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Abstract

Using a population synthesis model I have created a synthetic catalogue of stars in 

the Kepler field of view. This model has then been subjected to the same biases and 

selection effects inherent in the selection of stars for the Kepler transit survey mis

sion. This produced a synthetic Kepler Input Catalogue (KIC) which was subjected 

to the Kepler Stellar Classification Program (SCP) method for determining stellar 

parameters. I achieve a satisfactory m atch between the synthetic KIC and the real 

BTC in the logg vs log Tef f  diagram. I find a median difference of A Tef f  = +500 K 

and ~ Alogg = -0 .2  dex for main sequence stars, although there is a large variation 

across parameter space. I find no significant difference between ATef f  and Alogg 

for single stars and the primary star in a binary system. I also re-created the Kepler 

target selection method and found that the binary fraction is unchanged by the tar

get selection. The fraction of main sequence stars in the sample increases from 75% 

to 80%, and the giant star fraction decreases from 25% to 20%.

I have then used the synthetic KIC to build a of synthetic sample of eclipsing bi

naries (EBs) in the Kepler field. Comparing the synthetic catalogue to the Kepler EB 

catalogue I find that the Kepler EB pipeline introduces significant biases into the de

rived temperature ratio and fractional radii. I then tested the effect of different initial 

mass ratio distributions (IMRDs) and initial binary fraction distributions (IBFDs). At 

this time, all distributions fail to m atch the data, such that their parameters can not 

be constrained.

Modelling the population of asteroseismic binaries, where both stars have a de

tectable asteroseismic signal, have shown a way to constrain the IMRD for equal 

mass systems. This method is independent of the binary period and orbital orienta

tion. The num ber of detectable asteroseismic binaries increases from 87 for the IMR 

parameter 5 = -0 .5  to 256 for s=  1.0. The num ber of detectable asteroseismic EBs 

increases from 34.0 ± 6.0 (s = -0.5) to 59.0 ± 6.0 (s = 1.0). This num ber shows dis

agreement with the num ber of actual systems detected (2 for Por  ̂< 40 days), which 

can not be explained by incompleteness alone.
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Chapter 1

Introduction

Understanding what we see when we observe the Universe requires a model which 

can translate what we see into a theory of stellar and Galactic evolution. W hat kind 

of star am I looking at? How old is this star? What will happen to this star in the 

future? Without a valid model we can not place the results into context, in order to 

answer questions such as: How did the Galaxy form? The way to model the Galaxy 

is via population synthesis. Here we combine a model of the Galactic distribution 

of stars with a stellar evolution model providing the stellar parameters as a function 

of age. We then take the observables measured and calibrate the model to what we 

can see today. By varying the initial parameter distributions, untill the results of the 

model match the observations, we can learn how the Galaxy formed from what we 

see today.

In this work I present my synthetic model of the population of stars in the Kepler 

field of view. I apply the biases and selection effects inherent to the Kepler mission 

to derive a synthetic catalogue of stars, which is representative of what the Kepler 

mission would observe. This allows me to quantify the bias in the Kepler results 

and determine how this selection process alters the results derived from the Kepler 

mission. Finally, I model several sub-populations of stars, namely eclipsing binaries 

and asteroseismic binaries, in the Kepler field. These synthetic populations, when 

compared to the Kepler data, allow us to constrain the poorly known Galactic pa 

rameter of the initial mass ratio distribution (IMRD), which determines how binary
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stars form.

With Kepler’s primary observing mission finished, the focus has moved to u n 

derstanding the results Kepler has acquired in the quest for r\earth> the fraction of 

Sun-like stars with Earth-like planets. Part of this work requires an understanding 

of the biases and selection effects inherent in the Kepler mission due to the tar

geted nature of the Kepler input catalogue (KIC). The aim of the target selection was 

to choose the systems where it was expected to detect an Earth-like planet if it ex

isted in the system. This leads to biasing Kepler to observe what it believes are small 

cool stars, thus the objects Kepler observes are not fully representative of the Galaxy. 

This bias would need to be corrected for to translate Kepler’s measured t)earth into 

a Galactic rtearth• In general, the systems Kepler observes are too faint for spectro

scopic follow up, to measure the radial velocity (RV) of the system, which constrains 

mass of the planet (Mayor & Queloz, 1995). Thus without the RV data, we only have 

the transit light curve, which on its own can not be used to distinguish planets from 

binaries. Thus to derive tjearth we would also need to have an accurate, predictive, 

model of the binaries in the Kepler field, such that we could statisticaly say which 

are planets and which are binaries.

In section 1.1.11 review our knowledge of single star and binary star evolution. 

Section 1.1.2,1 look at the Galactic modelling required to produce a population syn

thesis model. Section 1.1.3 looks at the biases introduced into observations and why 

these need to be modelled. Finally section 1.2 looks at the Kepler mission and some 

of its results.

1.1 Population modelling

Modelling the structure of the Galaxy successfully requires bringing together several 

areas of astrophysics. We need to understand stellar evolution such that we under

stand how a star appears at a given epoch. Complicating matters are binary star 

systems which can lead to star-star interactions, altering each star’s evolution from 

the single star behaviour. There also needs to be an understanding of the structure
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and dynamical evolution of the Galaxy as a function of position and time. Finally, we 

must also understand the design of the detector, telescope and observing strategy 

adopted for a particular survey used, such that we can then understand the biases 

introduced in to the observed objects.

1.1.1 Stellar evolution

Stellar evolution itself has been studied for many years, from the earliest ideas on 

the structure of stars (Schuster, 1903) until the present day 3D hydrodynamical 

models (Heger et al., 2000; Woosley et al., 2002; Magic et al., 2013). See Lebreton 

(2000) for a review of stellar evolution.

Briefly a star starts of as a molecular cloud that collapses in on itself to form 

a pre-main sequence star (Palla & Stahler, 1993). For stars more massive than ~ 

0.07M©, the star undergoes further collapse until eventually igniting hydrogen fu

sion in the core, for less massive stars fusion only occurs for a short period of time 

and is not self-sustaining. At this point it then evolves along its main sequence (MS) 

track, burning hydrogen (fig. 1.1 red region), until the core contains a significant 

fraction of helium and transitions to its hertzsprung gap (HG) phase (fig. 1.1 yellow 

region). The star then evolves onto its giant branch (GB) by undergoing hydrogen 

burning in a shell around the core (fig. 1.1 green regions) (Iben, 1967). This requires 

a star to have M  >  0.8M©, otherwise there has been insufficient time since the uni

verse began for the star to have evolved off the main sequence. Eventually the core’s 

temperature and pressure increases untill helium can fuse, forming a core helium 

burning (CHeB) star (fig. 1.1 cyan region) (Boothroyd & Sackmann, 1988). In time 

the helium in the core stops fusing and the star forms shells of burning hydrogen 

and helium surrounding an inert electron-degenerate core, on the asymptotic giant 

branch (AGB) (fig. 1.1 purple region).

Eventually, if the star is massive enough (M >  8M©) it can start fusing carbon 

and the heavier elements in the core. Depending on the initial parameters of the 

star we can then either end up with a planetary nebula (PN) (fig. 1.1 blue region),
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Figure 1.1: Stellar evolution track of a 1M0, z = 0.02 star. Each stage is colour coded 
and shows their approximate location; red, main sequence; yellow, hertzsprung gap; 
green, giant branch; cyan, core helium burning; purple, asymptotic giant branch 
and finally blue, planetary nebula. The final possible outcomes of a star (white 
dwarf, neutron star and black hole) are not shown.

where the outer layers of the star have been expelled leaving the core of the star 

behind, which will become a white dwarf (WD) (Kennicutt, 1984) for stars with M  < 

8M©. Or for more massive stars, a supernova leading to a neutron star (NS) (8 < 

M / M q <  20) or a black hole (BH) (Lattimer & Prakash, 2001; Shapiro & Teukolsky, 

1986). The boundaries between the different final outcomes depends upon the final 

parameters the star has at the AGB phase (Heger et al., 2003).

Binaries can complicate this picture because of potential interactions between 

between the components (Iben & Tutukov, 1984). Binary evolution can be loosely 

split into two pathways: those where both stars have sufficient separation that they 

do not interact and thus evolve as separate stars (Hurley et al., 2002); and those that 

do interact (Eggleton, 2006). Those that do interact can transfer mass in two ways 

either by losing mass due to stellar winds, which can then be partially accreted onto 

the companion or when one star’s radius exceeds its Roche lobe and material flows 

from one star onto the other. The size of a Roche lobe is defined as the radius of
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X

Figure 1.2: Contours showing lines of equipotential for two equal sized components, 
where each star sits at (±0.5,0.0). Each of the five Lagrangian points is shown, where 
the gravitational and centrifugal forces balance between the two masses.

a sphere that has the same volume as the interior of the equipotential that passes 

through the first Lagrangian (LI) point between the two stars (Eggleton, 1983). There 

are five Lagrangian points in a two body + negligible mass third body, as seen in fig. 

1.2. They represent the locations where the gravitational and centrifugal forces be

tween the two stars balance. A test particle at the LI-3 points exist in a quasi-stable 

orbit, such that small perturbation to the test particle would move the particle away 

from the LI-3 point. While at L4 and L5 a test particle would be a in a stable orbit, 

such that a perturbation would result in the particle moving back to the L4 or L5 

p o in t. Considering only the first point, LI, any material that orbits interior to this 

point is bound to its parent star. However, once it passes the LI point the gravita

tional pull of the companion star exceeds that of the parent star and the material is 

now bound to the companion. Thus if the star expands and its outer envelope or

bits beyond the LI point then the envelope will become bound to the companion, 

transferring mass between the stars.

During a mass transfer process, the angular momentum of the material may be 

large enough that it cannot fall directly onto the companion star. Instead the m ate
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rial will orbit the star forming an accretion disk (Pringle, 1981). In this disk most m a

terial will lose angular m om entum  via frictional forces and fall onto the star, while 

some material will gain angular momentum and thus orbit at a larger radius, con

serving overall angular m om entum  (Pringle, 1981). This process will alter the evolu

tion of the two components, rejuvenating the receiving star while slowing the evolu

tion of the donor (Hurley et al., 2002). A stars response to mass transfer depends on 

the mass ratio of the system and the structure of the stars. Stars with convective en

velopes expand when they lose mass, which can lead to dynamical time-scale mass 

transfer which is unstable (Ivanova et al., 2003). While stars with radiative envelopes 

contract with mass loss, which can lead to stable mass transfer.

If the mass transfer process is unstable it can lead to a common envelope (CE), 

where the secondary star ends up orbiting inside the envelope of the donor star. 

Due to viscous drag, both stars will spiral rapidly inwards heating the CE (Iben & 

Livio, 1993). There may be two outcomes from this: the second star may undergo 

enough braking such that it merges with the donor star’s core leaving only one star 

behind; or the envelope may gain enough energy to overcome the binding energy 

and escape the system. This will leave the core of the donor star behind and the 

binary system itself in a m uch shorter orbital period (Schreiber & Gansicke, 2003). 

Predominately most binaries do not interact, however Willems & Kolb (2004) sug

gest that for systems that form WD+MS binaries, that between 10%-25% of systems 

will transfer mass via Roche lobe overflow or a common envelope phase.

1.1.1.1 Braking forces ___

The interactions between the two stars can also lead to a series of braking forces 

which will act to circularise the orbit and to decrease the orbital period.

Using general relativity to solve the motion of a binary system, we find that sys

tem will emit gravitational waves (Taylor & Weisberg, 1982). These waves will take 

energy and angular m omentum from the system making the binary stars spiral in

wards. The change in the orbital properties is given by (Eggleton, 2006):
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P _ 3 a _  3 l + § e 2 + § e 4
P 2a tcR ( l - e 2)(7/2)

. ,  1 9 , 126-2
e  =  ~ l  ~6~ ~96~

e  fci? ( l  -  e 2) (5/2) 

rGi? = 376.8(1 + ^  P 8/3M~5/3 (Gyrs) (1.1)

where P is the orbital period, P is the change in period, e is orbital eccentricity, e 

is the change in orbital eccentricity, a is the orbital separation and a is the change 

in orbital separation, tcR is the time-scale and q is the mass ratio. It can be seen 

that gravitational radiation circularises the orbits of the binaries and decreases the 

orbital separation.

In close binary system tides generated by one star upon the other will cause an 

exchange between orbital and spin angular momentum. This only occurs if either 

star has a spin rate not equal to the orbital period, a spin axis not aligned with the 

orbital plane or if the system is in an eccentric orbit (Hut, 1981). Tides will then pro

duce a torque that acts to circularise the orbit, lock the spin of the stars to the orbital 

period and align the spin and orbital planes. This is only stable if more than 3/4 of 

the total angular momentum is in orbital angular momentum. This configuration 

minimises total energy of the system. If it is not stable, then the stars may spiral 

inwards at an accelerated rate (Hut, 1980).

Stars are continually emitting charged particles via a stellar wind, these particles 

become trapped in the magnetic field of the star, forcing the charged particles to ro

tate at the same rate as the field (Mestel, 1968). As the field is dragging these particles 

round, the star transfers its angular m omentum to the charged particles, extracting 

angular momentum from the star and slowing its spin down. In a binary system if 

there is spin-orbit coupling via tides, then this will remove angular m om entum  from 

the whole system forcing the binaries to spiral inwards (Parsons et al., 2010).

Thus we can see that the two stars in a close binary can be significantly per
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turbed during their evolution, from where we would expect them  to be had they 

been two separate stars not in a binary. We can also see how the orbital period and 

eccentricity of the system evolves with time, which needs to be considered in stellar 

evolution.

1.1.2 Population synthesis

Population synthesis models are used to translate the evolution and distribution 

of stars into observables we can measure, like colours and spectra of stars. There 

are many models in the literature (Robin et al., 2003; Girardi et al., 2005; Sharma 

et al., 2011) and a large effort is spent in using population synthesis tools to model 

galaxies and clusters (Bruzual & Chariot, 2003; Belczynski et al., 2008). However for 

this work I am interested in the population models that deal with the Milky Way. 

Here we have much more information available and thus the models can become 

more complex and more terms considered. The aim of these models is to produce a 

synthetic catalogue of stars for a given survey, that can then be used to test theories 

of stellar and Galactic evolution (Boeche et al., 2013; Gao et al., 2013).

Generally, these models are based on a chosen set of stellar isochrones, describ

ing a star’s evolution as a function of time. These isochrones are then weighted by 

a set of initial distribution functions (IDFs) describing the initial parameters of the 

star and the parameters of the Galaxy (Vanhollebeke et al., 2009). The star is then 

evolved up to the current epoch and its current magnitude computed. The star can 

then be tested against a set of visibility constraints, for instance apparent m agni

tude, spatial location and colours, to determine whether the chosen survey will ob

serve the star.

The Galactic structure is parameterised as a series of discs. Each disc in turn  has 

a series of parameters describing the structure of the disk and the compositions of 

stars that form in that disc. For instance; the initial mass function (IMF), describes 

how mass is distributed between stars; the initial binary fraction distribution (IBFD) 

describes how likely a binary will form; and the star formation rate (SFR) describes
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how many stars form each year. These parameters may have temporally and/or spa

tially varying characteristics; though to simplify matters some parameters may be in 

common between the discs, such as assuming the IMF is constant. There are many 

parameters involved, not of all of which are well constrained. The aim therefore is to 

create a set of self-consistent distributions, that may vary between models but that 

reproduce the Galaxy as we observe it.

The standard set of parameters used are the Galactic density, star formation 

rate, IMF and metallicity distributions. Though there may be others, for instance 

the binary parameters; initial mass ratio distribution (IMRD), initial orbital separa

tion distribution (IOSD) and initial eccentricity distribution (IED). See section 2.1.4 

for further details and the preferred choices for this work. The Galactic density is 

usually taken as a double exponential with a set of scale heights (Bahcall & Soneira, 

1980; Dehnen & Binney, 1998). The star formation rate in the Galaxy has some u n 

certainty to it, versions proposed in the literature vary from an approximately con

stant rate (Twarog, 1980) to a time varying distribution (Noh & Scalo, 1990). The 

IMF has a series of possible choices in the literature, log-normal, exponential, and 

power law (See Chabrier (2003) for a review). Finally the metallicity distribution has 

been modelled as a Gaussian (Nordstrom et al., 2004), with different parameters for 

the different discs (Gilmore & Wyse, 1985). Also included can be an age-metallicity 

relation (Holmberg et al., 2007), with younger stars being more metal rich.

To model the current population of stars in a field of view we should also con

sider the stars kinematics and possible radial migration of stars inside the Galaxy 

(Chiba & Beers, 2000). Here stars which are orbiting inside the Galaxy can migrate 

from the region they where formed to other regions of the Galaxy. (Haywood, 2008). 

As these stars migrate into a different region of the Galaxy, they “mix” different pop

ulations of stars together. Thus the distribution of objects we detect today, inside 

a volume element of the Galaxy, may include objects that formed elsewhere from 

a different set of formation distributions. This process is beyond the scope of this 

work and not considered further.
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Population synthesis models have found many applications. They include con

straining stellar evolution quantities such as showing that Cepheids require an en

hanced mass loss process (Neilson et al., 2012), determining the IMF at low masses 

(Schultheis et al., 2006) and a requirement for a faster rate of cooling in low mass 

WDs than theory predicted (Nelemans et al., 2001). Other applications include pre

dictions of Galactic structure parameters for instance; metallicity gradients in the 

thick disc (Kordopatis et al., 2013b), formation models of the Galactic bulge (Utten- 

thaler et al., 2012) and kinematics of the thin disc (Gazzano et al., 2013). This is an 

area that will be revolutionised by the GAIA mission (Perryman et al., 2001), which 

will map the location and velocities of 109 stars in this Galaxy.

The treatment of binaries in population models varies. Some authors ignore 

them (Robin et al., 2003), some treat them in a simplified m anner assuming they 

are simply two single stars (Girardi et al., 2005), while others look at the full evo

lution (Willems & Kolb, 2002). However, as shown previously, this evolution can be 

complex and the resulting distribution of binaries is not the same as the distribu

tion of two single stars that are non interacting. Binaries have also been shown in 

Raghavan et al. (2010) to make up a significant fraction (35% are binaries with a fur

ther 15% in higher order systems) of the Galactic population. Thus they can not be 

ignored.

1.1.3 Observational biases

When we observe the Galaxy, we do not observe every star possible, instead we view 

a biased sample of the Galaxy. Unless we understand how theses biases are intro

duced, we are unable to translate the statistics of the stars observed into the statis

tics of the stars of the Galaxy.

There are limits on the flux we can detect from a star: too bright and it will satu

rate the detector, too faint and we will not resolve it above the noise. Considering the 

larger of the two issues, namely stars being too faint, the star can either intrinsically 

faint or it can be distant relative to us, and thus it appears faint. Though of course
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both cases are coupled, but we consider them  separately for the moment. There is a 

bias inherent in the fact that we are more likely to observe intrinsically bright stars, 

as they can be seen over a greater volume of the Galaxy and as a result the sample we 

observe is not completely representative of the Galaxy as a whole (Butkevich et al., 

2005). Instead it favours stars with high luminosities, which will in general imply 

high mass and/or giant stars. These systems can also be seen to greater distances, 

thus they probe a different region of the Galaxy compared to the intrinsically fainter 

objects, which can only be seen closer to the Sun (Gaidos & Mann, 2013).

Observers can also intentionally bias their data, either in the choice of objects 

observed or in the choice of objects that are then subjected to analysis. For in

stance, observing in the infra red biases the detection towards cooler, low mass stars 

(Chabrier et al., 2000), while applying colour cuts introduces biases to certain popu

lations of objects. The cuts are usually intentionally designed to target certain types 

of stars that are of interest and can provide benefits by reducing the num ber of “u n 

interesting” stars, but nevertheless they bias the results.

The choice of field will also bias the observed population. The closer the field is 

to the plane and the centre of the Galaxy, the more metal rich and younger the stars 

are (McWilliam, 1997). Observing further from the plane implies that, as a fraction 

of the total stars observed, the thick disc will increase its contribution Quric et al.,

2008), even as the total num ber of stars decreases, thus appearing more metal poor. 

Depending of the choice of field of view we may be observing certain features in the 

Galaxy, such as a cluster or a tidal stream (Ivezic et al., 2008), such that the field is 

not representative of the Galaxy as a whole. Thus the choice of field may bias the 

observed population’s age, metallicity and kinematics (Bond et al., 2010).

To be able to recover the Galactic parameters we must be able to model the bi

ases introduced in the course of an observation. Then we can apply the same set of 

biases to a chosen population model and determine the goodness of fit to the data. 

This then allows us to extrapolate the results from a limited survey to the whole 

Galaxy. For instance, taking the distribution of observed (and modelled) WDs we
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can work backwards, with a population model, to determine the star formation rate 

of the Galaxy (Weidemann, 1990).

1.2 Kepler

Kepler was a NASA space-based telescope aimed at detecting transiting Earth-mass 

planets in the habitable zone of solar like stars, to determine their frequency, T]e a r t i l , 

(Borucki et al., 2010). After 4 years of observing ~ 150,000 stars in the constella

tion of Cygnus, two reaction wheels failed ending its original mission. During its 

observational period it has made many discoveries, including 961 confirmed plan

ets (Rowe et al., 2014), ~ 2500 candidate planets (Burke et al., 2014) and several cir- 

cumbinary planets (Holman et al., 2010; Doyle et al., 2011). Here I present a brief 

review of the Kepler mission and its results.

Kepler has a 1.4m optical mirror with a field of view of ~ 100 square degrees 

(Koch et al., 2010). It observed the same of field of view continuously during its 4 

year mission, rotating itself every 3 months to align the solar panels with the Sun. 

These 3 m onth blocks are defined as a quarter. As of this date 17 quarters worth 

of data have been released to the public. Kepler has two observing modes, short 

cadence (SC) with a 60 second exposure and long cadence (LC) which is the sum of 

30 SC observations, making a total exposure of 30 minutes (Van Cleve & Caldwell, 

2009). It observes in its own filter band, Kp, which is an optical band approximately 

over the range 423 to 897 nm  (Koch et al., 2010).

Kepler detects planets by observing the star, continuously, for changes in the flux 

(Borucki et al., 2011a),. These changes could be due to a transiting exoplanet where 

a planet passes in front of the star, from our point of view, blocking some of the flux 

emitted from the star (Charbonneau et al., 2000), as seen in fig. 1.3. Based on the 

depth and shape of the transit we can then infer the ratio of the radii of the star and 

planet. The planet’s radius can be determined via:
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where is the maximum change in flux during the transit, Rp is the planet’s radius 

and 1?* is the host star’s radius which is determined via stellar models (Borucki et al., 

2011b). However, detecting a transit alone does not imply that it is a planet (Collier 

Cameron et al., 2007). Only by follow up work to determine the mass of the object via 

radial velocities can we unambiguously say that the object is a planet (Leger et al.,

2009).

There are several astrophysical phenom enon that cause a change in the light 

curve. These include: stellar variability, which adds extra noise to the light curve 

possibly burying a signal; star spots, which act as a dark spot that appears as a 

transit-like signal; and eclipsing binaries, which can mimic a transit signal (see sec

tion 6.3), each of which would could give a false positive signal (Morton & John

son, 2011; Torres et al., 2011). Thus Kepler has declared its discovery of many can

didate planets, which have periodic transit-like signals, reserving planet discoveries 

for those systems that been confirmed with further observations. Due to the faint

ness of most of Kepler’s targets, the majority of the candidate planets are difficult 

to follow up and confirm their planetary status (Batalha et al., 2010). Kepler also in

troduced a new term  of validated planets (Fressin et al., 2011). These planets have 

not be confirmed as a planet but via modelling the false positive rate derived that 

is below a threshold such that they are confidant it is a planet. This is done either 

with Blender (Torres et al., 2011) which models all possible eclipsing binary (EB) 

scenarios, or for systems with multiple transits, showing that the chance alignment 

of multiple false positives is negligible (Rowe et al., 2014; Lissauer et al., 2014).

Due to bandwidth limitations Kepler did not observe every star in its field of view 

down to its magnitude limit. At Kp < 16 there are ~ 450,000 stars in the field, how

ever it only observes 150,000 (Batalha et al., 2010). Thus a target selection process 

was employed to select those objects for which they had the highest chance of de

tecting an Earth-sized planet in the habitable zone of the star. The selection process 

had several aims when determining which stars to observe. Primarily it was aimed 

at distinguishing between dwarf and giant stars. This is because the transit depth is
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Figure 1.3: Schematic light curve showing the effect of a transiting exoplanet on the 
total flux output of a star. As the planet passes in front of the star it blocks a fraction 
(AFIF) of the stars flux.

proportional to the radii ratio of the planet and star (equation 1.2), thus it is easier 

to detect a transiting planet around a small star. There was also a selection of stars 

which had a lower background contamination, as background binaries can lead to 

false positives (see section 6.3). This process biases the sample of stars Kepler ob

serves to low mass dwarf stars (Gaidos & Mann, 2013). Thus the Kepler results, like 

Vearth> must have a correction factor applied for the fact that Kepler’s sample of stars 

is not representative of its field (Howard et al., 2012).

Outside of the primary mission of detecting transiting exoplanets, Kepler has 

made many contributions to other areas of astrophysics. It has discovered over 2000 

EBs (Prsa et al., 2011; Slawson et al., 2011), a num ber of which are triple star systems 

(Steffen et al., 2011; Rappaport et al., 2013) and even some that are triply eclipsing 

systems (Carter et al., 2011). Kepler has also discovered a num ber of binaries with 

tidally induced pulsations (Welsh et al., 2011; Thompson et al., 2012).

It has also performed asteroseismology on many of its target stars (Gilliland 

et al., 2010a) with the aim of determining precise stellar parameters (Chaplin et al., 

201 lc). Here it aims to detect the individual pulsation modes a star can undergo, by 

detecting the small change in flux due to changes in the surface temperature of the
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star due to a pressure wave (Kjeldsen & Bedding, 1995). For main sequence stars, 

these pulsations modes are of order minutes thus the SC data is needed, which lim

its its application as there where a limited num ber of SC slots available each quarter. 

However, over 500 MS stars have had their pulsation modes m apped and had their 

stellar parameters derived to < 1 0 % (Chaplin et al., 2014). For evolved stars the pul

sation modes are of order hours thus the LC data can be used (Bedding et al., 2 0 1 1 ). 

The difference in pulsation periods is due its dependence on 1/ < p >, where < p > 

is the average density of the star (Chaplin & Miglio, 2013). Kepler has detected solar 

like oscillations in red giant stars (Bedding et al., 2010), for which over 13,000 now 

have measured parameters (Stello et al., 2013).

In Chapter 2 1 discuses the population model used and the improvements made 

to it. Chapter 3 discuses the model I implemented to derive the Kepler target list and 

then I discuss the biases this process introduces into the Kepler results. Chapter 4 

details the model of eclipsing binaries I derived and the results of a comparison of 

this model with the Kepler EB catalogue. In Chapter 5 I derive a model for astero- 

seismic binaries and make predictions for the num ber of detectable asteroseismic 

binaries in the Kepler data set. Finally in Chapter 6  I present my final conclusions 

and discuss where this work leads too.



Chapter 2

Population synthesis

To place the result of a given survey into context we need to compare their measured 

distributions of stellar properties, which are biased by their observing strategy, with 

synthetic models. These models can have the same bias applied, then we we can 

then compare different underlying Galactic distributions and compute a best fit to 

the biases observed data. These synthetic models therefore need to take into ac

count all relevant physics, from stellar evolution, Galactic evolution and observa

tional constraints to the length of observations, filter band observed and selection 

process of stars chosen to be observed.

In this chapter I derive the a population of synthetic stars that can then be in 

future chapters, biased to the Kepler observing strategy. However the work in this 

chapter is independent of the Kepler field. Its aim is to generate a synthetic cata

logue of stars, representative of the Galaxy, for a given observing strategy. This then 

forms the basis for the work in the other chapters.

To derive a synthetic population of stars, I combine stellar evolution with a 

Galactic model. I derive a series of evolution tracks for single and binary star sys

tems (section 2.1.1). These tracks are then weighted, at different points in their evo

lution, by the formation probability of the system and the probability of detection 

(sections 2.1.2-2.1.6). This forms a continuous distribution of stars inside the Galaxy. 

This continuous distribution can then be sub-sampled to form a representative cat

alogue of individual synthetic stars for a given observing strategy (section 2.1.7).

16
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Finally, in section 2 .21 describe the model for describing eclipsing binaries (EBs).

2.1 Population synthesis model

To calculate a model for the stellar and binary star population in a field-of-view I 

added new input physics and functionality to the Binary and Stellar Evolution Pop

ulation Synthesis (BiSEPS) code. This was originally described in Willems & Kolb 

(2002,2004) and later employed by Willems et al. (2006) in a simplified way to study 

the false positive rate in the exoplanet transit search project SuperWASP (Pollacco 

et al., 2006) from shallow-eclipsing binaries. BiSEPS in turn is based on the analyt

ical descriptions of stellar and binary evolution by Hurley et al. (2000) and Hurley 

et al. (2 0 0 2 ). This is linked to a comprehensive Galactic model including formation 

probabilities, Galactic disc structure, interstellar extinction and an assumed star for

mation rate (SFR). Taken together this derives a representative synthetic catalogue 

of single and binary stars visible in the Galaxy today.

2.1.1 Binary evolution

At the core of the population synthesis scheme is a large library of single star and bi

nary system evolutionary tracks from the ZAMS up to a maximum age of 13 Gyrs. 

Which provide physical parameters of each system over approximately 100 time 

steps distributed along each track.

Briefly, the single star evolution (SSE) of Hurley et al. (2000) code uses analytic 

functions to describe the evolution of the stellar core mass, radius, luminosity and 

lifetime during each evolutionary phase for a given initial mass and metallicity. Mass 

loss is included in the form of stellar winds (Hurley et al., 2000). The star is evolved 

for a time step d t which is decided by the code to minimise the change in the mass 

and radius of the star during each time step.

The binary star evolution (BSE) code of Hurley et al. (2002) handles the evolu

tion of binary systems by evolving two single stars with the same dr and then calcu
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lating the interaction effects between the two stars. As each star may have a different 

d t as calculated by the SSE code, BSE can roll back each star’s evolution and try with 

a smaller time step, until a point where both stars agree on a d f that minimises the 

change in their properties. In calculating the interaction between the systems sev

eral factors are considered; possible roche-lobe overflow (RLOF), transferring m a

terial between each star; magnetic and gravitational braking, acting to decrease the 

orbital separation; and tidal effects, acting to circularise the system. Interactions are 

calculated for all binaries, though for most binaries, which are in wide orbits, these 

effects are negligible. For this work I ignore tidal effects by forcing binaries to be in 

circular orbits at all times and this will be discussed why, in more detail later. As 

these effects alter the orbital angular momentum, and are themselves dependant 

on the orbital angular momentum, limits are placed on its change, however these 

braking forces and the mass transfer process are only im portant for systems with 

short orbital periods which interact.

The evolution code outputs the global properties of each star (mass, radius, tem 

perature, luminosity, evolutionary phase) and of the system (orbital separation, age) 

at a series of points in time along the evolutionary track. To prevent excessive data 

output the code was modified to output only a time-weighted averaged value of sev

eral time steps. The num ber of steps averaged together is selected from a uniform 

random num ber between an upper and lower bound. For single star systems the 

limits are [1,25] steps for all evolution phases. For binaries the following limits ap

ply, the lower limit is itself randomly uniformly selected from [1,25] unless the star 

is either a hertzsprung gap (HG) or has just transitioned into a new evolutionary 

phase, in which case the limit is 1. The upper limit is dependant on the evolution

ary phase of the system, main sequence (MS) 1 0 0 , HG 25, giant branch (GB) 50 and 

all others are set to 500 steps. For the case where each star is a in a different evolu

tionary phase the minimum limit is chosen. These limits are set based on trial and 

error determinations designed to allow sufficient temporal resolution to model the 

individual features in a evolution track while also minimising the data output.
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The coarser sampling of the binaries is due to the increased initial parameter 

space required to model the systems. The singles stars and binaries can be described 

by their initial primary mass and metallicity, however the binaries also need the sec

ondary mass and initial orbital separation. This increases the num ber of evolution 

tracks required. Thus the sampling rate is lowered for the binaries to prevent ex

cessive data output. For the binaries we must also consider that the RLOF phase 

and asymptotic giant branch (AGB)/thermally pulsating asymptotic giant branch 

(TPAGB) phase (for which both stars may pass through), require high temporal res

olution. This is due to the mass loss requiring a smaller d t, which would then require 

more date to be outputted.

