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ABSTRACT

This study investigates the feasibility of estimating planetary heat flow from a shallow 

subsurface heat flow measurement with a Function Specification Inversion (FSI) model. 

Heat flow is a product of the thermal conductivity and gradient at depth; these are 

measured and therefore contain errors. The model estimates other parameters, as well as 

the former, while not explicitly accounting for temperature dependent thermal properties.

The heat flow is decomposed into steady state basal (planetary) and unsteady state 

(related to the surface temperature variation) heat flow components. Surface heat flow is 

typically several orders of magnitude higher than the planetary heat flow; therefore 

unsteady components in a shallow subsurface heat flow measurement may mask the 

planetary heat flow. The extent of masking positively correlates with the skin depth and 

amplitude of the surface heat flow, and negatively correlates with the magnitude of the 

planetary heat flow.

The planetary heat flow is estimated by inverting the temperature measurement and 

optimising the basal heat flow. The basal heat flow is most effectively optimized from 

instantaneous measurements, taken when the surface temperature is relatively constant. 

Long-period measurements, while more accurately optimized, introduce more unsteady 

temperature gradients, thereby increasing the ill-determinacy and instability of the 

problem. The model tolerates errors up to 25 % in simultaneous optimization of several 

unknown parameters, with related errors in the optimized basal heat flow.

On Mars, the heat flow is optimized to within 10 % for measurements over at least twice 

the skin depth and 0.5 of a Martian year, or at least five times the skin depth and 0.25 of a 

Martian year. On Mercury, temperature amplitudes control optimized heat flow accuracy; 

sensor penetration depths well below three skin depths are required. On Vesta, very low 

heat flows render FSI ineffective with a noise amplitude of 1 mK.
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of initial heat flow estimates Fr° to theFigure 5.10. Trends eFso in relative error eFso =  

true value F f  across all measurement scenarios, interpolated from 3D scatterplots. The Ĵ so can

be considered as central estimators of the heat flow distribution at particular postions defined by 

the axes. Contour: a. shows ê so as a function of the ratio of basal sensor depth to annual skin

depth rz, and the ratio of monitoring period to seasonal period rt\ b. shows ê so as a function of rz

and measurement noise amplitude ad (the standard deviation); c. shows Ĵ so as a function of rt and
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2 1 INTRODUCTION

1.1 Planetary Heat Flow

The life of a planet is thought to begin in a turbulent rotating disk of gas and dust 

surrounding a stellar object (e.g. Lissauer, 1993; Volschow et al., 2014). Gravity takes 

hold in the denser regions of the disk, forcing a runaway process of accretion and heating, 

the end products of which are planets (e.g. Lissauer, 1993; Zhou et al., 2005; Kashi and 

Soker, 2011). Through the processes of accretion and merger, the heated balls of 

material, protoplanets, and their less massive counterparts which feed their growth, 

planetesimals, go through a process of thermal evolution (Weidenschilling, 2000; Cassen, 

2001; Chambers and Wetherill, 2001; Kokubo and Ida, 2002; Chambers, 2004; Leinhardt 

et al., 2009).

Some planets are large and hot enough to achieve hydrostatic equilibrium. The largest 

planets evolve into giant balls of gas, ice and rock, with their surface heat loss governed, 

largely, by convection and radiation (e.g. Pollack et al., 1996; Hubbard et al., 2002). The 

smaller planets (and planetesimals) maintain a dense rocky profile where their surface 

heat loss is governed, largely, by its diffusion through a solid surface (e.g. Wetherill, 1985; 

Kokubo et al., 2006; Quintana and Lissauer, 2006; Kokubo and Ida, 2007; Hansen, 2009; 

Kokubo and Genda, 2010); volcanism may also play an important role (e.g. Spohn, 1991).

Planetary heat flow quantifies the rate of heat flow from the interior of a planet through its 

surface -  knowledge of the heat flow from a planetary surface can, therefore, shed light 

on its thermal evolution (e.g. Hagermann, 2005). This study focuses on heat flow from 

rocky planets1, and how it can be estimated from a measurement of shallow subsurface 

temperatures and thermal properties. Discussion of this is continued in Section 1.1.2. It is 

instructive to begin with a general outline of current theory on the thermal evolution of 

rocky planets. This will provide further context to the heat flow concept and initial insight 

into the useful information that can be gained from a heat flow measurement.

1 Heat flow from rocky planets is also known as heat diffusion which is often dominated by the solid 

state process of heat conduction.
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1.1.1 Thermal Evolution of Rocky Planets

The size of a planet plays a dominant role in its thermal evolution (Hsui and Toksoz, 

1977). Larger bodies tend to cool more slowly because their ratio of surface area (for heat 

to escape) to volume (for heat production) is smaller. The model results of Hsui and 

Toksoz (1977) show that smaller bodies therefore tend to reach their peak of thermal 

evolution -  i.e. when thermal energy generated equals thermal energy lost -  sooner than 

larger bodies and tend to have thicker crusts due to more rapid heat loss. Internal 

planetary heat is produced largely by differentiation and the decay of radioisotopes. For a 

constant volumetric heat production rate and similar surface energy balance, a planet with 

larger radius therefore has higher heat flow over a given timescale. This explains, in part, 

why heat flow on Earth averages 65 mW/m2 on the continents while that on the Moon is 

estimated at 30 mW/m2(e.g. Heiken et al., 1991; also see Section 1.1.3).

The conditions in which a planet forms also play a crucial role in its thermal evolution (e.g. 

Hsui and Toksoz, 1977; O ’Rourke and Korenaga, 2012). Hsui and Toksoz (1977) find that 

bodies of radius 1000km and less (asteroids and other minor planets) are unlikely to reach 

a molten state if their initial conditions are cold (500-1500 K) and heat source abundances 

similar to terrestrial and lunar values are used. Hot initial conditions (1300-1500 K), 

possibly caused by short half-life radioisotopes such as 26AI (e.g. McKeegan and Davis, 

2005; Boss, 2007) or T-Tauri solar wind induction (e.g. Shimazu and Terasawa, 1995), 

result in these planets achieving a molten state during evolution. This is thought to be the 

case with the protoplanet Vesta (discussed in Chapter 7), where current thermal models 

suggest a very low heat flow of the order of pW/m2 (e.g. Stubbs and Wang, 2012; 

Formisano et al., 2013).

The results of Hsui and Toksoz (1977) indicate that, with hot initial conditions, all planets 

undergo an initial period of rapid heat loss, also achieving a higher thermal state with 

higher heat flow at far future times than are permitted by cold initial conditions (also see
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O ’Rourke and Korenaga, 2012).2 Kaula (1979) cites geophysical evidence for early lunar 

crust differentiation pointing to hot formation conditions for the Earth-Moon system. Kaula 

(1979) shows that very large impact events can produce the heat required for hot 

formation over millions of years, removing the need for unrealistically small accretion 

times of tens of thousands of years or granular planetesimal sizes to account for early 

crustal differentiation.

The process of differentiation causes release of energy which further influences planetary 

thermal evolution. Mantle differentiation results in the formation of a crust when lighter 

mantle rock is extruded or piped to near surface layers or onto the surface and crystallises 

(e.g. Spohn, 1991). Spohn (1991) investigates the crustal thickness that results from a 

purely conductive versus largely volcanic mode of heat transfer from the mantle to the 

surface. The results of Spohn (1991) indicate that, dependent on other factors such as 

surface energy balance, radioisotope abundance, and heat flow through the mantle, 

volcanic heat transfer tends to produce thicker crust while purely conductive heat transfer 

tends to produce thinner crust.

Crust formation depletes the mantle of heat producing elements (e.g. Spohn, 1991) and 

insulates the mantle, reducing the vigour of mantle convection. Plate tectonics -  e.g. on 

Earth (Parsons and Sclater, 1977; Sclater et al., 1980; Sclater et al., 1981) and possibly 

early Mars (Spohn, 1991; Breuer and Spohn, 2003) -  cools a planet more efficiently while 

reintroducing (remixing) some heat producing elements into the mantle at subduction 

zones, consequently equilibrating temperatures and lowering heat flow. Single plate 

planets -  e.g. present Mars (Breuer and Spohn, 2003; Grott and Breuer, 2010; discussed 

in Chapter 5) and Mercury (Breuer et al., 2007; discussed in Chapter 6) -  form an 

insulating stagnant lid, leading to less efficient heat loss, higher mantle temperatures and 

higher heat flow.

2 A higher thermal state refers to a higher energy state such as with a solid inner, liquid outer core 

with fluid mantle and volcanic surface like Earth, currently, as opposed to current Mars or asteroids.
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Differentiation causes relatively high pressures and densities in larger planets which may 

lead to core formation. Core formation results in a period of increased heating, with larger 

or denser cores causing more heating due to release of potential energy into the mantle of 

the planet. Stevenson et al. (1983) Kleine et al. (2002) and Samuel et al. (2010) explore 

the thermal interactions of the core and mantle and their relation to planetary dynamos 

and magnetic fields. Their findings indicate that Earth’s magnetic field is powered by a 

dynamo, which is driven by release of gravitational potential energy, due to nucleation of 

an inner core, coupled with an outer core interacting with the mantle. They also indicate 

that other terrestrial planets may have frozen, near solid or liquid cores which drive 

thermally convective dynamos. The remnant magnetic field of Mars coupled with its thick 

crust raises important questions about its history of crust growth and core cooling; in 

particular, whether or not its heat loss process has been dominated by plate cooling or 

stagnant lid processes3 (e.g. Breuer and Spohn, 2003). The weak field at Mercury 

indicates it has an active dynamo, despite its size suggesting that the core should have 

cooled within the first billion years of its formation (e.g. Benkhoff and Helbert, 2006; 

Breuer et al., 2007; Hauck et al., 2013).

Comets, Trans-Neptunian Objects (TNOs) including Kuiper Belt Objects (KBOs), and 

satellites of the outer planets are worth separate consideration. These are composed of 

significant internal ice and volatile components, which contribute as much to their 

evolution as their changing surface environments (e.g. Prialnik and Merk, 2008; Prialnik et 

al., 2008). Ceres is a known icy body (e.g. Coradini et al., 2011; O ’Brien and Sykes, 2011) 

and ice has been detected on other asteroids in the asteroid belt (e.g. Campins et al.,

3 Plate cooling refers to crustal plate differentiation from a magma ocean, while stagnant lid 

accounts for a layered lithosphere which includes a crust and a Theological lithosphere, together 

forming a ‘stagnant lid,’ atop a convecting mantle which contributes significant heat flow.

3 The map of Hahn et al. (2011) presents only the crustal component of the heat flow as opposed 

to total surface heat flow which accounts for both the crustal, mantle and core components of heat 

flow.
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2010). Hydrogen rich areas have been detected on Vesta, which are associated with 

pitted terrains from which volatiles have degassed (e.g. Denevi et al., 2012; Russell et al., 

2013; also see discussion in Chapter 7). The former observations suggest small icy 

bodies cool quickly and have low heat flow, where comets on approach to the Sun may 

have a net inward flow of heat. However, certain asteroids show evidence of 

differentiation and may host internal water reservoirs depending on their internal thermal 

states (e.g. Seep, 2001; Abramov and Mojzsis, 2011).

The preceding overview presents some of the key roles heat flow plays in the thermal 

evolution of planets. In summary, surface heat flow partially regulates the internal 

temperatures of a planet, influencing crust formation and the depletion of radioisotopes 

from the mantle. The internal temperatures influence mantle convection and, by 

extension, core properties and potential dynamo formation. Measuring the surface heat 

flow can therefore place important bounds on the thermal profile at greater depths. Used 

in conjunction with seismic, radiometric and magnetic information, it can provide bounds 

on the radioisotope concentration, lithosphere thickness, and the size and state of any 

mantle and core (e.g. Dehant et al., 2012). For the special case of asteroids, heat flow can 

provide information on internal temperatures, and whether or not large asteroids are home 

to internal liquid water environments. In this study, it is shown how the heat flow can be 

estimated from a local measurement of the temperature gradient and thermal properties of 

the shallow subsurface of a planet. To this end, heat flow is discussed in further detail in 

Section 1.1.2. The context of heat flow investigations is established in Section 1.1.3 in 

terms of their development on Earth and extension to other planets.

1.1.2 Properties of Surface Heat Flow

Heat flow at the surface of a planet varies as the surface is periodically heated in diurnal 

and seasonal temperature cycles. Surface heat flow is often several orders of magnitude 

higher than planetary heat flow, except at times where the former passes through zero 

during the surface heating cycle (Figure 1.1). The surface heat flow can be decomposed 

into steady state and unsteady state heat flow components. Steady (or basal) heat flow
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exhibits very long period or no time variation and is identifiable with the planetary heat

flow.4 Unsteady heat flow quantifies the time-varying surface heat flow component due to 

diurnal and seasonal temperature cycles.

Surface heat flow depends on regolith porosity, the level of contact between different 

particulates, the amount of volatiles present and the physical properties of said

particulates and volatiles. For porous regolith in vacuum, radiative heat transfer within the 

pore spaces plays an important role, evidence suggests that it becomes strongly 

temperature dependent above 200 K (e.g. Linsky, 1966; Prialnik, 1989). Radiative heat 

transfer is less efficient than purely conductive heat transfer (e.g. Piqueux and

Christensen, 2011) resulting in a steeper temperature gradient.5 Heat flows down the 

temperature gradient and is therefore always a half of a period out of phase with the 

temperature variation (see Figure 1.1).

The grain contact coefficient -  the Hertz factor (e.g. Seiferlin et al., 1996; Paton et al., 

2010) -  plays a greater role in loose, porous and/or layered materials, where less grain (or 

layer) contact reduces the efficiency with which conduction takes place, therefore resulting 

in a steeper temperature gradient. The presence of volatiles within pores results in areas 

of constant temperature, where volatiles undergo phase changes. Volatiles transfer heat 

by advection as well as conduction and radiation. The greater efficiency of advection 

leads to a shallow temperature gradient along volatile rich layers with well-connected 

pores (e.g. Benkhoffand Spohn, 1991; Steiner and Komle, 1991).

Regolith physical properties which govern heat flow are thermal conductivity, density and 

specific heat capacity. Thermal conductivity is most influential in particulate heat transfer 

and is, therefore, related to the Hertz factor. The density relates to the porosity of the 

material where denser material is, in principle, less porous. The product of density and

4 Planets are non-homogeneous bodies; therefore heat flow varies across their surfaces based on 

local and regional properties.

5 All temperature (thermal) gradient references are with respect to depth unless otherwise noted.
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specific heat capacity is the thermal capacity which dictates how much heat a unit volume 

of regolith can hold at a particular temperature. The ratio of thermal conductivity to thermal 

capacity is thermal diffusivity, which quantifies the rate of heat retention of a unit volume 

of regolith. The effects of the discussed thermal properties are reviewed in detail in 

Chapter 3. The heat flow is the product of the thermal conductivity and temperature 

gradient.

Regolith properties highlighted in the previous paragraph, along with the characteristics of 

surface heating, determine the depth, known as the skin depth, at which the amplitude of 

the unsteady surface heat flow is reduced to negligible values6. Longer period surface 

heating cycles cause surface heat to flow deeper into the regolith. A lagged and damped 

periodic signature of unsteady surface heating is preserved in the regolith subsurface 

(Figure 1.1). The shallow subsurface unsteady heat flow component therefore contains a 

record of past variations in the surface climate (e.g. Pollack and Huang, 2000). The basal 

heat flow is consequently more isolated at greater depths, which highlights the 

fundamental problem being explored in this study: heat flow is most conveniently 

measured closer to the surface (see Section 1.2), therefore methods must be devised 

which allow extraction of the basal heat flow from a measurement, which may contain the 

unsteady heat flow component (discussed in Section 1.3).

Local surface heat flow is affected by the thickness of surrounding regolith. For a 

columnar section through a planetary crust, the more long lived the heat producing 

elements (HPEs or radioisotopes -  mainly 40K, 232Th, 235U and 238U -  e.g. Heiken et al., 

1991), the greater the heat produced in the column. This means that regions of thicker 

crust and/or higher elevation produce more heat than other regions. Surface heat, 

therefore, preferentially escapes from regions of thinner crust where the heat production 

and temperature are lower, as the thicker crust effectively acts as an insulating lid.

6 More, precisely, the skin depth is quantified by the depth at which the unsteady surface 

temperature amplitude is reduced by a factor e, the natural exponent.
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Figure 1.1. Subsurface temperature (right) and heat flow (left) due to a sinusoidal diurnal (24 h) surface temperature of 

amplitude 12 K and a heat flow of 4 W/m/K. The upper plots show overlays of time dependent temperature at different 

depths; the lower plots show overlays of depth dependent temperature at different different times. The dark lines in all four 

plots are the steady components while the dark curves in c and d show the real temperature (steady + unsteady) at the start 

of the period.

1.1.3 Heat Flow Investigations

1.1.3.1 H e a t F low on  Earth

Earth-focused heat flow studies go back to the 1870s and 1880s, where measurements 

were made of the thermal conductivity (see Section 1.1.3.2) of continental rocks (Bullard, 

1945). Preliminary heat flow studies revealed an inverse relationship between heat flow 

and distance from mid-ocean ridges (e.g. Pettersson, 1949; Revelle and Maxwell, 1952; 

Bullard, 1954; Bullard et al., 1956; Bullard and Day, 1961; von Herzen and Uyeda, 1963). 

The discovery provided supporting evidence for the theory of sea floor spreading (e.g. 

Crook, 1923; Melton, 1925; Holmes, 1931; Turcotte and Oxburgh, 1967; Parsons and 

Sclater, 1977; Sclater et al., 1980; 1981).
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Heat flow measurements have been combined with seismic and petrological data to 

constrain the distribution of radioisotopes throughout, and vertical extent of, the crust and 

deeper subsurface (e.g. Roy et al., 1968; Jaupart et al., 1981; Pinet and Jaupart, 1987; 

Mareschal et al., 1989; Rudnick and Fountain, 1995; Boehler, 1996). Heat flow 

measurements have also been used to study past surface climatic variations because the 

shallow subsurface heat flow preserves information about the surface temperature (e.g. 

Chapman et al., 1992; Shen and Beck, 1992; Wang, 1992). The dependence of heat flow 

on regolith water content has been used to study hydrothermal circulation in relation to the 

formation of transitions between oceanic and continental crust, and characteristics of the 

flanks along mid-ocean ridges (e.g. Fisher et al., 2003; Lucazeau et al., 2010) and soil 

water content (Behaegel et al., 2007). Thousands of heat flow measurements have been 

made on Earth with a derived average global heat loss of the order of 4x1013 W  (Pollack 

et al., 1993), or planetary heat flow of ~78 mW/m2.7 Heiken et al. (1991) gives a lower 

value of 63 mW/m2.

7.7.3.2 H e a t F low  on  O th e r P lanets

The first in situ heat flow measurements were taken on the Moon by Apollo 15 and 17 

astronauts, using heat flow probes (see Section 1.2.2) emplaced into cored lunar regolith 

up to 1.4 m for 3.5 years, and 2.36 m for 2 years, respectively (e.g. Langseth et al., 1972; 

1976; Heiken et al., 1991). Langseth et al. (1976) presents preliminary heat flow estimates 

of 21 mW/m2 for the Apollo 15 site (at 26°N 3.6°E8, known as Hadley Rille) and 14 mW/m2 

for the Apollo 17 site (at 20°N 30.6°E8, known as Taurus-Littrow), corrected for 

topographic and equilibration effects. The difference between the two measurements is 

partially attributed to topographic effects of Hadley Rille (lowers heat flow) and the 

Appenine Front (increases heat flow) which is also in the region of the Apollo 15 landing 

site (Figure 1.2). Langseth, et al. (1976) use remotely sensed variations in Th abundance 

and inferred crustal thicknesses to extrapolate the measurements to a lunar global heat

7 Based on a total surface area of 5.101 x io14 m2 (Wolfram Alpha, 2014).

8 After Heiken et al. (1991).



1.1 Planetary Heat Flow 11

flow of 18 mW/m2. Heiken et al. (1991) use the same Apollo measurements to estimate 

global lunar heat flow between 20-30 mW/m2.

The lunar heat flow measurements have been subject to several subsequent revisions, 

many summarised in Hagermann and Tanaka (2006). These include a focusing effect 

outlined by Warren and Rasmussen (1987), with revised heat flow of 12 mW/m2, where 

heat flows laterally from the highlands to the mare (the probe sites are located at the 

mare-highland boundary). Hagermann and Tanaka (2006) note that the probe sites are 

located in the Procellarum KREEP Terrane (PKT)9. They show that a Th rich layer 

(excavated by the Imbrium impactor) contributes a more significant amount to the heat 

flow at Hadley Rille, located closer to the centre of the Imbrium impact, than at Taurus- 

Littrow They recommend that a “very long ruler” be used to draw error bars for derived 

global heat flows (see Appendix 9.8.4 for an investigation of the available Apollo 

temperature data in the context of this work).

9 The Procellarum KREEP (K, Rare Earth Elements, P) Terrain is a unique lunar geophysical 

feature characterised by high concentrations of KREEP, including Th.
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Appenine Front

Hadley Rille

AsslBa©-

Taurus-Littrow

Figure 1.2. Apollo landing site topography: a. Apollo 15 site -  the heat flow probes were emplaced towards the centre of the 

image. Hadley Rille is to the right while the Appenine Front spans the upper region of the image; b. Apollo 17 site -.the 

Taurus-Littrow Valley is located in heavily cratered terrain (Google, 2010).

The Apollo heat flow measurements illustrate the difficulties inherent in extrapolating 

single planetary measurements to a global heat flow. The topography of the location must 

be taken into account due to the effects of lateral heat flow from higher elevations. Global 

variation in HPEs must be accounted for due to the additive effect of radioisotope heat 

production to the surface heat flow. The volatile content of the regolith is also important -  

e.g. a local ice-rich layer may lead to a high local heat flow measurement inapplicable to 

global estimates due to the high conductivity of water ice (e.g. Grott et al., 2007) and the
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advective component of heat transfer (e.g. Steiner and Komle, 1991; Seiferlin et al., 

1996). The choice of site(s) for in situ heat flow measurements is, therefore, of critical 

importance.

On other solar system bodies, heat flow investigations have largely relied on remotely 

sensed data. The first heat flow estimates of the Moon were achieved by Earth-based 

sensing of lunar microwave thermal emissions (see e.g. Keihm, 1984; Hagermann, 2005), 

with derived heat flow of 30-40 mW/m2 (Heiken et al., 1991). Due to the limited coverage 

and local bias of in situ measurements, complementary orbital measurements calibrated 

against in situ measurements allow better global heat flow estimates. However, surface 

and subsurface scattering processes, along with density gradients, can cause interference 

which must be accounted for when extracting temperature gradients from brightness 

temperatures, as discussed in Keihm (1984). On Mars, surface heat flow has been 

calculated using surface HPE distributions derived from gamma ray spectrometry, and 

crustal thickness derived from gravity measurements (e.g. Grott and Breuer, 2010; Dehant 

et al., 2012). Images of surface topography have been used to infer palaeo-heat flow on 

Mercury (e.g. Watters Watters et al., 2002; Egea-Gonzalez and Ruiz, 2013), Venus (Ruiz, 

2007) and Mars (e.g. Grott et al., 2005; Ruiz et al., 2006), in lithosphere elastic strength 

studies. Naturally, an integration of these methods with in situ measurements can provide 

the most robust estimates of planetary heat flow.

1.2 Measuring Heat Flow

Hagermann (2005) mentions several potential methods of measuring heat flow; these 

include penetrators for loose, porous regolith, and blankets for sedimented or 

impenetrable surfaces. The blanket method is, naturally, restricted to surface heat flow 

and requires monitoring periods over annual temperature cycles for a reliable basal heat 

flow estimate. Penetrators (heat flow probes) can potentially avoid the former limitation by 

penetrating below the skin depth. The heat flow investigations mentioned in Section 1.1.3 

are all based on heat flow probe measurements. The latter are the focus of this study.
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1.2.1 Earth-bound Heat Flow Probes

Pettersson (1949) mentions an 11 m long “geothermometer” which penetrated the ocean 

bed to measure the temperature gradient; cores were also taken which allowed for 

conductivity measurements and consequent heat flow estimates in other studies (e.g. 

Bullard, 1954). Bullard (1954) mentions the first successful use of a 3 m long probe to 

take ocean bed heat flow measurements (described in Revelle and Maxwell, 1952), and a 

similar ~4.7 m long probe (Figure 1.3) with similar capabilities.

Lucazeau et al. (2010) describe the use of a 5 m long, so-called “POGO stick" heat flow 

probe, which can take several ocean bed heat flow measurements over 2-3 d. The POGO  

stick probe records thermal conductivities by employing heated temperature sensors 

(thermistors). A constant power is applied to the latter and the consequent rise in 

temperature recorded -  the temperature rise depends on the thermal conductivity of the 

soil. Lucazeau et al. (2010) note that cores are taken to enhance the conductivity 

measurements.
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Figure 1.3. Temperature probe after Bullard (1954). The probe was 4.7 m long with two temperature sensors: one at its tip and 

the other at the base of the bulbous instrument package. The probe was released into the ocean from a vessel where it would 

sink to the ocean floor and embed itself into the regolith.

1.2.2 Planetary Heat Flow Probes

The heat flow probes used in the Apollo measurements (Langseth et al., 1972; 1976) 

were approximately 1.1 m long, with four differential temperature sensors10, paired with

10 A differential temperature sensor measures a change in temperature, as opposed to absolute 

temperature.
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heaters, along their length. The sensors measured both differential and absolute 

temperatures, allowing the measuring of the thermal gradient; the heaters function similar 

to those mentioned in Lucazeau et al. (2010), mentioned at the end of Section 1.2.1. The 

probes were deployed in pairs (i.e. two per Apollo mission), separated by a distance of 

about 10 m. The dual configuration was meant to allow for any lateral temperature 

gradients along the probe-probe vertical plane to be detected (e.g. Langseth et al., 1972; 

Heiken et al., 1991) which, along with topographic information (see Section 1.1.3.2), is 

important for the correct interpretation of the recorded heat flows.

