 300 days at the inner HZ boundary and 600 days at 
the outer HZ boundary.

For Table 3.20, when determining whether an Earth-like planet may be habitable in an 
exoplanetary system, the only negative entry is “No”. All other entries indicate 
possibilities for life occurring within a system. Although data in tables 3.18 and 3.19 may 
contain parameter errors, the inclusion of these in this analysis would have created an 
unmanageable amount of data which would not have had a significant effect on the overall 
summary statistics given in table 3.22. The most interesting systems are those which could 
house a detectable habitable planet and a moon at different times during their main 
sequences. The most interesting of all is HD 114783, which lias the possibility to house a 
detectable habitable body throughout its main sequence lifetime from 2Gyr after ZAMS 
onwards, whether it is a planet inside the giant’s orbit, a moon of the giant or another 
planet beyond the orbit of the giant. Indeed, the second stellar grid model’s present day 
prediction is for a possible inferior detectable habitable planet to the giant and a detectable 
habitable moon.

The assessments for habitability of the ten new and revised systems in table 3.21 gave the 
same results for both Mazzitelli stellar models. There is no difference in the potential 
habitability outcomes of the three systems with updated data. Of the seven new systems, 
three could house a habitable Earth now, and four could at some time during their main 
sequence.

Table 3.22 shows a summary of the number of potentially habitable systems among the 
150 examined, derived from tables 3.20 and 3.21. It also shows the number of giant 
planets with low eccentricity orbits confined to the habitable zone, which may house their 
own habitable satellites. These would be the most difficult habitable bodies to identify but 
are included as part of the totals of potentially habitable systems.

Table 3.22 Numbers o f potentially habitable systems out o f the 150 known at 14/06/2006.

Stellar Model Circumstances Potentially Habitable 
Systems

Potentially Habitable 
Moons

1st Stellar Grid, now 85 4
1st Stellar Grid, at some time 111 13

2nd Stellar Grid, now 79 3
2nd Stellar Grid, at some time 113 13

Stellar Parameters, now 80 4
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The three figures for “now” are in very close agreement, as are the two for “at some time” 
and show that quite different approaches to determining the number of potentially 
habitable systems yield very similar results. From the figures above, about 55%, or just 
over half, of the known planetary systems could house a habitable planet or moon now. 
They also show that 75%, or three-quarters, of the known systems could house a habitable 
planet or moon at some time during the main sequence lifetime of their stars. These results 
are much higher than those of Menou and Tabachnik, 2003 and Tarter and Turnbull, 2003, 
who both predict that about one third of systems at their time of writing could presently 
house a habitable planet. Menou and Tabachnik investigated the perturbations of possible 
terrestrial planets by the giant, but only over the short period of one million years. Their 
habitability criteria were also very conservative in that the planet must remain within the 
HZ at all times, not its semimajor axis. Tarter and Turnbull required 3Gyr for detectable 
habitable planets to evolve and also that the entire habitable zone is available for any 
potential Earths. However, using the same habitability criteria as here, the figures in this 
thesis are only slightly higher than Jones et al. (2005) and Sleep (2005) (half now, two- 
thirds at any time), and the same as previously quoted values of Underwood et al. (2003). 
Generally the fraction of habitable systems is expected to rise with time, as the majority of 
current exoplanet discoveries are transiting “hot Jupiters”, which would have little 
gravitational effect on the orbits of planets within habitable zones. Perhaps in the future it 
may be more productive to identify new exoplanetary systems which cannot house a 
habitable Earth-like planet or moon, as it seems that this list may be shorter.
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4. Modelling Exoplanetary Systems with One 
Giant

4.1 The Mercury Orbital Integrator
The search for extraterrestrial life will be enhanced if efforts are concentrated on stars 
where Earth mass planets could have existed in stable orbits confined to the habitable zone 
for at least the last billion years. Orbits defined as confined to the habitable zone have 
semimajor axes within the boundaries of this zone independent of eccentricity. This can be 
justified in that planets with such highly eccentric orbits would spend a relatively short 
time near to periastron. This may allow natural shielding phenomena, such as radiation 
reflecting cloud cover, to prevent overheating and planetary sterilisation. The time near to 
apastron would be much longer; however life can be more resistant to extremes of cold 
than to extremes of heat by using hibernation techniques. The stability of such orbits in 
exoplanetary systems can be examined in detail by using a mixed variable symplectic 
orbital integrator (Chambers, 1999). Phenomena such as planetary axial tilt cannot be 
incorporated into these analyses, however, and survival of life on Earth-like planets with 
high orbital eccentricities under these conditions can only be theorised using atmospheric 
model studies over time.

The symplectic orbital integrator used here is John Chamber’s Mercury version 6.1 
computer program and runs within a 32-bit DOS box in a Windows operating system on 
personal computers or within a Linux system on Alpha computers. The theory behind the 
integrator has already been comprehensively covered (Sleep, 2005 & Chambers, 1999) and 
will not be reproduced here. The instructions for using the program are in the files named 
“Mercury6.doc” and “Mercury6.man” within the zipped file which can be downloaded 
from the internet as part of the complete Mercury package (Chambers, 2006)

The Mercury orbital integrator contains a second-order mixed variable symplectic (MVS) 
integrator (Chambers, 1999), which has already been extensively tested on exoplanetary 
systems, as described in Chapter 1. The MVS integrator is designed to handle systems 
which have the largest mass at its centre, ideal for exoplanets but not satellites of giant 
planets. It is about 10 times faster than other integrators, which makes it an essential tool 
for the integration runs carried out on the exosystems investigated here. Its symplectic 
property, from the incorporated symplectic correctors within the algorithm (Wisdom, 
1996), means there is no build up of total energy and total angular momentum of the 
system during runs. Time intervals between successive integration calculations of 
planetary positions are set to 0.05 of the smallest orbit’s period, since time intervals larger 
than this may lead to inaccuracies in positional calculations. Planetary orbital information 
is stored in backup or “dump” files every 500,000 time steps. This is useful since an 
integration can be resumed from these files after an unscheduled termination, or continued 
after a termination due to a close encounter using a different integration mode and close 
encounter parameter value (see later). Orbital elements for the bodies are usually stored 
10,000 times during the course of a 109 year run. One minor drawback here is that time 
steps need to be very short for exosystems with a giant planet in a short period orbit, and a 
run of 109 years can take many days (even weeks). The main drawback with the MVS 
integrator is that it cannot handle close encounters between bodies, inside the 3 Hill radii 
boundary of the larger body. Integrations are automatically halted at this distance, hence 
avoiding usage of the MVS integrator under unsuitable circumstances. The Hill radius is 
the distance from a body along its radius vector from the large central mass, where its 
gravitational attractive force on a small particle is equal to that of the central mass in its
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orbital rotating frame. The Hill radius distance, R h , (used in the Mercury Orbital 
Integrator, see Appendix 1) for a giant planet of mass Mp orbiting a star of mass M* at a 
semimajor axis distance a, is (Murray & Dermott, 1999):

RH — a 4.1.

The type of integrator used for studies of planet orbits, which cross the 3 Hill radii 
boundary is a “Hybrid” integrator. This is a combination of the MVS integrator and a 
Bulirsch-Stoer integrator (BS2), a generally robust model for V-body problems, usually 
used when all other integrators fail (Chambers, 1999). When a small terrestrial planet 
approaches to within 3 Hill radii of the giant planet the integrator automatically switches 
mode from MVS to BS2. Orbits can then be monitored properly throughout the entirety of 
any close encounters.

Previous work has shown that orbits rarely become unstable after 500Myr and of those that 
do, variations in orbital eccentricity are observed which get ever larger until the run 
terminates (Jones & Sleep, 2002, Jones et al., 2001). So if a terrestrial planet can exist in a 
confined orbit within the habitable zone for lGyr it is likely to remain there for the 
duration of that star’s main sequence lifetime. In a normal MVS orbital integration run, 
the program terminates when the orbit of the Earth-mass planet has a close encounter with 
the giant planet, i.e. it approaches within 3 Hill radii. Under “Hybrid” runs the switch 
which prevents close encounters from happening may be turned off, so runs will continue 
until there is a possible collision between the terrestrial planet and the giant planet. If the 
Earth like planet collides with the star, however, the program will continue to run with 
solely the star and giant. This will also occur if the Earth-mass planet’s distance from the 
star exceeds a distance of 100AU, where it is then considered to be ejected from the 
system.

4.2 Starting Configurations for Integration Runs
For each orbital integrator investigation, an Earth-Moon planet (a single body of the 
combined masses of Earth and the Moon) is launched into a range of orbits, within the 
habitable zone of the known exoplanetary system, and monitored for the duration of its 
orbital survival or up to one billion years, whichever is least. The period of one billion 
years was chosen as life was well established after this time in Earth’s history (Ward & 
Brownlee, 2000). Particular interest in orbital behaviour is taken around any regions of 
orbital resonance, where the Earth-Moon planet would orbit the star {p + q)lp times for 
every superior giant planet orbit, and p!(p + q) times for every inferior orbit, where p  and q 
are small positive integers. In all cases the only bodies considered in the systems are the 
known giant exoplanet(s), the star and the Earth-Moon planet.

The Earth-Moon orbits always have an initial eccentricity of 10'5 but vary in initial 
semimajor axis distance from the star, orbital inclination with respect to that of the giant 
planet and longitude of periastron, Axn (Figure 4.1), with respect to the giant planet. This is 
so for different configurations of the giant planet within the system, where its semimajor 
axis and eccentricity may be varied due to measurement errors in these parameters. The 
mass of the giant is usually taken to be the minimum mass but is occasionally increased to 
1.5 times minimum mass to simulate an orbital inclination of 41°. 81 with respect to the 
plane of the sky. If the orbit is stable for one billion years, it is assumed that the orbit will 
remain stable for the main sequence lifetime of the star.
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Periastronlongitude, A £0 = 0° Periastronlongitude, Aco =180°
Figure 4.1. The starting positions o f  an Earth-Moon planet with respect to its periastron longitude 

relative to the giant planet’s in a single giant planet system

4.3 Comparison between Computer Types
Prior to further detailed investigations of new systems, a brief study was undertaken to 
compare the same orbital integration runs on the two types of computer platform, PCs and 
Alphas. There was a mix of “stable” runs, which lasted 1 Gyr before termination and 
“unstable” runs which ended themselves due to some catastrophe within the system as 
outlined at the end of section 1 in this chapter. Times before program termination for the 
same initial unstable configurations may differ between the types of machine because of 
the number of significant figures used to calculate results within data.

Table 4.1 compares the times of unstable runs between like configurations and also 
illustrates agreement between the two platforms for stable runs. “Giant a” and “Giant e” 
are the initial semimajor axis and initial eccentricity of the giant planet (at t = 0) 
respectively, “E-M a” is the initial semimajor axis of the Earth-Moon planet (its initial 
eccentricity is always 10'5), A w ( 0 )  is the difference in periastron longitudes between the 
giant planet and the Earth-Moon a tt = 0 , t is  the time of the integration run in years and O 
is the outcome of a run that terminates due to a catastrophe. Full results from runs showing 
variation in the Earth-Moon’s semimajor axis and eccentricity during the runs has been 
omitted since they are not relevant to this small examination. The configurations were 
chosen at random from several systems to illustrate this phenomenon. The theory behind 
the integrator programming suggests that the same trends would remain, i.e. stable and 
unstable orbits on one machine would remain so on the other. The information within 
table 4.1 bears this out, even though two “unstable” runs for s-Eridani had to be continued 
well beyond 1 Gyr before they destabilised and hence verified this. Also two runs that 
terminated before 1 Gyr had different catastrophic outcomes, which is unimportant as the 
runs were still “unstable”. Any differences between the outcomes of runs with the same 
initial parameters were attributed to the two computer platforms using different levels of 
significant figures when calculating each time step. From this information, it was safe to 
assume that future planetary studies for any one system would be confined to either an 
Alpha machine or a PC to maintain consistency in results trends.
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Table 4.1 Comparison between like runs performed on a PC and an Alpha computer.

Computer
Type

Star Starting Parameters t  /  years O
Giant a ! AU Giant e E -M a/A U A g j ( 0 ) / °

PC s-Eri 3.3 0.8 8.5 0 3.147x10* E
Alpha e-Eri 3.3 0.8 8.5 0 1.085x10* E

PC s-Eri 3.3 0.8 8.5 180 > 10* -

Alpha s-Eri 3.3 0.8 8.5 180 >10* -

PC s-Eri 3.3 0.8 8.6 0 1.496 x 10* C
Alpha s-Eri 3.3 0.8 8.6 0 7.511 xlO' c

PC s-Eri 3.3 0.8 8.6 180 > 10* -

Alpha s-Eri 3.3 0.8 8.6 180 V © 43

-

PC s-Eri 3.3 0.8 8.7 0 1.818x10* c
Alpha s-Eri 3.3 0.8 8.7 0 7.511x10* E

PC s-Eri 3.3 0.8 8.7 180 5.333 x 10s c
Alpha s-Eri 3.3 0.8 8.7 180 4.932 x 10* c

PC s-Eri 3.3 0.608 7.8 0 2.964 x 10* PC
Alpha s-Eri 3.3 0.608 7.8 0 1.632 xlO8 PC

PC s-Eri 3.3 0.608 7.8 180 2.195 x10s E
Alpha s-Eri 3.3 0.608 7.8 180 2.911x10* E

PC s-Eri 3.3 0.608 8.2 0 1.351 x 10s E
Alpha s-Eri 3.3 0.608 8.2 0 8.536 x 10b E

PC s-Eri 3.3 0.608 8.2 180 >10* -

Alpha s-Eri 3.3 0.608 8.2 180 > 10* -

PC s-Eri 3.3 0.608 8.3 0 3.359 x10s E
Alpha s-Eri 3.3 0.608 8.3 0 2.797 x 10* PC

PC s-Eri 3.3 0.608 8.3 180

1—
4

A

-

Alpha s-Eri 3.3 0.608 8.3 180 > 10* -

PC HD 196050 2.5 0.28 1.75 0

01©A -
Alpha HD 196050 2.5 0.28 1.75 0 > 10* -

PC HD 196050 2.5 0.28 1.75 180 4.073 x 10s E
Alpha HD 196050 2.5 0.28 1.75 180 5.536 x10s E

PC HD 196050 2.5 0.28 3.45 0

54oA

-

Alpha HD 196050 2.5 0.28 3.45 0 >10* -

PC HD 196050 2.5 0.28 3.45 180 7136 E
Alpha HD 196050 2.5 0.28 3.45 180 7044 E

PC HD 196050 2.5 0.28 3.5 0 2.799 x 104 E
Alpha HD 196050 2.5 0.28 3.5 0 2.779 xlO4 E

PC HD 196050 2.5 0.28 3.5 180 >10* -
Alpha HD 196050 2.5 0.28 3.5 180

34©A -
PC HD 196050 2.5 0.28 4.4 0 2.169 x 104 E

Alpha HD 196050 2.5 0.28 4.4 0 6501 E
PC HD 196050 2.5 0.28 4.4 180 >10* -

Alpha HD 196050 2.5 0.28 4.4 180 > 10* -
PC x1 Gruis 2.6 0.14 3.4 0

r-HA -
Alpha x1 Gruis 2.6 0.14 3.4 0

34oA -
PC x1 Gruis 2.6 0.14 3.4 180 3.945 x 104 E

Alpha x1 Gruis 2.6 0.14 3.4 180 4.199 xlO4 E
PC x1 Gruis 2.6 0.14 3.45 0 > 10* -

Alpha x1 Gruis 2.6 0.14 3.45 0

OA

i -
PC x1 Gruis 2.6 0.14 3.45 180 3.945 x 104 E

Alpha x1 Gruis 2.6 0.14 3.45 180 5.602 x 104 E

ce Close encounter to within 3J?h o f the giant planet.
C Earth-Moon collides with the star.
PC Earth-Moon collides with the giant planet.
E Earth-Moon is ejected from the system.

4.4 The Three Analysed Planetary Systems
Six systems have been investigated previously by the Open University Exoplanetary Team 
using the orbital integrator over periods of 100 million years or one gigayear. They are p  
Coronae Borealis, 47 Ursae Majoris, Gliese 876, v Andromedae, e Eridani and HD 72659
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(Sleep, 2005, Jones & Sleep, 2003, Jones & Sleep, 2002, Jones et al., 2001). The new 
exosystems investigated in this section are r 1 Gruis (HD 216435), HD 196050 and HD 
52265, all with one giant planet each. The configurations of all nine systems are shown 
diagrammatically in Figure 4.2, where the giant planet’s excursion, due to its orbital 
eccentricity, and its gravitational reach are shown with the HZ today and HZ at zero-age 
main sequence. The gravitational reach of each giant in the diagram is based on an 
invariant 3Ru in all cases, independent of orbital eccentricity. It has since been established 
(Sleep, 2005) that nRu varies with orbital eccentricity, e, where n = 3 only when e = 0. 
However, n is always close to 3 or less when the Earth-Moon is interior to the giant, which 
is the case in all the investigated systems except p CrB and HD52265. When exterior to 
the giant, the largest value of n encountered for the systems is 7.82 for HD 52265, causing 
its external gravitational reach to impinge on the inner edge of the ZAMS habitable zone 
for a minimum mass giant. However, this is the only instance where these values, from 
this new research, are relevant to Earth-Moon orbital stabilities in these systems. Figure 
4.2 is useful for showing everything except the external gravitational reaches of the giant 
planets, which extend further than shown.

The t 1 Gruis and HD 196050 systems were investigated using PCs, where the orbital 
integrator program is run in a DOS window within a 32-bit Windows operating system. 
The study on r 1 Gruis was initially carried out using the parameters dated prior to 
11/05/2003.

The star x1 Gruis has a mass of 1.25 ± 0.10M0 and has a high metallicity, where [Fe/H] is 
0.15 ± 0.04 (parameters summarised in table 4.2). It has an absolute bolometric magnitude 
of 3.20 ± 0.05, placing it a magnitude above the main sequence (Jones et al., 2002). It is of 
GOV spectral type and is believed to be near the end of its main sequence lifetime, 
estimated from chromospheric activity measurements of calcium II H and K lines, to be 
5Gyr old (Gonzales, 1999). Its habitable zone is calculated to have moved out from 
1.05AU to 2.23AU at zero age main sequence to presently be between 1.77AU and 
3.52AU from the star, based on the fluxes at the limits of the Solar System habitable zone 
(Kasting et al., 1993). The quoted present HZ boundaries are dependent on the stellar 
model used and are slightly different from those in Figure 4.2, due to the star being at the 
end of its main sequence where the HZ is subject to rapid variation. Prior to 11/05/2003, 
orbital measurements gave the accompanying giant planet a minimum mass of 1.23 ± 0.18 
Mj, a semimajor axis of 2.6 ± 0.6 AU, an eccentricity of 0.14 ± 0.14 and an orbital period 
of 1326 ± 300 days, see table 2b. The error in the eccentricity was the reason for choosing 
this system to compare simulation outcomes with predicted results according to equation
4.2. These orbits lie about 30% of the habitable zone’s width from the inner limit and are 
the parameters used in this investigation. Earth-Moon orbits were placed to within 0.7AU 
of the star since atmospheric conditions on such a planet may allow life to yet exist. These 
integrations may also be useful when encountering systems with a similar giant planet 
configuration but with a less massive star. For a giant with a circular orbit, the 
gravitational field of influence leaves only the outer edge of the present day HZ free of 
possible perturbation effects, see Figure 4.2. This area was not investigated as the star is at 
the end of its main sequence lifetime and life would not have had sufficient time to evolve 
on a world and alter its atmosphere, in such an orbit. From 11/05/2003, the giant planet’s 
mass and orbital parameters were modified to 1.49 Mj, at 2.7AU with an eccentricity of 
0.34 (Schneider, 2006). These values placed the giant’s gravitational influence across the 
entire habitable zone, post 2 Gyr after the star’s birth. Life in this system, with these 
parameters, was not deemed to be possible, so orbital integrations with an Earth mass 
planet were not carried out.
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Figure 4.2. Configurations o f  all systems investigated by orbital integration.
The shaded region is the HZ when the star was young, and the vertical dashed lines mark 
its boundaries today. The solid horizontal lines extending from each giant planet show the 
excursion due to its orbital eccentricity, and the horizontal dashed lines extend from [ a  (1 -  
e )  -  3i?H] to [ a  (1 + e )  +  3/?H].

The star HD 196050 is 1.13 ± 0.1 M0, of spectral type G3V and is heavy in metals with a 
[Fe/H] value of 0.3 ± 0.2 (see table 4.2). Its age is estimated to be greater than 1.6 Gyr 
(Mayor et al., 2004) or 3Gyr (Jones et al., 2002). Its planetary companion is of 2.8 ± 0.5 
Mj with a semimajor axis of 2.4 ± 0.5 AU, taking 1300 ± 230 days to orbit with an 
eccentricity of 0.28, see table 4.3. The giant planet’s eccentric orbit means it revolves at
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the outer edge of the present day habitable zone, which is calculated to be between 0.95AU 
and 1.95AU dependent on the stellar model. The giant planet parameters, used for the 
orbital integrations, are within the errors of these values and of minimum mass 3.0Mj, 
semimajor axis of 2.5AU, eccentricity of 0.28 and the stellar mass is taken as 1.1 M Q  
(Schneider, 2006). The configuration of the HD 196050 system is similar to that of the 
inner giant of the previously studied system, 47 UMa (Jones & Sleep, 2002). The position 
of the habitable zone in HD 196050 is only marginally further out than that of 47 UMa and 
its planet is 3.0Mj, 20% larger. The orbit has a semimajor axis about 15% larger at 2.5AU, 
putting the mean position just outside of the habitable zone as opposed to on its outer edge. 
The orbit is much more eccentric at e = 0.28, than in 47UMa, causing its 3 Hill radii inner 
boundary to sweep across to the inner edge of the habitable zone, see Figure 4.2. Stable 
orbits in 47UMa were found out to 1.2AU for a minimum mass giant. HD 196050 may be 
as young as 1.6Gyr (Mayor et al., 2004), so life on an Earth-like planet within the habitable 
zone may not yet have established itself. Whether 1.6Gyr or 3Gyr old (Jones et al., 2002), 
however, the purpose here was to find the extent of gravitational influence of the giant 
planet in HD 196050, across the outer regions of the habitable zone and its influence on 
Earth-mass planets within these regions.

The HD 52265 system was investigated using an Alpha machine with a Linux operating 
system. It is the second system, after p CrB, to be studied with a giant planet interior to the 
habitable zone region. The star HD 52265 is of 1.13 M 0 , of spectral type GOV, has a 
metallicity [Fe/H] value equal to 0.11 and is approximately 3.5 Gyr old (Naef et al., 2001) 
(see table 4.2). The planetary companion is of 1.13 ± 0.03 M j , has a semimajor axis of 
0.49AU, eccentricity of 0.29 ± 0.04 and a revolution period of 118.96 ± 0.10 days (Butler 
et al., 2000), see table 4.3. The present habitable zone is between 1.06AU and 2.33AU, 
well outside the orbit of the giant and any influence its gravity may have on any Earth- 
mass body in the habitable zone. The planets of p CrB and HD 52265 are comparable in 
mass but the giant in the HD 52265 system has a larger semimajor axis and a more 
eccentric orbit, see Figure 4.2 and will extend its gravitational influence more widely. 
Stable orbits were found for Earth-mass planets across the entire habitable zone for p CrB, 
even for planets as large as 8 times minimum mass. So the purpose here is to see whether 
the giant in HD 52265, slightly nearer to the habitable zone than that in p CrB, and with a 
greater eccentricity, does have any impact on orbits of putative terrestrial planets with 
semimajor axes within and near to the inner edge of the habitable zone.

Table 4.2 summarises the stellar properties of x1 Gruis, HD 196050 and HD 52265 as listed 
in table 3.18. Also summarised are the habitable zone distances from the stars at ZAMS 
(zero-age main sequence), now and at EoMS (end of main sequence), as listed in table 
3.19. Table 4.3 gives the giant planet minimum mass and orbital data, including the extent 
of its gravitational reach as calculated from,

Win, = -12.686 e3 +10.883 e2 -3.085 e +3 4.2

«ext = 53.479 e3 -65.169 e2 +31.036 e +3 4.3,

where Bint is the inner Hill radius multiplier, «cxt is the outer Hill radius multiplier and e is 
orbital eccentricity (Sleep, 2005).
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Table 4.2. Stellar properties o f x1 Gruis, HD 196050 and HD 52265

Parameter x1 Gruis HD 196050 HD 52265
M * I M n 1.25 + 0.10 1.13 ±0.10 1.13

Metallicity /  [Te/Hl 0.15 ±0.04 0.3 ± 0.2 0.11
Metallicity /  % (1st & 2nd model) 2.83 & 2.66 3.99 & 3.75 2.58 & 2.42

Spectral Type GOV G3V GOV
Bolometric Correction -0.18 -0.21 -0.18

Age /  Gyr 5.0’ 1.6 3.5
Distance /  pc 33.3 46.9 28

Apparent Visual Magnitude 6.03 7.6 6.30
L / L n 4.00 2.10 2.20
2WK 6032 5751 6032

1st model inner HZ ZAMS /  AU 1.051 0.854 0.880
1st model outer HZ ZAMS /  AU 2.094 1.695 1.746

1851 model inner HZ now /  AU 1.765 0.936 1.065
1st model outer HZ now /  AU 3.515 1.863 2.125

1st model inner HZ EoMS /  AU 1.723 1.548 1.557
1st model outer HZ EoMS /  AU 3.388 3.063 3.082

2nd model inner HZ ZAMS /  AU 1.118 0.876 0.927
2nd model outer HZ ZAMS /  AU 2.232 1.74 1.844

2nd model inner HZ now /  AU 0.975 1.164
2nd model outer HZ now /  AU

*
1.945 2.328

2nd model inner HZ EoMS /  AU 1.824 1.582 1.628
2nd model outer HZ EoMS / AU 3.589 3.111 3.201

Stellar parameters inner HZ now /  AU 1.631 1.215 1.211
Stellar parameters outer HZ now /  AU 3.245 2.406 2.409

* The age o f  the star is older than that o f the predicted main-sequence lifetime for this model. 
ZAMS = zero-age main sequence 
EoMS = end o f  main sequence

Table 4.3. Orbital Properties o f  the exoplanets x1 Gruis b, HD 196050b and HD 52265b.

Parameter x1 Gruis b HD 196050 b HD 52265 b
Old New

M ns m i o  /  M j 1.23 ±0.18 1.49 3.0 1.13 ± 0 .06
Semimajor axis/AU 2.6 ±  0.6 2.70 2.5 0.49 ±  0.008
Orbital Eccentricity 0.14 ±0.14 0.34 0.28 0.29 ±  0.04

Period /  days 1326 ± 300 1442.919 1289 118.96 ± 0 .10
Inner i?H multiplier, n int e=0, 3 

e=0.14,2.75 
e=0.28,2.71

2.71 2.71 2.71

Outer R n  multiplier, e = 0 ,  3 
e=0.14, 6.21 
e=0.28, 7.75

8.12 7.75 7.82

Inner gravitational reach /  AU e = 0 ,  2.07 
e=0.14,1.75 
e=0.28 ,1.39

1.25 1.18 0.26

Outer gravitational reach /  AU e = 0 ,  3.13 
e=0.14,4.06 
e = 0 . 2 8 , 4.70

5.21 4.97 0.89
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4.5 Outcome of the System Investigations

4.5.1 x1 Gruis
The details of all orbital runs, using the MVS integrator in the Mercury program for an 
Earth-Moon planet within this system are given in tables 4.4, 4.5 and 4.6. Table 4.4 lists 
the outcomes of the orbital integration runs within the inner habitable zone region up to the 
giant’s gravitational field of influence for giant orbital eccentricities of 0, 0.14 and 0.28, 
corresponding to the old uncertainty limits (table 4.3). Earth-Moon orbits were found to 
be stable from 0.7AU to 2.0AU, for a minimum mass giant planet with a circular orbit. 
The orbits were only stable out to 1.7AU when the giant’s orbital eccentricity was 0.14 
with the outer stability limit further decreased to 1.3AU when the giant’s orbital 
eccentricity was 0.28. These values are in excellent agreement with the predicted 
theoretical values determined from previous results (Sleep, 2005), shown in table 4.3. 
Clearly it is the presence of the giant over a wider region around the star due to its orbital 
eccentricity which causes this. These destabilising limits correspond to values of n in nRu 
of 3.4 for e = 0, 3.0 for e = 0.14 and 3.2 for e = 0.28, when using formula 4.1. All are 
similar, close to n = 3 and show no trend with increasing orbital eccentricity.

For all results for the three giant orbital eccentricities, the variation of orbital eccentricity 
and semimajor axis of the Earth-Moon slowly increases with increasing starting distance 
from the star. This is due to an increase in the giant’s influence on the smaller body as its 
initial orbital parameters move nearer to the giant. For the initially circular giant orbits, 
which acquire a very small eccentricity immediately, the difference in the longitude of 
periastron, Asr, between the giant and Earth-Moon revolves around a full 360° out to 
1.5AU. Beyond this distance, the value is constrained between limits, as are all Earth- 
Moon orbits when the giant has an orbital eccentricity of 0.14 and 0.28, see figures 4.3 and 
4.4. The implication here is that orbits with a revolving Atumay be more stable than those 
where Act are constrained, whether Ac^O) is 0° or 180°.

0.00E+00 2.00E+08 4.00E-HD8 6.00E-HD8 S.OOE+OS 1.00E+09

Time in years

Figure 4.3. Free revolving delta periastron longitude values with time between an Earth-Moon body 
and a giant planet (Acj= 0°, Giant e = 0, E-M a  = 1.0AU all at t -  0).
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Figure 4.4. Constrained A ct with time between an Earth-Moon body and a giant planet. (Note that 
A ct values greater than 260° and less than -260° correspond to those between ±  100°.) ( A ct 

= 180°, Giant e  =  0.14, E-M a  =  1.1AU all at t  =  0).

Although the initial semimajor axes for both Agt(0) = 0° and 180°, for each semimajor axis 
run are initially the same, the mean values over a stable run’s lGyr period differ slightly. 
The orbits always have a mean semimajor axis value slightly less than the starting value, 
where the largest value is often the initial one. This implies an initial potential energy loss 
by the Earth-Moon, since orbital potential energy, PE oc -  1 la. This initial potential energy 
loss is not always due to a similar gain by the giant planet and increases as the Earth- 
Moon’s semimajor axis increases towards that of the giant, possibly due to the decreasing 
stability of the orbits. The orbital integration runs launched where Acj(0) = 180° always 
have larger mean semimajor axis values compared to those where Aw(0) = 0°. This may 
be due to the Earth-Moon being on the opposite side of the star from the giant when it is 
launched at its apastron position. There will be less energy interaction between the bodies 
during the first orbit of the inner of the two planets as they are initially much further apart. 
A second explanation may be resonance effects between the two planets, causing small 
orbital shifts until they find their most stable configuration. These phenomena may be due 
to the programming of the Mercury Orbital Integrator, however they are minor and do not 
detract from the bigger picture of the study of orbital stabilities.

Another trend in Earth-Moon orbital properties is an increase in their orbital eccentricity 
with increasing initial giant orbital eccentricity when started with the same semimajor axis. 
This phenomenon is known as “pumping up” the eccentricity of the Earth-Moon by the 
giant and is illustrated by examining any set of three outcomes for Earth-Moon integrations 
with the same semimajor axis over the giant eccentricities of 0, 0.14 and 0.28 in table 4.4. 
In all integrations, when the giant’s orbital eccentricity was initially significant, the Earth- 
Moon would rapidly oscillate between its minimum and maximum values, no matter how 
large, throughout the run, whilst the orbital semimajor axis remained almost constant (see 
Figures 4.5 and 4.6).
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Figure 4.5 Variation o f semimajor axis with time for a stable orbit around x! Gruis
(Azz7= 0°, Giant e = 0.14, E-M a  = 1.1 AU all at t = 0).

Figure

When the giant’s mass was increased to 1.5 times its minimum, i.e. where the e = 0.14 
orbit of the giant is inclined at 41°. 81 to the plane of the sky instead of 90° in the case of 
the minimum mass studies, the stability region for Earth-Moon orbits was narrowed 
slightly, as would be expected, from 0.7AU -  1.7AU to 0.7AU -  1.6AU. All trends 
discussed for the case of the minimum mass giant were also followed here. Two of three 
orbital runs, where the Earth-Moon orbit was inclined at 10° to that of the giant, showed 
no Act constraint, contrary to the constrained orbits for all the runs in the plane of the 
giant’s orbit. This may imply more stable orbits when inclined. However the third run at 
initially 1.7AU had the same remarkably short unstable lifetime, of less than one day, as 
the run which was not inclined. Inclining the Earth-Moon orbit to the giant’s was not 
pursued further as previous work (Jones & Sleep, 2002) has shown that this has little effect 
on the overall outcomes in orbital stability trends.

4.6 Variation o f eccentricity with time for a stable orbit around t1 Gruis
(A G7— 0°, Giant e = 0 .14, E-M a = 1.1 AU all at t. = 0).

0.
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Table 4.4 Orbital runs for an Earth-Moon planet in the habitable zone of t ! Gruis in the presence of
the minimum mass giant (1.23AQ at 2.6AU.