A second set of perturbations was also introduced in the determination of df it

self. The time step was multiplied by a uniform random num ber in the range [0.5,1]. 

This was to prevent aliasing effects when viewing a Hertzsprung-Russell diagram 

(HRD). This occurs when multiple evolutionary tracks, for different initial masses, 

form lines roughly perpendicular to the direction of stellar evolution. This is due 

to each track being sampled at the same relative time in their evolution. Thus this 

randomisation process aims to perturb where each sample is taken to prevent this 

aliasing effect.

Fig. 2.1 shows what happens without the randomisation, where we can see dif

ferent evolutionary tracks being sampled at similar places in their evolution. While 

fig. 2.2 shows the effect of the randomisation process. We can see the effect of the 

randomisation is most pronounced during the HG phase, which is a short-lived evo

lution phase. Thus each dr step makes up a larger fraction of the evolutionary phase 

and that there are fewer time steps.

This was not considered in previous versions of BiSEPS as those models where 

only concerned with the distribution of stars over the whole of the param eter space, 

where the individual placement of each star does not matter. However, for this work 

where I wish to consider a discrete sub samples of stars (see section 2.1.7). Where 

it is now important that the distribution of each star is realistically distributed over
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the parameter space.

2.1.1.1 Initial parameter space

A newly forming binary system is taken to be fully characterised by the initial masses 

of its components, the orbital separation, and the star’s chemical composition, set 

here with hydrogen abundance X  = 0.70 and metallicity (Z) (I consider Z  = 0.020 

and Z  = 0.0033). All systems start with and are forced to have, during their evolution, 

circular orbits.

The initial parameter space for binaries is divided into 50 logarithmically spaced 

equidistant bins of initial masses M\ and M2 between 0.1 and 20M© and into 250 

logarithmically spaced equidistant bins of initial semi-major axes a between 31?© 

and 1061?©. By symmetry, only objects where M\ > M2 are evolved. I do not consider 

the initial eccentricity distribution (IED) of binaries at the m om ent due to com pu

tational reasons. The inclusion of an extra initial distribution increases the runtime 

and storage requirements exponentially.

Single star tracks are obtained from the primary star tracks in very wide, non

interacting binaries (with initial a = 107!?© and M2 = 0.1M©). The single star param 

eter space is divided into 1 0 0 0 0  logarithmically spaced equidistant bins of initial 

mass between 0 .1  and 20M©. Where the lower limit is set by the SSEs lower mass 

limit and the upper limit is set by the assumption that there are very few very m as

sive stars.

2.1.2 Galactic model

Underpinning the spatial distribution of the synthetic stars calculated is a simple 

kinematic model of the Galaxy, described in detail in Willems et al. (2006). The 

Galaxy is assumed to comprise a young thin disc and an older thick disc. Each discs 

num ber density is modelled as a double exponential of the form:

(2.1)
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Figure 2.1: A HRD showing a series of evolutionary tracks for solar metallicity objects 
when there are no perturbations in the size of the time steps (d£) or num ber of bins 
averaged together

2.0

2.41 Me

2.164/
1.934/

1.734/(
O JQ

0.5

0.0

3.64.0 3.9 3.7

Figure 2.2: Same as fig. 2.1 except now dr and the number of points averaged to
gether is randomized.
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with Hr = 2.5 kpc and hz = 300 pc for the thin disc and Hr = 3.8 kpc, hz = 1 kpc for 

the thick disc (Gilmore & Reid, 1983; Du et al., 2003). The integral is normalised to 

unity, thus n0 = H ^n h 2Rhz.

Star formation is assumed to proceeded for the first 3 Gyrs after the formation of 

the Galaxy in the thick disc at a constant rate. The age and star formation rate of the 

thick disc is ill-determined with assumptions of a star burst 8  Gyr ago (Ibukiyama & 

Arimoto, 2002) or a variable rate over the first several Gyrs (Chiappini et al., 1997). 

Due to this uncertainty, I choose a flat SFR for simplicity (Twarog, 1980). The thin 

disk is then assumed to form stars for the next 10 Gyrs after the thick disc has 

stopped forming stars (Wood & Oswalt, 1998).

During the respective star forming periods the SFR is taken to be constant, such 

that one star or binary with component mass M > 0.8M© is produced per year (Wei- 

demann, 1990). Combining the SFR with the choice of IMF (see section 2.1.4) leads 

to a formation rate of 7.6 stars yr-1.

Each system, at each point of its evolution, is weighted by the integral of the SFR 

between the minimum and maximum age of the system such that it is alive in the 

current epoch. For instance if at a point in the stars evolution takes 2 Gyrs to evolve 

to its current state and then stays in this state for a further 1 Gyr, then we integrate 

the SFR between 2 and 3 Gyrs ago. As anything that forms more than 3 Gyrs ago will 

no longer be in this phase and anything that forms less than 2 Gyrs ago will not have 

had sufficient time to evolve in this state.

To capture the essence of the metallicity evolution with Galactic age I go beyond 

Willems et al. (2006) and assume that thick disc stars have a metallicity Z  = 0.0033 

(Gilmore et al., 1995) while stars forming in the thin disc have a solar metallicity 

value of Z  = 0.020 (Haywood, 2001). There is evidence for age-metallicity relation 

and Galactic radius-metallicity relation in the discs (Nordstrom et al., 2004). How

ever as I am computationally limited to a few metallicities I decided to stay with a 

constant metallicity in each disc. Evolving these stars with a lower metallicity, cre

ates a population of stars that both age quicker and are bluer compared to the solar-
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like population.

To obtain the total num ber of systems in a given survey field the stellar density, 

equation 2 .1  is numerically integrated over Galactic longitude, latitude and distance 

(/, b, d) by translating it from galactocentric (R , z) to heliocentric coordinates (/, b, d ) 

via:

R = [d2 cos2 b -  2dRQ cos b cos I + R2)1

z = ds in b  + z Q) (2 .2 )

where Re = 8.5kpc is the radial distance of the Sun from the Galactic centre (Reid, 

1993) and z Q = 30pc is the height of the Sun above the Galactic plane (Chen et al., 

2001).

For each system the integral over distance is carried out between the minimum 

and maximum distance, dmin and dmax, this system can be detected to by the survey 

I wish to model. If the survey is magnitude limited these are determined by:

d = iQ>lm-M+5-Ax)l5 (2.3)

Where m  is the lower or upper magnitude limit of the survey, M the absolute mag

nitude of the system and Ax is the extinction along a line of sight at (/, b) integrated 

between [0 , d] in the filter band of the survey.

As the extinction itself depends on the distance, I calculate the distance limits for 

the integral iteratively. Rearranging equation 2.3 in terms of the apparent magnitude 

I can then perform a bisection search over the distance, recomputing the extinction 

as needed, to find where the apparent magnitude is within 0 .1% of the desired value.

I upgraded the BiSEPS extinction routine described in Willems et al. (2006) 

which is based on the model proposed by Hakkila et al. (1997) to that of Drimmel 

et al. (2003). This calculates the Galactic extinction from a 3D dust model of the 

Galaxy that has been scaled using data from the COBE/DIRBE NIR instrum ent to 

provide extinction values along lines of sight in the 17-band (see also section 2.1.5
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below).

Fig. 2.3 shows the extinction map at lKpc for Hakkila et al. (1997), while fig. 2.4 

shows it for Drimmel et al. (2003). The m ost striking difference is the improvement 

in spatial resolution of fig. 2.4 compared to fig. 2.3. As Hakkila et al. (1997) map was 

made of a combination of other authors maps the resolution varies over the whole 

sky, leading to the blockiness seen in fig. 2.3.1 also found that along several lines of 

sight the extinction would decrease, likely a bug where different maps had not been 

combined properly. Drimmel et al. (2003) allows the use of a much higher resolu

tion, based on the size of the COBE pixels, of 0.35° x 0.35° over the whole sky, which 

reduces the blockiness. However Drimmel et al. (2003) has limitations in that the 

model has limited applicability along the Galactic plane and in the Galactic centre. 

This is due to the dust model not including the central bulge as well as uncertain

ties in how far the spiral arms extend into the centre (Drimmel et al., 2003). This 

however is not an issue for the m om ent as Kepler does not observe the plane or the 

centre of the Galaxy.

Kepler’s field of view, for the primary mission, is at I = 75° ± 8 ° and b -  13° ± 8 °, 

covering ~ 100 square degrees. This field can be seen on highlighted in figs. 2.3 & 

2.4. The choice of field was driven by the need to maximise the num ber of stars 

observed while at the same time minimising the num ber of bright giants present in 

the Galactic plane from being observed (Van Cleve & Caldwell, 2009). It can also be 

seen in figs. 2.3 & 2.4 that the choice of field for Kepler places it in a region of low 

extinction.

2.1.3 Field of view

The integration boundaries for Galactic longitude and latitude in equation 2.1 are 

determined by the location of the field of view of the detector system. For practi

cal reasons I define integration regions bounded by lines of constant I and b that 

enclose the region.

The extinction in equation 2.3 is then computed over several regions, typically
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Figure 2.3: A map of the all-sky extinction (Av), using Hakkila et al. (1997), out to a 
distance of 1 Kpc. Kepler’s field of view is denoted in black
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Figure 2.4: A map of the all-sky extinction (Av), using Drimmel et al. (2003), out to a 
distance of 1 Kpc. Kepler’s field of view is denoted in black



2.1. POPULATION SYNTHESIS MODEL 26

a few square degrees each, inside the integration bounds and averaged together. At 

this point we are only concerned with the bulk parameters of the region and not the 

fine structure of the field. These regions are designed such that the extinction can 

be treated as a constant over this region.

With the average extinction in the field of view defined I then compute the dis

tance limits to be used in equation 2.1. With the I and b defined by the detector 

and d  now defined via the magnitude and extinction I then perform a numerical 

integration over equation 2.1. This computes the total stellar density for a system of 

absolute magnitude M, such that the system is be within the detection limits of the 

survey.

The numerical volume integration for each region makes use of a Romberg in

tegral following Press et al. (1992). This divides the volume up into at least 25 sub

intervals in each of the directions Z, b and d, and iteratively increases the num ber 

of sub-intervals by factors of 2 up to a maximum of 210 intervals. This is done un 

til the change in the integral, when increasing the num ber of intervals, changes by 

less than 0.1%. If this condition is not m et once 210 sub-intervals are reached the 

integral obtained for 210 sub-intervals is used. I found that decreasing the cut-off 

to below 0 .1% did not significantly alter the results, while it markedly increased the 

computational runtime. Very few integration regions need more than 25 intervals.

As part of the integration routine I can model a region that is not defined as par

allel to I and b axis, such as the Kepler detector which has its CCDs orientated as 

boxes rotated ~ 45° to the / and b axes. For this I weight each of the sub-intervals 

by the proportion that the sub-interval overlaps with the CCD, using the Convex- 

Intersect routine from O’Rourke (1995). This assumes that the Galactic density is a 

constant over the sub-interval, which with a minimum resolution of 2 5 is met.

2.1.4 Population characteristics

The system-specific observable volumes are then multiplied by weighting factors 

determined from the distribution functions of newly-formed stars and binaries.
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This then calculates the total num ber of each type of binary and single star that 

are visible in a field of view in the current epoch. For single stars I consider only the 

initial mass function (IMF), while for binaries I consider the IMF, initial mass ratio 

distribution (IMRD) and initial orbital separation distribution (IOSD). There is then 

a final distribution the initial binary fraction distribution (IBFD) which applies to 

both singles and binaries.

The IMF describes the distribution of the formation mass for stars. Its functional 

form relates to how proto-stellar gas clouds fragment into multiple components 

which will then go on to form stars (Padoan & Nordlund, 2002). I use a IMF m od

elled as a 3-component power law (Kroupa, 2001):

IM F  = 0 Mi < 0.1

IM F  ex M - 1-3 0 .1  < Mi < 0.5

IM F  ex M~22 0.5 < Mi < 1.0

IM F  ex M - 2 '7 1 .0  < Mi

where M\ is the mass of the initially more massive component of the system (re

call single stars are modelled as binaries with a very low mass companion). Their 

are uncertainties in the choice of the IMF, for instance some propose a log-normal 

distribution (Miller & Scalo, 1979) or a power-law distribution (Salpeter, 1955). In 

general the different IMFs agree at the higher mass end, M  > 1M©, while disagree

ing at the lower mass range where measurements are less certain.

To derive the num ber of systems that form each year, I assume that 1 star with 

M  > 0.8M© forms each year. This is based on the formation rate of white dwarfs 

(WDs) from Weidemann (1990) and by assuming that the SFR is a constant then this 

implies the birth rate of WDs is the same as the birth rate of the progenitors of the 

WDs. Then by integrating the IMF between 0.8M© and 8 M0,1 derive the num ber of 

systems that form (7.6 stars yr-1). The upper mass limit of the integral is set by the 

largest star that can form a WD, and that there is a stellar evolution track for, in the 

library. However increasing the upper mass limit changes the result very little due to
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the IMF being negligible at high masses. By choosing the Kroupa (2001) law, and in 

combination with the other input parameters, I derive a realistic num ber of systems 

in a field of view.

The IMRD describes the distribution of mass between the two stars in a binary 

system, when it forms. The IMRD can be expressed in the form:

IM R iq ) ex qs

where q is the mass ratio M2 / M i, M2 is the mass of the initially least massive compo

nent, and 5 is a free parameter. I consider s = 0 (a flat distribution) as the canonical 

value for this work. There is little agreement in the literature as to the precise form of 

the IMRD, though it appears to vary as a function of the primary mass. lanson et al. 

(2012) finds for M-dwarfs a best fit is a flat distribution, Duquennoy & Mayor (1991) 

favours a Gaussian distribution that peaks at q = 0.25 for G dwarfs while (Raghavan 

et al., 2010) suggest a distribution that favours equal sized objects (5 — 1). Finally, 

Goodwin (2013) argues that this can all be explained if instead of selecting stars via 

their primary mass in the IMF, instead the system mass is used. Combined with a 

flat mass ratio distribution this can then give rise to an apparent mass dependant 

IMRD.

The IOSD is modelled as log flat in orbital separation distribution (Kroupa & 

Petr-Gotzens, 2011):

IOSD = 0 a/RQ < 3
(2.5)

IOSD oc a~l 3<  a/RQ < 106

where a is the initial orbital separation. The lower limit is a simplistic cut (Hurley 

et al., 2002), while binaries beyond the upper limit are likely to be disrupted by pass

ing intergalactic stars (Heggie, 1975).

Raghavan et al. (2010) found that ~ 50% of systems were single star systems, with 

binaries making ~ 30% and the rest being higher order systems. This therefore gives 

us a single star fraction of 50% and as BiSEPS can’t model higher order multiple 

systems this implies the binary fraction is 50%. There is evidence that the binary
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volume:

Ps = JM TW DM ilnlOAM ! (2.12)

Combining equations 2.8,2.9 and 2.11 leads to:

Pb = 3 ln l0  x (M \qa ) x [lMF{M\)IMR(q)IOSD{a)) x (AlogMiAlogiV^Alogfl)

(2.13)

This value P can then be combined with the value of the time integral and Galac

tic volume integral to form the total num ber density of a stars evolutionary track at 

each point in its lifetime.

2.1.5 Magnitude of a system

To derive the apparent magnitude of a system we need to compute the absolute 

magnitude, which is based on the stars intrinsic luminosity. I first compute the rel

evant quantities in terms of the bolometric values. These are based on the total flux 

of the star integrated over all wavelengths. These bolometric quantities can then be 

computed for an individual filter band via bolometric corrections (BCs).

The systems bolometric luminosity, L, is given as an output of the SSE code. This 

is then translated into an absolute bolometric magnitude Mb0i via:

Mbol ~ Mboi.o = -2.5log(L/L©) (2.14)

where Mboi,© and L© is the absolute bolometric magnitude and bolometric lum i

nosity of the Sun, respectively. With the absolute magnitude I then translate this 

into an bolometric apparent magnitude and then into the apparent magnitude in 

the filter band the observations are made in. This requires the use of bolometric 

corrections, which translate the flux measured in a filter with the expected flux from 

in another filter. These values are highly dependant on the stellar parameters, tem 

perature, surface gravity and metallicity, due to the BC wavelength dependence. 

BiSEPS as of Willems et al. (2006) only had V band BCs provided by a polyno
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mial fit to Tef f  from Flower (1996). I use the tables provided by Girardi et al. (2002) 

to expand the possible filter sets BiSEPS can deal with. This expands the possible 

filter sets to include the Johnson-Cousins-Glass UBVRIJHK, Stromgren uvby/3, Sloan 

ugriz and Kepler Kp bands. The BCs are provided as a function of Tef f  and logg in 

the form of tables for different metallicities. They are based on the synthetic ATLAS9 

spectra for stars between 3900K < Tef f  < 50000K and 0 < logg [dex] < 5 (Castelli 

et al., 1997), and the BDdustyl999 atmosphere models (Allard et al., 2001) for stars 

with 700K < Tef f  < 3900K. Stars hotter than Tef f  > 50000K are treated as black- 

bodies. M giants are treated separately by using the empirical spectra of Fluks et al. 

(1994). These stellar spectra are integrated over the filter response curve to derive 

the bolometric corrections for a star in any filter system (Girardi et al., 2002).

I perform a bi-linear interpolation over Tef f  and logg for tabulated metallici

ties either side of a target metallicity and then a linear interpolate between the two 

metallicities. If the metallicity lies exactly on the boundary of the tables (for instance 

for Solar metallicity) then I use only that table. If the parameters of a star place it out

side of the range provided by the tables in Girardi et al. (2002) then the closest point 

inside the tables is used rather than risk extrapolating the data.

With the BC defined for a specific Teff ,  logg and metallicity I then calculate the 

absolute magnitude Mx of a star for a specific filter x  as

where L is the star’s bolometric luminosity, as delivered by the evolutionary model, 

MboI,q is the Sun’s bolometric magnitude and BCX is the BC for a star in filter band 

x. I calculate Mg0/)O in a self-consistent way from:

The Sun is taken to have Tef f -  5777K and logg = 4.44 [dex], giving J3Cy© = -0.06 

(Girardi et al., 2002). Defining the visual apparent magnitude of the Sun to be

( L (2.15)

M b o I , o  =  M y , e  + BCv,o (2.16)
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Figure 2.5: A comparison of Flower (1996) and Girardi et al. (2002) BCs over a range 
of Tef f  in the Johnson V band. Note Flower (1996) has no log g or metallicity depen
dence.

V© = -26.76 implies M y iQ = 4.81, and hence M b0i,q = 4.75 (Torres, 2010). For bi

nary systems I calculate each set of BCs separately, compute the filter dependant 

luminosity of each star, sum the two luminosities together and use this luminosity 

to compute the absolute magnitude of the system in the required filter band.

Comparing the results by Flower (1996) to Girardi et al. (2002), in fig. 2.5 we can 

see that that there is a reasonable agreement between the two sets of corrections for 

log Tef f  > 3.6K, though the differences increase with increasing radius of the star. 

Below log Tef f  < 3.6K the differences increase to at least an order of magnitude dif

ference. This is not unexpected as Flower (1996) notes there are uncertainties in the 

Tef f  measurements for cool objects which is also then combined with the limited 

sample size used, increasing the overall uncertainty.

2.1.6 Extinction

The extinction A \  in a given filter band is computed from the extinction A y  in the 

visual band, given by Drimmel et al. (2003), via the relation A \ l  A y  -  A, where A is a 

filter dependant coefficient (Girardi et al., 2008). A is calculated in a similar fashion
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to the BCs by taking a bilinear interpolation of Tef f  and log g  and then interpolating 

over A v (Girardi et al., 2008). I interpolate over A v due to A’s slight dependence on 

it via the “Forbes effect”, where extinction is stronger the higher the flux, while the 

metallicity dependence is minimal and thus ignored (Girardi et al., 2008).

2.1.7 Creating a discrete sample

The result of the above volume integration and weighting with initial distributions is 

a multi-dimensional, continuous (albeit binned) distribution function T that char

acterizes the content of the field-of-view at the current epoch. The total num ber 

(AO of stars and binary systems in the field is given by the sum over T. To obtain a 

representative synthetic sample of systems which can then be subjected to further 

selection processes I create a discrete synthetic sample of N  stars from this contin

uous distribution.

To this end I draw a random sample with replacement, of N  objects from the 

distribution function T. Each object in the sample is placed randomly at a location 

(/, b, d ) inside the field of view, based on the Galactic density, extinction and abso

lute magnitude of the system. Comparing the continuous distribution T to the sub 

sampled distribution shows no discernible difference as seen in fig. 2.6.

This sub sample then represents a magnitude limited complete synthetic cata

logue of stars in a field of view. Where we have the stellar parameters (mass, radius 

etc), the system properties for binaries (orbital separation) and the Galactic param 

eters (4D spacial and temporal location). This catalogue then forms the basis for 

further work, such that we can apply m easurement biases to better model that of 

a measured catalogue of stars. This can be done in multiple ways for instance; in

cluding noise terms in the magnitude; applying selection effects, like a colour cut; 

selecting systems that would be predicted to show variability, for instance EBs or 

asteroseismic signals.
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Figure 2.6: The distribution function T, solid bars, and the sub-sampled T, dotted 
line, for a population of ~ 11,000 stars, showing no discernible difference between 
the two methods.

2.2 Eclipsing Binaries

Eclipsing binaries (EB) occur when one star in a binary system passes in front of its 

companion star along our line of sight. As the star passes in front there is a grad

ual decrease in flux as the star orbits the companion, reaching a maximum before 

decreasing again until the star no longer blocks any of the flux from its companion. 

Eclipses come in two types, grazing eclipses and total eclipses. In a grazing eclipse, 

the eclipsing star passes only partially over its companion’s disk from our point of 

view. While in a total eclipse it passes entirely (though it may not cover the com pan

ion completely) over the disk.

Modelling the light curve of the system during the eclipse, is a complex process 

(Southworth et al., 2004). The basic model of this assumes that there are two cir

cles each of radius R\ and f?2 and both have uniform flux over their surface which 

allows us to express the change in flux AFIF purely geometricly (Mandel & Agol, 

2002). However there are complications to this picture; a star does not present a 

uniform flux to an observer over its disk, thus the change in flux is not equal to

Sub-sampled r
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the area covered during the eclipse (Wilson & Devinney, 1971); the stars projection 

along our line of sight may not be a circle of a constant radius, if for instance the 

star is distorted due to its companion (Morris, 1985). There are also many other fac

tors that may alter the light curve; for instance one star may be reflecting the flux 

from its companion (Wilson, 1990); star spots and stellar variability will change the 

flux emitted by the star during the eclipse and in eccentric binaries (not limited to 

eclipsing systems) the companion can induce pulsations in its companion (Thomp

son et al., 2012).

Therefore I use the j k t e b o p , as described in Southworth et al. (2004) and based 

on the e b o p  model by Popper & Etzel (1981). This computes a light curve for a given 

binary system by treating each star as a bi-axial spheroid and projecting this shape 

onto each star. This projection can then be integrated over concentric circles for 

each star, taking into account limb darkening, gravity darkening, reflection effects 

and ellipsoidal modulation to derive a light curve for the system. This light curve 

can then be subjected to a noise term and/ or background flux which dampens the 

eclipse signal.

2.2.1 Darkening coefficients

To derive the light curve I take into account two effects that alter the stellar lum inos

ity, as seen by an observer. Firstly limb darkening this is where the flux at the edge of 

the star appears less than the flux at the centre. Gravity darkening is also considered 

this is where the star under the influence of centrifugal force, due to its rotation, 

bulges at its equator. This alters the gravitational potential differentially between 

the poles and the equator changing the local temperature and hence luminosity.

The surface brightness of the disc of a star appears to get fainter the further from 

the centre we look. The light we see from the star, at a certain wavelength, will have 

been emitted at a optical depth t  below the photosphere. For light emitted at the 

centre of the disc, it only has to travel in the radial direction a distance of t  within the 

stellar atmosphere. But any light emitted at the edge of the stellar disc, that we see,
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must have travelled at some angle A relative to the radial vector. Thus the photons 

emitted at the edge must have travelled a longer distance o f  s  = t I cos A = r/ju where 

fi = cos A. Therefore we can describe the change in intensity as where 7(p) is the

intensity at a point on the surface of the apparent stellar disc and I (1) is the intensity 

at the centre of the disc.

Various relationships have been proposed for 

Linear (Al-Naimiy, 1978)

M  = 1 - ^ ( 1 - ^  (2.17)

Quadratic (Wade & Rucinski, 1985)

^ j j  = l - Cl( l - | u ) - c 2 ( l - / i ) 2 (2.18)

Logarithmic (Klinglesmith & Sobieski, 1970)

= 1 -  ci (l -  p) -  c2\i logp (2.19)

Power law (Claret, 2004)

= 1 -  ci (1 -  jU1/2) -  c2 (1 -  ji) -  c3 (l -  n 312) -  c4 (l -  ji2) (2.20)

where c/ are the limb darkening coefficients (LDCs). The more complicated for

mulae fit the data better, at the expense of introducing more free parameters in the 

form of the LDCs. These coefficients are calculated from stellar atmosphere m od

els, which means they have a dependence on Te f f , logg, metalicity and also on 

the wavelength being observed at. As modelling the entire stellar atmosphere is 

very complex and time consuming, many authors (van Hamme, 1993; Claret, 2004; 

Sing, 2010) have produced tables of coefficients, for various limb darkening laws 

and wavelengths, that can be interpolated over to cover a range of Te f f > logg and 

metallicity

I used a quadratic limb darkening law of Wade & Rucinski (1985) The LDCs were
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taken from the tables provided in Claret & Bloemen (2011) who provided them  as 

a function of Te/ / ,  log g, metallicity, microturbelent velocity, and wavelength band. 

Setting microturbelent velocity to 2km s_1 I perform a bi-linear interpolation over 

Tef f  and logg at a metallicity value either side of the targeted metallicity. Then I 

apply a linear interpolation between metallicity values, to derive the LDCs in the 

appropriate band pass. Claret & Bloemen (2011) derived the LDCs using both the 

a t l a s 9  and the p h o e n i x  model atmospheres, I choose to use the a t l a s 9  model over 

its whole range, 3500K < T ef f  < 50000K, and the p h o e n i x  model for a sub-range, 

2000K < Tef f  < 3500K. Note the BC tables go to Teff  -  700K while the limit for the 

LDC is Tef f  = 2000K, this is not an issue as the BiSEPS code does not evolve objects 

with M  < 0.1 M© and thus the minimum Tef f  is approximately 2500K.

As a star rotates it may become non-spherical as the centrifugal force forces m a

terial at the equator away from the rotation axis. At the equator the ratio of these 

forces with respect to gravity is greatest thus the radius increases at the equator. As 

the radius has increased, the surface gravity at the equator decreases and this lowers 

the emitted flux of the material at the equator making the equator appear dimmer. 

This can be expressed as a relationship between the flux and the surface gravity as 

F oc gP where the parameter is usually assumed to be f5 = 1.0 (von Zeipel, 1924) for 

radiative atmospheres and (3 = 0.3 (Lucy, 1967) for convective atmospheres.

I however use the work of Claret & Bloemen (2011) which derives (3 as a function 

of Tef f ,  logg, metallicity, microturbelent velocity and wavelength band. Under the 

same conditions and assumptions made for the LDCs, I bilinearly interpolate over 

Tef f  and logg and then linearly interpolate over metallicity to derive the gravity 

darkening coefficient (GDC).



Chapter 3

Kepler target selection

In this Chapter I create a synthetic Kepler input catalogue (K3C) and subject it to the 

Kepler Stellar Classification Program (SCP) method for determining stellar param 

eters such as the effective temperature Teff  and surface gravity g. I then compare 

this to my synthetic population model to determine the level of biases and selection 

effects inherent in the Kepler results.

I find a satisfactory match between the synthetic KIC and the real KIC in the 

log g vs log Tef f  diagram, while there is a significant difference between the actual 

physical stellar parameters and those derived by the SCP of the stars in the syn

thetic sample. I find a median difference A Tef f  = +500 K and ~ A logg = -0 .2  dex 

for main-sequence stars, and ~ A Tef f  = +50 K and A logg = -0 .5  dex for giants, 

although there is a large variation across parameter space. The error in the tem per

ature means most stars are hotter than expected thus their habitable zones will be 

further out than predicted. For a MS star the median difference in g would equate 

to a ~ 3% increase in stellar radius and a consequent ~ 3% overestimate of the ra

dius for any transiting exoplanet, which is comparable to the median uncertainty 

in planetary radius for Kepler. I find no significant difference between A Tef f  and 

A logg for single stars and the primary star in a binary system. I also re-created the 

Kepler target selection m ethod and found that the binary fraction is unchanged by 

the target selection. Binaries are selected in similar proportions to single star sys

tems; the fraction of MS dwarfs in the sample increases from about 75% to 80%,

38
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and the giant star fraction decreases from 25% to 20%. A num ber of giant stars were 

misclassified as dwarfs. This implies that a bias-corrected Tjeart^ for Kepler will be 

underestimated due to an increase in the num ber of null detections, as a planet is 

harder to detect around a giant star.

3.1 Introduction

The work in this chapter is based on results presented in Farmer et al. (2013).

The NASA Kepler mission (Borucki et al., 2010) is designed to detect transiting 

exo-earths in habitable zones around solar-like stars. To achieve this goal Kepler 

monitored around 150,000 stars for 4 years. The target stars were selected from a 

larger list, the KIC, according to a set of criteria that rank stars in order of the likeli

hood to display detectable transits of exo-earths in the habitable zone (Batalha et al., 

2010). The KIC covers the 116 square degrees of the Kepler field (Koch et al., 2010) 

and contains about 450,000 stars with magnitude brighter than Kp = 16 (where Kp 

is the magnitude in the Kepler band). This catalogue was established to derive phys

ical parameters for objects in Kepler’s field of view and to allow the selection of a set 

of optimal targets that would maximise Kepler’s chance of detecting an Earth-sized 

transit around a Sun-like star (Brown et al., 2011). The KIC itself was compiled from a 

ground-based survey using broad-band Sloan Digital Sky Survey (SDSS) filters with 

a flux precision of 2%.

Kepler’s Stellar Classification Program (SCP) (Brown et al., 2011) derived basic 

physical parameters of all KIC stars, chiefly the effective temperature Tef f ,  surface 

gravity g, and metallicity logZ/Z©, and, by comparison with suitable stellar models, 

the stellar mass, radius and age, using only the observed broad-band magnitudes 

and colours of these stars as an input. The target selection in turn is based on these 

stellar classification program (SCP)-derived stellar parameters.

These SCP -derived parameters may suffer from random and systematic uncer

tainties introduced because the measured magnitudes of a star may differ from its 

true, intrinsic magnitudes, and because colours alone will not always unambigu-
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ously deliver appropriate estimates of the physical parameters. This will in turn 

translate into a bias of the statistical properties of samples drawn from Kepler data, 

including the exoplanet candidate sample itself, or the sample of binary stars with 

Kepler light curves.