In situ heat flow measurements on other planets require robotic probes because of current 

limitations on the deployment of Apollo-style heat flow probes (or those used on Earth) on 

other planets (e.g. Stoker et al., 2006). The current generation of planetary heat flow 

probes are therefore optimised for robotic planetary missions, and are several times 

smaller than their earlier Earth-bound and lunar counterparts (e.g. Hagermann and 

Spohn, 1999; Spohn et al., 2001; Hagermann, 2005; Hagermann et al., 2006; Spohn et 

al., 2007; Paton et al., 2010; Komle et al., 2011).

PLUTO (Planetary Underground Tool) was on the (failed) Beagle 2 lander of the Mars 

Express mission. It was to be deployed in a mole configuration capable of burrowing both 

vertically and laterally into and measuring thermophysical properties of Martian regolith 

(e.g. Richter et al., 2003; Richter et al., 2006). MUPUS PEN (Multi-Purpose Sensors for 

Surface and Subsurface Science Penetrator -  see one configuration in Figure 1.4a) is part 

of the MUPUS payload on the Rosetta space probe lander, Philae (Spohn et al., 2007). It 

is designed to measure the surface heat flow (energy balance) and is due to rendezvous 

with comet 67P/Churyumov-Gerasimenko (67P/CG) in 2014. HP3 (Heat flow and Physical 

Properties Package -  see one configuration in Figure 1.4b) is a heat flow probe proposed 

for deployment in a mole configuration on Mars (e.g. Banerdt et al., 2012; Dehant et al., 

2012; Spohn et al., 2012), Mercury (Spohn et al., 2001), and the Moon (Spohn et al., 

2010).
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Figure 1.4. Heat flow probes: a. MUPUS-PEN one the left is an illustration of MUPUS-PEN in situ, on the right, MUPUS-PEN 

housed on the Rosetta Lander Robotic Arm (after Spohn et al., 2007); b. HP3 candidate configuration (after Ambrosi, 2008; 

also see Spohn et al., 2001; Komle et al., 2011) -  thermal sensors are located along the length of the tether, payload section 

and hammering section.

While being several times smaller and employing different technologies, the planetary 

probes mentioned above function on the same base principles as their Earth-bound and 

Apollo lunar counterparts: they have maximised length to diameter ratios; employ 

temperature sensors along their length; and possess means of measuring thermal 

conductivity from the dissipation of heat generated during probe emplacement, or by 

active heaters. MUPUS PEN, for example, has 16 active temperature sensors which 

range in length from 1 cm close to the base (surface) to 4 cm close to the tip, and cover a 

depth range of 32 cm. The design is optimized to measure the steep temperature 

gradients of the shallowest regions of the regolith and the shallower temperature gradients 

as depth increases (see Figure 1.1).
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1.2.3 Heat Flow Probe Measurements

The sensors aboard a conventional planetary heat flow probe allow a measurement of the 

thermal gradient along the axis of penetration and an estimate of thermal conductivity, 

from which heat flow can be calculated. The modern probes mentioned in Section 1.2.2 

have the capability to penetrate up to 5 m into planetary regolith (e.g. Spohn et al., 2012). 

At 5 m the surface solar flux is most likely damped to negligible values on the Moon (see 

Section 3.6), possibly Mars (see Section 5.3.1), Mercury (see Section 6.3.1) and small 

bodies like Vesta (see Section 7.3.1). Towards the surface, this is not the case; simulated 

skin depths of the former bodies lie between ~1 mm for Vestan diurnal temperatures to 

1.9 m for Martian annual temperature end member scenarios.

The surface heat flow may be useful in the case of cometary surface energy balance 

investigations with MUPUS PEN, where there is interest in how the sun influences the 

emission processes. It should be noted that heat flow from the interior of comets (and 

possibly volatile rich asteroids) is not necessarily steady state and may vary with a period 

of the order of the orbital period (e.g. Prialnik and Merk, 2008; Prialnik et al., 2008) which 

further complicates matters. With asteroids and planets, interest is skewed towards the 

planetary heat flow which is related to the state of the interior. The superposition of the 

unsteady heat flow from the surface with the steady heat flow from the interior is, 

therefore, problematic where the heat flow probe sensor penetration depths are not far 

enough below the skin depth. As the main aim of this study is the extraction of the basal 

heat flow in the preceding case, detailed investigations of related scenarios are presented 

in Chapters 4-8.

The influence of topography is introduced at the end of Section 1.1.2 and its influence on 

lunar heat flow measurements mentioned in Section 1.1.3.2. Local and regional variation 

in topography causes lateral heat flow which cannot be quantified by a single heat flow 

probe measurement. Lateral heat flow modifies the temperature gradient which, 

unaccounted for, leads to systematic errors in any heat flow estimate (see Section 7.3 for 

examples with Vesta). Placing two or more probes in a particular configuration, as done
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with the Apollo heat flow measurements (e.g. Langseth et al., 1972; Heiken et al., 1991), 

can allow these effects to be quantified. Each measurement, therefore, requires unique 

topographic analyses to correct for lateral heat flow. Wang (1992) notes that the horizontal 

attenuation of heat is similar to the vertical and finds that topography which extends at 

least the depth of measurement will likely affect all temperatures. Wang (1992) indicates 

that significant topographic features smaller than the measurement depth (e.g. rocks, 

diagonal stratigraphy) should be accounted for though gradual changes in topography 

have small effects. Additional topographic considerations, such as proximity to impact 

craters and breccia, with residual heat from an impact event or radioisotope enriched 

impact ejecta, can produce anomalously high heat flows as mentioned in Section 1.1.3.2 

(also see Appendix 9.7.2 on Vesta).

Below the surface, unknown regolith composition may produce unexpected effects on the 

thermal profile; these may be due to refraction from sloping interfaces (subsurface layers 

or large rocks) of differing thermal diffusivity (see Section 3.3 for a discussion on layering; 

see Chapter 6 for examples with Mercury). Analysis of substructure profiles from infrared 

and mircrowave observations may aid the interpretation of any heat flow measurement. 

The presence of volatiles (ices) may render any measurements difficult to interpret 

because of high, temperature dependent thermal conductivities (e.g. Seiferlin et al., 1996; 

Spohn et al., 2001; Grott et al., 2007). Methods exist by which the effect of these can be 

isolated to some degree by analysis of relationships between volatile content and thermal 

properties (e.g. Behaegel et al., 2007).

The process of penetration of a heat flow probe disturbs the regolith along its axis and 

may alter the physical and thermal properties of the soil. This can, however, be quantified 

to some degree, with suitable corrections made to heat flow estimates (e.g. Grott et al., 

2010). Conduction along the probe axis may smooth the temperature profile where the 

conductivity of the probe is significantly higher than the regolith conductivity; this effect 

has been quantified by Hagermann & Spohn (1999) with a solution to recover the prestine 

temperature distribution.
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The preceding phenomena highlight the importance of choosing an appropriate heat flow 

measurement site. Planetary heat flow probe measurements are suited to dry plains with 

suitably porous regolith. A trade-off is necessary between sites shadowed from solar 

influence versus areas exposed to the unsteady solar flux. Sites shadowed from the 

unsteady solar flux likely have relatively rough topography and high volatile content (with 

attendant temperature dependence of thermal properties). Dry sites tend to be close to 

the equator, where the mean temperatures are highest and temperature variation typically 

largest, resulting in greater masking of the basal heat flow and potentially greater variation 

of temperature dependent thermal properties. Practical constraints on the measurement 

depth means that a heat flow measurement will likely display both steady and unsteady 

components.

The magnitude of the heat flow is also critical to whether or not a heat flow measurement 

is successful. The current generation of planetary heat flow probes are precise to the 

order of 1 mK, which is equivalent to a temperature gradient uncertainty of 2 mK/m. The 

latter represents a lower limit to a temperature gradient which can be measured by the 

heat flow probes mentioned in this study. Low heat flow bodies like Vesta (see Chapter 7) 

may, therefore, not be ideal targets for heat flow measurement.

1.3 Modelling Heat Flow

1.3.1 Forward Modelling

Once the thermal influence of the probe itself is removed from the measurement and 

thermal conductivity determined (e.g. Banaszkiewicz et al., 1997; Hagermann and Spohn, 

1999), the basal heat flow may be immediately available where the probe sensors 

penetrate far enough below the skin depth. Where no more than one sensor accesses the 

steady temperature gradient, further work is necessary. This involves the creation of a 

forward model (see Chapter 3) of the heat flow environment of the measurement using the 

heat flow equation (HFE -  see Section 2.1.1).
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Forward models developed in 2D or 3D space are more comprehensive. However, these 

are more complex and, therefore, require more computing resources and development 

time. A heat flow probe returns a measurement in 1D space over the time period of 

measurement. Any higher dimensional models require extrapolation of physical and 

thermal properties beyond the axis of measurement. In this study, the simpler 1D 

approach is taken.

The HFE can be partitioned into unsteady and steady components, conveniently allowing 

the steady (basal) and unsteady (surface) heat flow to be handled separately in a model; 

the steady component requires no time discretization. Where the regolith can be 

accurately represented by homogeneous (bulk) thermal properties with simple (smooth, 

continuous) boundary conditions, the forward model may be developed from analytical 

solutions (e.g. Carslaw and Jaeger, 1986). Numerical development leads to more general 

models which can handle homogeneous and heterogeneous regolith equivalently, as well 

as arbitrary boundary conditions (e.g. Patankar, 1980).

The forward model simulates subsurface temperatures during the period of measurement 

by time stepping from an initial state until the temperatures are equilibrated. Numerical 

boundary conditions can be heat flow, and/or temperature. Therefore, different basal heat 

flows (and, if necessary, surface temperatures and thermal properties) can be applied to 

the forward model until a good fit is obtained with the measured heat flow (conductivity 

and steady temperature gradient). This is, essentially, Monte Carlo modelling (e.g. Press, 

2002). The preceding method, though potentially robust, can be time-consuming. A 

potentially more efficient route to a best fit solution involves the inversion of the 

temperature measurement, and optimization of the basal heat flow.

1.3.2 Inverse Modelling

The essential difference between the forward modelling approach and inversion is that in 

the former, the potential solutions are chosen arbitrarily, while in the latter, the solutions 

are chosen at the optimal value of a misfit function (see Section 2.3.1). There are several
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approaches to inversion (see Menke, 1989 for general discrete theory and Tarantola, 

2005 for a generalised functional theory), each of which determines the particular form of 

the misfit function. However, the misfit functions are all mainly defined by residuals 

between the temperature measurement and that predicted by a forward model calculation. 

These residuals are used to define the most efficient path to minimisation (or optimization) 

of the misfit function.

Shen et al. (1992) compare three methods of inversion, namely function specification (FSI 

-  Shen and Beck, 1991; 1992), spectrum inversion (SI -  Wang, 1992) and singular value 

decomposition (SVD -  Mareschal and Vasseur, 1992). FSI and SI are based on the 

Bayesian inverse theory of Tarantola and Valette (1982) (also see Tarantola, 2005) and 

allows the optimization of both thermal properties and boundary conditions which are not 

well known. SVD, on the other hand, does not allow optimization of thermal properties, 

though these can be implicitly accounted for by discarding parts of the solution which 

contribute to instability.11 The greater versatility of the FSI and SI approaches is, therefore, 

more attractive. In this study, FSI is pursued because it is more straightforwardly 

transcribed into a general numerical form, which is more accommodating in dealing with 

different boundary conditions and regolith properties.

It is important to note that inversion of temperature measurements (from boreholes, in 

particular) is a mature field in Earth-based climate studies: there have been few planetary 

measurements for the former to be applied to. These inversions are performed in 1D in 

the majority of cases because the measurements are 1D. A 3D inversion method is 

presented in Hopcroft et al. (2009). Where there is appreciable lateral variation in physical 

and thermal properties (which affects the subsurface temperature profile), the method

11 Singular value decomposition allows for the removal of singular values from the matrix defined 

by the thermal properties along with associated temperature calculations. This effectively reduces 

the resolution of the method -  more critical where time dependent parameters are being optimized, 

as opposed to the basal heat flow.
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gives more accurate solutions. For the current purposes, a 1D approach is considered 

sufficient, as noted earlier; however 3D approaches appear to be a worthwhile area for 

further study.

1.4 Summary

It has been shown how planets form as hot bodies which, over time, lose heat through 

their surface regions by convection for the giant planets and diffusion (conduction, 

radiation, and advection) for rocky bodies. The heat loss from the surface regions is 

balanced by heat input from the planetary surface environment which is dominated by 

nearby stars. This study focuses on rocky planets. Steady (basal) heat flow quantifies the 

process of heat loss from the interior of a rocky planet and is dependent on mantle 

temperatures and the heat generated by radioisotopes in the crust. Unsteady heat flow 

quantifies the heat input from the planetary surface environment. The steady and 

unsteady states are superimposed in the surface regions. Measuring the heat flow of 

these bodies and combining the measurement with petrologic, seismologic, other 

geophysical data and modelling allows constraints to be placed on the internal processes 

which generate heat. In turn, this can provide crucial information about the evolution of 

these planets.

Heat flow measuring probes have been developed and used on Earth. The heat flow 

measurements have provided support for plate tectonic theory, estimation of crustal 

thickness, the state of the mantle and core, and the processes by which heat is 

transported from the interior. Attempts have been made, somewhat successfully, to 

remotely measure the surface heat flow of other planets using microwave and infrared 

observations. Lunar heat flow has been measured by probes emplaced by Apollo 

astronauts, though the measurements suffer from systematic uncertainties and have 

undergone several reanalyses. A heat flow measurement is due to be made on a comet 

by MUPUS PEN, a payload on the Rosetta space probe lander. MUPUS PEN is part of a 

new class of robotic instruments which are optimised for heat flow measurements. HP3 is
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a more capable, modular counterpart to MUPUS PEN and is designed to facilitate heat 

flow measurement on a variety of terrestrial planets. This study focuses on the recovery of 

the steady state heat flow from a heat flow probe measurement in the shallow subsurface 

regions of a planet.

Numerical modelling is the most versatile approach for the recovery of the basal heat flow 

from a shallow subsurface temperature measurement. Heat flow modelling can be 

separated into two regimes: forward and inverse modelling. Forward modelling is 

performed where the boundary conditions (temperature and/or heat flow) of the system 

are available and the internal (subsurface) temperatures are required. Inverse modelling is 

performed where a subsurface temperature measurement has been made and the 

boundary conditions (and/or thermal properties) which generated that temperature state 

are required. A heat flow probe measurement is returned in 1D space, overtime, therefore 

1D modelling is deemed sufficient for the current purposes.

In this study, an inverse model is developed which allows the recovery of the basal heat 

flow from a heat flow probe measurement of the shallow subsurface temperature gradient 

and thermal conductivity. This model, based on the Function Specification Inversion (FSI) 

method of Shen and Beck (1991, 1992), allows the (optional) simultaneous optimization of 

basal heat flow, surface temperature and thermal properties (conductivity, thermal 

capacity) with the temperature measurement. In Chapter 2, the heat flow theory 

supporting the forward model, and that behind FSI, are outlined. In Chapter 3, the forward 

model is presented with synthetic examples. It is an integral part of the inverse model, 

which is similarly presented in Chapter 4. In Chapters 5-7 the inverse model is applied to 

end member scenarios on Mars, Mercury and Vesta, respectively. The results are 

assessed in Chapter 8, and relevant implications outlined.
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2.1 Forward Problem

Heat flow involves several processes within a planet1 where, as noted in Section 1.1, the 

focus of this study is heat diffusion. Heat flow leads to an internal temperature distribution, 

based on internal thermal properties and surface energy balance (see Section 1.1.2). If 

the internal temperature distribution at a given point in time is required, a theory of heat 

transfer (defined by a heat flow equation) is solved by applying appropriate boundary and 

initial conditions -  this is the essence of the forward problem.

2.1.1 Heat Flow Equation (HFE)

In this study the HFE is presented in general (superposed) and partitioned (unsteady and 

steady) forms. These forms are permitted by the analytical solutions (see Section 2.1.2) to 

the HFE and allow convenient manipulation of the boundary and initial parameters in the 

forward problem and the inverse problem (Section 2.2), in particular.

2.1.1.1 G eneral HFE

General 1D2 heat diffusion can be represented by the HFE

with boundary conditions

1 Heat flow involves transfer of heat by diffusion, convection and fluid flow. Heat diffusion, as 

introduced in Section 1.1, is the focus of this study; the latter two transfer modes are beyond its 

scope.

2 The merits of considering heat flow in 1D, versus 2D or 3D space are discussed in Section 1.3.

3 The notation applies to a data range where: c e (a, b) <=> a <  c <  b (an open interval) and 

c E [a, b]<=> a < c < b {  a closed interval).
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T =  TS, z =  zs, t  E ( tB, tE]
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2.2

z — zB, t E (tB, tE], 2.3

and initial condition

T =  T°, z E [zSlzB\ , t  =  tB. 2.4

Variable t  is time (tB begins the period, tE ends the period), z is one spatial dimension 

(depth: zs is the surface4, zB is the base), T  «=> T (z ,t) , is temperature, F  <=> F (z ,t ) ,  is heat 

flow, p <=> p (z) is the depth dependent density, c <=> c(z) is specific heat, the product pc 

the thermal capacity, k & k ( z ) ,  is thermal conductivity, and 5 « S ( z , t )  is a term 

representing heat sources or sinks. Alphanumeric and topical lists of symbols are 

presented in Appendix 9.1.

2.1.1.2 Unsteady HFE

In the partitioned problem the unsteady component is equivalent to the time varying 

surface heat fluxes, it may therefore be represented by

where superscript U denotes unsteady and subscripts carry the same meaning as in 

Equations 2.1-2.4. The boundary conditions are

2.5

T u =  7 / ,  z =  zs, t E (tB, tE\, 2.6

~ k  - g j-  =  Fg, z  =  zB, t E ( tB, tE\,
dTu

2.7

with initial condition

4 Usually defined as zs =  0
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T u =  0, z £ [ z s,zB] , t  =  tB. 2.8

Conventionally, =  Su =  0.5

2.7.7.3 Steady HFE

The steady component of the partitioned problem is equivalent to the internal heat flux 

and is defined by

d (  dTs\  ,
- T z ( k n r ) = s ’ z € [ Z s ' ZbL

2.9

where superscript S denotes steady and the boundary conditions are

T s =  7 / ,  z =  z5, 2.10

dTs
- k  —r~  =  F |, z =  zB. 2.11

dz

Equation 2.11 defines the basal steady heat flow F§. The aim of this study is to recover a 

best estimate of F§ from measurements of the temperature at depth. Examining the 

solutions, and solution methods for these equations, aids in quantifying the challenges 

posed by the superposition of the steady and unsteady heat flows.

5 In the heat flow problem the initial condition is considered to be steady state with Ts and FB 

constant. Ts starts to evolve due to external forcing by a surface heat source, introducing 7 /  into 

Tu and Tu into 7. In the planetary sense FB remains constant and FB non-existent as the heat 

flowing into the lower boundary from the interior can be considered constant for medium term 

scenarios, though there are variations over planetary evolution timescales, and on shorter 

timescales for small bodies like comets.
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2.7.2.7 Analytical Solutions

The HFE may be solved analytically using integral transforms of Laplace and Fourier type. 

Fourier analytical methods work best applied to relatively simple heat flow problems with 

homogeneous thermal properties while Laplace methods are handy when dealing with 

heterogeneity (e.g Carslaw and Jaeger, 1986). The complexity of analytical solutions 

increases with the degree of heterogeneity of thermal properties (see Section 2.1.2.3) and 

nonlinearity of boundary conditions.

2.1.2.1.1 Unsteady Solutions

An analytical solution to the unsteady HFE (Equation 2.5) can be found by treating the 

planetary surface as a homogeneous, isotropic, semi-infinite solid, to which an arbitrary, 

repeating boundary surface temperature is applied. Applying (see Appendix 9.2.1.1) the 

discrete Fourier transform (DFT -  e.g. Press, 2002; Arfken and Weber, 2005) gives the 

solution (Carslaw and Jaeger, 1986)6

where tsua is the surface temperature amplitude, a)f is the frequency of temperature 

oscillations, k = k /p c  is the thermal diffusivity, and (p indicates the phase of the surface 

boundary temperature, the cosine term being the phase shift with depth.

Examination of Equation 2.12 reveals two key characteristics of unsteady heat flow which 

are noted in Section 1.2.2:

6 Also see Tautz (1971) which arrives at the same solution using the Laplace transform 

(Hagermann, 2013).

2.12

z  £  Yz S>z b )> t  £
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1. the temperature oscillations are attenuated at depth, and are more strongly 

attenuated with higher frequencies or lower thermal diffusivities -  this is 

characterised by the natural exponent and;

2. the harmonic characteristics of the propagated disturbance are modified by the 

introduction of a phase lag which increases with depth -  this is characterised by 

the cosine term.

The observations from Equation 2.12 illustrate how information on surface heating is lost 

with unsteady heat flow into the subsurface, making the problem of determining unsteady 

surface boundary conditions by inverting a given temperature distribution ill-posed. This 

also means that the basal heat flow (steady temperature gradient) can be accessed at 

depths below the unsteady temperature envelope. The temperature profile produced by 

the solution is illustrated in Section 3.4.1 .where the two observations can be confirmed.

2.1.2.1.2 Steady Solutions

An analytical solution to the steady HFE (Equation 2.9) can be found by treating the 

planetary surface as a homogeneous, isotropic finite solid to give (Appendix 9.2.1.2)

r s =  r / - y z + ^ z 2, z e [ z s,zB). 2.13

Key observations from Equation 2.13 are:

1. The basal heat flow F§ introduces a linear temperature gradient with depth;

2. the magnitude of the temperature gradient with depth z correlates positively with 

Fb and negatively with k and;

3. the source term Ss has a parabolic effect on the temperature distribution with 

depth -  this is discussed further in Section 3.2.

The steady temperature gradient is positive or negative depending on whether heat is 

flowing into 0) or out of (Ffl <  0) the base of the solid, respectively. In conventional 

planetary cases the temperature gradient due to F |  is positive. The third observation 

suggests how unknown source distributions can mask the temperature gradient due to F |
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and reduce the accuracy with which it can be determined. All three of the preceding 

observations are illustrated in Section 3.2.

2.1.2.1.3 Superposed Solution

The superposed solution corresponding to the solution of Equation 2.1 is found by 

summing Equations 2.12 and 2.13 to produce

Equation 2.14 quantifies the interaction of the unsteady and steady components of the 

heat flow with the thermal properties such that:

1. for a given conductivity k (and diffusivity k) more of the steady temperature is seen 

with depth z, and less of the unsteady temperature;

2. if k remains constant and k increases (thermal capacity pc decreases) the 

unsteady temperature penetrates deeper and masks more of the steady 

temperature and;

3. a larger unsteady temperature amplitude T$A masks more of the steady 

temperature for given z.

The former are not the only possible representations of the subsurface temperature due to 

surface forcing. The heat flow and heat source terms in the steady solution can be 

modified depending on the distribution of heat sources while the attenuation and phase 

lag of the unsteady solution can be represented by other functions (e.g. the error function 

solution; see Carslaw and Jaeger, 1986). The temperature and heat flow distributions of 

the superposed solution are illustrated in Section 3.5.

T =  T S +  T U =  T f  -

2.14

z G [zSlzB) , t  £ (tB, t E].
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2.7.2.2 Numer ical  Solutions

Numerical development of solutions to the HFE possesses notable advantages over 

analytical development. The numerical solutions are intrinsically tailored to handle 

heterogeneity (see Section 2.1.2.3) in thermal properties and are relatively conducive to 

the use of nonlinear boundaries. Numerical solutions converge on the analytical solutions

in the limit where the space and time resolutions are infinitesimal (e.g. Davis, 1986; see 

Section 3.4.1.1 for an illustration).

2.1.2.2.1 Finite Control Volume Method

Numerical methods reduce the equations in Section 2.1.1 to a set of simultaneous 

equations through discretization. The fully implicit 1D Finite Control Volume (FCV) method 

(Patankar, 1980; summarised in Appendix 9.2.1.3) is used to discretize Equation 2.1. This 

produces a set (or grid) of simultaneous equations for N  temperatures Tn at M  times 

where

The previous two equations show that the temperature at any gridpoint n is due to the 

balance of energy between it and surrounding gridpoints n -  1, n +  1. The temperature 

coefficients bn and cn correspond to the conductance H  across the control volume 

interfaces which is explained in Section 2.1.2.3.

O'nTn bvTn+l CvTn—l  ~  ^  ^ 2.15

and (Figure 2.1)

a.

i e [1,7V- 1],
b.

2.16

c. m e [0,M — 1],

d. d n  — S n & Z n  "T ^vT n >  

d n — bn + Cfi + an SnAzn,

£ ^ ( t0, t^j—i]  .

e.
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O—►z

* /

-SZi. ■ 

Az„

-SZfr

UN

a. b.

Figure 2.1.1D FCV discretization: a. internal grid with n  e [1 ,N] Azn x 1 x 1 control volumes and interfaces i e [1,N -1 ]; b. 

arbitrary boundary point on grid showing half control volume (shaded area). After: Patankar (1980).