Starting Parameters Parameter variation during a run t / years o

Giant e E-M a / AU A gj(0 )/° Earth-Moon e Earth-Moon a / AU A to/0
0 0.7 0 10'3- 0.000106 0.69997 ± 0.00003 0-360 >10y -
0 0.7 180 10'3-  0.000156 0.69999 ± 0.00003 0-360 >10^ -
0 0.8 0 10'3- 0.000189 0.79995 ± 0.00005 0-360 >10y -
0 0.8 180 10‘3- 0.000251 0.79998 ± 0.00005 0-360 >10y -
0 0.9 0 10'3- 0.000319 0.89991 ±0.00009 0-360 >10y -
0 0.9 180 10'3- 0.000389 0.89998 ± 0.00009 0-360 >10y -
0 1.0 0 10'3- 0.000524 0.99985 ±0.00015 0-360 >10y -
0 1.0 180 10'3- 0.000594 0.99998 ±0.00015 0-360 >10y -
0 1.1 0 10'5-  0.000853 1.09976 ±0.00024 0-360 >10^ -
0 1.1 180 10'5-  0.000903 1.09998 ±0.00024 0-360 >10y -
0 1.2 0 10‘*-0.001400 1.19962 ±0.00038 0-360 >10y -
0 1.2 180 10‘5-  0.001392 1.20000 ±0.00038 0-360 >10y -
0 1.3 0 10'3- 0.002322 1.29941 ±0.00059 0-360 >10v -
0 1.3 180 10'3- 0.002242 1.30004 ± 0.00059 0-360 >10^ -
0 1.4 0 10‘3- 0.004304 1.39991 ±0.00091 0-360 >10y -
0 1.4 180 10'3- 0.004027 1.40012 ±0.00091 0-360 >10y -
0 1.5 0 10'3- 0.009186 1.49858 ±0.00142 0-360 >10g -
0 1.5 180 10'3- 0.008615 1.50025 ±0.00142 0-360 >10^ -
0 1.6 0 10'3- 0.034789 1.59705 ±0.00295 100-260 >10y -
0 1.6 180 10'3- 0.035601 1.59967 ±0.00300 0-360 >10y -
0 1.7 0 10'3- 0.030925 1.69599 ±0.00401 140 - 220 >10y -
0 1.7 180 1 O'3-0.031973 1.70021 ±0.00410 150-210 >10y -
0 1.8 0 10'3- 0.011761 1.79503 ±0.00509 120 - 240 >10y -
0 1.8 180 10'*-0.018040 1.80192 ±0.00547 150-210 >10y -
0 1.9 0 10'*- 0.016687 1.89198 ±0.00802 140-220 >10^ -
0 1.9 180 10'5-  0.024278 1.90347 ±0.00906 150-210 >10y -
0 2.0 0 10'5-  0.088900 1.97348 ±0.02652 160-200 >10y -
0 2.0 180 103 -  0.120915 1.98087 ±0.04037 160 - 200 >10y -
0 2.1 0 10'3 2.1 - 0.003 ce
0 2.1 180 10’5 2.1 - 4.947 ce

0.14 0.7 0 10‘5-  0.107322 0.69995 ± 0.00005 ± 90* >10y -
0.14 0.7 180 10'3- 0.107122 0.69998 ± 0.00005 ± 100* >10y -
0.14 0.8 0 10'3- 0.114842 0.79990 ±0.00010 ±100* >10^ -
0.14 0.8 180 10'5-  0.114525 0.79998 ±0.00010 ±90* >10y -
0.14 0.9 0 10'5-  0.125010 0.89983 ±0.00017 ±100* >10y -
0.14 0.9 180 10'5-  0.124861 0.89997 ±0.00017 ±100* >10y -
0.14 1.0 0 10‘5-  0.135969 0.99966 ± 0.00034 ± 100* >10y -
0.14 1.0 180 1 O'3-0.134082 0.99996 ± 0.00034 ±90* >10y -
0.14 1.1 0 10'3- 0.148153 1.09948 ±0.00052 ± 100* >109 -
0.14 1.1 180 10'3- 0.147033 1.09998 ±0.00051 ±90* >10^ -
0.14 1.2 0 1 O'3-0.152636 1.19894 ±0.00106 ±100* >109 -
0.14 1.2 180 10'5-  0.147269 1.20000 ±0.00102 ±90* >10y -
0.14 1.3 0 1 O'3-0.184591 1.29853 ±0.00147 ±90* >10y -
0.14 1.3 180 10‘5-  0.187741 1.29980 ±0.00147 ± 100* >10y -
0.14 1.4 0 10'5-  0.197111 1.39666 ±0.00334 ±100* >10y -
0.14 1.4 180 10'5-  0.197268 1.39909 ±0.00345 ±100* >10y -
0.14 1.5 0 10‘5-  0.204329 1.49613 ±0.00387 ± 100* >10y -
0.14 1.5 180 10'3 -  0.197837 1.50056 ±0.00393 ±90* >10y -
0.14 1.6 0 10 s -0.201793 1.58943 ±0.01056 ±110* >10y -
0.14 1.6 180 10'5-0.153179 1.60180 ±0.00961 ±90* >10^ -
0.14 1.7 0 10'5-  0.221941 1.69339 ±0.01263 ±80* >10y -
0.14 1.7 180 10’* -  0.037228 1.69169 ±0.01002 - 18.841 ce
0.14 1.8 0 10'3 1.8 - 0.003 ce
0.14 1.8 180 10* 1.8 - 7.708 ce
0.28 0.7 0 1 O'5 -0.233718 0.69988 ±0.00012 ± 100* >10y -
0.28 0.7 180 10‘*-0.232762 0.69997 ±0.00012 ±90* >10^ -
0.28 0.8 0 10'*-0.246661 0.79978 ± 0.00022 ±90* >10^ -
0.28 0.8 180 lO'3- 0.246837 0.79994 ±0.00021 ±90* >10y -
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Starting Parameters Parameter variation during a run t /  years O
Giant e E -M a/A U Aro(0)/0 Earth-Moon e Earth-Moon a / AU Acs'0

0.28 0.9 0 10'5-0.264826 0.89962 ± 0.00056 ±90* >10y -
0.28 0.9 180 10'5- 0.267871 0.89982 ± 0.00055 ± 100* >10y -
0.28 1.0 0 10‘5- 0.284248 0.99903 ± 0.00097 ± 100* >10y -
0.28 1.0 180 10’5- 0.279454 0.99997 ± 0.00097 ±90* >10y -
0.28 1.1 0 10'5- 0.321646 1.09863 ± 0.00137 ± 100* >10y -
0.28 1.1 180 10'5- 0.322328 1.09956 ± 0.00138 ± 100* >10y -
0.28 1.2 0 10’5- 0.334178 1.19688 ±0.00312 ±100* >10y -
0.28 1.2 180 10’5- 0.321600 1.20026 ±0.00280 ±90* >10y -
0.28 1.3 0 10’5- 0.393050 1.29546 ± 0.00453 ±80* >10y -
0.28 1.3 180 10'5- 0.403962 1.30014 ±0.00418 ±100* >10y -
0.28 1.4 0 10‘5 1.4 - 0.001 ce
0.28 1.4 180 lO’5 1.4 - 3.642 ce

Table 4.5 Orbital runs for an Earth-Moon planet in the habitable zone o f  t 1 Gruis in the presence o f  a
1.5 times minimum mass giant (1.84Mj)  at 2.6AU and e =  0.14.

Starting Parameters Parameter variation during a run t / y e a r s 0
E-M a  /  AU A ^O )/0 Earth-Moon e Earth-Moon a  /  AU A tn t°

0.7 0 10‘3- 0.114478 0.69999 ± 0.00001 ±100* > \ & -
0.7 180 10-5 -  0.114148 0.69998 ±  0.00008 ±100* >10y -

0.8 0 10-5 -  0.118157 0.79986 ± 0.00014 ±100* >109 -

0.8 180 10‘5-0 .117653 0.79997 ± 0.00014 ±90* >10y -
0.9 0 10‘3 -  0.126620 0.89974 + 0.00026 ±100* >109 -
0.9 180 10’3-  0.126349 0.89995 ±  0.00026 ±90* >10y -

1.0 0 10'3 -  0.136496 0.99948 ±  0.00052 ±100* > i o y -
1.0 180 10‘3- 0.133721 0.99994 + 0.00050 ±90* >109 -
1.1 0 10’3- 0.148347 1.09992 + 0.00078 ±100* >10y -
1.1 180 10’3- 0.146618 1.09998 ±0.00077 ±90* >10y -
1.2 0 10‘3- 0.149118 1.19841 ±0.00159 ±120* >10^ -
1.2 180 10‘3- 0.140811 1.20000 ±0.00151 ±90* >109 -
1.3 0 10‘3 - 0.189934 1.29778 ±  0.00222 ±90* >109 -
1.3 180 10‘3 - 0.194630 1.29968 ±0.00224 ±100* >10^ -
1.4 0 10'3 -  0.201447 1.39518 ±0.00481 ±100* >109 -
1.4 180 10‘5 -  0.202092 1.39869 ±0.00513 ±100* >10y -
1.5 0 10‘3 -  0.207774 1.49428 ± 0.00572

%
± 120 >10y -

1.5, inclined 10° 0 10'5 - 0.207715 1.49454 ±0.00546 0 - 3 6 0 >10^ -

1.5 180 10'3- 0.197992 1.50086 ±0.00582 ±90* >10y -
1.6 0 10'5 - 0.208080 1.58509 ±0.01491 ±120* >10y -

1.6, inclined 10° 0 10'5 -  0.202604 1.58570 ±0.01430 0 - 3 6 0 >10y -
1.6 180 10'5 - 0.141116 1.60151 ±0.01254 ±90* >10y -
1.7 0 10*3 1.7 - 0.002 ce

1.7, inclined 10° 0 10° 1.7 - 0.002 ce
1.7 180 10° 1.7 - 14.615 ce

A third study was undertaken of mean motion resonance between the two planets. This is 
when the Earth-Moon’s orbital period is a simple fraction of that of the outer giant. This 
was a search for regions of instability at distances from the star where orbits would 
normally be expected to be stable, as is the case for regions of instability within the 
asteroid belt in the solar system, caused by resonance effects with Jupiter.
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Table 4.6 Orbital resonance runs for an Earth-Moon planet in the habitable zone of r 1 Gruis in the
______________ presence of the minimum mass giant (1.23M j)  at 2.6AU with an orbital eccentricity of 0.14

Start Parameters Parameter variation during a run t / y e a r s 0

r E -M a /A U Ara(0)/° Earth-Moon e Earth-Moon a  i  AU A m / °

2 1.6379 0 10'5 - 0.218077 1.6169610.02094 1120* >109 -
2 1.6379 180 10'5 - 0.330311 1.6377010.03397 1150* >109 -

2.5 1.41149716 0 10'5 -  0.226943 1.40604 10.00546 1110* >109 -
2.5 1.41149716 180 10'5 - 0.244101 1.4091710.00737 1100* 9.361 x 106 ce
3 1.245 180 10'5 - 0.043128 1.2448610.00140 190* >109 -
3 1.2486 180 10-5 -  0.065844 1.2469410.00296 1100* >109 -
3 1.2487 180 10'5- 0.063792 1.2468710.00274 190* >109 -
3 1.2488 180 10‘5 -  0.062525 1.2468710.00263 1100* >109 -
3 1.2489 180 10‘5- 0.063232 1.2469610.00276 1100* >10^ -
3 1,2490 0 l.O'5 -  0.094400 1.2449610.00404 1  120* >109 -
3 1.2490 180 10'5 - 0.064195 1.24705 10.00294 1110* >109 -
3 1.2491 180 10'5- 0.182755 1.2487810.00674 0 - 3 6 0 9.580 x 107 ce
3 1.2492 180 10’5 -  0.193210 1.2491810.00729 0 - 3 6 0 7.983 x 107 ce
3 1.2493 180 10*5- 0.193342 1.24903 10.00730

*
1  110 2.218 x 10* ce

3 1.2494 180 10'5 - 0.195834 1.24918 10.00693 1  100* 5.442 x 10' ce
3 1.2495 180 10‘5- 0.193249 1.2490710.00681 0 - 3 6 0 1.580 x 10; ce
3 1.2496 180 10"5- 0.183615 1.2489010.00699 0 - 3 6 0 7.686 x 10; ce
3 1.2497 180 10'5-  0.194250 1.2486610.00611 0 - 3 6 0 1.104 x 10; ce
3 1.2498 180 10'5 - 0.201588 1.2487010.00691 1  120* 3.172 x 107 ce
3 1.2499 180 10’5 -  0.181811 1.2492610.00714 0 - 3 6 0 2.266 x 10y ce
3 1.24995 0 10'5 - 0.097791 1.2454210.00453

*
1 1 2 0

ONOr—HA

-
3 1.24995 180 10’5- 0.181096 1.24883 10.00706 170* 1.097 x 108 ce
3
3

1.25 0 10’5 - 0.097905 1.24543 10.00457
*

1  120 >109 -
1.25 180 10‘5 - 0.194152 1.24883 10.00668 0 - 3 6 0 1.672 x 10; ce

3 1.2501 180 10'5 - 0.195076 1.2492510.00709 0 - 3 6 0 5.344 x 10y ce
3 1.2502 180 10'5 - 0.190571 1.2489610.00753 1  110* 1.271 x 108 ce
3 1.2503 180 10'5 - 0.193210 1.2490410.00742 1  120* 6.055 x 108 ce
oJ 1.2504 180 10’5 - 0.187097 1.2489710.00712 1120* 3.178 x 108 ce
3 1.2505 180 10‘5 - 0.188622 1.2490710.00729 1 110* 2.110 x 10s ce
3 1.2506 180 10'5- 0.184171 1.2489010.00711 1 120* 1.549 x 108 ce
3 1.2507 180 10'5- 0.183177 1.2489210.00747 0 - 3 6 0 >109 -
3 1.2508 180 10'5 - 0.179605 1.24888 10.00749 0 - 3 6 0 >109 -
3 1.2509 180 10’5 - 0.177213 1.2488910.00749 0 - 3 6 0 >109 -
3 1.251 0 10'5 - 0.102874 1.2458910.00511 1  120* >10<9 -
3 1.251 180 10'5 - 0.170234 1.24895 10,00724 0 - 3 6 0 >109 -
3 1.255 180 10'5 - 0.156189 1.2488410.00928 0 - 3 6 0 >109 -
3 1.26 180 10'5 - 0.193507 1.25883 10.00365 1  110* V o '•0 -

3.5 1.1278759 0 10'5 - 0.156484 1.1268410.00104 1110* >109 -
3.5 1.1278759 180 10’5 - 0.151966 1.1283610.00092 190* >109 -
4 1.03181 0 10’5 - 0.128379 1.0312710.00299 0 - 3 6 0 > 1 0 9 -
4 1.03181 180 10'5 - 0.066470 1.0311410.00159 0 - 3 6 0 >109 -

4.5 0.95389 0 10'5- 0.131109 0.9537210.00028 190* >109 -
4.5 0.95389 180 10‘5 - 0.130283 0.9538910.00024 190* >109 -
5 0.8891875 0 10'5 - 0.168027 0.88888 1  0.00096 1130* >io'9 -
5 0.8891875 180 10'5 -  0.159414 0.8888710.00087 0 - 3 6 0 >109 -

5.5 0.834446 0 1 O'5 -0.118475 0.83433 10.00012 190* >10^ -
5.5 0.834446 180 10°-0 .117989 0.8344210.00012 190* >109 -
6 0.787419 0 10'5 - 0.138894 0.78715 10.00042 1 120* >109 -
6 0.787419 180 10’5- 0.140751 0.7871710.00041 0 - 3 6 0 >109 -

6.5 0.746500 0 10‘5 - 0.110437 0.74643 1 0.00007
*

1 9 0 >109 -
6.5 0.746500 180 10'5- 0.110161 0.74648 10.00007 190* >109 -
7 0.7105713 0 10'5- 0.106846 0.7105210.00007

*
1 9 0 >109 -

7 0.7105713 180 10‘5- 0.107287 0.7104910.00007
%

1 100 >109 -
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Table 4.6 reveals the outcomes of Earth-Moons launched at distances from the star such 
that it orbits from twice to seven times, at half orbit intervals, whilst the giant orbits once. 
All runs started with Aw(0) = 0° last the duration of the lGyr integration. Of those started 
with Aej(0) = 180°, only two did not last the full lGyr, those being the 5:2 and 3:1 
resonance runs. The width of the unstable region at the 3:1 resonance was then determined 
by launching Earth-Moons at successive distances from the star starting from 1.245AU, 
through the resonance distance at 1.24995AU and finishing at 1.26AU, with distances 
differing by 10‘4AU at the finest resolution. Figure 4.7 shows the outcome of this 
investigation, revealing an unstable region from 1.2490AU to 1.2508AU, equivalent to 
270,000km or less than 0.15% its distance from the star. This is centred at 1.2499AU, just 
inside the actual resonance position by 0.00005AU (7,500km) or approximately one Earth 
radius. This clearly shows the tiny region where this instability occurs. Figure 4.8 shows 
the distances at which the Earth-Moon orbits settled for each of their starting distances. 
They tend towards a distance at 1.249AU, just less than that of the resonance, when 
originally launched between 1.249AU and 1.251AU of this position. This implies that the 
unstable resonance region may be narrower than figure 4.7 originally suggests. Clearly 
this is an opportunity for further study beyond the scope of this thesis.
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Figure 4.7 Width o f the 3:1 resonance region around the t1 Gruis system.
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Figure 4.8 Variation o f  mean semimajor axes with starting semimajor axes around the 3:1 resonance 
region in the t1 Gruis system.
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A final investigation was carried out for the Earth-Moon integrations at 1.7AU with a 
minimum mass giant with an orbital eccentricity 0.14, which gave two very different 
results. When Azd(0) = 180°, the terrestrial planet’s orbit lasted 18.841 years, when Aer(0) 
= 0° the orbit remained stable and confined for more than 6.28Gyr, longer than the main 
sequence lifetime of the star. This difference was the result of the first configuration 
causing the terrestrial planet to pass closer to the giant when its apastron longitude was 
almost coincident with the giant’s periastron longitude, hence the slight instability required 
to take it within 3 Hill radii of the giant in a very short time. In the second case, reducing 
the interval between data output to 1,000 years instead of the usual 100,000, revealed the 
Earth-Moon had caused the giant’s periastron longitude to precess at a constant rate, taking 
2.964Myr for one revolution, setting up an intricate libration of periastron longitudes 
between itself and the giant, resulting in stability. The blue line in Figure 4.9 shows the 
precession of the giant surrounded by the red perihelia longitudes of the terrestrial planet. 
The libration of the Earth-Moon periastron longitude oscillated mainly ±50° either side of 
the giant’s, where a further reduction in data output intervals to one year, showed a slow 
move forward over -1,200 years followed by a more rapid swing back over -400 years, 
see Figure 4.10. This coincided with large and regular oscillatory changes in the 
eccentricity of the terrestrial planet (Figure 4.11). The difference in periastron longitudes 
between the two planets has a clear effect on the orbital eccentricity range of the Earth- 
Moon (Figure 4.12) and may well be a contributing factor to the stability of the system. 
These results also show the power of the Mercury Orbital Integrator in its accuracy when 
predicting outcomes of Earth-Moons within planetary systems. The libration effects of the 
terrestrial planet seen here are similar to effects seen previously in orbital simulations of 
the outer two giants of u Andromedae (Lissauer & Rivera, 2001) and are a good example 
of a secular resonance.
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Figure 4.9 Precession of periastron longitudes (E-M, a = 1.7AU)
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The results indicate an Earth-Moon mass planet could exist in a confined orbit for lGyr 
about r 1 Gruis, but only at the inner edge of the habitable zone at zero-age main sequence 
(Figure 4.2). The giant would have to have a low eccentricity but could be up to 1.5 times 
its minimum mass. The only detrimental resonance effects occurred in a narrow region 
around 1.25AU, when the Earth-Moon’s orbital period was three times the giant’s and 
when A©(0) = 180°. Shortly after these analyses, new observations of the star, revealed on 
11/05/2003, changed the giant’s mass and orbital parameters. The minimum mass is now 
\A9Mj and the planet has a semimajor axis of 2.7AU and eccentricity of 0.34 (Schneider, 
2006). Although the mass and distance changes have no effect on the trends described 
here, the eccentricity draws the planet right across the habitable zone making this an 
uninhabitable system. The findings here could possibly be of use for similar systems, yet 
to be discovered, and the resonance study may well be confirmed in other systems to be 
investigated in the future.

4.5.2 HD 196050
The orbital run details for an Earth-Moon planet within this system are listed in tables 4.7 
and 4.8. As the giant planet lies on the outer edge of the present habitable zone (Figure
4.2), only inferior orbits plus a resonance study of Earth-Moon planets were investigated. 
Stable orbits were restricted to a narrow band between 0.75AU and 1.0AU, although orbit 
stability at 1.0AU was dependent on Asj(0) and was only stable for Agt(0) = 0. The 
semimajor axes of the runs followed the same trends as those of x1 Gruis, i.e. Earth-Moons 
launched with Agt(0) = 0 had a slightly less long term mean semimajor axis than those 
launched with Azu(0) = 180°. The causes of instabilities at 0.7AU are unknown as the 
orbital periods at this distance are not in any resonance with the giant, but both periastron 
longitude integrations had constant semimajor axes as each eccentricity grew until a close 
encounter within 3 Hill radii of the giant occurred. Increasing the mass of the giant to 1.5 
times minimum mass made the entire region to 0.75AU of the star unsuitable for confined 
orbits.

The resonance investigation showed a mix of stable and unstable orbits from 7:2 to 7:1, 
with no obvious trends. The two runs at the 7:2 resonance may have been destabilised 
because they were too close to the giant, however in all other cases, orbital stability was 
dependent on Agj(0). A value of 0° led to stable integrations at 4:1, but unstable 
integrations at 5:1, 6:1 and 7:1. Their counterparts, 180°, were all stable as were all of the 
resonance runs for both Azd(0) values at 9:2,11:2 and 13:2.

The outcome of this brief investigation was that Earth-Moons could exist in stable orbits 
inferior to the giant planet only if the giant was near its minimum mass. They would, 
however, be stable only inside the 1.0AU distance of the inner edge of the habitable zone. 
The unstable orbits in this region occur around the n: 1 period resonances (where n is an 
integer and 4 < n < 8) only when A zd(0) = 0. The closer regular approach to the giant 
planet’s periastron position of the terrestrial planet at apastron, caused by the 4:1 
resonance, was enough to destabilise the orbit, but not so when A©(0) = 0. For a larger 
planet at 1.5 times minimum mass, the giant’s gravitational influence would stretch across 
this entire region and no stable orbits would be possible at all. The outcome is that 
detectable life is unlikely to exist on the surface of any terrestrial planets within this 
system, especially as one literature age is only 1.6Gyr (Mayor et al., 2004), compared to 
the literature age, when the study was undertaken, of greater than 3Gyr (Jones et al., 2002).
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Table 4.7 Orbital runs for an Earth-Moon planet in the habitable zone of HD 196050 in the presence
of the giant planet at 2.5AU with an eccentricity of 0.28.

Starting Parameters Parameter variation during a run t / y e a r s O

m E -M a /A U A g*0)/° Earth-Moon e Earth-Moon a  / AU A a / °

1 0.7 0 10'5-0 .679452 0.78682 ±0.09133 20 -100 1.299 x 104 ce
1 0.7 180 10'5- 0.742235 0.72790 + 0.09133 20 - 100 1.331 x 104 ce
1 0.75 0 1 O'5-0 .289947 0.74931 ±0.00078 ± 100* >10y -
1 0.75 180 10‘5- 0.278335 0.74987 ± 0.00080 ±90* >10y -
1 0.8 0 10'5-  0.285713 0.79920 ± 0.00080 ± 100* >10y -
1 0.8 180 10'5- 0.282439 0.79980 ± 0.00080 ± 100* >10y -
1 0.9 0 10'5- 0.289716 0.89865 ± 0.00135 ± 100* >10^ -
1 0.9 180 10'*- 0.287588 0.89983 ±0.00134 ± 100* >10y -
1 1.0 0 10‘5- 0.204465 0.99900 ± 0.00567 ± 100* >10y -
1 1.0 180 10'5 1.0 - 3.468 x 104 ce
1 1.1 0 10'* 1.1 - 0.001 ce
1 1.1 180 10’* 1.1 - 22.585 ce

1.5 0.75 180 1 O'5-0.515651 0.75491 ± 0.00793 2 0 -1 0 0 6967 ce
1.5 0.75 0 10’5-  0.536091 0.72813 ±0.02321 2 0 -8 0 7911 ce

Table 4.8 Orbital resonance runs for an Earth-Moon planet in the habitable zone o f HD 196050 with
the giant planet at 2.5AU and an eccentricity o f 0.28.

Starting Parameters Parameter variation during a run t / y e a r s O
r E -M a /A U Ag*0 )/° Earth-Moon e Earth-Moon a  / AU A

3.5 1.084486 0 10'5- 0.372586 1.07739 ±0.00710 ± 100* 3.987 x 10' ce
3.5 1.084486 180 10'5- 0.387705 1.08155 ±0.00294 0 - 3 6 0 1.653 x 10* ce
4 0.993 0 1 O'5 -0 .162063 0.98605 ± 0.00695 ± 130* >10y -
4 0.993 180 10-5- 0.283944 0.99036 ± 0.00653 ± 100* 4.047 x 10; ce
4 0.9921266 0 10'5- 0.161457 0.98560 ± 0.00958 0 - 3 6 0 >10y -
4 0.9921266 180 10'5- 0.268618 0.99043 ± 0.00958 0 - 3 6 0 7.964 x 10b ce
4 0.992 0 10‘5- 0.161251 0.98556 ± 0.00644 ± 100* >109 -
4 0.992 180 10‘5- 0.262232 0.99099 ± 0.00942 0 - 3 6 0 1.487 x 107 ce

4.5 0.9172 0 10‘5- 0.309187 0.91468 ± 0.00252 ± 100* >10y -
4.5 0.9172 180 10'5- 0.301787 0.91838 ±0.00218 ±90* >109 -
5 0.856 0 10'5- 0.305843 0.85422 ± 0.00592 0 - 3 6 0 1.045 x 10s ce
5 0.856 180 lO '3 - 0.112413 0.85384 ± 0.00403 0 - 3 6 0 >10y -
5 0.855 0 10’5- 0.3093661 0.85401 ± 0.00622 0 - 3 6 0 9.481 x 10* ce
5 0.855 180 10‘5- 0.112294 0.85373 ± 0.00366 0 - 3 6 0 >10^ -
5 0.854988 0 10'5- 0.309693 0.85405 ±0.00451 0 - 3 6 0 1.972 x 106 ce
5 0.854988 180 10'5- 0.113645 0.85373 ± 0.00369 0 - 3 6 0 >10y -
5 0.854 0 10‘5- 0.125599 0.85169 ±0.00282 ± 100* >10y -
5 0.854 180 10‘5- 0.052917 0.85297 ±0.00164 ± 110* >10^ -

5.5 0.802359 0 10'5- 0.291080 0.80127 ±0.00109 ± 110* >10y -
5.5 0.802359 180 10'5-  0.281495 0.80253 ± 0.00080 ±90* >10y -
6 0.7571336 0 10'5-  0.354543 0.75639 ± 0.00302 0 - 3 6 0 4.079 x 10' ce
6 0.7571336 180 10‘5- 0.098519 0.75630 ± 0.00204 0 - 3 6 0 >10y -

6.5 0.71779 0 10'5-  0.313536 0.71746 ±0.00041 ± 100* >10y -
6.5 0.71779 180 103- 0.309237 0.71773 ±0.00041 ±90* >10^ -
7 0.6831897 0 10‘5 0.6831897 - 1.558 x 104 ce
7 0.6831897 180 10‘5 -  0.030159 0.68250 ± 0.00079 0 - 3 6 0 >10y -
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4.5.3 HD 52265
A detailed listing of the terrestrial planet’s orbital runs within this system, are in table 4.9. 
Orbits within 0.9AU are unstable due to their proximity to the giant. At 0.9AU for a 
minimum mass giant, the planet’s orbital stability is dependent on Agt(0). Figure 4.13 
shows the stable E-M orbit, which lasts longer than lGyr and the unstable orbit lasting just 
22.8Myr before a close encounter between it and the giant. The diagram also illustrates the 
nature of eccentricity variation between stable and unstable orbits. Stable orbits usually 
have eccentricities that change by only small amounts, whereas unstable ones have 
eccentricities that often fluctuate wildly. The semimajor axis, though, is usually constant 
for stable and unstable orbits until a cataclysmic termination event occurs.

Since the giant planet lies interior to the habitable zone, all of the Earth-Moon’s 
investigated orbits were in superior orbits. The giant’s gravitational influence extends to 
-0.95AU from the star, at and beyond which, all orbits are stable, compared to the 
theoretical limit of 0.89AU as determined by equation 4.3. For higher giant masses, table 
4.9 shows the gravitational influence slowly extends to -1.1AU for an 8 times minimum 
mass planet (1.15AU according to equation 4.3). This is still interior to the current inner 
habitable zone limit of the system, hence this would be a good candidate for housing a 
habitable Earth-mass planet, provided it survived the inward migration of the giant 
(Mandell & Sigurdsson, 2003 and Fogg & Nelson, 2005). All semimajor axes of stable 
orbits oscillate about their starting distance with no perceptible trend with increasing 
values. Their pumped up eccentricities vary rapidly between their starting and maximum 
values, where variation shows a weak trend decreasing with increasing semimajor axis.
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Figure 4.13. Stability comparison of two orbits around HD 52265, each o f semimajor axis 0.9AU but 
with different Agj(0).

The resonance study, results shown in table 4.10 revealed instabilities at 2:1 and 5:2 orbital 
period resonance and both were periastron longitude dependent. Stable orbits occurred at 
0.77783AU (2:1) for Agt(0) = 180°, which is surprising considering its proximity to the 
giant. There is clearly a resonance stabilising effect here possibly due to tidal effects 
caused by the combined gravitational attraction of the giant planet and the star. The 5:2 
resonance distance at 0.90259AU is very close to the orbital run at 0.9AU and shows 
similar trends. The instabilities at the 5:2 resonance and 0.9AU are most likely to be due 
to the regular and slightly closer approach of the terrestrial planet when at periastron 
corresponding to when the giant is at apastron.
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Table 4 .9  Orbital runs for an Earth-Moon planet in the habitable zone o f  HD 52265 w ith the
giant planet at 0.49AU with an eccentricity of 0.29.

Start Parameters Parameter variation during a run t / y e a r s o
m E-M a/A U Ao(0)/0 Earth-Moon e Earth-Moon a  /  AU A w f °

1 0.8 0 lO’3 0.8 - 348.2 ce
1 0.8 180 10° 0.8 - 149.4 ce
1 0.85 0 10'5- 0.110245 0.84190 ±0.00810 0 - 3 6 0 9.449 x 105 ce
1 0.85 180 10'5- 0.403628 0.85955 ±0.00955 0 - 3 6 0 1.192 x 10° ce
1 0.9 0 lO'5- 0.054844 0.90440 ±0.01540 9 0 -2 7 0 >10* -
1 0.9 180 10'5- 0.430162 0.90410 ± 0.01590 ± 100* 2.285 x 107 ce
1 0.95 0 10‘5- 0.140937 0.94415 ±0.00665 7 0 -2 9 0 >10* -
1 0.95 180 10'5- 0.364881 0.95515 ±0.00725 ±100* >10* -
1 1.0 0 10'5-  0.321610 0.99235 ±0.00855 ±90* >10* -
1 1.0 180 10'5- 0.350930 1.02195 ±0.02495 0 - 3 6 0 >10* -
1 1.1 0 10‘5- 0.297425 1.09690 ±0.00710 ±110* >10* -
1 1.1 180 10’5-  0.292378 1.10525 ±0.00695 ±100* >10* -

1.5 0.8 0 10'5 0.8 - 172 ce
1.5 0.8 180 10'5 0.8 - 84.6 ce
1.5 0.9 0 10‘5 0.9 - 1.243 x 104 ce
1.5 0.9 180 10-5- 0.390835 0.90340 ± 0.01340 0 - 3 6 0 6.928 x lO* ce
1.5 1.0 0 10’5- 0.329699 0.98910 ±0.01220 ±100* >10* -
1.5 1.0 180 lO’5- 0.229272 1.02365 ±0.02475 ±100* >10* -
1.5 1.1 0 10'5- 0.297274 1.09575 ±0.01065 ±110* >10* -
1.5 1.1 180 10‘5- 0.288712 1.10795 ±0.01025 ±110* >10* -
1.5 1.2 0 10°-0.274038 1.19360 ±0.01050 ±110* >10* -
1.5 1.2 180 10’5- 0.254980 1.20940 ±0.01090 ±110* >10* -
2 0.8 0 10‘5 0.8 - 711 ce
2 0.8 180 10'5 0.8 - 61.1 ce
2 0.9 0 10° 0.9 - 1124 ce
2 0.9 180 10‘5- 0.414276 0.90935 ±0.01995 ±90* 2.563 x 10& ce
2 1.0 0 lO*5- 0.339992 0.98585 ±0.01565 ±100* >10* -
2 1.0 180 10'5- 0.228969 1.02520 ± 0.02640 0 - 3 6 0 >10* -
2 1.1 0 10*5- 0.295805 1.09430 ±0.01410 ±120* >10* -
2 1.1 180 10'*- 0.286175 1.11075 ±0.01365 ±100* >10* -
3 0.8 0 10‘5 0.8 - 50.6 ce
3 0.8 180 10‘5 0.8 - 39.2 ce
3 0.9 0 10'5 0.9 - 312 ce
3 0.9 180 10’5 0.9 - 1.735 x 104 ce
3 1.0 0 lO'5- 0.364210 0.98015 ±0.02285 ±90* >10* -
3 1.0 180 10’5- 0.225929 1.02825 ±0.02915 ±130* >10* -
3 1.1 0 10'5- 0.295436 1.09240 ±0.02160 ±110* >10* -
3 1.1 180 10°-0.282615 1.11625 ±0.2025 ±110* >10* -
4 0.8 0 10'5 0.8 - 1194 ce
4 0.8 180 10° 0.8 - 37.8 ce
4 0.9 0 10'5 0.9 - 278 ce
4 0.9 180 lO’5 0.9 - 224 ce
4 1.0 0 10‘5 1.0 - 4621 ce
4 1.0 180 lO'5- 0.223174 1.03150 ±0.03190 0 - 3 6 0 >10* -
4 1.1 0 10*5-  0.296882 1.09085 ± 0.02915 ±120* >10* -
4 1.1 180 10'5- 0.281205 1.12205 ±0.02685 ±100* >10* -
6 0.9 0 10'* 0.9 - 66.2 ce
6 0.9 180 10‘5 0.9 - 47.6 ce
6 1.0 0 10’5 1.0 - 5157 ce
6 1.0 180 10°-0.216563 1.03750 ±0.03750 0 -3 6 0 >10* -
6 1.1 0 lO'5-  0.315529 1.09080 ±0.04710 0 - 3 6 0 >10* -
6 1.1 180 10°-0.281560 1.13360 ±0.03980 ±120* >10* -
8 0.9 0 10'5 0.9 - 6.97 ce
8 0.9 180 10*5 0.9 - 18.3 ce
8 1.0 0 10'5 1.0 - 760.7 ce
8 1.0 180 10'5-  0.225262 1.04375 ±0.04375 0 -3 6 0 >10* -
8 1.1 0 10‘5 1.1 - 6.779 x 10' ce
8 1.1 180 10°-0.284350 1.14435 ±0.05315 ±120* >10* -
8 1.2 0 10° -0.328517 1.17460 ±0.05710 0 - 3 6 0 >10* -
8 1.2 180 10‘5-  0.219175 1.26225 ±0.06225 0 -3 6 0 >10* -
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Table 4.10 Orbital resonance runs for an Earth-Moon planet in the habitable zone o f  HD  
52265 with the giant planet at 0 .49A U  and an eccentricity o f  0.29.