It is therefore im portant to critically examine the performance of the SCP ap

proach, and the consequences of any inherent systematic bias for the actual Kepler 

target list, and for subsamples created from Kepler data. To this end I create a syn

thetic version of the KIC, using the BiSEPS code which is then validated against 

the actual KIC in colour-magnitude space. I then employ the SCP technique to de

rive "apparent" stellar parameters for all stars in the synthetic sample, i.e. exclu

sively from their magnitudes in different colour bands. Then I investigate the differ

ence between the actual, physical parameters of the synthetic stars, and their SCP 

-derived parameters.

Due to bandwidth limitations Kepler does not observe every object in the KIC, 

instead a target list is drawn up that aims to maximise the science return on the 

targets observed. This list is determined on the basis of the SCP -derived parameters 

and the expected flux levels, aiming to increase the fraction of Sun-like stars and 

decrease the fraction of giants in the sample. I aim to reproduce the target selection 

procedure and apply it to the synthetic sample of the KIC, to quantify the resulting 

bias against giants on the basis of the actual, physical parameters of the synthetic 

KIC stars.

In section 3.2 I model the processes involved in deriving the Kepler target list. 

Sections 3.3.1-3.3.31 evaluate the effectiveness of my target selection model. In sec

tions 3.3.4-3.3.61 evaluate the effectiveness of the SCP and the target selection pro

cess. Finally in sections 3.4 and 3.51 discuss my results and present my conclusions.

3.2 Kepler target list selection

Out of the possible 450,000 stars in the Kepler field, only ~ 150,000 can be observed 

at any one time due to bandwidth limitations. Therefore Kepler uses a tailored target
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list selected according to a num ber of criteria designed to maximise the likelihood

for the detection of Earth-like transits in the star’s habitable zone (Batalha et al., 

2010). To be able to generate a synthetic target list from the synthetic sample that 

would reproduce the actual Kepler target list, I created my own model of the Ke

pler detector system and target selection method. Following the procedures as set 

out in Brown et al. (2011), Bryson et al. (2010b) and Batalha et al. (2010) this en

tailed the following principal steps: (a) derive estimates of the system parameters 

from broad-band colours using the SCP routine, (b) construct a model of the ex

pected S/N measured by each pixel, and then combine (a) and (b) to calculate the 

likelihood of detecting Earth-like transits in the star’s habitable zone.

In essence, to compile the target list the stars are ranked in terms of the mini

mum radius Rp,min of a planet that can still be detected securely in the absence of 

intrinsic stellar noise within the nominal 3.5 yr mission. The radius Rp,min is ob

tained by requiring that the relative transit depth in flux F, AFIF = CRpIR*)2, where 

R* is the stellar radius, exceeds a suitable multiple of the light curve noise a tot• This 

becomes

(Equation 7 of Batalha et al., 2010) where r is a crowding metric and discussed below. 

Choosing to set the noise level to 7.1cr also implies that there would only be one 

statistical false positive signal due to random fluctuations in the data set (Batalha 

etal., 2010).

I now discuss the different factors in equation 3.1.

3.2.1 Stellar classification

The determination of physical parameters of all KIC stars, including the stellar ra

dius R*, is the remit of the SCP . This uses a Bayesian posterior probability estima

tion method to derive a star’s Tef f ,  logg, logZ/Z©, luminosity, mass and radius from 

its observed colours (Brown et al., 2011).

The two-step procedure is based on two sets of input models. Stellar atm o

(3.1)
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sphere models of Castelli & Kurucz (2004) were combined with filter response func

tions to determine the expected colours. This was defined for objects between 

3500K <T ef f <  50000K, 0 < logg cm s-2 < 5.5 and -3 .5  < log(Z/Z©) < 0.5 (although 

not every gravity is available at every temperature), while stellar evolution tracks of 

Girardi et al. (2000), assuming a constant star formation rate and solar metallicity, 

link these with the stellar mass and radius.

Bayesian priors based on the Tef f ,  logg distributions of stars observed by the 

Hipparcos satellite (Perryman et al., 1997), the logZ distribution from Nordstrom 

et al. (2004) and a Galactic distribution model from Cox & Pilachowski (2000) are 

employed to focus the search in parameter space. The claimed advantages of a 

Bayesian approach is that the chosen priors, a set of known distributions of the pa

rameters, rule out implausible systems which a standard %2 minimisation technique 

might obtain. However shortcomings were noted in Brown et al. (2011); the m etal

licity distribution is only valid statistically and not on an individual star basis, Tef f  

is unreliable for the hottest and coolest objects and there are systematic errors in 

logg for objects with g - r >  0.65.

For each object in the BiSEPS synthetic sample I supply the calculated g,r,i,z 

and D51 magnitudes as an input for the SCP code, to estimate the object’s physi

cal parameters in the same way as the SCP did for the stars in the real KIC1 (Brown 

et al., 2011). The SCP code takes into account magnitude uncertainties, and for sim

plicity I assume a value of 0.02 mags in each band for all stars, which is the quoted 

photometric precision for objects with Kp < 15, as measured by the SCP (Brown 

et al., 2011). As the KIC required excessive exposure times in the u band it is ex

cluded from the fitting process by selecting a large photometric uncertainty for it. I 

also found that the J, H and K magnitudes had little effect on the results, and thus 

excluded these bands as well, to reduce the num ber of unnecessary fit parameters 

and save CPU time (see section:3.3.2).

For simplicity I followed the SCP approach and adopt a single value of A for all

1http://www.cfa.harvard.edu/kepler/kic/kic/index.htm l

http://www.cfa.harvard.edu/kepler/kic/kic/index.html
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Filter Extinction coefficient(A)
g 1.193
r 0.868
i 0.681
z 0.490
D51 0.999

Table 3.1: Extinction coefficients for a 5000 K, logg = 4.0,log(Z/Ze) = 0.0 star, from 
tables provided in Girardi et al. (2002)

stars in each filter band, neglecting the real dependence on Tef f , \ o g g , Z  (Girardi 

et al., 2002), I chose the coefficients of a 5000 K, logg = 4.0,log(Z/Z©) = 0.0 star 

(Girardi et al., 2002), which are given in Table 3.1. These coefficients are for the same 

star as used in the generation of the KIC (Brown et al., 2011)

3.2.2 S/N determination

Determining the expected S/N for an observation requires knowledge of Kepler’s 

noise characteristics, a model for which exists in Bryson et al. (2010a), however the 

tools required are not publicly available and therefore I re-derive them  here.

To calculate the S/N expected for each synthetic system from its Kp magnitude 

and the system’s RA and dec we require a model of Kepler’s focal plane geometry 

(FPG) which is derived here.

To place the synthetic star on Kepler’s focal plane I obtained its pixel coordi

nates by extrapolating those of the closest m atch in the actual Kepler data set, based 

purely on the star’s RA and dec2. Stars near the centre of the field have an almost 

circular pixel response function (PRF), while near the edge the PRF is elongated 

towards the centre of the field (Bryson et al., 2010b). Thus the PRF s are both a func

tion of CCD and pixel location of the system. Bryson et al. (2010b) defines a set of 

5 PRF s for each CCD, four in the corners and one in the centre. Each of these PRF 

s gives the flux distribution over a n x n  pixel array, with usually n -  11 but occa

sionally n -  15, for a star centred in the middle of the grid. Examples are shown in 

fig. 3.1, highlighting the differences between the PRF depending on location in the

2http://keplergo.arc.nasa.gov/ContributedSoftwarePyKEP.shtml

http://keplergo.arc.nasa.gov/ContributedSoftwarePyKEP.shtml
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Figure 3.1: The flux distribution for two of Kepler’s CCDs, highlighting the differ
ences in the PRF depending on their location in Kepler’s focal plane. Figure (a) is 
near the centre of the focal plane and thus the flux is concentrated in the centre, 
while (b) is near the edge of the focal plane and its PRF is elongated along the axis 
of deflection of the Kepler CCDs. The axis in both cases is a nominal pixel location

CCD array. To derive the PRF of a synthetic system I linearly interpolate between 

the 2 nearest corner PRFs and the central PRF .

In this way I build up a full frame image (FFI) of all synthetic stars in the Kepler 

field down to a limiting magnitude of Kp = 19. This was chosen as the assumed 

zodiacal light emission equates to a 19th magnitude star on each pixel (Jenkins et al.,

With the FFI in place I can determine the noise per pixel, as described in Cald

well et al. (2010) and summarised here. For each synthetic star I calculate the PRF 

and subtract this from the FFI to obtain an image of the system on its own as well 

as of the background around the system, including the zodiacal light.

I convert the flux to electrons via

2004).

(3.2)

where f u  = 1.74 x 105e- s-1 is the photoelectric signal for a G2 V star with Kp = 12 

(Jenkins et al., 2010b). The resulting flux distribution across part of one of Kepler’s 

CCD, for the synthetic sample, can be seen in fig. 3.2a I then apply smearing to each
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image, by summing the flux of each pixel in each column, multiplying by the read 

time of 0.52s, dividing by the num ber of rows and adding this to each pixel, the effect 

of which can be seen in fig. 3.2b.

At this point I apply a saturation model by ‘rolling over’ the electrons which are 

above the well depth (Caldwell et al., 2010), as seen in fig. 3.3a. This is done by per

forming a 50/50 split of the overflowing electrons, moving half of them  up the pixel 

column and half down the pixel column, with each subsequent overflow moving 

electrons in the same direction; until such a point that the num ber of electrons per 

pixel is at most the well depth (Van Cleve & Caldwell, 2009). A charge transfer ef

ficiency (CTE) model is then applied with a value of 0.99993 for the parallel reads 

and 0.99995 for the serial reads (Van Cleve & Caldwell, 2009) as seen in fig. 3.3b. 

The effect of the CTE in fig. 3.3b can bee seen as a slight increase in the num ber 

of electrons to the right and up from the peak saturated pixels seen in fig. 3.3a. For 

simplicity I assume the the change due to the CTE is small and does not require us 

to recompute which pixels are saturated.

With both images now expressed in electrons and the various systematics ap

plied I calculate the S/N ratio for each pixel using

S / N  = (3.3)
®ccd

and

Occd = ^ S  + B g  + u 2read + v 2quant (3.4)

In this version of the CCD equation the signal S and background Bg  are given in 

electrons, while the read noise crread ~ 100e~ per read is CCD dependant (Van Cleve 

& Caldwell, 2009) and the quantisation error OqUant is given by (Bryson et al., 2010a):

[T ( w  )
< T q u a n t - \ j —  ( 2 j v w , r i j -  t 3 - 5 )

Here the CCD well depth W is of order ~ 106e“ per pixel (though it is also CCD de

pendant, see Van Cleve & Caldwell (2009)), and Nbits = 14 denotes the num ber of
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(b) The distribution of charge after I have applied smearing, which acts to distribute charge 
along a column.

Figure 3.2: Each plot represents a section of a Kepler CCD as I generate a synthetic 
image, (a) The raw flux image and (b) image after application of smearing.
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(a) The distribution of charge after I have taken into account saturation effects, which 
provides a maximum am ount of charge that can be held by any pixel; any extra charge 
is moved to the next pixel in the column.

400
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(b) The distribution of charge with CTE taken into account. This models the charge that 
gets left behind during readout process and increases the am ount of charge for pixels 
above and to the right of a pixel.

Figure 3.3: (a) with the saturation model applied, (b) Final image after application 
of a charge transfer efficiency (CTE) model. In all cases the axes indicate the pixel 
locations.
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Figure 3.4: Optimal aperture (black dots) of a star. Note how the aperture is non 
uniform, unlike the PRFs in fig. 3.1. This is due to the background stars reducing the 
S/N of the target star

bits the data is quantised to. This gives crquant ~ 30e~ per pixel.

The pixels are ranked in order of decreasing S/N and summed in quadrature, 

until the sum of the S/N is maximised, thus defining the optimum aperture for the 

star. This is repeated for each star with Kp < 16. A representative optimal aperture 

is shown in fig. 3.4.

The total photometric error crtot is obtained from the S/N value, scaled by the 

total number of individual integrations while the system was in transit over the en

visaged 3.5 years of the mission. This num ber is the product of the 270 integrations 

co-added together in one long-cadence (30 min) observation, the num ber N sampie 

of long cadence observations that fit in a single transit, and the num ber N tr of tran

sits in 3.5 years. The total photometric error is thus:

For randomly distributed inclinations of circular orbits the average transit duration 

is toJi/4, where tq is the duration of a transit that is central across the star. Nsampie is

N
(J tot — _____________

S x \/270NsampieN tr
(3.6)
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then r0(tt/4)/30 min. The central transit duration is calculated as

, (3.7)

with the stellar mass M* derived from the SCP, and with the semi-major axis a taken 

at three different locations, 5F*, 0.5H* and H*. The quantity H* is the characteristic 

distance of the habitable zone (HZ) for the star in consideration and is given by

0.95 vL*7L© (Batalha et al., 2010).

The final term required for evaluating equation 3.1 is the crowding metric, r, 

which is given by Batalha et al. (2010)

F*
r = ----- -—  (3.8)

F* + Fbg

where F* is the flux from the star in the optimal aperture before addition of the 

systematics, and F^g is the flux from the background in the optimal aperture before 

addition of the systematics but after the zodiacal light has been added.

3.2.3 Testing the target selection code

With Rp}min calculated for each synthetic star in the field-of-view I can draw up a 

ranked list of stars in order of increasing R p,min• The subset of systems with a de

tectable terrestrial sized transit in the habitable zone, i.e. Rp,min ^  2Re (where Re 

denotes the radius of the Earth) includes a large num ber of objects, ~ 60%, that are 

too faint ( Kp > 15.0) for radial velocity follow up. Thus an additional prioritisation 

scheme is employed, the details of which are given in table 1 of Batalha et al. (2010). 

In essence, the highest priority stars are those with Rp,min ^  2Re in the HZ, with a 

magnitude bright enough to perform high precision radial velocity on ( Kp < 14), 

followed by those with 14 < Kp < 16. Then there are those with detectable Earth

sized planets at a = 0.5FI* or a = 5F* (these deliver a larger num ber of transits over 

the lifetime of the mission), and finally those with Rptmin < 2 R e in the HZ around the 

faintest stars. Batalha et al. (2010) divides the sample into 13 classification groups,
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with the 11 highest priority groups making up the target list.

To test the target selection code I apply it to the actual KIC and compare the 

target list we obtain with the Kepler Quarter 2 (Q2) data set which I use as a proxy 

for the actual Kepler target list. We chose Q2 as the catalogue of objects defined 

in Batalha et al. (2010) is not publicly available, and because both Quarter 0 and 

Quarter 1 were affected by commissioning of the Kepler instrument. In Q0 only 

~ 50,000 stars were observed (Borucki et al., 2011a), while Q1 had over-sized aper

tures (Borucki et al., 2011b), thus a reduction in the num ber of faint, Kp = 15 -  16, 

stars. I chose not to use later quarters either because after each quarter some targets 

are removed due to follow-up work, or added due to the guest observation program. 

Tenenbaum et al. (2013) shows that in the first 12 quarters, 60% of objects were ob

served for all 12 quarters. A further 15% were observed for 10 quarters; these pre

dominately are systems falling on the CCD module that failed during quarter 4, and 

thus were only observable for 75% of the time.

I show the magnitude distributions of the synthetic target list and that of the 

actual target list in fig. 3.5a. The discrepancy seen is primarily due to giant stars, 

here defined as stars with logg < 3.5, highlighted in fig. 3.5b. I could not attribute 

these differences to inadequacies in my implementation of the target selection and 

SCP code and rather suspect that at least some differences exist because the actual 

Q2 list will have had some objects added or removed from the original list of objects 

as defined in Batalha et al. (2010).

To achieve a better agreement I applied a series of ad-hoc corrections to my tar

get selection criteria:

1. For faint objects (14 <Kp < 16), if R p>min ^  2.0Re for a = H*, I redefine the se

lection criterion to R p,min ^ 2.4f?£. This increases the num ber of faint dwarfs.

2. All objects that saturate at least one pixel are included, if they have not already 

been placed into one of the groups in Batalha et al. (2010). This predominantly 

increases the num ber of bright giants.
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Figure 3.5: Normalised magnitude distribution of stars selected by my procedure 
(blue). Left: all systems, no ad-hoc corrections. Middle: only giants, defined as ob
jects with KIClogg < 3.5, no ad-hoc corrections. Right: only giants, but with ad-hoc 
corrections. Shown in green in panel (a) is the Q2 target catalogue, while in panels 
(b) & (c) it is the giants from the Q2 catalogue.

3. All objects with 3 < <10 and magnitude Kp < 14 are included, if they

have not already been placed into one of the groups in Batalha et al. (2010). 

This is purely ad-hoc and is designed to increase the num ber of bright giants.

With these corrections in place I consider the match between the reproduced and 

actual target list satisfactory (see fig. 3.5c) and sufficient for the study of system 

properties presented in the following sections.

3.3 Synthetic population of Kepler stars

I now present the synthetic Kepler field population, covering both the synthetic 

KIC and the synthetic target catalogue which emerges from it. I compare the ac

tual physical properties of the synthetic stars with the properties these stars appear 

to have when analysed with the SCP method.
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3.3.1 Sample size

Using the population synthesis parameters described in Chapter:2,1 obtain a total 

of ~ 353,000 objects in the synthetic KIC, compared to the ~ 416,000 objects in the 

real KIC. Increasing the Galaxy-wide SFR from the default value of 1 star yr-1 with 

M  > 0.8M© to 1.2 stars yr-1 increases the num ber of systems in the synthetic sample 

to ~ 425,000. Changing the global scale factor in this way to achieve a better match 

with the observed KIC does not affect the relative distribution of the stars in the 

synthetic sample, but it can play a role in the target selection due to its effect on the 

background flux. For the following work I use the increased value of the Galaxy-wide 

star formation rate (SFR).

3.3.2 Distribution in colour-colour diagram

The distribution of KIC objects with Kp < 16.0 in the r - i v s  g - r  colour-colour dia

gram is shown in fig. 3.6. The left panel shows the synthetic KIC (fig. 3.6a) while the 

right panel displays the real KIC(fig. 3.6c) In (g -  r) - ( r -  i) colour space, effective tem 

perature decreases from left to right and metallicity acts essentially perpendicular 

to the main band of systems, with higher metallicities having lower r - i .  The fork at 

g -  r ~ 1.5 is where the dwarfs (top branch) split from the giants (lower branch), and 

is located at Tef f  ~ 3500 K. The distributions of the synthetic and real KIC display a 

reasonable agreement in the overall shape, however I found that when I applied the 

SCP code to the synthetic sample, the resulting derived physical parameters were 

very sensitive to the precise location of the stars in the colour-colour diagram.

I therefore implemented a set of corrections to force a yet better agreement be

tween the colour-colour distributions, the result of which can be seen in the middle 

panel of fig. 3.6.1 applied a set of three correction terms: a linear offset in each filter 

band, a colour-dependant term, and a Gaussian perturbation in each filter band. 

The rationale for this approach is provided by Pinsonneault et al. (2012) who found 

a linear offset and a colour dependant difference term when comparing the magni

tudes measured by the KICand by the SDSS. The Gaussian perturbation applied to
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all magnitudes on the other hand acts to widen the main band in the colour-colour 

diagram, mimicking a more realistic, continuous metallicity distribution (rather 

than a bimodal one) and the effect of photometric uncertainties.

I tested the corrections presented in Pinsonneault et al. (2012), which translate 

the KIC based magnitudes into SDSS based magnitudes, however these lead to u n 

satisfactory fits in the resulting SCP derived parameters. This suggests that the ef

fects of a systematic shift between SDSS and KIC magnitudes, the simplified m etal

licity distribution, and superimposed photometric uncertainties can not be sepa

rated into three independent corrections that would stand on their own.

To derive the corrections I applied a least squares minimisation procedure, fit

ting the linear offset and colour terms simultaneously, using the distributions of the 

synthetic and real KIC in the following colour-magnitude diagrams: g vs ( g -  r), r vs 

(r -  i), i vs (r -  i), z vs (i -  z), and D51 vs (r -  D51). For the Gaussian terms I also 

used a least squares minimisation procedure to find its width for each filter band, 

fitting in colour-colour space. I draw a random  num ber from a standard normal dis

tribution, using the same random num ber for each filter, scale it by the estimated 

width of a Gaussian centred on the magnitude derived for the object in question, 

and repeated this for each system. This was performed for the colour-colour distri

butions in (g -  r) vs (r -  i) and (z -  r) vs (r -  D51), while not allowing r to vary, to 

derive Gaussian width coefficients for g, i, z and D51. The procedure leads to the co

efficients quoted in Table 3.2. The corrections are derived and applied to the model 

magnitudes after the application of the extinction model (section 2.1.2) and redden

ing (Table 3.1). The magnitudes for stars from the KIC, being observational derived, 

already have extinction and reddening applied.

Comparing the three colour-colour diagrams in fig. 3.6 it can be see that the cor

rections have had the desired effect. The agreement between the corrected synthetic 

sample (middle panel) and the reference sample (right panel) has improved in two 

im portant aspects: there is a better m atch of the location of the peak density, and 

the width of the main band has also increased. Whilst there are still some areas of
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Filter Linear offset (1) Colour term (c)
g
r
i
z
D51

-0.01819
-0.01192
-0.02209
-0.01313
-0.0222

0.02535(g -  r) 
0.05728(r -  i) 
0.09656( r -z )  
0.08599(i - z )  

-0.0571(r -  D51)

0.01921
0.0

0.00995
0.02611
0.00001

Table 3.2: Correction terms applied to the calculated KIC magnitudes according to 
X'j = Xj + I + c + a 2(p, where Xj  is the magnitude in filter bands j  = g, r, i, z, D51 and 
0  is a random number drawn from a standard normal distribution.
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Figure 3.6: Distribution of objects in a r -  i vs g -  r colour-colour diagram, (a) The 
synthetic KIC sample obtained by population models (b) the synthetic KIC sample 
after the application of magnitude corrections terms (c) the real KIC Q2 data set.

improvement, for example there appear to be too many objects with g -  r < 0.6 in 

the synthetic sample, which would translate into too many 'hot’ dwarfs after target 

selection, and there is a lack of the reddest dwarfs, with r - i >  1.5, the bulk features 

of the synthetic sample are in satisfactory quantitative agreement with the reference 

sample for the purpose of the analysis presented below.

After publication of Farmer et al. (2013) a issue was found in the derivation of 

the bolometric correction (BC), specifically the metallicity used would always be the 

most metal poor for which I had data, which was [MlH] = -2.5. Thus the colours 

of the stars would be not be correct. However, because I had applied the colour cor

rections in table 3.2 which acts to smooth out differences between the synthetic 

sample and the KIC in colour-colour space, this issue is not as severe as it appears.
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Filter Linear offset (1) Colour term (c) a 2
g
r
i
z
D51

0.00687
-0.0179
-0.0202
-0.0195

-0.03211

-0.00675(g- r) 
0.08653(r- i) 
0.09685(r- i) 
0.09975(i-z) 

-0.06871(r-D51)

0.00703
0.0

0.01758
0.00074
0.00055

Table 3.3: New correction terms applied to the calculated KIC magnitudes according 
to X j  = X j  + I + c + where Xj  is the magnitude in filter bands j  = g, r, i, z, D51 
and (p is a random num ber drawn from a standard normal distribution.

Comparisons of the synthetic SCP parameters with the old and new BCs, after each 

set of colour corrections have been applied, show no appreciable difference. The 

corrected set of colour corrections are in table 3.3:

For the rest of this chapter I use the first set of colour corrections and the im 

properly derived BCs, while subsequent chapters use the new correction terms and 

the proper BCs.

3.3.3 Stellar parameter distribution

Based on the corrected magnitudes we subjected all objects in the synthetic sample 

to analysis with the SCP code, and thus determined their ‘apparent’ physical pa

rameters, as obtained by the SCP . I can compare the actual physical properties (as 

determined by the population model) and the SCP -derived properties of synthetic 

KIC stars, and check if there are significant differences between the two. By impli

cation, I expect that any such differences would also be present in the real KIC. For 

this comparison I focus on the distribution of synthetic KIC stars in the log Tef f  - 

logg diagram, as these are the most reliable parameters derived from the SCP .

I first present the distribution of the actual parameters of the synthetic sample 

(fig. 3.7), broken up by evolutionary type. For the binaries in the sample I show the 

location of the primary star (except in panel e, see below). The systems occupy a 

region with a bird-like shape with two prominent ‘wings’ and a long ‘neck’ towards 

large g  and small Tef f .  The location of this region is outlined in black in panels a-e 

of the figure. The ‘neck’ in fact consists of two narrow, essentially parallel branches
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which result from the bimodal metallicity distribution in my population model. The 

lower branch is occupied by the lower metallicity, Z  = 0.0033, main sequence (MS) 

stars, while the solar metallicity MS stars are in the upper branch. The high Tef f  

‘wing’ is comprised of higher-mass MS stars while the other, lower Tef f  ‘wing’ is 

comprised solely of evolved stars.

Panel a of fig. 3.7 shows the distribution of MS stars (‘dwarfs’), while panel b 

shows Hertzsprung gap and giant branch (GB) systems. In panel c I display core 

helium burning (CHe) systems, and panel d shows asymptotic and thermally puls

ing giant branch (AGB) systems. In fig. 3.7e I show the distribution of the secondary 

components in binary systems; comparing with fig. 3.7a, and in particular with the 

black outline, it can be seen that in general the secondaries are more clustered at the 

low Tef f ,  high g end of the diagram. This implies that they in general have a lower 

mass or are less evolved than their primary companions, reflecting the fact that they 

were the lower mass component at birth of the binary.

Figure 3.7f shows the distribution of white dwarfs (WD) that are in a binary sys

tem. The synthetic sample contains no single WDs, but there are a very small num 

ber of binaries with a neutron star component (249 for the adopted input parameter 

set). I do not investigate the distribution of these NS systems further as the model 

currently treats them  in a simplistic way.

I now turn to the corresponding distribution of the synthetic sample over the 

‘apparent’, SCP -determined values for log Tef f  and logg, shown in fig. 3.8. To aid 

the comparison with the previous figure a grey-shaded area indicates the region the 

synthetic sample occupies in fig. 3.7.

Panels a-d in fig. 3.8 display the same stellar subtypes as panels a-d of fig. 3.7. 

The ‘neck’, made up of low-mass MS stars, is wider in fig. 3.8a than in fig. 3.7a, and 

obviously is not bimodal. The ‘neck’ is also at roughly constant g, while in the actual 

parameter space (fig. 3.7a) g increases with decreasing Tef f .  The ‘wing’ of higher- 

mass, more evolved MS systems (towards large Tef f ) in fig. 3.8a is shorter than its 

analogue in fig. 3.7a. Comparing panel b in Figs. 3.8b and fig. 3.7b reveals that giant
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branch stars extend over a similar range in Tef f  and g, however in fig. 3.8b some 

of the giants appear at low Tef f  along the ‘neck’, with a small gap between the bulk 

of the GB stars and these outliers. The CHe systems in fig. 3.8c are less constrained 

in Tef f - g  space than in fig. 3.7c while also having a small population in the ‘neck’. 

Finally, the AGB systems in fig. 3.8d appear mosdy in the ‘neck’ rather than the ex

pected low g ‘wing’ as seen in fig. 3.7d. The MS stars, or ‘dwarfs’ (fig. 3.7a & 3.8a) are 

well constrained by the requirement logg > 3.5. However the more evolved objects 

(fig. 3.7b-d & 3.8b-d) are not constrained by logg alone. So a selection based purely 

by logg will be able to include or exclude dwarfs, but not giants. This has ramifi

cations for the bulk characteristics of the exoplanet candidate systems (Gaidos & 

Mann, 2013). If the classification is purely based on logg, then the giants that are 

misclassified as dwarfs will increase the num ber of systems with a null detection, 

as their radius is larger. This is because the size of the transit is proportional to the 

ratio of the radii, thus a larger star implies a smaller transit, thus a planet is harder 

to detect. Thus the bias corrected planet occurrence rate will be lower than it truly 

is.

There is no analogous version for panel e of fig. 3.7 as the SCP treats all objects 

as single stars. Instead fig. 3.8e shows how systems with a WD component would ap

pear after the SCP analysis. I find that the resulting distribution is not significantly 

different from systems without a WD, confirming that there is no systematic way to 

identify WD systems from KIC parameters alone. This lack of difference is due to the 

fact that the WD’s luminosity is at least a factor of 100 less than its companion’s lu

minosity, thus its flux is negligible for the colour bands that determine the solution 

in Tef f  and g.

Finally fig. 3.8f shows the real KICstars (for Q2), with the black contour outlin

ing the distribution of the SCP -processed synthetic KIC, demonstrating satisfactory 

agreement in terms of overall shape and distribution. The only significant difference 

remaining is the lack of a continuous giant branch track towards the lowest g values.
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Figure 3.7: The distribution of the synthetic KIC sample over the log Tef f  - logg 
plane, for different system types. Tef f  and g are the actual physical parameters of 
the population model stars. In case of binaries the location of the primary is shown 
in panels a-d. The black contour outlines the region occupied by the combined syn
thetic sample, (a) Main-sequence (MS) stars; ‘dwarfs’; (b) Hertzsprung gap and giant 
branch (hereafter GB) stars; (c) core helium burning (CHe) stars, (d) asymptotic and 
thermally pulsing giant branch (AGB) stars, (e) secondary components of a binary 
system, excluding systems containing a white dwarf (WD) or neutron star (NS); (f) 
WDs (these are all in binaries; there are no single WDs in the synthetic sample).
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Figure 3.8: The distribution of log Teff  and logg derived for the synthetic sample 
using the procedure in the SCP, for different stellar types: (a) MS stars, (b) GB stars, 
(c) CHe stars, (d) AGB stars and (e) systems containing a WD. Panel (f) shows the 
distribution of the Q2 data set from the SCP . In all panels the contour indicates the 
region covered by the combined synthetic distribution, while the grey-shaded area 
indicates the region covered by the distributions seen in fig. 3.7
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Type Singles
Pre Post Relative difference

MS 73.7% 79.6% +8.0%
GB 15.7% 10.2% -35%

CHe 10.1% 9.4% -6.9%
AGB 0.4% 0.6% +50%

Total num ber 208,697 104,664 -50%

Table 3.4: The relative distribution of stellar types among the single stars in the syn
thetic sample, before and after target selection.

3.3.4 Post-target selection distributions

After applying the target selection code described in Section 3.2.1 to the synthetic 

population of stars we can investigate how the target selection criteria affect the 

different evolutionary types of systems compared to their intrinsic distribution.

In terms of total num ber of objects, the synthetic KICsample was made up of 

424,511 objects (208,697 single stars and 215,814 binary systems). This is reduced to 

214,747 objects (104,663 single and 110,084 binaries) after target selection. The real 

KIC data set contains 405,789 stars while the Q2 catalogue contains 165,434 objects. 

Thus the specific synthetic sample I chose to work with has 5% more objects than 

the KICto begin with, and 20% more objects after target selection compared to the 

Q2 dataset. The pre-target selection num ber of objects could be m atched perfectly 

by fine-tuning the underlying global Galactic SFR, but this would not affect the frac

tion of stars being selected as a target - ~ 50% for the synthetic vs ~ 40% for the Q2 

stars.

I find that the binary fraction of the sample remains largely unaltered near the 

50% level after the application of the target selection, thus I conclude that the target 

selection procedure does not select binaries differently than it does single stars. The 

synthetic sample contains slightly more binaries than single stars, due to binaries 

being inherently more luminous and thus a magnitude-limited sample will probe a 

larger volume of the Galaxy; however this difference is negligible.

Tables 3.4 and 3.5 show how the relative contribution from the different stellar 

and binary types change after the target selection. The relative fraction of MS and
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Type Binaries
Pre Post Relative difference

MS&MS 68.1% 74.8% +9.8%
GB&MS 11.7% 6.3% -46%
WD&MS 8.0% 8.5% +6.3%
CHe & MS 5.7% 5.5% -3.5%
WD&GB 3.3% 1.7% -49%

WD & CHe 2.0% 1.85% -7.5%
GB & GB 0.28% 0.17% -39%

Total number 215,814 110,084 -49%

Table 3.5: The relative distribution of binary classes in the synthetic sample, before 
and after target selection. Note this list has been truncated, the remaining types 
make up < 0.2% individually and 1% combined.