The conductivity kt for the control volume interface i shared by control volumes n and n +  

1 is calculated by interpolating the conductivities kn, kn+1 according to

-\ K n  K n + 1 '

f i  =
Szi

n e [ l , N ] ,  

i G [ 1 , N -  1].
2.17

i+
8Z i ’

Patankar (1980) notes that the source term Sn, which is often temperature dependent, can 

be represented in several ways, a general representation being

S =  s c +  sr TJ n  J n  * J n  1n>'Trr n G [1,N],  2.18

where Sn represents the average source contribution to the heat flowing out of control 

volume 7 i ,  S% represents a constant component of the source term and >s a 

temperature dependent component. For numerical stability in the forward problem, any 

heat sinks, or negative components of Sn, are absorbed into S% while respective positive 

components are absorbed into S%. In special cases it may be necessary to separate Sn 

into unsteady and steady components. While it is not conventional to do this it can be 

used to simulate transient heating effects within the medium. Further details on the 

representation of kt and Sn can be found in Appendix 9.2.1.3.
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The linear system in compact form is

FT =  S 2.19

where F is a tridiagonal system of coefficients an, bn, cn, T an array of temperatures T™, 

and S an array of source-associated terms d£  (see Appendix 9.2.1.3 for details). The 

solution can therefore be represented by

The system of equations in 2.15 and 2.19 can be solved using standard numerical 

methods (e.g. Press, 2002; Collins, 2003).7 However the tridiagonal form of the equations 

makes it appropriate for use with the Tri-Diagonal Matrix Algorithm (TDMA -  e.g. 

Patankar, 1980)8. The TDMA is used in this study.

2.1.2.2.2 Surface Energy B alance

In planetary cases where surface temperature Ts =  T /  +  T /  is not given, it may be 

calculated from the surface energy balance, which is a nonlinear surface boundary 

condition given by

S° is the solar constant at the average distance of the body R. This is modified by the 

surface Bond albedo AB and solar incidence angle (pt. The term eaT4 is the blackbody

7 The special case of the partitioned unsteady temperature solution t £  is obtained by setting the 

source term Sn in Equation 2.18 to zero leading to the source terms S% and S% vanishing from dn, 

and an accordingly. The full set of unsteady temperatures T”m is obtained by taking timesteps Atm 

from t0 to tM_x. The steady temperature is attained at the limit where the timestep gets large 

(Atm -» o o ) ,  therefore the steady temperature solution T* is achieved by setting Atm =  o o  (or some 

practically large number) such that a£ vanishes.

8 The TDMA is a special case of the Gaussian Elimination method of solving linear systems.

T  =  F-1 S. 2.20

2.21
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radiation function where s is the emittance of the surface of the body and a  is the 

Stephan-Boltzmann constant. The boundary condition can be incorporated into the HFE 

by integrating Equation 2.1 over the half control volume defined by Figure 2.1b. This 

produces a discretization equation

a0T0 — bQT± "I- d.Q 2.22

where

h —

b° - s . ?

b. ag =  p0c0 — m  G [0, M  -  1],
171 2.23

c. do =  SgAz0 +  a°T00 -  ^ 2  (1 -  4̂) cos (pb

d. a0 =  b0 +  a j -  Az0 -  £(tT03,

Equation 2.22 can be solved through an iterative procedure such that

^  "I- do
T0 =  — ---------------------------------------   2.24

a0

This is applied in Section 3.6 and Chapters 6-7.

2.7.2.3 Composites

Composite media can be represented as a collection of N  homogeneous, a 

heterogeneous mix of different granular materials with parametric variation in thermal 

properties, or a combination of the former and latter. The analytical solutions of Section

2.1.2.1 still hold true in the case of N  homogeneous layers but with N  of each solution for 

each layer. The numerical expressions of Section 2.1.2.2 are already in the form of N  

simultaneous equations and can be more efficiently solved with techniques like the TDMA.

To solve the heat flow problem with composites, the conditions at the internal boundaries 

must be taken into account, where in the absence of any heat sources or sinks S, the heat 

flow is continuous across the boundary. This leads to the internal boundary (continuity) 

condition
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2.25

noting that J is the temperature gradient in layer n,. Equation 2.25 reveals the

particular relationship between layers in contact where the ratio of temperature gradients 

is inversely proportional to the ratio of conductivities. Assuming that the temperature is 

continuous across the boundaries of layers in perfect contact, leads to a further continuity 

condition

where i+ identifies each temperature to the immediate right or left of the interface as 

shown in Figure 2.1b. The effect of this on the temperature profile and heat flow is shown 

in Section 3.3.1. The temperature gradient in the upper layer is 10 times that in the middle 

layer, which is ten times that in the lower layer, the opposite of the conductivity ratios, as 

dictated by Equation 2.25. The temperatures are also equal at the layer boundaries as 

dictated by Equation 2.26.

For layers which are not in perfect contact the temperature may not be continuous across 

the boundary, therefore Equation 2.26 does not hold. However the heat flow across the 

boundary is still continuous and proportional to the temperature difference between the 

two media. Therefore, for heat flowing from layer n to layer n +  1 (Carslaw and Jaeger, 

1986),

The term H is a constant which is determined experimentally and is called the heat 

transfer coefficient or conductance as introduced in the previous Section 2.1.2.2. In this 

way, Equations 2.25 and 2.26 or 2.25 and 2.27 are used to deal with continuous 

boundaries or discontinuous boundaries respectively when finding solutions to composite 

systems.

T i_ = T i+t i E [1, N — 1], 2.26

2.27
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The interface conductivity kt (Equation 2.17) in the FCV scheme facilitates any layering 

within the medium, in cases of perfect layer contact. In cases of imperfect layer contact 

the extent of contact can be quantified by a given quantity ht which modifies the interface 

conductivity kt to produce kc where

The quantity ht is analogous to the Hertz factor of Seiferlin et al. (1996) and Paton et al. 

(2010) for granular media where At represents the layer interface contact area and 8xt the 

cross sectional area of the layer along the heat flow axis. Instances of perfect layer 

contact have ht =  1 while instances of imperfect layer contact have

The effect of imperfect layer contact on the temperature profile and heat flow is illustrated 

in Section 3.3.2. It is evident that while the heat flow and temperature gradients within 

each layer are unaffected by the imperfect contact, the temperatures in all layers except 

the surface layer are positively displaced. The heat flow across the boundary can be seen 

as the instantaneous average of the heat flow of the bordering layers -  this is to be 

expected in the absence of heat sources, to avoid any violation of energy conservation.

2.2 Inverse Problem

The problem of recovering boundary and initial conditions from a given temperature 

distribution (measurement) is the inverse problem, introduced in Section 1.3.2. Several 

observations are made, in Section 2.1, which highlight why the inverse heat flow problem 

is unstable9 -  in summary, these are:

In an ideal scenario with perfect knowledge of problem parameters and infinite measurement 

precision the problem is not necessarily unstable.
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1. information on the unsteady surface temperature is lost because the 

propagated signal10 is lagged and damped, dependent on the magnitude of the 

temperature variation period P, depth z and thermal properties k, p, c. This is 

quantified by the skin depth zSKIN =  (kP/pcn)1/2 which is the depth at which the 

unsteady temperature amplitude falls to 1/e of the surface value;

2. information on the basal heat flow F |  may be masked by the propagated unsteady 

surface temperature signal, dependent on zSKIN, the unsteady surface temperature 

amplitude, and the magnitude of F |;

3. the temperature distribution may be modified by unaccounted for physical 

phenomena such as lateral variation and/or temperature dependence of thermal 

properties or, equivalently, the presence of unknown heat sources and/or sinks S.

Additionally, as noted in Section 1.2.3, heat flow probes return measurements of finite 

precision, therefore

4. the temperature distribution and thermal properties may contain errors.

Factors 1 and 2 are opposing factors, to some degree. In the case where the main 

parameter sought from the inversion is surface temperature Ts, less lagging and damping 

of the 7 /  signal (1) and little or no temperature gradient due to F |  (2) over the considered 

depth z, are ideal. Conversely, where the inversion is mainly concerned with F§ -  the case 

in this study -  it is better to have a temperature gradient of higher magnitude (2), and 

greater damping of T /  (1). However in the same vein, if Ts is not well known, along with 

F§, the information in the unsteady subsurface temperature may be useful in estimating 

both Ts and F§.

10 Propagated signal refers to the heat flow into the subsurface.
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The consequence of the former is that the inverse problem is ill-posed: the loss of 

information on the surface temperature allows several possible unsteady temperature 

solutions which can fit a subsurface temperature distribution; likewise, the masking of the 

basal heat flow by the unsteady temperature allows several possible heat flow solutions; 

the measurement errors compound these by allowing several possible temperature 

distributions. Methods therefore need to be employed which help to provide a unique 

solution to the inverse problem.

2.2.1 General Inverse Theory and Methods

The inverse problem, as described above, leads to a sparse linear system of equations 

after parametrization, analogous to the form of Equation 2.20. There are numerous 

approaches to solving sparse linear systems (e.g. Saad, 2003), though particular 

approaches tend to be suited to particular parametrizations (e.g. Beck and Arnold, 1977; 

Menke, 1989; Tarantola, 2005). The principal determinacy of the inverse problem for a 

given measurement11, as described above, depends on the parameter(s) being sought: for 

the basal heat flow F§ and steady surface temperature 7 / ,  the problem is overdetermined; 

for the thermal properties k, p and c, source distribution S, and unsteady surface 

temperature 7 / ,  the determinacy depends on the required depth and time resolution. 

Three inversion methods, often encountered in the literature, are introduced in Section 

1.3.2, Function Specification Inversion (FSI -  e.g. Shen and Beck, 1991,1992; Tarantola, 

2005), Spectrum Inversion (SI -  Wang, 1992) and Singular Value Decomposition (SVD -  

e.g. Menke, 1989), with noted advantages of FSI and SI (e.g. Shen et al., 1992). FSI and 

SI are based on Bayesian principles (e.g. Tarantola and Valette, 1982), using a priori 

information to provide a unique solution, which is useful for systems of any determinacy.

11 In the sense of being underdetermined, mixed determined or overdetermined, and assuming the 

measurement is taken with two or more sensors.
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SVD allows the highly singular parts of a solution to be identified and discarded, reducing 

the resolving power of the data, but stabilising the solution -  this is particularly useful for 

underdetermined problems. What follows is a general summary of inverse theory and 

methods, discussing the applicability of particular approaches, and providing some insight 

into the reasoning behind the final chosen approach of FSI, which is presented in further 

detail.

2.2.7.7 Mode/ and Data Parameters

In the forward problem the F matrix and S vector (Equation 2.20) are well posed, which 

leads to a unique temperature solution T. The inverse problem stems from using 

measurements of T to determine the form of the expression F_1S, where the parameters 

in the F matrix and S vector are not accurately known. This is stated, generally, as

a. d =  g(m),

2.29

b. m =  [7^, T$, Fg, k, p, c, 5].

The data vector d <- T is a vector of N measured temperatures (temperature distribution)12 

which can be considered as part of a data space D containing all possible data 

observations with coordinates d i,d 2, ...,d i. The term g (m )«- F-1S is a potentially 

nonlinear function of model vectors m which can be considered as part of a model space 

M containing all possible models with coordinates m1;m2,

Examination of the HFE with boundary conditions (Equations 2.1-2.4) shows that the 

model m may be represented with two components m =  [mB, mP] where m B =  

[TSU,TSS,F§]  represents the component with unknown boundary conditions and m P =  

[k, p, c, 5] represents the component with unknown regolith properties. Solving the forward

12 For a general inverse problem d may consist of any measured parameter of an experiment.
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problem with elements of mP unknown is a nonlinear problem requiring iteration -  

recalling that forward calculations are used when solving inverse problems it can be seen 

that this nonlinearity carries over to the inverse problem. For this reason Equation 2.29 is 

the nonlinear parametrization of the inverse problem and is solved using iterative search 

methods similar to FSI and SI or sampling methods (e.g. Monte Carlo).

The linear parametrization results when the model component mP =  [k,p,c,S] is -  or is 

assumed -  exactly known; the forward problem may then be solved without iteration and 

the inverse problem stated as

a. d =  Gm

2.30

b. m =  ms =  [7- / ,T / ,F | ]

where G is often referred to as the data kernel. In this form, with G invertible, the solution 

to the inverse problem can be stated as

m =  G-1 d. 2.31

The linear inverse problem parametrization is solved according to its determinacy, where 

Lagrange multipliers can be used to solve the underdetermined problem, least squares to 

solve the overdetermined problem, or singular value decomposition and least squares to 

solve problems of mixed determinacy (e.g. Menke, 1989).

The nonlinear and linear inverse problem solution methods mentioned above are 

discussed in further detail in the following sections. It is important to note the well-known 

fact that there are several potential viewpoints regarding what constitutes an inverse 

problem solution (e.g. Beck and Arnold, 1977; Menke, 1989; Tarantola, 2005). Typically, 

an estimate of the model parameter m is sought, however this may not always be the 

case and it may not always be possible to estimate m accurately. Other information such 

as the relationships between or the nature of uncertainties associated with different model 

and data parameters in d and m may suffice, or in fact be sought -  these are discussed 

next (also see Section 2.2.3.5).
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2.2.1.2 Parameter  Var iance a n d  Covariance

The data in d has uncertainties depending on the measurement conditions. There may be 

information of varying quality on the model parameters in m. This initial (a priori) 

information on the quality of the data, along with any correlation between model 

parameters and/or model parameters with data parameters, can be quantified in 

covariance matrices Cd and Cm, and an a priori model m 0 (e.g. Beck and Arnold, 1977). 

This a priori information may be pivotal in stabilising the inverse problem, particularly in 

the nonlinear case covered by Equations 2.29 or where Equation 2.30 is 

underdetermined. Cd and Cm establish the size of the subspaces in M and D which contain 

probable solutions d/ and m f. Cd and Cm are represented by square, positive definite 

arrays (see Section 4.2.3.2 for examples)

a- =  Cd0,

2.32

b. Cm =  [c r i;,C T5,CFB,C fe,Cp,C c,C5].

The subscript d0 in Cd represents the covariance of the measured temperature, the 

diagonal of which may be considered a vector of variances associated with each 

measured temperature 7n, where the standard deviation an corresponds to the measured 

temperature error. The lower and upper triangles of Cdo represent the covariances of pairs 

of 7n. The variances vary depending on the measurement scenario: for example, in an 

ideal measurement scenario it is expected that the variance will decrease exponentially 

with depth as the unsteady temperature oscillations are damped. The same follows for Cm 

such that the diagonal of each model parameter covariance Cm is a vector of variances 

with the off diagonal elements being covariances.

The time dependent nature of unsteady temperature 7 /  means CTu can be represented 

with a time component which reflects the time variation of 7 / ,  such that the diagonal 

elements of CTu are represented by aluf(T) ,  where / ( r )  is a time varying function, and
l S Is
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r  =  - t .  For example it is expected that information on T /  from the remote past -  which is 

in the lower regions of a temperature profile and is asymptotically lost to damping -  will 

have a smaller variance than more recent T§  information. Therefore, in the case of a 

sinusoidal T$ (expected in simplified planetary cases), / ( t )  may be represented by a sine 

function (e.g. Wang, 1992). Similarly, the potential depth dependent nature of parameters 

of mP allows the introduction of a covariance function / ( z )  such that the diagonal 

elements of Cm are given by a £ /(z ) .  Additional off-diagonal elements Cdldz and Cmitn2 

may be explicitly introduced to Cd and Cm respectively, to represent correlation (cross

covariances) between different data and model parameters.

With the measurement d0, the physical model (also called the constraint) g(m) «= Gm and 

uncertainties described in the covariances Cd and Cm, all the information needed to solve 

the inverse problem is now established -  next to be discussed are the different methods 

of solution.

2.2.7.3 Solution Methods

The solution methods applied to an inverse problem depend, as noted above, on its 

parametrization. In this study, the basal heat flow F§, is the main model parameter sought, 

suggesting that a linear parametrization is sufficient for a reliable estimate. However, the 

potential for inaccuracies in the temperature data in d and thermal properties in m 

warrants an approach which also allows these to be estimated; the nonlinear 

parametrization satisfies this requirement, and is, in this sense, a more robust approach.

Solutions to the nonlinear problem invariably involve sampling of the joint model and data 

space [D, M] through iteration or random exploration, though in most instances (one
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exception being SVD13), at each step, the same procedures are carried out as would be 

the case in the linear problem -  i.e. the linear problem can be considered a special case 

of the nonlinear problem with no iterations. Solutions to the inverse problem from this 

point are, therefore, primarily discussed in a general nonlinear sense, with the linear 

problem considered as a special case.

2.2.1.3.1 Misfit Function

Solving the inverse problem involves finding a best-fit set of data d; and model m/ 

parameters according to the model prediction (or constraint) g(m) =  d, data observation 

d0, a priori model information m0 and covariances Cd and Cm. In most cases (one 

exception being SVD), the first step to doing this is defining a misfit function on the joint 

model and data space [D,M], also known as an objective function or cost function, which 

can be stated as

sm =  2 [fd “  d0]TWd[d -  d0] +  [m -  m0]TWm[m -  m0]]. 2.33

Sm can be considered the most general (nonlinear) form of the least squares (L2 -  see 

next paragraph) misfit function, which can be reduced to particular (linear) forms,

13 Singular Value Decomposition (SVD) is an important inversion method, though, as noted in the 

text, it is restricted to linear problems and therefore cannot estimate internal model parameters (mP 

in Section 2.2.1.1), which is desired in this study. It is addressed here, briefly, for completeness. 

SVD decomposes the matrix G in the linear inverse problem such that G = UAVT, where matrices U 

and V are respectively orthogonal and orthonormal such that UUT = UTU = I and VVT = VTV = I. 

The diagonal matrix A is an eigenvalue matrix containing the so-called singular values. The zero or 

near-zero singular values can be used to identify and discard degenerate parts of the linear system 

which defines the inverse problem -  i.e. null areas of the G matrix and areas with high 

measurement error sensitivity. This in turn allows the identification of implicitly underdetermined 

systems, and a stable solution m; according to m, = VA-1UTd.
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depending on the chosen parametrization. For example: with weighted nonlinear least 

squares d =  g(m), Wd =  Cd-1 and Wm =  Cm_1; with weighted linear least squares (WLS) 

d =  Gm, weight Wd is positive definite (Wd =  Cd_1 for maximum likelihood, ML) and Wm is 

null; while with the method of ordinary linear least squares (OLS), Wd =  I, all else 

remaining the same as WLS.

Sm is defined from the negative logarithm of a Gaussian probability density function (PDF) 

4>(d,m) =  4>(d)4>(m) =  4>oe_5m f ° r the probability over [D,M] where 4>0 is a constant. The 

form of Sm -  based on the assumption that the data and model parameters display 

Gaussian statistics -  is derived from a weighted L2 (also least squares) norm. A Ln norm 

(a norm of order n) is a measure of distance over a space and is defined such that -  for a 

given linear space E 3 e 3 ep and expectation (mean) value (e) -  a weighted Ln norm over

r  | e  — < e > |n l 1 ^ n
E is denoted ||e||n =  E p n ' 71 6 t1*00]- The weighting factor is apn, ap being the

L °p

estimator of dispersion (in L2, the square root of the variance ap2 -  the standard 

deviation). A PDF utilising the h2 norm is a Gaussian PDF which is a relatively short tailed 

distribution and is therefore suited to parameters where the dispersion is large (higher 

order norms are suited for more accurate data while the L± norm is suited for data with 

large outliers -  e.g. Menke, 1989; Tarantola, 2005). Sm (Equation 2.33) can therefore be

stated as Sm = \ [ \ \ d  -  d0||2 +  ||m -  m0||2].

2.2.1.3.2 Misfit Function Gradient

With the form of the misfit function Sm established, the problem becomes one of 

minimising Sm with respect to the model parameters in m. This is analogous to a standard 

problem in elementary calculus and is achieved by setting the derivative of Sm with
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respect to m -  i.e. the Frechet derivative14, ^  -  to zero. The Frechet derivative of Smdm 1

(Equation 2.33) is

d S
=  GTWd [g(m) -  d0] +  Wm [m -  m0], 2.34

where G =  |^- is the data Frechet derivative, calculated from the solution to the HFE (e.g.
9 m  '

the analytical solution of Equation 2.14 or the numerical solution of Equation 2.20). 

Therefore, the explicit form of G depends on the forward parameterization of the problem. 

For example: Spectrum Inversion (SI -  Wang, 1992) is formulated in the Fourier domain, 

such that G consists of derivatives of the real and imaginary parts of the Fourier 

expressions15; Functional Space Inversion (FSI -  Shen and Beck 1991,1992; Sections 

2.2.2-2.2.3) is formulated in a functional space domain, with explicit expressions of the 

components of G derived analytically, then discretized using standard methods.

Equation 2.34 is considered a general nonlinear form of the gradient, which can be 

reduced to particular forms based on the inverse problem parametrization. For example:

for linear W LS ^  =  GTWd[Gm -  d0] =  0, leading to a solution m / = [GTW dG] 1GTW dd0 

(Wd =  Cd_1 for ML); and for linear OLS ^  =  GT[G m -d 0] = 0 ,  leading to a solution,

m/ = [gtg] 1GTd0. A nonlinear parametrization leads to GTWd[d0 -  g(m)] =  Wm[m -

m 0], which in turn, leads to m =  Wm_1GTWd[d0 -  g(m )] +  m 0. Because g(m ) is a 

function of m, finding an explicit solution is a nontrivial problem, therefore, as noted 

before, implicit solution methods such as iterative or random exploration of the probability 

space [D, M] are required to arrive at a solution m / (e.g. Menke, 1989). Therefore, for

14 Also known as the Jacobian or simply, the gradient.

15 In this case the unsteady surface temperature is among the model parameters to be determined 

(see Appendix 9.2.1.1, Equation 9.2.12 for an example of a Fourier domain temperature solution).
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example, for a nonlinear maximum likelihood estimate mi+1 =  CmGTCd 1[d0 -  gCm*)] +

2.2.1.3.3 Optimizing the Nonlinear Misfit Function

The general iterative solution to a nonlinear inverse problem parametrization, can be 

stated as

This is most efficiently solved by gradient methods of steepest descent where the 

steepest descent algorithm is terminated at iteration i =  I  -  the maximum likelihood point 

with solution in; at misfit function optimum 5m/. The term \Lt is a relaxation factor, affecting 

the rate of convergence and y t the steepest ascent vector, defined by

The steepest ascent vector establishes a localised direction of maximum gradient in the 

space [D, M] as 5m is minimised. The metric M t introduces a measure of distance between 

different models mi across model space M. Mi can take many forms; in the simple 

steepest descent algorithm it is the model covariance matrix Cm and in the Newtonian 

steepest descent algorithm it is the inverse of the Hessian metric which gives the second

partial derivative such that =  [ ^ r ] ,  (Tarantola, 2005). M* may also incorporate

an arbitrary, optional preconditioning operator such that M f =  PjMi in which case the 

optimization is known as a preconditioned steepest descent method. Preconditioning is 

useful in restricting model estimates to physically meaningful results and can promote 

more rapid convergence.

Presenting the nonlinear maximum likelihood estimate at the end of Section 2.2.1.3.2 in 

the form of the steepest descent algorithm with d* =  g (m j) and \it =  1 shows their 

equivalence with

2.35

2.36
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™i+i =  m£ -  ^  [cmGjTCd 1[df -  d0] +  [mt -  m0] ] , i e [0,/ -  1]. 2.37

In Equation 2.37, the model covariance Cm =  M it the metric.

The Hessian of Sm is given by

2.38

The rightmost term can be dropped where nonlinearities are small or the data residuals 

are small, leading to «  GTCd_1G +  Cm_1. Setting M i [ ^ ] .  =  [^ r ] .>  the descent 

algorithm is known as a quasi-Newton algorithm

Selection of a particular optimization method depends on the ease with which the Hessian 

can be calculated; the quasi-Newton method is considered the most stable and can be run 

with Hi =  1 with rapid convergence. Estimating a suitable value for p£ in the simple 

steepest descent algorithm is largely a case of trial and error, particularly where the 

elements of m have different dimensions; Tarantola (2005) presents different methods of 

estimating the parameter. Where the Hessian cannot be directly calculated, so-called 

variable metric methods use a preconditioning operator Pi which is iteratively updated to 

approximate the Hessian. Therefore, the algorithm behaves similar to simple steepest 

descent at the start and evolves to a quasi-Newton algorithm towards the end.

The optimum of Sm corresponds to the maximum likelihood point 4>(d/, in /) where data 

prediction dj, close to d0, maximises data probability density <j>(d) (minimises the 

weighted data norm | | d - d 0||), subject to model estimate m h  close to m 0, which 

maximises model parameter probability density ^ (m ) (maintains a small weighted model 

parameter norm | |m - m 0||) (e.g. Shen and Beck, 1991; Tarantola, 2005). That is, the 

algorithm locates the most probably combination of model and data parameters in; and

mi+1 — mi G[ + Cm ]

x [G^Cd"1^  -  d0] +  Cm-1 [mi -  m0] ] , i e [0,7 -  1].
2.39
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d 7, given all the available information. Figure 2.2 shows an ideal representation of 5m with 

its component norms S||d|| <=> | |d  -  d 0 || and S||m|| o  | | m  -  m 0 ||.

Iterations

Figure 2.2. Form of misfit function Sm. The red (dotted) curve is the data residual norm Spy and the green (dashed) curve is 

the model parameter norm S||m||.

Examining Equation 2.33 along with Figure 2.2 it can be deduced that the balance of Cd 

and Cm determines the final shape of Sm. If Cm is too small S||m|| may dominate Sm as 

iterations progress leading to increasing Sm and essentially a premature termination of the 

optimization. The optimal model for that particular initialization with Cm is actually obtained 

but would not necessarily be close to the true model (also see Section 2.2.3.5). It is 

therefore important to appropriately design Cm and estimate Cd such that the balance of 

S||dH and S||m|| promote convergence close to the true model parameters (examples can be 

seen in sections 4.2.1, 4.2.2 and throughout Appendix 9.4).

The preceding summary of general inverse theory has shown that there are several 

possible approaches to solving the inverse problem for the basal heat flow where 

m =  [F§], which warrants only a linear parametrization. However, unknown errors in the 

other parameters may lead to correspondingly inaccurate (and mistaken) estimates of F§. 