Start Parameters Parameter variation during a run t / y e a r s O

r E-M a /A U \c*0)/° Earth-Moon e Earth-Moon a  /  AU A t u f °

1.5 0.64208 0 10-' 0.64208 - 216 ce
1.5 0.64208 180 10*' 0.64208 - 0.484 ce
2 0.77783 0 10'* 0.77783 - 482 ce
2 0.77783 180 10'5- 0.573999 0.78005 ± 0.00895 0 - 3 6 0 >10^ -

2.5 0.90259 0 10'5- 0.388353 0.90450 ± 0.01260 ±110* >10y -
2.5 0.90259 180 lO '* -0.408870 0.90500 ±0.01720 ±120* 3.592 x  10s ce
3 1.01924 0 10'5-  0.238411 1.00880 ±0.01170 ±80* >10y -
3 1.01924 180 10’5- 0.172071 1.02425 ±0.01015 ±90* >10y -

3.5 1.12956 0 10'5- 0.295297 1.12630 ±0.00680 ±110* >10^ -
3.5 1.12956 180 10 s -0 .289615 1.13550 ±0.00680 ±110* >10^ -
4 1.23472 0 10'5- 0.288458 1.23945 ±0.00710 0 - 3 6 0 >10y -
4 1.23472 180 10’5-  0.131547 1.23740 ±0.00960 ±110* >10y -
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5. Modelling 55 Cancri with Three Giants

5.1 System Characteristics
This study uses the Mercury Orbital Integrator, as outlined at the beginning of chapter 4 in 
the single giant system investigations. It is based on the system characteristics of 55 
Cancri as published on the Schneider Exoplanet web site on 24th January, 2004 (Marcy, 
2002). First inspection of these characteristics revealed a discrepancy in the literature mass 
of the star. Although quoted as 1.03M0, a simple calculation of its mass from the 
semimajor axes and orbital periods of the planets from table 5.1 indicated the mass to be 
less. Rearranging Newton’s Law of Gravitation gives,

Here M  is the stellar mass, MQ is solar mass, a is the planet’s semimajor axis in 
astronomical units and P is the planet’s orbital period in years. The data for the planets 55 
Cancri b, c and d gives a stellar mass of O.945A/0, 0.953M0 and O.954M0 respectively. 
The mean of these is 0.95 M0, in agreement with Marcy et al., 2002, and orbital 
integrations for this system were carried out on both masses, with the majority on the 
lesser. Hence table 5.1 shows the orbital properties of the planets of 55 Cancri plus their 
gravitational reaches (with the Hill radius multipliers calculated from equations 4.2 and
4.3) for both the published and recalculated masses. Figure 5.1 gives a diagrammatical 
representation of the orbital extremes of each of the giants and their gravitational reach 
overlaying the outward movement of the habitable zone for a 0.95Me  star, as determined 
by the second Mazzitelli model, with the star’s present age revealed at 5Gyr. The diagram 
shows the HZ to be free of any giant planet gravitational perturbation effects; the planet 
distances on the y-axis are logarithmic to enhance the detail of the inner giant orbits. Table
5.2 shows the stellar properties of 55 Cancri, again with habitable zones determined for 
both stellar masses.

Table 5.1. Orbital Properties o f the exoplanets in the 55 Cancri exosystem used in this investigation.

Parameters before 11/4/2005 Planet
b c d

Mpsin/o /  M j 0.84 0.21 4.05
Semimajor axis/AU 0.115 0.241 5.9
Orbital Eccentricity 0.02 0.339 0.16

Period /  days 14.653 44.276 5360
Inner R n  multiplier 2.717 2.711 2.733
Outer R h  multiplier 7.028 8.115 6.516

1 . 0 3 Inner gravitational reach /  AU 0.072 0.133 3.219
1.03M &  Outer gravitational reach /  AU 0.190 0.401 10.987
0.95M a  Inner gravitational reach / AU 0.072 0.132 3.171
0.95M n  Outer gravitational reach /  AU 0.191 0.403 11.100

The stellar data in table 5.2 reveals the star to be similar to the Sun but with a higher 
metallicity, which is common for the known stars with planets. The age of 55 Cancri is 
similar to the Sun at 5Gyr as derived from the H and K chromospheric emission levels. It 
is slightly redder than the Sun, with a main sequence life time of 16Gyr or 11.5Gyr for 
masses of 0.95M0 or 1.03MQ respectively according to the first Mazzitelli stellar model, or
11.4 Gyr or 8 Gyr respectively according to the second Mazzitelli model.
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Table 5.2. Stellar properties o f 55 Cancri

Parameter Schneider Mass1 Calculated Mass2
M * / M „ 1.03 0.95

Metallicity / [Fe/H| 0.29 0.29
Metallicity / %  (1st & 2nd model) 3.90 & 3.67 3.90 & 3.67
Spectral Type, luminosity class G8V G8V

Bolometric Correction -0.30 -0.30
Age /  Gyr 5.0 5.0

Distance / pc 13.4 13.4
Apparent Visual Magnitude 5.95 5.95

L / L „ 0.77 0.77
2WK 5271 5271

1st model inner HZ ZAMS /  AU 0.722 0.603
1st model outer HZ ZAMS /  AU 1.425 1.186

1st model inner HZ now / AU 0.858 0.695
1st model outer HZ now / AU 1.700 1.368

1st model inner HZ EoMS /  AU 1.311* 1.3834
1st model outer HZ EoMS /  AU 2.575* 2.7134

2nd model inner HZ ZAMS /  AU 0.802 0.682
2nd model outer HZ ZAMS /  AU 1.588 1.346

2nd model inner HZ now / AU 1.040 0.826
2nd model outer HZ now /  AU 2.070 1.637

2nd model inner HZ EoMS /  AU 1.4513 1.2805
2nd model outer HZ EoMS /  AU 2.8553 2.5255

Stellar parameters inner HZ now / AU 0.770 0.770
Stellar parameters outer HZ now / AU 1.517 1.517

Schneider, 2006
Mean mass calculated from the three planet orbital periods 
Determined using HZ profiles as described in chapter 3, section 5.2 
Determined using Effective Temperature profiles as described in chapter 3, section 5.2 
Determined using Luminosity profiles as described in chapter 3, section 5.2
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Figure 5.1 Movement o f  the Habitable Zone for the main sequence life time o f  a 0.95M 0  55 Cancri 
star (as determined by the second Mazzitelli model), overlaying the apastra, periastra and 
gravitational reaches o f the three giant planets. For each value, see table 5.1
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5.2 Determining the Stability of the 55 Cancri System
Before inserting Earth-Moon planets within the habitable zone of this system, an initial 
study was undertaken to investigate the stability of the system with just the three giants. 
As there is more than one giant, their initial positions relative to each other must be 
determined at a specific time, in this case Julian Date 2450000. The periastra longitudes 
are relative to one ascending node, which is sufficient as all three planets are deemed to lie 
in one plane. The mean anomalies are determined from the time after Julian Date 
2450000, when each planet was next at periastron (Marcy et al., 2002). For a mean 
anomaly in degrees, M, Julian date of periastron, JD and orbital period in days, P,

5.2.
F 'The times of periastron and calculated mean anomalies for each giant are given in table

5.3, with their periastron longitude. These are entered into the Mercury Orbital Integrator 
starting parameters for these and all subsequent runs, so that the program places the giants 
in their correct relative positions at the start of each run. These positions are shown 
diagrammatically in Figure 5.2, where the distances of the inner giants from the star have 
been magnified by 10 for clarity. The inclination angle of the system was gradually 
increased from the plane of the sky, hence reducing the planets’ masses. This would 
determine the maximum masses of the planets the system is capable of supporting before 
its gravitational forces cause destabilisation, the results of which are shown in table 5.4

Periastron 
Longitudes 
at t = 0

10 x c
10 x c Anomalies 

at t = 010 xbo d tZT = 0

Radial 
Distance 
from 55 
Cancri (at 
0,0) in AU

Figure 5.2 The relative starting positions (Anomalies) and initial periastra longitudes o f  the three
giants. The distances o f  giants b and c are magnified by 10 for clarity. Earth-Moons are 
subsequently launched within the HZ (0.6AU to 3AU) on the line shown from giant d’s 
periastron, through the origin (star) and beyond.

Table 5.3 Starting positions o f  the three giants at Julian Date 2450000 (1200, 09/10/1995).

Giant Periastron Longitude /  ° Julian Date o f Periastron Mean Anomaly /
b 99 2450001.479 323.66
c 61 2450031.4 104.69
d 201 2452785 172.95
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Table 5.4 Verification of the stability of the 55 Cancri system around a 1.03M 0  star

Inclination 
angle / °

Minimum mass 
multiplier

Time before system 
collapse /' years

Circumstances of system 
coilapse

90 1 >109 .
56.44 1.2 2.704 x 10̂ Giant c ejected
50.28 1.3 1.203 x l O 8 Giant c ejected
45.58 1.4 5.549 x l O 7 Giant c falls into the star
41.81 1.5 4.029 x 107 Giant b falls into the star

35 1.7434 2.635 x 107 Giant c ejected
30 2 5.332 x 105 Giant c falls into the star
25 2.3662 3.565 x 10s Giant c ejected
20 2.9238 1.228 x l O4 Giant c ejected
15 3.8637 8175 Giant c ejected
10 5.7588 1191 Giant c ejected
5 11.4737 41.19 Giant c ejected

The table reveals that the system must be inclined at an angle higher than 56°.44 with the 
plane of the sky for it to be stable; hence from equation 1.1, the maximum masses of the 
planets must be less than 1.2 times their minimum mass. By equation 4.1, this would 
imply a maximum increase in gravitational reach of 6% from each planet greater than those 
quoted for the minimum mass giants. This finding effectively rules out any studies using 
yet greater planet masses due to the inclination of the system being unknown. Also, a 
similar stability run at 1.1 times the giants’ minimum mass was ruled out as unnecessary 
for the same reason. This result does contradict, however, a previously deduced inclination 
of 27° of the system to the plane of the sky, determined from the shape of a surrounding 
dust ring (Trilling et al, 2000).

The properties of the giants’ orbits at unit minimum mass over the next lGyr, showed no 
association between the outer giant, d and the inner two, b and c. Indications of periastra 
longitude constraints between the inner two giants (Figure 5.3), however, back up previous 
investigations into probable resonance phenomena due to the orbital period of giant c being 
almost exactly three times that of b (Zhou et al., 2004, Beauge et al., 2003 Ji et al., 2003).
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Figure 5.3 Difference in periastra longitudes between giants b and c within the 55 Cancri system over
the next lGyr, assuming minimum mass giants.
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Table 5.5 Act between each pair o f the three minimum mass planets over the lGyr run.

b, cAgP b, d AzaP c, d AsP
0 -  360* 0 - 3 6 0 0 - 3 6 0
0 -  360* 0 - 3 6 0 0 - 3 6 0
0 -  360* 0 - 3 6 0 0 - 3 6 0

Secular tendencies are present, where Am= 90° to 270°, from 2.5 x 108 to 9 x 108 years over this 
109year integration.

5.3 Outcome of the System Investigations with a 1.03 Me  Star
The previously mentioned lGyr run to determine the stability of the 55 Cancri system took 
55 days to complete on a 1.8GHz PC computer. This was far too long a time for 
subsequent lGyr integrations to determine whether Earth-Moon planet orbits were stable 
and confined to the habitable zone. Hence the integration time for each run in this study 
was cut to lOOMyr, where each run took a more manageable 5.5 days.

Integrations were carried out with Earth-Moons at 0.1 AU intervals from 0.7AU to 2.0AU 
plus further runs at 2.5AU and 3.0AU. Table 5.2 shows that this covers the habitable zone 
tabulated for the various cases. Two runs were carried out at each distance with Earth- 
Moon periastron longitudes of 21° and 201° such that one initial A c t  = 180° with the 
periastron of giant d at 21° longitude and the second initial A c t  = 0° at 201° longitude. In 
all integrations, the Earth-Moon terrestrial planet had an initial orbital eccentricity of 10'5 
and orbited in the same plane as the giants.

The integration results from table 5.6 reveal stable Earth-Moon orbits confined to the 
habitable zone from 0.9AU to 2.5AU, i.e. over virtually all of the Habitable Zone as 
determined for this 1.03 M0 star over the whole of the main sequence lifetime, using the 
first Mazzitelli model (see Table 5.2). As this was the only model at the time of these 
integrations, subsequent more detailed studies of the outer habitable zone, as predicted by 
the second Mazzitelli model, were not carried out due to time constraints. These stable 
orbits are characterised by semimajor axes that vary by less than 1% of the initial value 
(Figure 5.4) and consistent variations in orbital eccentricity (Figure 5.5). At the limits of 
the habitable zone, the outcome of the unstable orbit at 3.0AU is due to a close approach of 
giant d. This occurred when the initial periastra of giant d and Earth-Moon were 
coincident. In the other integration at 3.0AU where the periastra of the two bodies were 
initially 180° apart, strong libration constraints of ± 70° occurred which resulted in

O 1

stabilisation over the entire 10 years, the fine detail of which was not pursued here (see t  
Gruis in chapter 4). Unstable orbits or destabilised orbits at the inner edge of the habitable 
zone at 0.7AU and 0.8AU were attributed to gravitational perturbations of giant c. The 
destabilised orbits may last lOOMyr but irregular changes in orbital eccentricity, shown in 
Figure 5.6, reveal underlying chaotic tendencies which may lead to instability. This is 
despite the orbits lying well beyond the outer gravitational reach of Giant c, as shown in 
table 5.1 and in Figure 5.1. There is also the possibility that this may be due to higher 
order resonance effects of giant d, ca. (20-25): 1, which were not studied for this stellar 
mass, but were investigated for the 0.95 M0 star (see section 5.4).
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Table 5.6 Orbital runs for an Earth-Moon planet in the habitable zone o f  a 1.03M Q  55 Cancri star in
the presence o f  minimum mass giants.

Start Parameters Parameter variation during a run t / years 0
E -M o /A U P /° Earth-Moon e Earth-Moon a 1 AU b Ac/ 1 c AaP d AcP

0.7 21 10'* -0.017084 0.69856 ± 0.00455 0 -3 6 0 0 -3 6 0 0 - 3 6 0 > 1 0 **' -
0.7 2 0 1 lO * - 0.560690 0.81063 ±0.15634 0 -3 6 0 0 -3 6 0 0 - 3 6 0 3.511 x 10° c ce
0 . 8 2 1 10°-0.015912 0.79797 ±0.00485 0 -3 6 0 0 -3 6 0 ±90* > 1 0 8 -
0 . 8 2 0 1 10°-0.019265 0.80190 ±0.00509 0 - 3 6 0 0 -3 6 0 0 - 3 6 0 > 1 0 *" -
0.9 2 1 10^-0.023479 0.89742 ±0.00576 0 - 3 6 0 0 -3 6 0 ±70* > 1 0 8 -
0.9 2 0 1 104 - 0.027770 0.90241 ±0.00572 0 -3 6 0 0 -3 6 0 ± 1 0 0 * > 1 0 * -
1 . 0 2 1 10‘5- 0.037720 0.99753 ±0.00658 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 * -
1 . 0 2 0 1 10"*-0.037914 1.00280 ±0.00705 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 8 -
1 . 1 2 1 10°-0.048686 1.09648 ±0.00782 0 -3 6 0 0 - 3 6 0 ± 7 0 ’ > 1 0 8 -
1 . 1 2 0 1 10"5- 0.052081 1.10350 ± 0.00767 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 8 -
1 . 2 2 1 10°-0.062947 1.19639 ±0.00869 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 * -
1 . 2 2 0 1 10"*- 0.065089 1.20400 ±0.00868 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 * -
1.3 2 1 10°-0.076195 1.29582 ±0.00985 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 8 -
1.3 2 0 1 lO""- 0.080137 1.30523 ±0.01018 0 - 3 6 0 0 -3 6 0 ± 1 0 0 * > 1 0 s -
1.4 2 1 10°-0.086753 1.39643 ±0.01177 0 - 3 6 0 0 -3 6 0 ± 7 0 ’ > 1 0 8 -
1.4 2 0 1 10"J- 0.090211 1.40441 ±0.01156 0 - 3 6 0 0 -3 6 0 ± 1 0 0 ’ > 1 0 8 -
1.5 2 1 10"5- 0.097204 1.49452 ±0.01250 0 - 3 6 0 0 - 3 6 0 ±80* > 1 0 8 -
1.5 2 0 1 1 0 "*- 0.100611 1.50534 ±0.01249 0 - 3 6 0 0 - 3 6 0 ±90* > 1 0 8 -
1 . 6 2 1 10"5- 0.107438 1.59391 ±0.01377 0 -3 6 0 0 -3 6 0 ±80* > 1 0 8 -
1 . 6 2 0 1 10°-0.110417 1.60663 ±0.01382 0 -3 6 0 0 -3 6 0 ± 9 0 ’ > 1 0 * -
1.7 2 1 10°-0.116019 1.69339 ±0.01519 0 -3 6 0 0 -3 6 0 ±80* > 1 0 8 -
1.7 2 0 1 10"*-0.120300 1.70737 ±0.01532 0 - 3 6 0 0 -3 6 0 ±90* > 1 0 * -
1 . 8 2 1 10"5- 0.124701 1.79308 ±0.01691 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 8 -
1 . 8 2 0 1 10°-0.127734 1.80708 ±0.01717 0 - 3 6 0 0 -3 6 0 ±90* > 1 0 8 -
1.9 2 1 10'*-0.132626 1.89120 ±0.01799 0 -3 6 0 0 -3 6 0 ± 1 0 0 * > 1 0 * -
1.9 2 0 1 10"*-0.136314 1.90783 ±0.01866 0 -3 6 0 0 - 3 6 0 ± 9 0 ’ > 1 0 8 -
2 . 0 2 1 10°-0.134602 1.99204 ±0.01987 0 -3 6 0 0 - 3 6 0 ±90* > 1 0 * -
2 . 0 2 0 1 10° -0.183940 2.00625 ±0.02445 0 -3 6 0 0 - 3 6 0 0 - 3 6 0 > 1 0 8 -
2.5 2 1 10"*-0.174989 2.48959 ±0.03035 0 -3 6 0 0 - 3 6 0 ±90* > 1 0 8 -
2.5 2 0 1 10°-0.172101 2.51234 ±0.02897 0 -3 6 0 0 - 3 6 0 ±90* > 1 0 8 -
3.0 2 1 10°-0.237500 2.98950 ± 0.04590 0 -3 6 0 0 - 3 6 0 ±70* > 1 0 8 -
3.0 2 0 1 1 0 '* 3.0 - - - 77 d ce

Footnotes for all subsequent tables: 
r  orbital period resonance ratio
a  Earth-Moon’s (E-M) semimajor axis distance from the star in AU
p  longitude o f periastron o f Earth-Moon with respect to that o f the system (°)
e  orbital eccentricity
x  A w  periastron longitude difference between the giant x  and Earth-moon 
t  time o f run to completion or termination in years
O  outcome o f run termination if  applicable where ‘x  ce’ is a close encounter with a giant planet and x

is either b, c or d.
Libration o f the Earth-Moon periastron longitude is evident relative to that o f the giant.
Indications o f instability are evident in the orbital eccentricity.
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Of the stable Earth-Moon orbits with initial semimajor axes between 0.9AU and 2.5AU 
inclusive, confined to the habitable zone, all had small semimajor axis variations, with 
percentage variation increasing from 0.63% to 1.22% as initial semimajor axis values 
increased from 0.9AU to 2.5AU. Eccentricity varied consistently for all integrations (see 
Figure 5.5), and this variation also increased with increasing semimajor axis, from a 
maximum value of 0.0235 at 0.9AU to 0.184 at 2.4AU. Both of these effects are attributed 
to the ever increasing gravitational perturbation effects of the most massive outer giant d, 
as the initial Earth-Moon semimajor axis increases. All periastron libration effects, when 
present in Earth-Moon orbits, were connected with giant d and in no case were there any 
such effects with the less massive inner two giants. Of the runs at the same initial 
semimajor axis, those with initially coincident periastra between the Earth-Moon and giant 
d had slightly larger variations in eccentricity and settled into orbits with slightly larger 
mean semimajor axes with greater variation. These variations were in low single figures 
percentages for eccentricity and fractions of a percent for semimajor axes, but consistent 
nonetheless. They were also opposite to similar trends found in the single planet systems, 
where coincident initial periastra between a giant and Earth-Moon yielded slightly ‘tighter’ 
Earth-Moon orbits. The possible reason for this is that during all integration launches, the 
mean anomaly of the giant d is 172°.95, hence at coincident periastra longitudes, the initial 
positioning of the Earth-Moon, always at a mean anomaly of 0°, and giant d is almost on 
opposite sides of the star. Thus it appears that subtle differences in orbital characteristics 
with the same initial semimajor axis may not rely on initial relative periastra but on the 
actual initial locations of the planets relative to each other in their orbits.

5.4 Outcome of the System Investigations with a 0.95M0 Star
As mentioned in section 5.1, the orbital periods and semimajor axes of the giant planets in 
55 Cancri are actually consistent with a star of mass 0.95M q (Marcy et al., 2002). The 
outcomes of all subsequent integrations of Earth-Moon planets within this system are all 
based on the star having this mass. The runs to determine the stable orbits confined to the 
entire habitable zone over all the star’s main sequence life time (see table 5.2) are revealed 
in table 5.7.

Initial inspection of the table reveals stable orbits from 0.8AU to 2.7AU, with the stable 
runs at 2.8AU and 2.9AU being dependent on the periastron longitude of the Earth-Moon 
relative to that of giant d. This range covers the entire habitable zone with the exception of 
the innermost region between 0.6AU and 0.8AU, implying that 55 Cancri could be an 
excellent candidate for housing a habitable terrestrial planet. Previous orbital integrations 
limited to 1AU only, by Marcy et al., 2002, found stable orbits for an Earth type planet 
with eccentricity variations with a maximum of 0.03 over 27,000years. The type of 
integrator used and details of the integration runs are not stated in their paper, but it implies 
that their integration time may have been much shorter than lOOMyr with much more 
frequent time steps than 104 years. This would give them the more detailed eccentricity 
oscillation information, as was so for t1 Gruis where an Earth-Moon was launched at 
1.7AU at Am = 0, discussed in chapter 4, section 5.1. Their findings are in good agreement 
with those here, where eccentricities oscillated from 10'5 to 0.032 before instabilities 
occurred after 76Myr and 86Myr for Earth-Moon periastron launch angles of 201° and 21° 
respectively. There were even indications from our results of a possible eccentricity cycle 
of 28,300 years, although this is inconclusive due to the density of results being 
insufficient for this level of refinement.

Although the orbital integrations lasted for lOOMyr in all cases between 0.8AU and 2.7AU, 
many runs were such that their orbital elements were not stable over the period. This 
occurred at 1.0AU and between 1.3AU and 1.8AU. Examples of the semimajor axis and
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eccentricity from a stable orbit are shown in figures 5.4 and 5.5. Examples of each 
parameter, from a potentially unstable orbit lasting lOOMyr, are shown in figures 5.7 and 
5.8.

Table 5.7 Orbital runs for an Earth-Moon planet in the habitable zone o f a O.95M0 55 Cancri star in
the presence o f  minimum mass giants.

Start Parameters Parameter variation during a run t  / years 0
E -M a /A U p /° Earth-Moon e Earth-Moon a 1 AU b A cP c A aP d A ttP

0 . 6 2 1 10'5-  0.414577 0.58091+0.01969 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 5.150 x lO*1 c ce
0 . 6 2 0 1 lO'5-  0.616838 0.60205 ± 0.00413 90 - 270 0 -3 6 0 0 - 3 6 0 1.047 x 10' c ce
0.7 2 1 10'-0 .738540 0.69820 ±0.01949 0 -3 6 0 0 -3 6 0 0 - 3 6 0 6 . 0 0 1  x 1 0 ' c ce
0.7 2 0 1 10'5- 0.728394 0.83046 ±0.16025 0 -3 6 0 0 -3 6 0 0 - 3 6 0 5.211 x 10° c ce
0 . 8 2 1 1 0 °  -0.016081 0.79783 ±0.00515 0 -3 6 0 0 -3 6 0 ±90* > 1 0 " -
0 . 8 2 0 1 lO-'- 0.017504 0.80214 ±0.00562 0 -3 6 0 0 -3 6 0 ± 1 0 0 * > 1 0 " -
0.9 2 1 10*-0.024046 0.89706 ±0.00624 0 -3 6 0 0 - 3 6 0 ±70* > 1 0 " -
0.9 2 0 1 10*-0.026110 0.90257 ±0.00619 0 -3 6 0 0 - 3 6 0 ± 1 0 0 * > 1 0 " -
1 . 0 2 1  j 10'5- 0.156186 0.99576 ±0.00836 0 -3 6 0 0 - 3 6 0 0 - 3 6 0 > 1 0 "** -
1 . 0 2 0 1 10*-0.292038 1.00492 ±0.01158 0 -3 6 0 0 - 3 6 0 0 -3 6 0 > 1 0 "*** -
1 .1 2 1 10‘5- 0.049109 1.09654 ± 0.00822 0 -3 6 0 0 - 3 6 0 ±70* > 1 0 " -
1 .1 2 0 1 10*-0.052920 1.10414 ±0.00854 0 -3 6 0 0 - 3 6 0 ±90* > 1 0 " -
1 . 2 2 1 10*-0.064163 1.19592 ±0.00944 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 " -
1 . 2 2 0 1 10*-0.066714 1.20406 ±0.00974 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 " -
1.3 2 1 10*-0.098239 1.29460 ±0.01093 0 -3 6 0 0 - 3 6 0 0 -3 6 0 > 1 0 "** -
1.3 2 0 1 10* -0.079410 1.30609 ±0.01157 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 * -
1.4 2 1 10*-0.333734 1.39448 ±0.01414 0 -3 6 0 0 - 3 6 0 0 -3 6 0 > 1 0 "** -
1.4 2 0 1 10*-0.187047 1.40411 ±0.01258 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 > 1 0 "** -
1.5 2 1 10*-0.097517 1.49629 ±0.01486 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 " -
1.5 2 0 1 10*-0.101465 1.50571 ±0.01382 0 - 3 6 0 0 - 3 6 0 ±90* > 1 0 "** -
1 . 6 2 1 lO'6- 0.108703 1.59443 ±0.01562 0 - 3 6 0 0 - 3 6 0 ±80* > 1 0 "** -
1 . 6 2 0 1 10*-0.153377 1.60760 ±0.01602 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 > 1 0 "** -
1.7 2 1 10*-0.116455 1.69405 ±0.01651 0 -3 6 0 0 - 3 6 0 ±80* > 1 0 " -
1.7 2 0 1 10*-0.126223 1.70750 ±0.01641 0 - 3 6 0 0 - 3 6 0 ± 1 0 0 * > 1 0 "** -
1 . 8 2 1 10*-0.158991 1.79264 ±0.01843 0 -3 6 0 0 - 3 6 0 0 -3 6 0 > 1 0 "** -
1 . 8 2 0 1 10*-0.128942 1.80805 ±0.01845 0 - 3 6 0 0 -3 6 0 ±90* > 1 0 " -
1.9 2 1 10’*-0.134290 1.89185 ±0.02044 0 - 3 6 0 0 - 3 6 0 ±80* > 1 0 " -
1.9 2 0 1 10*-0.137034 1.90931 ±0.01983 0 - 3 6 0 0 -3 6 0 ±90* > 1 0 * -
2 . 0 2 1 10*-0.134721 1.99254 ±0.02175 0 - 3 6 0 0 - 3 6 0 ±80* > 1 0 " -
2 . 0 2 0 1 10^-0.186826 2.00495 ± 0.02596 0 -  360 0 -  360 0 -  360 > 1 0 " -
2 . 1 2 1 10*-0.145480 2.09048 ±0.02278 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 " -
2 . 1 2 0 1 10*-0.156286 2.10934 ±0.02394 0 - 3 6 0 0 - 3 6 0 ±90* > 1 0 " -
2 . 2 2 1 10*-0.150108 2.18924 ±0.02591 0 -3 6 0 0 -3 6 0 ±80* > 1 0 " -
2 . 2 2 0 1 10*-0.154504 2.21178 ±0.02582 0 - 3 6 0 0 -3 6 0 ± 9 0 ’ > 1 0 " -
2.3 2 1 10*-0.131308 2.28874 ± 0.02708 0 - 3 6 0 0 -3 6 0 ±70* > 1 0 " -
2.3 2 0 1 10*-0.107933 2.30993 ± 0.02843 0 - 3 6 0 0 -3 6 0 ±130* > 1 0 " -
2.4 2 1 10*-0.177633 2.38612 ±0.03035 0 -3 6 0 0 -3 6 0 ±90* > 1 0 " -
2.4 2 0 1 10*-0.177592 2.41143 ±0.02901 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 " -
2.5 2 1 10*-0.175388 2.48709 ±0.03236 0 -3 6 0 0 -3 6 0 ± 8 0 ’ > 1 0 " -
2.5 2 0 1 10‘5- 0.172198 2.51342 ±0.03162 0 - 3 6 0 0 -3 6 0 ±80* > 1 0 * -
2 . 6 2 1 10*-0.172255 2.58549 ±0.03345 0 -3 6 0 0 - 3 6 0 ± 9 0 ’ > 1 0 " -
2 . 6 2 0 1 10* -0.165352 2.61473 ±0.03333 0 -3 6 0 0 -3 6 0 ±90* > 1 0 " -
2.7 2 1 10‘5- 0.154435 2.68417 ±0.03574 0 - 3 6 0 0 - 3 6 0 ± 1 0 0 * > 1 0 * -
2.7 2 0 1 10*-0.129438 2.71721 ±0.03812 0 - 3 6 0 0 - 3 6 0 ±90* > 1 0 " -
2 . 8 2 1 10* — 0.111313 2.78027 ±0.04517 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 > 1 0 " -
2 . 8 2 0 1 10*-0.172150 2.81451 ±0.01451 - - - 1.546 x lO 4 dee
2.9 2 1 10*-0.237020 2.88543 ±0.05575 0 -3 6 0 0 -3 6 0 ± 8 0 ’ > 1 0 " -
2.9 2 0 1 1 0 * 2.9 - - - 51 dee
3.0 2 1 1 0 * 3.0 - - - 124 dee
3.0 2 0 1 lO' 5 3.0 - - - 81 dee

Footnotes as for table 5.6 plus,
Indications o f instability are evident in the orbital semimajor axis and eccentricity.
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201°

Orbital stability from these two figures seems assured until a considerable fraction of the 
lOOMyr has passed, with the implication that such integrations may not last lGyr. Most of 
these potentially unstable orbits are only revealed through anomalies in eccentricity; it is a 
rare occurrence for the semimajor axis also to reveal this. One reason for these instabilities 
may be due to the fine balance the three giants have in order to exist alone in their stable 
orbits. This is manifested in the on-off libration phenomenon of giants b and c as shown in 
Figure 5.3 plus the integration result showing that the system destabilises entirely if the 
giant masses are only 1.2 times their minimum mass. It implies that the entire system may 
exist on a fine balance between order and chaos. This suggests that the system may not be 
as habitable as it would be if the giant orbits were completely stable. It also draws the 
possibility to the reader as to how many others of the known multiple giant systems may 
exist in a similar ‘knife-edge’ state, be they potentially habitable or not.

5.5 Resonance Investigation with a 0.95Me Star
To check whether there are resonance effects behind the irregular behaviour of some of the 
table 5.7 orbits, a detailed study is summarised in table 5.8, where orbital period resonance 
orders were studied from 3:1 to 25:1 and from 7:2 to 25:2 for an Earth-Moon with giant d.
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The resonance ratio is r, this being the ratio of the orbital period of the Earth-Moon to that 
of giant d. Table 5.9 also details integration runs where initial semimajor axes were mid­
way between higher resonance orders x:l and (x+l):l where x is from 13 to 24 inclusive.

Table 5.8 Orbital resonance runs for an Earth-Moon planet in the habitable zone o f a 0.95M 0
55 Cancri star in the presence of minimum mass giants.

Start Parameters Parameter variation during a run t i vears o
r E-M a /  AU P /° Earth-Moon e Earth-Moon a / AU b A®0 C A g7° d A aP
3 2.836424 21 10'3- 0.219816 2.81346 + 0.08048 0 - 3 6 0 0 -  360 0 - 3 6 0 >10* -
3 2.836424 201 10'3 2.836424 - - - 5306 d cc

3.5 2.55941 21 10'3-  0.598416 2.55168 ±0.05235 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10* -
3.5 2.55941 201 10'3 -  0.172977 2.57320 ±0.03340 0 - 3 6 0 0 - 3 6 0 ±90* >10* -
4 2.34142 21 10'--0 .148445 2.32430 ±0.03415 0 - 3 6 0 0 -  360 0 - 3 6 0 >10**** -

4 2.34142 201 10'3-  0.170149 2.35342 ±0.03026 0 - 3 6 0 0 - 3 6 0 ± 100’ >10* -
4.5 2.1646 21 10'*-0.150620 2.15654 ±0.02474 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
4.5 2.1646 201 10‘3 -  0.153928 2.17360 ±0.02566 0 - 3 6 0 0 - 3 6 0 ±90* >10* -
5 2.01777 21 10'3- 0.197444 2.00564 ± 0.02763 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
5 2.01777 201 10'3-  0.148854 2.02699 ±0.02272 0 - 3 6 0 0 - 3 6 0 ± 100* >10* -

5.5 1.89355 21 10'3-  0.131979 1.88637 ±0.01976 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
5.5 1.89355 201 10'3-  0.136580 1.90230 ±0.01950 0 - 3 6 0 0 - 3 6 0 ±90* >10* -
6 1.78683 21 10'*-0.128759 1.78042 ±0.01828 0 - 3 6 0 0 - 3 6 0 ±90* >10*** -
6 1.78683 201 1 O'5-0 .127881 1.79448 ±0.01836 0 - 3 6 0 0 - 3 6 0 ±90* >10* -

6.5 1.693986 21 10'3- 0.116489 1.68772 ±0.01613 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
6.5 1.693986 201 10*-0 .119959 1.70145 ±0.01685 0 - 3 6 0 0 - 3 6 0 ± 9 0 >10* -
7 1.61233 21 10'*-0.108682 1.60618 ±0.01566 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
7 1.61233 201 10'3- 0.114268 1.61940 ±0.01587 0 - 3 6 0 0 - 3 6 0 ±90* >10* -

7.5 1.53985 21 10'5-  0.101409 1.53587 ±0.01500 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
7.5 1.53985 201 10'3-  0.104906 1.54593 ±0.01481 0 - 3 6 0 0 - 3 6 0 ±90* >10* -
8 1.475 21 1 O'5-0 .116723 1.46815 ±0.01339 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
8 1.475 201 10'5-  0.100418 1.48128 ±0.01367 0 - 3 6 0 0 - 3 6 0 ±80* >10* -

8.5 1.4165744 21 10'*-0.089676 1.41331 ±0.01331 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
8.5 1.4165744 201 10'3- 0.145244 1.42084 ±0.01305 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
9 1.36361 21 10'3- 0.084037 1.35797 ±0.01187 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
9 1.36361 201 10'3- 0.129287 1.36814 ±0.01226 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -

9.5 1.3153347 21 10'3- 0.214557 1.31075 ±0.01151 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
9.5 1.3153347 201 10'3- 0.131567 1.31979 ± 0.01159 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
10 1.2711 21 10'5-  0.072612 1.26678 ±0.01042 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
10 1.2711 201 10'3- 0.162456 1.27588 ±0.01130 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -

10.5 1.230436 21 10'3- 0.065924 1.22661 ±0.00991 0 - 3 6 0 0 -  360 ±80* >108 -
10.5 1.230436 201 10'3- 0.070271 1.23394 ±0.01062 0 - 3 6 0 0 - 3 6 0 ± 100* >10* -
11 1.192862 21 10'*-0.073798 1.18891 ±0.00960 0 - 3 6 0 0 - 3 6 0 ±90* >10*** -
11 1.192862 201 10'3- 0.064313 1.19718 ±0.00938 0 - 3 6 0 0 - 3 6 0 ±90* >10* -

11.5 1.158031 21 10'3- 0.057085 1.15429 ±0.00886 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
11.5 1.158031 201 10'*-0.062372 1.16222 ±0.00895 0 - 3 6 0 0 - 3 6 0 ± 100* >10* -
12 1.1256357 21 10'3 -  0.052986 1.12167 ±0.00868 0 - 3 6 0 0 - 3 6 0 ±70* >10* -
12 1.1256357 201 10'3- 0.031084 1.12604 ±0.01332 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10**** -

12.5 1.095415 21 10'3- 0.049107 1.09167 ±0.00823 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
12.5 1.095415 201 10'3 -  0.058734 1.09935 ±0.00843 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
13 1.0671442 21 10'3- 0.045701 1.06355 ±0.00795 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
13 1.0671442 201 10'*-0.048298 1.07077 ±0.00833 0 - 3 6 0 0 - 3 6 0 ± 100* >10* -
14 1.0157 21 10'3- 0.037463 1.01221 ±0.00741 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
14 1.0157 201 10'3- 0.407524 1.02447 ±0.01335 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10**** -
15 0.97 21 10'*-0.032829 0.96729 ± 0.00698 0 - 3 6 0 0 — 360 ±80* >10* -
15 0.97 201 10'3- 0.347137 0.96155 ±0.02749 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10**** -
16 0.92919 21 10'3- 0.027853 0.92595 ± 0.00692 0 - 3 6 0 0 - 3 6 0 ± 8 0 >10**‘ -
16 0.92919 201 10'* -0 .065237 0.93229 ± 0.00645 0 - 3 6 0 0 - 3 6 0 ±110* >10*" -
17 0.892386 21 10'3-  0.579325 0.88197 ±0.03308 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 9.531 X 10' c ce
17 0.892386 201 10'5-  0.329252 0.86075 ±0.04139 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10**** -
18 0.859 21 10'3 -  0.019910 0.85637 ± 0.00579 0 - 3 6 0 0 - 3 6 0 ±80* >10* -
18 0.859 201 10'3 -  0.026709 0.86072 ±0.00641 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10*** -
19 0.828609 21 10'*-0.020146 0.82625 ±0.00571 0 - 3 6 0 0 - 3 6 0 ± 120* >10* -
19 0.827 201 10'3- 0.771357 0.86018 ±0.22919 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 7.568 x 10' c ce
19 0.828 201 10'3- 0.019199 0.83118 ±0.00643 0 - 3 6 0 0 - 3 6 0 ±  100* >10* -

19 0.828609 201 10'3- 0.659626 0.84415 ±0.02676 0 - 3 6 0 0 -  360 0 - 3 6 0 3.617 x 107 c ce
19 0.829 201 10'3- 0.021976 0.83127 ±0.00557 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10* -

19 0.830 201 10'3-  0.021789 0.83249 ±  0.00578 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10* -

20 0.8 21 10'3-  0.016081 0.79783 ±0.00515 0 - 3 6 0 0 - 3 6 0 ±90* >10* -

20 0.8 201 10'3- 0.017504 0.80214 ±0.00562 0 - 3 6 0 0 - 3 6 0 ±  100* >10* -
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Start Parameters Parameter variation during a  run //y e a r s O

■' r E -M a /A U P / ° Earth-Moon e Earth-Moon a /  A U b A c /1 cAtzP d A c P

21 0.7751263 21 1 0 °-0 .0 1 8 0 2 2 0.77254 ±0.00521 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10* -

21 0.7751263 201 10"s - 0.025427 0.77669 ±0.00604 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >108** -

22 0.751456 21 1 0 * -  0.040111 0.82609 ±  0.08436 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >108*** -

22 0.751456 201 10*-0 .022969 0.75376 ±0.00572 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -

23 0.7295137 21 10^-0 .553030 0.74690 ±0.06373 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 2 .8 6 8 x 1 0 ' c ce

23 0.7295137 201 10*-0 .036125 0.73344 ±0.00591 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -

24 0.709106 21 10*-0 .015656 0.70684 ± 0.00449 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >108** -

24 0.709106 201 10*-0 .434608 0.69146 ±0.05014 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 7.492 x 10; c ce

25 0.69 21 10° -0 .6 6 3 4 3 0 0.70538 ±0.04424 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 3 .4 8 8 x 1 0 ' c cc

25 0.69 201 10*-0 .090460 0.68772 ±0.00818 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -

Footnotes as for table 5.6 plus,
Indications o f instability are evident in the orbital semimajor axis and eccentricity.