MS+MS objects increases by ~ 10%, while the fraction of systems containing a giant 

decreases by ~ 40%. The original aim of the Kepler target selection was to prioritize 

Sun-like stars (Batalha et al., 2010), while also removing giant stars where Earth

sized transits are harder to detect (Borucki et al., 2011a). My analysis shows that 

the target selection largely succeeded in this goal, and our simulations allow one to 

quantify the bias this procedure introduces to the stellar sample.

The fraction of single CHe stars is almost unchanged after the target selection, 

most likely due to the fact that most of them  are misclassified into the dwarf region 

of log Tef f  - logg space. The fraction of single AGB stars increases by 50% but is 

overall very small. The CHe+MS binary systems are also unaffected by the target 

selection, while binaries containing an AGB star, or CHe+GB systems, are too rare to 

draw conclusions from.

The change in the contribution of binaries containing a WD depends on the na

ture of the WD’s companion. WD+MS systems are essentially unaffected. The frac

tion of WD+GB systems on the other hand is almost halved, which is again a con

sequence of the fact that the giant dominates the combined flux in the griz mag

nitudes, and thus the SCP parameter estimation is not significantly altered by the 

presence of the WD.

In figs. 3.8b-d there are systems that contain a giant star that sit in the ‘neck’, 

that have been misclassified as dwarfs. I define these misclassified systems as sys
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tems which are GB or AGB, or GB/AGB + GB/AGB systems as having SCP derived 

parameters Tef f tSCp < 5000 K and logg5Cp > 4.0. In this region there are 32,929 sin

gle stars misclassified and 25,228 binary misclassified systems in the non target se

lected sample. In the target selected sample this is reduced to 8,622 singles and 6,494 

binaries that are misclassified. This equates to 26% of the assumed MS dwarfs, in the 

range Tef f >scp < 5000 K and log gscp > 4.0, are in fact misclassified giant stars in the 

non target selected sample. In the target selected sample this rate increases to 35%. 

However, these misclassified systems make up only ~ 6% of the overall target list. 

The num ber of these misclassified systems can be estimated from asteroseismol- 

ogy, as seen in Huber et al. (2013). Here ~ 90% of the giants identified in a sample 

of planet candidate stars from Mann et al. (2012) could be identified via their aster- 

oseismology signal as being giants, when compared to the luminosity classification 

in Mann et al. (2012).

3.3.5 Effect of target selection

The impact of the target selection can be visualised in the log Tef f  - logg diagram 

by showing the ratio of the num ber of systems per (log Tef f ,  logg) bin post- to pre

target selection, for three different samples. Figure 3.9 compares the actual Q2 target 

list with the real KIC, fig. 3.10 considers the synthetic sample in SCP parameters, 

and fig. 3.11 in real parameters.

As can be seen from fig. 3.9 the target selection increased the fraction of cool 

dwarfs and decreased the fraction of the hotter dwarfs and of giants. The change in 

the density between the ‘neck’ and the ‘wings’ is due to objects in the ‘neck’ having 

N tr > 3 for objects in their HZ.

The synthetic sample in SCP -derived parameters (fig. 3.10) has a population 

of dwarfs in the ‘neck’ which is comparable to those in fig. 3.9. The population 

of target-selected objects in the high Tef f  ‘wing’ partially matches those found in 

fig. 3.9, though I have many more objects there. They have SCP mass ~ 1 -  2M© 

and radii ~ 1.5 -  4R©, allowing the detection of a planet at 5R© that would transit 3
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log Tef f  [K]

Figure 3.9: A comparison of the distribution of systems before and after the target 
selection, in log Tef f  - logg space, for the actual Q2 star sample.

times in 3.5 yrs. The giants in the low g ‘wing’ are again more marked relative to the 

real KIC. These are partly made up of giants that have survived the target selection 

criteria of Batalha et al. (2010) and partly due to the ad-hoc correction I applied to 

increase the number of objects with real radii 3 < RQ < 10 (these are predominantly 

CHe stars). The population of giants at the lowest g values is due to the ad-hoc cor

rection that adds objects that saturate at least one pixel.

Figure 3.11 finally reveals how the synthetic sample is target-selected as a func

tion of actual, physical parameters. The population of dwarfs in the ‘neck’ of fig. 3.11 

matches well with the population in the ‘neck’ of fig. 3.9. The ‘hot’ dwarfs are still 

present in fig. 3.11. Note that the large num ber of target-selected objects in the 

GB and AGB ‘wing’ are due to their misclassification by the SCP (objects seen in 

fig. 3.8b-d in the ‘neck’). They have SCP -derived logg values of 4.2-4.6 which im 

plies an SCP -derived mass M  = 0.5 -  0.8M©; hence these objects were in fact clas

sified into my highest priority target group. The overpopulation of giants noted in 

fig. 3.10 is less pronounced in fig. 3.11, but here they reside in the CHe region (see 

fig. 3.7c) and the extreme end of the AGB region (see fig. 3.7d).
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Figure 3.10: Same as fig. 3.9, but for the synthetic sample, using SCP -derived pa
rameters.

4.2 3.9
log Tef f [K]

1.00

0.75

0.50'

0.25

0.00

Figure 3.11: Same as fig. 3.9, but for the synthetic sample, using their correct, physi
cal parameters.
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3.3.6 Comparison of SCP and physical parameters

For a closer inspection of the differences between the real, physical parameters and 

the SCP -derived parameters I compare the synthetic sample and the KIC before 

target selection, as this maximises the num ber of objects to derive results from. 

For each object in the sample I determine the difference between the real and SCP 

-derived effective temperature, ATef f  = Tef f >reai -  Tef f tscpy and surface gravity, 

Alogg = log greai -  log gscp- In case of a binary system only the primary star is con

sidered. I then adopt a suitable binning of the log Tef f  -logg plane and determine, 

for each bin, the median values of ATef f  and Alogg for all objects that fall into a 

given bin.

Figure 3.12 shows ATeyy as a function of log Tef f  and logg. The largest differ

ences are seen in the hottest dwarfs. This is not unexpected as the SCP had a Tef f  

limit of 50,000 K (Brown et al., 2011). Figure 3.13 displays the distribution of Alogg 

over the log Tef f  - logg plane. The population of giants that are in the ‘neck’ and 

misclassified as dwarfs are clearly visible, having the largest Alogg.

Tables 3.6 and 3.7 show the median values of ATef f  and Alogg across the 

whole parameter space, and the corresponding standard deviation, cr, binned on 

evolutionary type. MS systems (MS, MS+MS & WD+MS) have the largest values of 

A Tef f  ~ 500 K as well as the largest standard deviations, which is caused by the hot 

dwarfs. The evolved systems (GB, CHe &AGB-containing systems) all have relatively 

small values, A Tef f  < 100 K. Although the standard deviations are still m uch larger 

than the median values, they are < 1 /2  those of the dwarfs.

The dwarfs have the better estimates for logg, with values around Alogg ~ 

-0.25, while evolved systems have Alogg values spread from -0 .5  to -3.10 with 

standard deviations approximately twice that of the dwarf systems.

Comparing the differences between the single star systems and binaries of a sim

ilar evolutionary state, there are small differences in the median shift, however these 

are too small to be statistically significant. Therefore I conclude that the SCP has 

treated the binaries in a similar fashion to the single stars.
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Type Singles
ATef f [K] Alogg [dex]

Median a Median a
MS 492 918 -0.23 0.39
GB 61 197 -0.42 0.96
CHe 74 214 -1.01 0.67
AGB -23 3760 -3.01 1.14

Table 3.6: The median values of the differences ATef f  and Alogg (with the corre
sponding standard deviation cr), between the real, physical parameters and the SCP 
-derived parameters for the synthetic single stars.

As on average the SCP -derived g is larger than the real g, the SCP will there

fore also return a radius that is smaller than the real radius, and consequently any 

derived planet radius will be smaller than it really is. If logg for a MS star is overes

timated by the average value of 0.23 dex and assuming all else being equal then the 

implied stellar radius is too small by ~ 3% and hence for a m easured transit depth 

A F/F = (Rp/R*)2 the planet radiusFp is underestimated by ~ 3%. While confirmed 

Kepler planets will have stellar radii determined by other means, usually by spec

troscopy (Batalha et al., 2011), most systems are too faint, and they are too num er

ous, for affordable, individual follow up (Batalha et al., 2010), thus their radii will be 

uncorrected in the first instance and any derived planetary distributions skewed.

This is a comparable to the quoted estimated uncertainties for the planet candi

dates in the Q1-Q83 sample, which has a median value of ~ 5% (Burke et al., 2014), 

though the distribution of uncertainties is skewed to those with large uncertainties 

such that the mean value is ~ 10%. The uncertainties are also believed to be under

estimates of the true uncertainties due to correlations between fitting parameters 

which where not taken into account in the uncertainty calculations. This bias de

termined here is also comparably to the quoted uncertainty in systems which have 

had further follow up work and modelling (Cochran et al., 2011; Borucki et al., 2012) 

and those with asteroseismic measurements of the host stars (Huber et al., 2013), 

which provide more robust values for the stellar parameters.

Other authors find similar results. In the SCP paper, Brown et al. (2011) com-

3http://archive.stsci.edu/kepler/confirm ed_planets/search.php

http://archive.stsci.edu/kepler/confirmed_planets/search.php
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Type Binaries

ATef f [K] Alogg [dex]
Median 0 Median a

MS&MS 558 931 -0.24 0.41
GB&MS 56 268 -0.48 0.72
WD&MS 471 615 -0.29 0.38
CHe & MS 58 229 -1.06 0.65
WD&GB 53 175 -0.47 0.78
WD & CHe -6 708 -3.10 0.98
GB&GB -8 258 -0.5 0.82

Table 3.7: Same as Table 3.6, but for binaries and only considering the primary star.

pared the KIC estimates for some 35 stars with spectroscopic measurements, and 

noted for dwarfs with Tef f  = 4500 -  6500 K a temperature difference A Tef f  = ±200 K 

and surface gravity difference Alogg = -0 .4  dex. Sampling the synthetic dwarfs 

over this Tef f  range I find a median value of A Tef f  = +423 K with a  = 231 K and 

Alogg = -0.14 dex, a  = 0.33 dex.

Pinsonneault et al. (2 0 1 2 ) modelled SDSS stars in the Kepler field with the infra 

red flux method (IRFM) and derived an average deviation of A Tef f  = +215± 100 K for 

dwarf stars between 4000 K and 6500 K. Taking the synthetic systems over a similar 

temperature range and only considering dwarfs I find a median A Tef f  = +413 K, 

cr = 240 K, consistent with Pinsonneault et al. (2012).

Mann et al. (2012) found from medium-resolution spectra of 382 stars, A Tef f  = 

—110+35 K for dwarfs and A Tef f  = - 150+35 K for giants. Following their selection 

of objects with Kp - J >  2.0 my synthetic sample gives A Tef f -  -140 K, a  = 116 K 

for dwarfs and A Tef f  = +44 K, cr = 213 K for giants, still consistent with Mann et al. 

(2012).

Dressing & Charbonneau (2013) used a set of Dartmouth stellar evolution and 

atmosphere models, with M < 1M© and Tef f  < 7000 K, to model 3897 KIC objects 

with Tef  f,Kic < 4000 K to derive from the KIC photometry improved stellar param 

eters. They found for a typical cool star in their sample that A Tef f  = -130 K and 

that the radius is 69% of the KIC radius. Following their selection criteria I find that 

A Tef f  = -180 K,(j = 200 K and that the radii are 62%,cr = 27% of the KIC radius.
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Figure 3.12: Distribution of the median of the difference between real and SCP - 
derived effective temperature, A Tef f  = Tef f jeai -  Tef f iScp, per bin of log Tef f  -
log g-

The apparent differences between the various authors can be explained as each 

author focuses on systems with different temperature and different selection crite

ria, such that they sample different regions of the parameter space. As an example 

the apparent differences between Mann et al. (2012) and Pinsonneault et al. (2012) 

can be explained as Mann et al. (2012) focuses on systems with Tef f <  4000 K while 

Pinsonneault et al. (2012) considers systems with Tef f  > 4000 K.

3.4 Discussion

I have created a synthetic model of the KIC and of the corresponding target-selected 

subsample by adapting a full stellar and binary star population synthesis model to 

the specific circumstances of the Kepler field and the Kepler detector. In order to 

do so I necessarily had to adopt a num ber of simplifications and ad-hoc assum p

tions. Here I discuss the potential impact these may have on my results, and what 

improvements further work should consider.
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Figure 3.13: Distribution of the median of the difference between real and SCP - 
derived surface gravity, Alogg = log greai -  loggSCp, per bin of log Tef f \o%g.

3.4.1 Effect of metallicity

The lack of a realistic metallicity distribution, I believe, is the most limiting sim

plification of the model. The current design of the population synthesis procedure 

makes the inclusion of an initial metallicity that continuously varies with Galactic 

epoch computationally too expensive (however see section 6.2 for a possible solu

tion). The adopted bimodal model highlights the variation with Z, but does neither 

span the full range of metallicities implied by SCP fits, nor cover the bracketed range 

in a continuous fashion. To mimic the effect of a continuous metallicity distribution 

I had to introduce small, random perturbations of the calculated stellar magnitudes. 

This approach however cannot fully capture the effect of metallicity on evolutionary 

time-scales and system appearance — metal-poor stars have a shorter MS life and 

are less luminous than stars with solar metallicity, ultimately resulting in differences 

in their respective distributions in the colour-colour diagrams I set out to match.

To test the significance of the single metallicity value I used for the thin disc, Z  -  

0.02, I modelled a small FOV corresponding to one Kepler CCD channel (roughly 

6500 systems) with a thin disc metallicity of Z = 0.014, (Asplund et al., 2009; Nord

strom et al., 2004). I found no statistically significant differences in the stellar pa
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rameter distribution, i.e. the differences were smaller than those seen by random 

sampling with 6500 systems of the underlying probability distribution function T.

Changing the metallicity alters the colour distribution in Fig.3.6. Lowering the 

metallicity leads in general to lower effective temperatures, thus shifts the stellar 

flux to longer wavelengths. In Fig.3.6a, lowering the metallicity to Z  = 0.014 shifts 

objects with g - r  < 1.5 upwards by 0.02, towards larger r -  i, and systems with 

g -  r > 1.5 are shifted rightwards, to larger g - r  by 0.2.

However, as discussed above, to force a better agreement between the synthetic 

sample and the real KIC I apply a series of colour-correction terms to the synthetic 

stars. The colour distribution for the lower thin disc metallicity will therefore simply 

result in a slightly different set of corrections to achieve the best fit to the actual KIC 

distribution seen in Fig.3.6c, thus effectively eliminating the underlying differences. 

I conclude that the results are not sensitive to the choice of single-value metallicity 

in the thin disc.

In this context I note that the SCP itself is inconsistent in its use of metallicity. In 

assigning a metallicity to a given object the SCP disregards the metallicity from the 

stellar input models (Castelli & Kurucz (2004) and Girardi et al. (2000)) and exclu

sively relies on solar metallicity (Z = 0.02) models for the BC (Brown et al., 2011).

I note that the resulting SCP-derived parameters of the synthetic stars are sen

sitive to the colour corrections, so great care has to be taken not to introduce spu

rious features into the synthetic distributions. I expect that the introduction of a 

realistic metallicity distribution, whilst keeping a Gaussian perturbation approach 

to model photometric uncertainties, would reduce these corrections to a term  de

pendant on the difference between the SDSS magnitudes and the KIC filter system. 

Such a term could then be independently constrained by the findings of Pinson

neault et al. (2012).
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3.4.2 Sensitivity to changes in Galactic parameters

For the purpose of the current study I chose to keep the population parameters 

fixed. There is considerable uncertainty in some of them, and I will present my work 

on constraining the initial mass ratio distribution (IMRD) in Chapters 5 & 4 .1 will 

however briefly discuss some of the choices and impact of the other parameters.

I tested the sensitivity of my model to the assumed Galactic distribution of stars 

by decreasing all scale heights and radial scale lengths by 25%, and recalculating 

the synthetic sample for one CCD channel. This has the effect that for a given line of 

sight the sample of stars are ‘further’ away (in units of scale lengths) from the Galac

tic centre, so the proportion of old disc stars, which are predominately low mass MS 

and WD systems, increases from 14% to 20%. After re-normalising the stellar den

sity, to remain consistent with the KIC num ber count, I however find this effect to 

be negligible for the Kepler field, with only small differences, of order the random 

sampling noise, from the results for the original scales lengths. The length scale re

duction considered in this test is large compared to the range proposed in the recent 

literature. In particular, Juric et al. (2008) found scale heights that are consistent with 

my adopted values, except their thick disc scale height is 10% smaller. In fact, using 

their values, I also find no significant differences to the results presented here.

The total binary fraction is, somewhat arbitrarily, set at 50%. This allows me to 

study the differential effect of the SCP and the target selection on the binary con

tent in general. In reality the binary fraction is likely to be a function of stellar mass, 

being ~ 35% for M dwarfs (Reid & Gizis, 1997) increasing to ~ 75% for G dwarfs 

(Duquennoy & Mayor, 1991). The choice of binary fraction becomes a more im 

portant concern when considering Kepler’s sample of eclipsing binaries or the false 

positive transit signal and will be discussed further in Chapter 4.

The high-mass end of the IMF is well constrained, and indeed the overall nor

malisation of the SFR is based on this. However, the shape of the IMF below ~ 0.5 M© 

is more uncertain, and I have indeed tested if this offered a way to boost the num 

ber of faint objects in the target-selected synthetic sample. I found that varying the
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low-mass IMF within physically reasonable limits does not significantly change the 

magnitude distribution of the synthetic sample.

The adopted flat IMRD is preferred by many population synthesis studies, in

cluding those by Girardi et al. (2005) (but note that these authors add binaries to the 

population of single stars in an ad-hoc way, while my model treats evolving binaries 

self-consistently). I assessed the effect of the IMRD by re-calculating a Kepler sub

field population with an IMRD that favours equal mass companions (n(q) oc q) and 

one that favours unequal mass ratios (n{q) oc q~l Y, q is the mass ratio.

In the former case the population of systems with near-identical components 

increases. The SCP will assign the correct stellar parameters of one component to 

the combined object. The net effect is that a magnitude-limited sample such as the 

KIC will include relatively more of these objects as they are intrinsically brighter and 

hence can be seen out to larger distances. The apparent binary fraction does indeed 

increase to ~ 55% (it was ~ 50% in my standard model with a flat IMRD) in the KIC 

sample, and remains unchanged after target selection.

In the case of favouring unequal mass ratios on the other hand the SCP will pick 

out the correct parameters for the primary, but the apparent binary fraction is only ~ 

3%. This is because favouring unequal component masses requires high-mass stars 

which are rare overall.

In both cases the apparent binary fraction remains unchanged after target se

lection. After correcting for the change in the total num ber of systems, to obtain the 

appropriate background flux, I find that after target selection the two different IM- 

RDs increase (decrease) the fraction of dwarfs (giants), by ~ 5pp, in the same way as 

for the flat IMRD (see Tables 3.4 and 3.5). I also found that the median ATef f  and 

Alogg are the same as for the flat IMRD, within the quoted uncertainties.

In the population model I have ignored the fact that binaries form with eccen

tric orbits and circularise on a finite, system-dependent time-scale. Instead I kept 

binary orbits circular at all times. This seems justified as Hurley et al. (2002) showed 

that the circularisation time-scale for interacting binaries is short enough to not al
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ter bulk properties of the binary population from one where the eccentricity is kept 

at 0. There is also no suggestion that the eccentricity of a binary orbit would have 

any effect on the system’s detectability in the Kepler field.

The adopted Galactic absorption model obviously affects the make-up of the 

synthetic KIC, but with the smallest scale modelled by Drimmel et al. (2003) being 

0.35° x 0.35° I deem this well suited to resolve the statistics of the larger Kepler field.

I note that the Kepler team assumes a smooth, exponentially decaying absorbing 

disk (Brown et al., 2011) which on average returns a larger extinction for a given 

distance than Drimmel et al. (2003). The Kepler team  quote that most of the target- 

selected stars are within 1 kpc from the Sun, with ~ 50% of objects suffering a V 

band extinction A y  < 0.4. In contrast, in my model only 30% of the target-selected 

stars are at < 1 kpc, while 70% are at < 2 kpc, which also corresponds to A y < 0.4. 

Using the Kepler extinction model reduces the num ber of objects seen with K p <16 

by ~ 5%, while leaving the underlying distributions the same, within the limits of 

random sampling.

In this model I have assumed that the SFR is a constant, thus differing SFRs 

can lead to to different results. An increased SFR in the past would lead to a larger 

fraction of older stars being present in the sample. This would lead to a relative in

crease in the num ber of evolved systems and those evolved systems would have 

lower masses. This would then alter the absolute numbers of each type of system 

presented in the pre/post target selection process. However, the relative change is 

based on the efficiency of the target selection process. This is dependant on the the 

local density of stars on the CCD and on the SCP derived parameters which depend 

on the objects colour. Thus the first term  is independent of star formation rate, as 

I scale the total num ber of stars to normalise the total counts to Kepler. The sec

ond term is altered by the colour corrections. These act to smooth out any changes 

in the colour-colour distributions, thus minimising the change in the colour and 

hence the relative change in objects pre/post target selection.
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3.5 Conclusions

I have created a comprehensive population synthesis model of the Kepler field, tak

ing into account single and binary star evolution. I have also modelled the selec

tion effects inherent in the Kepler objects of interest, the SCP parameter estimation, 

Kepler’s instrumental noise and the targeted selection of systems with the highest 

chance of detecting an Earth-like planet round a Sun-like star in the HZ. The main 

output of this procedure is a synthetic catalogue of systems in the Kepler field. This 

catalogue was the basis for a comparison between the real physical parameters of 

the catalogue stars, as indicated by the population model, and the corresponding 

SCP-derived parameters. Such a comparison over the bulk of the Kepler field is only 

possible with a full theoretical population model; purely observational tests of the 

SCP performance will always be limited to a small sample of stars on the basis of 

bespoke spectral fitting. Using the synthetic sample I also investigated the effect of 

the target selection method on the underlying distributions in both SCP and real 

parameter space.

I found satisfactory agreement between the synthetic KIC and the real KIC in 

colour-colour space, and between my target selection method and the Q2 target 

selection. My simulations highlight a difference between the physical parameters of 

the stars in the synthetic sample and those derived by the SCP for the synthetic sam 

ple. I conclude that this systematic difference does also exist for the SCP-derived 

parameters of the objects in the real KIC. Specifically, for systems containing a 

MS star, the SCP-derived parameters deviate on average by ~ A Tef f  = 500 K and 

~ Alogg = -0 .2  dex from the real physical parameters. In case of GB stars the de

viation is ~ &Tef f  = 50 K and ~ Alogg = -0 .5  dex. This has the remarkable con

sequence that the SCP-derived stellar radii of MS stars are on average too small by 

~ 3%. If these radii are used to estimate the radius of any planet observed to be tran

siting then the planet radius will be ~ 3% too small. This bias is of the same order as 

the median quoted uncertainties in the Kepler data.

After correcting for selection effects I find that these results are consistent with
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differences highlighted by other authors, on the basis of observational considera

tion of subsamples. The average deviation for a given stellar type is observed re

gardless of if the star is single or in a binary.

The models confirm that the Kepler target selection procedure increases the 

fraction of main-sequence stars, from about 75% to 80%, and decreases the fraction 

of giants, from 25% to 20%, relative to the KIC. I have also found a small proportion 

of the giants are misclassified as dwarfs, which implies that the Kepler derived rjearth 

will be larger than predicted, due to the increase in the num ber of systems that may 

have a null detection. In fact, my population synthesis approach is the only way to 

quantify this bias; the figures demonstrate that the change is only moderate. It has 

also been shown that a num ber of the giants in the original Kepler target list were 

inserted in an ad-hoc m anner as opposed to being based on their transit detectabil

ity (Pinsonneault priv.comm), which is similar to the ad-hoc corrections presented 

here.

The bias introduced into the target-selected sample is roughly the same for sin

gle stars and binary systems. I also found that the target selection has a negligible ef

fect on the binary fraction, and that it does not alter the relative fractions of systems 

with different stellar evolution types, when compared to the single star population.



Chapter 4

Eclipsing Binaries in the Kepler field

In this Chapter I create a model which generates realistic light curves for eclipsing 

binaries (EBs) in the Kepler field. I then apply the Kepler target selection and Kepler’s 

EB detection criteria to derive the population of EBs predicted to be detected by 

Kepler. I then investigate the dependence of these results to different initial mass 

ratio distributions (IMRDs) and initial binary fraction distributions (IBFDs).

I find that the Kepler EB parameter determination of the temperature ratio and 

fraction radii, has a large bias in it, when comparing the true parameters to the pre

dicted parameters for synthetic light curves. This has implications for predicted rate 

of false positives assumed by Kepler, which relies on the Kepler EB catalogue as an 

input. This bias I believe is due to the p o l y f i t  code which re-samples the light curve 

into equidistant phase points. This is due to p o l y f it  fitting the eclipse depths poorly 

which then results in a poor fit to the tem perature ratio. Comparing the synthetic EB 

population to the Kepler EB catalogue I find a approximate m atch in terms of the 

num ber of objects found, however my models have too many short period systems. 

At this time I can not determine which IMRD or IBFD model fits the data best, due 

to the overall poor fit to the data. However, I do show that there is sufficient differ

ence between the different IMRD, but not IBFD, models that with further modeling 

it should be possible to determine the IMRD from the Kepler data.

76
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4.1 Introduction

During the first 2 quarters of Kepler’s observation it has discovered over 2000 EBs, 

where one star passes in front of the other from our line of sight. Increasing the 

num ber of known EBs has a range of benefits for astrophysics; from understanding 

stellar evolution (Torres & Ribas, 2002), through precise determination of stellar pa

rameters like the mass and radii (Hilditch et al., 2005); understanding systems that 

can mimic planetary transits (Fressin et al., 2013), required to complete Kepler’s pri

mary mission (Borucki et al., 2011b) and understanding poorly known binary evo

lution parameters (Chabrier et al., 2007), for instance tidal interactions (Claret & 

Cunha, 1997).

Kepler has detected many interesting types of EB such as post common enve

lope binaries (Almenara et al., 2012), eccentric binaries with tidally induced pulsa

tions the so called “Heartbeat” stars (Thompson et al., 2012), systems with d-Scuti- 

like oscillations (Lehmann et al., 2013) and triple star systems (Steffen et al., 2011). 

Systems with pulsations are especially useful as they allow the derivation of inde

pendent constraints on the system parameters. Thus the EBs with pulsations can 

have their parameters determined via the pulsations and via their eclipses. This al

lows us to bridge our knowledge of stellar parameters from the two different fields 

(Charpinet et al., 2008).

The process of compiling the Kepler EB catalogue has multiple steps. First, the 

light curves are subjected to Kepler’s transit planet search (TPS) pipeline Qenkins 

et al., 2010a) which searches the light curves for single events that look like transits. 

These single events are then phase folded at different orbital periods to determine 

whether they pass a maximum multiple event statistic, which determines whether 

multiple single events can be considered as a periodic event. Those that pass the test 

are then classified as threshold crossing events (TCE s) and contain both EBs and 

planetary transits. The TCE s are then filtered for systems that are planets, based on 

the size and duration of transits as well modelling the flux centroids to determ ine 

changes in the centre-of-light distribution (Batalha et al., 2011) to exclude systems
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that are clearly not planets. The filtered systems are then subject to further filter

ing and modelling to determine whether they are an EB or a pulsating system (Prsa 

et al., 2011). Those that are EBs are then fed into the Kepler EB catalogue. EBs can 

also be added to the catalogue if they are already known as an EB or if after further 

observations a candidate planetary systems turns out to an EB (Prsa et al., 2011).

To determine the parameters of the EBs, the light curves for each system where 

passed through the Eclipsing Binaries via Artificial Intelligence (EBAI) code (Prsa 

et al., 2008). EBAI is a neural network based algorithm which after being trained 

on a set of light curves with known binary & stellar parameters is designed to de

termine the parameters from light curves with unknown parameters. This process 

introduces a bias into the determined distribution. Prsa et al. (2011) claim, based 

on a a set of synthetic light curves that where used to train EBAI, that -  90% of their 

systems will have errors < 10%. However, the parameter distributions as determined 

by EBAI in Prsa et al. (2011) do not resemble those in Prsa et al. (2008), which are 

based on OGLE data.

Thus this chapter is concerned with building a synthetic population of EBs, ap

plying a model of the detection process and using the EBAI code to determine the 

Kepler EB parameters of the synthetic EBs. The aim of this work is to understand the 

size of the bias introduced and possible selection effects inherent in the Kepler EB 

pipeline. By applying the EB model and the Kepler selection effects to the synthetic 

stars, I can perform a statistical comparison between different underlying popu

lations of non-eclipsing binaries with the Kepler EB catalogue to constrain initial 

Galactic distribution functions.

In this chapter I update my population synthesis method, to handle a new clas

sification of binaries not previously considered (section 4.2.1). I then derive a syn

thetic EB sample by synthesising eclipse light curves for the EBs, which are then 

combined with a model for the noise in the light curve (section 4.3.1). The noisy 

light curves are then passed though a set of constraints aimed to determine which 

would be “detected” and then classified as EBs (section 4.3.3). Finally, the “detected”
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light curves are passed to EBAI to compute their Kepler derived stellar parameters 

which are then compared to the true parameters (section 4.4.4).

4.2 Method

To create the synthetic EB catalogue I have updated the model from that used in sec

tion 3.2. The extinction model has been improved and there is now a treatm ent for 

binaries with very low mass companions. I have also attem pted to include contact 

binary evolution into the binary star evolution (BSE).

4.2.1 Updates to the population synthesis method

The extinction coefficient Ax that translate the A v extinction, as computed in Drim

mel et al. (2003), from the V-band extinction to the Kepler filter band is now com

puted via interpolation of tables given in terms of Tef f ,  logg  and A v (Girardi et al., 

2008). This is instead of the single value for all stars as used in section 3.2.1. This 

change is due to improvements in the code that now allow Ax to be derived for indi

vidual stars. Due to changes discussed later in section 4.2.2 the star formation rate 

(SFR) is now normalised to produce 8.3 stars yr-1, to maintain consistency with the 

Kepler star counts.

4.2.2 DERBs

One of the assumptions made when using the initial formation distributions (sec

tion 2.1.4) is that the stellar evolution track library, derived in section 2.1.1, contains 

all possible initial systems that the distribution functions are normalised over. This 

however is not the case for the IMRD. The IMRD in section 2.1.4 is normalised be

tween 0 and 1 as:

IMR{q) = {s + l ) q s (4.1)

where q = M2 /M i. For q —► 0 this requires M2 —► 0 for a given Mi, but the single star 

evolution (SSE) code has a lower mass limit of 0.1M©. This means that for a given Mi
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there exists only stellar evolution tracks for systems with q between 0.1 /M i and 1. 

Any system with q < 0.1 / M\ is counted in the total num ber of systems formed, bu t is 

not included in the outputted T distribution as there is no corresponding track. The 

reason these “missing” systems become im portant now, is that varying the IMRD to 

a negative value (s — 1) implies most binaries form with an extreme mass ratios for 

which I do not have stellar evolution tracks for and thus the predicted num ber of 

systems drop.

The way around this problem is to extend the stellar evolution modelling to sys

tems below the lower mass limit of 0.1 M©. This however would be a considerable 

piece of work in itself, thus a simpler approach was taken. Stars with masses below 

0.1 M© undergo little stellar evolution on Galactic time scales, predominately u n 

dergoing cooling (Chabrier et al., 2000). They would also in general be much fainter 

than their companions, especially in the optical Kepler band pass, as they emit pre

dominantly at infra-red wavelengths (Chabrier et al., 2000). So to first order I assume 

that the binaries with a low mass companion undergo no binary induced evolution 

(for example mass transfer) or interactions (for example tides) and that the lum i

nosity of the system can be taken as that of the primary alone. This allows the use of 

the single star evolution tracks as templates for these systems, but with the integrals 

over the initial distribution functions taken for a binary (see equation 4.4).