Therefore, the capability to estimate boundary and internal parameters where m =
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[T s ,T £ ,F § ,k ,p ,c ,S ] is considered a compelling reason to adapt a generalized nonlinear 

parametrization.

squares inverse theory of Tarantola and Valette (1982), which is in turn based on the 

Bayesian principles of the widely cited method of Backus and Gilbert (1970). The forward 

parametrizations of FSI and SI are approached differently, therefore leading to different 

expressions for calculating the gradient. The analytical development of FSI is preferred 

because it promises explicit insights into the interdependencies of different model 

parameters. It is adapted for further development in this study and is discussed in 

requisite detail below.

2.2.2 Functional inverse Theory

2.2.2.1 Primal Problem

FSI parameterisation starts from heat flow Equations 2.1, 2.5 and 2.9 where they are 

written as differential operations allowing the use of unique mathematical concepts in 

solving the inverse problem. The general HFE (Equation 2.1) takes the form

where F  can be considered a primal differential operator -  analogous to the matrix F of 

Equation 2.19. T  is the field of all temperatures in temperature space T (a subspace of 

dataspace D) which F  associates with the field of all source terms 5 in a source space S (F 

maps T into S a subspace of model space M -  see Shen and Beck, 1991; Tarantola, 

2005). Similarly the unsteady (superscript U) and steady (superscript 5) components take 

the forms

FSI and SI, the nonlinear methods explored in this study, are both based on the least

2.40

F UT U — Su, z 6 [zs, Zg], t E [tfi/tf] 2.41

and

F sTs =  Ss, z £ [zs,z B], 2.42
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2.2.2.2 Dual Problem
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2.2.2.2.1 Introduction to Duality

An important concept for solving the inverse problem is duality (Gottfried and Weisman, 

1973; Nocedal and Wright, 1999; Tarantola, 2005). Duality recognises that any problem 

involving normed spaces may be looked at from dual perspectives and permit easier 

resolution. For example optimizing the misfit (objective) function of Equation 2.33 can be 

formulated as minimizing Sm16 subject to constraint d  =  g (m )  or maximizing an analogous 

function 5^  subject to constraint m  =  g T(d )  (Gottfried and Weisman, 1973; Nocedal and 

Wright, 1999). Where solutions to both problems exist, then a single solution exists at the 

optima of Sm and S^, satisfying them both (Tarantola, 2005). The pair are known as primal 

and dual problems where, in principle, each can respectively be considered the primal 

while the other the dual. Equations 2.40-2.42, are considered the primal problem as they 

are physically meaningful.

In the case of FSI, the use of duality allows the Frechet and Hessian derivatives of the 

misfit function, as discussed in Section 2.2.1.3.2 and 2.2.1.3.3, to be calculated 

analytically. Calculating the explicit analytical components of the derivatives, in particular, 

the thermal properties in m  is nontrivial in the primal domain. In SI, for example, Wang 

(1992) resorts to difference equations, but this approach does not highlight explicit 

relationships between the different model parameters. Constructing the problem in the 

dual domain allows for simpler resolution of the derivatives, because the dual problem 

accepts quiescent boundary conditions (e.g. Equations 2.47-2.49), which simplify the 

analytical development, as presented below. Note that much of the development 

presented here follows Shen and Beck (1991,1992) and Tarantola (2005).

16 The italicized notation Sm indicates the functional form as opposed to matrix (discretized) form
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2.2.2.2.2 Dual of the HFE

The spaces T and S associated with Equation 2.40 have respective duals17 T and S such 

that scalars ( f ,T ) T =  {S,S)s, subject to a transpose18 operator FT mapping T into S 

according to

Ft S =  T, z G [zSl zB\, t  G [tE, tB], 19 2.43

such that, (Ft S,T)t  =  (S,FT)s.20 It follows that, while Equation 2.40 involving F  is 

formulated as the primal problem Equation 2.43 involving FT is consequently the dual 

problem. It can be shown that in the particular case where S can be identified with T such 

that S c f  and T c s  (Figure 2.3) F and FT map T into T according to duality relations 

(Ft T d,T p)t  =  (TD,F T p) f  where [TP,T D] G T and are appropriately termed the primal and 

dual temperatures (e.g. Shen and Beck, 1991; Tarantola, 2005). The scalars from the 

duality relation between S and T can then be defined such that

17 The dual M of any linear space M, is also a linear space and is defined by all linear forms 

(applications, mappings and/or operators) which associate ml e r n e  M with a positive real number 

r  e R+, the space of scalars. This can be stated several ways including (m,m)M = mTm = 

'Zi'mim1 = r  (a duality product) where m i E m e  M and i = 1,2,... The dimensions of m£ are 

reciprocal to those of m£ because r  are scalars.

Given elements of linear spaces m e  M and d e D with respective duals m e M and d e D, a 

linear operator G mapping M into D such that d = Gm has a transpose GT which by definition maps 

D into M such that m = G1 d according to the duality product (GT d,m)M = (d, Gm)D.

19 The reversal of the time domain is explained further in the text by Equation 2.50 and the 

associated discussion.

20 The order of nomenclature is as follows: a linear space T has associated with it a field T which 

has an arbitrary element T.
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(Sd , T p)t  =  (T ° ,S P)s =  [  B d z \ Bdt  TS, 2.44
ZS J t B

where [SP,5 D] e S.

Reintroducing the primal and dual operators and substracting, it can be seen that

(Ft T d, T p)t - ( T d,F T p)s =  [ B dz f  Ed t F TT DT p - T DFT P,
zs b 2.45

z e [zs,zB\ , t  e [ tB, t E\.

Figure 2.3. Visualization of the primal and dual spaces with S and T as mutual duals. The green rectangles represent the dual 

spaces, which are infinite. The blue ractangles with their red (temperature) and blue (source) encircled elements represent 

the primal spaces. The horizontal arrows represent primal-dual function mappings (operators F and FT).

Tarantola (2005) defines the transpose of a linear differential operator and shows that the 

transpose of the gradient operator is the negative of the divergence operator (VT =  -V );  

likewise, in Shen and Beck (1991) FT, the transpose of the differential operator in 

Equation 2.40, is shown (see Appendix 9.2.2.1) to take the form

dT^ d (  dT^'\
F T T D _  S D =  =  S D ' z  £ [zs,ZB] , t  G [tE, t B\, 2.46

or Ft S = T with boundary conditions

T p =  t d =  0, z =  zs, t  e [ tE, tB\, 2.47
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k ~ f c = k ~ d T ~  O' z =  zB, t  E [tE, t B],
dTp dT°

2.48

T p =  T °  =  0, z £ [z5,zB], t =  tB, t  =  tE, 2.49

defining the dual problem. Boundary conditions 2.47-2.49 are known as dual boundary 

conditions. The dual boundary conditions are chosen to limit the domain of the primal and 

dual problem such that the expression in Equation 2.45 vanishes -  i.e. they enforce the 

condition of mutual duality between spaces S and T.

The form of the respective unsteady and steady transpose operators (dual problems) are 

obtained similarly, leading to the unsteady being defined by

2.50

z £ \zs,zB] , t  £ [tE, t B]

or F u Su =  T u with dual boundary conditions

t u  =  t d u  =  0> z  =  Z s , t e [ t B , t E ] , 2.51

/c— = / c - ^ -  =  0, z =  zB, t e  [tB, tE],
d T U d T D U

2.52

T u — T du — 0, z £ [zs,zB] ,t  — tB, t  — tE 2.53

and the steady defined by

2.54

or F s Ss =  Ts with dual boundary conditions

T s =  T ds =  0, z =  z5; 2.55
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2.56

The duals of the parameter spaces are therefore represented alternatively by Equations 

2.46-2.49 or Equations 2.50-2.56 for the separation of steady and unsteady temperatures.

and F u is the introduction of a negative sign in the time component.21 The negative time 

component may be interpreted as the dual field of source terms 5  generating heat which 

propagates dual temperature fields T  backward in time. In fact, simulations have shown 

that the dual field is unstable when propagated in forward time as the primal field is 

unstable when propagated in backward time.

2.2.3 Functional Inversion Solutions

2.2.3.7 Primal Problem Solution

In solving for the field T  Shen and Beck (1991) use the Green’s function22 such that

G =  G (z ,t;z ',t ') , z ,z ’ e [zs,zB] , t , t '  e [ tB, t E], being the Green’s operator. The explicit 

expression of the general Green’s function solution to the primal HFE is shown (see 

Appendix 9.2.2.2) to be

21 Hence the time reversal in the dual problems of Equation 2.43 onward.

22 The Green’s operator G for a linear differential operator F acting on function T according to 

FT = S is defined by the operation FG =  6(z -  z';t  - t ' )  =  Szz>.t t i = /  -  Szzi.t t ' being the

Kronecker delta function -  with the solution T being defined by T =  Jz dz’ Jt dt' GS. Therefore 

G =  F-1 , an integral operator.

F sT =  F s , meaning the steady operator is symmetric. The only difference between F yT

T =  F _15 =  GS, 2.57
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f z B f t E  f t E  Q Q  f t E r Z B

T =  dz' d t 'G S +  dt'ks -r - fT s -  dt' GBFB +  dz'pcG°T°,
Jzs JtB h B ° z  h B Jzs 2.58

z ,z ' e \zs,zB] , t , t '  e [tB, t E\, 

where the various G are elements of the Green’s operator G =  G (z ,t ; z \ t ') .  This gives the 

structure of the Green’s operator as G =  [Gs*, Gs, GB, G°] and the source as 5  =  

[S,Ts,Fb,t ° ]  where each element of G is the Green’s operator for the corresponding 

element of S.23 It is clear then that the Green’s solution corresponds to the inverse 

problem d  =  g (m ).  The field S can therefore be considered as a generalised field of 

sources which generate the temperature field T. In fact, Shen and Beck (1991) use 

Equation 2.58 with Equation 2.57 to display the temperature field in the useful form 

T  =  G (F*T )m  where F* is a nonlinear primal differential operator and 5  is a nonlinear 

function of T  =  T =  T u +  T s and model parameters m  =  [T^,T^,FB,k,p,c,S]. This new 

form is useful in obtaining the form of the gradient, which is derived in Section 2.2.3.3.

Similar operators can be derived for the unsteady and steady primal and dual problems 

such that for the unsteady primal

T u =  GUSU, 2.59

where Gu =  Gu (z , t )z ' , t ' ) ,  z ,z '  e [zs,zB] , t , t '  e [tB, t E\. Partitioning Equation 2.58 into 

steady and unsteady components, and applying the primal boundary and initial conditions 

reveals the unsteady Green’s operator as

n  f t E , d G c  „
T U =  d t  ks —p-Ts ,

J tB ° Z  2.60

z ,z ' e [zs,zB] , t , t '  e [tB, tE\,

23 Equations 2.57 and 2.58 are analogous to Equations 2.15, 2.16 and 2.19 in the FCV numerical 

solution of Section 2.1.2.2.
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giving the structure of the unsteady Green’s operator as Gu =  GE and the source as 

Su =  r / .  For the steady primal

Ts =  GsSs, 2.61

where Gs =  Gs( z ; z z , z '  6 [.zs,zB]. The explicit steady solution is

c f ZB , c c dG$ c 
T s =  I d z 'G sSs +  ks ^ - T ss - G § F i

zs 2.62

z ,z ' G [zSlzB],

giving the structure of the steady Green’s operator as Gs =  [Gf*, G f, Gb] and the source as 

Ss =  [Ss,t£ ,F § ] .  It is useful to note that 5 =  Ss, Ts =  T j7 +  t£ ,  Fb =  F§, T° =  Ts.

2.2.Z.2 Dual Problem Solution

For the general dual problem

S =  Gt T. 2.63

To solve for 5 the same procedure as in Section 2.2.3.1 is carried out for the dual problem 

(applying the quiescent boundary and initial conditions) to give

Jr Z g  r t B

dz dt Gt Sd, z , z  e [zs,zB] , t , t  G [tB, t E], 2.64

Z * JtB

recalling that spaces S s  S Q T  and S 3 S Q T (S and T are mutual duals by definition) with 

T d g T and SD e S (also see Figure 2.3). This gives the structure of the dual Green’s 

operator as GT =  G5* and the source as T =  SD. For the unsteady

s u =  GuTT u, 2.65

and solving for Su

T DU =  [  d z 'G u^SDU, z ,z '  6 [zSlzB] , t , t f £ [tB>tE\,
J z S

2.66

giving the structure of the unsteady dual Green’s operator as GyT =  G *̂ and the source as 

T u =  SDU. Likewise for the steady
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Ss  =  GsTf s , 2.67

and solving for S s

T ds =  f  dz ' GsTSds, z , z ' e [zs,zB], 

giving the structure of the steady dual Green’s operator as GsT

f S  _  S DS

The dual boundary conditions effectively restrict the dual problem to a source solution of 

the (dual) heat flow model, based on the solution of the physically meaningful primal 

problem and temperature measurement. The condition of mutual duality associates the 

relevant primal and dual source and temperature fields such that -  with the quiescent dual 

boundary conditions -  a residual field 8T  (or perturbation, disturbance) in the primal 

problem will produce an equivalent residual field S t  in the dual problem. In this way, the 

misfit STP e 8 T  =  8d  between a calculated primal temperature T p and data measurement 

d 0 can be used as a source to calculate an associated dual temperature residual ST° 

(see Appendix 9.2.2.3.3). This facilitates the calculation of an adjusted T p which is a 

closer match to d 0 in an iterative fashion. The calculation of an adjusted T p requires the 

estimation of model residuals 8m  which are shared between the primal and dual spaces. 

The associated 8m  are derived from a residual heat flow equation which is presented in 

Appendix 9.2.2.3 -  these residuals are used to derive the gradient of misfit function Sm, 

which is presented in Section 2.2.3.3 below. In this way all concerned parameters are 

optimized using the data residual 8d  from the primal space as a source in the dual space 

(also see Figure 2.4).

2.68

=  6 f*  and the source as
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2.2.3.3 Frechet and Hessian Derivatives

The appropriate misfit function24 for FSI is equivalent to the general nonlinear least 

squares form (Equation 2.33), restated here as

s rn =  2 “  d 0] T Q _ 1 [rf -  do]  +  [ m -  m 0]TCm~1[m  -  m 0]]

2.69

=  i  [(Sd, 5d)D +  (5m, 5m )M]

A series expansion of Sm about a point m 0 corresponding to model perturbation m 0 +  5m  

gives

1 ~
Sm0+Sm =  srn0 +  (?> Sm)M +  - (H 8 m ,  5m )M +  0 (5 m 3), 2.70

where 0 (5 m 3) is negligible, H  is the Hessian and y  the Frechet derivative. The operator 

y  e M is the dual of the steepest ascent vector y  e M (Equation 2.35) which maps the 

model space M into the space of real numbers R according to

y  — M
dSm
dm.

=  M y. 2.71

^ 8 9  —
The inverse metric M  of the Hessian H  =  ^  is a part of the dual space M and also maps 

M into M. It then follows that GT, the transpose of G =  is also a member of M

according to m  =  GT d. Explicitly differentiating Sm in Equation 2.69 and comparing to 

Equation 2.70 reveals the forms of the Frechet derivative and Hessian as (see Appendix 

9.2.2.4)

24 When a weighting operator is defined such as the inverse covariance matrix W = C-1 the duality 

relationship (in, m)M between a linear space M e m  and its dual M e m  may be expressed as 

in = Wm = C~1m  or (C~1m , m)M.
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a. Y =  Yd +  ?m =  [F*T]TGTSd +  Sm,

2.72

b. H  =  H d +  H m =  [F*T]TGTCd~1G[F*T] +

which corresponds to the discrete form in Equation 2.38. The form of y m, the component 

of the gradient dictated explicitly by the model parameters, is y m =  8m  =  Cm-1 [ m - m 0] 

and for the Hessian H m =  Cm-1 .

To obtain the explicit forms of the Green’s operators G and GT, further spatial 

transformations are performed to get the explicit forms of y d and H d. To do this, it is 

important to appreciate the relationships of the spaces (M, M) and (0, D) to the spaces 

(S,S) and (T,T). The spatial relationships (see Figure 2.4) can be inferred from the 

components of the fields over each space. Reviewing the Green’s operator solutions it 

can be inferred that: T and S are subspaces of M; S and T are subspaces of D. Also U  can 

be identified with D and 0  identified with M which can be seen by examining the gradient 

relationships above and in what follows. As highlighted earlier, M and D form a joint space 

[D, M] in terms of the objective function and gradients.

With the dual source space S c  D c  0  a temperature residual ST A Sd in D has a dual 

field corresponding to a source S f  =  Sd =  Cd-1 5cf in 0  which generates a dual 

temperature field SS in S such that SS =  Gt ST <=> STD =  GTSSD (also see Figure 2.4). With 

this particular case of the data residual y d and B d can be shown (see Appendix 9.2.2.4) to 

have components y d =  [yTs,y FB,y k,y pc,y s] and B d =  [HTs,H FBl B k,H pc,H s] 

corresponding to the analogous model residuals Sm =  [STs,SFBlSk,Spc,SS] where y d is 

explicitly
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~ T  , d 5T SD

r S  =  ks~ e T

??b =  S T g

9 k =  — I d t
- L

tE dT d8TD 
d t —  —

tB ° z  z  2.73

f tE dT
yPc =  — I dt ST° —

JtB dt

Jrtgd t 8Td, z  e [zs# zB], t  E [ tBl tE\.

t r y

and H d is

d f TsH  s = — —  
8TS

dypB
H fb =

SF,B

d v ^f jk  _  _ L _  2.74
8k

d?pc
H Pc = - f —

Spc

- c  dy5 
H  ~~8S~'

S(F*T') G ^  --s »
where the second order term p «  o in H d has been discarded.

Sm

In the partitioned problem the boundary derivatives related to m B and the source 

derivative related to m P are separated into their respective steady and unsteady 

components.

2.2.3A  FSl Algorithm

Recalling the general steepest descent algorithm as m i+1 =  m f -  fa y f  y t =  N lf t i  and M t 

is a metric operator -  the covariance matrix Cm or the inverse of the Hessian # *. The 

algorithm is terminated at iteration i =  /, the maximum likelihood point with solution m 7 at 

the minimum Smi of the misfit function.
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In the case of the simple steepest descent algorithm where M t =  Cm

m i + 1 =  r t i i -  n(Yi =  m i -  HiMt% =  m* -  ^ C m[yf +  y  •"]
2.75

=  -  Mi[Cmy f +  m i  -  m 0],

recalling that y m =  Cm_1[m -  m 0]. In the case of the quasi-Newtonian descent algorithm 

where =  H f 1

wii+i =  m 4 -  HiYt =  wi£ -  = m i -  n f i i_1[yf +  y f1]

= mj- Jlli[[fif + Hr]"1[rf + rr]] 2.76

=  m t - H i  [[ft? +  Cm_1] 1 [j>? +  Cm-1 [m -  m 0]]].

Equations 2.75 and 2.76 respectively correspond to Equations 2.37 and 2.39 in the 

discrete theory. In the case of a preconditioned descent algorithm M t is substituted by 

M f  =  P fM i, Pi being the preconditioning operator.

Figure 2.4 and Table 2.1 summarise the FSI development in terms of spaces and 

operators and the flow of calculations as the algorithm progresses.

Steps 1-7 are repeated until convergence at the optimum sm/ or when Sm is close enough 

to sm/ -  referred to as the termination point. A suitable termination point is where the 

Frechet derivative y  -» 0  or displays a change in sign indicating the algorithm is close to 

an optimal point which may correspond to smi such that Sm.+l >  Sm..



2.2 Inverse Problem 73

D o  M

[D,M]

-1

Sd Sd )

Figure 2.4. FSI spaces, parameters and operators. The joint space [D, M] (grey) and its primal and dual subspaces (see text) 

are represented by the respective blue nad green rectangles. The black, red and blue arrows represent respective primal- 

dual mappings, data space operations and model space operations. Note that operator M includes model covariance Cm.

To facilitate a numerical solution the critical equations of the theory must be discretised. 

Important to note is that the same code can be used to solve the primal and dual 

problems and can be made general enough to solve both the general problem and the 

partitioned problem. Therefore the FCV method can be used for steps 1 and 3 with the 

time reversed in the dual problem. Here, the primal and dual problems are solved using 

the partitioned model which facilitates easier isolation of the steady heat flow F |  which 

remains the primary model parameter to be estimated. The remainder of the inverse 

problem is solved using standard algebraic methods for linear systems.
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Table 2.1. The FSI Algorithm. This listing can be used as a companion to Figure 2.4.

FSI CALCULATIONS (also see Figure 2.4)

1. Primal (forward) problem temperature solution Tp, according to FTP = Sp with an initial 

estimate of model parameters m0 -  Equations 2.1-2.11 (also see Equations 2.40-2.42);

2. data residuals Sd = d -  d0 = ST = Tp -  d0 resulting from the measured data d0 and 

initial solution of the primal problem Tp\

3. duals of the data residuals (residual heat sources) Sd = Cd_15d = ST = SSD facilitating 

the introduction of the dual;

4. the dual temperature residual TD e SS = STD due to the residual heat sources according 

to FtTd = SD -  Equation 2.46 for the general problem with boundary conditions from 

Equations 2.47-2.49 or for the partitioned problem Equations 2.50-2.56;

5. the misfit function derivatives from the dual temperature and the primal temperature

a. the gradient (Frechet derivative) y in simple steepest descent -  Equation 2.73;

b. and additionally the Hessian in the Newtonian descent H = M _1 -  Equation 2.74;

6. the direction of steepest ascent y = My for the misfit function -  Equations 2.75 in the 

steepest descent and Equation 2.76 in Newtonian descent;

7. the model parameter updates by subtracting the direction of steepest ascent and 

applying the update constant -  Equation 2.75 in the steepest descent and Equation 2.76 

in Newtonian descent.

2.2.3.5 Analysing Inversion Results

The results of the inversion can be quantified using an a posteriori covariance operator 

Cmr defined as (e.g. Menke, 1989; Shen and Beck, 1991; Tarantola, 2005)

Cmi =  — \J ~  2.77

Gm, the resolution operator, determ ines the contribution of the a priori model m 0 and Rd, 

the sensitivity operator, determ ines the contribution of the data measurement d0 to the 

resolution of the model rrij. I  is the identity operator. Rd is further defined as

Rd = cm[ r r ' ] Tc,T[6,[F*r']cm[F*r']Tc,T + c ^ - ^ f t  '], us
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where Gt [F * r7] corresponds to the data Frechet derivative evaluated at solution point

m /. The closer Rd is to the identity operator, the smaller are Gm and Cmv and therefore 

the better resolved is the model wij. Matrix identities in Tarantola (2005) show that, Cm/ 

can be reduced to the form

c m, =  [ [ F T ' l V Q - ^ [ F T ' ]  +  Cm- 1] - 1 =  [f tf  +  Cm- 1] - 1, 2.79

corresponding to the inverse Hessian metric M I =  H l 1 of Equation 2.76 evaluated at 

solution point m /. Interpreting Cmi relative to Cm and Cd allows some insight into how 

much information has been gained on model parameters m  in the inversion. It is important 

to note that the Cmi estimate is not an accurate quantification of the covariance in a 

nonlinear problem and is strictly true only for the corresponding linear problem. It must 

therefore be used with some caution (see Chapter 4 for examples).

2.3 Summary

The theory outlining a method for inversion of a subsurface temperature measurement T™ 

is presented (n is the number of temperature sensors over depth z  and m represents the 

number of measurements over time t). This method is based on the theory presented in 

Tarantola (2005) and largely follows the method of Shen and Beck (1991,1992). The 

method optimizes data d0 =  T™, boundary mB =  [Ts , t£ ,F b\ and regolith m P =  [k,p,c,S ] 

parameters simultaneously, in principle, though the steady basal heat flow FB <=> F§ which 

is identified with the planetary heat flow is the main parameter of interest.

The forward (also direct or primal) problem is presented in Section 2.1.2 with the option of 

partitioning it into a steady and unsteady problem. Partitioning allows for easier 

management of the different model parameters -  FSB in particular, which is identified with 

the steady partition. Analytical solutions (Sections 2.1.2.1.1-2.1.2.1.3; after Carslaw and 

Jaeger, 1986), and a Finite Control Volume (FCV) numerical solution (Section 2.1.2.2; 

after Patankar, 1980) are presented. These are used in the forward model in Chapter 3.
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The inverse problem is presented in Section 2.2 as the optimization of mB (linear) or m B 

and m P (nonlinear) from d0. The inverse problem is unstable because information on the 

surface unsteady temperature T /  is lost due to lagging and damping of the propagated 

unsteady temperature signal Tu, the superposition of the surface heat flow FB with F§ and 

errors in d 0, m B and m P. Some features which cause instability in estimating one 

parameter may be a benefit for estimating another. The problem can be stabilised by 

quantifying this information in a priori model parameters using model and data 

covariances Cm and Cd -  a Bayesian approach. Cm and Cd weight the contribution of 

each model parameter to the resolution of the inverse problem (Section 2.2.1.2).

The linear inverse problem can be solved by least squares minimisation of a misfit 

function Sm, optionally incorporating normed data and model parameter misfits and 

5||m|| or by singular value decomposition (SVD). For the nonlinear problem, the misfit 

function can be optimized using gradient methods of steepest descent (steepest descent, 

quasi-Newton, and preconditioned descent are presented) or random search methods 

such as Monte Carlo. In gradient methods, the Frechet y  and Hessian H  gradients of Sm 

are calculated using primal-dual linear spaces where the gradient -  a member of the dual 

space -  is calculated from the results of the dual problem using weighted data residuals 

Sd. =  Cd_15d as heat sources (Section 2.2.3.3). The relationships are developed 

analytically using Green’s function solutions to the heat flow equation (Sections 2.2.3.1-

2.2.3.2, analogous to the forward problem solution of Section 2.1.2.2) and a residual heat 

flow equation accounting for the misfits (residuals) of the model parameters Sm due to the 

data misfit Sd. The dual problem (Section 2.2.2.2) is essentially the primal problem 

(Section 2.2.2.1), with time reversed (or lagged) such that dual time t  =  - t .  It has 

quiescent initial and boundary conditions which permit simpler resolution of the gradients 

of Sm than in a corresponding primal problem. An a posteriori covariance Cmi is presented 

which can be used to analyse the results of the inversion (Section 2.2.3.5).
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The method, as presented, effectively involves four solutions of the forward problem 

(unsteady and steady primal, unsteady and steady dual) along with calculations of y, H  

and the direction of steepest ascent y. The primal and dual problems are discretized and 

solved using the FCV method of Patankar (1980). Gradients y  and H  are calculated by 

discretizing the terms at the end of Section 2.2.3.3 and y  calculated using standard 

numerical methods. The method is programmed in Interactive Data Language (IDL; 

Excelis, 2014). The theory is tested in Chapters 4-7, and overall results are discussed in 

Chapter 8.
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3.1 Introduction

The forward model (the model) is the forward problem of Section 2.1 programmed and 

solved in IDL using the Finite Control Volume (FCV) discretization method introduced in 

Section 2.1.2.2.1 (Figure 3.1). The model is partitioned into steady and unsteady 

components (modules) as with the partitioned forward problem. The model is adapted to 

the steady state by bypassing1 the TIME module.