Table 5.9 Orbital runs for an Earth-Moon planet in the habitable zone o f  a 0.95M 0  55 Cancri star in
the presence o f  minimum mass giants, for an initial E-M orbital distance midway between 
higher order resonances.

Start Parameters Parameter variation during a  run //y e a r s O

■ ■ r E -M a /A U p /O Earth-Moon e Earth-M con a /  AU b A aP e A aP d A  aP
13-14 1.0414 21 1 0*-0 .040357 1.03803 ±0.00756 0 - 3 6 0 0 - 3 6 0 ±70* >10* -

13-14 1.0414 201 1 0*-0 .045048 1.04504 ±0.00772 0 - 3 6 0 0 - 3 6 0 ±100* >10* -
14-15 0.993 21 1 0*-0 .035796 0.99013 ±  0.00739 0 - 3 6 0 0 - 3 6 0 ±80* >108 -
14-15 0.993 201 1 0 * -  0.033591 0.99939 ±0.01097 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -
15-16 0.9496 21 1 0 * -  0.029611 0 .9 5 6 6 8  ±  0.00692 0 - 3 6 0 0 - 3 6 0 ±80* >10“ -
15-16 0.9496 201 10*-0 .032846 0.95290 ± 0.00679 0 - 3 6 0 0 - 3 6 0 ±120* >108 -
16-17 0.91079 21 10*-0 .732507 1.07647 ±0.21943 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 3 .0 2 2 x 1 0 ' dee
16-17 0.91079 201 10*-0 .279634 0.92667 ±0.02022 0 -  360 0 -  360 0 - 3 6 0 >10“*** -
17-18 0.8757 21 10*-0 .021278 0.87309 ±0.00580 0 - 3 6 0 0 - 3 6 0 ±60* >108 -
17-18 0.8757 201 1 0 ° -  0.166329 0.87620 ±0.00841 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -
18-19 0.8438 21 10*-0 .019747 0.84148 ± 0.00566 0 - 3 6 0 0 - 3 6 0 ±100* >108 -
18-19 0.8438 201 10*-0 .025020 0.84704 ±0.00601 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“ -
19-20 0.8143 21 10*-0 .016980 0.81190 ±0.00558 0 - 3 6 0 0 - 3 6 0 ± 7 0 ’ >108 -
19-20 0.8143 201 10* -0 .027628 0.81694 ±0.00563 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >108** -
20-21 0.787563 21 10*-0 .751848 1.29478 ±0.52070 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 3.335 x l 0 ; c ce
20-21 0.787563 201 10*-0 .017186 0.78953 ±0.00521 0 - 3 6 0 0 - 3 6 0 ±110* >108** -
21-22 0.763291 21 1 0*-0 .573153 0.79732 ± 0.27302 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 6.093 x  10' c ce
21-22 0.763291 201 1 0*-0 .759373 0.84731 ±0.16378 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 4.701 x  10' c ce
22-23 0.740485 21 10* -0 .042841 0.74038 ±0.00766 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0

***»oA

-
22-23 0.740485 201 10* -0 .6 4 5 4 5 9 0.69538 ±0.06357 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 2 .3 6 3 x 1 0 ' c ce
23-24 0.71931 21 10* -0 .775365 1.10940 ±0.40283 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 4.216 x l 0 y d ee
23-24 0.71931 201 10*-0 .031075 0.72183 ±0.00528 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 >10“*** -
24-25 0.7 21 1 0*-0 .738540 0.69820 ±0.01949 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 6.001 x  10; c ce
24-25 0.7 201 10*-0 .728394 0.83046 ± 0.16025 0 - 3 6 0 0 - 3 6 0 0 - 3 6 0 5 .21 1 x 1 0 ° c ce

Footnotes as for table 5.6 plus,
Indications o f instability are evident in the orbital semimajor axis and eccentricity.

Both tables reveal that almost all of the habitable zone resonances permit stable confined 
Earth-Moon orbits. The first exception is the very inner region inside 0.75AU, lying in the 
system’s habitable zone during its first 7.8Gyr or 2.2Gyr depending on the first or second 
Mazzitelli stellar model respectively. Of these unstable orbits, some are dependent on Aw 
with giant d. The reason for their instability is almost certainly due to the proximity of the 
orbit of the inner giant c more than any resonance effects. The very outer region at 2.8AU 
and beyond, which applies to the system after the end of its main sequence lifetime for this 
mass star, also has unstable orbits almost certainly due to the proximity of the orbit of 
outer giant d. The only possible instabilities appear to occur at the very high 17:1 and 19:1 
resonances plus the midway point between the 16:1 and 17:1 resonances, and are 
dependent on the periastron longitude and/or mean anomaly of giant d. There seems to be 
no explanation for these exceptions.
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There also appears to be many examples of Earth-Moon orbits which have chaotic 
eccentricity variations or chaotic eccentricity and semimajor axis variations. These are 
liberally spread throughout the habitable zone, including within the region between 1.9AU 
and 2.7AU, which from table 5.7 was originally thought to be stable. In all of the 121 
integrations from tables 5.7, 5.8 and 5.9 that lasted the course of lOOMyr, 41 showed 
chaotic tendencies, i.e. just over one third. With this percentage of Earth-Moon orbits 
which may not potentially last lGyr, the habitability of the system appears to rely on initial 
orbital elements and circumstances that are extra to the configurations of the giant planets. 
As stated previously at the end of section 4 of this chapter, this may be due to the fine 
gravitational balance of the system between order and chaos.

5.6 System Investigations with a 0.95 M 0 Star and Four Giants
The configuration of the three planets within 55 Cancri until 11th April, 2005 is shown in 
table 5.1 (Schneider, 2005) and has formed the basis of the study in the previous sections. 
Subsequently, a fourth planet, 55 Cancri e, has been confirmed and added to the system 
(McArthur et al., 2004). This has changed orbital parameters and physical properties of 
the previously known three giant planets. These new properties are shown in table 5.10.

Table 5.10. Current orbital Properties o f the exoplanets in the 55 Cancri exosystem.

Parameters from 
11/4/2005

Planet
e b c d

M p s m i 0 / M j 0.045 ±0.01 0.784 ±  0.09 0.217 ±  0.04 3.92 ± 0 .52
Semimajor axis/AU 0.038 0.115 0.24 5.257
Orbital Eccentricity 0.174 ±0.127 0.0197 ±0.012 0.44 ± 0.08 0.327 ±  0.28

Period /  days 2.81 14.67 43.93 4517.4
Inner R E multiplier 2.726 2.943 2.669 2.711
Outer R h  multiplier 6.709 3.587 8.595 8.050

l . O 3 M 0  Inner 
gravitational reach /  AU

0.029 0.092 0.108 2.019

l.O3M0 Outer 
gravitational reach / AU

0.051 0.143 0.429 11.487

0 . 9 5 M &  Inner 
gravitational reach / AU

0.029 0.091 0.108 1.977

0.95M 0  Outer 
gravitational reach / AU

0.051 0.144 0.432 11.610

The errors on all parameters other than minimum mass and eccentricity are less than 4% 
and are not considered in this short study. Both mass and eccentricity eirors in table 5.10 
will have a significant effect on inner and outer gravitational reaches of the giants. Despite 
the stellar mass still quoted as 1.03M0 on the Schneider Exoplanet web site (Schneider, 
2006), the mass calculated from the orbital elements used in equation 5.1 gave stellar 
masses of 0.921 0.943M0, 0.956M0 and 0.950MQ for giants e, b, c and d respectively,
giving a mean mass of 0.943M0.

Table 5.11 Starting positions o f  the four giants at Julian Date 2450000.

Giant Periastron Longitude / 0 Julian Date of Periastron Mean Anomaly /  °
e 261.65 ±41.14 2453295.31 105.05
b 131.49 ±33.27 2453021.08 23.07
c 244.39 ± 10.65 2453028.63 20.81
d 234.73 ± 6.74 2452837.69 133.86

The stability of this new system configuration was tested in the absence of an Earth-Moon. 
The relative starting positions of the four giants are shown in table 5.11. To give the
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arrangement every chance of showing stability, the hybrid integrator was used with close 
encounters stopping the run when planets passed within 0.1/fe of each other. The 
integration with these conditions and parameters, also using a stellar mass of 0.95M 0  for 
consistency with the main study, lasted 2681 years before a close encounter occurred 
between giant b and giant c. In order to minimise the Hill radii distances between the 
planets, the masses and eccentricities were given their lowest values within the error limits 
from table 5.10 and the original stellar mass of 1.03M0 was used. Also the periastra 
longitudes were optimised within the errors so as to be closest to the arrangement with 
three planets in data prior to 11/04/05 (which was known to be stable). This planetary 
setup resulted in a hybrid integration run that lasted just over 3 lMyr before the giant e 
collided with the central body. Clearly the new planetary data for 55 Cancri yields a 
system that is not stable and may require reviewing, bringing into question whether or not 
giant e exists at all. This new four planet setup was not pursued further.
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6. Theoretical integrations on satellites
The extensive integration studies in the previous chapters have investigated the orbital 
stabilities of Earth-like planets in or near the habitable zones (HZ) of known systems. The 
accompanying giant planet(s) in these systems have orbits that are interior to the HZ (HD 
52265), exterior to the HZ (x1 Gruis, HD 196050) or both (55 Cancri) where there is more 
than one giant. The investigations have been carried out exclusively with the Fortran 77 
Mercury Orbital Integrator program (Chambers, 1999 and Chambers & Migliorini, 1997) 
using the mixed-variable symplectic and hybrid integrators, which are designed to run with 
the largest body at the centre of the system.

The two systems to be studied in this chapter (HD 23079 and HD 28185) each have a giant 
planet within the HZ. This effectively negates any possibility of an Earth-type planet 
existing within the HZ of these systems in a stable orbit. There is a small chance that such 
planets could exist as Trojans to the giant. Laughlin & Chambers, 2002, regard this as 
viable, but there are no occurrences of such a phenomenon in the solar system involving 
large body Trojans, hence it is regarded as unlikely. A possibility does exist, however, of 
Earth-sized habitable satellites of the giant planets in these systems. To investigate this 
arrangement using the same program, however, there needs to be a shift from astrocentric 
systems to ones of a planetocentric nature, the same as the geocentric system as perceived 
by ancient civilisations. The relative motions of all bodies are still the same, but from the 
program’s perspective the star orbits the planet, hence the largest body is no longer at the 
system’s centre. Personal communication with the program writer (Chambers, 2004) 
revealed that the 15th order RADAU integrator could be used for this study (Everhart, 2002 
& 1974). First, though, this integrator needed to be tested on a known stable satellite 
system to prove it can handle such configurations, of which the Galilean satellites of the 
Jovian system were chosen. Secondly it needed to be tested on a theoretical system to 
ensure results were within the bounds of physical laws and that the outcomes for satellites 
in their orbits were as predicted by the restricted three-body problem theory. One major 
difference to be noted with the RADAU Integrator is that it sets its own time step interval 
between each positioning of bodies within their orbits, provided that the initial time step is 
set sufficiently small, i.e. 1/20* the period of the smallest initial orbit. Hence if there are 
many interactions between bodies in very small orbits, the RADAU integrator will allow 
for this and adjust its time step to be as small as is required. In contrast, the time step for 
the MVS or Hybrid Integrators is set by the user to be 1/20* the period of the smallest 
initial orbit and is invariant, leading to possible errors when close encounters between 
bodies occur.

6.1 Previous work
In contrast to the extensive research into the stability of possible Earth-type planets within 
the HZ of known extrasolar planetary systems, there is much less on the study of orbital 
stability of possible satellites of giant planets within the HZ. This may be due to the 
problem of detecting Earth-sized satellites being more challenging than for Earth-sized 
planets. As an example, Jupiter causes the Sun to orbit their common centre of gravity at 
an average speed of 12.46ms'1. An Earth-mass satellite of Jupiter orbiting at the distance 
of Ganymede would cause small oscillations in the Sun’s motion with an amplitude of 
0.033ms'1. Thus the chances of detecting such a satellite’s influence on astrometric 
measurements or the Doppler shift of stellar spectral lines would go unnoticed, even with 
the new generation of space telescopes due for launch. Despite the overwhelming 
brilliance of the star, direct observation may be possible with these new space telescopes 
(Darwin or the James Webb Space Telescope), as would be transits. For orbits inclined at 
or close to 90° to the celestial sphere, the relative drop in light level from the star due to an
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Earth-sized satellite would be 0.01% to 0.001% and it may be possible to detect such 
transits with forthcoming instruments due to be commissioned over the next five to fifteen 
years. The easiest detection method for satellites of giant planets would be by gravitational 
microlensing. Unfortunately there would be no way, in such one off events, of knowing 
whether the small light spikes close to that of the giant planet(s) were caused by satellites 
or other similar Earth-sized planets within the system that happen to be in alignment with 
the giant.

There is much research using numerical analysis into the behaviour of satellite orbits in 
general, including solar system and artificial satellites, however this only takes into 
account the orbits of the satellites around the large central body, which is the planet. Much 
of the previous numerical analyses of satellite orbits, such as the Kozai formalism (Kozai, 
1962) of Cuk and Bums (2004) does not allow for the presence of the star within the 
system. The Poisson’s small parameter method of Kudryavtsev (1995), the Runge-Kutta- 
Nystrom numerical analysis method of Hadjifotinou and Harper (1995) and the recurrent 
power series method of Hadjifotinou (2000) are more concerned with the effects of planet 
oblateness on satellite orbits, while Mikkola’s (1999) symplectic methods is specific to 
modelling atmospheric drag. None of these analyses pursue true satellite orbits around a 
central planet in the presence of the star.

Using an extensive numerical investigation method, Ichtiaroglou and Voyatzis (1990) did 
allow for the effects of the star in their study of the effect of elliptical parent planet orbits 
on their satellites, finding that most orbits are unstable and/or chaotic. Barnes and O’Brien 
(2002) used tidal theory and numerical orbital integrations, also incorporating the star, to 
investigate the effects of tides on satellite orbits, finding that Earth-sized moons of Jovian 
planets could exist in stable orbits within the HZ for 5 Gyr in systems with a star of mass 
greater than Q.\5Me . Weiss and Stewart (2002) also used numerical integrations to 
investigate the fate of satellites of giant planets during inward planetary migration. Their 
results show that Earth-sized satellites would remain in orbit around the giant provided 
planet migration halted within the HZ. Although Williams, Kasting and Wade (1997) 
perform no orbital studies of potentially habitable satellites of giant planets, they give a 
brief account of the hurdles, which must be overcome for life to arise on such bodies. 
Additional to those experienced by planets they also discuss the necessity of satellites to 
have a strong magnetic field, required to prevent atmospheres being lost due to the 
constant bombardment of energetic ions from the giant’s magnetosphere. The work 
undertaken here may be the first in depth study into the long term stability of satellites, 
over lOOMyr, of giant planets in orbits confined to the habitable zone

6.2 Initial testing of the RADAU integrator on a satellite system
The Jovian system consists of 62 satellites as at 18/01/05 (Jacobsen, 2005), of which the 
four Galilean satellites are considerably more massive than the rest. Table 6.1 shows 
distances from Jupiter, radii and masses of the Galilean moons, Io, Europa, Ganymede, 
Callisto along with, for contrast, the fifth and sixth largest satellites, Amalthea and 
Himalia.

The table clearly shows the distinction in size between Io, Europa, Ganymede and Callisto 
and the largest of the rest. The masses of Himalia and Amalthea are so small compared to 
the Galilean moons that for the purpose of this investigation, they, with the remaining 
moons, will not be considered.
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Table 6.1 Essential physical data for the six largest Jovian satellites.

Satellite Distance from 
Jupiter (km)

Radius
(km)

Density
(h 2o  = d

Mass - 
(102Okg)

Mass
(Europas)

Amalthea 181,300 86 1 .8 ’ 0.0717 * 0.00015
Io 421,600 1,821 3.55* 893.3 1.862
Europa 670,900 1,565 3 .01 ' 479.7 1.000
Ganymede 1,070,000 2,634 1.94* 1482 3.089
Callisto 1,883,000 2,403 1.86* 1076 2.243
Himalia 11,480,000 85

0001 0.0956 * 0.00020

(Murray and Dermott, 1999) 
* (Hamilton, 2005)

Table 6.2 Starting condition o f the Jovian satellite orbits, with the Sun, for each o f  the integrations
(Jacobsen, 2005).

“Satellite” Semimajor 
Axis (AU)

Orbital
Eccentricity

Inclination (°) Longitude of 
Perijove (°)

Longitude of 
Ascending Node (°)

Mean 
Anomaly (°)

Io 0.00282 0.0041 0.036 83.898 44.208 342.021
Europa 0.00449 0.0094 0.469 88.684 219.383 171.016
Ganymede 0.00716 0 . 0 0 1 1 0.170 203.214 63.692 306.589
Callisto 0.0126 0.0074 0.187 57.714 294.195 180.997
Sun 1.0 or 5.2 0.0484 3.12 0 0 0

The initial starting condition for each of the integrations, shown in Table 6.2, was obtained 
from NASA (Jacobsen, 2005) and is the real positions of the satellites within the Jovian 
system as at 16th January 1997. Previous studies on planetary systems would have the 
orbital integrator stop when there are close encounters between two bodies, which pass 
within 3RH (Hill radii) of each other, according to the Hill radius formula in chapter 4, 
section 1. However to test the stability of the satellite system thoroughly, the integrator 
was programmed not to stop on a close encounter and to allow collisions between any of 
the bodies. The close encounter distance for each body was changed from 3Rh to 0.1 Rh to 
minimise the size of the file that records close encounters, “ce.out”. As satellite orbit 
parameters evolve during a run, of which the semimajor axes and eccentricities are most 
important, many close encounters may ensue and would lead to the generation of a large 
close encounter file. This would slow the program during each writing procedure to this 
file. The 0.1 Rh distance is less than 1% of the initial nearest neighbour distance, which is 
why it was used. Table 6.3 shows multiples of the Hill radii of each satellite, with respect 
to Jupiter, compared to the distances of closest approach between each body’s nearest 
neighbours, according to the initial conditions and allowing for orbital eccentricity of each 
body (see table 6.2). It shows that the 3Rh distance is an appreciable fraction of the initial 
nearest neighbour distance whereas the 0.1 Rh distance is a small fraction.

Table 6.3 Comparison o f Hill radius multiples with distances o f closest approach

“Satellite” 0.1 /?„/AU 1 R u  /AU 3 R n  /AU Nearest Neighbour’s Distance /AU
Io 7.06 x 10’6 7.06 x 10'5 2.12 x lO 4 1 .62x1  O'3
Europa 9 .14x10^ 9.14 x IO'5 2.74 x 10-4 1.62 x IO'3
Ganymede 2.12 x IO’5 2.12 x IO"4 6.37 x 10-4 2.62 x IO'3
Callisto 3.36 x 10‘5 3.36 x lO 4 1.01 x 10‘‘J 5.34 x IO'"5
Sun at 5.2 AU 3.662 36.62 109.9 4.936
Sun at 1.0AU 0.704 7.042 21.13 0.939

The Hill radius quoted for the Sun shows that the version of the Hill radius formulae, used 
in the orbital integrator (equation 4.1), is inappropriate when the orbiting body is anything 
but small compared to the central body (here the orbiting body is much larger and so 
M*/3MP »  1, where M* is the Sun’s mass and Mp is the central body’s or planet’s mass). 
Clearly, the Hill radius, the distance between two orbiting bodies where gravitational
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forces balance in the rotating orbital frame, cannot be beyond the distance between the two 
bodies. A second version of the Hill radius formula, equation 6.1 (Murray & Dermott, 
1999), is derived from equations of motion in the rotating frame, see Appendix 3, where 
Rh cannot be greater than 0.6934a. This would be more appropriate for satellite 
integrations where for a central mass Mp and orbiting mass M* with semimajor axis a,

RH =a M .
6.1

3(M* +Mp) j
Four orbital integrations of the Jovian system, using the initial parameters displayed in 
Tables 6.1 and 6.2 were run over the next ten million years. Jupiter’s semimajor axis was 
5.2AU and 1AU, and the J2 moment of Jupiter, valued at 0.014736 (Murray & Dermott, 
1999) is included and excluded in each case. The J2 term is a measure of a planet’s 
oblateness caused by its rotation. For a planet that is axially symmetric about its rotation 
axis it is given by,

6.2.
M p r

where C and A are the moments of inertia about the polar and equatorial axes respectively, 
Mp is the planet’s mass and r is its equatorial radius. All runs lasted the course of the 
integration and in all runs, each of the semimajor axes were unchanging. Figure 6.1 shows 
the evolution of the eccentricity when J2 effects are included and Figure 6.2 shows the 
eccentricity evolution when J2 effects are absent. It is clear that the inclusion of the J 2 term 
in the central body has an effect of retaining the original eccentricity of the satellites, 
whereas its absence results in slightly more circularised orbits with less variation. There is 
no change in the solar eccentricity as it is too far away from Jupiter, since the J2 effect 
decreases with the inverse square of an orbiting bodies distance (Murray & Dermott, 1999, 
page 151). For similar runs with the Sun-Jupiter distance initially at 1AU, all semimajor 
axes were again invariant and the same eccentricity effect was seen when the J2 term was 
present and absent. The major difference in the eccentricity was its greater variation, 
presumably due to the more powerful gravitational perturbation effects of the Sun on the 
satellites (Figure 6.3).
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Figure 6.1 Eccentricity o f the Galilean satellites with time, with Jupiter’s J2 moment, over the next 10 
million years using the Mercury 6_1 RADAU integrator.
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Figure 6.2 Eccentricity o f the Galilean satellites with time, without Jupiter’s J2 moment, over the next
10 million years using the Mercury 6 1  RADAU integrator.
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Figure 6.3 Eccentricity o f the Galilean satellites with time, without Jupiter’s J2 moment, at 1 AU from 
the Sun using the Mercury 6 1  RADAU integrator.

A final feasibility test was carried out to see if a planet as large as Earth, hence capable of 
supporting life, could exist as a satellite with a stable orbit of a giant within the habitable 
zone. This involved two further integration runs, with and without Jupiter’s J2 moment, 
where the giant was 1 AU from the Sun and an Earth-Moon planet replaced the orbit of the 
outermost Galilean satellite, Callisto, with no other satellites present. The integration 
lasted its lOMyr term and was completely stable in both cases. Figure 6.4 shows the 
variation of eccentricity for Sun and Earth-Moon with time, revealing stable limits within 
the variation, which oscillated once between maximum values over a period of ca. 9,000 
years. A virtually identical outcome was obtained for a similar integration where Jupiter’s 
J2 moment was absent.
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Figure 6.4 Eccentricity o f an Earth-Moon orbiting Jupiter with time at 1AU from the Sun, with 
Jupiter’s J2 moment, as determined by Mercury6_l RADAU integrator.

This initial investigation shows that the Mercury RADAU integrator can be used to 
determine the outcome of satellite orbits around giant planets. It also reveals that an Earth- 
Moon-mass satellite will have a stable orbit when 0.0126AU from a Jupiter mass body, 
which is itself 1 AU from a solar mass star. This is as expected since the Hill radius of the 
giant in this situation, and under heliocentric circumstances, according to equation 4.1, is 
0.0682AU.

6.3 Theory of the Restricted Three-Body Problem
The next stage is to test the RADAU integrator as to whether it predicts the correct 
outcome of a satellite in orbits of varying distances around a giant planet. Before this, 
however, it is necessary to determine what these outcomes should be by investigating the 
“restricted three-body problem”. The orbital mechanics of three bodies can be used to 
determine gravitational zero-velocity curves for different pseudo-potentials, of a system in 
which two of the bodies are massive and in circular orbits about their centre of mass, and 
the third body is of negligible mass. These pseudo-potentials have a direct effect on the 
trajectory of the third body, which is free to roam the system but must remain in the same 
plane as the orbits of the two major bodies if launched in that plane. The term pseudo­
potential is used because the entire frame of reference, in which they lie, is rotating with 
respect to a fixed X-Y coordinate set. The two main bodies, on the v-axis, rotate about their 
common centre of gravity (0 = X  = Y = x = y) at the same rate as the x-y reference frame 
(Figure 6.5). They allow predictions to be made, from curves of zero-velocity in the 
rotating frame, as to the fate of small satellite bodies within the system. Pseudo-potentials 
are, therefore, used to see whether a satellite, orbiting at certain initial distances from the 
giant planet, would remain in orbit around the giant or whether it could break from its orbit 
and become another planet. If orbits are unstable, it would be possible to predict whether 
satellites would have only one fate of colliding with the planet or whether it could also 
collide with the star or be ejected from the system.

Earth-M oon
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Figure 6.6 Zero-velocity curves passing through the x-axis Lagrangian points o f  a binary system 
where m / ( M  +  m )  =  u  =  0.2. The Jacobian constants, Cj (see equation 6.2), for the L h  l a  

and l a  are 3.805, 3.552 and 3.197 respectively.

Figure 6.6 shows three critical zero-velocity curves for a binary star system where, for the 
purpose of clarity, the secondary, m, is much more massive than a planet. The figure helps 
to illustrate the fates of small third bodies within this system. Particles launched in orbits 
closer to M  or m than the black line will remain in stable orbits about those respective
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bodies or collide with those respective bodies. Particles launched in orbits closer to M  or 
m than the inner red line, but outside the black line, will orbit about either of those bodies 
or collide with either of those bodies. Particles launched in orbits outside the inner red line 
will remain in a distant orbit about both bodies, collide with either of those bodies or be 
ejected from the system. Particles launched within the green boundary may settle in orbits 
around mass M, bounded by the green boundary. These would then become Trojans of the 
second body in the system provided m/M < 0.03852. The outer black curve has the same 
Jacobian Constant, Cj (see equation 6.2), as the curve passing through the L\ point but is 
on the outer side of the L2 and /,3 points. For a giant planet orbiting around a star, m/(M+ 
m), or u, is of the order of 0.001 and the L\ point will be less than 10% distant from the 
planet of its semimajor axis. A three dimensional profile of zero-velocity curves, for the 
same mass ratios used for Figure 6.6, are shown in figure 6.7, revealing a zero-velocity 
surface. This is a plot of Jacobian Constants, Cj, along the x-y rotating plane, where when 
v = 0, Cj = 2/7j (see Appendix 2) and Uj is pseudo-potential. The plot is upside down for 
clarity. The larger and smaller masses are depicted by the larger and smaller wells 
respectively. The L\ position is the saddle point between the masses, the L2 position is the 
saddle point nearer the smaller mass and the L3 position is the saddle point nearer the larger 
mass. As these Lagrangian points are saddles, they are unstable. The two ‘peaks’ either 
side of the smaller mass are the La and L5 positions, which are stable only if m/M <
0.03852.

2 .5-1

Figure 6.7 Zero-velocity surface of a binary system where m (M  + m) = u = 0.2.

Equation 6.3 is used to produce these curves and surfaces and is derived in Appendix 2 as 
equation A2.32,

Cj -  x 2 +  y 2 +  2 - j = S}— ....... : + 2 - ---- U ■ = 6.3.
yj(x + u)2 + y 2 y  (x  — 1 +  ii)2 +  y 2

It is a considerably simplified equation in that the giant planet’s semimajor axis and the 
angular velocity of the rotating frame are always unity. Also the mass of the system is 
defined such that G{M + m) = 1, where G is the Universal Gravitational Constant. These 
steps avoid the unnecessary and complicating use of constants in the derivation. The 
positions on the x-axis of the three Lagrangian points can be found from equation 6.3, 
where, since ̂  = 0,
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Cj  = x2 +2-
(1 - a ) + 2-

u 6.4.
■̂ /(x + w) ^ /(x -l + w)2

Differentiating equation 6.4 with respect to x  and letting dCJdx = 0 gives each Lagrangian 
point depending on the associated sign taken from the square roots of the denominators. 
The equations, derived in Appendix 2 as equation A2.34, to find the ^-coordinates for the 
L\, L2 and L3 points respectively are given by,

and

d£j
dx

d£r
dx

d£j
dx

= f ( x )  = x -

= f 2 (x) = x -

fs(x) = x +

( i - » )
(jc -  a)2

(1~») 
(x - u )2 
(1 - a )

u
(x -1  + u) 

u
( x - i + u y

+  •
u

= 0 6.5,

= 0 6.6,

= 0 6.7,
(x -  u)2 (x -1  + w)2

These equations can only be solved using iteration techniques, of which the Newton- 
Raphson method is used here. The iteration starts on the line y  = fix )  (/ = 1, 2 or 3) at a 
point (xi^i) near to the x-axis where the line y  = fix )  crosses, as shown in Figure 6.8. 
Since y\ = f ix i), the tangent of the curve at this point crosses the x-axis at (x2,0) and the 
slope of this tangent, f i ’{x\\ is fix\)/(x\ - X2). The same procedure is then repeated at the 
point (x2,y2) so that f  ’(x2) = j^x2)/(x2 -  x3). Hence at the point (xny n), then f ’(xn) = 
f(xn)/(xn -  xn+i). Simple rearrangement of this gives,

‘-/l+l " “= x„ -
/»■(*.)

6.8.

Figure 6.8 Diagramatic outline o f  the Newton-Raphson iteration technique.

So the iteration equations for the L\, L2 and L2 points respectively are,
(1 -  u) u

x . +

(Xi) ''n+l =  X„ -

1 +

(x„ -u )  {xn - \  + u)‘
2(1 -  u) 2 u

(.x „ - u f  (x „ - \  + u f

6.9,
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(1 -  u) u

(LA X  —  r  * "  0 „ - « ) 2 ( ^ , - 1 +  “)2 6 K )(Li) *„+1 - x „ -  - 2 l J ~ } Yu 6' 10,
I  i -------------------

(.x „ - u f  {xn - \  + u f  
(1 -  u )  u

X„ + —----- -T- +
j f T  \  ( X n ~ U )  ( X „ ~ l  +  U )  *nand (I3) x „ , = x „ - — ^  6.11.

( x „ - u f  ( x„ - \  + u f  
The iterations should converge to an x-value and is stopped when the difference between 
the two xn+\ and xn is less than 0.0001, i.e. too small to be of any significance. This final re­
value is the solution of the equation. The iteration must be started near to the solution 
value otherwise the wrong result for x may be obtained.

6.4 Determining the Starting Points of the Iteration Process to find the
Lagrangian Points L\9 L2 and Z3.

In order to find the Lagrangian points in the line of the two bodies, the best starting point 
for the iterations in equations 6.9 and 6.10, is to use the two Hill radii distances either side 
of the secondary mass. The best starting point for iteration equation 6.11 is the point 
opposite the primary mass from the secondary at the same distance as the secondary. 
These three different points are required since equations 6.9 to 6.11, which determine L\, 
Li and L3 respectively, are discontinuous functions with discontinuities at the coordinates 
of the two bodies. If the iteration starting points were too distant from their respective 
Lagrangian points, the iterations may diverge or converge to the wrong value. The point 
opposite the planet, used to start the iteration to find £3, is perfectly adequate for this 
purpose and requires no investigation here. The iteration starting points for L\ and Z2, 
however, do require further investigation, as now outlined.