These systems I classify as DERBs, Diffuse Extreme Ratio Binaries, where the 

companion has a mass between 0.07 < M2 /M 0 < 0.1, where the limits will be dis

cussed later. These are “diffuse” as they represent systems where the secondary has 

a unknown but bounded mass. As these are modelled solely on the single star tracks, 

the period evolution can not be tracked nor can interactions between the stars be 

derived, thus the integral over the initial orbital separation distribution (IOSD) is 

taken as 1. Therefore a DERB represents systems at all initial orbital separations, for 

a given initial M\ and M2 . Note we m ust consider all possible primary stars, which 

have a DERB companion. This is due to the requirement that the integrals are nor

malised and that we have stellar evolution tracks covering the the entirely of the
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distribution functions validity, even if the formation or detection of the system is 

improbable.

I take each single star track, from section 2.1.1, and weight them by the initial 

mass function (IMF) (equation 2.4) and then weight them  by a modified version of 

equation 4.1.The modified IMRD is expressed as:

5 + 1
IMR(q) = ------ -z-q*  (4.2)

‘ - c

This is equation 4.1 but now normalised between qmin and 1.0, where qmin -  

This now assumes the minimum mass of the secondary, for which the IMRD is 

valid, is 0.07M©, rather than 0.0M©. This limit was chosen as it is the limit for hy

drogen burning and commonly taken as the lower mass limit of a star. The DERBs 

are thus systems with 0.07/Mi < q < 0.1/M i and binaries are defined over the range 

0.1/Mi < q <  1.0.

Stars in this range of masses have considerable uncertainty regarding their for

mation probability. Their is evidence for the IMF turning over at low masses (Scholz 

et al., 2013), though I make the simplifying assumption that the distributions cho

sen for the higher mass stars are still valid in this region. There is evidence that the 

Brown dwarfs (BD), which have M < 0.07M© are described by a different set of initial 

distribution functions, believed to be due to the difference in formation mechanism 

(Scholz et al., 2013). Thus by assuming that stars with M > 0.07M© follow the same 

distributions as those with M > 0.1M© I am implicitly assuming that these low mass 

stars have formed in the same m anner as the higher mass stars.

This parametrisation requires a change in the integration methods used in sec

tion 2.1.1. Previously, each evolution track corresponded to a point in initial param 

eter space, that is then used to represent all systems in a bin containing the initial 

configuration of this track. The integral over the multi dimensional initial param 

eter space was trivial as each distribution was independent from each other. Now 

however the IMRD is dependant on both Mi and M2 thus the integration method 

described in section 2.1.4 is no longer valid. This used a numerical trapezium rule
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but now I solve the multi dimensional integral with a combination of analytical and 

numerical methods. The IMF for single stars and the IOSD for binaries are solved 

analytically. For the binaries and the DERBs the integral is transformed from one 

that is integrated over M\ and q in equation 2.13 into one that is integrated over M\ 

and M2 .

The integral over the IMF and IMRD for the binaries and the DERBs is expressed

as:

D = J j  JM F(rai) x IMR{q)dqdM\ (4.3)

Subsisting equation 4.2 into 4.3 and expanding the q terms:

D =
i f

IM F{m  1) x
5 + 1

1 ( 0.07)
I

s + l

M2

M \l
dqdMi (4.4)

Changing the volume element of dqdM\ into dMidM 2 , as the evolution tracks are 

defined for bins in Mi and M2 , requires a co-ordinate transformation of Mi —► Mi 

and q — M2 /M i. Thus the Jacobian is:

dM2dMi
dMi dMi

1dMi d M2 _
d q

d M i
d q  

d M2
M i

Therefore overall I have:

D =
i f

IM F(m  1) x
5 + 1

_  ( 0-071 
[Mi j

M2 ' 5 
s + l  I M i M l

dM2dMi (4.5)

I solve equation 4.5 numerically using a two-dimensional Romberg integral 

(Press et al., 1992). The limits are handled in a similar fashion to the section 2.1.3. 

During the integration routine I determine the value of D (equation 4.5) over a small 

region of Mi, M2 space. This region is then weighted by a function that determines 

the fraction of that region that falls within the integration limits. The limits are thus 

that the minimum and maximum mass of the primary is 0.1 < Mi /M© < 20 and that 

the secondary is less massive than the primary, M2 < Mi. For the binaries there is an
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s Number
Singles Binaries DERBs Total

-0.5
0.0
0.5
1.0

186,687
186,731
186,798
187,129

198,174
217,244
231,146
237,299

11,767
5,202
2,220

819

396,628
409,177
420,164
425,247

Table 4.1: The num ber of DERBS and binaries for different values of s for the syn
thetic Kepler field of view. The final column shows the sum of the two totals, showing 
how the total num ber of systems remains constant with different values of 5

extra region, the m inimum and maximum mass of the secondary is 0.1 < M2 /M 0 < 

20. While for the DERBs the secondary mass limit is 0.07 < M2 /M© <0.1.

For the m om ent I have only considered binaries with the secondary star having 

M  < 0.1 Mo, their are of course single stars and primary stars in binaries in the same 

mass range. I ignore the low mass single stars as a single star with this mass would 

be almost undetectable at optical wavelengths. Thus the low mass stars would only 

alter the synthetic population via the normalisation of the IMF (equation 2.4), but 

this is a constant for all values of s. Therefore I can simply alter the SFR to com

pensate for the reduction in the num ber of stars. Binaries where the primary has 

M  < 0.1 M© must have a secondary with M  < 0.1 M©. These would also be unde

tectable in the optical. However the normalisation would now be dependant on s 

and as such should not be ignored. For the m om ent I ignore this affect as I due not 

have an evolutionary model for these low mass systems. This is an area for further 

work.

Fig. 4.1 shows the distribution of formation probabilities for different values of 

the IMRD parameter s. It can be seen that the DERBs, which have previously been 

ignored, contribute a non-negligible com ponent to newly forming systems. Table 

4.1 shows that the new normalisation scheme keeps the num ber counts between 

the different IMRDs relativity constant, unlike in section 3.4.2. The resulting differ

ence in the num ber of binaries is due to the fact that equal mass binaries will be 

more luminous than non equal mass systems, thus we see a greater fraction of their 

Galactic volume.
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Figure 4.1: The relative formation probabilities for binaries (excluding DERBS) and 
DERBs as a function of the IMRD parameter 5 for an arbitrary field. The distributions 
include a Kroupa based IMF (equation 2.4).

4.2.3 Contact Binaries

In the Kepler EB catalogue there are 469 (~ 20%) contact binaries out of 2165 de

tected EBs (Slawson et al., 2011). These systems therefore represent a significant 

population of objects in the Kepler EB catalogue, which currently can not be in

cluded in the synthetic EB catalogue. I thus attempted to introduce a simplified 

model of them into the model, however this was unsuccessful and not pursued fur

ther.

Following the work in Yakut & Eggleton (2005), I forced the system to undergo 

a thermal-timescale roche-lobe overflow (RLOF) from the secondary star, when the 

system is in contact. The system was allowed to continue evolving as it would under 

normal RLOF conditions. This is a simplification of the actual process undergoing 

in contact binaries; Lucy (1968) suggests that there should be energy transport from 

the primary to the secondary such that secondary appears brighter than it would 

if not in contact. I ignore this detail, as the main quantities relevant for population 

synthesis work is the total luminosity of the system and the lifetime of the system. 

I assume the total luminosity would be unchanged and the lifetime determ ined by
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the thermal time-scale. This simplified approach however fails to produce a usable 

stellar evolution track. The time step df which varies as function of the change in 

the mass, radius and angular momentum, is forced towards a hard-coded minimum 

(1 0 0  years) which is then too small to perform stellar evolution over the giga-years 

necessary for contact systems (St§pien & Gazeas, 2 0 1 2 ).

To solve this I would need a full stellar evolution code where the mass and energy 

distribution in the outer envelopes can be modelled. This would then allow a more 

complex treatm ent of the mass and energy transfer at the point of contact, as well 

as the response of each star to the changes in mass and energy. Surprisingly, a few 

systems in my simplified model undergo what appeared to be thermal relaxation 

oscillations (TRO), where heat is transported from the more massive component 

to the least massive. This leads the least massive star expanding and reversing the 

mass transfer back to the more massive component; the systems orbit then expands 

and contact is broken (Yakut & Eggleton, 2005). The more massive com ponent then 

expands as it is no longer transferring heat to its companion and the cycle contin

ues. This shows that it may be possible with further work to model contact binaries 

using BiSEPS with a more robust treatm ent of mass and energy transfer.

Without a model for the contact binaries the synthetic EB catalogue will have 

~ 20% fewer systems than the the true Kepler EB catalogue. However this ~ 20% 

fewer EBs does not equate to ~ 20% fewer binaries overall. This is because the con

tact binaries have a large range of possible detectable eclipse inclinations, thus they 

will be preferentially detected. Rucinski (1998) suggest that there are ~ 1% the num 

ber of contact binaries compared to MS stars. Extrapolated to the num ber of systems 

in the synthetic Kepler input catalogue (KIC), this implies there are ~ 3000 contact 

binaries in the field, which is small enough to ignore for the purposes of the norm al

isation. Extrapolating from the Kepler result of 496 contact binaries and given that 

contact binaries have a minimum inclination of ~ 35° for a grazing eclipse (Mor

ris, 1999), implies there should be of order ~ 1000 contact binaries. Considering this 

assumes we can detect all eclipses, thus underestimates the minimum inclination
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and therefore underestimates the total we see, this would appear consistent with 

the num ber of systems found in Rucinski (1998).

4.3 Derivation of an eclipsing binary sample

Starting from the population method presented in Chapter 2 and the Kepler target 

selection in section 3 .21 now present the method for deriving a synthetic EB sample 

which is detectable by Kepler. This process is divided into several steps: derive a 

sample of EBs, generate a synthetic light curve with a representative level of noise, 

compute the detectability of the eclipses, determine whether the detected eclipses 

would be flagged as EB and finally compute the Kepler derived parameters of the 

EB.

4.3.1 Stellar noise

Almost all stars are variable. They may be undergoing large scale variations in flux 

output (Miras (Feast et al., 1989), Cepheids (Freedman et al., 1994)) on time scales 

of days and years and small scale variations (granulation (Michel et al., 2008), solar 

like asteroseismic variations (Chaplin et al., 2011c)) on time scales of minutes and 

hours. Thus these variations in the flux act as a noise source reducing the strength of 

the eclipse signal and in low signal cases may entirely mask the eclipse. I have built 

a model of the expected variability so that I can compare the signal to the noise 

for the eclipse and determine the detectability of the eclipse. This model is partially 

based on the derivation of the combined differential photometric precision (CDPP), 

the estimate of all noise sources in Kepler (Gilliland et al., 2011). This work does not 

claim to employ a definitive model for stellar variability. Rather it should be con

sidered a order of magnitude estimate, suitable for estimating the average S/N of a 

light curve.

I apply two types of noise to the synthetic light curves, the intrinsic variability of 

the stars and the measurement uncertainties. The noise due to the measurem ent is
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taken from section 3.2.2. While the noise due to the stellar variability is derived now. 

For this work I concentrate only on the small scale variations and assume that the 

larger scale variations have been removed from the data. For main sequence (MS) 

stars I consider three variability modes; granulation, solar like oscillations (astero

seismic signals) and chromospheric activity. For giant branch (GB) like stars (which 

I define as stars in any phase from the hertzsprung gap (HG) to the thermally pul

sating asymptotic giant branch (TPAGB)) I consider only the granulation and as

teroseismic variability, as evidence for magnetic activity is limited in evolved stars 

(Konstantinova-Antova et al., 2010). For WD and NSI assume the variability is 0, due 

to their low luminosity compared to a MS or GB companion. For simplicity I ignore 

for the m om ent any binary induced variability. Star spots are also ignored for this 

work to simplify the calculations, but is an area of further work. These are regions 

on a stars surface of high magnetic field, which inhibits convection and then low

ers the local temperature thus appearing dark. These can then appear as transit-like 

features in a light curve of a star.

To compute the “noise” in a light curve due to variability I wish to derive the 

r m s  {.(Jvar) of the variance, V, of the variability mode in the time domain. However, 

the individual modes (granulation, activity, asteroseismic oscillations) are defined 

in terms of a characteristic time-scales, t , and r m s  amplitudes in the frequency do

main. To translate between the two domains we can use Parseval’s theorem (Press 

et al., 1992) which shows that the power in the frequency domain is the same as in 

the time domain. Thus to compute the total power of the oscillations in then time 

domain we simply need to compute the power P in frequency domain. To do this 

we integrate the power spectral density P(v) over a set of m easurem ent frequen

cies v. For Kepler I set the range of measurements frequencies to be between 1 LC 

observation (30 minutes or 555.0/zHz_1) to 1 quarter (3 months or 0.13/iHz_1)

Thus we have that:

/•555.0/zHz 2(T^T

o.i3/iHz 1 + {2nvr}
(4.6)
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where 77 is a function designed to suppress the measured power the closer the 

oscillation frequency (v' = 1 / t ) is to the Nyquist frequency (555.0/iHz-1).

77 = sine n!2 (4.7)
k555pHzj;

The total “noise” term  is thus the quadrature sum of each individual terms:

&var = y j  {Pgran + P  ast + P  chrom) PPm (4.8)

for a MS star, where a var is the r m s  of the variance V. The Pgran is the power due 

to the granulation, Pa$t is the power due to the solar like asteroseismic signals and 

Pchrom is the power due to the chromospheric activity. The power terms are already 

expressed in terms of square quantities.

We can however make several simplifications to equation 4.6 for the granulation 

and asteroseismic signals.

The asteroseismic oscillations are comprised of p mode oscillations, where the 

pressure acts to restore the star after a perturbation due to sound waves (Bahcall 

et al., 2001). The star then oscillates in either the radial (1), radial (n) and azimuthal 

(m) modes or as a combination of the three. The total power of the oscillations is 

then due to the contribution from each of these modes. We assume that the power 

can be modelled as a Gaussian centred on the frequency at which the observed 

modes have their largest amplitudes v max. We then only consider the oscillations 

around this frequency, as opposed to all frequencies as in equation 4.6. v max is de

fined as:
( R  \~2 ( Taf f

(4.9)Vmax — Vmax,o
V Teff,e© 7Pq j

where v max,o is the solar value, vmflX)0 = 3150pHz-1.

The asteroseismic signal is then assumed to be contained within the envelope 

of the Gaussian centred at v max and with a FWHM of v maxl2 (Kjeldsen et al., 2008). 

Assuming that most of the power then is within the FWHM, we can add the ampli

tudes from the I = 0,1,2,3 modes, each of which scale as a function of (Chaplin
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et al., 2011c). Then we add in the contributions from the n modes (The m mode con

tribution is assumed to be averaged over in the 1 and n contributions). Where there 

are v maxl Av total segments contributing to the average power. Therefore overall the 

total observed oscillation power is (Chaplin et al., 2011b):

Past = 1.55A2maxn2^ £  (4.10)

with A max the maximum amplitude of the asteroseismic signal and Av is the fre

quency difference between radial, n, overtones (Chaplin et al., 2011c):

Av = Av©
m  i 0-5 / r  r 1-5

with Av© being the solar value, 134.9juHz.

The maximum amplitude of the asteroseismic signal can then be computed as:

— o w
Where = 1 -  ^  = r ^ C L / L a ) - 0-093, TredtB = 8907K and & r =

1550K. is a fitted correction factor used because the predictions of the amplitude 

get progressively worse as a star nears the d-Scuti instability strip.

Combining all the terms leads to (Chaplin et al., 2011b):

2 a 2 J 2Past« 225ppm /3 77
R  \ 3'5 ( T e f f  a '25

e//,©
(4.13)

For the granulation term, it can be shown that Tg r a n /T grfln>© = vmflX)©/vmflX (Hu

ber et al., 2009). By considering the granulation at v = v max the denom inator in 

equation 4.6 is constant for all stars. Substituting in the solar value of Tgran>© = 2105 

and v maX)Q = 3150juHz-1 (Chaplin et al., 2011b):

Pgran ~ 0 .1 u granTgrflnp p m 2juHz 1 (4.14)
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where the o g r a n  x T g r a n  term can be expressed in terms of the mass, radius and 

luminosity (Kjeldsen & Bedding, 2011):

( Tef f  )"5-5
11 1 (4.15)1 L]2

( M  ]
-3

Ggran x Tgran r V-C© i-M© > V̂ Tef f ,  o

which can be re-expressed in terms of v max and substituting into equation 4.9:

Pgr an ~ 0.1
f v  \ -2 vmax
<Vmax, o

ppm 2jLiHz-1 (4 .16 )

Thus for both Past and Pgan we can approximate their power over the whole 

frequency range, ignoring the frequency dependency for simplicity, as Past\gran x

V max •

The power in the chromospheric activity can not be simplified so we m ust use 

the full expression in equation 4 .6 . crChrom is RMS amplitude of the activity and is 

estimated from the the CaH and K emission indexR^K (Gilliland etal., 2 0 1 1 ) . t chrom 

is the time scale of the activity, which for simplicity is assumed as the solar value of 

t chrom,© = 8 days (Gilliland et al., 2 0 1 1 ) . Thus (Jchrom can be expressed as, based on 

an empirical fit to the SOHO data from the Sun (Gilliland et al., 2 0 1 1 ):

& chrom =  6  x 1 o (10-5+1-751oSio*hk) (4 .1 7 )

R^k is defined in Noyes et al. (1 9 8 4 ), based on the measurement of 4 1  main se

quence stars, as:

=  6 * 10 -V ° -9prof/Tc (4 .1 8 )

with prot is the rotation period, in days and t c is the convective overturn time in

days (Noyes et al., 1984):

l o g T c =  <
1.362 -  0.166X  +  0.025X 2 -  5 .3 2 3 x 3 x > 0 

1 .3 6 2 - 0 . 1 4 x  x < 0
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With x  = 1 -  (5 -  V), and (B -  V) is the colour of the star. For consistency with 

Noyes et al. (1984) I set ( B - V )  = (log 10(M /M o) -  0.28) / -  0.42.

p rot is based on the measured spin down rate of stars in the Hyades cluster 

(Aigrain et al., 2004):

logPro? — 0.5log 625Myr

-0.669 + 2.58(5 -  V) 0.45 < B -  V  < 0.62

0.725 + 0.326(5 -  V) 0.62 < B -  V < 1.30

With t being the age of the star and 625Myr is the age of the Hyades.

For stars outside the valid range of (5 -  V) I set (5 -  V) to the nearest valid value. 

This means it is only defined for stars with masses between ~ 0.5M© and ~ 1.23M©. 

The age of each of the stars in the synthetic sample occupies a bin in time, therefore 

I set the age to a random uniformly selected value inside the time bin. I ignore the 

factor of 7] for the PChrom> as the time-scale r chrom »  Nyquist frequency, thus 77 ~ 

1.0 .

From fig. 4.2 it can be seen the predom inant noise source for the low and high 

mass main sequence stars is from the granulation. While stars with intermediate 

masses M ~ 1.0M© the asteroseismic and the granulation terms and contribute 

equally. The variability due to the chromospheric activity is negligible for all sys

tems due to the long timescale (8 days) of the activity compared Kepler’s LC sam 

pling rate (30 mins). The cut at high masses for the chromospheric activity is due to 

the edge where iprot) is defined, this is due to the rotation rates saturating (Aigrain 

et al., 2004). While the maximum mass for the asteroseismic signal is due to stars on 

the ZAMS being inside the 5-Scuti instability strip.

McQuillan et al. (2014) compiled a catalogue of 34,000 MS objects with de

tectable rotation periods in Kepler, based on an automated analysis. From these ob

jects they found that the amplitude of variability was between 950 ppm  and 22,700 

ppm, which is larger than that seen in fig. 4.2. Part of this difference may be due 

to the longer time scale of observations, 3 years, made by McQuillan et al. (2014), 

compared to the assumed 3 months used here, allowing longer period modulations
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to be visible. They also show that the amplitude increases with decreasing tem pera

ture and mass, which is not seen in fig. 4.2. Further work is needed to integrate these 

results into the model.

For giant stars I ignore equation 4.6 and use the measured values from Hekker 

etal. (2012):

V = [3.5v^af  + 1.4V“^ )  X 107ppm 2 (4.19)

Where V is the variance (a 2var) in ppm 2 and v max is taken from the scaling relation 

shown in equation 4.9. The first term  is due to granulation while the second is due 

to the asteroseismic signal.

In fig. 4.3 we can see the variability in evolved stars as a function of mass. The 

variability generally increases with stellar evolution (and hence age), due to v max 

decreasing as the radius increases.

The gap between the the thin and thick disc components is due to the star for

mation history. In principle there can be any evolved star with any initial mass in 

the thin disc visible today as it is still forming stars. However in the thick disc there 

exists both a minimum and maximum mass of a system that can still be in each 

evolutionary phase as it is no longer producing any new stars.

For binary systems I compute the total noise as the luminosity fraction weighted 

sum of the two components. Fig. 4.4 shows the combination of the stellar variabil

ity and the CCD noise as compared to the results presented in Jenkins et al. (2010b) 

(fig. 4.5) for the Kepler measured noise. We can see that the MS dwarfs are limited 

by instrumental noise, due to its dependence on magnitude, as well as following the 

upper and lower envelopes. This is because the the intrinsic variability is less than 

the instrumental noise. For the giant stars the noise is independent of the magni

tude, as they have a much higher intrinsic variability, thus they are limited by their 

intrinsic variability.

Comparing with fig. 4.5 from Jenkins et al. (2010b) we can see that the giants 

match well, with a noise independent of the magnitude, with most objects scatted 

around the 103 - 104 range. However the MS objects fare less well. A significant num-
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Figure 4.2: Expected noise power in Kepler light curves, as a function of mass for 
MS single stars. Green is the power due to granulation (equation 4.16) , red is the 
power due to solar like oscillations (equation 4.13) and blue is the power due to 
chromospheric activity (equation 4.6).

—  AGB
—  TPAGB

log Mass [M0

Figure 4.3: Power of the solar like oscillations and granulation for stars between the 
HG and TPAGB phases. Each colour represents a different evolutionary state, while 
the dotted lines represent thick disc stars and the solid lines represent the thin disc 
stars.
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Figure 4.4: The total predicted noise for target selected single stars. The noise is the 
quadrature sum of the CCD noise (section 3.2.2) and the stellar variability noise 
(equations 4.8 & 4.19). Black points are MS stars while red are GB stars. Green lines 
are the upper and lower envelopes for the measured noise from Kepler (lenkins 
et al., 2010b).
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Figure 4.5: Figure 1 from lenkins et al. (2010b). Original caption: Scatter plot of 
the 0.5 hr-to-0.5 hr precision. The dashed and solid green curves are the upper 
and lower envelopes of the measurement uncertainties, respectively, propagated 
through the data processing steps used to construct the flux time series. Dwarf stars 
(logg > 4) appear as black points, while giants (logg < 4) appear as red points. There 
is a strong separation between the dwarfs and the giants in their photometric be
haviour at both timescales. Kepler is delivering near-intrinsic measurement-limited 
noise performance across the full dynamic range of its target stars.
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ber of the dwarfs in Jenkins et al. (2010b) are limited by the instrumental noise and 

exist within the upper and lower envelopes. However, there are also populations of 

dwarfs with much larger noise, ~ 103-  104ppm, that appear magnitude independent 

that are missing in fig. 4.4.

Possible reasons for this discrepancy are now discussed. The dwarfs in fig. 4.5 are 

based on the K3C logg values, thus some will be misclassified giants. However there 

are not enough of these systems to explain all of the discrepancy. Binary systems 

will have a noise based on the sum of the two noise values and a GB+MS system 

will be dominated by the noise from the GB star. However these represent at most 

~ 15% of the overall population (Table 3.5), so they can not completely explain the 

discrepancy either. The most probable source is a missing intrinsic variability, as the 

missing noise would need to be magnitude independent, while at the same time not 

affecting every MS object, as Jenkins et al. (2010b) shows most dwarfs lie inside the 

upper and lower noise envelopes.

Possible contenders would be the assumption that I can ignore the large scale 

variability for pulsating objects, where the variability is no longer a background con

tribution but comprises a significant portion of the light curve signal. There is also 

possible binary induced variability from accretion steams, accretion discs and tidal 

distortions. The other possibility is noise from other nearby stars that contaminate 

the optimal aperture of the star. Debosscher et al. (2011) found from a search of 

Q1 Kepler data that for ~ 50% of their variable objects they detected the variability 

could be ascribed to contamination from other stars. Finally the variability due to 

the rotating systems detected in McQuillan et al. (2014) would provide a significant 

num ber of systems with noise in the 103 -  104 ppm  range.

4.3.2 Deriving an EB sample

To derive the synthetic EB catalogue I take each target selected binary from the sub

sampled T distribution of all stars, and give the system a random  inclination be

tween 0 and 7t/ 2 .  Using j k t e b o p  (section 2.2) I generate a synthetic light curve of
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the system using a quadratic limb-darkening law, gravity darkening and the noise 

estimate from section 4.3.1 and compute the eclipse depths, AF/F.

For this work I consider only detached and semi-detached EBs, ignoring ellip

soidal and contact EBs. I define semi-detached EBs as those undergoing RLOF with 

a detectable eclipse, while ellipsoidal system those with a detectable ellipsoidal 

modulation but no detectable eclipses. Contact EBs are those with i?i + i?2 = a, but 

there are none in the synthetic sample, all other systems as classified as detached.

I ignore ellipsoidal systems as they share similar light curves to contact systems, 

mainly the large changes in flux at 1/4 and 3/4 phases due to tidal distortions. Thus 

the classification between ellipsoidal and contact, for which I have no evolutionary 

model for, is less certain. The same can be said for the distinction between detached 

and semi detached systems, especially with regards to the boundary between the 

classifications. However as BiSEPS has an evolutionary model for both systems I 

can compare the synthetic EBs to the Kepler EBs in a combined detached+semi- 

detached group and ignore the classification.

To determine the “detectability”, D, of an eclipse I assume the detection pro

cess is a Gaussian-like process. I perform a rejection sampling, using the S/N of the 

eclipse, against a Gaussian distribution (Fressin et al., 2013). I compute the proba

bility of detection for a given S/N using equation 4.20, this is then compared to a 

random uniformly selected num ber in the range [0,1]. If D (S/N)  is greater than the 

randomly drawn num ber then I select the eclipse as being “detected”. The cumula

tive distribution function of a Gaussian can be expressed as (Fressin et al., 2013):

D (S/N)  = 0.5 + 0.5 erf
{ S / N - 7.1)

V2
(4.20)

where 7.1 is the favoured Kepler S/N, erf is the error function and I derive the S/N 

later. With equation 4.20, an eclipse with a S / N  = 7.1 would have a 50% chance of 

being detected. I perform the sampling process equal to the num ber of times that 

the eclipse is predicted to be seen during Kepler’s Q1 & Q2 period, which is 120 days 

(Tenenbaum et al., 2013).



4.3. DERIVATION OF AN ECLIPSING BINARY SAMPLE 97

I then apply a set of criteria to determine whether Kepler would determine the 

system to be an EB, based purely on the synthetic light curve. Firstly, I select sys

tems with at least 3 primary and secondary eclipses detected. Then I select those 

that have 3 eclipses (primary or secondary) where the eclipse depth is larger than 

2Rjupiter (Slawson et al., 2011) using:

AF IF = (RpIR,)2 (4.21)

Where Rp = 2RjUpiter and F* is the radius of the of the synthetic star (assuming 

it was a single star not a binary star) using the stellar classification program (SCP) 

m ethod in section 3.2.1. The requirement for 3 detections implies a maximum pe

riod for the synthetic EBs of 40 days, I also apply a minimum cut of 1 day to prevent 

issues with possible ellipsoidal/contact systems.

I derive the apparent (S/AO of an eclipse from star 1 eclipsing star 2 using the 

following:
(AF/F)

S / N = — = = =  (4.22)
y j a2ccd  +  a var

where A F/F is the eclipse depth from j k t e b o p , computed as the difference in the 

flux between 1st contact and mid eclipse and in the absence of noise. The eclipse 

depth is modified to include flux from background sources which acts to make 

A F/F smaller. u cca is the combined noise term from the CCD ( see equation 3.4), 

which takes into account the noise from the signal, background and instrum ental 

effects. I assume for simplicity that all terms are constant during the eclipse. Finally, 

a var is the noise during the eclipse from the stellar variability. The S/N is then scaled 

by the num ber of 30 minute samples (assuming LC observations) Kepler would ac

quire during the eclipse. The duration of an eclipse in seconds can be expressed as:

r p  P  . -1Td = — sm
71

\/(F i +R2)2 -  (acosz)2
a

(4.23)

where P is the orbital period in seconds, a is the orbital separation in meters and
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i?i;2 are the radii of the stars in meters. Kepler therefore makes Tp / (30mins) samples 

during the eclipse, thus the overall S/N of an eclipse is:

(SIN) totai = (SIN) x V r D/(30mins) (4.24)

The {SIN) is computed for both the primary and secondary eclipses and then used 

in equation 4.20 to derive the detectability of each for each eclipse.

4.3.3 Kepler EB pipeline

With a synthetic sample of detected EBs in hand the next step is to pass these light 

curves through the Kepler pipeline to determine their Kepler derived parameters. 

The Kepler EB pipeline is made up of two components. First, the light curve is 

passed through p o l y f it  (Prsa et al., 2008) which acts to re-sample the light curve 

into a uniformly distributed set of phase points. This is done by modeling the light 

curve as a set of polynomials with a series of “knots” where the polynomials meet. 

This re-sampled light curve is then passed though EBAI (Prsa et al., 2008), which 

derives a set of binary parameters based on knowledge it gains from training itself 

on light curves with known parameters. Fortunately, both sets of codes are publicly 

available1.

There has been a third code recently introduced (Matijevic et al., 2012) which de

rives from the shape of the light curve a parametrised value, c, between [0,1]. This 

parametrised value corresponds to the systems morphology (detached [0,0.5], semi 

[0.5,0.7], contact [0.7,0.8] or ellipsoidal/uncertain [0.8,1.0]). The mapping between c 

and the classification was estimated by comparing the c values with a m anual clas

sification of the light curves. Thus these classifications are only an approximation, 

providing a single reproducible way of classifying systems, which is broadly similar 

to the morphology. Integrating this code in to my pipeline is left for future work. 

EBAI (Prsa et al., 2008) is an artificial neural network code designed to learn the

shape of a light curve and from that derive the parameters of the system. The code

1http://phoebe-project.org/

http://phoebe-project.org/
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is first trained on a set of representative light curves, where the parameters of the 

system are known. On each iteration the code attempts to map the inputs (flux at 

each phase point) via a set of “hidden” parameters to a set of outputs (Temperature 

ratios, mass ratios etc) and on each iteration the estimation is refined. Once the code 

has been trained on known systems, it can then be run on unknown data, processing 

hundreds of thousands of light curves per second (Prsa et al., 2008).

Based on the information available from a light curve different parameters are 

derived for different systems.For detached and semi detached systems EBAI derives 

the temperature ratio T2 /T1, fractional radii {R\+R2)l a, radial and tangential eccen

tricity e sin to, ecos to and the sine of the inclination sin i. For contact an ellipsoidal 

and contact systems it derives T2 /T1, photometric mass ratio qph> sin i and the fill 

out factor Ff. The difference parameters that are determined are due to differences 

in the information content of the light curves. For contact and ellipsoidal systems 

the mass ratio, qph, can be determined from the ellipsoidal modulations. They are 

also all circularized due to their small separations, thus the eccentricity terms are 

assumed zero. The temperature ratio for all systems is based on the eclipse depth 

ratio which is a function of the surface brightness ratio. For the detached and semi 

detached systems the fill out factor is replaced by the fractional radii, due to the 

wider separations between the bodies. The detached systems may not be circular

ized, hence the eccentricity contributions.