The model is tested against results from the analytical solutions presented in Section 

2.1.2.1. Use of the analytical solutions is limited to homogenous problems where the 

medium properties are constant with depth (and time) or heterogeneous problems with a 

few layers. Several representative scenarios are used to illustrate the behaviours of the 

forward model in response to different boundary conditions and regolith properties. The 

depth scales covered are those that a planetary heat flow probe similar to those discussed 

in Section 1.2.2 is likely to cover. The tests serve as an initial guide to the range of setups 

which can be simulated with the inverse model -  of which the forward model is a major 

component -  and as a point of reference for specific results from inverse model tests in 

Chapters 4-7.

1 A numerical solution to the steady partitioned problem is facilitated by allowing the timestep 

Atm -» 00 and therefore the “thermal capacity” coefficient a° -> 0 in the general numerical solution. 

This simply means there is no measurable change in temperature over the simulation time.
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TIME: [t: P, M,m, tm, Ltm, m e[0,M  -  1]]SPACE: [z: Z, N,n, zn, Azn, n e [1 ,N]]

MEDIUM: [ft: fc„-» fcj, [p: p j ,  [c: c„], [S: S„]

COEFFICIENTS: [a„ =  i>„ + c„ + a l],K =  ], =  fc(/« z j ,  [,

k,/Sz, ,d „ ]

BOUNDARY: [ r s = r "  +  Tss: Tm =  Tum +  7 ^ ], [Fb =  F" +  Fse: Fm =  F" +  [ t “ =

TS:T™=0]

MODIFY: [ k u =  kn/ ( p ncn) \ ,  [pncn =  p c j

SOLUTION: [anTn -  bnTn+1 -  cnTn_x =  dn ^  FT =  S <̂> T =  GS ^  T =  G(F*T)m  <=> 

d = g(rn)\

Figure 3.1. Primal (forward) model. Illustrates the implementation of the general primal problem in IDL. The green upper 

modules (rectangles) represent the initialization of the simulation, including the modification of some medium properties. 

Much of the initialization can be performed in parallel (green rectangles). The blue module shows the calculation of 

coefficients and the red module the solution via the TDMA. Note that Azn is the control volume size while Szt is the distance 

between nodes and kt is the interface conductivity. Symbol definitions can be found in Appendix 9.1.

3.2 Steady Primal Problem

A few  examples serve to verify the steady state model against analytical solutions 

presented in Section 2.1.2.1. The effects of the steady state model parameters are 

examined where the specific model relationships (see Chapter 2) can be stated as 

FSTS =  Ss (forward) and d s =  g s(m ) <=> Ts =  GsSs (inverse). Ts and ds represent 

tem perature data, Fs the forward differential operator, g s the functional inverse model 

relationship, Gs the steady Green operator and m  =  [ t / ,F | , /c ,5 5] where T / is the surface 

steady temperature, F§ the basal heat flow, k the conductivity and Ss heat sources and 

sinks. Typical terrestrial values are used throughout.
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3.2.1 Basal Heat Flow F |

Figure 3.2 illustrates the influence of the magnitude of the basal heat flow  F§ =  100, 76 

and 50 mW /m2 on the subsurface steady tem perature Ts. A basaltic conductivity k =  3 

W /m/K (e.g. Wang, 1992) is used with steady surface temperature 7 /  =  287.15 K.

5 ----------------- 1----------------- 1______ ____ I_____i____ I__ _̂_____
287.10 287.15 287.20 287.25 287.30 287.35

Steady Temperature [K]

Figure 3.2. Effects of basal heat flow FSB. The dashed green, solid red and dotted blue curves respectively have F | of 100,76 

and 50 mW/m2. The thermal conductivity k = 3 W/m/K and steady surface temperature r f  =287.15 K. A 10 point 

homogeneous grid is used in the simulation.

From Figure 3.2, it can be seen that heat flows of higher m agnitude produce steeper 

steady temperature gradients and, equivalently, higher basal temperatures. This is 

understandable in the sense that heat flows from regions of higher tem perature to regions 

of lower tem perature such that a greater temperature difference occurs with greater heat 

flow. This may be verified by examining the steady heat flow  equation (HFE) analytical 

solution in Section 2.1.2.1.2 which illustrate the direct relationship between F§ and T s.
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3.2.2 Conductivity k

Figure 3.3 illustrates the influence of thermal conductivities k =  2.5 and 3.5 W /m /K on the 

subsurface steady temperature T s, with basal heat flow F§ =  76 mW /m2 and steady 

surface tem perature 7 /  =  287.15 K.

.10 287.15 287.20 287.25 287.30 287.35
Steady Temperature [K]

Figure 3.3. Effects of thermal conductivity k. The dashed green and dotted blue curves respectively have k of 3.5 and 2.5 

W/m/K. Basal heat flow FSB = 76 mW/m2 and steady surface temperature r f  = 287.15 K. A 10 point homogeneous grid is 

used in the simulation.

Figure 3.3 confirms that a higher conductivity produces a smaller temperature gradient. 

This can be physically understood as the higher conductivity allowing temperatures to 

reach a greater state of equilibrium due to more heat transfer within the medium. The 

steady analytical solution of Section 2.1.2.1.2 can be examined to confirm this, where 

there is an inverse relationship between k and T s.
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3.2.3 Heat Sources and Sinks Ss

Figure 3.4 illustrates the effects of heat sources Ss =  0 and 10 m W /m 3 on the subsurface 

steady temperature T s with and w ithout a basal heat flow. Thermal conductivity k =  3 

W /m /K and steady surface tem perature 7 /  = 2 8 7 .1 5  K with basal heat flow  F§ =  [0,76] 

mW/m2, t
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Figure 3.4. Effects of steady heat sources Ss where the blue curves have Ss = 0 mW/m3 and the green curves have Ss = 10 

mW/m3 The dotted and dashed curves represent conditions with no heat flow. The dot-dashed and double-dot-dashed curves 

represent temperature profiles with basal heat flow FSB = 76 mW/m2. Thermal conductivity k = 3 W/m/K and steady surface 

temperature r f  = 287.15 K. A 10 point homogeneous grid is used in the simulation.

Typical terrestrial crustal source heating is of the order of pW /m 3 (e.g. Aurangzeb et al., 

2008) which produces no discernible difference in tem perature at the depth scale being 

considered here. A comparatively high value is used in Figure 3.4 to illustrate the 

nonlinear effect of a constant distribution of heat sources. The analytical solution in 

Section 2.1.2.1.2 can be examined to verify the results, where the effect o f Ss on T s is 

second order with depth z.
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3.3 Composites

Introduction of layering with FCV discretization is fairly straightforward as outlined in 

Section 2.1.2.3. However, it is important to note that, with analytical solutions, the 

temperatures are calculated at the location of a gridpoint, while with FCV discretization, 

the temperature is calculated based on the flow of heat between control volumes. The 

flow of heat across control volumes is regulated by the interface conductivity, the value of 

which is based on the location of the control volume interface. A control volume interface 

may be located at any point within the interval between one gridpoint and the next, or, 

equivalently, the gridpoint located anywhere within a control volume (see Section 2.1.2.3). 

Therefore, with an inhomogeneous conductivity profile, temperatures calculated by FCV 

discretization diverge from analytical calculations with increased inhomogeneity and 

courser grids (further discussed in Section 3.4.1.1). The steady state is used to illustrate 

layering as it demonstrates the effect more clearly. Denser grids are used than the 

preceding homogeneous cases.

3.3.1 Perfect Contact

Figure 3.5 shows a simulation with perfect layer contact, where the upper, middle, and 

lower layer respectively have conductivity k of 0.03, 0.3 and 3 W/m/K. Basal heat flow 

F |  =  76 mW/m2 and steady surface temperature 7 /  =  287.15 K.

Figure 3.5 illustrates the continuity conditions discussed in Section 2.1.2.3: the heat flow is 

continuous across, and temperatures equal at, boundaries in perfect contact. Notably, the 

temperature gradients in each layer (respectively 2.49, 0.25, and 0.025 K/m from upper to 

lower; see Appendix 9.3.1) correlate inversely with the magnitude of the conductivities: the 

conductivity increases by a factor of 10 downward in each layer; the temperature gradient 

decreases by the same factor. Note that the calculated values of steady heat flow Fs and

AT**temperature gradient —  (see Appendix 9.3.1) do not exactly replicate the theory

because the calculation of the interface conductivities (Section 2.1.2.2.1), at the layer 

boundaries, introduces numerical inaccuracies.
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Figure 3.5. Layering with perfect contact. The solid red curve is the steady temperature Ts and the dotted blue curve the 

steady (basal) heat flow Fs = FSB = 76 mW/m2. The dashed grey lines indicate layer boundaries where the upper, middle, 

and lower layer respectively have conductivity k of 0.03, 0.3 and 3 W/m/K. Steady surface temperature Tss = 287.15 K. A 100 

point homogeneous grid is used in the simulation.

3.3.2 Imperfect Contact

Figure 3.6 shows a simulation with imperfect layer contact. This shows the effect of the 

modifying term ht with values of 0.5 between the upper and m iddle layers and 0.75, 

between the middle and lower layers (it is analogous to the so-called Hertz factor, 

mentioned in Section 2.1.2.3). The upper, middle, and lower layer respectively have 

conductivity k of 0.03, 0.3 and 3 W /m/K. Basal heat flow  =  76 m W /m 2 and steady 

surface temperature T /  =  287.15 K.

As discussed in Section 2.1.2.3, while the heat flow across the boundaries remains 

continuous, the temperatures differ such that the product of the tem perature difference 

and the conductance H is proportional to the heat flow. Analysis (Appendix 9.3.2) shows 

that for any interface i, Ht =  kc =  hiki, where kt is the interface conductivity and kc the 

contact conductivity. The temperature gradient relationship noted in Section 3.3.1 is 

preserved within each layer.
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Figure 3.6. Layering with imperfect contact. The solid red curve is the steady temperature Ts and the dotted blue curve the 

steady (basal) heat flow FSB = 76 mW/m2. The dashed grey lines indicate layer boundaries where the upper, middle, and 

lower layer respectively have conductivities k of 0.03, 0.3 and 3 W/m/K. At the upper and lower boundary the conductivity is 

reduced by factors /i* of 0.5 and 0.75, respectively. A 100 point sinusoidal grid is used in the simulation with the grid density 

increasing towards layer boundaries.

3.3.3 Continuous Layering

In many planetary cases, the variation of thermal properties can be assumed as 

continuous (Figure 3.7), reflecting the gradual nature of deposition processes. The 

temperature profile due to an asymptotically increasing conductivity at first glance may be 

confused with an unsteady temperature profile. This underscores the importance of 

obtaining accurate thermal conductivity measurements to produce an accurate estimate of 

the unsteady tem perature perturbation due to the surface unsteady temperature. It should 

be noted, though, that the steady (basal) heat flow F§, in the absence of sources, is 

constant throughout the medium; therefore, where calculated heat flows show systematic 

variation, particularly towards the surface, a reasonable conclusion is that the steady 

tem perature is contam inated with the unsteady temperature or there are errors in the 

measured conductivity.
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Figure 3.7. Continuous layering. Here the thermal conductivity k (dashed green curve) undergoes a continuous functional 

variation with depth z according to k = km ̂  where km = 3 W/m/K is an asymptotic conductivity, and a = b = 1 are 

constants (Grott et al., 2007) such that k = 0.3 at z  = 0. The solid red curve is the steady temperature Ts and the dotted blue 

curve the steady (basal) heat flow F | = 76 mW/m2. A 30 point homogeneous grid is used in the simulation.

3.4 Unsteady Primal Problem

The effects of the unsteady model parameters are now explored. The specific model 

relationships (see Chapter 2) can be stated as F UT U =  Su (forward) and d u =  g u(m ) <=> 

T u =  GUSU (inverse). T u and d u represent temperature data, F u the forward differential 

operator, g u the functional inverse model relationship, Gu the unsteady Green operator 

and m  =  [T",F%,k,p,c,Su]. T’/  is the surface unsteady tem perature, F j7 the unsteady 

basal heat flow, which is zero in all cases, p and c respectively density and specific heat 

capacity, the product of which is the thermal capacity, and Su heat sources and sinks. 

Typical terrestrial values are used throughout.

3.4.1 Unsteady Surface Temperature T$

Figure 3.8 illustrates the effects of a sinusoidal surface temperature T$ =  T$A sin(2TTt/P) 

with T<?a -  12 K and P =  86400 s; the calculations are carried out both num erically (red), 

using the TDMA (see Section 2.1.2.2.1), and analytically (green) using the analytical 

solution from Section 2.1.2.1), for comparison. Note that the grid density increases 

towards the surface to better capture the unsteady temperature variation.



90 3 FORWARD MODEL

The increasing phase lag (a. and b.) and attenuation of the surface temperature 

oscillations (c. and d.) with depth are both evident in the plots, as discussed in Section

2.1.2.1.1 and the beginning of Section 2.2. The differences between the analytical and 

numerical solutions are discussed in Section 3.4.1.1 in the context of grid convergence.
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Figure 3.8. Numerical (red, left) and analytical (green .right) unsteady temperature due to unsteady surface temperature 

Ts ~ t s A sin(2iTt/P) with amplitude TgA = 12 K and period P = 86400 s. Thermal conductivity k = 3.0 W/m/K, density 

p  = 2700 kg/m3 and specific heat capacity c = 790 J/kg/K. Timestep A tm = 3600 s and control volumes (n = 10) range in 

size such that 0.01 m < Azn < 1.75 m. The parameter of the upper countours (a. and b.) is depth where the temperature 

amplitude decreases with depth. The parameter of the lower contours (c. and d.) is time where the grey squares represent 

gridpoints.
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3.4.7.7 Grid Convergence

A grid convergence2 study is performed using the difference between the unsteady 

analytical T UA and numerical T u temperature calculations, here called the discretization 

error eA =  V £ (A T )2, where AT =  T U -  T UA. The study is performed using an unsteady 

surface temperature T ” =  T<fA sin(2TTt/P) with amplitude T^A =  12 K and period P =  

86400 s in a homogeneous medium where: thermal conductivity k =  3.0 W/m/K; density 

p =  2700 kg/m3; and specific heat capacity c =  790 J/kg/K. The simulations are performed 

on a space of eleven homogeneous timesteps (At) by ten homogeneous grid spacings 

(Az) over a period of 24 h and down to depth 5 m.

Figure 3.9a shows that a general refinement in timestep At and grid spacing Az does not 

lead to an improved overall solution. With the grid refined in terms of Az or At, the 

numerical converges on the analytical solution within a limited range, beyond which the 

solution it diverges. The case of decreasing Az (or increasing At) can be interpreted as the 

solution tending to the steady state as decreasing Az decreases the thermal capacity 

coefficient a£ of the FCV numerical solution. Therefore the calculation is less influenced 

by the previous temperature T° as the timesteps progress. Conversely, the case of 

decreasing At (or increasing Az) effectively increases the thermal capacity coefficient, 

reducing the transfer of unsteady heat information to deeper control volumes. If At is too 

small, implicit time discretization may become problematic; explicit or Crank-Nicolson time 

discretization are alternatives.3

Figure 3.9b illustrates how the gridding conforms to the Courant principle (e.g. Patankar, 

1980), which requires At <  pc (Ax)2/2 k .  The principle is not strictly applicable in the

2 Grid convergence is achieved when successive refinement of the model grid and timesteps 

achieves a solution where the errors eA asymptotically approach zero.

3 Implicit time discretization assumes that the temperature immediately transitions from t£ to Tn 

over At. Explicit assumes that T° persists over At, while Crank-Nicolson assumes a linear change 

from Tn° to Tn.
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implicit time discretization scheme used here (see Appendix 9.2.1.3); it becomes useful in 

explicit or Crank-Nicolson time discretization, when small At makes implicit discretization

problematic. The Courant Number ec is 

Courant principle stipulates ec >  1 for stable 

the implicit discretization scheme becomes 

alternative schemes increase in stability.

Discretization Error [K]
2.1 3.7 5.3 6.9 8.6 10.2

1440 1980 2520 3060 3600
Timestep [s]

defined as ec =  pc(Az)2/(2/cAt) where the 

results. Notably, Figure 3.9b shows that while 

more unstable as Az -» 0 for a given At, the

Courant Number
0.0033 0.7966 1.5900 2.3833 3.1767 3.9700
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Time [h]
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Figure 3.9. Grid convergence study using difference between calculated analytical and numerical temperatures. Contour: a. 

represents the discretization error relative to grid spacing Az and timesteps At; b. shows the equivalent Courant number 

(after Patankar, 1980) for the different grids in a. The grey squares show the data points (simulations) from which the 

contours are interpolated; c. is an overly of the temperature difference AT at different depths; d. is an overly of AT at 

different times. For c. and d.: At -  360 s and Az = 0.05 m on a homogeneous grid down to 5 m.

In Figure 3.9c and d, the discretization error appears to introduce a phase lag in the 

numerical solution which increases with depth and the solutions produced are oscillatory. 

Evidently the errors are largest away from the constraining effect at the boundaries which
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can be traced back to the forward and backward substitution processes in solving the 

TDMA (see Section 2.1.2.2.1; also see e.g. Patankar, 1980) which tend to propagate and 

inflate numerical errors along the grid.

3.4.7.2 High Frequency Components

In order to examine the stability of the model in cases where the temperature is not a 

simple sine wave, cases of a surface temperature with high frequency components are 

tested, starting with square and sawtooth temperature waves (Figure 3.10 and Figure 

3.11). The square surface unsteady temperature is defined by 

T$a SGN[sin(2TT(t — [t \ ) /P )]  and the sawtooth unsteady temperature defined by 

TsA( t /P  -  L t/P j).4. Amplitude T<JA =  12 K and P =  86400s in a homogeneous medium 

with thermal conductivity k =  3.0 W/m/K, density p =  2700 kg/m3 and specific heat 

capacity c =  790 J/kg/K. Unsteady basal heat flow Fg =  0.

It is evident that the high frequency components characterising the discontinuities in the 

waves are attenuated fairly close to the surface of the medium. As the waves propagate 

further into the medium their characteristics are increasingly smoothed. Much of the high 

frequency information in the original surface temperature waves is therefore lost from the 

subsurface temperature profile. Inverting even an accurately measured subsurface 

temperature profile will therefore not uniquely reproduce higher frequency components of 

the original surface temperature. This is reflective of the ill-posed nature of the inverse 

problem as discussed at the beginning of Section 2.2.

An interesting note is that the square wave propagates marginally deeper into the medium 

and has a larger temperature envelope5, this is because it forces more heat into the 

medium. The relatively smooth profile of the sawtooth wave minimum temperatures with

4 The operator SGN represents the sign function, which takes the sign (±) of its argument. The 

operator L J represents the floor function, which produces the largest integer less than or equal to 

its argument.

5 Defined by the amplitude of the time dependent temperature at a particular depth.
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depth (the leftmost extent of the envelope in Figure 3.10d) suggests that unique 

characteristics can be used to glean information about the specific shape of the unsteady 

surface temperature.6 Figure 3.11 compares the form of the sinusoidal, square and 

sawtooth temperature profiles of Figure 3.10 taken at t =  0.
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Figure 3.10. Propagation of high frequencies. The left (a. and c.) contours represent a square temperature wave 

(TfA SGN[sin(2-rr(t -  [t\)/P)]) while the right (b. and d.) contours represent a sawtooth temperature wave (T^A(t/P  -  

|t/P ])). The parameter of the upper countours (a. and b.) is depth where the high frequency components are attenuated with 

depth. The parameter of the lower contours (c. and d.) is time where the grey squares represent gridpoints.

Much of the information which allows for differentiation of the surface temperature profiles 

is present in the upper 0.5 m in the particular cases of Figure 3.10 and Figure 3.11. If the 

main parameter sought is the surface temperature history T f ,  then the information 

precludes a unique solution to the inverse problem, without the use of a priori information

6 This is important when inverting a tem perature profile from an instantaneous or short term  

m easurem ent, w here information on the unsteady surface tem perature is unknown or incomplete.
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(e.g. Section 2.2.1.2). Here the main parameter sought is the basal heat flow F|  which is 

masked by the unsteady temperature oscillations in the subsurface; therefore in this case, 

attenuation is desirable. However, one parameter which is important in recovering f£  is 

the steady surface temperature 7S5 which is the mean of 7 /  and can only be well 

determined if the characteristics of 7 /  are well determined; the particular shape of 7 /  

tends to bias 7 /  positively or negatively.

o . o

-  ^  - □ —

0.5
E
JC

Unsteady Temperature [K]

Figure 3.11. Comparison of sinusoidal (solid), square (dashed) and sawtooth (dotted) subsurface temperature profiles of 

Figure 3.10, taken at time t = 0. The grey squares represent gridpoints.

The heat signatures of longer period (lower frequency) and/or greater amplitude surface 

temperatures will propagate further into the subsurface as illustrated in Figure 3.12. 

Illustrated are annual (360 d) unsteady temperature cycles in a homogeneous medium 

with thermal conductivity k =  3.0 W/m/K, density p =  2700 kg/m3 and specific heat 

capacity c =  790 J/kg/K. One simulation (Figure 3.12, left) contain only annual (low) 

frequencies according to 7 /  =  2T^As in (2 n t/P 0) while the other (Figure 3.12, right) 

contains superimposed diurnal and annual frequencies such that 7 /  =  T sA[s in (2 n t/P 0) +  

s in d n t /P i) ] ,  shown only down to 5 m. Temperature amplitude T$A =  12 K, period P0 =  

360 d and P1 =  86400 s.
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-12 0 12 
Unsteady Temperature [K]

Figure 3.12. Annual unsteady temperature cycles in a homogeneous medium. The left contours (a. and c.) represent a 360 d 

unsteady surface temperature (Tg = 2TgAsin(2nt/P0)). The right contours (b. and d.) shows superimposed diurnal 

(Pj = 86400 s) and annual (P0 = 360 d) temperatures such that Tg = TsA[sin(2nt/Po) + sin^nt/P^].  The 

parameter of the upper countours (a. and b.) is depth with larger amplitudes towards the surface and the parameter of the 

lower contours (c. and d.) is time. The grey squares represent gridpoints.7

The annual temperature oscillation simply heats the surface for a longer time period 

relative to the diurnal temperature (P0 >  Px) and therefore forces more heat into the 

subsurface, to greater depth z. The effects of the high frequency diurnal components are 

most evident in the upper 1 m of the medium, as Figure 3.12d shows. A temperature of 

larger amplitude T$A also forces more heat into the subsurface over a given time period P. 

These effects define the maximum temperature amplitude at depth z (temperature

7 It is interesting to note that while the primal numerical code solves this setup effectively, an 

analytical calculation involves calculating the diurnal and annual components separately, then 

summing the results. This demonstrates the potential time saving features of a strictly numerical 

approach to solving the problem.
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0 60 120 180 240 300 360
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envelope) as seen in Figure 3.12c. The conical shape of the envelope is due to damping 

and is regulated by the thermal diffusivity k  =  k / p c .  The effects of varying k  are quantified 

below with the thermal capacity.

3.4.2 Thermal Capacity pc

The physical effects of density p  and specific heat capacity c  are illustrated in Figure 3.13 

with p  =  5100, 2700 and 1051 kg/m3 (left) and c  =  1381, 790 and 395 J/kg/K (right). The 

surface temperature is a simple sinusoidal surface temperature as used in Section 3.4.1, 

the thermal conductivity k  =  3.0 W/m/K, the unsteady basal heat flow F^ =  0.
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Figure 3.13. Characteristics of thermal capacity. The left countours (a.) illustrate the effects of a change in density. The solid, 

dashed and dotted contours respectively representing density p = 5100, 2700 and 1051 kg/m3. The right countours (b.) 

illustrate the effects of a change in specific heat capacity. The solid, dashed and dotted contours respectively representing 

heat capacity c = 1381, 790 and 395 J/kg/K. The thermal conductivity k = 3.0 W/m/K, the unsteady basal heat flow Fg = 0. A 

simple sinusoidal surface temperatue is used. The grey squares represent grid points.

Evidently, higher density and specific heat capacity increase the attenuation of the surface 

temperature oscillations with depth, which is verified by the analytical solution of Section 

2.1.2.1.1. The similar effects of both justify their use in the single thermal capacity term. 

Similar features are observed with high versus low k ,  though with inverse effects: higher k  

causes decreased attenuation with depth. The similar effects of the change in these 

parameters, and the period P in Section 3.4.1.2, explains their use in calculating the skin 

depth z S K I N , introduced in Section 2.2.
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3.5 Superposed Numerical Solution

The partition of the subsurface temperature into steady and unsteady states is allowed by 

the solutions to the heat flow equation, they are not partitioned in a temperature 

measurement. Therefore, it is instructive to illustrate a superposed temperature profile to 

precisely highlight its characteristics (Figure 3.14). Analytically, this is achieved by 

summing the steady and unsteady solution for a given problem, as done in Section 

2.1.2.1.3. Numerically, it is achieved by applying relevant boundary conditions to the 

unsteady state.
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Figure 3.14. Numerical temperature and heat flow. The upper contours show overlays of temperature (red) and heat flow 

(purple) at: a. different depths; b. different times -  the solid curves represent readings at a starting time. The lower plots 

show: c. zoomed subsurface temperature at depth; d. zoomed heat flow at depth. Thermal conductivity k = 3.0 W/m/K, 

density p = 2700 kg/m3 and specific heat capacity c = 790 J/kg/K. The grey squares represent gridpoints.