The Hill radius formula used within the Mercury Orbital Integrator and previously (Jones 
et al., 2001, Barnes and O’Brien, 2002), has been derived in Appendix 1, where, for a body 
separation distance,«, and Hill radius, Rh,

Rh — Q
r \Y i

6.12

6.13.

3M )
A second version derived in Appendix 3, where u = m/(M + m) is,

R„

For small values of u, this will be very close to the first Hill radius approximation in 
equation 6.12, since when m is small, m!M &m/(M + m). As these equations are only 
guidelines to start the L\ and L2 iterations, this second Hill radius formula in equation 6.13, 
could be more useful since, even if the assumption that m «  M  is not met and m is 
comparable to M, u is never greater than 0.5, i.e. R&la is never greater than 0.550. This is 
an advantage since from equation 6.12, R^ja would be as high as 0.693 for a system where 
two masses are equal, yet the true distance of balancing gravitational forces is 0.5, then 
equation 6.13 gives a much better Hill radius approximation even for comparable masses. 
So for iterations to determine Li, and L2 , then equation 6.13 would be a better choice of 
Hill radius, as an indicator as to where to start. This is important as too large an inaccuracy 
in the iteration starting point may cause the iteration to diverge or converge to the incorrect 
L1 and Li positions.

Comparing the two versions of the Hill radius formulae, table 6.4 shows the calculated 
values of /fo/a, for different orders of u.

116



Table 6.4, Comparison o f  Hill radii as determined from different formulae versions.

(*i u Mean L \  & L 2

( u / 3 ) m ( m / 3 M ) i a

0.5 0.550 0.693 0.5 0.698 0.599
0.1 0.322 0.333 0.291 0.360 0.325
10'* 0.149 0.150 0.142 0.157 0.149
10*' 0.0693 0.0694 0.0677 0.0709 0.0693
10-4 0.0322 0.0322 0.0318 0.0325 0.0322
10‘5 0.0149 0.0149 0.0149 0.0150 0.0149
10*6 0.0069 0.0069 0.0069 0.0069 0.0069

The table shows that the established Hill radii formulae, in equations 6.12 and 6.13, give 
excellent agreement with the mean of the L\ and Li points (all three columns of which are 
shaded) for increasing values of w, up to w = 0.1, when the error is 1% in equation 6.13 and 
2.5% in equation 6.12. Indeed, equation 6.13 is the best approximation of all, giving better 
agreement than equation 6.12 up to u — 0.5. This justifies its choice to start iteration 
convergences to determine the L\ and L2 positions. Note also that for very small w, the 
distances of the L\ and L2 positions from the secondary are virtually equal but start to 
diverge when u = lO’4, until the difference of each from the mean, when u = 0.5 is 16.53%.

6.5 Boundaries for Particles defined by Zero-Velocity Curves
Having established the formulae to determine the zero-velocity curves for a range of 
pseudo-potentials within a binary system, we can now briefly explore the meaning of these 
curves and what they imply for small bodies or particles orbiting close to the secondary 
mass. From section 3 of this chapter, zero-velocity curves are imaginary lines around a 
binary system where the purely pseudo-potential energy, Uu, of a much smaller particle 
having no kinetic energy in the rotating frame, or zero-velocity, is the same.

thSo far the Maple V Release 5 program (Waterloo Maple Inc. November 27 1997) has 
been used to obtain and analyse zero-velocity curves for particular systems. This method 
is rather cumbersome and not widely known, so four programs were written in the ‘C’ 
computer language to make such analyses more accessible.

6.6 Computer Programs determining Zero-Velocity Curves
There are four computer programs described in this section, all written by me in the C 
programming language. All can be compiled and run on a Unix or Linux system or within 
a DOS box on any 32-bit Windows operating system. For the purpose of writing, 
compiling and checking each program, a Microsoft Windows compatible C-compiler was 
used, supplied as freeware by Digital Mars at www.digitalmars.com by Walter Bright 
Copyright (c) 1997-2003. All four programs have clearly labelled comment lines to 
explain the function of each section. Each program is written specifically to be used most 
easily with binary systems where the primary body is a star and the secondary is a planet. 
All programs have fail-safes for each input value, so that generated results have physical 
meaning. Potentially useful information is displayed on-screen such as mass fraction of 
the secondary in the system, the secondary’s Hill radius details, locations of Lagrangian 
points and Jacobian constants at these points. Zero-velocity data is written to an output 
file, which resides in the same directory as the program. The user sets the resolution in 
each program, which determines the amount of data, printed to file and the length of time 
the program takes to run. All programs are processor intensive and not reliant on random 
access memory or hard disk space. The programs were tested at their highest resolution on 
a 1.2GHz AMD processor, the first of which takes just one second to run, creating a data 
file of 4.6 megabytes. The second program takes 50 seconds to run, creating a data file of 
1.13 megabytes and the third and fourth programs take 8 seconds to run, creating data files
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of 1.3 megabytes. This data can be imported into a program of the user’s choice for visual 
representation. Some final on-screen footnotes advise how best to proceed. All 
calculations in each program are exact, only the Hill radii are approximations, as 
determined from equation 6.13.

6.6.1 Zero-Velocity Surfaces
This first program creates a three-dimensional view of many zero-velocity curves in a 
binary system, i.e. a zero-velocity surface, an example of which is shown in Figure 6.7. 
The code for the program is presented in Appendix 4 as program A4.1, under die name 
“zvcurves.c”, the name of the file containing the source code. The program will start by 
typing “zvcurves” at the command prompt. The operator is asked to enter a mass for the 
primary body, in terms of solar masses, followed by a mass for the secondary body, in 
terms of Jupiter masses, and finally the distance between the two bodies, in Astronomical 
Units. Each of these values must be within boundaries, beyond which the program will 
stop with an appropriate message advising the user how best to proceed next time. The 
mass of the primary must be greater than zero solar masses, the mass of the secondary 
must be greater than zero and up to the primary’s mass, and the distance between the 
bodies must be greater than zero astronomical units. The program then prints to the 
monitor screen the mass fraction of the secondary body in the system followed by the 
distance of the Hill radius from the planet according to equation 6.13. The distances are 
displayed of the Hill radius on either side of the secondary along the x-axis, with the x- 
coordinate of the point equidistant from the primary and secondary but on the other side of 
the primary. The positions of the L\, L2 and L3 Lagrangian points are determined using the 
Newton-Raphson iteration technique of equations 6.9, 6.10 and 6.11 respectively. There 
are 100 iteration steps, which is sufficient for obtaining the Lagrangian positions 
accurately enough, considering that for planets as secondary masses where usually 0.001 < 
u < 0.01, the starting iteration point is extremely close to the true Lagrangian position, see 
Table 6.4. The Jacobian constants, Cj, for the curves that pass through the three points L\, 
L2 and L3 are then calculated from equation 6.4 (with the appropriate signage for each 
Lagrangian point determined from equations 6.5, 6.6 and 6.7) and displayed on-screen. 
The user is requested to enter the number of plotted points (10 to 100) between each body,
i.e. a value which determines the size of the data output file and the resolution of the zero- 
velocity surface. The program then uses equation 6.2 to calculate the Jacobian constants 
over a grid of x- and ^-values, where (-2,-2) < (x,y) < (2,2). The Jacobian constants are 
plotted with increasing values in the - z  direction, so that when represented graphically, the 
potentials around the masses are represented as wells and not peaks. The x- and y-values 
are printed to the file with a Jacobian constant for each x,y coordinate. The program tells 
the user that it has successfully completed its tasks and gives the file-name where the data 
is stored, in the same directory as the execution program. The file-name must then be 
renamed otherwise the next program run will overwrite the data. Finally the program tells 
the user the command to operate the program, which determines single zero-velocity 
curves for any one particular Jacobian constant.

An example of a graphical representation of data, where u = 0.2, a = 1, with a resolution of 
20 points between the two masses, is shown in figure 6.9. This was obtained using 
Microcal Origin Version 6.0, copyright © 1991-1999, Microcal Software Inc., 
Northampton, MA, USA. The diagram has the same data as Figure 6.7 obtained using the 
Maple V program and clearly shows the larger pseudo potential well of the primary and the 
smaller well of the secondary. This depiction is good for showing potential wells for 
bodies of similar masses. Figure 6.10 shows a similar zero-velocity surface where the 
resolution and semimajor axis are the same but u is 0.001. The potential well of the 
primary is clearly evident but that of the planet has almost disappeared, and is actually a 
small hole to the lower right of the star. The planet is uncovered in figure 6.11, when the
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resolution is taken to the maximum 50 points between the two masses and the area around 
the planet is magnified.

Zero-velocity surface for a binary system where u  = 0.2 and a  = 1

Figure 6.10 Zero-velocity surface for a binary system where u  = 0.001 and a  =  1
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Figure 6.11 Zero-velocity surface for a binary system where u  = 0.001 and a  -  I ,  concentrated around 
the planet.

6.6.2 Two-Dimensional Zero-Velocity Curves
This second program is very similar in its make-up and operation to the previous one. The 
code for this program is presented in Appendix 4 as program A4.2 under the name 
“2dcurves.c”, the name of the file containing the source code. For each run it creates a two 
dimensional zero-velocity curve in a binary system which has a specified Jacobian 
constant, three special cases of which are shown in figures 6.6. The program will start by 
typing “2dcurves” at the command prompt. As above, primary and secondary masses are 
requested plus their separation distance, however this time with an added request for a 
Jacobian constant. Any value may be entered provided Cj > 3, since below this value 
curves either do not exist or are of no interest. The program then proceeds exactly as 
above until it calculates the Jacobian constants for each of the x,y values. The resolution 
option here is for much higher values than the first program, between 1000 and 5000, due 
to the need for the higher density of points required in plotting the curves. Instead of 
printing all data to file, there are conditional lines whereby only calculated Cj values within 
0.0001 of the input Jacobian constant are printed. The numbers of points in the data file 
are displayed and the program closes as above with a final line informing the user of the 
command they should enter to determine zero-velocity surfaces.

Again we use as an example of a graphical representation of data, a system where u = 0.2, 
a = 1, but with a resolution of 5000 points between the two masses. Three zero-velocity 
curves of particular interest are plotted for this system in figure 6.6, i.e. those that pass 
through the L\, L2 and T3 points. This was also plotted using Microcal Origin Version 6.0. 
Figure 6.6 shows the same outcome as the zero-velocity curves in Figure 3.7 on Page 81 of 
Solar System Dynamics by Murray and Dermott, Cambridge University Press, 1999. 
Figure 6.12 shows a zero-velocity curve for Cj = 3.05, where the resolution and semimajor 
axis are the same but u is 0.001. The values of Cj, here, gives curves which are in each 
body’s gravity well, plus the outside curve that surrounds them, and is hence lower than 
the Lagrangian point values for this system, where at L\, Cj = 3.039, at L2, Cj = 3.037 and 
at Z/3, Cj = 3.001. The black dots at the centre of the gravity wells are the locations of the 
bodies. Note that in this system, where u is much smaller than the first example, the 
Jacobian constant values of the zero-velocity curves passing through the Lagrangian points 
are lower. This is expected, as the distortion of a smaller secondary on the overall shape of 
a zero-velocity surface will be less than the distortion of a larger secondary.
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Figure 6.13 Locations o f the Lagrangian equilibrium points.

Indeed, the lowest Cj values are at the L4 and L5 positions (Murray and Dermott, 1999 page 
80), shown in Figure 6.13, and will vary according to the mass fraction of the secondary. 
They occur at ̂ -coordinates midway between the two bodies, so x = 1 -  u -  V2 = V2 - u, and 
they make equilateral triangles with the two main bodies, so y  = (V3)/2. Putting these 
values into equation 6.3 gives,

r I 'x211
+ - n 6.14.

Clearly this has a maximum when u approaches 0, which is Cj = 3, and a minimum when u 
— Vi, which is Cj = 2.75. In the extreme case when u = 0, then equation 6.3 becomes,
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C j  — X ^  H ■, = ■ 6.15.

This has a minimum value when its differential with respect to x  or y  is zero, since the
2 xequation is symmetrical. So this minimum occurs when either 0  = 2 x ------------------ or

(.x2 + y 2 Y 2

2  y  2 20 = 2y   — - r , i.e. when jc +y  =1, and so in equation 6.15, Cj = 3.
(x 2 + y 2 / 2

6.6.3 The L\ and Li Zero-Velocity Curve close to the Planet
These third and fourth programs use the same method as the program in Section 6.6.2 to 
determine the zero-velocity curves around the planet (secondary), which pass through the 
L\ and L2 points respectively. The grid of x- and y-values here only covers the boundary 
just beyond the Hill radius, determined by equation 6.13. These are of particular interest as 
the L\ curve is the most distant zero-velocity curve around the planet that confines a small 
body to this region. Such particles are bound to the planet and, barring any energy 
exchanges, will either orbit only the planet or collide with it, and can never do otherwise. 
The L2 curve is the one beyond which a satellite may be ejected from the system.

The codes for these programs are presented in Appendix 4 as programs A4.3 and A4.4, 
under the names “llcurve.c” and “12curve.c” respectively, the names of the files containing 
the source code. The programs will start by typing either “11 curve” or “12curve” at the 
command prompt. Again, primary and secondary masses are requested plus their 
separation distance. The upper planet size limit here is 15 Jupiter masses and the lower 
star size limit is 0.08 solar masses. These boundaries were chosen since the primary will 
no longer be a star below 0.08 solar masses, and the secondaiy becomes a brown dwarf 
above 15 Jupiter masses. The programs then proceed by calculating the Jacobian constants 
for each of the x,y values within the Hill radius, as defined by equation 6.13, of the planet. 
The resolution option here is highest of the four programs, i.e. 10,000 to 50,000 points 
between the masses, however the calculations only cover the region around the planet. As 
in program 6.6.2, instead of printing all data to file, there are conditional lines whereby 
only calculated Cj values within 0.0001 of the input Jacobian constant are printed. The 
“llcurve.c” program gives the distance of the L\ point from the planet with the distance of 
the L\ zero-velocity curve at quadrature and on the far side of the planet. The “12curve.c” 
program gives the distance of the L2 point from the planet with the distance of the L2 zero- 
velocity curve at quadrature. The numbers of points in the data file are displayed and the 
program closes informing the user of the name of that file.

An example of the shape and extent of the zero-velocity curve which passes through the L\ 
point of a planet, where u = 0.001, a = 1 and the resolution is 30,000, is shown in figure
6.14, where the planet is shown as the small dot. It is easily seen that the curve shape is by 
no means circular. The distance of the curve at the quadrature positions from the planet is 
least. This may imply that this is the easiest route for a small particle to escape orbit from 
the planet. However, the shape of the L\ curve may lead to particles with initially circular 
orbits close to this curve becoming elliptical immediately. The aim of the study in the next 
section of this chapter is to find what the Mercury orbital integrator tells us about the 
evolution of such orbits, which are exclusively in the x-y plane of the giant’s orbit. Since 
there is initially no z-component to the giant planet’s or small body’s motion, both bodies 
will acquire no z-direction motion and hence will remain in the x-y plane.
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Figure 6.14 The L x zero-velocity curve around a planet where u  = 0.001 and a  =  1.

6.7 Applying the Theory to a Theoretical System
HD 28185 is one of the satellite systems investigated and it is this system that was adapted 
for this theoretical analysis. Although the giant has an eccentricity of 0.07, this was set to 
zero. Its semimajor axis was left unchanged at 1.03AU. The giant planet mass is 5.1 Mj or 
O.OO544Af0 and the stellar mass is 0.99M0, so from equation 6.12 or 6.13, the Hill radius 
of the giant is 0.126AU to three significant figures. Each of the integrations had a 
maximum run time of lOOMyr due to the small time-step of 1/20* of the satellites orbital 
period; lGyr would have taken too much computer time. The Hill radii close encounter 
multiples of the star and Earth-Moon were set at 0.01 and 1.0 respectively, to minimise 
close encounter terminations and maximise the time before any possible cataclysmic event 
could occur during runs.

Due to the shape of the zero-velocity curve around the planet that passes through the L\ 
point, see Figure 6.14 which equally applies here where u = 0.00547, Earth-Moon satellites 
were launched in the x,y plane at increasing distances from the giant in circular orbits at 
longitudes 0°, 90°, 180° and 270° with respect to the line from the giant to the star. 
Although at 90° and 270° the distances of the satellite as a fraction of the L\ zero-velocity 
curve are the same, differences are observed in orbital evolution due to it either initially 
moving towards (270°) or away (90°) from the star. At these longitudes the L\ zero- 
velocity curve is 0.0816AU from the planet, whereas at 180° the curve is 0.1020AU distant 
and at the L\ point itself (0°) it is 0.1206AU distant. As this study is purely theoretical, the 
J2 effect of the giant was not incorporated into these integrations. Table 6.5 shows the 
integration time and their outcomes only, as this is the critical data required here.
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Table 6.5 Theoretical satellite runs with J2 = 0 for the giant planet

Satellite Distance 
from Giant /  AU

Launch Longitude 
(Star = 0°)

Run Completion 
Time / years

Run Outcome

0.05 0 V o oo

-

0.05 90 V O 00

-

0.05 180 >10* -

0.05 270 >10* -

0.051 90 V H
-L O oc

-

0.051 270 >10* -

0.052 90 V
I o oc

-

0.052 270 V o oe

-

0.0521 90 V 1—
I O oo

-

0.0521 270 V O 00

-

0.0522 90 >10* -

0.0522 270 >10* -

0.0523 90 V H—
‘ O oc

-

0.0523 270 >10* -

0.0524 90 V t—
* O 00

-

0.0524 270 V
I O 05

-

0.0525 90 V h—
I o oo

-

0.0525 270 V h—
* o oo

-

0.0526 90 170 C
0.0526 270 164 C
0.0527 90 113 c
0.0527 270 150 c
0.0528 90 16 c
0.0528 270 68 c
0.0529 90 174 c
0.0529 270 103 c
0.053 90 220 c
0.053 270 58 c
0.054 90 370 c
0.054 270 369 c
0.055 0 >10* -

0.055 90 50 c
0.055 180 V o 00

-

0.055 270 139 c
0.056 0 >10* -

0.056 90 19 c
0.056 180

30oA

-

0.056 270 392 c
0.057 0 V h

-
l o 00

-

0.057 90 135 c
0.057 180 >10* -

0.057 270 56 c
0.058 0 V K

-t o 00

-

0.058 90 879 c
0.058 90 338* c
0.058 90 96** c
0.058 180 V h—

'k o 00

-

0.058 270 340 E
0.058 270 1675* E
0.058 270 2141** E

0.0581 0 V
 

►—
» O 00

-

0.0581 180 >10* -

0.0582 0 >10* -

0.0582 180 290 c
0.0583 0 >10* -

0.0583 180 718 c
0.0584 0

30oA

-
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Satellite Distance 
from Giant / AU

Launch Longitude 
(Star = 0 )

Run Completion 
Time /  years

Run Outcome

0.0584 180 49 C
0.0585 0 >10* -

0.0585 180 81 c
0.0586 0 >10* -

0.0586 180 16 c
0.0587 0 >10* -

0.0587 180 16 c
0.0588 0 1477 c
0.0588 180 145 c
0.0589 0 1711 c
0.0589 180 41 c
0.059 0 307 c
0.059 90 692 E
0.059 180 135 c
0.059 270 35 c

0.0591 0 209 c
0.0591 180 54 c
0.0592 0 414 c
0.0592 180 243 c
0.0593 0 71 c
0.0593 180 56 c
0.0594 0 50 c
0.0594 180 V o 00

-

0.0595 0 56 c
0.0595 180 V

 
►—

* 
O

00

-

0.0596 0 227 c
0.0596 180 >10* -

0.0597 0 28 c
0.0597 180 V t—

‘
O

oo

-

0.0598 0 48 c
0.0598 180 >10* -

0.0599 0 932 c
0.0599 180 >10* -

0.06 0 69 c
0.06 90 453 E
0.06 180 >10* -

0.06 270 390 c
0.0601 0 268 c
0.0601 180 >10* -

0.0602 0 106 c
0.0602 180 V ►—

i
O

00

-

0.0603 0 77 c
0.0603 180 >10* -

0.0604 0 210 c
0.0604 180 V o 00

-

0.0605 0 10 c
0.0605 180 >10* -

0.0606 0 15 c
0.0606 180 >10* -

0.0607 0 46 c
0.0607 180 V O

00

-

0.0608 0 70 c
0.0608 180 >10* -

0.0609 0 71 c
0.0609 180

50OA

-

0.061 0 412 c
0.061 90 40 c
0.061 180 >10* -

0.061 270 56 c
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Satellite Distance 
from Giant / AU

Launch Longitude 
(Star = 0 )

Run Completion 
Time /  vears

Run Outcome

0.0611 0 336 C
0.0611 180 >10* -

0.0612 0 150 C
0.0612 180

XOA

-

0.0613 0 204 c
0.0613 180 V t—

* O 00 -

0.0614 0 7 c
0.0614 180 V o OC -

0.0615 0 641 c
0.0615 180

XOA

-

0.0616 0 44 c
0.0616 180 V O OO -

0.0617 0 12 c
0.0617 180 V o oo -

0.0618 0 112 c
0.0618 180 >10* -

0.0619 0 62 c
0.0619 180 V © oc -

0.062 0 188 c
0.062 90 285 c
0.062 180

09OA

-

0.062 270 21 c
0.0621 0 65 c
0.0621 180 >10* -

0.0622 0 191 c
0.0622 180 >10* -

0.0623 0 8 c
0.0623 180 V t—

* o oc -

0.0624 0 105 c
0.0624 180

90or"HA

-

0.0625 0 92 c
0.0625 180 V o oc -

0.0626 0 7 c
0.0626 180 V ►—

I O 00 -

0.0627 0 143 c
0.0627 180 7.372 x lO 5 c
0.0628 0 72 c
0.0628 180 >10* -

0.0629 0 234 c
0.0629 180

90oA

-

0.063 0 65 c
0.063 90 1766 E
0.063 180 V o 0

0

-

0.063 270 13 c
0.0631 0 20 c
0.0631 180 172 c
0.0632 0 70 c
0.0632 180 135 c
0.0633 0 44 c
0.0633 180 1289 c
0.0634 0 87 c
0.0634 180 35 c
0.0635 0 23 c
0.0635 180 89 c
0.064 0 7 c
0.064 90 891 E
0.064 180 277 c
0.064 270 182 c
0.065 0 53 c
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Satellite Distance 
from Giant /  AU

Launch Longitude 
(Star = 0 )

Run Completion 
T im e/ years

Run Outcome

0.065 90 59 C
0.065 180 13 C
0.065 270 2 C
0.066 0 120 C
0.066 90 234 C
0.066 180 125 C
0.066 270 5 C
0.067 0 194 C
0.067 90 1657 E
0.067 180 440 E
0.067 270 0 C
0.068 0 71 C
0.068 90 1009 E
0.068 180 280 C
0.068 270 0 C
0.069 0 110 c
0.069 90 0 c
0.069 180 1127 E
0.069 270 19 C
0.07 0 71 C
0.07 90 6 C
0.07 180 103 C
0.07 270 21 c

0.071 0 89 c
0.071 90 522 E
0.071 180 1899 E
0.071 270 10 c
0.072 0 205 c
0.072 90 134 c
0.072 180 177 c
0.072 270 100 c
0.073 0 2 c
0.073 90 24 c
0.073 180 537 E
0.073 270 90 c
0.074 0 977 E
0.074 90 61 C
0.074 180 515 E
0.074 270 253 C
0.075 0 94 C
0.075 90 846 C
0.075 180 382 E
0.075 270 14 C
0.08 0 493 C
0.08 90 724 E
0.08 180 27 C
0.08 270 61 C

0.085 0 18 C
0.085 90 187 C
0.085 180 989 E
0.085 270 209 E
0.09 0 1361 E
0.09 90 164 C
0.09 180 4 C
0.09 270 199 E

0.095 0 61 C
0.095 90 116 C
0.095 180 398 c
0.095 270 5 c
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Satellite Distance 
from Giant / AU

Launch Longitude 
(Star = 05)

Run Completion 
Tim e/ years

Run Outcome

0.1 0 28 C
0.1 90 177 C
0.1 180 427 E
0.1 270 778 C

C Collided with the giant planet
E Ejected from the system

Initial time step set at 1 day instead o f 0.05 o f  satellite orbital period (3.45 days)
Initial time step set at 0.1 day instead o f 0.05 o f satellite orbital period (3.45 days)

From the theory, all integrations in table 6.5 should either last their lOOMyr term or should 
collide with the giant. However, those launched with an initial longitude of 90° or 270° 
with respect to the star at an initial distance of 0.085AU could collide with the star, being 
between the L\ and L2 zero-velocity curves. Those launched with the same initial 
longitudes at 0.9AU and beyond could also be ejected from the system. The table shows 
that of the 162 runs that terminate prematurely, the outcomes of 20 of these unstable orbital 
runs contradict the theory. For these satellites to be ejected, they must acquire sufficient 
energy. This must be acquired from the giant planet in the form of “sling-shot” events or 
gravity assists. As discussed in section 6.3, small satellite bodies must cross the zero- 
velocity curve passing through the L2 point to escape the system. The nearest initial 
satellite distance from the giant where an ejection occurs is at 0.058AU for a launch 
longitude of 270° and 0.059AU for a launch longitude of 90°, compared to the Tj2 curve’s 
distance from the giant at these longitudes of 0.086AU. At a launch longitude of 180° the 
nearest initial satellite distance from the giant where an ejection occurs is at 0.067AU, just 
over half the distance to the L2 point at 0.126AU. There is no point between the star and 
giant planet where the L2 curve crosses. As the satellite distance at 0.058AU was the first 
time this unexpected phenomenon was encountered, the initial time-step of the integrations 
was reduced from 0.05 of an orbit (3.45 days) to 1 day and then 0.1 day. This was checked 
through personal communication with the program writer (Chambers, 2004), who 
suggested that initial time steps that are initially too large, may lead to inaccurate results. 
Here, however, this proved not to be the case.

The stability of satellite orbits was also dependent on their launch longitude for any one 
particular distance from the giant. Table 6.6 shows the initial Jacobian constants, Cj, at 
which satellite orbits initially become unstable at their respective launch longitudes and 
also where they are able to escape from the system. Due to the resolution of the zero- 
velocity surface used to determine these Cj values, they can only be accurately quoted to 
three decimal places.

Table 6.6 Critical Jacobean constants for satellite orbit outcomes

Initial launch 
longitude with 

respect to the star

Orbital destabilisation Satellite ejection
Initial satellite distance 

from the giant / AU
Cj Initial satellite distance 

from the giant / AU
Cj

90 or 270 0.0525 3.193 0 .0 5 8 -0 .0 5 9 3 .1 7 2 -3 .1 6 9
180 0.0581 3.181 0.067 3.158
0 0.0588 3.180 0.074 3.146

The implication here is that provided the initial Jacobian constant of a satellite is 3.193 or 
more, then its orbit will be stable. The Cj of the L\ point within this theoretical system is 
3.116, so the difference in Jacobian constants where the shape of the gravity well is 
sufficiently distorted for orbital destabilisation to occur is 0.064 to 0.077. Similarly, the Cj 
of the L2 point is 3.109, so the difference in Jacobian constants where a satellite can escape 
from orbit is 0.037 to 0.063. It appears, on this brief analysis, that there is an energy
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barrier where a satellite can overcome a Cj difference of 0.063 or less by gravitational 
assists and escape the system. It also appears that Cj differences between 0.064 and 0.077 
cannot be overcome by the satellite sufficiently to escape the system, but they can attain 
enough energy to destabilise their orbits. Satellites further down the giant planet gravity 
well than a Cj difference of 0.078 or more remain in stable orbits. Clearly a greater in- 
depth analysis would be required to verify these figures and outcomes.

There appears to be an island of stability for satellites launched with a longitude difference 
of 180 , with respect to the star, from 0.0594AU to 0.0630AU (with one exception at 
0.0627AU). This is too wide to be an orbital resonance effect and the Jacobian constants 
of the satellite starting positions are between 3.177.and 3.168 respectively. Again further 
investigation would be required here to resolve this phenomenon.

An alternative and disturbing explanation for the system ejection outcomes is that there 
may be a bug in the programming of the Mercury Orbital Integrator. This is doubtful; 
however, as the program is widely used and any such discrepancies are highly likely to 
have been already found. The chance of an odd result is always present, which may be 
enhanced by the fact that in these satellite runs, the Integrator is being abused somewhat as 
the largest body in the system is not at its centre. As previously discussed in section 6.4, 
this does not sit well with the usage of the less reliable of the two Hill radius formulae 
versions, given in equation 6.12. Indeed, the usage of the Mercury Integrator so far, in the 
planetary studies for which it is designed, suggests that it is robust and reliable. Initial 
experiments with satellite integrations using the Jovian Galilean system with the MVS, 
Bulirsch Stoer, Conservative Bulirsch-Stoer and Hybrid Integrators, lead to nothing but 
failure. The RADAU integrator was the only one that worked for the unusual 
configurations required for satellite runs when using Mercury.

6.8 Conclusion
The outcomes of all but 20 of the 238 integrations on this theoretical system were as 
predicted by the theory. As discussed in section 7 of this chapter, there is sufficient 
evidence to suggest that the 20 unexpected system ejections are due to energy exchanges 
between the satellite, giant and star. Hence, on this premise, the Mercury Orbital RADAU 
Integrator is appropriate to continue with the satellite studies on real systems.
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7. Real Integrations on Satellite Systems
7.1 System Characteristics
These studies use the Mercury Orbital RADAU Integrator as verified in chapter 6 for its 
use on satellites o f giant planets within exosystems. The two systems investigated here 
have their stellar parameters shown in table 7.1 and the orbital parameters o f the giant 
planet within each system, shown in table 7.2.

Table 7.1. Stellar properties o f HD 23079 and HD 28185

Parameter HD 23079 HD 28185
M * / M 0 1.1 0.99

Metallicity /  [Fe/H] - 0.24
Metallicity /  %  (1st & 2nd model) - 3.48 & 3.27

Spectral Type F9V G5
Bolometric Correction -0.17 -0.24

Age /  Gyr 3.1 2.9
Distance /  pc 34.8 39.4

Apparent Visual Magnitude 7.1 7.81
U L 0 1.62 1.14
Tefl/K 6130 5565

1st model inner HZ ZAMS /AU 0.854 0.679
1st model outer HZ ZAMS /AU 1.695 1.339

1st model inner HZ now /AU 1.002 0.755
1st model outer HZ now /AU 1.997 1.491

1st model inner HZ EoMS /AU 1.548 1.289
1st model outer HZ EoMS /AU 3.063 2.531

2nd model inner HZ ZAMS /AU 0.876 0.747
2nd model outer HZ ZAMS /AU 1.74 1.478

2nd model inner HZ now /AU 1.052 0.844
2nd model outer HZ now /AU 2.102 1.674

2nd model inner HZ EoMS /AU 1.582 1.393
2nd model outer HZ EoMS /AU 3.111 2.738

Stellar params inner HZ now /AU 1.028 0.911
Stellar params outer HZ now /AU 2.048 1.799

Table 7.2. Orbital Properties o f the exoplanets HD 23079 b and HD 28185 b.

Parameter HD 23079 b HD 28185 b
M p S in io  /  M j 2.61 5.7

Semimajor axis/AU 1.65 1.03
Orbital Eccentricity 0.1 0.07

Period /  days 738.459 383
Inner R u  multiplier 2.788 2.833
Outer multiplier 5.505 4.872

Inner gravitational reach /  AU 1.066 0.601
Outer gravitational reach / AU 2.642 1.716
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Figure 7.1 HZ movement over the main sequence lifetime for HD 23079 according to the second
Mazzitelli model. The green lines are the Hill radii o f the giant beyond apastron and inside 
periastron, between which a satellite must orbit.
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Figure 7.2 HZ movement over the main sequence lifetime for HD 28185 according to the first
Mazzitelli model. The green lines are the Hill radii o f the giant beyond apastron and inside 
periastron, between which a satellite must orbit.

The eccentricity of both giants is low, keeping them well within the boundaries of the 
habitable zone as defined by the runaway greenhouse and maximum greenhouse 
boundaries defined in chapter 3, section 1. Figures 7.1 and 7.2 shows the movement of the 
habitable zones, within these systems, over each stars main sequence lifetime.

Both Mazzitelli Stellar models were used to show the HZ movement as there was little 
difference between each model for either star. Figure 7.1 shows that a satellite of the HD

131



23079 giant could be capable o f supporting life after lGyr, based on the semimajor axis o f  
the giant lying within the HZ. Although at this time, the eccentricity o f the giant would 
mean a satellite would spend some time beyond the HZ, this time would be small. Bearing 
in mind that life takes 2Gyr to make an appreciable alteration to any host planet’s 
atmosphere, then for a satellite orbiting HD 23079b, such changes could have happened 
lGyr ago. Life on a satellite today can still look forward to 5Gyr existence before the star 
reaches its end o f main sequence. During the last lGyr on the main sequence, any 
habitable satellites will drift inside the outwardly moving inner HZ boundary. Cloud 
reflection effects could possibly protect the satellite beyond this time and life could exist 
until the end o f the star’s main sequence lifetime. Figure 7.2 shows that a satellite o f HD 
28185b could also have supported life from the end o f any early bombardment period. An 
atmosphere o f such a satellite should now have been altered and life can expect to exist for 
at least another 5Gyr, possibly 7Gyr, before the inner HZ passes over the giant’s orbit, 
rendering any satellite uninhabitable. It is unlikely, though, that a satellite could support 
life to the end o f the star’s main sequence life time.

7.2 Outcome of the HD 23079 Integrations
As with the orbital integrations on the theoretical HD 28185 system, each integration in 
these studies was terminated after lOOMyr due to the time required for each run. The 
distance o f the Earth-Moon sized satellite was increased from the planet until orbital 
destabilisation started to occur and just beyond. As the orbits o f the giant planet around 
the star and Earth-Moon satellite around the giant were eccentric, the four periplanet 
launch longitudes were as defined for the planetary integrations. As previously explained 
in chapter 6, however, the giant and star have swapped places with the giant being at the 
centre o f the system for these investigations. Consequently, due to the Integrators use o f  
Hill radius formula 6.12, the close encounter run termination distance was set to 0.1/fa for 
the star and 1.0Ru for the Earth-Moon both orbiting the central planet. Any close 
encounter run termination distance greater than 0.1705ifa for the star results in an 
immediate end to an integration, as this distance, as determined by equation 6.12, is the 
planet’s periastron. This also leads to different terminology, where periplanet is the point 
of closest approach o f the satellite or star to the planet, so the star’s periplanet is the same 
as the planet’s periastron.

Notes for all subsequent tables: 
e  orbital eccentricity
a  Earth-Moon’s (E-M) semimajor axis distance from the planet in AU
p  longitude o f periastron o f  Earth-Moon with respect to that o f the star (°)
A m  periastron longitude difference between the giant and Earth-moon
t  time o f  run to completion or termination in years
O  outcome o f run termination if  applicable where ‘ce’ is a close encounter within 0.1 o f  the star’s Hill

radius, as determined by equation 6.12. 
possible libration between these relative periastron longitudes

Table 7.3 Orbital runs for an Earth-Moon satellite orbiting the minimum mass giant HD 23079b in
the habitable zone o f its star, excluding J 2 effects.