4.3.4 EBAI Training sets

To use EBAI I first generated a training set of light curves following the procedures 

in Prsa et al. (2008, 2011). I created two training sets, each of which has a different 

set of distributions. Firstly, I randomly sampled the binary output I generated in 

section 2.1 to select a set of possible binary systems and secondly I sampled from a 

flat IMRD to give a set of probable systems. For each sample I select 35,000 systems 

and constrain the periods to be within 1 day and 1 year.

For each system BiSEPS supplies the the T2 IT1 and (R\ + R2)la. I select a incli
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nation from a random uniform distribution between [cos-1(f?i + R2) la ,n l 2 \, which 

guarantees the system to eclipse. I then give each system a uniform randomly sam 

pled argument of periastron between [0,2n] and an eccentricity that is selected from 

a Gaussian with p = 0 and a  = 0.05. For training set 1 there is no constraint on the 

eccentricity, while training set 2, which more closely mimics a realistic distribution, 

there is a constraint that the eccentricity must be 0 for Porjj < 10 days (Duquennoy & 

Mayor, 1991). Note these eccentricities are not from any binary evolution, they are 

only inserted into the calculation of the light curves and are there to maintain con

sistency with Prsa et al. (2008) use of 5 parameters for EBAI to derive. I then apply 

the following cuts, based on table 1 from Prsa et al. (2008):

• o . i< r2/r i< i.o

• 0.01 < (i?i + R2)/a< 0.5

• -0.3 < esinw & e c o s a x  0.3

• 0.85 < sin i < 1.0

For each system I generate a light curve using j k t e b o p , with quadratic limb dark

ening, gravity darkening and reflection effects applied. I generate 201 phase points 

and at each point I apply a noise term. This is sampled from a Gaussian with f i -  0 

and a uniformly randomly selected a  between 0.0 and 5.0%. This is only a train

ing set of data so the noise levels only have to be approximately what would be ex

pected from the Kepler data set. For systems where the average noise is greater than 

7.1 x (AF/F) I ignore the system and select another system as the eclipse is deemed 

undetectable.

Each light curve, after the addition of the noise, is passed through p o l y f i t  which 

re-samples the light curve and smooths out the noise. This is modelled using a set of 

4 separate quadratic polynomials, allowing p o l y f it  to determine the “knot” points 

between the quadratic polynomials automatically (Prsa et al., 2008). The choice of 

4 polynomials was chosen by following the procedure in Prsa et al. (2011), which 

selected this value as a compromise between the runtime and the precision of the
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Figure 4.6: Comparison of p o ly f i t  fits to a input light curve, where p o ly f i t  performs 
poorly. Top panel: In blue the noisy light curve for a synthetic star, Green the non- 
noisy light curve. Middle panel: Blue same as top panel, Red p o ly f i t  fit to the light 
curve. Bottom panel: The residuals between the POLYFIT fit and the non-noisy fit 
from the top panel.

fit. polyfit w as th en  set to ou tput the light curves w ith  201 eq u id istan t p oin ts in  

phase space.

Figs. 4.6 & 4.7 show cases where p o ly f i t  has succeeded in fitting the light curve 

and where it has been less successful. In Fig. 4.6 we can see how p o ly f i t  misses the 

fact that the secondary eclipse is flat and how it fits the depth of both the primary 

and secondary eclipses poorly compared with the out of transit fit. This is signif

icant as EBAI uses the relative depths of the eclipses to determine the T2 IT1 pa

rameter. Though fig. 4.7 shows a better fit by p o ly f i t  to the data, which implies 

that the bias inserted by p o ly f i t  depends on the type of system being considered. 

The most significant difference between the two fits is that fig. 4.6 the secondary 

is totally eclipsed by the primary. Thus this would suggest this effect is largest for 

unequal sized binaries.

This processed light curve is then passed to EBAI along with the system param e

ters and set to training mode. I run 35,000 light curves, through 10,000,000 iterations 

of the training mode, across 24 nodes using MPI, with 40 hidden parameters. This
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Figure 4.7: Similar to Fig. 4.6, except where p o ly f i t  has derived a more robust fit.

is similar to the setup that the original Kepler training set used and therefore should 

introduce a similar level of bias into my data. As noted in Prsa et al. (2008) splitting 

up the problem over MPI speeds up the computation significantly, however com 

bining results from multiple individual processors (each processor gets a chunk of 

the light curves), leads to slightly different results than if computed on a single pro

cessor due to the recombination of the results from the different nodes. The output 

of the training run is then fed back in to EBAI in recognition mode to compare its 

predicted system parameters to the true parameters.

The results of training set 1 & 2 can be seen in Fig. 4.8 & 4.9. Fig. 4.8 shows EBAI 

performing well on the fits for all but the temperature ratio Tz/Ti. The T2 IT 1 and r\ + 

r2la plots show how the selection of possible systems has weighted the distribution 

towards systems with a large amount of temporal resolution, for instance during 

a RLOF, which generate many output points in the data set. The selection process 

then favours these semi detached systems.

Fig. 4.9 shows a slightly poorer fit to the eccentricity based distributions, prim ar

ily as less systems exhibit effects due to eccentricity as I set e=0 for Porb <10 days. 

The ri + r2/«  fit is good, while the inclination fit is reasonable, however the T2 IT 1 fit
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Figure 4.8: Comparison between EBAI derived parameters and the true parameters 
for EBs in training set 1. The EBs were selected from a set of possible binary systems. 
There are 35,000 light curves in each sample. In blue is the EBAI result, green is the 
true parameters.
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Figure 4.9: Comparison between EBAI derived parameters and the true parameters 
for EBs in training set 2. The EBs were selected from a set of probable binary systems 
(based on a flat IMRD distribution). There are 35,000 light curves in each sample. In 
blue is the EBAI result, green is the true parameters.
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is again poor and exhibits the completely wrong trend with regards to the num ber 

counts as a function of T2 /T1. It also shows that the selection of probable systems 

selects those with long lifetimes (wide non interacting systems), thus favouring de

tached systems.

The poorness of the temperature ratio fit I believe is due the p o l y f it  fit to the 

light curve, p o l y f it  fits the eclipse minima poorly in fig. 4.6, which is where the 

information on the temperature ratio is contained via the eclipse depth ratio.

4.3.5 Comparison of EBAI training sets

To determine which is the best training set to use on the actual sample of synthetic 

light curves I tested each training set with the light curves from the other set. This 

way I test how effective EBAI is in recognising parameter distributions given light 

curves that do not follow the same distribution as it was trained on.

Fig. 4.10 shows the results of the training set 1 recognising the light curves 

from training set 2. The temperature ratio and fractional radii distributions show 

broad agreement, though both introduce artefacts. The temperature ratio distribu

tion gains a dual peaked distribution not present in the real distribution and the 

fractional radii distribution shows a peak at ~ 0.1, both of which are present in the 

Kepler EB catalogue (see Fig. 4.18).

Fig. 4.11 shows the results of the training set 2 recognising the light curves from 

training set 1. Again a spurious double peaked temperature ratio distribution ap

pears in the EBAI results, while the fractional radii fits the input distribution below 

0.2, while above 0.2 EBAI derives a narrower and more peaked distribution.

On the basis that both training sets have issues recognising completely different 

distributions to those they where trained on, I decided to use training set 2 to anal

yse my synthetic EB catalogue. This is on the basis that it does a reasonable job at 

recognising the light curves it was trained on and I expect the synthetic EB catalogue 

to resemble those more than the light curves from training set 1.
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Figure 4.10: Comparison of EBAIs performance on using results from training set 1 
on light curves made for training set 2. In blue is the EBAI result, green are the true 
parameter distributions.
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Figure 4.11: Comparison of EBAIs performance on using the results from training 
set 2 on light curves made for training set l.In blue is the EBAI result, green are the 
true parameter distributions.
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s Scaling factors
Target Non-target

-0.50 0.63 0.80
0.00 0.77 1.00

log Mi 0.74 0.95
0.50 0.83 1.07
1.00 0.82 1.06

Table 4.2: Scaling factors required to normalise the different IMRD and IBFD distri
butions. See section 4.4.5 for the IBFD. The factors are defined as N^epier /^biseps^ 
where N^epier is the num ber of Kepler systems (target or non-target) and N^iseps is 
the num ber of b i s e p s  systems (target or non-target)

4.4 Results

I now investigate the effects of the choice of IMRD parameter on the synthetic EB 

sample to see whether it would be possible to determine the IMRD from the Kepler 

EB data. For this work I take 4 values of the IMR 5 parameter; -0.5,0.0,0.5,1.0.1 also 

consider the case (for 5 = 0) of both a uniform binary fraction of 50% and one where 

the binary fraction is a function of the primary mass.

4.4.1 Scaling factors

Due to each model generating a different num ber of total stars and a different num 

ber of target selected stars, I introduced a set of scaling factors to normalise the 

results. I normalise the total counts against the num ber of objects in the Kepler Q2 

catalogue. For non-target selected systems there are 415,943 stars and for target se

lected systems there are 165,434 stars in the Q2 catalogue. The factors can be seen 

in table 4.2. The counts for each distribution are multiplied by these values to derive 

the Kepler equivalent counts.

4.4.2 Number counts

For each background population model I generated 10 synthetic EB catalogues as 

described in section 4.3, by resampling from the inclination distribution, to deter

mine average value for the distributions. I chose to repeat the model 10 times as a
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s Number of detectable EBs
Total MS+MS GB+MS GB+GB

-0.50
0.00
0.50
1.00

Kepler

835 + 27 
1035 + 15 
1174 + 24 
1280 + 35 

1244

740 + 24 
913 ±16 

1029 + 20 
1136 + 36

93 + 7 
118 + 6 
141 ±9 
137 + 10

2+1 
4 + 1 
4 + 2 
8 + 34

Table 4.3: The num ber of EBs detected for different evolutionary types as a func
tion of the IMRD parameter s. Values are quoted as Kepler equivalent, taking into 
account the difference in size between the true and synthetic target lists. The num 
bers quoted are of detached and semi detached systems with periods between 1-40 
days. GB contains both HG and GB stars. Uncertainties are 1 standard deviation.

s Percenta; *e of EBs (%)
Detached Semi detached

-0.50
0.00
0.50
1.00

Kepler

90.51+3.04 
89.62 + 1.46 
88.79 + 2.02 
89.50 + 2.89 

94.35

9.49 + 0.68 
10.38 ±0.74 
11.21 ±0.58 
10.50 ±0.55 

5.64

Table 4.4: The num ber of EBs detected as detached or semi detached systems. Val
ues are quoted as percentages of the total num ber of EB in the synthetic sample. Pe
riods are constrained to be within 1-40 days. The Kepler results have been rescaled 
to include only the detached and semi detached systems. Uncertainties are 1 stan
dard deviation.

compromise between runtime and precision of the final results, given that for the 

moment I am concerned with determining the validity of the method, as opposed to 

the true EB distribution functions. Uncertainties quoted are 1 standard deviations, 

with 1 degree of freedom, on the num ber of objects in each bin in param eter space.

From table 4.3 we can see the differences in the num ber of detached and semi 

detached EBs in the synthetic sample. There is a trend for an increasing num ber 

of EBs as 5 increases. This is due to the fact that for a given Mi an equal mass 

component, which will typically be the same size, will be both more luminous and 

more likely to eclipse than an unequal mass component. On average the fraction of 

MS+MS among EBs is ~ 88%, which is constant over the different 5 values.

Table 4.4 shows the split between detached and semi detached systems. The 

num ber of detached systems slightly decreases with increasing 5. We can see that
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none of the models reproduce the Kepler results, though this may be due to a num 

ber of reasons either the uncertainty in Kepler’s classification or the period distri

bution of the synthetic EBs, generating too many short period systems (see section 

4.4.3)

4.4.3 Period distribution

Fig. 4.12 shows the period distribution for different stages in the pipeline, for the 

5 = 0 case. We can see that the initial period distribution (IPD) and present day 

period distribution (PDPD) is log flat for Por  ̂> 1 day. While for Porb < 1 day, the 

distribution drops to 0 as the period decreases. The reason this distribution is not 

log flat over all periods, as implied by the log flat IOSD, is that these are systems 

visible today. Thus only the systems that have not merged are in the synthetic sam

ples. We can see that the target selection has no effect on the distributions, which is 

as expected as the target selection has no period dependence or even the concept 

of a binary system. The EB period distribution is shown for comparison. We can 

see that the EB selection effect has increased the fraction of short period compared 

to longer period systems. This is unsurprising as shorter period systems will have 

more eclipses for which to sample against equation 4.20, thus low S/N systems will 

be more detectable at short periods.

Fig. 4.13 shows the period distribution of the synthetic EB catalogues in compar

ison to the actual Kepler EB catalogue. Note the period is not derived from EBAI, in

stead it is from BiSEPS and is thus the true orbital period of the system. This means 

the period distribution is testing only the model for detection of EBs, based on equa

tion 4.20. We can see the effect of the binary evolution, and hence age of the system, 

on the short period drop in systems. This is due to the braking forces (section 1.1.1.1) 

and stellar evolution into a giant star forcing short period systems to merge and thus 

no longer be visible in the sample.

From fig 4.13 it can be seen that the none of the models fit the Kepler data. We 

can see that the different IMR laws all show the same period distribution, within u n 
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certainties. It therefore appears unlikely that even with a “fixed” period distribution 

that there would be sufficient difference between the different IMRDs to distinguish 

between them. From the model the period distribution is ~ P~̂ :b, while the Kepler 

data suggests an approximately log flat distribution.

Splitting the period distribution up into MS+MS binaries (fig. 4.14) and GB con

taining systems (fig. 4.15) we can see where the differences between the model and 

data are. Fig. 4.14 follows fig. 4.13 closely which is not surprising as MS+MS systems 

make up ~ 90% of all the EBs. The GB containing systems period distribution has 

a larger deviation per bin, compared with the MS+MS systems, due to there being 

less systems. As 5 increases the period distribution at logP < 0.4 flattens out, as it 

becomes more difficult to have two equal sized GBs in a stable short period orbit.

A possible solution to this would be to increase the noise for short period sys

tems. With a lower S/N then less systems will be detected. This may be related to 

the increase in semi-detached systems seen in table 4.4 compared to Kepler. If I 

included a binary noise term  (accretion, tidal distortion etc.) this would be strongly 

dependant on the orbital period. However, if I increase the noise then the total num 

ber of EBs will decrease, which will cause a poorer fit with the total EBs in table 4.3. 

Thus I may also need to find a way to decrease the noise for longer period systems to 

compensate. Gaulme et al. (2014) suggests that the asteroseismic signal in GB sys

tems with Porh < 40 days is suppressed due to induced magnetic activity in the GB 

star.

Age may also be a factor in this. If the stars where older, via a higher SFR in the 

past, then the braking forces applied to short period systems will have longer to 

act. This will drive systems to shorter orbital periods, as well as increase the rate of 

mergers and common envelope systems. This may be able to drive down the short 

period end, by moving systems to below the P > 1 day cut, though we still need to 

maintain consistency with the total num ber of EBs through some other mechanism.
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Figure 4.12: The period distribution of the synthetic binaries at different points in 
the pipeline, for the s = 0 model. The IPD is the initial period distribution for all 
binaries in the synthetic input catalogue, while PDPD is the present day period dis
tribution of all binaries in the synthetic catalogue. The EB period distribution is also 
shown for the detached and semi detached systems.
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Figure 4.13: Filled histogram: the period distribution of the Kepler EB catalogue, 
for detached and semi detached systems with period between 1-40 days. Coloured 
lines: the period distribution for different IMRD values of s, for detached and semi 
detached systems with periods between 1-40 days, averaged over 10 runs. Repre
sentative 1 standard deviation uncertainty bars are shown.
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Figure 4.14: Similar to Fig.:4.13, except the synthetic stars are filtered to be MS+MS 
systems. Note there is no information in the Kepler EB catalogue about stellar clas
sification thus there are no extra filters applied.
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Figure 4.15: Similar to Fig.:4.13, except the synthetic stars are filtered to be only sys
tems in which at least 1 star has evolved off of the MS and is a GB. Note there is no 
information in the Kepler EB catalogue about stellar classification thus there are no 
extra filters applied.
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4.4.4 EBAI parameters of the synthetic sample

With the sample of synthetic EBs I investigate how EBAI affects the results and 

whether it can be used to determine the IMRD. Fig. 4.16 shows the temperature 

ratio distribution for the choice of IMR values and the temperature ratio distribu

tion of the actual Kepler EB catalogue. There is a peak, present in all the IMRs, 

at T2ITi ~ 0.75 and T2IT\ ~ 0.9 with the distribution being U-shaped in between. 

All the distributions peak at the same point, though with different heights, sug

gesting that there is something in the underlying EBAI training set that is causing 

this. These spurious peaks can be seen in both training sets, even when running the 

training set through the light curves of the other training set (figs. 4.8-4.11)

Clearly, none of these are a viable fit to the data, however there is a difference 

between the different IMR laws which suggests that it is possible to determine the 

IMR despite the bias introduced by EBAI. To be able to determine the true IMRD 

I would need to match the training set closer to that used in the actual Kepler EB 

catalogue, or run the actual Kepler EB catalogue through my training set.

Fig. 4.17 shows the true distribution of the temperature ratio distribution for the 

synthetic EBs compared with the Kepler catalogue. There is a peak at T2IT\ = 1.0 

as these systems are the most luminous, we see a greater fraction of the Galactic 

volume they occupy. These systems also have a higher transit probabilities: assum

ing both components are in the same evolutionary state, we then have T2IT\ ~ 

M2 /M i ~ R2IR\, and equal radii maximise the range of inclinations of that can 

eclipse. This holds as long as both stars have the same exponent in the mass- 

temperature relation M oc Ta.

There is a slight peak at T2/T\ ~ 0.65 which increases with decreasing s. As most 

of the primaries are approximately solar mass, then this peak corresponds to a sec

ondary of M2 ~ 0.7. However, at this point {M2 <  0.7M©) the efficiency of hydrogen 

burning decreases, thus both stars no longer have the same mass-temperature rela

tion (Baraffe et al., 1998). As the mass decreases, AT^y/AM  decreases as well. Thus 

at T2/T i <  0.7 there are a wider range of possible mass ratios that can correspond
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Figure 4.16: Filled histogram: the T2IT\ distribution of the Kepler EB catalogue, 
for detached and semi detached systems with period between 1-40 days. Coloured 
lines: the T2IT\ distribution of the synthetic catalogue as derived by EBAI, for differ
ent IMR values of 5. Systems are filtered to include only detached and semi detached 
systems with periods between 1-40 days, with the results being averaged over 10 
runs. Representative 1 standard deviation error bars are shown.

to a single temperature ratio, thus they appear to “pile” up at the extreme tem per

ature ratios. As 5 decreases we get more extreme mass ratio systems and this effect 

becomes larger. The spread in the size and location of the peak is due to the differ

ent IMRDs and how strongly they each weight these extreme systems. In this region 

the secondaries are small compared to the primary, so the different transit proba

bilities and luminosities contribute less to the shape and spread of the peak than at 

r 2/ r i  = i.

Interestingly it appears that the bias EBAI introduces, may in fact help with de

termining the IMRD. EBAI condenses the EBs over a smaller range of T2IT\ values, 

than they truly have. Thus the peaks become more pronounced and as each bin has 

more values it may be possible to drive the uncertainties down.

Figs. 4.18 & 4.19, show the fractional radii distribution as derived by EBAI and 

the true distribution. Again, we can see that the synthetic EBs do not fit the Kepler 

data. It also appears that we can not distinguish between the different IMRDs as they 

are all within uncertainties of each other. Fig. 4.19 shows the true distribution of
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S = -0.5 
s = 0.0 
s = 0.5

Figure 4.17: Filled histogram: the T2 IT 1 distribution of the Kepler EB catalogue, 
for detached and semi detached systems with period between 1-40 days. Coloured 
lines: the true T2 IT1 distribution of the synthetic catalogue as derived by BlSEPS, 
for different IMR values of 5. Systems are filtered to include only detached and semi 
detached systems with periods between 1-40 days, with the results being averaged 
over 10 runs. Representative 1 standard deviation error bars are shown.

{R\ + R2 )la as compared to the Kepler values. The EBAI fractional radii distribution 

shows a strong similarity with the true fractional radii distribution, thus it appears 

that EBAI has successfully fitted the distribution. Which is what we expect from the 

training sets (figs. 4.8 & 4.9). However we have been unsuccessful in reproducing 

Kepler’s peak at ~ 0.1, which was seen in figs. 4.8 & 4.10. This suggest that I need to 

compare the Kepler EBs to the synthetic EBs, with the same EBAI training set.

I do not show the esinw, ecosco or inclination plots based on the fact that the 

parameters are all chosen randomly and thus do not convey any information about 

the underlying distributions.

4.4.5 Variation of the binary fraction

I now investigate whether it is possible to constrain the IBFD from the EB data. 

There is evidence from Raghavan et al. (2010) that the binary fraction increases with 

spectral type, with the most massive stars having the highest binary fractions. How

ever translating the results of Raghavan et al. (2010) which describe the current bi-
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s = -0.5 
s = 0.0 
s = 0.5

0.0 0.30.2 0.4 0.5

Figure 4.18: Similar to Fig. 4.16, except for the {R\ +R2 )/a  distribution, as derived by 
EBAI.

S = 0.0 
S = 0.5 
S = 1.0

(Ry + Ro) /  a

Fig. 4.17, except for the {R\ + i?2) / distribution, as derivedFigure 4.19: Similar to 
from BiSEPS.



4.4. RESULTS 118

0.6
c

0.4

0.2

o.o.

Figure 4.20: The two different IBFDs considered here.

nary fraction as a function of spectral type into the initial binary fraction as a func

tion of mass, is non trivial. Therefore I guess a form of the IBFD that should give 

similar results to that of Raghavan et al. (2010). For the exercise here the choice of 

functional form is less about finding a realistic IBFD and more about determining 

whether we can see the difference between the different cases.

I test the following distributions; b f rac = 0.5 constant for all masses and a flat 

log Mi distribution, which can be seen in fig. 4.20:

bfrac = /win(0.9,0.4 xlogM i +0.5) (4.25)

For both cases I assume a 5 = 0 IMR law and all other distributions are the same as 

previously stated.

From table 4.5 we can see the num ber counts for different functions of the IBFD. 

The model labelled b f rac = 0.5 is the same case as the model labelled 5 = 0 from ta

ble 4.3. For the log Mi distribution we can see that there is a increase in the num ber 

of EBs, due to the increase in high mass systems which are more luminous. The 

closest match in num ber counts to the Kepler data is the log Mi distribution.

In table 4.6 we can see the break down between detached and semi detached
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bfrac Number targeted systems
Total MS+MS GB+MS GB+GB

0.5 
log Mi 
Kepler

1035 + 15 
1297 + 27 

1244

913 + 16 
1144 + 27

118 + 6 
148 + 9

4±  1 
6 + 1

Table 4.5: Similar to table 4.3, the num ber of EBs detected for different evolution
ary types as a function of the adopted IBFD. Values are quoted as the total num 
ber of objects in the target selected sample, in Kepler equivalent counts. The num 
bers quoted are for detached and semi detached systems with periods between 1-40 
days. GB contains both HG and GB stars. Uncertainties are 1 standard deviations.

s Percental?e of EBs (%)
Detached Semi detached

0.5 
log Mi 
Kepler

89.65 ± 1.46 
87.91 + 2.42 

94.35

10.38 + 0.74 
12.09 + 0.80 

5.64

Table 4.6: The fraction of EBs detected as detached or semi detached systems for 
different values of the IBFD. Values are quoted as percentages of the total num ber 
of EB in the synthetic sample. Periods are constrained to be within 1-40 days. The 
Kepler EB catalogue sample has been rescaled to include only the detached and 
semi detached systems. Uncertainties are 1 standard deviations.

systems. It can bee seen that the log Mi has a higher proportion of semi detached 

systems. This is because the log Mi distribution favours higher mass systems. These 

higher mass EBs must orbit at a shorter orbital separation, to stay within the pe

riod bin. Thus these systems are more likely to fill their Roche lobes and undergo 

mass transfer. Neither model fits the Kepler result, possible to due to noise issues 

discussed previously, though Prsa et al. (2011) cautions against relying too heavily 

on the classification of systems due to degeneracies in the light curves. If we con

sidered the classification parameter c (section 4.3.3), then we could be more certain 

that we are comparing the same types of systems.

We can see in fig. 4.21, that similar to fig. 4.13, that we can not distinguish be

tween the different IBFD distributions based on the period alone.

Fig. 4.22 shows the temperature ratio distribution, while fig. 4.23 shows the frac

tional radii distribution, both of which show that the IBFD is not resolvable in the 

data, and neither of them fits the Kepler EB catalogue data.
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Figure 4.21: Filled histogram: the period distribution of the Kepler EB catalogue, 
for detached and semi detached systems with period between 1-40 days. Coloured 
lines: the period distribution for different binary fractions. Systems are filtered to 
include only detached and semi detached systems with period between 1-40 days, 
with the results being averaged over 10 runs. One standard deviation error bars are 
shown.

Figure 4.22: Filled histogram, the T2 IT 1 distribution of the Kepler EB catalogue, 
for detached and semi detached systems with period between 1-40 days. Coloured 
lines, the T2 /T 1 , as derived from EBAI, distribution for different binary fractions. 
Systems are filtered to include only detached and semi detached systems with pe
riod between 1-40 days, with the results being averaged over 10 runs. One standard 
deviation error bars are shown.
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Figure 4.23: Similar to Fig. 4.22, except for the (ffi + R2) / a distribution, as derived by 
EBAI, for different binary fractions.

4.5 Discussion

I have created a model for the detection of eclipsing binaries in the Kepler field and

passed the resulting synthetic light curves through a recreated Kepler EB pipeline.

I have then varied the Galactic distribution functions that underpin the population

models to determine whether it is possible to distinguish between different input

parameters from a comparison with the Kepler EB catalogue. I found that my m od

els currently do not reproduce the Kepler results, but they do show as a proof of

concept that it is possible to distinguish different initial distribution functions. I now

discuss the different models I used and how they affect the results.

4.5.1 Noise model

The resulting number of synthetic EB systems that are detected depend crucially on

the amount of noise inserted into the light curve. I tested the sensitivity of the results

by introducing a random multiplier into the intrinsic variability in an attem pt to

more closely mimic the results of Jenkins et al. (2010b) for the actual Kepler data. For

the 5 = 0 case I scaled the noise from the intrinsic variability by a random num ber

B f r a c  OC lo g  M

0.2 0.3
(Ri + Ro)/a



4.5. DISCUSSION 122

chosen from a log-flat distribution between 1.0 and 10.0. This has the effect that 

most dwarfs are no longer limited by the instrumental noise but by their intrinsic 

variability.

I found that by increasing the noise in this way the num ber of EBs decreased, 

which would result in a poorer fit of the num ber of EBs in the Kepler catalogue. The 

period distribution, with the increased noise, becomes even more weighted towards 

short period systems. Therefore simply increasing the noise for all systems will not 

work as we end up with too many short period systems. This suggests that to im 

prove the overall agreement the noise specifically for short period systems needs to 

be increased (or at least systems that would preferentially be in short periods). This 

way I can decrease the num ber of short period systems, while preserving the longer 

period systems. One way of looking at this is to compare the results for the log Mi 

IBFD with the flat IBFD, where we see that the fraction of semi detached systems 

increases. This occurs as these systems are preferentially more massive than in the 

flat IBFD case. As these are more massive systems then on average they m ust have 

smaller orbital separations, such that the period cut of Porb < 40 days is preserved. 

With smaller orbital separations these systems would be more likely to be in the 

semi detached state.

Therefore further investigation is needed to determine whether the noise should 

be increased for either short period systems in general or heavier systems which 

have preferentially small separations. Accretion might be responsible for the in

creased noise in semi detached systems (Patterson, 1981). Alternatively the noise 

could be increased for high mass systems. For systems with M > 2M© equation 4.8 

is dependent only on the granulation term, as the stars are now in the d-Scuti insta

bility strip.

Another consideration is the case of blended noise sources. This is where the 

flux from a background star is measured inside the optimal aperture of the target 

star. If the background star is a variable object, then its variability will be superim 

posed on the target star. Its amplitude will be suppressed by a factor based on the
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relative flux contribution in the optimal aperture. Debosscher et al. (2011) found 

~ 4000 variable objects, based on an automated analysis of the Kepler light curves. 

In this sample 50% of the variable objects were due to contamination from back

ground sources. This sample only includes those systems where they could detect 

and classify the variability mode. Thus the num ber of systems which are contam 

inated, but the variability is small enough to only be considered “noise”, would be 

expected to be higher.

During an eclipse a star blocks out an am ount of AF/F  of the flux from its com

panion. Therefore it should also block out A F/F  of the noise, assuming the intrinsic 

variability is evenly distributed on the star’s surface. However currently the noise 

from the companion is assumed to be constant. The noise during the eclipse thus 

should be rescaled down, based on the A F/F  that is blocked. This will increase the 

num ber of systems where one component is significantly more variable than the 

second component, for instance GB+MS systems. As we will now be more likely to 

detect the eclipse from the less variable star, this will increase the num ber of syn

thetic EBs, independently of the orbital period, which will allow the synthetic cata

logue to maintain consistency with the Kepler EB num ber counts.

4.5.2 Period doubling

A factor that has be ignored in this work so far is period doubling. To determine the 

period of an EB the primary and secondary eclipses must be determined in the light 

curve, either by an automated code or by eye (Prsa et al., 2011). The light curve is 

then phase folded on a trial period, based on the separation of the eclipses, and a 

goodness of fit statistic computed. However if the secondary eclipse is undetectable, 

either by being smaller than the noise or missing due to interruptions in the data, 

then a primary eclipse may be mistakenly selected as the secondary. This would 

then lead to the EB having a derived orbital period twice that of the true orbital pe

riod. As the two eclipses would also be the same size therefore the apparent num ber 

of equal sized systems would increase.
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This could be added to the model by setting synthetic systems with undetectable 

secondaries, as having twice their true orbital period. We would also need to com

pute a new synthetic phase folded light curve with two primary eclipses visible to 

pass to p o l y f it  and EBAI. Modelling this, would shift the synthetic period distribu

tion to longer periods and shift the T2 I T\ distribution towards T2 IT1 = 1. While the 

period shift would improve the overall fit, the improvement due to the shift in the 

temperature ratio is less certain. This is an area for further work.

Currently the model predicts less than 10 EBs would be expected to have a de

tected primary and undetectable secondary eclipse. This implies that period dou

bling is not a significant effect. However it may become more significant if the noise 

is increased, as discussed in section 4.5.1, such that eclipses become less detectable.

4.5.3 Eclipsing DERBs

To maintain the correct num ber of systems when the IMRD is varied, a new norm al

isation scheme was used. As part of this a new classification of binary was devised 

to handle limitations in the stellar evolution code. These systems with a very low 

mass companion are merely a mathematical tool designed to maintain the norm al

isation of the IMRD. We would expect some of these systems to eclipse and that 

the eclipses would be detectable by Kepler. However as BiSEPS has no evolutionary 

model for them we cannot determine their masses or orbital separation. Therefore 

they can not be added to the synthetic EB catalogue. These systems could explain 

part of the suppression in the num ber of EBs seen in the low s distributions. The 

solution to this is to replace the evolution code with one that can handle low mass 

systems. This would also allow the inclusion of the low mass (M < 0.1 M©) singles 

and primaries in binaries,which would benefit the normalisation of the SFR.