The heat flow is almost half of a period (180° or t t  radians) out of phase with the 

temperature. This is to be expected, as heat flows down the temperature gradient. The
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slight lag between the heat flow and temperature extremes is reflected in the thermal

inertia I  =  Jkpc  (or equivalently in the thermal diffusivity k ) of the medium, where the lag 

decreases with an increase in /. The characteristics illustrated with the partitioned steady 

and unsteady problems are retained, and it is clear that the surface unsteady heat flow is 

likely to be far larger than the basal heat flow FB, at an arbitrary point in time.

3.6 Surface Energy Balance

As mentioned in Section 2.1.2.2.2, there are cases where the surface temperature is not 

known but can be calculated using surface energy balance relationships. The surface 

energy balance theory in Section 2.1.2.2.2 does not account for an atmosphere, and is 

therefore not strictly applicable to bodies with atmospheres. Accounting for an atmosphere 

is a complicated process, which is left up to sophisticated climate models to solve (see 

Section 5.2.1 for examples). However, for airless bodies, a surface energy balance 

relationship can provide a first order estimate of surface temperatures, replicating major 

features of their empirical counterparts.

Figure 3.15 shows Lunar temperatures obtained by applying the surface energy balance 

relationship of Section 2.1.2.2.2 (see Appendix 9.3.3 for related parameter values). They 

are compatible with the results of Jones et al. (1975) and the measurements in Langseth 

et al. (1976). Figure 3.15a shows how the thermal diffusivity k (or alternatively thermal 

inertia I  -  see Section 3.5) dictates surface temperature as heat is adiabatically lost from 

the surface during lunar night (between 15-27 d). Note the low amplitude annual surface 

temperature that is evident in Figure 3.15b. This causes a small increase in skin depth 

evidenced by the slightly larger temperature envelope down to 2.5 m depth.
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Figure 3.15. Surface energy balance numerical solution for a lunar analogue environment according to ^ ( 1  -  A) cos <p -  

£aTs4 = - k  — ■ (see Appendix 9.1 for symbol definitions). Plots: a. and b. show the surface temperature over 1 lunation (1 

month) and 12 lunations, respectively; c. and. Show the evolution of subsurface temperature profiles over 1 lunation and 12 

lunations, respectively. The basal heat flow FSB = 22 mW/m2. A 100 point grid is used with decreasing control volume size 

towards the surface.

3.7 Summary

A one dimensional forward heat flow model is presented based on the forward modelling 

theory outlined in Section 2.1. The model is programmed in IDL and contains a steady 

state and unsteady state module for a partitioned solution to the heat flow problem. It is 

capable of simulating scenarios using homogeneous or heterogeneous grids and implicit, 

explicit or Crank-Nicholson time discretization.

The model simulates the temperature distribution in the subsurface, based on 

conductivity, thermal capacity and heat source distributions. It accepts temperature, heat 

flow or energy balance boundary conditions. The model is capable of simulating layering
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of thermal property values both with perfect and imperfect contact, allowing the 1D 

simulation of arbitrarily complex composites. The model is a major component of the 

inverse model which is presented in Chapter 4 and applied in Chapters 5-7; the properties 

explored here will assist interpreting the inverse model results in subsequent chapters.
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4.1 Introduction

The inverse model is the Function Specification Inversion (FSI) problem of Section 2.2 

programmed and solved in IDL. The forward model presented in Chapter 3 is a major 

component of the inverse model. The inverse model consists of four forward model 

components, or modules -  two modules for the partitioned (steady and unsteady) primal 

problem and two for the partitioned dual problem (Figure 4.1). The dual code is identical to 

the primal code with the only difference being the time which, for the dual, is run in 

reverse such that t D =  - t p, P indicating primal and D dual. The primal and dual problems 

are therefore solved using the same program, but with different inputs.

The other main calculation modules of the model are those for calculations of the residual 

heat sources, Frechet and Hessian gradient, direction of steepest ascent, misfit function 

optimization, and model parameter updates, and a posteriori covariances. The steady and 

unsteady partitioned problems along with the Frechet and Hessian gradient may be 

calculated in parallel. The measurement and a priori model parameter and covariance 

modules may also be initialized in parallel -  they are not modified during the iterations. 

The model is terminated in the misfit function module once the function value falls below a 

given constant, or continues to update the model parameters iteratively.

The inverse model is tested in a fairly straightforward manner where a synthetic 

temperature is generated and inverted to recover the boundary conditions. The synthetic 

data is generated using the numerical forward module of the inverse model; this is verified 

against data extracted from analytical forward calculations in Appendix 9.4.9. To make 

things flow easily, in most cases forward model profiles of Chapter 3 are used. The tests 

are conducted, in the first instance (Section 4.2), on ideal measurements (with negligible 

errors) in order to assess the interaction of data and model parameters, without the 

instabilities caused by data noise. Noisy measurements are introduced in Section 4.3 to 

assess the impact noise has in obscuring any relationships identified in Section 4.2.
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PRIMAL STEADY: T = G*S PRIMAL UNSTEADY: Tu = GUS*

DUAL STEADY: 8Ss = 8TDS = GsT8Ts DUAL UNSTEADY: 8SU = 8TDU =

guTsTu

APRIORI:
m 0 =  [T°, Tss°, Tus°, Fsb°, k°, pc°, 5°]

MEASUREMENT: dn = T\

A PRIORI COVARIANCES: C, [c r |, CTu, Cfsb, Ck, Cpl Cc, cs], c,

DIRETION OF STEEPEST ASCENT: / D = M y =  Cmy; yND =  M y  = H~xy

RESIDUALS: 8d = Ts + TU -  d.

HEAT SOURCES: S f  = 8SD = 8d = C ^ S d

MISFIT FUNCTION: 5, [[d — d0]TCd-1[d — d0] + [im — m 0] l Cm 1 [m  -  m,

MODEL UPDATE: m u = m — py 

A POSTERIORI COVARIANCES: Cm/ = [ftf +  Cm_1]_1

FRECHET: yd = [ y s, y B, y ,  T , y ] ,  ym = Cm~l [m  -  m0] 

HESSIAN: Hd = [Hts, HFb, Hk, H?0, Hs], Hm = Cm~x

Figure 4.1. Flowchart of the inverse model. The blue bordered modules represent the TDMA module. The green bordered 

modules represent the modul inputs. The redborder identifies where the model is terminated once the misfit function has 

been optimized.The different coloured arrows illustrate how output from related modules interact with other model 

components. A list of defined symbols is presented in Appendix 9.1.
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4.2 Ideal Measurement

An ideal measurement d 0, is assumed to be made by a heat flow probe of at least ten 

sensors with the lowest sensor at 5 m depth (Figure 4.2). The measurement errors are set 

to a maximum standard deviation of cr,, = 0 .1  mK at the surface, decreasing at the rate of 

e~z, reflecting a decrease in variance of the data as subsurface temperature T is damped 

with depth z. The errors may also be assumed constant such that av persists at all depths 

-  this is not considered ideal and is investigated further in the text, where larger errors are 

introduced into the measurement. The data covariance operator Cd therefore has a high 

weighting factor in the inversion which increases with depth (and time lag r  =  —t). Note 

that r  =  t D, the dual time and t =  t p, the primal time mentioned in Section 4.1.

The investigation is carried out by first treating single model parameters as unknown to 

determine the primary behaviour of each parameter in the model. The first parameter to 

be treated as unknown1 is the steady basal heat flow F§ -  the main parameter of interest. 

This is followed by the partitioned (steady, unsteady) surface temperature r / ,  T$ and 

subsequently the conductivity k, thermal capacity pc and steady source term Ss. The 

results for different combinations of unknown F§ and other parameters are presented in 

Appendix 9.4.7, providing insight into the effect of these on the estimate of unknown F |. 

The tests aim to establish the tolerance of the model to a range of assumed a priori 

information of varying accuracy in a priori model m 0 and model covariance operator Cm.

Much trial and error has shown that the quasi-Newton method of optimization discussed 

throughout Section 2.2 is more stable and reliable than steepest descent for the heat flow

1 It should be noted that -  in this case -  the steady basal heat flow F | is accessed by the four 

lowest sensors. This means the basal heat flow -  which for an arbitrary measurement may or may 

not include unsteady components -  is consistent with the steady basal heat flow. This is a unique 

case which aims to demonstrate relationships between different model parameters as a first step. 

Cases where the basal heat flow estimated from the data is not consistent with the (true) steady 

basal heat flow are investigated further in the text.
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problem being considered. This is due, in particular, to the difficulties in determining 

appropriate stepsizes as the model progresses through each iteration i in steepest 

descent. For example, in cases where a fixed ^  is unstable, is estimated by curve 

fitting -  i.e. several instances of updated model m i+1 and misfit Smi+1 are calculated 

during each iteration using the current ascent vector y t and a range of pi, as mentioned in 

Tarantola (2005). A parabola is fitted to the resulting values of Sm.+l, choosing ^  at the 

minimum as mentioned in Shen and Beck (1991). The calculation of several model 

instances makes the process rather inefficient. The quasi-Newton method avoids the 

former by allowing «  1. The quasi-Newton method is used throughout this presentation 

and is tested at /i* =  1 in most instances and occasionally with fjtt =  0.5.

4.2.1 Basal Heat Flow FSB

4.2. J. 1 Heat Flow Dependence

Basal heat flow FB is first tested in the range of true values from -0.76 to 0.76 W /m 2 which 

covers the range of values expected from terrestrial bodies of the solar system -  all other 

parameters remain constant (Figure 4.2). This serves to illustrate any symmetries in the 

behaviour of the model in optimizing FB. The model is run at fixed stepping constant ^  =  

1 in all tests and also at =  0.5 in a limited number of cases. F§ is initialized between 

10-100 % inaccurate while the standard deviation a Fs is tested in the range a Fs e [1 0 ‘

5,103] W /m 2.

Results show that, in the majority of initializations, the model converges exactly2 on the 

true value where, naturally, the most intriguing cases are the minority which failed to 

converge, given the profile of Figure 4.2. Importantly, no significant differences are

2 To the number of significant figures (s.f.) of the true value.
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observed between results for the different heat flows tested indicating the behaviour of the 

model is largely independent of the magnitude of F § .3

Figure 4.3 shows general trends4 in the results using measures of FB accuracy (eFsi =

F S I

- § f -  1 with optimal estimates F |J and true values F |r ), and optimal misfit function value
f b

pSO

(logi0 Sm i),  with respect to initial relative error eFso =  -p y  -  1 of initial estimates F |°  to F |t , 

and F §  standard deviation (SD) a Fs. The contours illustrate the likelihood of accurate

convergence in different regions of the solution space. They are interpolated from 3D 

scatterplots where the values can be considered as central estimators, not exclusively 

associated with any single data point.

Figure 4.3 shows that increasing estimates of standard deviation o Fs and consequently

covariance CFs yield asymptotic improvements on the initial F |  estimate. Also, the more

accurate the initial FB estimate, the smaller the value of a Fs required to achieve an

accurate F §  estimate. The preceding observations follow the inverse theory outlined in 

Section 2.2.1.2 where CFs defines the solution space which is explored by the model to

locate the maximum likelihood point of the misfit function Sm/; if the space around the 

initial point is too small, the model does not have enough room to explore and fails to 

advance.

3 More precisely, the model behaviour is independent in terms of the shape of the F | model space. 

The studies in Chapters 5-7 do show that results depend on heat flow magnitude, but this is 

intricately tied to the masking effect of the unsteady temperature, which is not a factor in these 

tests.

4 See Appendix 9.4.1 for a discussion of the measures used in the visualizations.
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The misfit function value Smr compared to the Fjj relative error, illustrates the sensitivity of 

the misfit function to the error in the Fjj estimate.5 It is interesting to note that the 

optimized Fjj from the full range of tests tend toward a delta distribution about the true 

value as the error in Fjj decreases (see Appendix 9.4.2), effectively demonstrating that 

Monte-Carlo techniques can be used to obtain a robust estimate of the true Fjj.

CL

283 284 285 286 287 288 289
Temperature [K]

Figure 4.2. Ideal subsurface temperature T profiles with basal heat flow FSB of ±0.76 (dotted curves), ±0.152 (dot-dashed 

curves) ±0.076 (dashed curves), and 0 (solid curve) W/m2. This is the temperature profile down to depth z = 5 m at time t = 

23 hr due to sinusoidal surface temperature Ts = 12sin(2TTt/86400) + 287.15 K. Thermal conductivity k = 3.0 W/m/K, 

density p = 2700 kg/m3 and specific heat capacity c = 790 J/kg/K. The grey squares represent sensor locations. Symbol 

definitions can be found in Appendix 9.1.

5 Note that the misfit function value is dependent on the value of the covariance CFs and also Cdt

therefore a comparison between misfit function values is strictly applicable only in the case w here  

the sam e covariances are used.
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Optimized Basal Heat Flow Relative Error Log Misfit Function Value
-0.5 0.0 0.5 -1 0 1 2 3 4 5

a. Initial Basal Heat Flow Relative Error ^ Initial Basal Heat Flow Relative Error

Figure 4.3. Trends in the optimization of basal heat flow FSB from ideal data with stepsize nt = 1. Contour: a. shows trends in

pSI

the relative error eFsi =  -  1 of optimal estimates FSB to the true value FSJ , with respect to initial relative error eFso =

pSO

jHf -  1 of initial estimates FSB° to the true value FSBT, and standard deviation <rFs; b. shows trends in the misfit function 

value (log10 5m/) at the optimal point. Symbol are defined in the text and Appendix 9.1.

4.2.1.2 Thermal Properties D ependence

4.2.1.2.1 Instantaneous Measurement

It is discussed in Section 3.4.2 that unsteady heat from the surface boundary flows deeper 

into a medium with increased conductivity k, resulting in a relatively larger masking effect 

on steady basal heat flow F§. It is therefore prudent to test how the model responds to a 

range of k in optimizing F§. Tests are carried out with small deviations of k, 1.5 W/m/K  

above and below the 3.0 W /m/K tested in Section 4.2.1.1 -  the resulting trends are similar 

to those of Figure 4.3. There are, however, indications of increased instability with higher 

k, evidenced by increased error in the optimized F§. This is consistent with higher k 

causing larger masking effects of F | by the unsteady surface heat flow. A larger range of 

k will illustrate the masking effect more comprehensively but here the thermal properties 

are being limited to fairly plausible values. The skin depth zSKIN (introduced in Section 2.2) 

takes account of the thermal properties and unsteady surface temperature in 

characterising the surface unsteady heat flow penetration depth -  it is therefore one of the 

more useful tools to quantify the extent of masking of F§ by the unsteady surface heat 

flow. To better illustrate the masking effect, tests are performed with an annual
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tem perature cycle where the surface temperature is defined by Ts =  12 *  [sin(2TTt) + 

sin(2TTt/360)] + 287.15 K where t is measured in days. This allows for larger skin depth 

with plausible k in the range 0.3 to 3.0 W/m/K. Measurements are taken from day 360 of 

the cycle -  Figure 4.4 illustrates the resulting temperature and associated measurement 

profiles.

The resulting trends are sim ilar to the diurnal case down to a lim iting skin depth, beyond 

which there is no meaningful im provement on the initial F |  estimate (in several cases the 

model diverges). This result occurs between k =  0.6 and 1.5 W /m /K which corresponds to 

a skin depth zSKIN between 1.67 and 2.64 m. Skin depths at zSKIN =  1.67 m and shallower 

give acceptable results sim ilar to the diurnal temperature results, while those at zSKIN =  

2.64 m and below show no useful improvement on initial estimates. These results are 

improved when frequent measurements are made over extended monitoring periods as 

discussed below.

E

0)Q

289287 288284 285 286
Temperature [K]

E

289
Temperature [K]

295285 287 291 293

a. b.

Figure 4.4. Subsurface temperature T profiles from time t = 358 d due to sinusoidal surface temperature Ts = 12 x 

[sin(2iTt) + sin(2TTt/360)] + 287.15 K with conductivity k of 0.3 (solid), 0.6 (dashed, 1.5 (dot-dashed) and 3.0 (dotted) W/m/K.. 

Density p = 2700 kg/m3 and specific heat capacity c = 790 J/kg/K. Contour: a. shows the forward modeled profiles down to 

depth z -  30 m produced on a 100 point grid with smaller control volumes towards the surface; b. shows the profiles down 

to z = 5 m with 15 sensors (grey squares -  they follow the steady temperature profile) used for temperature measurements. 

Symbol are defined in Appendix 9.1.
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4.2.1.2.2 Long-Period Measurements and Number of Sensors 

The optim ization tests presented so far cannot resolve temporal changes in the 

subsurface unsteady tem perature T u as they invert instantaneous measurements. Of 

course, measurements may be taken over a period of time which allows changes in T u 

and, by extension, the subsurface temperature T, to be recorded. Recording the changes 

in T u facilitates more straightforward characterisation of the surface unsteady heat flow 

and extraction of the steady basal heat flow  F%. This is useful, in particular, for cases 

sim ilar to those in Figure 4.4 where the skin depth is substantial. To quantify the effects of 

long-period measurements (with recordings at set time intervals), optim ization tests 

involving extended monitoring periods are performed on the same annual temperature 

profiles used in Figure 4.4 -  the full profiles are shown in Figure 4.5 below.

£  15

282 286
Temperature [K]

290
[K]

294 298

Figure 4.5. Subsurface temperature T profiles due to a 360 d sinusoidal surface temperature Ts = 12 x [sin(2iT() + 

sin(2TTt/360)] + 287.15 K with conductivitity k of 0.3 (solid), 0.6 (dashed, 1.5 (dot-dashed) and 3.0 (dotted) W/m/K -  the plots 

are overlaid in order of decreasing k, with the lowest conductivity (brightest red, solid curves) in front. Density p = 2700 

kg/m3 and specific heat capacity c = 790 J/kg/K. Contour: a. shows the forward modeled profiles down to depth z = 30 m 

produced on a 100 point grid with smaller control volumes towards the surface; b. shows the profiles down to z = 5 m with 

15 sensors (grey squares) used for temperature measurements. Symbol defined in Appendix 9.1.

M easurem ents are taken over periods which: 1. cover the 360 d period of the surface 

unsteady tem perature r /  with measurement frequencies from 1 per day to 1 every 72 

days; 2. cover only 25 % (90 d) of the 360 d T f  period with 2 measurements at the 

beginning and end of the 90 d period. Also, to determine the optimal number of sensors to

Temperature [K]
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use, the measurements are taken using sensor grids of 10, 15, 20 and 25 sensors, though 

only the 15 sensor grid is shown in Figure 4.5.

The results show a clear improvement in the optimization of F§ as the number of 

measurements increase in a particular scenario (Figure 4.6) with an exception in the 90 d 

measurement. Interestingly, there is no consistent relationship between the accuracy of 

the optimized F§ and the number of sensors. This follows from the fact that in these tests 

only F§ is unknown. If, for example, 7 /  is not well known, having more sensors to record 

higher resolution depth profiles of the subsurface temperature T  provides more 

information with which to find 7 / .

Notably for skin depths below zSKIN = 2 .6 4  m (conductivity k  >  1.5 W/m/K), long period 

measurements with frequencies higher than 1 per 10 days over the full period find F§ to 

within 6 % of the true value (|eFs| <0.06) in the majority of cases. Recall that equivalent

scenarios with instantaneous measurements (Figure 4.4) do not produce any useable 

results. There is no evidence of improvement in the optimized F |  estimate with 2 

measurements spaced 90 d apart (0.25 of the 7 /  period) below zSKIN =  2.64 m. Figure 4.6 

does illustrate instances where the direct correlation between F§ accuracy and 

measurement frequency is not strictly adhered to. For example, with the 90 d 

measurement, an instantaneous measurement at the beginning of the cycle gives better 

results than a pair of measurements -  one at the beginning of the cycle and another 90 d 

later. This is because the amplitude of the subsurface unsteady temperature T u is at a 

minimum at the beginning of the cycle, minimising the masking of F§, but increases to a 

maximum 90 d into the cycle (maximising the masking of F§. Therefore the measurement 

at time t =  90 d introduces some instability into the problem.
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Figure 4.6. Accuracy of optimized basal heat flow |eFs1 from inversion of subsurface temperature measurement generated

by a sinusoidal surface temperature with a 360 d period. Measurement frequencies coordinate with colours according to red 

(1 per day), orange (1 per 10 days), yellow (1 per 72 days) and green (1 per 360 days) for a monitoring period covering 360 d. 

Blue corresponds with 2 measurements at the start and end of a 90 d monitoring period (0.25 of the temperature cycle) while 

violet corresponds to 1 measurement at the end of a 90 d period. Plot: a. is for skin depth zSKIN =3.73 m; b. for zSKIN =2.64

m; c. for zSKlN =1.67 m and; d. for zSKIN =1.18 m. Note that for a. and b. the scale is cut off at |ef 51 = 1 but the missing 

colours have values greater than 1 -  i.e. for those the model diverged. The insets in c. and d. are zooms of |ef s | close to 

zero. The histogram binsize is 0.05 for the main plots in a-c and 5E-4 for the inset plots, and plot d. The light green 

background histogram in plot a. is the intial distribution of FSB error used in all tests (off the scale of plot d).

Investigations show that it is useful to define a ratio of a priori model parameter to data 

standard deviations such that r j 1 =  (jm/o d as a measure of the stability of a region of the 

space defined by covariances Cm and Cd. Here the stable region is defined by stability

S S
ratio r d B =  o Fs / o d >  1 W /m 2/K with the most accurate results largely occurring at r d B = 1 0

W /m 2/K  for the instantaneous measurements and r d B =  1 W /m 2/K for the long-period
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measurement cases. The results suggest that the increased information available from 

long-period measurements allows a d to be less constrained relative to a Fs.

4.2.1.2.3 Thermal Property Errors

Thermal properties conductivity k and thermal capacity pc may be unknown to some 

degree. It is expected that, if the thermal properties contain inaccuracies, then the 

optimized basal heat flow F§ will contain related inaccuracies. The results of optimization 

tests on thermal properties (see Section 4.2.4) suggest that a significant level of noise 

may be present in thermal properties without significantly affecting the accuracy of the 

optimized F§. Also, the results of tests where parameters are optimized simultaneously 

confirm positive correlation between the accuracy of the optimized F§ and the accuracy of 

the initial k estimate, while showing no correlation between the accuracies of F§ and pc 

(see Appendices 9.4.7.5-9.4.7.6). These results follow from the direct physical relationship 

between F§ and k and lack of the same between Fjj and pc. It is important to note, 

however, that pc and all other parameters indirectly, if not directly, affect the optimized F§ 

value in an inversion. Using an incorrect parameter value without accounting for the errors 

produces an incorrect (or potentially physically implausible) scenario for which there is no 

correct solution. Considering these points it is important to quantify the relationship 

between the accuracy of thermal properties which are (incorrectly) assumed known and 

the accuracy of the optimized F§.

Optimization tests are performed using temperature profiles from the long-period 

measurement tests in Section 4.2.1.2.2. Specifically measurements are taken which: 1. 

cover the full period of a 360 d surface unsteady temperature 7 /  cycle with a 

measurement frequency of 1 per day (Figure 4.5); 2. are from the end of the 360 d T f  

cycle as an instantaneous measurement (Figure 4.4). The measurements are taken on a 

10 sensor grid with spacing increasing with depth. Conductivity k and thermal capacity pc 

are initialized within 25-90 % of their respective true values of 0.3 W /m /K and 2.133  

MJ/K/m 3  while basal heat flow F§ is initialized within 25-100 % of the true value of 76
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mW/m2. The F g  standard deviation is tested in the range o Fs e [10-4,! 0"2] W/m/K. Tests

are conducted with inaccuracies in either k or pc (but not both simultaneously) to separate 

the effects of each in the model. This follows the partition of the heat flow problem into 

steady and unsteady state (see Section 2.1).

The results show positive correlation between the inaccuracies in k  and the optimized F |  

and negative correlation between the inaccuracies in pc and optimized F§ (Figure 4.7). 

Generally, for all cases, low estimates of k and high estimates of pc produce low F§ 

estimates; high estimates of k and low estimates of pc produce high F§ estimates. The 

general result follows from the fact that high or low k respectively produces shallow or 

steep steady temperature T s gradients along with higher or lower subsurface unsteady 

temperatures T u amplitudes. Likewise, low or high pc weakly or strongly attenuate heat 

flowing into a medium from the surface which respectively masks or reveals the T s 

gradient with T u, relative to the true profile (this is illustrated in Figure 4.22). This 

characteristic is compensated for in the model by respective high and low F |  estimates 

which make the T s gradient either more steep or more shallow, exposing or masking the 

T s gradient relative to the T u envelope. Recall that thermal diffusivity k = k / p c  gathers 

both physical quantities which means the preceding discussion can be explained in the 

more simple terms of high and low estimates of k . Figure 4.22 provides example 

illustrations of the optimized temperature profiles produced with unknown k and pc, 

though in the context of a noisy data measurement d.
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Figure 4.7. Accuracy of optimized FSB with inaccurate thermal conductivity k and thermal capacity pc. FSB is optimized from 

subsurface temperature measurements of different measurement frequencies, generated by a sinusoidal surface 

temperature with a 360 d period. The red diamonds have measurement frequencies of 1 per day and blue triangles have 

measurement frequencies of 1 per 360 days for a monitoring period covering 360 d.Plot: a. shows the optimized FSB error 

relative to the k error ek\ b. shows the optimized FSB error ef s/ relative to the pc error cpc.