Starting Parameters Parameter variation during a run t /years O

E-M a/AU p / ° Earth-Moon e Earth-Moon a  /AU Act/ 0
0.01 0 0.000365-0.001027* 0.01002 ± 0.00003 ±30** >10* -
0.01 180 0.000386-0.001045* 0.01002 ±0.00003 ±30** >10* -
0.02 0 10's - 0.009804 0.01995 ±0.00005 0-360 >10* -
0.02 180 10'5-  0.005733 0.01995 ±0.00005 0-360 >10* -
0.03 0 10'5-  0.019598 0.02983 ±0.00018 0-360 >10* -
0.03 180 10’5- 0.018269 0.02983 ± 0.00018 0-360 >10* -
0.04 0 10'5- 0.044000 0.03943 ± 0.00057 0-360 >10* -
0.04 180 lO’5- 0.044074 0.03947 ± 0.00058 0-360 >10* -
0.05 0 10’s - 0.090538 0.04856 ±0.00144 0-360 >10* -
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Starting Parameters Parameter variation during a run f/years O

E-Ma/AU p / ° Earth-Moon e Earth-Moon a  /  AU Aer/°
0.05 90 10’5- 0.230003 0.05187 ±0.00233 0-360 >10“ -

0.05 180 10'5- 0.095664 0.04868 ± 0.00146 0-360 >10* -
0.05 270 lO'5- 0.229403 0.05186 ±0.00232 0-360 >10* -

0.051 90 lO'5- 0.268221 0.05311 ±0.00271 0-360 >10* -
0.051 270 10'5- 0.267623 0.05312 ±0.00271 0-360 >10* -
0.052 90 10’5- 0.306473 0.05438 ±0.00315 0-360 >10* -

0.052 270 10‘5- 0.306859 0.05439 ±0.00317 0-360 >10* -

0.053 90 lO'5- 0.375008 0.05570 ± 0.00386 0-360 >10* -

0.053 270 10'5- 0.374362 0.05576 ±0.00385 0-360 >10* -

0.054 90 10‘5-  0.441299 0.05710 ± 0.00435 0-360 4.271 x 10b ce
0.054 270 10^-0.461856 0.05717 ± 0.00444 0-360 1.063 x 10v ce
0.055 0 10"5- 0.125242 0.05287 ±0.00213 0-360 >10* -

0.055 90 10'5 0.055 - 2797 ce
0.055 180 10‘5-  0.131335 0.05308 ±0.00218 0-360 >10* -

0.055 270 10‘5 0.055 - 374 -

0.056 0 lO'5- 0.132178 0.05372 ±0.00228 0-360 >10* -

0.056 90 10‘5 0.056 - 131 ce
0.056 180 10'5- 0.142858 0.05394 ± 0.00235 0-360 >10* -

0.056 270 10‘5 0.056 - 342 ce
0.057 0 10‘5- 0.138775 0.05455 ±0.00245 0-360 >10* -

0.057 90 10'5 0.057 - 497 ce
0.057 180 10'5- 0.152136 0.05482 ±0.00253 0-360 >10* -

0.057 270 10'5 0.057 - 45 ce
0.058 0 10'5- 0.148082 0.05538 ± 0.00262 0-360 >10* -

0.058 90 10'5 0.058 - 11 ce
0.058 180 10°-0.162231 0.05566 ±0.00272 0-360 >10* -

0.058 270 10"5 0.058 - 5 ce
0.059 0 10'5- 0.169127 0.05618 ± 0.00282 0-360 >10* -

0.059 90 10‘5 0.059 - 10 ce
0.059 180 10’5- 0.183434 0.05657 ±0.00297 0-360 >10* -

0.059 270 10’5 0.059 - 302 PC
0.06 0 lO'5-  0.369886 0.05765 ±0.00431 0-360 >10* -

0.06 90 10*5 0.060 - 9 ce
0.06 180 10^-0.403908 0.05810 ±0.00476 0-360 >10* -

0.06 270 10‘5 0.060 - 13 ce
0.061 0 10*5 0.061 - 1148 ce
0.061 180 10'5 0.061 - 735 ce
0.062 0 10’5 0.062 - 1911 ce
0.062 180 lO'5 0.062 - 2219 ce
0.063 0 10'5 0.063 - 1172 ce
0.063 180 10'5 0.063 - 670 ce
0.064 0 lO'5 0.064 - 19 ce
0.064 180 10'5 0.064 - 21 ce
0.065 0 10*5 0.065 - 9 ce
0.065 180 10’* 0.065 - 51 ce
0.066 0 10'1 0.066 - 9 ce
0.066 180 10° 0.066 - 7 ce
0.067 0 10'5 0.067 - 25 ce
0.067 180 10’5 0.067 - 7 ce
0.068 0 10‘5- 0.263696 0.06305 ±0.00495 0-360 >10* -

0.068 180 10’5 0.068 - 17 ce
0.069 0 10*5 0.069 - 1.671 x 104 E
0.069 180 10'5 0.069 - 161 PC
0.07 0 10^-0.341246 0.06444 ± 0.00556 0-360 >10* -

0.07 180 10'5 0.070 - 25 ce
0.08 0 10'5 0.080 - 640 PC
0.08 180 10’5 0.080 - 65 ce

Measurements taken after the first 107 years to allow for orbital stabilisation, 
ce Close encounter to within 0.1/?H o f the star 
PC Earth-Moon satellite collides with its parent planet.
E Earth-Moon is ejected from the system.
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Table 7.3 shows the results for integrations where the J2 effect was not included. As the 
giant is now in an eccentric orbit about the star the integrations are always started with the 
star at periplanet. This is to play devil’s advocate with satellite orbital stabilities as the 
stellar gravitational influence will be initially greatest. There are two distinct categories of 
orbits, as discovered in chapter 6. For orbits launched at different periplanet longitudes, 
those launched at 90° and 270° destabilise nearer to the planet than those launched at 0° 
and 180°. This is because, for orbits launched at the same distance from the giant, those 
initially at quadrature have lower pseudo-potentials and are, therefore, more prone to 
destabilisation as discussed in chapter 6, section 7.

The orbits of the satellites launched at quadrature destabilise at a launch distance of 
0.054AU and have close encounters with the star. As one of the footnotes in table 7.3 
explains, close encounters occur within 0ARH of the star, or 0.871AU as determined by 
equation 6.12, as used in the Mercury Orbital Integrator. When the giant is at periastron it 
is 0.614AU from the star’s OARh distance, which is well beyond the L\ or L2 points of the 
giant, at 0.131AU and 0.138AU from the giant respectively. The satellite must, therefore 
have gained sufficient energy through gravitational assists to escape the giant and pass too 
close to the star. The orbits of satellites launched at 0° and 180° periastron longitude 
destabilise at 0.061AU, although two more stable orbits appear at 0.068AU and 0.070AU, 
both at 0° launch longitude. These orbits are close to the 11:2 resonance with the star 
(where the satellite orbits eleven times for every two star orbits), but not significantly so 
for them to be stable for this reason, particularly as the orbit launched at 0.069AU is 
unstable.

The stable orbits of Earth-Moon satellites show similar trends with increasing distance 
from the giant, as do the Earth-Moon exoplanets in the previous investigations of chapters 
4 and 5. The distance from the giant remains constant for all, although the variation in this 
distance increases with increasing distance from the giant. The eccentricity oscillation 
span also increases with increasing satellite distance. These effects are due to greater 
influence from the star as the initial pseudo-potential of the satellite decreases. Satellites 
launched at the same distance from the giant also have increasing eccentricity with 
decreasing initial pseudo-potentials or Cj value, as seen from satellites launched at 0.05AU 
in table 7.3. The run that had an initial periastron launch longitude of 0° has the highest Cj 
and consequently its largest eccentricity value is lowest. The run with an initial periastron 
launch longitude of 180 has a slightly lower Cj and its largest eccentricity value is slightly 
higher. Those launched at 90° and 270° have a considerably lower Cj and their largest 
eccentricity is considerably higher. Figures 7.3, 7.4 and 7.5 show, for a stable orbit, the 
typical variation in the distance of the satellite from the giant, changes in the satellite’s 
eccentricity and in its periastron longitude with time respectively. Only the closest satellite 
integration initially at 0.01 AU showed any signs of its periplanet longitude librating about 
that of the star’s (periastron) (Figure 7.6), no such phenomena were present in the rest.
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Figure 7.3 Variation in distance from the giant planet with time for a satellite in a stable orbit around
HD 23079b at 0.05AU.
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Figure 7.5 Variation in periplanet longitude with time for a satellite in a stable orbit around HD
23079b at 0.05AU.
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Figure 7.6 Variation in periplanet longitude (Av s  in degrees) with time for a satellite in a stable orbit 
around HD 23079b at 0.01AU, illustrating possible libration about the 0° periplanet 
longitude o f  the star.

7.3 Outcome of the HD 28185 Integrations -  no J2 Effect
This system was investigated with much more rigour than HD 23079. In addition to 
finding the distance from the giant where Earth-sized satellite orbits destabilise, 
investigations were undertaken as to the effects on orbital stability o f satellite size and the 
J2 effect from the giant. Also investigated was satellite orbital inclination with respect to 
the plane o f the giant planet’s orbit around its star, and the equatorial plane o f the giant 
(more relevant in the presence o f the J2 effect in section 1 o f this chapter). The close 
encounter run termination distance was again O.life for the star and 1.07?h for the satellite 
since the distance o f the giant’s periastron is 0.23677?h o f the star as determined by 
equation 6.12. Consequently, entering a stellar Hill radius termination multiple larger then 
this results in immediate termination o f any runs.

As with HD 23079, the satellites were launched at four periplanet launch longitudes, i.e. 
0°, 90°, 180°, and 270° with respect to the periastron o f the giant. The satellite was also 
given initial orbital inclinations o f 0°, 30°, 60°, 75°, 90° and 180° to the plane o f the 
star’s orbit around the giant planet (from the perspective o f the integrator). These were 
investigated with either the satellite orbits being inclined or the star’s orbit being inclined. 
When the satellite orbits were inclined, the effect would be o f it orbiting the giant out o f  
the plane o f its rotation, which is contrary to theories o f satellite system formation (but like 
the Earth-Moon system orbiting the Sun). When the “star’s orbit” is inclined, the 
perspective is that the satellites orbit in the plane o f the giant planet’s rotation, as in most 
satellite systems within the Solar System (see Figure 7.7). It is within the inclination 
investigation when the giant’s J2 value would be expected to have a significant effect, as 
this incorporates giant planet rotation induced oblateness.
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Figure 7.7 The two configurations for inclined satellite orbits. Top illustrates orbits inclined out o f  the 
plane o f the giant’s orbital and rotation plane, i.e. Type 1. Bottom illustrates orbits inclined 
out o f  the plane o f the giant’s orbit but in the plane o f  its rotation, i.e. Type 2.

The greatest gravitational perturbation effects on any satellite orbits will occur at the giant 
planet’s periastron, when it is 0.9579AU from the star. At this distance the L\ curve 
crosses the L\ point at 0.1122AU from the giant, is 0.0948AU opposite the giant and is 
0.0759AU from the giant at quadrature. All satellites that are launched in the plane o f the 
giant’s orbit within this boundary, for this study, remain in this orbital plane. They also 
should have either stable orbits or should collide with the giant. A  brief glance at Table 
7.5 reveals, however, that there are many satellite close encounters with the star, implying 
that gravitational assists have taken place with the giant enabling the satellite to cross the 
L\ boundary.

As with HD 23079b, satellites launched within the giant’s orbital plane fall into two 
categories. Those launched at quadrature are stable to an initial distance o f 0.046AU from 
the giant, whereas those launched at 180° with respect to the star’s periplanet are stable to 
0.050AU, and those launched at 0° remain stable to 0.051AU with an island o f  stability 
between 0.055AU and 0.057AU, similar to that in HD 23079b. Trends o f  increasing 
eccentricity and variation in planet distance with initial planet distance are also the same 
and the only instance o f satellite periplanet libration effects about the star’s periplanet 
(periastron) occur very close to the giant at 0.01 AU (see Figure 7.6).
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Table 7.5 Orbital runs for an Earth-Moon satellite orbiting the minimum mass giant HD 28185b in
the habitable zone of its star, excluding J2 effects.

Starting Parameters Parameter variation during a run / /y e a r s O
E-M a / AU p / ° i / ° Earth-Moon e Earth-Moon a 1 AU Am/° A i r

0.01 0 0 0.000210-0.001300* 0.01 ±50* 0 >108 -
0.01 180 0 0.000230-0.001315' 0.01 ±50* 0 >10s -
0.02 0 0 10’5-  0.010307 0.01995 + 0.00005 0-360 0 >108 -
0.02 180 0 10'5-  0.008791 0.01995 ± 0.00005 0-360 0 >108 -
0.03 0 0 10'5-  0.028774 0.02973 ± 0.00028 0-360 0 >108 -
0.03 180 0 10‘5- 0.029221 0.02975 ± 0.00028 0 -3 6 0 0 >108 -
0.03 0 60 105- 0.764627 0.02975 + 0.00041 0 -360 4 1 -6 0 >108 -
0.03 180 60 10'5- 0.761804 0.02976 ± 0.00040 0 -360 4 2 -6 0 >108 -
0.03 0 75 105 -  0.956810 0.02011+0.00997 0 -360 4 0 -7 6 >108 -
0.03 180 75 10'5-  0.955582 0.02258 + 0.00744 0 -360 4 0 -7 5 >108 -
0.03 0 75s* 10'5- 0.954014 0.02571 ± 0.00431 0 -360 0 -1 5 0 >108 -
0.03 180 75s* 10'5-  0.953695 0.02394 ± 0.00606 0 -360 0 -1 5 0 >108 -

0.031 0 60 10'5-  0.761850 0.03073 ± 0.00046 0 -360 4 1 -6 0 >108 -
0.031 180 60 10'5- 0.754320 0.03073 ± 0.00045 0 -360 4 2 -6 0 >108 -
0.031 0 75 10‘5-  0.956478 0.02673 + 0.00430 0 -360 4 1 -7 6 >108 -
0.031 180 75 10'5- 0.963502 0.01769 ± 0.01332 0 -360 4 1 -7 6 >108 -
0.032 0 60 10'5-  0.760352 0.03167 + 0.00051 0 -360 4 1 -6 0 >10* -
0.032 180 60 10'5- 0.752940 0.03169 + 0.00051 0 -360 4 2 -6 0 >108 -
0.032 0 75 10'5-  0.957903 0.02503 ± 0.00697 0-3 6 0 4 0 -7 5 >108 -
0.032 180 75 L 10‘5- 0.956337 0.02928 ± 0.00697 0-3 6 0 4 1 -7 6 >108 -
0.033 0 60 10-5-  0.763812 0.03264 ± 0.00059 0-360 4 2 -6 0 >108 -
0.033 180 60 10'5-  0.760943 0.03268 ± 0.00058 0-360 4 2 -6 0 >108 -
0.033 0 75 10‘5-  0.956376 0.03186 + 0.00117 0-3 6 0 4 1 -7 5 >108 -
0.033 180 75 10 s -0.956337 0.02928 ± 0.00280 0-3 6 0 4 1 -7 6 >108 -
0.034 0 60 10'5- 0.758834 0.03358 ± 0.00065 0-3 6 0 4 2 -6 0 >108 -
0.034 180 60 10'5- 0.765982 0.03365 ± 0.00067 0-3 6 0 4 2 -6 0 >108 -
0.034 0 75 10'5-  0.896462 0.03371 ± 0.00042 0-3 6 0 4 6 -7 6 1.064 x 10* PC
0.034 180 75 10 s -0.920713 0.03362 ± 0.00038 0 -3 6 0 4 6 -7 6 5.149 x 10s PC
0.035 0 60 10‘5- 0.758390 0.03455 ± 0.00074 0 -3 6 0 4 2 -6 0 >108 -
0.035 180 60 10'5- 0.779766 0.03459 ± 0.00075 0 -3 6 0 42-61 >108 -
0.035 0 75 10'5- 0.976355 0.01889 + 0.01614 0 -3 6 0 4 1 -7 8 >108 -
0.035 180 75 105- 0.969166 0.03403 + 0.00116 0 -3 6 0 4 2 -7 8 2.668 x 106 PC
0.036 0 60 10'5- 0.758138 0.03551 + 0.00083 0 -3 6 0 4 2 -6 0 >108 -
0.036 180 60 105- 0.780089 0.03552 ± 0.00085 0 -3 6 0 4 2 -6 2 >108 -
0.037 0 60 10’5- 0.753744 0.03642 ± 0.00090 0 -3 6 0 4 2 -6 0 >108 -
0.037 180 60 10'5- 0.785278 0.03649 + 0.00091 0 -3 6 0 4 2 -6 3 >108 -
0.04 0 0 10'5- 0.070014 0.03909 + 0.00091 0 -3 6 0 0 >108 -
0.04 180 0 10'5- 0.076334 0.03919 + 0.00093 0 -3 6 0 0 >108 -
0.04 0 60s* 10“5- 0.737202 0.03922 + 0.00129 0 -3 6 0 0-120 >108 -
0.04 180 60s* 10'*-0.719168 0.03938 + 0.00129 0 -3 6 0 0 -1 1 9 >108 -
0.04 0 75 10'5- 0.952143 0.03919 + 0.00114 0 -3 6 0 4 2 -7 8 5.548 x 106 PC
0.04 180 75 10 s -0.958669 0.03931 +0.00113 0 -3 6 0 4 2 -7 6 5.500 x 10b PC
0.04 0 75s* 0.122473-0.967971* 0.02897 + 0.01103 0 -3 6 0 0-151 >108 -
0.04 180 75s* 0.122473-0.968175 0.03498 ± 0.00543 0 -3 6 0 0 -1 5 0 >108 -

0.041 0 60 105- 0.922033 0.03977 + 0.00157 0 -3 6 0 4 3 -7 8 4.594 x 107 PC
0.041 180 60 10 s -0.708347 0.04047 + 0.00149 0-3 6 0 4 3 -6 0 >108 -
0.042 0 60 10 s -  0.811431 0.04081 +0.00181 0 -3 6 0 4 3 -6 4 >108 -
0.042 180 60 10"5- 0.802937 0.04093 + 0.00169 0 -3 6 0 4 2 -6 2 >108 -
0.043 0 60 105- 0.962749 0.04168 + 0.00237 0 -3 6 0 4 2 -7 7 6.822 x 107 PC
0.043 180 60 10 s -  0.966664 0.04176 + 0.00232 0-3 6 0 4 1 -7 7 5.439 xlO 7 PC
0.044 0 60 105- 0.952204 0.04151 +0.00268 0 -3 6 0 4 2 -7 7 2.999 x 107 PC
0.044 180 60 10'5- 0.853002 0.04421 + 0.00335 0 -3 6 0 43-71 1.416 x 10' ce
0.045 0 0 10 s -0.102278 0.04354 + 0.00146 0 -3 6 0 0 >108 -
0.045 90 0 10‘5-  0.331487 0.04715 + 0.00286 0 -3 6 0 0 >108 -
0.045 180 0 10‘5-  0.116740 0.04373 + 0.00153 0 -3 6 0 0 >108 -
0.045 270 0 10‘5- 0.329032 0.04713 + 0.00283 0 -3 6 0 0 >108 -
0.045 0 30 10'5- 0.111407 0.04356 + 0.00144 0 -3 6 0 2 7 -3 0 >108 -
0.045 180 30 10'5- 0.111076 0.04370 + 0.00142 0 -3 6 0 2 7 -3 0 >108 -
0.045 0 60 10'5- 0.968916 0.04197 + 0.00439 0 -3 6 0 3 7 -7 8 5.392 x 107 PC
0.045 180 60 105- 0.901277 0.04483 ± 0.00308 0 -3 6 0 3 9 -6 9 3.566 x 107 ce
0.045 0 60s* 105 -  0.910163 0.04474 ± 0.00246 0 -3 6 0 0-131 2.556 x 106 PC
0.045 180 60s* 10 s -0.934926 0.04498 ± 0.00303 0 -3 6 0 0 -1 2 7 4.536 x 106 PC
0.045 0 90s* 10 s 0.045 - - 3 PC
0.045 180 90s* 10‘5 0.045 - - 3 PC
0.046 0 0 10 s -0.109786 0.04440 + 0.00160 0 -3 6 0 0 >10* -
0.046 90 0 10'5- 0.473136 0.04860 ± 0.00393 0 -3 6 0 0 >108 -
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Starting Parameters Parameter variation during a run / /y e a r s O
E -M a /A U Pf ° i / ° Earth-Moon e Earth-Moon a /  AU Am/° a i /°

0.046 180 0 10"-0.128529 0.0446210.00167 0 -3 6 0 0 > 10" -
0.046 270 0 105- 0.470541 0.0485310.00393 0 -3 6 0 0 > 108 -
0.046 0 60 10‘5-  0.861739 0.0449910.00256 0 -3 6 0 4 1 -6 9 5.871 x 106 ce
0.046 180 60 10'5- 0.862022 0.0448310.00205 0 -3 6 0 4 3 -71 1.909 x lO 6 ce
0.047 0 0 10-*- 0.118713 0.0452610.00175 0 -3 6 0 0 > 108 -
0.047 90 0 105 0.047 - - 3724 ce
0.047 180 0 lO’5- 0.135634 0.0455010.00182 0 -3 6 0 0 > 108 -
0.047 270 0 lO'5 0.047 - - 4929 ce
0.048 0 0 10'5-  0.126773 0.0461010.00190 0 -3 6 0 0 > 108 -
0.048 90 0 10'5 0.048 - - 143 ce
0.048 180 0 10‘5- 0.147506 0.04640 1  0.00201 0 -3 6 0 0 > 108 -
0.048 270 0 10'5 0.048 - - 98 ce
0.049 0 0 10'5-  0.135435 0.04694 1  0.00206 0 -3 6 0 0 > 108 -
0.049 90 0 lO'5 0.049 - - 51 ce
0.049 180 0 10 s -0.160667 0.04727 1  0.00219 0 -3 6 0 0 > 108 -
0.049 270 0 10'5 0.049 - - 34 ce
0.05 0 0 10’5- 0.145817 0.04775 1  0.00225 0-3 6 0 0 > 108 -
0.05 90 0 10 s 0.050 - - 4 ce
0.05 180 0 10’5- 0.218670 0.0482610.00263 0 -3 6 0 0 > 108 -
0.05 270 0 10'5 0.050 - - 34 ce
0.05 0 0a 10‘5- 0.144050 0.0477710.00223 0-3 6 0 0 > 108 -
0.05 180 0a 10'5-  0.173154 0.0481610.00241 0 -3 6 0 0 > 10* -
0.05 0 30 105- 0.154684 0.0477810.00222 0 -3 6 0 2 7 -3 0 > 108 -
0.05 180 30 10‘5-  0.157057 0.04806 1  0.00223 0 -3 6 0 2 7 -3 0 > 108 -
0.05 0 30s* 10'5- 0.153606 0.0478010.00220 0 -3 6 0 0 -6 0 > 108 -
0.05 180 30s* 10'5- 0.153891 0.0480810.00224 0 -3 6 0 0 -6 0 > 108 -
0.05 0 60 10'5- 0.596807 0.0480110.00199 0 -3 6 0 5 1 -6 0 2.542 x 104 E
0.05 180 60 10'5- 0.636765 0.0488110.00119 0 -3 6 0 4 8 -6 3 4.004 xlO 4 ce
0.05 0 60s* 10‘5 -  0.517730 0.04796 1  0.00204 0 -3 6 0 0 -1 1 0 4.532 xlO 4 ce
0.05 180 60s* 10'5- 0.258152 0.0487410.00126 0 -3 6 0 0 -8 5 1.740 xlO 4 ce

0.051 0 0 10'5- 0.383854 0.04920 1  0.00366 0 -3 6 0 0 > 108 -
0.051 180 0 lO5- 0.295583 0.0495310.00270 0 -3 6 0 0 1.118x10* ce
0.052 0 0 10'5 0.052 - - 779 ce
0.052 180 0 10 s 0.052 - - 679 ce
0.053 0 0 10'5 0.053 - - 1421 ce
0.053 180 0 10'5 0.053 - - 246 ce
0.054 0 0 lO5 0.054 - - 22 ce
0.054 180 0 10'5 0.054 - - 136 ce
0.055 0 0 105- 0.268010 0.0516710.00333 0 -3 6 0 0 > 108 -
0.055 180 0 10'5 0.055 - - 8 ce
0.056 0 0 105- 0.248973 0.05259 1  0.00370 0 -3 6 0 0 > 108 -
0.056 180 0 lO5 0.056 - - 16 ce
0.057 0 0 10 s -0.234917 0.0532310.00177 0 -3 6 0 0 > 108 -
0.057 180 0 lO5 0.057 - - 15 ce
0.058 0 0 lO5 0.058 - - 29 ce
0.058 180 0 lO5 0.058 - - 10 ce
0.059 0 0 lO'5 0.059 - - 5 ce
0.059 180 0 lO’5 0.059 - - 5 ce
0.06 0 0 105 0.060 - - 15 PC
0.06 180 0 10'5 0.060 - - 5 ce

0.065 0 0 10’5 0.065 - - 2 ce
0.065 180 0 105 0.065 - - 4 ce
0.07 0 0 lO'* 0.070 - - 13 PC
0.07 180 0 10 s 0.070 - - 19 PC

Measurements taken after the first 107 years to allow for orbital stabilisation, 
s* Star is inclined to the equator o f the giant planet.
a Satellite was launched at apoplanet, the farthest distance from the giant in its orbit 
ce Close encounter to within 0. li?H o f  the star.
PC Earth-Moon satellite collides with its parent planet.
E Earth-Moon is ejected from the system.

Inclining the satellite orbits out o f the plane o f the giant’s orbit opens up a new vista o f  
orbital trends with time. Satellite orbital inclinations are o f two types as illustrated in 
Figure 7.7. Type 1 is when the giant rotates in the plane o f its orbit and satellites orbit out 
of this plane, Type 2 is when the satellites orbit in the plane o f rotation o f the giant, which 
itself is inclined to its orbital plane (achieved by inclining the “star’s orbit” within the 
Integrator). Satellites were launched only at 0° and 180° to the star’s periplanet position.
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Table 7.6 shows the distance from the giant where orbits remain stable with both instances 
of inclination and both instances of periastron launch longitude. There is clearly some 
connection between satellite inclination angle and orbit stability distance, although there 
are too few points to establish any mathematical relationship. As there is no J2 effect from 
the giant, the results should theoretically be the same for both types of satellite orbital 
inclination.

Table 7.6 Distances o f inclined satellite orbits out to which stable orbits are maintained.

Launch Longitude / 0 -> 0 180 0 180
Orbital Inclination / 0

I
Distance from the giant to which 

satellite orbits are stable out of the 
plane of the giant’s rotation / AU

Distance from the giant to which 
satellite orbits are stable in the 

plane of the giant’s rotation / AU
0 0.051 0.050 0.051 0.050
30 0.050 0.050 0.050 0.050
60 0.042 0.042 0.040 0.040
75 0.033 0.033 0.040 0.040
90 0 0 0 0

So this study could also be regarded as a robustness test for the Mercury Orbital Integrator. 
Results from table 7.5 show there are clear differences between the two types of 
inclinations excepting, for the same semimajor axis, variations in distance from the planet 
and eccentricity, which are very similar. Type 1 inclinations have a much less and more 
believable variation, from approximately 40° up to just more than the original inclination 
angle. Type 2 inclinations vary much more widely, from 0° (i.e within the giant’s orbital 
plane) to more than twice the original inclined angle. A further investigation, which gives 
more credibility to type 1 inclinations, relates satellite orbital eccentricity with inclination 
angle over integration time. Kozai (1962) showed that for asteroids under the attraction of 
the Sun and Jupiter, a relation exists such that for eccentricity, e, inclination, I  and a 
constant k, then

V l - e 2 cos /  = k 7.1.

0.6

c 0.4

ui

46
Inclination in degrees

Figure 7.8 Variation of eccentricity v. inclination for a satellite orbiting HD 28185b initially 60° out
o f the orbital plane o f the giant, as in Type 1.

140



0.8

0 20 40 60 80 100 120 140
Orbital Inclination

Figure 7.9 Variation of eccentricity v. inclination for a satellite orbiting HD 28185b initially 60° out
o f the orbital plane of the giant, as in Type 2.
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Figure 7.10 Illustration of the Kozai relationship for satellites orbiting initially 60° out o f the orbital 

plane o f the giant, as in Type 1.

Plots of eccentricity against inclination for both types of satellite inclination are shown in 
figures 7.8 and 7.9. Figure 7.8 clearly shows that there is some relation between 
eccentricity and orbital inclination for satellites orbiting outside the giant’s orbital plane, 
whereas figure 7.9 shows no such relation for satellites orbiting in the plane of the giant’s 
rotation with the star’s orbit inclined. When equation 7.1 is applied to the data in figure 
7.8 a constant value is obtained with time, as shown in figure 7.10, confirming the Kozai 
relationship in this case.

The decreasing stability of the satellite orbits with increasing orbital inclination could be 
due to the high eccentricity of the orbits induced by high inclinations according to the 
Kozai relationship. With highest eccentricities during their periods of highest inclination 
during their runs, satellites may be able to gather sufficient energy from the giant in the 
form of gravitational assists during their very close periplanet passes to enable them to 
escape the giant and have a close encounter with the star. Consequently when a satellite is 
launched at a higher orbital inclination it must be closer to the planet to remain sufficiently 
within the giants gravity well in order not to escape or destabilise via gravitational assists.
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The differences in results between the two types o f inclination, where the better results are 
for type 1 inclinations, must be due to the small body being inclined rather than the large 
body o f the star as in type 2 inclinations. Clearly the integrator is not designed to 
accurately represent such unusual configurations as in type 2; hence it gives wildly varying 
results for these runs, and no evidence for the Kozai relation.

7.4 Outcome of the HD 28185 Integrations -  with the J2 Effect
A more realistic approach to studying satellite orbits around HD 28185b is to incorporate 
the J2 effect from the giant, introducing planetary oblateness. As the J2 value is not 
known, the value accepted for that o f Jupiter is incorporated into the integrations, where J2 
-  0.014736. Note that the gravitational field contribution corresponding to the Ji value 
decreases with distance from the giant by the inverse square (Murray & Dermott, 1999, 
page 151). Table 7.7 is less exhaustive than table 7.5 as comparisons are sought, with and 
without the J2 value, between stable orbit and unstable orbit boundaries around the giant. 
Since this study was meant to reflect real satellite systems, only type 2 inclinations were 
studied, hence the planet’s rotation axis was tilted relative to the star, or from the 
integrator’s view, the “star’s orbit” is inclined, giving the perspective that the satellites 
orbit in the plane o f the giant planet’s rotation, as in most satellite systems within the Solar 
System (see Figure 7.7).

The outcomes o f all the integration runs incorporating the J2 effect are shown in table 7.7. 
For the type 2 orbits, the distances where they destabilise are identical to those in the 
absence o f the J2 effect, even with an island o f stability at 0.055AU to 0.057AU for 
satellites launched at coincident periplanet with the star. Integrations inclined at 180° to 
the giant’s orbital plane, i.e with retrograde orbits, are also stable at 0.050AU. The results 
in table 7.8 are similar to those in table 7.6 for low angle inclination orbits, however the 
destabilising o f orbits inclined at 60° occurs a little nearer to the planet. For orbits inclined 
at 75°, there appears to be no stability possible. When no J2 term is present, these orbits 
are stable to 0.04AU; however its presence clearly has an increasing destabilisation effect 
on orbits when launched closer to the giant and at high inclinations. Indeed it appears that 
the destabilising effect o f the J2 term close to the planet for highly inclined orbits, coupled 
with gravitational assists caused by their induced high eccentricity by a possible Kozai 
relationship not shown here, could be sufficient to generate a “no go” area for such 
satellites. If orbits inclined at 75° or more are not stable at any distance, how do the 
satellites o f Uranus remain where they are? The answer is undoubtedly due to its low J2 

value o f 0.003343 (Murray & Dermott, 1999, page 531) compared to the 0.014736 value 
used here.

On analysis o f eccentricity and inclination with time, there appears to be no evidence for 
the Kozai relationship, as was observed for similarly inclined orbits with no J2 term (see 
Figure 7.9), although it would be necessaiy to explain the “no go” region for highly 
inclined orbits. The inclination again varies wildly from 0° to almost twice the star’s 
initial inclination angle. The only instance o f a stable inclination angle was for the two 
runs o f type 1, when the satellite was initially inclined at 30°, giving similar results to the 
corresponding run with no J2 effect. These results only reinforce that the integrator is not 
designed to accurately represent such unusual configurations as in type 2; hence it gives 
wildly varying results for these runs.
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Table 7.7 Orbital runs for an Earth-Moon satellite orbiting the minimum mass giant HD 28185b in
the habitable zone o f its star, including J2 effects.