4.5.4 Performance of EBAI

The p o l y f it  code was designed to re-sample the existing light curves and produce a 

light curve that has points equidistant in phase space. However I showed that using
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the parameter choices of Prsa et al. (2008, 2011) it can misidentify the depth of the 

secondary and sometimes the primary eclipse, by up to 20% of the eclipse depth. 

This is significant as the ratio of the eclipse depths is what drives EBAI to derive the 

temperature ratio which is the worst performing of the EBAI fits. However, as I am 

predominately concerned with comparing my results with the Kepler EB catalogue 

results (and not the true parameters) in principle this is not as serious an issue, as 

both sets will be affected similarly.

From section 4.4.4 we can see that the choice of EBAI training set can introduce 

biases into the resulting distributions. I chose for simplicity to use a training set that 

was based on a binary distribution similar to that in the synthetic EB catalogues. 

This was based on the assumption that it should perform better on systems it has 

already seen. However, I have found that none of the synthetic catalogues fit the 

Kepler EB catalogue satisfactorily. Testing the catalogues with the other training set 

shows an even poorer fit to the Kepler data. Thus, to be able to compare to the Kepler 

EB catalogue I need a training set that more closely resembles that used in Prsa et al. 

(2011). This may relate to the input distributions of systems used in the training sets 

or how the light curves are generated (noise, limb darkening, third light etc). It is 

also possible that there are unspecified changes in the method between Prsa et al. 

(2008) and Prsa et al. (2011) that need to be taken into account in order to reproduce 

the training set. A solution to this problem would be to use the same training set on 

both the synthetic and Kepler EB catalogues. This could be achieved either by using 

Prsa et al. (2011) training set or by downloading the phase folded light curves for 

the Kepler EB catalogue and use the training sets derived here. This way it would 

not matter if there are differences in the method or parameters used to generate the 

training set.

4.5.5 Effect of eccentricity

I have ignored for the moment the eccentricity distribution of binaries due to the 

computational costs involved in modelling an extra distribution function. However,
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for a study of EBs the eccentricity does play an im portant role. In the Kepler EB 

catalogue, 60% of the detached and semi detached systems with 1 < Por^/days < 40 

have e > 0.1, thus they make up a significant population of short period EBs.

From the evolution point of view short period binaries have eccentric orbits only 

for a short time compared to their lifetime, due to tidal circularization (Hurley et al.,

2002). However when considering the EB sample, eccentric systems are more prob

able due to increased transit probabilities. Depending on the precise alignment of 

the orbit the duration of an eclipse may be shorter or longer which will affect the 

probability as well (Burke, 2008). Thus eccentric binaries will have a different selec

tion function to non-eccentric systems. To compute this selection function I would 

need to consider their eccentricity induced binary evolution, as well as the evolu

tion of the eccentricity and period, via tidal forces (section 1.1.1.1). This can only be 

achieved by including an additional distribution function in the phase space cov

ered by the stellar evolution tracks.

The “noise” for eccentric systems will also be different from that of circular sys

tems. Roche lobe overflow mass transfer can occur in eccentric binaries, under cer

tain conditions, even though in principle the stars should have circularized before 

Roche lobe overflow (Davis et al., 2013). This mass transfer rate is variable depend

ing on the orbital phase of the system, introducing another source of noise in short 

period systems, that will be time varying over the orbital cycle. Tidal distortions 

caused by an eccentric orbit will induce tides on the star (section 1.1.1.1), introduc

ing an extra source of noise as the stars become deformed and then re-equilibrate. 

These terms may be counter balanced by the fact that as the star is no longer spher

ically symmetric the asteroseismic signal will vary (Springer & Shaviv, 2013). Thus 

there are several changes needed in the noise model for close, eccentric binaries. 

Introducing a fully comprehensive EB model of eccentric binaries is left for future 

work.
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4.5.6 Higher order systems

The seminal study of Raghavan et al. (2010) found ~ 9% of all systems contain three 

stars and a further ~ 3% have more than three. Thus higher order systems make 

up a non-negligible fraction of the stellar population of the Galaxy, a contribution 

currently not considered in the model. The contribution of a third light source in 

these systems will decrease the measured eclipse depth, as well as introduce an

other source of stellar noise. Higher order systems also pose an issue with the nor

malisation of the model. The IBFD used here assumes that 50% of systems are bina

ries. But based on the Raghavan et al. (2010) results, what should really be assumed 

is that 50% of systems are single stars, the remaining being binaries and higher order 

systems. Thus the num ber of binaries will decrease.

The full solution to this would require introducing these systems as a new pop

ulation in the model. However each additional star would require a new set of ini

tial distributions (mass, orbital separation and eccentricity) that would increase the 

runtime. In principle I could assume that all higher order systems are hierarchical, 

for instance a close binary with a distant third body. This way would assume that 

the third body plays no evolutionary role, third bodies can of course alter the eccen

tricity and inclination via the Kozai mechanism (Kozai, 1962). I would then select a 

binary from the synthetic catalogue and select a single star from the stellar track li

brary, where the selected single star is based on a set of third body initial distribution 

functions (IDFs) and constrained to be the same age as the binary. However, this 

approach would not work as the probability of selecting a system in the synthetic 

catalogue depends on the total luminosity. This alters the fraction of the Galactic 

volume the system is visible in. A third body would thus allow the system to be seen 

to a greater distance and therefore the probability of the binary in the first place 

changes.

Therefore attempting to model a triple star system without performing the full 

integral over all the initial distributions would not be possible. To get round this 

would require the new model as described in chapter 6.2. Here each system is cho



4.6. CONCLUSIONS 128

sen based on its IDFs, evolved and then its detectability is determined. The runtime 

of this method is then independent of the num ber of initial distribution functions. 

Triple stars would then be selected based on a distribution function, then only the 

stars selected by the IDF are evolved. This way only the necessary triple star sys

tems are evolved rather than all possible triple stars, as would be required with the 

current model.

This approach would still require the assumption of the third body being at a 

large separation from the binary such that it plays no role in the evolution. This 

is because the BSE code does not handle three stars simultaneously. This is a rea

sonable assumption as systems where the third body does interact with the binary, 

Kozai-Lidov (KL) oscillations can be induced. These drive rapid changes in the ec

centricity which can force the binary to merge on short time scales (Antognini et al., 

2014).

4.6 Conclusions

I have created a model for generating synthetic eclipsing binaries catalogues with 

different initial distribution functions. I have modelled the noise predicted during 

an eclipse and used this to determine whether an eclipsing binary would be de

tected by Kepler. Those systems that were detected were then passed though the 

same procedures as the Kepler EB catalogue to derive Kepler based binary param e

ters.

I have shown that, at this time, my model is incomplete and thus unable to ac

curately reproduce the Kepler results. Thus I can not constrain any of the initial dis

tribution functions from my population models. However I have shown as a proof 

of concept that it is possible to distinguish between different IMRDs but not differ

ent IBFDs. To distinguish between the different IMRDs requires the use of the EBAI 

code, which I have shown has issues in reproducing the correct parameters.

I have shown that the EBAI derived parameters are biased and not representa

tive of the true distributions. Hence the only way to be able to interpret the Kepler EB
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parameters is to compare the distributions against a theoretical population model. 

Additional I have shown that the model and the Kepler data need to be compared 

using the same EBAI training set, such that the same bias is introduced into both 

results. This bias in the Kepler derived parameters has implications for the rates of 

false positives, which are based on the sample of Kepler EBs.



Chapter 5

Asteroseismic binaries

In this Chapter I derive a model for the distribution and detectability of asteroseis

mic binaries. These are systems where we can detect pulsations in both stars in a 

binary and in general implies both objects are giants and have similar luminosities. 

This enables us to calibrate the asteroseismology derived parameters against those 

derived from eclipse measurements or radial velocities.

I predict that there should be between 87 (5 = -0.5) and 256 (s = 1.0) asteroseis

mic detectable binaries in the Kepler field, though the fraction that may be recov

ered by analysis of the light curves may be considerable less. I also determine that 

the rate of false positives for these asteroseismic binaries is <  20%. I find that there 

is a no period dependence for the systems detected, except for a short period cut 

of ~ 30 days. Assuming that the asteroseismic signal is not suppressed in the pres

ence of eclipses, I find that there should be between 34.0 + 6.0 (5 = -0.5) to 59.0 ± 6.0 

(s = 1.0) asteroseismic eclipsing binaries (EBs) which disagrees strongly with the 

num ber of systems detected, 2 for Porb < 40 days.

5.1 Introduction

The numbers and distribution of asteroseismic binaries was presented in Miglio 

et al. (2014). The numbers of astrophysical contaminants and the asteroseismic EB 

are additions to the work in Miglio et al. (2014).

130
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Asteroseismology, the study of the pulsation modes inside stars, has been rev

olutionised by Kepler. By combining the high precision with the almost uninter

rupted temporal coverage of the Kepler field it has been possible to detect the pul

sation modes in 13,000 red giants (Stello et al., 2013) and measure the stellar prop

erties; like mass, radius and temperature to < 10% (Huber et al., 2013; Chaplin et al., 

2014).

The pulsations themselves can be split into two types. There are solar like pul

sations (p  modes) caused by pressure gradients which act to restore the star after a 

perturbation caused by sound waves (Bahcall et al., 2001). Then there are g  modes 

where gravity is the predominant restoring force, where the pulsations are due to 

gas packets rising and falling due to buoyancy (Bedding et al., 2011). For both types 

of oscillations, what we detect is a series of different pulsation frequencies based on 

which frequency can form a standing wave inside the star and then also the har

monics of this frequency. The oscillation peaks for p  modes are spaced equally in 

frequency, while for g  modes they are approximately equally spaced in period (Bed

ding et al., 2011).

The p modes form due to turbulence inside convective regions inside a star. This 

turbulence causes pressure fluctuations to form which drive sound waves, which 

can then set up a standing wave pattern which we see as a p mode oscillation, as 

shown in fig. 5.1. These oscillations change the density of the material at the nodes 

of the standing wave, which we then see as a change in the luminosity due to the 

change in the temperature of the material. This is a stochastic process, the oscilla

tions are due to many randomly perturbed regions which we assume act indepen

dently of each other. Therefore the change in luminosity we see is an average over 

many turbulent regions, with each region oscillating at a different phase (Kjeldsen 

& Bedding, 2011).

The g modes are ignored for this work, as they are not relevant for the types of 

objects I wish to model. The pulsations arise due to gas bubbles raising and falling 

due to buoyancy. They are predominately generated in the core of the stars and
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Figure 5.1: A schematic showing two sets of p-modes, denoted by black lines, trav
elling through the convective envelope of a star, which is denoted in red. The core 
is denoted in yellow. Only those p modes that can form a standing wave inside the 
envelope are detectable due to the change in pressure at the surface nodes. Note 
figure is not to scale

trapped due to the convective envelopes of stars and thus difficult to detect on the 

surface (Bedding et al., 2011).

However, they can be detected in some objects in a m ixed  mode configuration. 

In systems where the g modes in the core have frequencies similar to those of the p 

modes, the two sets of oscillations can couple allowing the detection of the g modes 

on the surface of the star (Handler et al., 2009; Bedding et al., 2011). Detecting these 

modes enables the distinction between shell hydrogen burning stars and core he

lium burning (CHeB) stars, due to the dependency the g mode frequencies have on 

the size of the core (Bedding et al., 2011).

By measuring the individual pulsation frequencies detected from a star, in the 

same way earthquakes on Earth provide information on the Earth’s interior, the in

terior structure of the star can be determined. This is because the pulsations (p 

modes) are related to the local sound speed and thus track changes in density in 

the stellar interior (Brown & Gilliland, 1994). This was originally applied to the Sun, 

which is then called helioseismology, and was used to provide information on the 

interior of the Sun. Examples of this include the size of convective envelope (Brown
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& Gilliland, 1994), the luminosity evolution of the Sun (Bahcall et al., 2001) and dif

ferential rotation in the Solar envelope (Schou et al., 1998). The pulsations manifest 

themselves as small, local, changes in the temperature and radius of the star, though 

only the temperature change is significant (Kjeldsen & Bedding, 1995). The combi

nation of many small changes over the whole disc of a star then show as changes in 

the total luminosity of the star.

For this work I consider the case where both stars in a binary system are pul

sating with p  modes, such that there are two detectable asteroseismic signals in the 

light curve. For this to happen however requires that both stars have similar lumi

nosities, otherwise the pulsation signal from the fainter star is washed out. Primarily 

the pulsations will be detected in giant stars. This is because the pulsation signals 

are easier to detect in giants due to the frequencies being lower than in main se

quence (MS) stars. This then allows the long cadence (LC) Kepler data to be used, 

which is available for all the objects Kepler observes as opposed to the short cadence 

(SC) data which is limited in quantity and temporal coverage.

Detecting these pulsating binary systems allows us to compare the parameters 

derived from asteroseismology with those derived from other binary methods, e.g. 

radial velocities or eclipses, thus allowing us to calibrate the asteroseismology m od

els, for instance against the the 34 red giant eclipsing binaries found in the OGLE 

data set (Nataf et al., 2012). These systems can also be detected over the whole pe

riod range binaries can exist in, except for a short period cut where we are incapable 

of having two giant stars in a stable orbit. This is something not seen in any other 

binary detection method. As both stars must be giants and also have similar lum i

nosities then they must also be of a similar mass and age. Thus these objects gives 

us a handle on the distribution of equal sized systems providing a constraint on the 

initial mass ratio distribution (IMRD). Discovering and modelling these systems is 

beyond the scope of this work.

In section 5.2 I discuss the model used to determine the detection criteria for 

the asteroseismic signals. Section 5.3.1 looks at the predicted num ber of systems
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detected via this method, while sections 5.3.2-5.3.4 look at the distributions of the 

detected systems. Section 5.4 looks at various false positives and contam inants in 

the predicted sample. In section 5.5 the systems common to both the asteroseismic 

and EB catalogues is derived. While in sections 5.6 & 5.7 I discuss the results and 

present my conclusions.

Using the method presented in Chaplin etal. (2011b) and used in Miglio etal. (2014), 

the detectability of a star’s asteroseismic signal is derived. This value is computed 

from the scaling relations, which assume we can scale the results derived from the 

Sun to other stars (Kjeldsen & Bedding, 1995). These relations use the mass, radius 

and temperature of the star to derive the strength of the asteroseismic signal. This 

is then combined with a prediction of the noise for the star to derive the S/N of the 

signal. With the S/N for the signal a false alarm probability can be computed for 

the detection of the asteroseismic signal. Based on a cut, designed to minimise false 

positives, those systems with a low false alarm probability are selected to form a 

synthetic asteroseismic catalogue.

This work relies on the computation of the asteroseismic signal and granulation, 

which acts a a noise term for this work, as presented in section 4.3.1. The two princi

ple components measured from a asteroseismic signal is the frequency of the peak 

amplitude signal, v max which scales as the acoustic frequency of the star, and the 

large frequency separation, Av which scales as the m ean density of the star. Thus 

our aim in this work is to compute these quantities and use them  to derive the 

strength of the overall asteroseismic signal. v max is the frequency at which the ob

served modes have their largest amplitudes (Chaplin et al., 2011c). This is assumed 

to be scaled from the solar value:

5.2 Method

max,omax (5.1)
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where v max,e is the solar value of 3150 /iHz.

The second quantity Av is the frequency difference between radial overtones 

(Chaplin et al., 2011c):

, MAv = Av© | —
M q

0.5 R -1.5

p ■ (5.2)

where Av© is the solar value of 134.9juHz.

The maximum amplitude of the asteroseismic signal can be computed as:

(j l  \ 2  / j"  \ 0.5

[jrjL) PPm (5-3)

where p = l - e x p ( - ( .T reli - T eff) lA T ) ,  Tred = TrediO(LILo)~0m3, Tred e = 8907Kand 

A T = 1550K. The parameter f3 is a fitted correction factor used because the predic

tions of the amplitude get progressively worse as a star nears the d-Scuti instability 

strip. For any star inside the instability strip I set j6 = 0.0, thus they have no astero

seismic signal.

We then assume that the power due to the asteroseismic signal is entirely con

tained within a Gaussian envelope, with a m ean of v max and FWHM of v max/2. The 

contributions from the different l&in modes can be combined, where each scales as 

a function of the maximum amplitude, A*max, (Chaplin et al., 2011c). Therefore the 

total observed oscillation power and hence the signal, is:

P,ot = 1.55A2maxi}2^ ^ B l ti ppm 2pHz_1 (5.4)

Here r) = silicon I Ny”'"?st jj is a correction factor designed to reduce the strength 

of the signal the closer the pulsation frequency v max is to the Nyquist frequency of 

the observations. The quantity Bjcj = Li / {L\ + L2), is the luminosity fraction derived 

separately for each star, in single stars this is set as 1. This factor compensates for 

extra background flux in the measured signal due to the companion star. As B% en

ters into equation 5.4 as a squared quantity, only in systems where the luminosity 

of both components is similar can the asteroseismic signal be detected. We can see 

that even for two stars with the same luminosity the asteroseismic signal is 1/4 the
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strength it would have if it were a single star.

Finally, the noise is calculated as

Btot  = {pinstr + Pgran)^max (5.5)

where b i mtr  is the instrumental noise and Pgran is the power due to the granulation 

variability:
v ' " 2 n  _  n 1 1 max * gran — 9.1 B\  ppm 2//Hz 1 (5.6)

ymax, O

The instrumental noise, b i nstr, is expressed as

binstr = 2 x 10~6(72Af ppm 2juHz_1 (5.7)

with A t -  58.85s and a, a semi-empirical RMS noise measured from Kepler data 

(Gilliland et al., 2010b):

*610 ( c f , 5H/2
or = —  (c + 9.5 x 105 (14/Kp) j (5.8)

and c = 1.28 x io°-4(12_ii::p)+7, which is the expected num ber of detections per ca

dence. Stellar activity is also im portant to consider in these systems, party for the 

increased noise (section 4.3.1) and also as it has been shown to to suppress the as

teroseismic signal (Chaplin et al., 2011a). For the moment however, this is ignored.

The S/N ratio is thus:

S / N  = Ptot/B tot (5.9)

This value can then be compared to a threshold (S/N) thres which is set such that 

there is a 1% chance of a false positive, based on a %2 distribution with 2Na de

grees of freedom. Here is the num ber of frequency bins measured in the obser

vational period. Only systems where the calculated probability that S /N  is greater 

than (S /N )thres, is greater than 90%, do we assume that there is a detection. For bi

nary systems I calculate this quantity for both stars and then require that both  stars
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have a probability greater than 90%.

As the frequency of the asteroseismic signal in a MS star is of order minutes, SC 

(cadence 1 minute) data is required to sample the signal. Thus for systems contain

ing a MS star the am ount of time available to observe the system is 30 days, the time 

approximately allocated for objects in SC mode (Gilliland et al., 2010b). For giants, 

the frequency is lower, thus the asteroseismic signal can be detected in the LC data 

(cadence 30 minutes). Thus the observational period for these is set to full Kepler 

observing period of 4 years (Miglio et al., 2014). For binaries where there are both 

types of stars in the same system the length of observations is set to the shortest pe

riod, 30 days. There is a final constraint applied in that the calculated v max for both 

stars must be less than the Nyquist frequency for the observing period selected.

5.3 Results

The aim of this work is to predict whether it is possible to distinguish different Galac

tic distribution functions based on the num ber of asteroseismic binaries Kepler 

could detect. None of these objects have been published yet, bu t there have been 

some detections (Chaplin priv.comm).

For this work I consider 4 sets of the IMRD s parameter, (s = -0.5,0.0,0.5,1.0). 

I also consider two initial binary fraction distributions (IBFDs) set as either a con

stant value (0.5) or log flat (logMi), see equation 4.25 and Chapter 4 for choice of 

parameters. All other Galactic parameters are as described in Chapter 2 .1 also in

clude DERBs in these models; these act as single stars for the purpose of this work 

as the secondary will always be too faint to be detectable.

5.3.1 Number of detectable systems

Firstly, I consider the num ber of detections of asteroseismic binaries. The num ber of 

which can be seen in table 5.1 for both LC and SC detections, including cases where 

only one star is detectable. The numbers quoted are Kepler equivalent numbers,
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Number of detections
s bfrac Both (LC) Either (LC) Both (SC) Either (SC)

-0.5 0.5 87 10797 3 713
0.0 0.5 114 11637 6 740
0.0 log Mi 182 14914 5 902
0.5 0.5 181 11877 4 700
1.0 0.5 256 12081 5 714

Table 5.1: Number of predicted detections where we see the asteroseismic signal in 
both stars or in only one star, considering both the LC (favouring giant stars) and 
the SC (MS stars) data for the target selected sample, as a function of the IMRD 
and IBFD. These numbers have been scaled to show the Kepler equivalent counts, 
compensating for the variations in num ber of systems between BiSEPS and Kepler 
(see table 4.4.1).

compensating for the fact that BiSEPS generates different numbers of total objects 

and different numbers of target selected systems compared to Kepler (section 4.4.1). 

Thus these are the “true” counts as expected for Kepler, assuming a 100% recovery 

rate.

We can see in the table that the prediction is of order one hundred LC asteroseis

mic binaries and that there is a clear increasing trend in the num ber of detections 

as a function of the IMR s parameter. This is due to the increase in similar mass sys

tems, where both stars also have similar luminosities. The SC asteroseismic binaries 

detections show no overall trend however there are only a few detections, thus it is 

difficult to draw a conclusion from this. The low numbers are due to the reduced 

observing time for these systems in SC mode.

The num ber of LC systems with 1 detection is of order the total num ber of sys

tems (~ 13,000) with detected asteroseismic signals in the Kepler field (Stello et al., 

2013), while the SC numbers are of the order of the num ber with well determ ined 

parameters (~ 500) (Chaplin et al., 2014). This suggests that the analysis of the pre

sumed single stars may need to take into account possibly undetected companions 

which may alter the derived parameters for the star (Springer & Shaviv, 2013). On 

the other hand the models may over predict the detectability, as this sample does 

not include the single stars, yet we predict more detections than have currently been 

made.
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Number of detections
s bfrac Both (LC) Either (LC) Both (SC) Either (SC)

-0.5 0.5 214 34895 4 1063
0.0 0.5 265 37569 9 1101
0.0 log Mi 418 46860 6 1360
0.5 0.5 417 38760 7 1060
1.0 0.5 561 39721 8 1060

Table 5.2: Similar to table 5.1 except now for all systems in the Kepler field down to
Kp < 16

The difference in numbers between the flat and log Mi binary fractions is due to 

the log Mi preference for high mass stars. These stars are more luminous than lower 

mass stars so there is an increased probability in seeing them. They also have a lower 

Vmax (as they are larger) thus being easier to detect as an asteroseismic binary via 

equation 5.4.

In table 5.2 we can see the num ber of detections for the complete sample of stars 

in the Kepler field down to Kp < 16. The idea behind this is that Kepler observed 

additional stars not in the original target selection list due to the guest observation 

program. Thus table 5.2 provides an upper estimate on the total num ber of possible 

detections, having assumed that Kepler observed all stars in its field of view.

We can see that the the num ber of SC detections, for both single and double de

tections, increases by a third. The LC detections in both stars approximately double, 

while the LC detections in a single star are 3 x as large. This is due to the change 

in the num ber of objects considered (target list is ~ 50% of all the Kepler objects), 

combined with the bias to observe MS systems in the target selected sample.

5.3.2 Asteroseismic binary distributions

I now discuss the distribution of the asteroseismic binaries, for 5 = 0.0, in log Tef f  - 

log L space in fig. 5.2. Note the num ber of systems plotted is different to that of table 

5.1 as the table shows the Kepler equivalent numbers. Firstly, looking at the grey 

dots, which shows the distribution of asteroseismic single stars and asteroseismic 

DERBs, we can see the imprint of the thin/thick disc. The thick line running through
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the giant branch and the large bulge at logL ~ 2, log Tef f  = 3.7 -  3.8, is due to thick 

disc objects. These are constrained in the log Tef f -  logL space as there is a limited 

range of masses they can have while still being a giant during the current epoch. 

This is due to the lack of star formation in the thick disc after 3 Gyrs. The bulk of 

the asteroseismic systems have logL ~ 2, log Tef f  = 3.7, which is the thin disc CHeB 

branch. Predominately the asteroseismic binaries have at least one component in 

the CHeB phase, ~ 80% of the total compared to only 15% in the synthetic binary 

sample. This relative increase is due to increased detectability due to the increased 

Ptot, as CHeB stars have lower values of v max and Av.

There are a few detections in the MS region and HG region. The num ber of MS 

objects is limited due to the shorter period of observations. The num ber of HG stars 

is limited as the S/N is small. From equation 5.4 there is an overall R3,5 dependence, 

thus the total signal, Ptot, will be smaller for HG stars compared to GB/CHeB stars. 

We also can see that HG stars will have a higher v max> due to its R~1,5 dependence. 

This implies that the t} term  in equation 5.4 will be smaller (than in GB/CHeB stars), 

as v max will be closer to the Nyquist frequency.

5.3.3 Mass ratio distribution

I now consider the mass ratio distribution of the detected asteroseismic binaries, 

as seen in fig. 5.3. The mass ratio distribution is very strongly peaked at 1, which is 

unsurprising as we can only detect systems with luminosity ratios close to 1 which 

would generally imply equal masses. The systems where the mass ratio is less than 

~ 0.9 are either systems that have undergone mass transfer or where the primary is 

descending along the giant branch or ascending the asymptotic giant branch (AGB), 

while its companion is still ascending or descending the giant branch, as seen for 

some objects in fig. 5.2. Thus it has a similar luminosity as its companion, bu t is at a 

later stage of evolution and therefore m ust have a higher initial mass to have evolved 

quicker.

We can also see in fig. 5.3 that the present day mass ratio distribution (PDMRD)
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Figure 5.2: A Hertzsprung-Russell Diagram of the detected asteroseismic signals. In 
grey are the detections from the single stars and the DERBs (which in this instance 
act as single stars). Coloured dots represent where we see detections in both stars 
(for LC and SC modes). Green lines connect the individual components of the bi
nary. Blue dots are the initially more massive component while red dots are the ini
tial secondary component. Circles are thin disc systems while squares are thick disc. 
This is plotted for 5 = 0.0, b f rac = 0.5 target selected systems.
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Figure 5.3: The present day mass ratio (PMR) and initial mass ratio distribution 
(IMR) of target selected asteroseismic binaries (AB) and all target selected binaries 
for the 5 = 0.0 distribution. On this scale the PDMR and IMR for all binaries are iden
tical. The other IMRDs and IBFDs show similar distributions.

is similar to the IMRD for the asteroseismic binaries. This is also unsurprising as 

most stars in general do not undergo mass transfer, thus mass loss is limited to 

winds. As both stars are of similar masses then the winds will be of equal strength 

thus they will lose mass at similar rates, preserving the mass ratio. The asteroseismic 

binary PDMR therefore provides a proxy for the IMR of the asteroseismic binaries. 

The IMR and PDMR distribution of all binaries are flat for the modelled 5 = 0. The 

distributions are similar as the majority (~ 98%) of systems are wide detached sys

tems that do not undergone mass transfer.

5.3.4 Period distribution

Fig. 5.4 shows the period distribution of the asteroseismic and non-asteroseismic 

binaries for 5 = 0. The non-asteroseismic binaries have a log flat period distribu

tion with the drop at long periods due to the maximum initial orbital separation of 

106Rq. Anything further separated has expanded its orbit due to mass loss during 

its evolution. The distribution of the asteroseismic binaries is generally similar to 

the non-asteroseismic binaries, though they differ at short orbital periods. The de-
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Figure 5.4: The period distribution of asteroseismic binaries (green) and all binaries 
(blue) for the target selected sample with s = 0.0. Other values for the IMRD and the 
IBFD show similar distributions.

viations are due to the low number of systems per bin. There are two populations 

of binaries, those with Porb >  30 days and those with Porb <  30 days. Those with 

longer periods are constrained by the requirement to have two giants in the same 

system while not undergoing mass transfer during its evolution. Those with shorter 

periods have undergone mass transfer, during its evolution from a MS to a HG star, 

see section 5.4.2. The other IMRD and IBFD distributions show similar results.

The two distributions being the same is expected as there is no explicit de

pendence on the period in equation 5.9. The only period-dependant constraint is 

whether a system is wide enough to support two giants in a stable configuration. 

Thus we can see that asteroseismic binaries provides information on binaries inde

pendent of their orbital separation over the whole range of periods, something not 

seen in other binary detection methods.

5.3.5 Asteroseismic signal separation

To detect a asteroseismic binary we must be able to distinguish between the two 

sets of pulsation frequencies. For example, if we had two exactly identical stars then
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v max and Av would be equal and the peaks in frequency space would be aligned. We 

would then only be able to see one set asteroseismic signals. Thus in system where 

Vmax is similar for both stars the extraction of the signal will be more difficult due to 

the overlapping signals.

Let us assume that the asteroseismic signal has a Gaussian shaped envelope 

(section 5.2), with a mean of v max and a FWHM of vmajc/2. Then we can define 

those binaries where the separation between each v max is less than the sum of the 

two FWHMs to have overlapping asteroseismic signals:

\Vmax,\ ~ Vmax,l\ < ---------    (5.10)

where the subscripts denote each star. This defines the minimum separation for 

the signals to not overlap. For the target selected s = 0.0 case all the asteroseismic 

binaries, for both SC and LC, have overlapping asteroseismic signals.

We can also use a more stringent constraint such that:

rnin(vmflJC)i ,v max>2) ......
\Vmax,\ ~ Vmax,2\ < “ (5.11)

So that one of the star’s asteroseismic peak will be within the FWHM of the Gaussian 

envelope of the second star. The num ber of target selected, 5 = 0.0, systems with the 

more stringent constraint is 57% for the LC detections and 85% for the SC detec

tions. Thus the num ber of recoverable asteroseismic binaries may be m uch lower 

than predicted in table 5.1.

5.4 Astrophysical contamination

I now consider various types of systems that complicate the analysis of the astero

seismic binaries. These consist of binaries where we can resolve the individual stars, 

systems which have or are undergoing mass transfer, and finally blended single stars 

with detectable asteroseismic signals.
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5.4.1 Resolved binaries

As the asteroseismic binaries can be at any period, some may have wide enough or

bital separations that they are resolvable as individual stars. This would complicate 

the analysis as any loss of flux (for instance part of the star’s PSF moving out of the 

optimal aperture via jitter) would disproportionately affect one star over the other. 

They would also complicate the analysis of the optimal aperture and the target list 

as the binaries can no longer be treated as point sources, something that was not 

considered in section 3.2.1.

From the period distribution and the distance distribution of the synthetic aster

oseismic catalogue, we can compute the projected sky separation of the binaries. We 

find that ~ 2.5% of binaries, have projected sky separations wider than 4", the size of 

one Kepler pixel. This is the same for both asteroseismic and non-asteroseismic bi

naries. Therefore the numbers of resolvable asteroseismic binaries is small, of order 

1-2 systems, and can therefore be ignored.

5.4.2 Mass transferring systems

One of the advantages of detecting binaries via their asteroseismic signal is that both 

objects must be similar luminosities, which for almost all systems implies similar 

masses, thus we can derive the IMRD from them. However systems that have or are 

undergoing mass transfer complicate this. Mass being transferred can introduce ex

tra noise, not considered in equation 5.9. The mass transfer process can also drive 

systems into unexpected regions of the HRD where we may not expect that the re

lations used in equation 5.9 would still be valid. Also a system that has undergone 

or is undergoing mass transfer implies that it has a comparatively short orbital pe

riod. This means we need to consider extra noise sources, like tidally induced pulsa

tions (Thompson et al., 2012) and stars no longer being spherical (Springer & Shaviv, 

2013).