There is a number of outliers in Figure 4.7 which does not conform to the trends identified 

above. These correspond to cases where the F | standard deviation a Fs is too small and

the initial F§ estimate is below the true value -  the model does not significantly change the 

value of F§ leaving the final estimate below the true value. Also, the outliers (and scatter) 

correspond to thermal property inaccuracies which increase the masking of F§ by the 

subsurface unsteady temperature TF . The scatter in the results is also partially due to the

pS
ratio rdB =  o Fs /o d not being optimal where od is the data standard deviation, which is

FSconstant for different initial F |  estimates. Here rdB >  1 which produces 20-75 % 

improvement on initial estimates. The model is designed to optimize thermal properties, if 

they are unknown; this is performed in Section 4.2.4 (individually) and Appendices 

9.4.7.5-9.4.7 . 6  (simultaneously with F§).

4.2.1.3 C onvergence

The expected convergence of the model is discussed in Section 2.2.1.3. Figure 4.8 shows 

the rate of convergence of the model in terms of misfit function Sm and its component data
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S||dH and model S||m|| parameter norms for a single test (compare to Figure 2.2 and see 

related discussion).

CD

Iteration

Figure 4.8. Convergence of the model in optimizing FSB. The base 10 logarithm of the misfit function Sm (solid blue) and its 

component data S||dy (dotted red) and model S||m|| (dashed green) parameter norms are used to highlight small changes 

over the number of iterations i. The model can be terminated after 2-4 iterations. In this simulation standard deviation 

erF|  = 1E-3 W/m2, initial relative error eFso = -0.10 and optimized FSB relative error eFsi = 1.25E-5. The general behavior is 

similar in other convergent simulations.

Figure 4.8 shows that the model converges fairly rapidly and can be terminated after 2-4 

iterations around which there is a change of sign in the basal heat flow Frechet derivative 

y Fs (see Figure 4.1 and Sections 2.2.3.3-2.2.3.4). The result is true for all initializations of

F | and covariance CFs in the range referenced by Figure 4.3 with stepsize ^  =  1. Similar

results are obtained with ^  =  0.5 though with more iterations due to the model taking 

smaller steps through the joint data and model space [D, M]. These results are detailed in 

Appendix 9.4.2. Generally it can be deduced that initializing the model with suitably large 

standard deviation a Fs promotes optimal convergence of the model when optimizing F |.
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4.2.2 Steady Surface Temperature T f

4.2.2.7 General Trend Analysis

Optimization tests on 7 /  using the ideal measurement show behaviour similar to but more 

stable than that of basal heat flow F§ in the model, 7S5  is initialized between 10-75 % 

inaccurate relative to the true value of 287.15 K, while the standard deviation a Ts is tested

in the range a Ts e [10‘3 ,105] K.

Figure 4.9 shows shows general trends in the results using measures of T /  accuracy

J .S I

(eTsi =  -  1 with optimal estimates T f  and true values r / T), and misfit function value
s Ts

(defined as in Section 4.2.1.1 with Figure 4.3), with respect to initial relative error eTso =

■pSO

■4r - 1  of initial estimates T /°  to 7 / r , and 7 /  standard deviation (SD) a Ts. The contours
TS s

illustrate the likelihood of convergence in different regions of the solution space. They are 

interpolated from 3D scatterplots where the values can be considered as central 

estimators, not exclusively associated with any single data point.

The model converges exactly on the true 7 /  value in all cases though estimates worsen in 

the case of small covariance CTs due to low estimates of standard deviation <j ts. A stable1s ls

£

region can be defined by a stability ratio (as with F§) such that r j 5  =  a Ts /a d > 1 0  thoughU

the most accurate results occur at r j 5  >  104. More accurate convergence is achieved with 

a more accurate initial 7 /  estimate. Flere, again the model is run at fixed stepping 

constant ^  =1 -  similar results are obtained setting pt =  0.5 except with more iterations 

and marginal improvement at the smallest a Ts. The former result is attributed to the space

being explored in finer detail due to the smaller iit. As with F§, the solutions tend toward a 

delta distribution about the true value (see Appendix 9.4.3).
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Figure 4.9. Trends in the optimization of steady surface temperature T| from ideal data with stepsize = 1. Contour: a.

jS l

shows trends in the relative error eTsi = -  1 of optimal estimates Tss to the true value with respect to initial relatives Ts

jSO

error eTso = -§ f -  1 of initial estimates T|° to the true value Tssr , and standard deviation oy ; b. shows trends in the
S T s S

optimizal misfit function value Iog10 Smr Symbol are defined in the text and Appendix 9.1.

A.2.2.2 C o n v e rg e n c e

Figure 4.10 shows the rate of convergence of the model in terms of misfit function Sm and 

its component data S\\d\\ and model S||m|| parameter norms for a single test (compare to 

Figure 2.2 and see related discussion). The same rapid convergence of the model is 

evident as with F§. Also, more stable convergence is achieved with initialisations where 

the initial 7 /  estimate is less than the true value. These results are detailed in Appendix 

9.4.3. Generally it can be stated that initializing the model with suitably large a Ts promotes

optimal convergence of the model.
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Figure 4.10. Convergence of the model in optimizing r f .  The base 10 logarithm of the misfit function Sm (solid blue) and its 

component data S||d(| (dotted red) and model 5||m|| (dashed green) parameter norms are used to highlight small changes 

over the number of iterations i. In this simulation standard deviation aTs = 1 K, initial relative error eTso -  -0.75 and 

optimized Tss relative error eTsi = 0. The general behavior is similar in other convergent cases.

4.2.3 Unsteady Surface Tem perature Tvs

4.2.3.7 M easu rem en ts

Optimization tests on Tsu are performed using ideal measurements from a diurnal 

sinusoidal temperature profile such that Tsu =  12sin(2TTt/86400) K, chosen at time t =  23, 

17, 11 and 5 hr into the cycle. Measurements at 23 and 11, and 17 and 5 hr are 

respectively out of phase by half of a period which allows straightforward interpretation of 

the behaviour of the model in responding to the different true shapes of T$. Figure 4.11 

shows the unsteady temperature profiles down to 1  m -  inversions are performed on 

superposed (containing the steady component) temperature profiles down to 5 m.
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Figure 4.11. Ideal subsurface unsteady temperature profiles Tu down to depth z = 1 m at time t = 23 (solid red), 17 (dashed 

red), 11 (solid blue) and 5 (dashed blue) hr into a 24 hr sinusoidal surface unsteady temperature T$ = 12sin(2nt/86400) K. 

Thermal conductivity k = 3.0 W/m/K, density p = 2700 kg/m3 and specific heat capacity c = 790 J/kg/K. The grey squares 

represent sensor locations. Symbol definitions can be found in Appendix 9.1.

4.2.3.2 A  Priori In fo rm a tio n

To invert a single measurement related to the profiles in Figure 4.11 a priori information is 

required for the initial Tsu estimate based on the time period prior to the measurement 

being considered. Each pair of temperature profiles out of phase by half of a period ( t t  

radians, 180°) is expected to be produced by Tsu which are likewise out of phase by half of 

a period (Figure 4.12). If there is no reliable a priori information on Tsu a constant initial 

estimate may be used. Of course, if the measurements are taken in succession from 5 to 

23 hr, there is already useful a priori information on the peaks and troughs of the 

generating (sinusoidal) Tsu and they can be inverted simultaneously.

In the optimization tests presented here, Tsu is initialized in two ways: 1. constant and 0-12 

K above or below the mean value of 0 K, therefore including no a priori information on the
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variation of T /;  2. with amplitude 0.25-1.5 times the true value of 12 K, phase 0-tt radians 

out of phase with the true phase of 2tt radians and background (mean) value of 0-12 K6.

12

6
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•6■o

12
0 5 10 15 20

Time [h]

Figure 4.12. Surface unsteady temperatures T$ 24 hr before time t = 23 (solid red), 17 (dashed red), 11 (solid blue) and 5 

(dashed blue) hr into a 24 hr sinusoidal surface unsteady temperature T$ = 12sin(2TTt/864Q0) K. The solid and dashed pairs 

of red and blue curves respectively represent ideal temperature measurements which are it  radians out of phase.

A priori information is also introduced with covariance CTu containing a covariance 

function o l uf T where f T is a function of the time lag t 7. The standard deviation a Tu isl S ls

tested in the range a Tu e [10"4 ,104] K. The form of f T is limited only by the different shapes 

of Tsu that may be encountered and by the requirement that CTu is positive definite. 

Several covariance functions are tested with:

1 . no assumptions on the time variation of T$ such that f T =  1 ;

6 While introducing a background value into is effectively introducing an error in steady surface 

temperature 7 / investigations show that the inverse model is more stable in optimizing T5a when a 

background value is introduced into the initial T$ estimate.

7 The time lag is time before the measurement was taken.
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2 . an exponential function8  fT =  e~rx where r  adjusts the rate of decrease and t  is the 

time lag, reflecting the damping of subsurface unsteady temperature T u with 

depth;

CO STC'T3. a variation on the Hanning function such that fT =  0.5e_rT( l  + -------) where r c is a
T c

correlation time which effectively associates 7 /  with a fundamental frequency 

(Shen and Beck, 1992) and is equivalent to the cut off period in the Spectrum 

Inversion method of Wang (1992);

COSTCT4. a sinusoidal variation on the Hanning function such that fT =  0.5e-rT( l ---------- )
Tc

which damps the variance of the most recent part of 7/■

Figure 4.13 shows the exponential (2) and first modified Hanning (3) covariance functions, 

illustrating the effects of varying zc.

§ 0.8

•■8 0 6

0.4

0.0
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«  0.6

o 0.4

0.2

0.0

Time Lag [h]
a. b.

Figure 4.13. Covariance functions / T used to introduce apriori information into unsteady surface temperature Tvs\ a. 

exponential function / T -  e~rT with r  = 0.1 (solid), 0.25 (dashed), 0.5 (dot-dashed), 1.0 (dotted); b. modified Hanning 

function f T = 0.5e-rT( l  + £2pi) with r  =0.05 and r c = t MAX (solid), 0.75 tmax (dashed), 0.5 xMAX (dot-dashed), 0.25

*max (dotted), where rMAX -- 23 hr. The grey squares separate the timesteps.

The larger magnitude of fT close to r  =  0 allows the model more freedom to change 

associated values of the initial 7 /  estimate. More recent times (towards t  =  0) correspond 

to shallower depths where much of the variation in subsurface unsteady temperature T u 

occurs, in scenarios where there are no subsurface unsteady heat sources or sinks.

8 Exponential functions have been used before, as mentioned in Shen and Beck (1992).
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4.2.3.3 Results

The results show that the true unsteady surface temperature 7 /  profile is not well 

recovered without apropriate a priori information in covariance C Tu which complements

the initial 7 /  estimate. This is due to the loss of information on 7f  due to damping and 

lagging of the surface signal. The model introduces whatever features necessary to 7 /  -  

within the constraints imposed by C Tu -  to minimise the misfit between the calculated and

measured subsurface unsteady temperature T u. General features of the true 7f  profile 

are reflected in the optimized 7 /  when the a priori information is not too errant. Consistent 

use of an exponential or Hanning covariance function in CT u where

fT =  [e-rT,0.5e-rT ( l  +  respectively and r c =  P, the period of 7 / ,  yield the most

accurate results though this is not universally the case. A typical good result for each 

measurement is shown in Figure 4.14 where the exponential function works best for the 

S-shaped 7 /  while the second modified Hanning function (4) works best for the valley- 

and hill-shaped 7 / .

There are clear inaccuracies in the optimized 7 / ,  although examination of the unsteady 

subsurface temperature profile T u shows that the fit to the measurements is relatively 

accurate (see Appendix 9.4.4). While the initial 7 /  estimates in Figure 4.14 are constant, 

more often than not there is useful a priori information on 7 /  when investigating heat flow 

on a planetary surface. Results of tests performed which introduce frequency information 

into the initial 7£  estimate can be found in Appendix 9.4.4. In the face of uncertainty, 

however, a constant initial 7 /  estimate is recommended as significantly errant features 

introduced into the initial 7 /  estimate are likely to persist to some degree in the optimized 

7 / .  Care is also needed with the use of t c in selecting fundamental frequencies via 

covariance CT u as the model will tend to introduce oscillations to match high frequency

components of a measurement which may be due to noise, or layering.
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Figure 4.14. Optimization of unsteady surface temperature T%. The dotted blue curves represent the true profile, the 

dashed green curves constant initial estimate, and the solid blue curves the optimized T$. Each plot represents a 24 hr 

profile of T% leading up to a measurement at: a. time t = 23 hr into a sinusoidal T$ cycle with a covariance function 

f T = e~4r; b. time t  =  11 hr into a sinusoidal T% cycle with f T =  e~4x\ c. time t  = 17 hr into a sinusoidal T$ cycle with 

f i  = 0 .5e~4T( l  -  Sc°spnz)\ d. time t = 5 hr into a sinusoidal Tus cycle with f T = 0.5e_4r( l  -  2cô 7rr) where r  is the time 

lag and P is the period of Tvs.

A useful means of quantifying the information gained on T$ is the a posteriori covariance 

analysed alongside the a priori covariance. Here this is done in terms of the ratio of a 

posteriori (g tui) to a priori (aTuo) standard deviations (SD ratio) as presented in Shen and

Beck (1992). The SD ratio ra y — GjUi/OjUo is interpreted in the relative sense and is
ts s s

used as a guide to the information gain in T$ based on the a priori covariance CTu =  CTuo, 

the data covariance Cd =  Cdo and the a posteriori covariance matrix CTui (see Section 

2.2.3.5). The resolution of T /  follows naturally from the form of CTuo -  elements of CTuo 

which are close to zero express relative certainty in associated values of the initial T$
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estimate, therefore leaving them relatively unchanged in the inversion. This is reflected by 

a relatively large g t u i  in CTui and a consequently large SD ratio ra v . SD ratios of the
S S  T s

sample results of Figure 4.14 are presented in Appendix 9.4.4. The results are similar to 

those obtained in Shen et al (1992).

Generally, the behaviour of the model with respect to CTu and to a lesser degree the initial

7 /  estimate is similar to that displayed with T /  and F§, with suitably large standard 

deviation oTu and accurate initial T$ estimate resulting in smaller errors between the

optimized and true T § . The exception occurs where a Tv is overestimated and T$ is close

to the true value, which leads to instability -  an indicator of a relatively shallow misfit 

function gradient around the optimum point. The convergence is initially not smoothly 

quadratic but generally falls into quadratic optimization after a few iterations. 

Investigations show the former is due to the model oscillating T§  above and below the 

initial T f  estimate within a range a o Tu -  where a is a function of the unsteady 

temperature Frechet derivative y Tu (see Figure 4.1 and Sections 2.2.3.3-2.2.3.4) -  before 

settling on a particular shape, either in phase or t t  radians out of phase with CTu. The

model reaches the optimum point after a few to several tens of iterations though the 

general shape of T /  is fixed in the first few iterations. Convergence profiles of the sample 

results of Figure 4.14 are presented in Appendix 9.4.4.

4.2.4 Thermal Properties k, pc

Optimization of the conductivity k and thermal capacity pc is tested by inverting the ideal 

measurement profile of Figure 4.2 with a heat flow of 0.076 W /m 2. The model is initialized 

with k and pc between 10-75 % inaccurate relative to the true values of 3 W /m /K and 

2.133 MJ/K/m3, respectively. The standard deviations are tested in the range ak e [1 0 ' 

5 ,104] W /m/K and apc e [1,10s] MJ/K/m3. Ascent direction y k, y pc (see Figure 4.1, Sections

2.2.1.3 and 2.2.3.3-2.2.3.4) is preconditioned with an always-positive constraint; the 

model tolerates negative steady surface temperature T§ on its progression to
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convergence but negative k or pc leads to divergence in the forward module. See Section

2.1.2.2 for a discussion of k and pc related parameters in the model. The model shows 

similar behaviour to previous parameters where underestimated standard deviation ak, apc 

leads to instability.

An interesting behaviour emerging from the results is that the model is more effective at 

optimizing k from an initial estimate higher than the true value. Conversely, the model is 

more effective at optimizing pc from an initial estimate lower than the true value. This is 

due to low k and/or high pc inhibiting the range of temperatures that can be produced at 

depth within the medium . 9  This is behaviour can be traced back to the form of the Frechet 

derivatives (Section 2.2.3.3) which rely on the temperatures throughout the entirety of the 

medium -  not just at the boundaries. No temperature variation at depth means no 

gradients to calculate the Frechet derivative from, so the update in those sections is 

essentially zero. As with previous parameters, a stable region can be defined by a stability 

ratio for each physical quantity such that rd =  ok/ a d >  104  W/m/K 2  and r£ c -  apc/ a d >  

105  J/K/m3.

Figure 4.15a shows that the optimized k is not smooth but tends to a distribution of values 

centred close to the true value -  it may be smoothed by applying a mean or moving 

average filter at the preconditioning step of each iteration. Likewise, optimized pc is not 

smooth (Figure 4.15b) but the model optimizes pc to produce a temperature T u which is 

close to ideal data measurement d 0 (see Appendix 9.4.5 for the resulting profiles). 

Generally pc tends to a distribution of values about the true value. For both optimized 

properties the misfit between the calculated subsurface unsteady temperature T u and d0 

is less than KT40/).

9  Recall the effects of k and pc as presented in Sections 3.2.2 and 3.4.2.
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Figure 4.15. Conductivity k and thermal capacity pc optimized from a temperature inversion at time t = 23 hr into a 24 hr 

sinusoidal temperature cycle. The dotted blue curves represent true profiles, the dashed green curves initial estimates, and 

the solid blue curves the optimized thermal properties where: a. is a plot of k and; b. is a plot of pc. Grey squares represent 

sensor locations.

SD ratios of a posteriori to a priori standard deviations rak =  o k i / o k o and rapc =  frpc//crpco

may be used to quantify the results as with the unsteady surface temperature T$ in 

Section 4.2.3. SD ratios show that k is more resolved towards the surface which can be 

deduced from Figure 4.15a, and pc is better resolved towards the surface, which follows 

from most information on T u being towards the surface. In optimizing k the model 

converges after 2 iterations in most instances, excepting those where k is low. In 

optimizing pc the model can be terminated after 3-4 iterations. Generally it can be 

deduced that initializing the model with an initial k estimate higher than the true value or 

an initial pc estimate lower than the true value, and appropriately large standard deviation 

° 7c> °Pc promotes convergence of the model. The SD ratios and convergence profiles of 

the result samples of Figure 4.15 are displayed in Appendix 9.4.5 along with the 

temperature profiles.

4.2.5 Heat Sources and Sinks Ss

Optimization of steady heat source or sink Ss is tested by inverting the ideal measurement 

profile of Figure 4.2 with a heat flow of 0.076 W /m 2. Ss is initialized with an even 

distribution of sources and sinks in the range ±[10'6 ,10"2] W /m 3  about the true value of 0 

W /m3. The relatively large initial Ss estimates are used to ensure a discernible effect is
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produced while the smaller values test the sensitivity of the model to small changes in Ss. 

The standard deviation ass is tested in the range ass e [10"9,1 ] W /m 3.

Ideal measurement tests on Ss, as with all previous parameters, indicate that an 

underestimated oss fails to produce convergence. With initial Ss estimates in the range 

±[10~5 ,10'2] W /m 3  the model is fairly stable and symmetric in its response to heat sources 

or heat sinks as initial estimates. With initial Ss estimates in the range ±10 ' 6  W /m 3  the 

model is evidently more stable dealing with heat sources than heat sinks as initial 

estimates -  the exact reason for this is unclear though it may be that the model is more 

stable optimising from high estimates with positive temperature residuals than low 

estimates with negative temperature residuals. Figure 4.16 shows typical good results.
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Figure 4.16. Optimization of heat sources and sinks Ss. The dotted curves are true Ss profiles, the dashed curves initial Ss 

estimates, and the solid curves optimized S5. Plot: a. shows results from the range of relatively large initial Ss between -0.01 

and 0.01 W/m3; b. shows results from the range of relatively small initial Ss between -10-6 and 10-6 W/m3. Grey squares are 

sensor locations.

In Figure 4.16 it can be seen that the optimized Ss tends to a distribution of values about 

the true value which is generally the case. The rough profile, as with the thermal 

properties, does not significantly influence the subsurface temperature profile (see 

Appendix 9.4.6). SD ratios of resolved (a posteriori) to initial (a priori) standard deviation 

=  gssi/ osso show that Ss is better resolved at depth (see Appendix 9.4.6). A stability

ratio, identifying regions of good results, can be defined such that rds =  ass /a d >  1 0
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W /m 3 /K. The model generally converges after a single iteration, similar to the basal heat 

flow Fq , and steady surface temperature 7 /  (with stepping constant ^  =  1 ) . 1 0

4.3 Noisy Measurement

In reality the temperature measurement d 0 may contain errors related to:

1 . the precision of the sensors,

2 . truncation of the temperature profile due to a finite number of sensors and/or 

model discretization,

3 .  potential uncertainty about the depth of a sensor and

4. model limitations in accounting for transient physical phenomena.

It is important to characterise how the model will deal with these. To this effect synthetic 

errors (Gaussian random noise rj) are added to the ideal measurement of Figure 4.2 and 

the model benchmarked with these. As with the tests on the ideal measurement, a global 

view of the problem is considered the most informative and lends itself more readily to 

interpretation. Errors av are tested in the range 1 mK to 1 K with the lower range of the 

order of instrument precision and the upper range relating to modelling errors such as 

unknown subsurface properties. Two forms of the data covariance matrix Cd are used in 

the tests such that Cd =  adfz where fz =  [ e - r z , 1 ]  representing exponentially decreasing 

and constant variance respectively. In all cases r  =  1 .  Results of the ideal measurement 

tests are applied to ensure optimal stability of the model.

Noise related to sensor precision ( 1 )  and truncation of the temperature profile (2) r\s is 

modelled such that \rjs\ <  (rve~z. This form reflects an exponential decrease in variance of

1 0  This similarity in behaviour can be understood from the definition of the Frechet derivatives yd for 

F§, Tss and Ss in the inverse model (see Figure 4.1) which are explicitly related to the dual steady 

temperature STf (see Section 2.2.3.3 and/or Equation 2-73).
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d 0 with depth11. The model is limited to dry conditions with regolith properties independent 

of temperature. Measurements which are influenced by single transient events involving 

advection, convection, flow and/or temperature dependent properties may therefore be 

considered in the sense of measurement errors12. Errors in sensor depth for an accurate 

temperature measurement are equivalent to errors in temperature for an accurate sensor 

depth. Model and location errors (3 and 4) are therefore modelled in the form of random 

sensor noise r\m such that \r]m\ <  av, reflecting the fact that these effects are of unknown 

spatial distribution.

Figure 4.17 shows the ideal measurement of Figure 4.2 with heat flow Fg =  0.076 W /m2, 

along with error bars for r]s and rfm, and four d 0 profiles derived from each respective error 

regime -  these are used for all parameters in the presentation which follows.

E
£
Q.0)Q

283 287285
Temperature [K]

289282 283 284 285 286 287 288
Temperature [K]

Figure 4.17. Temperature measurement from hr 23 of a 24 hr sinusoidal surface temperature cycle, with random errors (solid 

red curves illustrate upper and lower extremes) which: a. decrease with depth according to \tjs \ < K; b. are constant 

with depth according to \r]m\ < The grey curves are the profiles with errors defined by: double-dot-dashed {av - 1 mK),

dot-dashed (av =10 mK), dashed = 100 mK), dotted (a  ̂ = 1 K). The grey squares are sensor locations which follow the

true profile (red dotted curve; = 0 K).

11 Noise is expected to decrease for sensors further from the surface as they tend to experience 

fewer transient phenomena providing a more reliable equilibrated temperature measurement.

12 These are equivalent to unknown unsteady heat sources or sinks Su.
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4.3.1 Basal Heat Flow FSB

4.3.1.1 Instantaneous Measurement with Low Skin Depth (Diurnal)

As with the ideal measurement tests, F§ is initialized between 10-75 % inaccurate relative 

to the true value of 76 mW/m 2  while its standard deviation aFs is tested in the range a Fs e

[10'5 ,103] W /m 2. The data standard deviation ad is tested in the range ad e ^ O ^ K )]  K. 

Tests are performed with the assumption of both exponential and constant uncertainties in 

data covariance Cd such that crde~z =  Gne~z and ad =  cr̂  K, respectively.

Figure 4.18 shows distributions of errors in the optimized F§ value for different noise 

levels (r]s and r]m) and assumptions (<7 d); the errors in the optimized data measurement 

follow a similar trend. With the exponential error model |t7 s| <  ane~z the distribution of 

results is fairly similar for noise levels av from 1 to 100 mK, though there is a gradual 

decrease in accuracy which is not resolved by the histograms (Table 4.1). There is a clear 

shift in accuracy when an is 1 K. The assumption of exponential errors matching the 

model such that (rde~z =  ave~z produces the most accurate results.

The model is less stable with the constant error model |r7m| <  av. The accuracy of the 

optimized F§ falls off relatively rapidly as av increases. With av at 100 mK there is some 

meaningful improvement (here considered 25 %) on most of the initial estimates while 

av =  1 K produces little meaningful improvement on the initial estimates (most diverge). 

The assumption of constant errors matching the model such that ad =  a^ produces the 

most accurate results.