Starting Parameters Parameter variation durin; a run / /y e a r s O
E -M fl/A U p / ° i / ° Earth-Moon e Earth-Moon a /  AU Am/° A11°

0.01 0 75s* 10'5 0.01 - - 581 PC
0.01 180 75s* 10 s 0.01 - - 1695 PC
0.015 0 75s* 10-5-  0.382011 0.01499 ±0.00001 0 -3 6 0 0 -3 0 1.329 xlO 4 PC
0.015 180 75s* 10'5 0.01 - - 1079 PC
0.02 0 75s* 10 s -  0.917460 0.01988 ±0.00012 0 -3 6 0 0 -1 4 3 2.160 x 10s PC
0.02 180 75s* 10 s -0.278916 0.01998 ±0.00002 0 -3 6 0 0 -8 8 1.570 xlO 4 PC

0.025 0 75s* 10'5- 0.960493 0.02482 ±0.00018 0 -3 6 0 0 -1 4 6 2.134 xlO 5 PC
0.025 180 75s* 10'5- 0.921550 0.02480 ±0.00196 0 -3 6 0 0 -1 4 9 5.299 x1 0 s PC
0.03 0 75s* 10'5- 0.958547 0.02969 ±0.00031 0 -3 6 0 0 -1 4 7 2.442x10* PC
0.03 180 75s* 10'5- 0.960249 0.02958 ±0.00046 0 -3 6 0 0 -1 4 9 1.273 x 10" PC

0.035 0 75s* lO5- 0.931963 0.03470 ±0.00196 0 -3 6 0 0 -1 4 8 1.593 x  10s PC
0.035 180 75s* 10'5- 0.304826 0.03468 ±0.00032 0 -3 6 0 0 -6 0 1.479 xlO 4 PC
0.039 0 75s* 10 s -0.906034 0.03857 ±0.00115 0 -3 6 0 0 -1 4 7 2.655 x 10s PC
0.039 180 75s* 10'5- 0.922875 0.03847 ±0.00089 0 -3 6 0 0 -9 3 7.053 x  104 PC
0.04 0 60s* 10'5- 0.924859 0.03921 ±0.00143 0 -3 6 0 0 -131 > 108 -
0.04 180 60s* 10‘5- 0.715523 0.03929 ±0.00177 0 -3 6 0 0 -1 1 9 > 10* -

0.04 0 75s* 10‘5-0.965091 0.03906 ±0.00094 0 -3 6 0 0 -131 1.755x10* PC
0.04 180 75s* 10'5- 0.853920 0.03948 ±0.00052 0 -3 6 0 0 -1 3 2 5.056 x 104 PC

0.041 0 60s* 10'5-  0.769299 0.04007 ±0.00145 0 -3 6 0 0-121 > 108 -
0.041 180 60s* 105- 0.950609 0.03970 ±0.00199 0 -3 6 0 0 -1 3 2 8.040 xlO ' PC
0.042 0 60s* 10'5- 0.920106 0.04115 ±0.00166 0 -3 6 0 0 -1 2 8 6.406 x 10' PC
0.042 180 60s* 10'5- 0.766175 0.04114 ±0.00163 0 -3 6 0 0 -1 2 0 > 10* -
0.045 0 0 lO'5-  0.102444 0.04354 ±0.00146 0 -3 6 0 0 > 10* -
0.045 180 0 10‘5- 0.117081 0.04373 ±0.00152 0 -3 6 0 0 > 10* -
0.045 0 30 10'5- 0.111294 0.04356 ±0.00144 0 -3 6 0 2 7 -3 0 > 10* -
0.045 180 30 10'5-  0.109340 0.04372 ±0.00146 0 -3 6 0 2 7 -3 0 > 10* -
0.045 0 60s* 10 s -0.865016 0.04470 ±0.00261 0 -3 6 0 0 -1 1 8 1.798 xlO 6 PC
0.045 180 60s* 10‘5-0.861896 0.04355 ±0.00166 0 -3 6 0 0 -1 2 0 2.419 x lO 6 PC
0.045 0 90s* 10'* 0.045 - - 3 PC
0.045 180 90s* 10’5 0.045 - - 3 PC
0.05 0 0 10'5- 0.145227 0.04778 ± 0.00222 0 -3 6 0 0 > 10* -
0.05 180 0 105- 0.174090 0.04814 ±0.00238 0 -3 6 0 0 > 10* -
0.05 0 30s* 10 s -0.152647 0.04778 ±  0.00222 0 -3 6 0 0 -6 0 > 10* -
0.05 180 30s* 10'5- 0.154690 0.04807 ± 0.00225 0 -3 6 0 0 -6 0 > 10* -
0.05 0 60s* 10*5 0.05 - - 9661 ce
0.05 180 60s* 10 s -0.611746 0.04876 ±0.00124 0 -3 6 0 0 -1 1 7 3.126 x 10s ce
0.05 0 180s* 10*-0.149081 0.04837 ±0.00163 0 -3 6 0 180 > 10* -
0.05 180 180s* 10‘5- 0.102216 0.04854 ±0.00158 0 -3 6 0 180 > 10* -

0.051 0 0 10’5- 0.381616 0.04917 ±  0.00362 0 -3 6 0 0 > 10* -
0.051 180 0 10 s -0.419545 0.04923 ±0.00305 0 -3 6 0 0 3.223 x 10s ce
0.052 0 0 10 s 0.052 - - 1184 ce
0.052 180 0 10‘5 0.052 - - 136 ce
0.053 0 0 10 s 0.053 - - 153 ce
0.053 180 0 10'5 0.053 - - 306 ce
0.054 0 0 10 s 0.054 - - 17 ce
0.054 180 0 10 s 0.054 - - 26 ce
0.055 0 0 10 s -0.267928 0.05167 ±0.00333 0 -3 6 0 0 >10* -
0.055 180 0 10 s 0.055 - - 8 ce
0.056 0 0 10 s -  0.249269 0.05260 ±0.00371 0 -3 6 0 0 > 10* -
0.056 180 0 10 s 0.056 - - 16 ce
0.057 0 0 10’5- 0.235232 0.05324 ±0.00378 0 -3 6 0 0 > 10* -
0.057 180 0 10 s 0.057 - - 15 ce
0.058 0 0 10 s 0.058 - - 74 ce
0.058 180 0 lO'* 0.058 - - 10 ce
0.059 0 0 10* 0.059 - - 5 ce
0.059 180 0 10* 0.059 - - 5 ce
0.06 0 0 10* 0.060 - - 15 PC
0.06 180 0 10'5 0.060 - - 4 ce

0.065 0 0 10 s 0.065 - - 2 ce
0.065 180 0 10 s 0.065 - - 4 ce
0.07 0 0 10 s 0.070 - - 248 E
0.07 180 0 10 s 0.070 - - 30 ce

Measurements taken after the first 107 years to allow for orbital stabilisation, 
s* Star is inclined to the equator o f the giant planet, 
a Satellite was launched at apoplanet 
ce Close encounter to within 0. li?H o f the star.
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PC Earth-Moon satellite collides with its parent planet.
E Earth-Moon is ejected from the system.

Table 7.8 Distances o f  satellite orbits out to which stable orbits are maintained for inclinations in the
giant’s rotation plane but out o f the plane o f  its orbit.

Launch Longitude / 0 -» 0 180
Orbital Inclination /  ̂ Distance from the giant to which 

satellite orbits are stable / AU
0 0.051 0.050

30 0.050 0.050
60 0.041 0.040
75 0 0
90 0 0
180 0.050 0.050

7.5 Varying the Mass of the Satellite.
This investigation was only undertaken for satellites orbiting within the plane o f the giant’s 
orbit and rotation in both the absence and presence o f the J2 term. The distance o f orbital 
destabilisation in the giant’s orbital plane has now been determined as 0.051AU for Earth- 
Moon mass satellites with an initial periplanet launch longitude o f 0° with respect to 
periastron and 0.050AU for satellites with an initial periplanet launch longitude o f 180° 
with respect to periastron. Hence integrations were run with different planet masses only 
around this region. Tables 7.9 and 7.10 show that orbital stability or instability are the 
same with or without the J2 term (i.e. beyond its influence), for each run. The only 
differences for unstable runs are in the length o f time before a close encounter with the star 
occurs.

Table 7.9 Orbital runs for Earth-Moon satellites o f  different mass orbiting the minimum mass giant
HD 28185b in the habitable zone o f  its star, excluding J 2 effects.

Starting Parameters Parameter variation during a run f /y e a r s O
E-M mass /M®. E -M a /A U P l° Earth-Moon e Earth-Moon a /  AU A m!°

0.1 0.05 0 105- 0.145098 0.04777 ±0.00223 0 -3 6 0 > 10* -
0.1 0.05 180 105- 0.172407 0.0481410.00239 0 -3 6 0 > 10* -
0.1 0.051 0 10‘5- 0.388253 0.04916 1  0.00362 0 -3 6 0 > 10* -
0.1 0.051 180 10'5- 0.303855 0.0509710.00003 0 -3 6 0 1.379 xlO 4 ce
0.3 0.051 0 105- 0.380263 0.0491810.00365 0 -3 6 0 > 10* -
0.3 0.051 180 105- 0.068166 0.0507510.00025 0 -3 6 0 1.552 xlO 4 ce
1 0.05 0 105-  0.145817 0.0477510.00225 0 -3 6 0 > 10* -
1 0.05 180 10'5- 0.218670 0.0482610.00263 0 -3 6 0 > 10* -
1 0.051 0 10'5- 0.383854 0.04920 1  0.00366 0 -3 6 0 > 10* -
1 0.051 180 10'5- 0.295583 0.0495310.00270 0 -3 6 0 1.118 x 10s ce
1 0.052 0 lO5 0.052 - 779 ce
1 0.052 180 lO'5 0.052 - 679 ce
3 0.051 0 10'5- 0.391620 0.0493110.00378 0 -3 6 0 > 10* -
3 0.051 180 lO"5-  0.238944 0.0486510.00235 0 -3 6 0 5.736 xlO 4 ce
10 0.05 0 10 s -0.144185 0.04779 1  0.00222 0 -3 6 0 > 10* -
10 0.05 180 10'5- 0.170129 0.0481310.00236 0 -3 6 0 > 10* -

10 0.051 0 10'5- 0.398435 0.0492810.00373 0 -3 6 0 > 10* -
10 0.051 180 10‘5-0.405572 0.0496210.00391 0 -3 6 0 > 10* -
10 0.052 0 lO'4 0.052 0 -3 6 0 8896 ce
10 0.052 180 105 0.052 0 -3 6 0 306 ce

ce Close encounter to within 0. li?H o f 'the star.
M & . Earth-Moon mass

The planet masses covered were from 0.1 M&. to 10M&, the range where planets could 
support life, as discussed in chapter 3, section 1. The only difference observed in the 
trend o f increasing satellite mass, is that runs are unstable when launched at 0.051AU with
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a periplanet launch longitude o f 180° for satellite masses to 3M®. The same launch 
conditions give a stable orbit, however, for a 10M&, satellite. This is due to the mutual 
attraction between the two bodies, according to Newton’s Law o f Gravitation, being just 
great enough for a stable satellite orbit to exist. For a satellite with a mass less than 10M®., 
this is not so and orbits destabilise. Overall, increasing the satellite mass would not have a 
great effect on satellite orbits in HD 28185 or in any other system with a sizeable giant. 
The effect on the size o f the giant on satellite orbital stability is for possible fixture 
investigation.

Table 7.10 Orbital runs for Earth-Moon satellites o f different mass orbiting the minimum mass giant 
HD 28185b in the habitable zone o f  its star, including J 2 effects.

Starting Parameters Parameter variation during a run t / years O
E-M mass/M®. E -M a /A U p / ° Earth-Moon e Earth-Moon a /  AU A ct/ 0

0.1 0.045 0 10'5- 0.145098 0.0435410.00146 0 -3 6 0 >10* -
0.1 0.045 180 10‘5-  0.116897 0.04373 + 0.00152 0 -3 6 0 >10* -
0.1 0.050 0 105- 0.144414 0.0477710.00223 0 -3 6 0 >10* -
0.1 0.050 180 10'5-  0.174667 0.0481510.00240 0 -3 6 0 >10* -
0.1 0.051 0 lO'5-  0.385071 0.04915 1  0.00360 0 -3 6 0 >10* -
0.1 0.051 180 10'5- 0.401347 0.0489410.00206 0 -3 6 0 2.792 x 104 ce
0.1 0.052 0 10’5 0.052 - 1584 ce
0.1 0.052 180 105 0.052 - 964 ce
0.3 0.051 0 10'5-  0.382246 0.04919 1  0.00363 0 -3 6 0 >10* -
0.3 0.051 180 10‘5- 0.357561 0.0497210.00284 0 -3 6 0 1.276 x 10* ce
1 0.045 0 lO'5-  0.102444 0.0435410.00146 0 -3 6 0 >10* -
1 0.045 180 105- 0.117081 0.0437310.00152 0 -3 6 0 >10* -
1 0.050 0 10‘5- 0.145227 0.0477810.00222 0 -3 6 0 >10* -
1 0.050 180 105- 0.174090 0.0481410.00238 0 -3 6 0 >10* -
1 0.051 0 10‘5-  0.381616 0.0491710.00362 0 -3 6 0 >10* -
1 0.051 180 105- 0.419545 0.0492310.00305 0 -3 6 0 3.223 x 10* ce
1 0.052 0 105 0.052 - 1184 ce
1 0.052 180 10‘5 0.052 - 136 ce
3 0.051 0 10‘5- 0.383097 0.04926 1  0.00369 0 -3 6 0 >10* -
3 0.051 180 lO'5-  0.141056 0.0490410.00196 0 -3 6 0 3.679 xlO 4 ce
10 0.045 0 10 s -0.101533 0.0435410.00146 0 -3 6 0 >10* -
10 0.045 180 10'*-0.114470 0.0437310.00151 0 -3 6 0 >10* -
10 0.050 0 10'5- 0.143241 0.0477810.00222 0 -3 6 0 >10* -
10 0.050 180 105- 0.170861 0.04814 1  0.00238 0 -3 6 0 >10* -
10 0.051 0 105- 0.397796 0.0492710.00372 0 -3 6 0 >10* -
10 0.051 180 10*5- 0.412805 0.0496610.00391 0 -3 6 0 >10* -
10 0.052 0 lO5 0.052 - 3114 ce
10 0.052 180 lO’* 0.052 - 1266 ce

ce Close encounter to within 0. li?H o f  the star. 
M q . Earth-Moon mass

7.6 Conclusion and Discussion

For both HD 23079 and HD 28185, there are many unstable integration runs which result 
in the satellite having gained enough energy from the planet in the form o f gravitational 
assists to either have a close encounter with the star or escape from the system. Restricted 
three-body problem theory suggests all unstable satellite orbits should result in a satellite- 
giant collision. The general orbital trends for stable satellite orbits in each system were the 
same. Satellites launched at quadrature periplanet longitudes with respect to the star’s 
periplanet longitude (periastron) were destabilised at closer distances than those launched 
at Am = 0° or 180°.

145



Summarising the HD 23079 integration runs:
• Satellite orbits launched at quadrature destabilised at 0.054AU.
• Satellite orbits launched at Atu = 0° or 180° destabilised at 0.061AU
• Two further stable orbits were present among satellite orbits launched at Atu = 0° at 

0.068AU and 0.070AU.

Summarising the HD 28185 integration runs:
•  Satellite orbits launched at quadrature destabilised at 0.046AU.
• Satellite orbits launched at Axn = 0° or 180° destabilised at 0.051AU and 0.050AU

respectively.
• An island o f stable orbits were present among satellite orbits launched at Atu = 0° 

between 0.055AU and 0.057AU.
• Including the Ji term appeared to have only a significant difference on the 

properties o f highly inclined satellite orbits, although for satellites in close orbits to 
the giant with zero inclination, it preserves initial satellite orbital eccentricity.

•  There was little or no difference between Type 1 or Type 2 inclined satellite orbital 
properties in the absence o f the Ji term. Satellite orbits were stable to lesser 
distances from the giant as inclination increased.

• Type 2 highly inclined satellite orbits were severely affected by the J2 term so as to 
create a “no go” area between inclinations o f 60° and 90°.

•  Increasing the satellite mass had little effect on their orbital stability with no 
perceptible differences in the presence or absence o f the J2 term. The only trend 
found was by increasing the satellite mass from 3M© to 10Me (Earth-masses). 
This stabilised the orbit o f the heavier satellite at 0.051AU launched with zero 
inclination and at a periplanet longitude o f 180°.

The giants in both HD 23079 and HD 28185 have been orbiting within each star’s 
habitable zone in excess o f the 2Gyr required for life to have made any atmospheric 
changes. In contrast to a planet, the differences for such a satellite are that it would be 
tidally locked to the giant, hence days would be long. If, in such a case, the orbit were 
greatly inclined, the seasonal variation would then be considerable. The satellite would 
need to be distant enough from the giant to be free from tidal distortions within it, i f  either 
in an eccentric orbit or where other large satellites were present. This would also be so if  
the giant had a powerful magnetic field, so life would only be possible on satellites in 
stable orbits far enough away. So if  requirements are met, both HD23079 and HD 28185 
are systems in which their known giant planets could support habitable satellites.
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8. Conclusions and Future Research
8.1 Orbital Integrations
The orbital integration studies of the three single-giant planetary systems revealed that 
Earth-mass planets could exist in stable orbits confined to the habitable zones for two of 
the three systems. The best candidate is HD 52265 where the giant planet, at 0.49AU, is in 
a much larger orbit than the “Warm Jupiter” of p Coronae Borealis, the similar system 
previously examined (Jones et al., 2001). The giant planet appears to have no influence on 
terrestrial planets in confined orbits across the entire habitable zone, even when its mass is 
raised up to 8 times its minimum mass. The HD 196050 system could house a possible 
Earth-mass planet but only close to the inner edge of the habitable zone, similar to the 
previously studied system of 47 Ursae Majoris (Jones & Sleep, 2002) and only if the giant 
planet was of minimum mass. The giant planet’s orbital parameters in the t 1 Gruis system 
have recently changed and the new parameters have the habitable zone completely 
engulfed by the planet’s influence. The system is at the end of its main sequence lifetime 
and the integrations using the previous parameters implied that life could have survived on 
a putative planet in the past. Unfortunately this is no longer so, however the study here 
could be useful for systems similar to the original form of r 1 Gruis, which have yet to be 
discovered. Future investigations could examine the nature of orbital resonance regions, as 
touched on in the t 1 Gruis integrations, to possibly explain why bodies launched at varying 
distances near to a resonance distance tend to converge towards it. The nature of secular 
resonances, also broached in this study could also be examined in more detail.

The integration studies on the (then) three-giant system of 55 Cancri indicates that the 
system alone can only exist with stable orbits provided the masses of the giants are less 
than 1.2 times minimum mass. This implies that the system must be inclined at an angle 
greater than 56° 27’ to the plane of the sky, contrary to findings of previous work 
involving the studies of a dust disk within the system. Trilling et al., 2000, implied an 
inclination angle of 27° determined from the apparent ellipticity of the dust ring, assuming 
it is circular. The distances of the giants either side of the habitable zone, two inferior and 
one superior, are far enough to not destabilise any Earth-mass planets in orbits confined to 
the HZ. Initially this would appear to be a good candidate to possibly house a habitable 
terrestrial planet. However, the giants within the system appear to be in a fine gravitational 
balance between order and chaos, making putative ‘Earth’ orbits chaotic and possibly 
unstable where stability would be normally expected.

The fourth giant planet of 55 Cancri, which resulted in modified parameters after 
11/04/2005, does not appear to allow the system to be stable, according to runs performed 
using the Mercury Orbital Integrator. Future work will be required to verify the stability of 
this configuration. This may be helped by the introduction of a relativistic term into the 
Mercury Orbital Integrator program, which would allow a more accurate representation of 
the orbits of the innermost giants, b, c and e.

The integrations for the satellite systems of HD 23079 and HD 28185 required the use of 
the RADAU integrator in the Mercury Program. This proved to be successful despite the 
unusual configuration required where the giant planet was placed at the centre of the 
(Ptolomaic-like) system. Stable orbits for Earth-mass satellites were found to exist within 
0.42 Hill Radii of the giant planet in each system, implying the possible existence of 
habitable satellites around the giants orbiting within the stars’ habitable zones. This agrees 
with previous results in theoretical systems by Barnes & O’Brien, 2002. Future work here 
would be a further study into orbits of satellites which appear to gain sufficient energy to 
destabilise what should be stable orbits, and to ascertain maximum limits on the energy
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gains. An investigation into inclined satellite orbits may also prove useful, with particular 
regard to the Kozai relationship.

8.2 Stellar Models and Habitable Zones
The construction o f the stellar matrix from the stellar evolution model has allowed an 
estimation o f the limits o f the habitable zones for 150 o f the 178 stars with known 
exoplanetary systems for all o f their main sequence lifetimes. The positions o f the giant 
planet(s) in these systems and their gravitational reach have been mapped onto these zones, 
enabling regions within systems to be rapidly identified as to where a putative terrestrial 
planet could exist, in a stable orbit confined to the habitable zone.

The use o f the 3 x Hill radius boundary around giant planets appears to be an initially sound 
decision for the limits o f planet gravitational reach, but only when the giant orbits beyond a 
putative terrestrial planet. Investigations by Jones et al. (2005) indicate that the 
gravitational influence o f inferior giants extends outwards much further than the 3x Hill 
radius when the orbital eccentricity o f the giant planet exceeds zero, the results o f which 
are used here to determine which systems can house possible life supporting planets with 
stable orbits confined to the habitable zone.

If such an orbit were confined to the habitable zone, for a minimum o f order lGyr, then 
any life would have had the time necessary to make the atmospheric changes, which 
spectroscopes may detect from Earth. Currently 85 or more o f the 178 systems (as at 10th 
October, 2006) could possibly have detectable life on a terrestrial planet within a confined 
orbit, and 113 or more could do so at some time during their main sequence lifetime. 
These estimates are more optimistic than the findings o f Turnbull & Tarter, 2003, due to 
their more stringent requirements for intelligent extraterrestrial life. Menou & Tabachnik, 
2003 conclude that only Va of their 85 investigated systems could be habitable, although 
among their criteria was the habitable planets’ orbits must always lie within the HZ, not the 
orbital semimajor axis as required here.

One shortcoming o f the optimistic estimations that more than one half o f known 
exosystems could have life-bearing planets is that one third o f the known systems have 
“Hot Jupiter” or “Warm Jupiter” giant planets. Here a giant planet migrated to its present 
close-in orbit at very early stages o f the exosystems evolution. This process may have 
cleared the regions o f debris, where terrestrial planets within habitable zones could have 
formed. One aim for future work would be to simulate these processes, using the Mercury 
Orbital Integrator, to see if  the optimism for a possible abundance o f terrestrial planets is 
justified. Fogg & Nelson, 2005 and Mandell & Sigurdsson, 2003 have already pursued 
investigations in this area with positive results. The Integrator may also be used to 
investigate another hitch, where no regard is given to a giant planet’s ability to 
gravitationally prevent planets from forming inside its orbit, such as Jupiter has with any 
planet formation within the asteroid belt. This may affect the possibility o f planets existing 
within the habitable zone when a giant orbits close to its outer boundary, as in HD 196050 
and 47 Ursae Majoris. Finally, but not exhaustively, orbital integrations could be used to 
examine giant planet shielding during the early formation period o f exoplanetary systems, 
where a giant planet would act as an attraction for cometary bodies, protecting smaller 
terrestrial-sized bodies from such intense bombardment.

Any Earth-sized satellites o f giants within the habitable zone may have to suffer tidal 
distortions, induced by the giant planet and the star. Such stresses may make the surface o f  
a world uninhabitable due to excessive volcanic activity and plate tectonics. So although 
the opportunities initially look promising, much investigative research is necessary before 
the current optimism can be bom out.
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8.3 An Abundance of Earths in the Near Future?
Despite the uncertainty o f whether terrestrial planets can survive the stresses o f their 
everyday life, or even form under certain circumstances, the mechanisms are now in place 
to categorise quickly exosystems discovered in the future, with regard to the possibility 
that they may house extraterrestrial life. The quick application o f these techniques is 
particularly important, as the rate o f exosystem discovery is increasing and the floodgates 
are soon expected to open with, in the next few years, new ground-based surveys with 
improved instruments such as OWL (www.eso.org/projects/owl) the Overwhelmingly 
Large Telescope, plus the impending launches o f satellites made specifically for 
exoplanetary searches such as The James Webb Space Telescope (www.jwst.nasa.gov) and 
Darwin (http://ast.star.rl.ac.uk/darwin). It is hoped this categorisation o f data will be o f  
assistance in searches for extraterrestrial life, guiding instruments towards the most likely 
exoplanetary system candidates. From indications so far, there is every reason for 
optimism that one o f the armada o f satellites due for launch within the next 15 years, could 
detect the signs o f life on another planet, outside o f our Solar System, before 2020.
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Appendices
Appendix 1 Derivation of the Hill Radius Formula used in the 

Mercury Orbital Integrator
particle o f  negligible m ass

Figure A l . l

iL f*  system  centre o f  gravity 

Required parameters for the Hill radius derivation

Let a planet o f mass, Mp, be at a distance, r, from a star o f mass, M* Let a particle o f  
negligible mass, with respect to the other masses in the system, be on the radius vector 
between the star and planet at distance, R, from the planet (Figure A l.l) . By Newton’s 
Law o f gravity, the gravitational acceleration, fg> exerted on the particle by the star and 
planet towards the star is:

/*  =
GM, GMt

ALL
( r - R f  R2

Let Rh be the distance from the planet along its radius vector from the star, where the 
gravitational forces exerted on a particle by the star and planet balance, so subsequently let 
R = Rr. For this special case, both planet and particle revolve around the system centre o f  
gravity with angular velocity, co. So for the star and planet at distances r* and rP from the 
centre o f gravity respectively, and where r*+rP=z r, then by Newton’s third law:

M*nco2 = Mprpco2 => M*r* = Mprp A1.2.
Now M* »  MP, so from (A 1.2) rP »  r* and hence rP «  r. So by Newton’s Gravitational 
Law, for the planet:

G M M t - M prpco‘ MprcoJ A1.3,

hence:

co -

GM*
. s  ,

Yi
A1.4.

The centripetal acceleration, v , o f the particle towards the star is given by:

i  = ( r - R Hy  - GM' (r: R" ]

For the particle to remain at this position, v = /  , so in (A l.l): 

G M ,{r-R „) GM. GMp
RH

For a planet orbiting a star, Rh «  r, so by the binomial expansion theory:

1 1
fl f - L f  1  2 R h  ^l + —Z - + 0

2>

r  , r r
K l  r  J J( r - R n f

Substituting from (A1.7) into (A1.6) gives:
GM*(r-RH) _GM* 2GM*RH GM

1 2 R+ H

+ ■

A1.5.

A1.6.

A1.7.

A1.8,

so:
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3 M*Rh
A1.9,

and hence:

RH = r A1.10.

Over the course o f an eccentric planet orbit, r will vary between a{ 1 + e) at apastron and 
a(l - e )  at periastron, where a is the orbital semimajor axis and e is its eccentricity, so the 
Hill radius will vary accordingly. The Mercury program circumvents this variation by 
letting the Hill radius be dependent on only the semimajor axis, a, throughout the orbit 
This does have its shortcomings; however, as in reality the Hill radius o f a planet will be 
larger at apastron than at periastron. Despite this, the Hill radius formula within the 
Mercury Orbital integrator then becomes,

Rh — a A l . l l
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Appendix 2 Derivation of Zero-Velocity Curves from Restricted 
Three-Body Problem Theory

Zero-velocity curves are imaginary lines around a binary system, such as a star and planet, 
where the purely pseudo-potential energy o f a much smaller particle having zero-velocity 
in the rotating frame, is the same. Zero-velocity curves of different values can be 
represented as a three-dimensional zero-velocity surface for any binary system. It should 
be noted that the shape o f zero-velocity curves and surfaces are not dependent on absolute 
masses and distances but on relative masses and distances. The system mass is defined as 
G(M + m) = 1, where G is the universal gravitational constant, M  is the mass o f the 
primary and m is the mass o f the secondary. The distance between the primary and 
secondary bodies is always unity, and the angular velocity, co, o f these bodies about their 
centre o f mass is unity. If these parameters had a value o f anything other than unity, the 
determination o f these curves would incorporate the use o f many constants and would be 
considerably (and unnecessarily) more complicated. The derivation o f zero-velocity 
curves here are simplifications o f those by Murray and Dermott, 1999.

1 -11
to t m

M

centre of mass

Figure A2.1 The configuration for determining pseudo-gravitational potentials.

Figure A2.1 shows two masses, M  and m ,0 < m < M ,  which are unit distance apart and 
orbiting their centre o f mass, (0,0), with angular velocity, co. Although co has already been 
defined as 1, for now it will be incorporated into equations for clarity o f derivations. A  
third particle, p, is o f negligible mass and lies at arbitrary co-ordinates (xy) in the x-y 
coordinate system, r\ from mass M, r2 from mass m, and 5 from the centre o f gravity. 
Masses M  and m always lie on the x-axis o f a reference frame that also rotates with angular 
velocity, co. Since the third body, p, is o f negligible mass then the mass fraction o f  the 
system, u, o f the second body, m, is,

M  + m
Hence, since G(M + m) = 1 by definition, then Gm = u, GM= 1 - u  and 0 < u < 1. If the 
distance o f M  from the centre o f gravity is x* then the distance o f m from the centre o f  
gravity is l~z, then by Newton’s third law o f motion,

m(\ - z)co2 = Mzoo => m (\- z )  = M z  A2.2.
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From equation A2.1, M/m + 1 = Hu = (1 - $!% + 1, hence %= u. Bodies M, m and particle 
p  move in the x-y plane, so any z-components for all three masses are zero, i.e., 
z = z = z = 0 , where z is any velocity component and z is any acceleration component in 
the z-direction.

Let us commence by considering what the forces would be acting on particle, p, in a non­
rotating frame o f reference, given by the X-Y coordinates in figure A2.1. Let the x-y 
coordinate system rotate about the centre o f mass, at (0,0), with angular velocity co and be 
coincident with the X-Y coordinate system at time t = 0, so that after time, t, it has rotated 
through an angle cot with respect to the X-Y system. Let 6 be the angle betweenp, M  and 
m and let $ be the angle between p, m and M. Since GM= 1 - u and Gm = u, then in the 
Z-direction,

^ _  (1 -  u)cos{0 + cot) t ucos(</> -  cot) A n 0
-A — -  I - A Z .3 ,

4  r 2

and in the 7-direction,
p _ (l-tt)s in (g  + <aQ [ a s in ^ -a tf)

ri 4
Note that the acceleration terms are negative. They are positive in the direction towards the
centre o f mass, i.e. in the opposite direction o f X  and 7. Now cos(<9 + cot) = (X +
ucos(cot))/r\, sin(<9 + cot) = (7  + usm(cot))lr\, cos{</)- cot) = (X -  (1 -  u)cos(cot))/r2 and
sin(^ - cot) = ( 7 -  (1 -  u)sin(cot))/r2. Hence,

» _  (1 -  u)(X + u cos (cot)) u{X -  (1 -  u) cos (cot))
- X - ------------------ 3 -----------------+ ------------------- 5----------------- A 2 .5 ,

ri r2
and y  ^ ~ Û Y + u sin(^ ) )  | « (X - ( l -u )  sinfrap) A26

r\ 4
From simple geometry, X  = xcos(cot) - ysin(cot) and 7  = xsin(&tf) + ycos(<ot). 
Differentiating with respect to time to find velocities, then,

X  = cos(cot)(x -  coy) -  sin{cot){y + cox) A2.7
Y = cos(cot)(y + cox) + sin(<2tf )(■* -  coy) A2.8.

Differentiating again with respect to time to find accelerations,
X  = cos(<ot)(x -  2coy -  co2x) -  sin(6tf )( + 2cox -  co2y)  A2.9

and, 7  = cos(<y/)(y + 2cox -  co2y) + sin(cot)(x -  2coy -  co2x) A2.10.
Hence substituting forZand 7 in equations A2.5 and A2.6, gives A 2.11 and A 2.12, where, 
cos(ctf )(x -  2coy -  co2x) -  sin(c?/)(y + 2cox -  co2y) -

(1 -  u)(x cos (cot) -  y  sin(<»/) + u cos(cot)) u(x cos (cot) -  y  sin(cot) -  (1 -  u) cos (cot)) A2.11 — ~
ri r2

cos{cot){y + 2cox -  co2y) + sin(<ztf )(x -  2coy -  co2x) =
(1 -  u)(x sin(tftf) + y  cos {cot) + u sin(6tf )) u{x sin(6tf) + y  cos (cot) -  (1 -  u) sin(o/)) A2.12

3 3
n g

Multiplying equation A 2 .ll by sin(tftf) and equation A2.12 by cos (cot) and subtracting 
A2.11 from A2.12 gives,

y  + 2 m - a 2y  = ~Q—j ^ - - ^ Y  A2.13,
rx r2

Multiplying equation A2.11 by cos (cot) and equation A2.12 by sin(<2tf) and adding gives,
. .  „  .  2 . .  ( l-u ) (x  + «) v { x - l  + u) a o 1 / 1



The two “<»2” terms in equations A2.13 and A2.14 are the accelerations due to the 
centrifugal force on particle, p, whether it is stationary or moving with respect to the 
rotating frame. The two “6?” terms are Corioli’s forces, which act only on a moving 
particle with respect to a rotating frame. Here, the angular velocity o f the rotating 
reference frame is, by definition, unity so a  = 1. Now from Pythagoras theorem,

r\ — 4(x + u)2 + y 2 A2.15,

and r2 = ĵ(x - 1 + u)2 + y 2 A2.16.
Hence substituting from equations A2.15 and A2.16 into equations A 2.13 and A2.14,

and

Now —

y  + 2 x - y  = -  

x - 2 y - x  = —

(1 ~u)y uy

((x + u f + y 2Y 2 
(1 -  u)(x + u)

2 \/l

d
dx

and

d_
dx

d_

d_

' l '

yr2 ;

V ' i  y

d_
dx

d_
dx

((x + u) + y  )
r \

1

((x + u) + y  ) 

1

((x -1  + u)2 + y 2Y 2 
u{ x -1  + ii)

{ {x - \  + u f  + y 2)^

X  +  U

((x + u) + y  )2 ^ 2

r
1 + u

\ r2 J

v ((* - l  + u Y + y zY 2)
f  ' \

d 1

ty  ^((x+w)2 + y 2) ^

1

2 &

d_
dy

( ( x - l  + w) + y  )

y
((x + u f + y 1)/2

=______ y_____
2 \%( (x - l  + uy  + y  )((x-1 + u)2 + y A)

Substituting equations A2.19 and A2.20 into equation A2.18 gives
dx -  2 y  = x + (1 -  u)
dx

ro d fO— + u— —

U J dx UJ
and substituting equations A2.21 and A2.22 into equation A2.17 gives,

fll d ro— + u— —

\ rl) dy
y  + 2x = y  + ( l - u ) —  

dy
The potential term, U, is now introduced, where,

dU .. 0 .
 - x - 2 y
dx

and

Hence

= y  + 2xdU 
dy
TT x2 y 2 (1 -u )  u .U - —  + —  + ------ -  + — + k

2 2 rx r2

A2.17,

A2.18.

A2.19,

A2.20,

A2.21,

A2.22.

A2.23,

A2.24.

A2.25,

A2.26,

A2.27,

where k is a constant o f integration. Multiplying equation A2.25 b y i ,  multiplying 
equation A2.26 by y  and adding the two new equations gives,

dU . d U ....................  dU— x + — y  = xx + yy = —  
dx dy dt

This equation can be integrated with respect to time giving,
•  2 - 2  nTT x y  Cj

U = —  + — + —
2 2 2

A2.28.

A2.29,
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where Cj is another constant of integration, which incorporates k, and is referred to as the 
Jacobian constant. As there is no motion in the z-direction, x 2 + y 2 = v2, then equation 
A2.29 becomes,

v2 = 2U-  Cj A2.30,
or from equations A2.15, A2.16 and A2.27,

C j = x 2 + y 2 +2— ~ *=== + 2—j =  A2.31.
tJ(x -\-u) + y  (x — \ + u ) ~ y *

The Jacobian constant, Cj, is an energy term consisting of a kinetic component given by v 
(or x 2 + y 2) and a potential component given by the other four terms. If a particle has no 
velocity in the rotating frame at a series of distances from masses M  and m, then the 
Jacobian constant will give its potential energy at “zero-velocity”. These pseudo-potentials 
(since the reference frame is rotating) will trace out distinctive curves around M  and m, for 
different values of Cj, known as zero-velocity curves, of which the shape of each can be 
determined by,

C j = x 2 + y 2 + 2 -  ('1~ Û^ =  + 2 - r = =  A2.32.
y  (a* + w)2 + y 2 -y (v — 1 + u) 2 + y^

On inspection, if Cj = 0, the equation is insoluble for real roots only, both in x for any 
given value of y  and in y  for any given value of jc. Hence Cj can never be zero for real 
values of x and y, and since x and y 2 are always positive, then Q  is always positive. When 
y  — 0 and v = -w, i.e. at the position of the primary body, or j; = 0 and x = 1 - u, i.e. at the 
position of the secondary body, then Cj will have an infinite value. Also as x and/or y  
approach infinity, Cj will approach infinity.