Tables 5.3 & 5.4 show the numbers of predicted asteroseismic binaries that u n 

derwent or are undergoing mass transfer (assuming that equation 5.9 holds). We can
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Number of detections
s bfrac Both (LC) Either (LC) Both (SC) Either (SC)

-0.5 0.5 2 163 0 25
0.0 0.5 2 233 0 24
0.0 log Mi 2 312 0 33
0.5 0.5 0 301 0 21
1.0 0.5 3 316 0 37

Table 5.3: Similar to table 5.1 except now for systems that non-asteroseismic bina
ries, or are undergoing mass transfer, and are in the target list

Number of detections
s bfrac Both (LC) Either (LC) Both (SC) Either (SC)

-0.5 0.5 3 236 0 292
0.0 0.5 6 315 0 420
0.0 log Mi 8 403 0 552
0.5 0.5 3 411 0 447
1.0 0.5 8 403 1 562

Table 5.4: Similar to table 5.1 except now for all systems in the Kepler field with Kp < 
16 that non-asteroseismic binaries, or are undergoing mass transfer.

see that the numbers are small compared to tables 5.1 & 5.2 for systems where we 

detect both asteroseismic signals. For the cases of single detections the LC results 

are also small compared to tables 5.1 & 5.2. For the non target selected SC systems 

the num ber of mass transfer systems is comparable to the total num ber detected. 

This may explain why table 5.2 has more detections than Chaplin et al. (2014); if the 

mass transfer process significantly suppresses the asteroseismic signal or otherwise 

increases the noise such that a signal is undetectable. Then the total num ber of syn

thetic detections decreases to values less than the num ber of actual detections in 

Chaplin et al. (2014).

All the LC asteroseismic binaries that have had mass transfer through case A and 

then case B processes. The primary star, during its main sequence lifetime, transfers 

mass on a nuclear time scale, and continues transferring mass during its evolution 

into a giant on the same time scale (Case A). As the star expands due to its evolution 

into a giant, it would normally form a common envelope with its companion. How

ever because of the mass transfer (Case B) the orbit period increases, such that the 

system avoids forming a common envelope.
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5.4.3 Blended systems

The final set of contaminants considered here are blended systems. These are two 

singles stars (or DERBs) that are within 1 Kepler pixel of each other, with a detectable 

asteroseismic signal from both stars predicted. I search the synthetic catalogue for 

all singles and DERBs that are within 4" of each other, then apply the asteroseismic 

detection code, to determine their number. I alter the B^ factor in equations 5.4 & 

5.6, to be equal to the apparent luminosity fraction of each star, as opposed to the 

intrinsic luminosity fraction.

Table 5.5 shows the predicted num ber of blends, in Kepler equivalent counts, 

for the different IMRDs and IBFDs considered here. There is a trend for increasing 

num ber of blends as 5 increases, though 5 = -0 .5  is an outlier. The s = -0 .5  case has 

a large num ber of blends due to the larger fraction of DERBs (table 4.1).

As 5 increases the population of DERBs shifts towards the primary having a lower 

mass, such that q -»• 1. The lower mass implies these systems live longer thus we see 

an increase in the fraction of GB and CHeB primaries in DERBs as 5 — 1, which are 

the preferential systems to see an asteroseismic signal in.

Also significant is the num ber of blends containing a thick disc star. Overall the 

thick disc makes up ~ 10% of systems, however in the case of blended systems thick 

disc stars contributes ~ 50% of the blends. This is likely due to the large CHeB com

ponent in b i s e p s , as seen in fig 5.2. This in turn is due to the single metallicity used 

for the thick disc. Decreasing the metallicity moves the bulge towards lower tem per

atures and decreases the total num ber of expected CHeB stars.

Comparison with table 5.1 shows that the num ber of blends with a target se

lected system is small for all values of s. The non target selected systems also show 

a similar trend. Note this work includes DERBs and the new normalisations scheme 

(equation 4.5). These where not present in the study of Miglio et al. (2014), which is 

why the results preferred here are slightly larger.
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Number of detections
5 bfrac Target All Target Thick Non-targetAll Non-target Thick

-0.5 0.5 20 13 45 31
0.0 0.5 4 2 10 5
0.0 log Mi 4 2 10 5
0.5 0.5 8 4 20 10
1.0 0.5 11 8 26 19

Table 5.5: The Kepler equivalent num ber of blends predicted for different IMRD and 
the IBFD. Blends are where two singles stars (or DERBs) are within 1 Kepler pixel (4") 
and the combined asteroseismic signal is detected using equation 5.9. Target blends 
are where at least one star is in the target list, while non target contains all stars with 
Kp < 16. The contribution due to one of the stars in the blend being a thick disc 
object is also shown. These are all LC detections.

5.5 Asteroseismic eclipsing binaries

I now cross reference the synthetic systems in the asteroseismic and EB catalogues. 

These are systems that have both detectable asteroseismic signals and at least 3 de

tectable eclipses (see section 4.3). It is assumed that the presence of the eclipses 

does not alter the detectability of the asteroseismic signal.

In table 5.6 we can see the num ber of asteroseismic EBs as a function of the 

IMRD and IBFD. There are no predicted systems with detectable asteroseismic sig

nal in both stars and eclipses for SC systems due to the low num ber of asteroseismic 

binaries detected in SC mode. Only a few LC asteroseismic binaries have detectable 

eclipses, primarily due to the requirement that the orbital period must be less than 

40 days to be a detected EB (section 4.3). For systems with only one detectable as

teroseismic signal there should be of order 50 systems, with a slight dependence on 

s.

Gaulme et al. (2013) found 70 systems that exist in both of Kepler’s RG and EB 

catalogues, with 47 of these objects showing detectable oscillations in a single star. 

However, only 13 could be confirmed to be an EB with a detectable asteroseismic 

signal. With 12 of them being GB+MS systems and one being a GB+GB system, 

where there is a single detected asteroseismic signal. The remaining 34 are systems 

where a giant is blended with the EB, either as a background object or a third body 

in a triple system. The Gaulme et al. (2013) sample should be compared with the LC
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category with a single detectable asteroseismic signal, which contain systems with a 

detectable asteroseismic GB plus any companion and detectable eclipses. Thus the 

model predicts there should be between 35 and 60 asteroseismic EBs, with Porb < 40 

days. However in the Gaulme et al. (2013) only two asteroseismic EBs have Pori, < 40 

days. Thus it appears as the model is over estimating the num ber of asteroseismic 

EBs. As well, the period distribution of EBs in section 4.4.3 places too high a weight 

on short period systems (Porb <10 days), where it is more difficult to have a giant 

containing system. Thus we would expect the estimates in table 5.6 to be an u n 

derestimation of the total num ber of systems, if we increased the num ber of longer 

period systems.

This suggests that either Gaulme et al. (2013) has missed a large num ber of short 

period systems, possibly if the system was not classified as a giant based on the stel

lar classification program (SCP) parameters. Or that we need a way to dam pen the 

asteroseismic signal in the synthetic EBs such that we reduce the num ber of de

tectable asteroseismic EBs. Gaulme et al. (2014) proposes just such a mechanism, 

for systems with 0.16 < +Rz) /a<  0.24, where this equates to Pori, < 41 days. For

9 of the systems in the Gaulme et al. (2013) sample, which all had Pori, <110 days, 

quasi-periodic modulations were detected. These were attributed to stellar activ

ity on the giant star, as the giant contributes the bulk of the luminosity in the sys

tem. The proposed mechanism is that these systems that have had their spin-orbit 

synchronised, which requires the giant to be spun up. This then creates a dynamo 

mechanism which generates a magnetic field. This field could dam pen the p  mode 

oscillations, as seen in magnetically active MS objects (Chaplin et al., 2011a).

5.6 Discussion

I have shown using a model for the detectability of the asteroseismic signal gener

ated by two stars in a binary, that it is possible to detect a large sample of asteroseis

mic binaries in the Kepler field. I have also shown there is a clear dependence on 

the IMRD and a weaker dependence on the IBFD, such that the num ber of detected
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Number of detections
5 bfrac Both (LC) Both (SC) Either (LC) Either (SC)

-0.5
0.0
0.0
0.5
1.0

0.5 
0.5 

log Mi 
0.5 
0.5

1.0+ 1.0 
2.0+ 1.0 
2.0 + 1.0 
1.0+ 1.0 
3.0 ±2.0

0.0+ 0.0 
0.0+ 0.0 
0.0+ 0.0 
0.0+ 0.0 
0.0+ 0.0

34.0 + 6.0
44.0 + 8.0
57.0 + 5.0
60.0 ±8.0 
59.0 ±6.0

10.0 ±3.0 
11.0±3.0
10.0 ±2.0
13.0 ±4.0
15.0 ±4.0

Table 5.6: The num ber of systems that are in both the synthetic asteroseismic and 
synthetic EB catalogues. Results are the average of 10 runs of the EB pipeline, with 
uncertainties quoted as 1 standard deviation. Number counts are split between sys
tems with both stars having detectable asteroseismic signal or either (but not both) 
having a detectable asteroseismic signal.

objects can provide constraints on both quantities. I have also shown the size of 

possible contaminants in the asteroseismic binary sample, and that of m ost of the 

other asteroseismic populations, is a small quantity. The only exception is due to 

MS+MS asteroseismic binaries that have/or are undergoing mass transfer. Finally I 

considered the num ber of detectable asteroseismic EBs and showed how this num 

ber is inconsistent with the measured num ber of asteroseismic EBs. I now consider 

the various assumptions made in this work and how they can be improved in future 

work.

5.6.1 Dependence on Galactic parameters

As seen in table 5.5 the thick disc contributes significantly more blended systems 

than would be expected based on its total contribution to the num ber of stars. The 

thick disc only makes up 10% of the total population of synthetic stars, yet accounts 

for 50% of the blends. In terms of detectable asteroseismic binaries the thick disc 

makes up 20% of the population.

Setting the thick disc arbitrarily to Z  = 0.008, the midpoint in log space between 

the thin and thick disc metallicity values originally adopted, increases the num ber 

of asteroseismic LC detections by 25%, but decreases the total num ber of thick disc 

objects by 10%. With a higher Z  value for the thick disc, the CHeB branch, seen as
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the bulge in fig. 5.2, shifts towards cooler temperatures and also decreases its spread 

in temperature. The minimum mass of a primary star in a binary to be in the CHeB 

phase for the higher Z  value is 0.92M©, while for the lower Z  value it is 0.87M©. 

This is because the higher the Z  value the slower the evolution of the star. Thus the 

very lowest mass systems in the higher Z  disc have had insufficient time to evolve 

onto the CHeB phase, which reduces the total num ber of systems. Due to the slower 

evolution the systems that are CHeB will be in that phase for longer, increasing the 

chances of detecting the system and thus subsequently detecting the asteroseismic 

signal. The masses of the CHeB are also larger which increases the Ptot (equation 

5.4) via its overall M0 5 dependence.

Clearly selecting only a single value for the metallicity for the thick disc (though 

this also applies to the thin disc as well) alters the predicted num ber counts sig

nificantly. Kordopatis et al. (2013a) found, based on ~ 132,000 stars from the RAVE 

survey, a thick disc average value of [M/H]=-0.45, which for a solar n-abundance 

equates to a Z = 0.007. Thus the true thick disc num ber counts should be som e

where in between the Z  = 0.0033 (our default value) and Z  = 0.008 (higher Z  value 

tested here) counts. Kordopatis et al. (2013a) found an average [M/H]=-0.09 for thin 

disc systems, which for a solar a-abundance equates to a Z  = 0.016. Thus we would 

expect the num ber of thin disc detections to decrease, as the average Z  value is less 

than that considered here. Therefore the results predicted here are dependant on 

the metallicity value in the discs and a full metallicity distribution is needed to be 

able to refine the estimates of the total num ber counts. However, I would expect the 

refined estimate to be of the same order of magnitude of that presented here.

Setting the thick disc scale height to be 10% smaller, as preferred in Juric et al. 

(2008) increases the num ber of target selected thick disc objects by 5%, which is of 

order the random sampling noise. The num ber of detectable asteroseismic binaries 

decrease by ~ 2%, which is smaller than the random sampling noise. This suggests 

that the results presented here are insensitive to the small changes in the disc struc

ture as proposed in the literature.
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There is also the possibility that the initial distribution function (IDF), which I 

have assumed are the same for all binaries, m aybe different for wide binaries. As the 

asteroseismic binaries are insensitive to the period, then wide binaries make up the 

predominant fraction of systems. Models of star formation have shown that close in 

binaries form from interactions with other stars during their formation (Bate et al.,

2003) and not from fragmentation as assumed for wider binaries. Observational, as 

well, White & Ghez (2001) has shown that in young binary star systems the mass 

ratio distribution is higher for short period binaries, which they attribute to forma

tion processes. Thus if the mass ratio is lower for wide binaries then the luminosity 

ratio will be more extreme and there will be less asteroseismic binaries overall. This 

may explain some of the discrepancy between the model counts and the num ber 

of detected systems. Once a sufficient num ber of these systems are discovered and 

the period of the system determined in some manner, then we will able to test the 

formation theories for binaries over range of periods.

5.6.2 Noise model

The instrumental noise expressed in equation 5.8 and the RMS value of o  are both 

derived from an empirical fit in Gilliland et al. (2010b). This fit was applied to the 

lower envelope of the noise measured for 512 SC stars measured during Q1 obser

vations. Thus this noise unlikely to be representative of the expected noise for all 

stars (see section 4.3.1). For giants the instrumental noise, given by the lower enve

lope in fig. 4.4, is much smaller than the granulation and asteroseismic variability 

terms, thus this term can be ignored. However in MS stars where the overall noise 

budget is smaller the instrumental noise becomes the dominate noise term. Thus 

for these systems it would be better to use a full noise model, as used in section 

3.2.2, to derive the instrumental noise.

Another concern is magnetic activity, which has been shown to suppress the as

teroseismic signal in MS stars (Chaplin et al., 2011a). The magnetic fields act as a 

restoring force, reducing the strength of the oscillations. This suppression is largest
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for the MS objects, thus reducing the num ber of SC detections. It has also been pos

tulated to suppress the asteroseismic signal in close binaries with a tidally locked 

asteroseismic GB star (Gaulme et al., 2014). Overall we would therefore expect the 

results presented here to be an upper limit on the num ber of detectable asteroseis

mic binaries and asteroseismic EBs.

5.7 Conclusions

I have created a model for the detection of the asteroseismic signal in single and 

binary stars. For the binary stars I consider how the flux from the companion can 

weaken the detected asteroseismic signal and how the signals can overlap making 

detection harder. However I have shown that it is still possible to detect both aster

oseismic signals in a binary, with a large sample. These objects will predominately 

have near-equal masses, and I have shown how varying the IMRD and IBFD alters 

the num ber of these systems that are detected.

Comparing the results for detection of an asteroseismic signal in one of the two 

component stars to the Kepler asteroseismic catalogue. The num ber of predicted LC 

and SC detections is of order that of the num ber of actual stars with detectable aster

oseismic signals. Considering that the synthetic systems only contain binaries and 

not single stars, it would appear that the synthetic sample has over estimated the 

total num ber counts. This may be due to unconsidered noise terms in short period 

binaries or the effect of mass transfer reducing the detectability of an asteroseismic 

signal.

The num ber of asteroseismic EBs is also inconsistent with that of the published 

sample of asteroseismic EBs. This may also be due to unconsidered noise terms in 

short period binaries or the suppression of the asteroseismic signal in short period 

systems.

These asteroseismic binaries and EB allows us to calibrate the stellar param eters 

derived from the signal with those derived from radial velocities and eclipses. These 

systems also allow us to detect and probe the binary parameters over the whole of
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the binary period range, something not seen in other detection methods.
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Chapter 6

Conclusions & Further work

In this chapter I present a summary of the work I have done in this thesis. I then 

present the main results and conclusions of this work. Finally, I briefly describe two 

areas of further work that flow naturally from the research presented in this thesis.

6.1 Conclusions

In this work I have successfully built a synthetic population of single and binary stars 

and applied the Kepler specific selection biases to this population. This has allowed 

me to quantify the bias introduced by the Kepler target selection process and the 

offsets in the parameter estimation of the the stellar classification program (SCP). 

Using this synthetic population I have generated a model for the sample of eclipsing 

binaries in the Kepler field. I have shown that it is possible to distinguish between 

different initial mass ratio distributions (IMRDs), but not initial binary fraction dis

tributions (IBFDs). At this time I can not say which is the preferred choice due to 

systematic differences between the model and the data. I have then applied a model 

for the detectability of a new class of binaries, asteroseismic binaries, and showed 

how the num ber of detections can be used to distinguish between different IMRDs.

The SCP was shown to cause a systematic offset in the estimated parameters 

of the stars in the Kepler input catalogue (KIC). The median values for dwarfs is 

~ ATef f  = 500 K and ~ Alogg = -0 .2  dex and for giants this is ~ & Tef f  = 50 K and
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~ Alogg = -0.5 dex. However this offset varies across the parameter space. I also 

found that this effect was similar between both primary stars in binaries and sin

gle stars. I predict that there is also a population of giants that have been misclas- 

sified as dwarfs. The size of this offset was also found to be consistent with other 

authors, after correcting for their selection effects. Kepler’s target selection process 

was shown to increase the fraction of dwarfs from 75% to 80% and to decrease the 

fraction of giants from 25% to 20%. The selection effects and SCP offsets between 

single stars and binaries show no significant differences.

Comparison of my synthetic sample of eclipsing binaries model with the the Ke

pler eclipsing binary catalogue shows that further work is needed to understand the 

disagreements. The period distributions can not be reconciled at this time, which I 

believe is due to the limited noise model used. Further work is needed to introduce 

new noise terms, such as accretion, and to modify the existing terms, such as the 

asteroseismic in short period giant systems. Comparison of the temperature ratio 

and fractional radii distribution show that the Kepler eclipsing binary (EB) pipeline 

introduces systematics into the measured distributions. Comparing my model with 

the Kepler eclipsing binary catalogue shows disagreements that I attribute to dif

ferences in the training set used. However, different IMRD distributions show a de

tectable difference in the EBAi-derived distributions. This therefore presents a way 

to constrain the IMRD in future work. I could not show a significant difference be

tween different IBFDs from the EBs alone, though the num ber of distributions used 

was limited.

Predictions for the num ber of detectable asteroseismic binaries show that there 

should be of order 100 systems in the Kepler field, though this num ber is dependant 

on the IMRD and IBFD. These systems are predominately detected in the long ca

dence (LC) data, with a core helium burning (CHeB) star as a component. Possible 

sources of contamination have been considered and I have shown that their num 

bers are negligible. I also combined the synthetic eclipsing binaries with the syn

thetic asteroseismic binaries and find a factor of 25 more than have been detected,
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which may hint at new physics in short period giant-containing binaries.

The primary limitation of my model currently is the lack of a realistic metallicity 

distribution. This showed itself in Chapter 3 by forcing the introduction of colour 

corrections to reproduce the results of the SCP . The use of a single metallicity ex

plains the large extent of the old disk CHeB clump in Chapter 5, not seen in other 

population models (Miglio et al., 2014). This is due to the metallicity determining 

the lifetime of the CHeB stars as well as their location and extent in the Hertzsprung- 

Russell diagram (HRD). I showed that it does have a statistically significant effect on 

the numbers of asteroseismic binaries.

6.2 BiSEPSv3.0

6.2.1 Introduction

As noted in section 3.4 one of the main shortcomings in my model is the lack of 

a realistic metallicity distribution. We also saw in Chapter 4 that the model is also 

lacking an eccentricity distribution. Both sets of distributions could be introduced 

into the model in its current form by suitable binning in initial param eter space 

and then weighting the result by a probability distribution function. However this 

would be cost prohibitive with current computing power. Currently using 50 bins in 

the primary and secondary mass, 300 in orbital separation and ~ 100 bins in time 

generates over 10 million binary configurations for a single metallicity. Adding only 

10 bins in metallicity and 10 in eccentricity would bring this value in excess of 1 

billion. This is more data than it is feasible to process, it is also exceedingly wasteful. 

Only a small sub-sample of the most probable systems from the data set are actually 

used, many systems are either too short lived, too faint or too improbable to form 

to ever be sub-sampled into the output distribution. Thus a new m ethod is needed 

to generate only the systems needed for the sub-sampled T distribution.

The idea is this: instead of evolving all possible systems and then computing 

which are most likely, we generate the most likely systems to form then evolve only
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those systems. This has several benefits. First, the old m ethod’s runtime and stor

age requirements grows linearly with the num ber of initial distribution functions 

as well as the num ber of distinct disc components in the Galaxy. The new method 

would only scale as a function of the num ber of systems regardless of the complex

ity of the underlying Galactic distribution functions. Secondly, by also reducing the 

num ber of systems that need to be evolved with the stellar evolution codes, it would 

also become possible to replace the evolution code with a newer more advanced 

(possibly slower) code, for instance m e s a  (Paxton et al., 2011).

6.2.2 Method

I now describe the computational method in broad steps. I start with defining a 

disc in the Galaxy; this is not just a density profile, bu t represents a complete set of 

probability distribution functions that represent star formation in a region. First I 

compute the total num ber of stars formed in the field of view. I integrate the Galac

tic density profile over the field of view, possibly with CCD sub structure (see section 

2.1.3), between 0 and 50 kpc. This acts to encompass the whole Galaxy along aline of 

sight. I then integrate the time distribution function, which is the relative local star 

formation rate in the disc. This describes the relative contribution this disk makes 

to the star formation rate, thus it would be possible to have multiple disks forming 

stars at the same time in the same region. This is then scaled by the actual star for

mation rate to derive the total num ber of stars that have ever formed in the field of 

view.

I place stars randomly via rejection sampling according to the distribution func

tion. The Galactic spatial and star formation distributions are then sampled to place 

each star in a 4D space-time location. Then the initial mass function (IMF) is sam 

pled to derive the primary mass and then using the IBFD the systems status as a 

binary or a single star is determined. If the system is a binary then I sample from 

the IMRD, initial orbital separation distribution (IOSD) and initial eccentricity dis

tribution (IED). At this point the metallicity and extinction value, A v is com puted
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for both single stars and binaries.

Each system now has a set of initial parameters that describe everything about 

it, from what properties it had when it formed and when and where it formed. This 

can then be fed into the single star evolution (SSE) and binary star evolution (BSE) 

codes to derive the system parameters at the current epoch. The current epoch pa

rameters are then used to give the absolute and apparent magnitude of the system. 

The extinction corrected apparent magnitude determines whether the system is ob

servable with the chosen observing strategy.

The disadvantage of this method is requirement to evolve every star that has ever 

formed, even if the system dies before the current epoch or is too faint to be visible. 

To reduce the num ber of systems evolved several strategies can be used. Firstly I 

consider binning the initial parameter space, then I consider using a low resolution 

population model to remove systems which would never be visible.

The first thing to realise is that it is not necessary to evolve every star sepa

rately. Although improbable that any two stars will have the same initial parameters, 

two stars with similar initial parameters will have similar evolutionary sequences. 

Therefore I bin the output from the selection of the stellar parameters (mass, m etal

licity etc) and evolve only one representative system, where the parameters are ran

domly selected inside the bins. For each star in a bin, information is saved only at 

the point in the evolution corresponding to its age. Testing on a single Kepler CCD 

field there were ~ 65,000 single stars in the mass bin M  = 0.10 -  0.11 M© which com

presses to just one star that is then evolved. This works well for the single stars with 

only the mass and metallicity to consider, but is less successful for the binaries that 

have multiple distributions (primary and secondary mass, metallicity, eccentricity 

and orbital separation).

Secondly I can filter systems based on whether their luminosity would be suf

ficient to place the system inside the detection limits. Using BiSEPS I generate a 

coarse grid of evolution tracks distributed over the input param eter space. I then 

fit a set of polynomials to the luminosity and age (as not all systems will survive to
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the present epoch) as a function of the input parameters. The polynomials provide 

a fast and reliable estimate on whether a given system would be visible today given 

its initial parameters and its age. If the system would not be visible or would not sur

vive till the present epoch then it can be discarded before performing the full stellar 

evolution. This removes many of the faint distant objects, as well as high mass old 

stars, which would not survive to the present epoch, from the population model.

The binaries can not be modelled in exactiy the same way due to mass transfer

ring systems. As a post mass transfer binary depends strongly on the input param 

eters, we can not use a coarse grid approach. Thus only long period systems which 

we can guarantee will not interact can be approximated using this approach. Short 

period binaries may need to simply all be modelled and filtered afterwards, lest we 

discard systems that become visible during or after mass transfer.

Higher order systems (triples, quadruples) can also be taken into account with 

this new scheme. So long as triple star systems can be described as a binary and 

a distant non-interacting third body. We can include the third star as an extra set 

of distribution functions. First we formulate a formation probability of a triple star 

system; Raghavan et al. (2010) found ~ 10% of systems are triples. Then we derive 

the binary parameters as previously mentioned and then derive those of the third 

body, treating it as a single star. It may have the same IMF as single stars or we may 

need to use an alternate. We can then evolve the binary and single star separately. 

Once both stars have been evolved to the target age we can compute the system’s 

total luminosity and determine if its detected. This is not a comprehensive model 

of triple stars, as we are ignoring interacting ones, but it would provide a handle on 

EBs with a third body diluting their eclipses depths as well as the am ount of extra 

noise in a light curve due to the extra star.

Removing the necessity to integrate the T distribution (see section 2.1.2) over 

each disk, allows the inclusion of a more complex disk structure, such as the central 

bulge and the halo, or sub-populations of the thin disc with different characteris

tics. Parameters like the IMF, star formation rate (SFR) and metallicity could now
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be modelled as a function of location in the Galaxy as the recent literature suggests 

(Robin et al., 2003; Girardi et al., 2005; Sharma et al., 2011). This would then allows 

the model to include a realistic metallicity distribution and allow the model to ad

here closer to the Galaxy.

6.2.3 MESA

By limiting the num ber of systems evolved I could also replace the SSE and BSE 

codes with a detailed cutting edge stellar structure and evolution code. MESA is 

an open source ID stellar evolution code1 with an active user community. It solves 

the full coupled stellar structure equations, taking into account the nuclear reaction 

rates, EOS opacities, convection and diffusion. Using the MESA code in the popula

tion synthesis work would allow the integration of the newest models of the physics 

of stars, for instance the treatm ent of convection (Paxton et al., 2013). It would also 

allow the study of new observables not possible with SSE, such as the elemental 

abundances, and also allow generating full asteroseismic signals (from the pack

aged A d i p l s  and GYRE codes).

There is some work however still to be done to MESA itself before it would be 

suitable for inclusion. Binaries have only recently been introduced into the code 

and would require further testing. Performance wise, MESA is m uch slower than 

SSE, thus several strategies are needed to use MESA in population synthesis work. 

The MESA code itself could be tuned for performance. The input parameters cho

sen for the stellar models can then also be tuned for different types of stars. As an 

example stars with M < 0.8M© undergo little fusion so the fusion reactions for high 

Z  elements can be ignored. The exact boundaries would need to be tested for where 

the limit of each approximation can be made. Finally we can consider reducing the 

initial parameter space further, by increasing the initial param eter bin size such that 

even fewer systems have to be evolved. 

xh ttp ://mesa.sourceforge.net

http://mesa.sourceforge.net
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6.3 False positives in transit surveys

I now describe an extension to the model of the eclipsing binaries presented in 

this work. The main source of uncertainty in planet finding transit surveys, like 

the Kepler mission, is determining whether the transit signal is from a planet or 

from an eclipsing binary with a shallow eclipse depth (Morton & Johnson, 2011). 

Generally we can assume that anything with a transit depth (AFIF)  >  1% is not a 

planet and must be due to a star. But this does not imply that transiting systems 

with AFI F <  1% are due to a planet. Thus we can classify binary systems as false 

positives if they have AFIF <1% , that absent other information like timing analysis 

or masses from radial velocities would be considered a planet. There are two ways 

for an EB to have shallow eclipse; either it is intrinsically shallow or the eclipse is 

blended with another source e.g., Colon et al. (2012).

As most of Keplers’ targets are too faint for follow up work (Batalha et al., 2010), 

the only way to derive the statistics of planets is to take into account the expected 

rate of false positives. Then we can determine the bias these systems introduce into 

the results. This bias may not be a constant, but may have a period dependency 

and/or a dependency on the measured eclipse depth as we probe different popula

tions of false positive systems.

Claimed rates of false positives seen by Kepler have ranged from < 10% (Morton 

& Johnson, 2011), 10-20% (Fressin et al., 2013) to 35-40% (Santerne et al., 2012). The 

apparent discrepancy is due to differences in the modelling used, where each author 

has looked at different types of false positives or in different period/eclipse depth 

ranges. Thus each sample probes a different set of conditions. One way to resolve 

this is to have a model that can take into account all types of false positives and give 

the period and eclipse depth distributions as well.

There are many different configurations of false positives to consider, ranging 

from systems with intrinsically small eclipses to eclipses that appear small due to a 

background blended star. Systems where the eclipse itself is small include:

• Grazing eclipses, where the star eclipses only a small region on the limb of its



6.3. FALSE POSITIVES IN TRANSIT SURVEYS 163

companion (Morton & Johnson, 2011)

• Extreme radii ratio binaries, for instance MS+WD or MS+GB (Farmer & Agol, 

2003)

• Eccentric binaries orientated such that only the secondary eclipse is visible 

(Santerne et al., 2013)

In cases where the EB is blended with a background source the eclipse itself may 

be deep enough to classify as stellar in origin, but because of the contribution of 

flux from the third star the eclipse will appear shallower. There are several possible 

configurations of this:

• EB blended with non-bound background source (Bryson et al., 2013)

• EB blended with a bound companion

As Kepler is aiming to measure the rate of exo-Earths we can also consider false 

positives where a large transiting planet appears as an Earth sized transit (Fressin 

et al., 2013):

• Transiting planet blended with a non-bound background star

• Transiting planet blended with the flux from a bound companion

Kepler has also detected a significant num ber of exoplanets in multi-planet sys

tems. Thus we should also consider the likelihood of having either multiple false 

positives, such that there are no planets or that there is only one planet but one or 

more false positives (Lissauer et al., 2014; Rowe et al., 2014).

Currently I could compute the rates for the grazing eclipses, extreme ratio 

eclipses and blends with a non-bound companion, subject to the refinements in 

the EB model discussed in Chapter 4. This is because these are simply extensions to 

the existing EB model and require no new physics to be implemented.

The eccentric binaries would require a full model of the eccentricity distribution 

and evolution, while the blends with a bound companion would require the triple
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star model presented in section 6.2. For the false positives which include a planet 

we can not directly compute these rates as we have no population model for plan

ets. However, we could combine the measured planet distributions with the binary 

model presented here to place bounds on these rates (Fressin et al., 2013).



Acronyms

AGB asymptotic giant branch.

BC bolometric correction.

BH black hole.

BSE binary star evolution.

BiSEPS Binary and Stellar Evolution Population Synthesis.

CDPP combined differential photometric precision.

CE common envelope.

CHeB core helium burning.

CTE charge transfer efficiency.

EB eclipsing binary.

EBAI Eclipsing Binaries via Artificial Intelligence.

FFI full frame image.

FPG focal plane geometry.

GB giant branch.

GDC gravity darkening coefficient.

HG hertzsprung gap.

HRD Hertzsprung-Russell diagram.

IBFD initial binary fraction distribution.

IDF initial distribution function.

IED initial eccentricity distribution.

IMF initial mass function.

IMRD initial mass ratio distribution.
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IOSD initial orbital separation distribution.

IPD initial period distribution.

KIC Kepler input catalogue.

LC long cadence.

LDC limb darkening coefficient.

MS main sequence.

NS neutron star.

PDMRD present day mass ratio distribution.

PDPD present day period distribution.

PN planetary nebula.

PRF pixel response function.

RLOF roche-lobe overflow.

RV radial velocity.

SC short cadence.

SCP stellar classification program.

SDSS Sloan Digital Sky Survey.

SFR star formation rate.

SSE single star evolution.

TCE threshold crossing events.

TPAGB thermally pulsating asymptotic giant branch. 

TPS transit planet search.

TRO thermal relaxation oscillations.

WD white dwarf.
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