2.5-1

O _
-C

3.5-

-43

V -

Figure A2.2 Zero-velocity surface for a binary system where u = 0.2.
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Figure A2.3 Zero-velocity surface for a binary system where u = 0.001.

Equation A2.32 can be used to generate a series of zero-velocity curves with different Cj 
values, known as a zero-velocity surface. This was initially achieved using the program 
Maple V Release 5 (Waterloo Maple Inc. November 27th 1997). Figures A2.2 and A2.3 
show two zero-velocity surfaces, where Figure A2.2 would more likely represent a binary 
star. The larger hole is the potential “well” of the primary, the smaller hole that of the 
secondaiv. Figure A2.3 would more likely represent a star-planet system and the potential 
well of the planet is much smaller than that of the central star. Note that the z-axis depicts 
“-Cj” in both of these representations, as this gives better depictions of gravity “wells”; 
otherwise they would appear upside down. By taking slices through different values of the 
Jacobian constant for this system in figure A2.3, a series of zero-velocity curves can be 
plotted, shown in figure A2.4. This again shows the large potential well of the star centred 
on x,y co-ordinates (-0.001,0) and the much smaller well of the planet at (0.999,0). For 
particles with zero-velocities within the smallest circle surrounding the planet, then these 
bodies would be bound to orbit the planet only and could never orbit the star, provided 
there was no energy exchange with the star or planet. A zero-velocity curve of particular 
interest is that which has a Jacobian constant between the values of the L\ point and the L2 

point. This is enlarged in figure A2.5 to show its shape around the planet. Zero-velocity 
curves within the “mouth” of this curve would circle the planet, whilst zero-velocity curves 
outside the “mouth” but bounded be the two lines would form a “horseshoe” shaped curve, 
which goes around the other side of the star, one of which is shown in figure A2.6. The 
thin lines within the horseshoe curve in figure A2.4 are zero-velocity curves very close to 
the L4 and L5 points (see Figure A2.7).
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Figure A2.4

Figure A2.5

Figure A2.6
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Zero-velocity curves for different Jacobian constants where a = 0.001.
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Magnified view o f the zero-velocity curve o f Cj = 3.039,
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“Horseshoe” shaped zero-velocity curve where Cj = 3 .005
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Figure A2.7 Locations o f the Lagrangian equilibrium points.

The horizontal sections of zero-velocity surfaces show the shapes of zero-velocity curves 
for differing values of the Jacobian constant, Cj. Also of interest are vertical sections of 
zero-velocity surfaces, particularly the vertical section where y  = 0, i.e. along the x-axis, 
which passes through the two major bodies and the Lagrangian points L\, L2 and L3, the 
positions of which are shown in figure A2.7, along with the L4 and L$ points. The 
Lagrangian points within a system are where particles at these locations will be in a 1:1 
resonance with the two major bodies as they orbit the centre of mass. The L\, L2 and Z3 
positions are all unstable, the Z4 and L$ positions are unstable but become stable when 

9 - J m
* 0.03852 (Murray and Dermott, 1999, page 93).u <

18

Figure A2.8

. f

- 3! 3

Profile o f  Jacobian constants through the x-axis for u  = 0.2.
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Figure A2.9 Differential with respect to x  o f the figure A2.8 profile.

A profile of Jacobian constants along the x-axis is seen in figure A2.8, again obtained 
using Maple V Release 5 (Waterloo Maple Inc. November 27th 1997). This profile shows 
the variation of -Cj with x for u = 0.2, again -Cj is used to better depict gravitational 
potential wells. The profile clearly shows the positions of the two major masses at x = -0.2 
and x = 0.8. The positions along the x-axis where dCj/dx = 0 are the locations of the 
Lagrangian points, seen most easily by plotting dCjtdx against x, as in figure A2.9. The 
solutions for the positions of the Lagrangian points along the x-axis when u = 0.2, 
according to the Maple V program, are L\ = 0.438, L2 = 1.271 and L3 = -1.083. These x- 
coordinates give Jacobian constants at these positions of 3.805, 3.552 and 3.197 for L\, L2 
and Z/3 respectively, which agree with those values for the exact same example in Murray 
and Dermott (1999). Also the slope of dCj/dx versus x (or cfQ/dx2) is positive at all three 
Lagrangian points revealing that they are all unstable. In theory the depths of each 
potential well in figure A2.8 should be infinite, the reason the secondary body peaks at 
approximately Cj = 27 is due to the plot resolution being too coarse. However, extensive 
computing power would be required to increase the resolution, which is not required here 
as the diagram already serves its purpose by showing the nature of the profile.

The profile in figure A2.8 is easily obtained by substituting y = 0 into equation A2.32 and 
determining Cj for varying x. When this is so, the profile equation becomes,

Cj = X 2 ± 2(1~ m)+ — —---------------------- A2.33.
( x - u )  (x -1  + u)

The two quotient terms can be positive or negative as they are the square roots of squared 
tenns (simplified here). The differential with respect to x of equation A2.33 is given by,

2 udCj = 2 x + 2(1~ Uh A2.34.
dx { x -u )2 ( x - l  + w)2

The Maple V program automatically assigns the correct symbol to the ± terms by the use 
of the “csgn” function, where,

csgn(x) = 1 if Re(x) > 0 or Re(x) = 0 and Im(x) > 0 A2.35a
csgn(x) = -l ifRe(x)<0orRe(x) = 0andIm (x)<0 A2.35b

The appropriate value of csgn((l-w)/(x-z/)) and csgn(w/(x-l+w)) needs to be found in order 
to proceed with calculating correct values of Cj. The four figures, A2.10a to A2. lOd, show 
each of the possible profiles for the different combinations of csgn() values assigned to 
equation A2.33. Unfortunately, none of the four profiles match that in Figure A2.9. To 
analyse these four curves further, they need to be differentiated, the graphic representations 
of which are shown in figures A2.1 la to A2. lid.
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Figure A2.10a

Figure A2.10b

Figure A2.10c

10 -

Profile o f the Jacobian constant along the x-axis where
csgn((l-w)/(x-M) = 1 and csgn(w/(x-l+«)) = 1.

Profile o f  the Jacobian constant along the x-axis where 
csgn((l-w)/(x-w) = 1 and csgn(«/(x-l+«)) = -1.

Profile o f the Jacobian constant along the x-axis where
csgn((l-tt)/(x-w) = -1 and csgn(w/(x-l+z/)) = 1.
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Figure A2.10d

Figure A21 la

Figure A2. l ib

10 -

Profile o f the Jacobian constant along the x-axis where 
csgn((l-M)/(x-«) = -1 and csgn(*//(x-l+«)) = -1.

4'
2\

dx

Profile o f the differential o f  the Jacobian constant along the x-axis where 
csgn((l-w)/(x-w)2) = -1 and csgn(w/(x-l+w)2) = -1.
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Profile o f  the differential o f  the Jacobian constant along the x-axis where 
csgn((l-w)/(x-w)2) = -1 and csgn(w/(x-l+«)2) = 1.

161



301

20 -
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d C

•301
Figure A2.11c Profile o f  the differential o f  the Jacobian constant along the x-axis where 

csgn((l-w)/(x-w)2) = 1 and csgn(w/(x-l+w)2) = -1.
30- 
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24- 
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14- 
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10J

d C

Figure A 2.11 d Profile o f  the differential o f  the Jacobian constant along the x-axis where 
csgn((l-w)/(x-tt)2) = 1 and csgn(K/(x-l+w)2) = 1.

Notice that in figures A2.11a to A2.11d, the csgn() values are opposite to the values in the 
corresponding curves in figures A2.10a to A2.10d due to the differentiation of a reciprocal 
term. According to the Maple V program, when dCj/dx = 0 in equation A2.34, the four 
combinations of csgn() values give real solutions of x in each case. These can be seen 
where the dQ/dx versus x curve crosses the x-axis once each in figures A2.11a, A2.11b 
and A2.11d, where the positive slope of each of these curves, or crQ/dx1, indicates that 
they are unstable. The points on the x-axis where dQ/dx = 0 in figures A2.1 la, A2.1 lb 
and A2.1 Id correspond to the L2, L\ and Z3 points respectively in figures A2.8 and A2.9. 
So the appropriate value of csgn(), or the correct use of sign, in equation A2.34, will lead 
to the correct positions of L\, Li and L3. The csgn() values used in figures A2.10c and 
A2.11c give three real values where dQ/dx = 0. However one value of SQ/db? indicates a 
stable “Li” point, which is incorrect. Hence these results are discarded.
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Appendix 3 Derivation of a Second Hill Radius Formula
A second Hill radius formula can be derived from equation A2.18, which occurs during the 
derivation of equation 6.3 in Appendix 2,

(1 -  u){x + u) u(x -1  + u)2 y - x  =
((.x + u f + y 2)^  d x - 1  + «)2 + / ) ^

A3.1.

If u is assumed to be small with respect to unity, then,
x u{x - 1)x - 2 y - x - -

(.x2+ y 2/ 2 ((x-1  )2 + y 2/ 2
A3.2,

The x-axis is now transformed to x + 1, with no changes in the y-axis, so that.
.. ~ . x + l uxx - 2 y - x - l = ----- A3.3,

((x + l)2+ / ) 72 ( x '+ y z)'
The coordinate system has now been re-centred closer to the secondary body, so we
assume x  an d y  are small, hence, using a binomial expansion in equation A3.4,

. 1 ux „ uxx - 2 y  = \ ------
(1 + I x f 1 (x2 + y 2 Y 1 (x2 +y'‘)/

Letting equation A3.4 equal a modified potential Uh and for -yjx2 + y 2 = IiH, the Hill

3x A3.4.

radius around the smaller body, then
r \

dU-,H
dx

3 -
u

RH
A3.5.

Hence when the gradient of this potential, Uu, is zero, i.e. when the attracting forces of the 
primary and secondary masses are equal, then,

R„ =
\ 3J

A3.6.

Remember that here the distance between the two bodies is unity, so if the real distance, a, 
is known, then Rh will scale with this so that finally,

RH — a
/"WV3

V-V
A3.7.

163



Appendix 4 Computer Programs written in ‘C’ to determine Zero- 
Velocity Surfaces and Zero-Velocity Curves

Program A4.1 -  The Determination of Zero-Velocity Surfaces. 

zvcurves.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.1415926535897932384626433832795028841971693993751 
#define ITSTEP 100

/* xx = abscissa */
/* y = ordinate */
/* c = Jacobian constant */
/* u = second body’s mass fraction of the system */
/* p = second body's mass (in Jupiters) */
/* m = primary body's mass (in solar masses) */
/* a = distance between the bodies (in AU) */
/* dx = resolution of 3-D plot */

int main()
{
double x[ITSTEP], w[ITSTEP], v[ITSTEP];
float p, m, a, u, dx, xx, y, c, d, e, f, LI, L2, L3, LP; 
int i, j, k, 1, n;
FILE *fh;

/* Primary body's mass (in solar masses), m. */
printf("Enter the primary body's mass (in solar masses): ");
scanf("%f", &m); 
if ( m <= 0 ) {

printf("The primary's mass must be greater than zero.\n"); 
exit(EXIT_FAILURE);

}

/* Second body's mass (in Jupiters), p. */
printf("Enter the second body's mass (in Jupiters): ");
scanf("%f", &p);
if ( ( p <= 0 ) || ( p > 1047.672 * m ) ) {

printf ("The secondary's mass must be greater than zero and less than
half the system's.\n"); 

exit(EXIT_FAILURE);
}

/* Distance between the two bodies (in AU), a. */ 
printf("Enter the distance between the two bodies (in AU): "); 
scanf("%f", &a); 
if ( a <= 0 ) {

printf("The distance must be greater than zero.\n"); 
exit(EXIT_FAILURE);

}

/* Calculate the secondary's mass fraction of the system. */ 
u = p * ( 1.8986 / 1989.11 ) / ( m + p * 1.8986 / 1989.11 ); 
printf ("The mass fraction of the secondary, u, of the system is %e\n", 

u) ;

/* Determine the distance of LI, L2 and L3 from the system's centre of 
mass. */

LP = a*(powf((u/3),0.3333333333));
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LI = a*(1-u)-LP;
L2 = a*(1-u)+LP;
L3 = -a*(u+1);
printf("The distance of the Hill radius from the planet is %f AU.\n", 

LP) ;
printf("The planet's inner Hill radius from the system's centre of mass 

is %f AU.\n", LI);
printf("The planet's outer Hill radius from the system's centre of mass 

is %f AU.\n", L2) ;
printf("The planet's opposition point from the system's centre of mass 

is %f AU.\n", L3) ;
printf("These distances start the iterations to find the LI, L2 and L3 

x-coordinates.\n") ;

/* Perform Iteration to find LI, L2 and L3 */ 
k=0;
x [0]=l-u-(LP/a); 
while ( k < ITSTEP ) {

x  [k+1] =x [k] - (x  [k] - (1-u) / ( (x  [k] +u) * (x  [k]+u) ) +u/ ( (x  [k] -1+u) * (x  [k] - 
1+u) ) ) / (1+2* (1-u) /powf ( (x [k] +u) ,3) -2*u/powf ( (x  [k] -1+u), 3) ) ; 

k = k + 1;
}
printf ("The distance of the LI point from the system's centre of mass 

is %f AU.Yn", a*x[ITSTEP]);
d=-(2*(1-u)/ (x[ITSTEP]+u)-2*u/(x[ITSTEP]-1+u)+ (x[ITSTEP]*x[ITSTEP])); 
1=0;
w[0]=l-u+(LP/a); 
while ( 1 < ITSTEP ) {

w[l+l]=w[l]- (w[l]- (1-u)/( (w[l]+u)* (w[l]+u))-u/((w[l]-1+u)* (w[l]- 
1+u)))/(1+2*(1-u)/powf((w[l]+u),3)+2*u/powf((w[l]-1+u),3));

1 =  1 + 1 ;
}
printf ("The distance of the L2 point from the system's centre of mass 

is %f AU.\n", a*w[ITSTEP]);
e=- (2* (1-u)/ (w[ITSTEP]+u)+2*u/(w[ITSTEP]-1+u) + (w[ITSTEP]*w[ITSTEP])); 
n=0;
v[0]=-l-u;
while ( n < ITSTEP ) {

v[n+l]=v[n]-(v[n]+(1-u)/((v[n]+u)* (v[n]+u))+u/((v[n]-l+u)* (v[n]~
1+u)))/(1-2*(1-u)/powf((v[n]+u),3)-2*u/powf((v[n]-1+u),3)); 

n = n + 1;
}
printf ("The distance of the L3 point from the system's centre of mass 

is %f AU.\n", a*v[ITSTEP]);
f=-(-2*(1-u)/ (v[ITSTEP]+u)-2*u/(v[ITSTEP]-1+u)+ (v[ITSTEP]*v[ITSTEP])); 
printf("The Jacobian Constants are %f at LI, %f at L2 and %f at L3.\n", 

-d, -e, -f);

/* Determine the plot resolution. */
printf("Enter the number of plotted points between the two bodies (10 

to 100)\n");
printf (" (This will fit on an Excel plot only if the number is 15 or 

less): ");
scanf("%f", &dx);
if ( ( dx < 10 ) || ( dx > 100 ) ) {

printf("The x-axis intervals must be between the stated options 
inclusively.\n");

exit(EXIT_FAILURE);
}

/* Open the data file. */
fh = fopenCzvcurves.dat", "w");
if ( fh == NULL ) {

printf("Cannot open the signal data file.\n"); 
exit(EXIT FAILURE);
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}

/* Make headers for output file. */ 
fprintf(fh, " x-value\t"); 
fprintf(fh, " y-value\t"); 
fprintf(fh, "Jacobian Constant\n"); 
fprintf(fh, "\n");

/* Calculate the zero velocity curves. */ 
for ( i = 0 ; i < l +  4*dx ; i = i + 1 ) { 

xx = -2+i/dx;
for ( j = 0 ; j < l +  4*dx ; j = j + 1 ) {

y = -2+j/dx;
c=-((2*(1-u)/ (sqrt((xx+u)* (xx+u)+y*y)))+(2*u/(sqrt((xx-l+u)* (xx- 

1+u)+y*y))) + (xx*xx) + (y*y)) ;
fprintf(fh, "%f\t", a*xx); 
fprintf(fh, "%f\t", a*y) ; 
fprintf(fh, "%f\n", c) ;

}
}

/* Close the file and program. */ 
fclose(fh);
printf("The program completed successfully.\n"); 
printf("The output is stored in the file ' zvcurves.dat'An") ; 
printf("Now please change the name of 'zvcurves.dat' or it will be 

overwritten.\n");
printf("To find zero-velocity curves for particular Jacobian Constants, 

type '2dcurves'.\n");

Program A4.2 -  The Determination of Zero-Velocity Curves 

2dcurves.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.1415926535897932384626433832795028841971693993751 
#define ITSTEP 100

/* xx = abscissa */
/* y = ordinate */
/* c and cc = Jacobian constant */
/* u = second body's mass fraction of the system */
/* p = second body's mass (in Jupiters) */
/* m = primary body's mass (in solar masses) */
/* a = distance between the bodies (in AU) */
/* dx = resolution of 2-D plot */

int main()
{
double x[ITSTEP], w[ITSTEP], v[ITSTEP], b;
float p, m, a, u, dx, xx, y, c, cc, d, e, f, LI, L2, L3, LP;
int i, j ,  k ,  1, n, s;
FILE *fh;

/* Primary body's mass (in solar masses), m. */
printf("Enter the primary body's mass (in solar masses): ");
scanf("%f", &m); 
if ( m <= 0 ) {

printf("The primary's mass must be greater than zero.Xn");
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exit(EXIT_FAILURE);
}

/* Second body's mass (in Jupiters), p. */
printf("Enter the second body's mass (in Jupiters): ");
scanf("%f", &p);
if ( ( p  <= 0 ) || ( p > 1047.672 * m ) ) {

printf("The secondary's mass must be greater than zero and less than 
half the system's.\n"); 

exit(EXIT_FAILURE);
}

/* Distance between the two bodies (in AU), a. */ 
printf("Enter the distance between the two bodies (in AU): "); 
scanf("%f", &a); 
if ( a <= 0 ) {

printf("The distance must be greater than zero.\n"); 
exit(EXIT_FAILURE);

}

/* Jacobian constant value, c. */
printf("Enter the value of the Jacobian constant: ”); 
scanf("%f", &c); 
if ( c < 3 ) {

printf("This value will give an empty data-set.\n"); 
exit(EXIT_FAILURE);

}

/* Calculate the secondary's mass fraction of the system. */ 
u = p * ( 1.8986 / 1989.11 ) / ( m + p * 1.8986 / 1989.11 ); 
printf ("The mass fraction of the secondary, u, of the system is %e\n", 

u) ;

/* Determine the distance of LI, L2 and L3 from the system's centre of 
mass. */

LP = a*(powf((u/3),0.3333333333));
LI = a*(1-u)-LP;
L2 = a* (1-u)+LP;
L3 = -a*(u+1);
printf ("The distance of the Hill radius from the planet is %f AU.\n", 

LP) ;
printf("The planet's inner Hill radius from the system's centre of mass 

is %f AU.\n", LI);
printf("The planet's outer Hill radius from the system's centre of mass 

is %f AU.\n", L2);
printf("The planet's opposition point from the system's centre of mass 

is %f AU.\n", L3) ;
printf("These distances start the iterations to find the LI, L2 and L3 

x-coordinates.\n");

/* Perform Iteration to find LI, L2 and L3 */ 
k=0;
x [0]=1—u— (LP/a); 
while ( k  < ITSTEP ) {

x[k+l]=x[k]-(x[k]-(1-u)/((x[k]+u)* (x[k]+u))+u/((x[k]-l+u)* (x[k]- 
1+u)))/(1+2*(1-u)/powf((x[k]+u),3)-2*u/powf((x[k]-1+u),3)); 

k = k + 1;
}
printf("The distance of the LI point from the system's centre of mass 

is %f AU.\n", a*x[ITSTEP]);
d=- (2* (1-u)/ (x[ITSTEP]+u)-2*u/(x[ITSTEP]-1+u) + (x[ITSTEP]*x[ITSTEP])); 
1=0;
w[0]=l-u+(LP/a); 
while ( 1 < ITSTEP ) {
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w[l+l]=w[l] - (w[l]- (1-u)/((w[l]+u)* (w[l]+u))-u/((w[l]-1+u)* (w[l] - 
1+u)))/(1+2*(1-u)/powf((w[l]+u),3)+2*u/powf((w[1]-1+u),3));

1 = 1 + 1;
}
printf ("The distance of the L2 point from the system’s centre of mass 

is %f AUAn", a*w[ITSTEP] ) ;
e=-(2*(1-u)/ (w[ITSTEP]+u)+2*u/(w[ITSTEP]-1+u)+ (w[ITSTEP]*w[ITSTEP])); 
n=0;
v [0]=-l-u;
while ( n < ITSTEP ) {

v[n+l]=v[n]-(v[n]+(1-u)/((v[n]+u)* (v[n]+u))+u/((v[n]-l+u)* (v[n]- 
1+u)))/(1-2*(1-u)/powf((v[n]+u),3)-2*u/powf((v[n]-1+u), 3)); 

n = n + 1;
}
printf("The distance of the L3 point from the system’s centre of mass 

is %f AU.\n", a*v[ITSTEP]);
f=_(-2*(1-u)/ (v[ITSTEP]+u)-2*u/(v[ITSTEP]-1+u)+ (v[ITSTEP]*v[ITSTEP])); 
printf("The Jacobian Constants are %f at LI, %f at L2 and %f at L3.\n", 

-d, -e, -f);

/* Determine the plot resolution. */
printf("Enter the number of plotted points between the two bodies (1000 

to 5000): ");
scanf("%f", &dx);
if ( ( dx < 1000 ) || ( dx > 5000 ) ) {'

printf("The x-axis intervals must be between the stated options 
inclusively.\n");

exit(EXIT_FAILURE);
}

/* Open the data file. */
fh = fopen("2dcurves.dat", "w");
if ( fh == NULL ) {

printf("Cannot open the signal data file.\n"); 
exit(EXIT_FAILURE) ;

}

/* Make headers for output file. */
fprintf(fh, "Jacobian constant is %f\n", c);
fprintf(fh, "\n");
fprintf(fh, " x-value\t");
fprintf(fh, " y-value\n");
fprintf(fh, "\n");

/* Calculate the zero velocity curves. */
fprintf(fh, "%f\t", -u*a);
fprintf(fh, "%f\n", 0);
fprintf(fh, "%f\t", (l-u)*a);
fprintf(fh, "%f\n", 0);
s=0;
for ( i = 0 ;  i < 1 + 4*dx ; i = i + 1 ) {

xx = -2+i/dx;
for ( j = 0 ; j < l +  4*dx ; j = j + 1 ) { 

y = -2+j/dx;
c c = ( ( 2 * ( 1 - u ) / ( s q r t ( ( x x + u ) * ( x x + u ) + y * y ) ) )  + ( 2 * u / ( s q r t ( ( x x - l + u ) * ( x x -  

1 + u ) + y * y ) ) ) + ( x x * x x ) + ( y * y ) ) ;  
b  =  c c  -  c ;
if ( fabs(b) < 0.0001 ) { 

fprintf(fh, "%f\t", a*xx); 
fprintf(fh, "%f\n", a*y); 
s=s+l;

}
}
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printf("There are %u points to plot, if using Excel there must be less 
than 32,000.\n\n", s);

/* Close the file and program. */ 
fclose(fh);
printf("The program completed successfully.\n");
printf("The output is stored in the file '2dcurves.dat' in this 

program's folder.\n");
printf("Now please change the name of '2dcurves.dat' or it will be 

overwritten.\n");
printf("To find zero-velocity curves for all Jacobian Constants, type 

'zvcurves'.\n");
}

Program A4.3 -  The Determination of the Zero-Velocity Curve around the Minor 
Body of a Binary, which passes through theZi Point.

llcurve.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.1415926535897932384626433832795028841971693993751 
#define ITSTEP 100

/* xx = abscissa */
/* y = ordinate */
/* c and d = Jacobian constant */
/* u = second body's mass fraction of the system */
/* p = second body's mass (in Jupiters) */
/* m = primary body's mass (in solar masses) */
/* a = distance between the bodies (in AU) */
/* dx = resolution of 2-D plot */

int main()
{
printf("For full use of this program, please read the screen output 

carefully.\n\n");
double x[ITSTEP], b, c, d; 
float p, m, a, u, dx, xx, y, LP; 
int i, j, k, 1, n, s;
FILE *fh;

/* Primary body's mass (in solar masses), m. */
printf("Enter the primary body's mass (in solar masses): ");
scanf("%f", &m);
if ( m < 0.0799999 ) {

printf ("The primary's mass must be greater than 0.08 solar 
masses.\n");

exit(EXIT_FAILURE);
}

/* Second body's mass (in Jupiters), p. */
printf("Enter the second body's mass (in Jupiters): ");
scanf("%f", &p);
if ( ( p <= 0 ) || ( p > 15 ) ) {

printf ("The secondary's mass must be greater than zero and up to 15 
Jupiters.\n");

exit(EXIT_FAILURE);
}
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/* Distance between the two bodies (in AU), a. */ 
printf("Enter the distance between the two bodies (in AU): "); 
scanf("%f", &a); 
if ( a <= 0 ) {

printf("The distance must be greater than zero.\n"); 
exit(EXIT_FAILURE);

}

/* Calculate the secondary’s mass fraction of the system. */ 
u = p * ( 1.8986 / 1989.11 ) / ( m + p * 1.8986 / 1989.11 ); 
printf("The mass fraction of the secondary, u, of the system is %e\n"/ 

u) ;

/* Determine the distance of LI from the system's centre of mass. */
LP = a*(powf((u/3),0.3333333333) ) ;
printf ("The distance of the Hill radius from the planet is %f AU.\n", 

LP) ;

/* Perform Iteration to find LI */ 
k=0;
x [0]=l-u— (LP/a); 
while ( k < ITSTEP ) {

x [k+l]=x [k] - (x [k] - (1-u) / ( (x [k] +u) * (x [k] +u) ) +u/ ( (x [k] -1+u) * (x [k] - 
1+u) ) ) / (1+2* (1-u) /powf ( (x [k] +u) , 3 )  -2*u/powf ( (x [k] -1+u), 3) ) ; 

k = k + 1;
}
d=2*(1-u)/ (x[ITSTEP]+u)-2*u/(x[ITSTEP]-1+u)+ (x[ITSTEP]*x[ITSTEP]); 
printf("The Jacobian Constant at LI is %f.\n", d);

/* Determine the plot resolution. */
printf("Enter the number of points between the planet and star (10000 

to 50000): ");
scanf("%f", &dx);
if ( ( dx < 10000 ) || ( dx > 50000 ) ) {

printf("The x-axis intervals must be between the stated options 
inclusively.\n");

exit(EXIT_FAILURE);
}

/* Open the data file, */
fh = fopen("Llcurve.dat", "w");
if ( fh == NULL ) {

printf("Cannot open the signal data file.\n"); 
exit(EXIT_FAILURE);

}

/* Make headers for output file. */
fprintf(fh, "Jacobian constant is %f\n", d);
fprintf(fh, "\n");
fprintf(fh, " x-value\t");
fprintf(fh, " y-value\n");
fprintf(fh, "\n");

/* Calculate the LI zero velocity curve. */ 
fprintf(fh, "%f\t", a*(l-u)); 
fprintf(fh, "%f\n", 0);
printf ("The distance of the LI point from the planet is %f AU.\n", 

a*(1-u-x[ITSTEP])); 
s=l; 
n=0;
for ( i = 0 ; i < 1 + 2*LP*dx/a ; i = i + 1 ) { 

xx = (1-u-LP/a)+i/dx;
for ( j = 0 ; j < 1 + 2*LP*dx/a ; j = j + 1 ) {

y = -LP/a+j/dx;
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c= ((2*(1-u)/ (sqrt((xx+u)* (xx+u)+y*y)))+(2*u/(sqrt((xx-l+u)* (xx- 
1+u)+y*y)))+(xx*xx)+ (y*y)); 

b = c - d;
if ( fabs(b) < 0.00001 ) { 

fprintf(fh, "%f\t", a*xx); 
fprintf(fh, "%f\n", a*y) ; 
s=s+l;
if ( ( xx > 1 - u ) && ( ( fabs(y) < 0.0001 ) ) && ( n == 0 ) ) { 

printf("The distance of the LI curve opposite the planet from 
the star is %f AU.\n", a*(xx-l+u)); 

n = n + 1;
}

}
}

}
for ( 1 = 0 ; 1 < 1 + 0.5*LP*dx/a ; 1 = 1 + 1 ) {

y = 0.5*LP/a+l/dx;
c=2*(1-u)/ (sqrt(l+y*y))+2*u/y+(1-u)* (1-u)+y*y;
b = c - d;
if ( fabs(b) < 0.0001 ) {

printf("The distance of the LI curve at quadrature from the planet 
is %f AU.\n", a*y) ;

1=1+0.5*LP*dx/a;
}

}

/* Close the file and program. */ 
fclose(fh);
printf("There are %u points to plot, if using Excel there must be less 

than 32,000.\n", s);
printf("Note that these LI planet distances are only accurate to three 

decimal places.\n");
printf("If less than three of these are shown, increase the point 

resolution.\n\n");
printf("The program completed successfully.\n");
printf("The output is stored in the file 'Llcurve.dat' in this 

program’s folder.\n");
printf ("Now please change the name of ’Llcurve.dat1 or it will be 

overwritten.\n");
}

Program A4.4 -  The Determination of the Zero-Velocity Curve around the Minor 
Body of a Binary, which passes through the L2 Point.

I2curve.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.1415926535897932384626433832795028841971693993751 
#define ITSTEP 100

/* xx = abscissa */
/* y = ordinate */
/* c and d = Jacobian constant */
/* u = second body's mass fraction of the system */
/* p = second body's mass (in Jupiters) */
/* m = primary body's mass (in solar masses) */
/* a = distance between the bodies (in AU) */
/* dx = resolution of 2-D plot */

int main()
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{
printf("For full use of this program, please read the screen output 

carefully.\n\n");
double x[ITSTEP], b, c, d; 
float p, m, a, u, dx, xx, y, LP; 
int i, j, k, 1, n, s;
FILE *fh;

/* Primary body’s mass (in solar masses), m. */
printf("Enter the primary body's mass (in solar masses): ");
scanf ("%f11, &m) ;
if ( m < 0.0799999 ) {

printf("The primary’s mass must be greater than 0.08 solar 
masses.\n");

exit(EXIT_FAILURE);
}

/* Second body's mass (in Jupiters), p. */
printf("Enter the second body’s mass (in Jupiters): ");
scanf("%f", &p);
if ( ( p <= 0 ) | | ( p > 15 ) ) {

printf("The secondary's mass must be greater than zero and up to 15 
Jupiters.\n");

exit(EXIT_FAILURE);
}

/* Distance between the two bodies (in AU), a. */ 
printf("Enter the distance between the two bodies (in AU): "); 
scanf("%f", &a); 
if ( a <= 0 ) {

printf("The distance must be greater than zero.Xn"); 
exit(EXIT_FAILURE);

}

/* Calculate the secondary's mass fraction of the system. */ 
u = p * ( 1.8986 / 1989.11 ) / ( m + p * 1.8986 / 1989.11 ); 
printf("The mass fraction of the secondary, u, of the system is %e\n", 

u) ;

/* Determine the distance of L2 from the system's centre of mass. */ 
LP = a*(powf((u/3),0.3333333333) ) ;
printf("The distance of the Hill radius from the planet is %f AU.\n", 

LP) ;

/* Perform Iteration to find L2 */ 
k=0;
x [0]=l-u+(LP/a); 
while ( k < ITSTEP ) {

x[k+l]=x[k]-(x[k]-(1-u)/((x[k]+u)*(x[k]+u))-u/((x[k]-1+u)* (x [k] - 
1+u)))/(1+2*(1-u)/powf((x[k]+u),3)+2*u/powf((x[k]-1+u),3)); 

k = k + 1;
}
d=2*(1-u)/ (x[ITSTEP]+u)+2*u/(x[ITSTEP]-1+u)+ (x[ITSTEP]*x[ITSTEP]); 
printf("The Jacobian Constant at L2 is %f.\n", d);

/* Determine the plot resolution. */
printf("Enter the number of points between the planet and star (10000 

to 50000): ");
scanf("%f", &dx);
if ( ( dx < 10000 ) || ( dx > 50000 ) ) {

printf("The x-axis intervals must be between the stated options 
inclusively.\n");

exit(EXIT_FAILURE);
}
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/* Open the data file. */
fh = fopen("L2curve.dat", "w") ;
if ( fh == NULL ) {

printf("Cannot open the signal data file.\n"); 
exit(EXIT_FAILURE);

}

/* Make headers for output file. */
fprintf(fh, "Jacobian constant is %f\n", d);
fprintf(fh, "\n");
fprintf(fh, " x-value\t");
fprintf(fh, " y-value\n");
fprintf(fh, "\n");

/* Calculate the L2 zero velocity curve. */ 
fprintf(fh, "%f\t", a* (1-u)); 
fprintf(fh, "%f\ n",  0) ;
/* printf("The distance of the L2 point from the planet is %f AU.\n", 

a*(1-u-x[ITSTEP])); */ 
s=l; 
n=0;
for ( i = 0 ; i < 1 + 5*LP*dx/(2*a) ; i = i + 1 ) { 

xx = (1-u-LP/a)+i/dx;
for ( j = 0 ; j < l +  2*LP*dx/a ; j = j + 1 ) { 

y = -LP/a+j/dx;
c = ((2*(1-u)/ (sqrt((xx+u)* (xx+u)+y*y)))+(2*u/(sqrt((xx-l+u)* (xx- 

1+u)+y*y))) + (xx*xx) + (y*y)) ; 
b = c - d;
if ( fabs(b) < 0.00001 ) { 

fprintf(fh, "%f\t", a*xx); 
fprintf(fh, "%f\n", a*y); 
s=s+l;
if ( ( xx > 1 - u ) && ( ( fabs(y) < 0.0001 ) ) && ( n == 0 ) ) { 

printf("The distance of the L2 point from the planet is %f 
AU.\n", a* (xx-l+u));

n = n + 1;
}

}
}

}
for ( 1 = 0 ; 1 < 1 + 0.5*LP*dx/a ; 1 = 1 + 1 ) {

y = 0.5*LP/a+l/dx;
c=2*(1-u)/ (sqrt(l+y*y))+2*u/y+(1-u)* (1-u)+y*y; 
b = c - d;
if ( fabs(b) < 0.0001 ) {

printf("The distance of the L2 curve at quadrature from the planet 
is %f AU.\n", a*y);

1=1+0.5*LP*dx/a;
}

}

/* Close the file and program. */ 
fclose(fh);
printf("There are %u points to plot, if using Excel there must be less 

than 32,000.\n", s) ;
printf("Note that these L2 planet distances are only accurate to three 

decimal places.\n");
printf("If less than two of these are shown, increase the point 

resolution.\n\n");
printf("The program completed successfully.\n"); 
printf("The output is stored in the file 'L2curve.dat' in this 

program's folder.\n");
printf("Now please change the name of 'L2curve.dat' or it will be 

overwritten.\n");
}
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