General trends in the results confirm that the accuracy of the optimized F§ decreases with 

increasing noise rj in the data measurement indicating increasing difficulty for the model to 

find the true value of F§. As noted earlier in the text, a stability ratio of standard deviations 

can be defined for an arbitrary model parameter m  and data measurement d  such that

F̂
Td1 =  Gm/°d- For the exponential noise model rjs, stability ratio rdB =  aFs /a d >  1, with the
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F**most accurate results occurring at rdB = 1 0 0 , assuming exponential uncertainties, and

F̂  F̂
rdB =10 assuming constant uncertainties. For the constant noise model rjm, rdB >  1, with

pS ___
the most accurate results occurring at rd =  10. There are indications that larger stability 

ratios produce better results for smaller noise levels. Example plots of the stable regions 

are shown in Appendix 9.4.9.
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Figure 4.18. Accuracy of optimized FSB -  |ef s j -  from inverting noisy subsurface temperature measurements generated by a 

sinusoidal surface temperature with a 24 hr period. The red plots are for noise model \ t j s \ < a^e'2 while the inset plots are 

for noise model \ijm\ < Assumed noise profiles (represented by standard deviation od) coordinate with colours 

according to bright red and indigo (ade~z -  a^e'2 K) and light red and indigo (ad = an K), being the maximum noise 

level. Plot: a. is for =1 mK; b. for on =10 mK; c. for av =100 mK and; d. for =1 K. Note that for d. the scale is cut off 

at |ef s | =1 but the the inset values go beyond 1 -  i.e. for those the model diverged. The histogram binsize is 0.05. The light 

green background histogram in plot a. is the intial distribution of FSB error used in all tests.
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Most generally, the results indicate that applying the stability ratio conditions (along with 

skin depth, monitoring period and measurement frequency conditions highlighted in 

Section 4.2.1) creates an optimal setup for convergence of the model on the true value of 

F§ , if all other model parameters are correct. Of course, simultaneous optimization of F§. 

with another unknown model parameter can be attempted.

Table 4.1. Minimum absolute value of optimized basal heat flow relative error ef s from inversion tests with noisy data based 

on exponentially depth dependent i j s and constant r jm noise models with maximum error Inversion tests are performed 

with assumed data error (standard deviation) a d .

l*7sl ^  <rv e z

M K ] 1E-3 1E-2 1E-1 1E0 <*d

7.50E-7 1.33E-6 2.23E-3 5.52E-2 ove~z

6.15E-5 2.22E-3 4.95E-3 7.74E-2 ffn

I fb I
IVm\ ^  Oi|

1.06E-5 3.49E-2 5.96E-2 8.59E-2 one 2

1.09E-4 6.59E-3 2.77E-3 5.15E-2

4.3.1.2 Long-Period Measurements with High Skin Depth (Annual)

As with the ideal measurement tests, long-period measurement tests are performed with 

noisy measurements which: 1. cover the full period of a 360 d surface unsteady 

temperature T<f cycle with a measurement frequency of 1 per day (Figure 4.5); 2. are 

taken from the end of the 360 d T /  cycle as an instantaneous measurement (Figure 4.4). 

The measurements are taken on a 10 sensor grid with the constant noise model |?7 m| <  

used to add noise of standard deviation an of 10 mK and 1 K at each sensor location 

(Figure 4.19; note that while one skin depth is shown, two are tested with k =  0.3 and 3 

W/m/K).

F |  is initialized between 25-100 % inaccurate relative to the true value of 76 mW/m 2  while 

its standard deviation aFs is tested in the range aFs e [10'3 ,103] W /m 2. The data standard
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deviation ad is tested in the range od e [1 O'4 ,10] K. Tests are performed with the 

assumption of constant uncertainties in data covariance Cd such that od =  av K.
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Figure 4.19. Noisy temperature measurements for a 360 d sinusoidal surface temperature cycle with conductivity k of 0.3 

W/m/K. The bright red profiles represent instantaneous noisy measurement at the end of the 360 d cycle (dashed grey plots 

are true profiles); the light red profiles represent daily measurements (displayed in 3.6 d increments) over the 360 d cycle 

(dotted grey contours are the true profiles). Contour: a. shows the measurements with standard deviation cr̂  = 10 mK; b. 

shows the measurement with standard deviation = 1 K. The grey squares are sensor locations.13 Note that parts of the 

true profiles may be hiddens by the measurements

The results demonstrate the optimization of the temperature measurement, essentially 

removing the noise from the data (Figure 4.20). F§ is less effectively optimized than the 

equivalent cases in Section 4.2.1.2.2 with the ideal measurement (k =  0.3 and 3 W/m/K), 

although the trends established with the frequency of temperature measurements are the 

same -  more measurements give better results (Figure 4.21). Note, therefore, that results 

with k =  3 W /m/K are note illustrated (recall that those mostly diverged in the ideal

13 The high frequency oscillations towards the surface show the penetration depth of the diurnal 

temperature fluctuations. To replicate them in the inversion a high density temporal grid is required 

to match the oscillation frequency of the diurnal temperature over 360 d which proves impractical 

with limited computing resources. Also, replicating the diurnal variations is unnecessary here as 

they play no major role in masking the basal heat flow Fjj. This is overcome by ignoring the surface 

sensors which measure the diurnal temperature fluctuations, allowing the use of larger timesteps 

which effectively resolve the longer period changes over the 360 d period.
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measurement tests of Section 4.2.1.2.2), they are mentioned only with relevance to 

general trends.
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Figure 4.20. Temperature profiles for basal heat flow FSB, optimized from noisy measurements for a 360 d sinusoidal surface 

temperature cycle with conductivity k of 0.3 W/m/K. The solid blue curves are optimized profiles, the solid red curves 

measurement profiles with standard deviation =1 K and dotted grey curves the true profiles. Grey squares are sensor 

locations. Plot a. represents an instantaneous temperature profile at the end of the 360 d cycle; Countour b. represents a 

daily temperature record over the 360 d cycle (displayed at 30 d increments for visibility).
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Figure 4.21. Distribution of the error |ef s/| in basal heat flow FSB, optimized from noisy measurements for a 360 d sinusoidal 

surface temperature cycle with conductivity k of 0.3 W/m/K. The bright red foreground represents the distribution of |eFsi j 

for o’,, = 10 mK; the light red represents the distribution of |eFs/| for tr, = 1 K; the green represent the intial distribution of 

Fsb error used in all tests. Histogram: a. represents the distribution of optimized FSB error for the instantaneous 

measurement; b. represents the distribution of optimized FSB error for the long-period measurement. The histogram binsize

is 0.05.
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Table 4.2 summarises the results in terms of the modal accuracy encountered with 

measurements of different error and different measurement frequency. It is interesting to 

note that errors up to 10 mK give results very similar to the cases with no errors, 

suggesting having errors up to 10 mK in a measurement does not significantly deteriorate 

the quality of the optimized results.

In several cases, interestingly, measurements with larger noise amplitude produce results 

which are more accurate (Table 4.2). More accurate results suggest that the inverse 

model has more freedom to explore the joint model and data space [D, M] (see Section 

2 .2 ); this is evidenced by trends in the results as data standard deviation ad is increased. 

However, ad and model standard deviation om in covariances Cd and Cm, which define 

[D, M], are fixed in a number of cases, such that they don’t play any role in the variation of 

optimized Fg accuracy.

The cases with fixed Cd and Cm effectively contain as variables the noise rjm and the initial 

basal heat flow accuracy F§°. Additionally, if implicit characteristics of temperature data d Q 

are considered, the skin depth zSKIN and the length (instantaneous or long-period) of the 

temperature measurements can be included as variables. The explanation for the 

counterintuitive noise results must, therefore, also lie in the form of measurement d0 with 

r]m and F§° which, notably, stipulate the starting point of the optimization algorithm in the 

solution space [D,M].

Correlating the frequency of the counterintuitive noise results with the variables noted 

above (Appendix 9.4.8) shows that the counterintuitive results are due to instabilities 

introduced by the large number of unique temperature gradients in the long-period 

measurement cases, and increased skin depth zSKIN (also see Section 2.2). This 

conclusion is supported by the fact that no such counterintuitive result is found in the 

instantaneous, low skin depth cases presented in Section 4.3.1.1 (also see Appendix 

9.4.9).
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Increasing crd (relative to am =  <j f s ) ,  in the range of values tested, appears to stabilise the

inverse model, reducing the number of counterintuitive cases. This happens because 

increasing the size of the data space D of [D,M], relative to model space M (see Section

8.2.3 for further discussion), allows for a larger solution set of estimates for optimal 

temperature data d. Setting ad too large, however, results in the model returning F§° as a 

solution, as all the weight is placed on this initial guess.

Table 4.2. Modal optimized basal heat flow relative error eFsi where the improvement on the initial estimate is at least 25 %. 

This is from inversion tests with noisy data based on constant noise models r jm  <  a n where a n . represents the maximum 

error in a measurement where m  is the measurement frequency of the measurement.

\Vm\ ^  <rv

m 1 360 M K ]

MODAL
0.0686 7.223E-3 0

0.0695 0.02694 0 . 0 1

€piI I1 r B \
0.1426 0.01523 1

4 .3 .7.3 Thermal Property Errors

In Section 4.2.1.2.3 the results of optimization tests on ideal measurements with 

inaccurate thermal properties are presented. These illustrate positive correlation between 

the accuracy of k and the optimized basal heat flow F§ , and negative correlation between 

the accuracy of pc and optimized F§. It is more likely that a noisy data measurement will 

be accompanied by inaccurate thermal property estimates. Here, tests are performed on 

the same measurements presented in Figure 4.19 with inaccuracies in thermal properties.

F§ is initialized between 25-100 % inaccurate relative to the true value of 76 mW/m 2  while 

its standard deviation aFs is tested in the range aFs e [10'3 ,103] W /m 2. Conductivity k and

thermal capacity pc are initialized within 25-90 % of their respective true values of 0.3 

W/m/K and 2.133 MJ/K/m3. The data standard deviation ad is tested in the range ad e [10~ 

4 ,10] K. Tests are performed with the assumption of constant uncertainties in data 

covariance Cd such that ad <  K. Figure 4.22 shows representative results.
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Figure 4.22. Temperature profiles at different times as a function of depth z with inaccurate thermal properties for basal heat 

flow Fsb optimized from noisy data with standard deviation av = 1 K. The measurements are generated by a 360 d sinusoidal 

surface temperature cycle, with true conductivity k of 0.3 W/m/K and thermal capacity pc of 2.133 NIJ/K/m3. Plot: a. has 

innaccurate k = 0.03 W/m/K; b. has innacurate pc = 0.2133 MJ/K/m3. The solid blue curves are optimization results and the 

dotted red curves the inverted measurements. The solid grey curves represent the true profiles with grey squares 

representing sensor locations, and following the true steady temperature Tss profile.

It is clear that the inversion does not work well with inaccurate k and inaccurate pc. The 

particular behaviour of each parameter is discussed in Section 4.2.1.2.3 with the ideal 

measurement. O f course, in practical situations results sim ilar to those in Figure 4.22 are 

re-evaluated to reduce the misfit between temperature profiles, or equivalently, the 

thermal properties optimized. The results follow  a sim ilar trend to that highlighted in the 

related ideal m easurem ent case in Section 4.2.1.2.3, with direct and inverse correlation 

between the relative errors in F | , and the relative errors in k and pc respectively. This is 

true, in particular, when the data standard deviation is constrained to ad =  10'4 K. The 

higher values of tested <jd produce significant scatter in the data, obscuring the parameter 

correlations. This confirms a need to constrain od to small values relative to model 

standard deviation a Fs (may include ak and apc in simultaneous optimization) when the

error in thermal properties or boundary parameters is large. Making ad small gives the 

tem perature m easurem ent high weighting and effectively forces errant model parameters 

to conform to its values.
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4.3.2 Steady Surface Temperature 7f

As with basal heat flow F§, 7 /  is initialized between 10-75 % inaccurate relative to the true 

value of 287.15 K while its standard deviation gt s is tested in the range a Ts e  [10"4,104] K.

The data standard deviation ad is tested in the range ad e [104 ,10] K. Tests are performed 

with the assumption of both exponential and constant uncertainties in data covariance Cd 

such that ad < a ne~z and ad <  av K, respectively.

Figure 4.23 shows distributions of errors in the optimized 7 /  value for different noise 

levels (r]s and rjm) and assumptions (ad) -  they mirror the errors in the optimized data 

measurement. The distribution of optimized 7 /  remains noticeably unchanged across the 

different noise models (r]s and r\m) and different error assumptions with standard deviation 

(id. This can be understood in the sense that the optimization of 7 /  is mostly determined 

by the surface values of r]s and r)m and is therefore not directly affected by ad depth profile 

assumptions. Of course, in a simultaneous optimization case, T§ may be affected by other 

parameters which are influenced by depth profile assumptions (e.g. basal heat flow F§ 

and unsteady surface temperature T$) There is increased inaccuracy in the optimized 7 /  

as noise level tj increases (Table 4.3), but these are not resolved by the histogram 

binsize.

Note that the case of r\m producing better results than r}s for Gn - 10'3 is a chance 

occurrence where the surface value of rjm is smaller than that of 7 7 .̂ A stability ratio of

rpS
standard deviations can be defined such that rds =  oFs /a d >  10 , with the most accurate 

results occurring at rdB =  10 .
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Figure 4.23. Accuracy of optimized Tf  -  |ers/| -  from inverting noisy subsurface temperature measurements generated by a 

sinusoidal surface temperature with a 24 hr period. Plot: a. corresponds to noise model |i/s| < cr^e-2 while plot; b. 

corresponds to noise model |ijs | < atj. Green represents the apriori error distribution of |67$o | (applies to all case) while red 

represents the optimized distribution |cr5/|. The histogram binsize is 0.05.

Table 4.3. Minimum absolute value of optimized steady surface temperature relative error eTsi from inversion tests with 

noisy data based on exponentially depth dependent rjs and constant r/m noise models with maximum error Inversion 

tests are performed with assumed data error (standard deviation) ad.

t£

av K 1 E - 3 1 E - 2 1 E - 1 1 E 0 Od
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4.3.3 Unsteady Surface Temperature T us

The behaviour of the model in optim izing T$ generally reflects increasing difficulty in 

finding the true T§  profile with increasing noise measurement rj but as with the ideal case, 

is strongly dependent on a priori information. Here the model is initialised with the most 

stable results of tests in Section 4.2.3 with the ideal measurement -  specifically a

covariance CTu with an exponential or equivalent Hanning covariance function f T =
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[e-rT,0 .5e"rT( l  respectively and r C =  P, the period of 7 /  where t£* =

T$a sin ( jy -  +  <p̂  +  /3 K  (see Appendix 9.1 for symbol definitions). Figure 4.24 shows

typical good results of the optimization from both the exponential noise model r)s and the 

constant noise model r]m.

The most accurate fit is obtained when the initialization of Cd , C Tu and 7 /  allows the initial

T$ estimate to evolve freely into the true 7 /  value. Relatively unconstrained Cd appears to 

have allowed an improved estimate of 7 /  towards t  =  0. The results also illustrate the 

optimization of the noisy data measurement, most striking in the case of the constant 

noise model rjm. A stability ratio is evident in the data relative to ad and <rT u where -

T Uconsistent with the two other boundary parameters -  rds >  10 .
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Figure 4.24. Optimization of unsteady surface temperature Tvs from a noisy temperature measurement at time t = 23 hr into 

a sinusoidal Tus cycle. The blue dotted curves represent true profiles, the green dashed curves initial estimates (and 

measurements), and the blue solid curves the optimized profiles. Plots a. and c. are respective pairs of Tus and optimized 

unsteady subsurface temperature profiles Tu inverted from a noisy measurement T, with the exponential noise model 

Itysl < <rve~z. Plots b. and d. are respective pairs of T$ and Tu inverted from T with the constant noise model \t]m\ <

The grey squares are sensor locations.

4.4 Summary

A model which inverts a data measurement d0 to optimize basal heat flow F§, surface 

steady and unsteady temperatures 7 /  and 7 / ,  conductivity k, thermal capacity pc, and 

heat sources and sinks Ss is presented. The model is based on the theory outlined in 

Chapter 2, utilizing the forward model of Chapter 3 as a major component. The main 

parameter of interest is F§ and the presentation aims to illustrate how different model 

parameters m  influence its optimization in an inversion.
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The results show that the model optimizes F |  and other parameters to their true values 

when model and data covariance Cm and Cd satisfy specific characteristics. Ratios of 

standard deviations (stability ratios) -  between two model parameters r™* or model and 

data parameters r™ -  are used to assist in quantifying the convergence characteristics of 

Cm and Cd. Tests show that the r. a n d  r™ are -  to first order -  consistent between 

optimized model parameters such that r ^ 1 =  (see Appendix 9.4.7.3). They are

related to the fundamental physical units of the model parameters being optimized and 

data being inverted, along with the conditioning of the dataset. This is indicated by results 

with basal heat flow F# and steady surface temperature 7 /  (see Appendix 9.4.7.1). The 

analytical relationships involving r ^ 1 and r™ are likely discoverable in the theory outlined 

in Section 2.2 (see Appendix 9.8.2 for a potential approach) or can be quantified after 

performing several analyses of the type done here with a diverse range of datasets.

When optimizing single parameters, improved optimized results (up to 99 % and better) 

are achieved from initial estimates between 10-100 % inaccurate. A more accurate initial 

estimate generally produces a more accurate optimized result in an idealised situation. 

For basal heat flow F§, results are more accurate for shallower skin depth zSK1N and 

longer monitoring periods with a minimum of 10 measurements over a surface 

temperature Ts cycle -  see Section 4.2.1.2). For instantaneous or short period, low 

frequency measurements, F§ is more accurately optimized when the measurement is 

taken at a point where Ts is at a minimum. When F§ is optimized with inaccurate thermal 

properties the physical relationships between F§ and the unknown properties determine 

the accuracy of F§ and whether or not it is overestimated or underestimated (see Sections

4.2.1.2.3 and 4.3.1.3). F§ is less accurately optimized with increased data noise though 

results with long period high frequency measurements suggest random noise of large 

magnitude (1 K) may stabilize the result when skin depth zSKIN is important (see Section 

4.3.1.2). Noisy data is also optimized by the model, in the process of optimizing F |  and 

other parameters. Optimization of surface steady and unsteady temperatures 7 /  and 7 / ,
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conductivity k, thermal capacity pc and heat sources and sinks Ss is discussed in 

Sections 4.2.2-4.2.5 and 4.3.2-4.3.3.

When simultaneously optimizing two or more parameters accurate optimized results are 

obtained only when the initial model parameter estimates are constrained to within 

particular limits. The steady surface temperature 7SS is the most stable in optimization 

either solely or with other parameters. The accuracy of optimized basal heat flow F§ 

correlates with other model parameters based on their physical relationships in the heat 

flow problem (see Appendix 9.4.7). When optimized with r /  or k, F§ is optimized to within 

25 % of its true value when T /  and k are within 25 % of their true value. If F§ is optimized 

with inaccurate k or pc, relative errors in the optimized F§ correlate directly with relative 

errors in k and inversely with the relative errors in pc due to their roles in determining the 

steady temperature T s gradient and the skin depth zSKIN (see Sections 3.2.2 and 3.4.2).

The results presented here highlight principles which can be applied to optimize unknown 

parameters which affect the basal heat flow F§, along with Fg itself. Applying these 

principles may require some experimentation (e.g. with the magnitude of standard 

deviations to design the most suitable covariances) to guarantee the most accurate 

optimized F§ from the data. These principles are applied to realistic datasets in Chapters 

5-7.
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5.1.1 Martian Thermal History and Models

An accurate estimate of planetary heat flow on Mars can place an important constraint on 

the numerous existing Martian thermal evolution models which predict its current thermal 

state. Combined with other measurements (see below), a Martian heat flow estimate can 

aid in answering important questions about Mars’ remnant magnetic field (e.g. Stevenson 

et al., 1983; Nimmo and Stevenson, 2000), its present state of volcanism (e.g. Grott and 

Breuer, 2010), its surface cooling history (e.g. Spohn, 1991; Weizman et al., 2001) and its 

current internal state. Answering the former questions for Mars will also further the 

understanding of the thermal evolution of other planets (e.g. Komle et al., 2011; Dehant et 

al., 2012).

Martian thermal models can broadly be classified into so-called plate cooling (e.g. Breuer 

and Spohn, 2003) and stagnant lid models (e.g. Weizman et al., 2001; Hauck and Phillips, 

2002; Grott and Breuer, 2010; Morschhauser et al., 2011), though different models may 

include episodes of either of the former, piped volcanism (e.g. Spohn, 1991; Weizman et 

al., 2001) and dynamo activity (e.g. Spohn et al., 2001a) over their course.1 Collectively, 

these thermal models typically predict current global heat flow in the range of 5-25 

mW/m2; plate cooling in the lower subrange and stagnant lid in the higher subrange, 

though some models predict global averages up to 45 mW/m2 (Urquhart and Gulick, 

2003).

Current heat flow predictions of the former models differ by only a few percent in several 

instances (see Spohn et al., 2001a for several examples); these are unlikely to be 

differentiated by a heat flow measurement, which may not achieve an accuracy below 10

1 Plate cooling refers to crustal plate differentiation from a magma ocean, while stagnant lid 

accounts for a layered lithosphere which includes a crust and a rheological lithosphere, together 

forming an insulating ‘stagnant lid,’ atop a convecting mantle which contributes significant heat flow 

(e.g. Spohn, 1991).
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% (e.g. Grott et al., 2007b). In the preceding cases, additional observable model 

parameters are required to select one particular thermal model over another (e.g. Grott et 

al., 2014).

Lithosphere thickness is one observable that attains different current states in tectonic 

plate cooling and stagnant lid models (e.g. Spohn et al., 2001a). Tectonic plates allow the 

mantle of a planet to cool more efficiently, leading to lower mantle temperatures and 

accelerated lithosphere growth. A stagnant lid, on the other hand, insulates the mantle, 

thereby increasing mantle temperatures and reducing lithosphere growth. Volcanism may 

complicate the interpretation of lithosphere thickness, as it can occur in both plate 

tectonics and stagnant lid regimes and increases the relative thickness of the lithosphere 

(e.g. Spohn, 1991; Weizman et al., 2001).

Interpretation of the planetary heat flow can be aided by decomposing it into a crustal 

component, produced by the decay of radioisotopes (e.g. Taylor et al., 2006; Boynton et 

al., 2007) and a mantle component2, produced by mantle and core cooling (Grott and 

Breuer, 2010; Hahn et al., 2011). Determining the planetary heat flow along with the 

crustal distribution of radioisotopes, and mantle and core size from seismological studies 

(e.g. Spohn et al., 2001a; Dehant et al., 2012) can therefore go some way in determining 

crustal thickness, the thermal state of the sub-crustal interior, and consequently 

constraining the current thermal history model of Mars (e.g. Grott et al., 2014).

5.1.2 Martian Heat Flow Measurement

Mars’ environment presents unique challenges for reliable planetary heat flow 

measurement due to its substantial, dusty atmosphere and potentially icy regolith. These 

can produce small-scale, short-term fluctuations in surface and shallow subsurface 

temperatures -  and regolith properties -  which may bias the result of any shallow, local

2 The mantle heat flow component is known as reduced heat flow in Earth-based studies (e.g. 

Sclater et al., 1980; Jaupart et al., 1981).
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heat flow measurement (e.g. Grott et al., 2007b). The former fluctuations are second 

order, with the variation in insolation causing the main fluctuations.

The Thermal and Electrical Conductivity Probe (TECP) of the Phoenix lander measured 

shallow subsurface conductivity, thermal capacity and temperature on Mars (Zent et al., 

2010), integrated over 15 mm directly below the surface. However there are, to date, no in 

situ heat flow measurements -  i.e. depth-resolved measurements of thermal properties 

and temperature. Current proposals with the latter capability include the Heat Flow and 

Physical Properties Package (HP3) -  a heat flow probe developed for deployment on 

terrestrial bodies (Spohn et al., 2001b; Spohn et al., 2010; Komle et al., 2011; Dehant et 

al., 2012; Spohn et al., 2012). HP3 is a planned payload on NASA’s Interior Exploration 

using Seismic Investigations, Geodesy and Heat Transport (InSight) mission (Banerdt et 

al., 2012; Spohn et al., 2012; NASA, 2014). As HP3 is designed to carry out the type of 

measurement investigated in this work, the model presented in Chapter 4 is applied to 

different Martian scenarios to assess the feasibility of returning a reliable planetary heat 

flow estimate from a HP3 measurement on Mars.

There are estimates of Martian palaeo-heat flow from crustal deformation models (e.g. 

Grott et al., 2007a; Ruiz et al., 2011) and estimates of current global heat flow distribution 

from models of crustal thickness and radioelement distribution (Grott and Breuer, 2010; 

Hahn et al., 2011; Dehant et al., 2012). As noted in Section 5.1.1, stagnant lid and plate 

cooling Martian thermal models typically predict heat flows in the higher and lower sub 

ranges of 5-25 mW/m2, respectively. There is also an expected variation of heat flow in 

relation to local crustal thickness and the abundance of heat producing elements (Figure

5.1 -  after Dehant et al., 2012; also see Grott and Breuer, 2010). Hahn et al. (2011) 

produce a similarly featured crustal heat flow3 map and calculate an average crustal heat

3 The map of Hahn et al. (2011) presents only the crustal component of the heat flow as opposed 

to total surface heat flow which accounts for both the crustal, mantle and core components of heat 

flow.
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flow component of 6.4 ±0.4 mW/m2 which is similar to the crustal heat flow reported by 

Grott and Breuer (2010).4

Based on a global mean heat flow of 20 mW/m2from the stagnant lid regime, Grott et al. 

(2007b) estimate that Martian heat flow can be measured to an accuracy within 30 % 

given measurements over at least a Martian year, depths of 3-5 m and temperature 

measurement precision of 0.1 K. Dehant et al. (2012) demand a higher precision of 0.05 K 

for depths up to 2 m based on the same global mean heat flow. An accuracy of 30 % is 

not sufficient to corroborate the predicted heat flow difference between adjacent regions of 

Figure 5.1, save for, possibly, the Tharsis region with high heat flow (Figure 5.1b; ~30 % 

heat flow difference between green, yellow and red).5 For a given heat flow situation 

(Figure 5.1a), a 30 % accurate heat flow estimate can resolve differences between say, 

the highest (red-orange; > 23 mW/m2) and midddle (green; 17-21 mW/m2) regions.

To get the most representative heat flow measurements, probes may be sent to sites at 

which the heat flow is expected to be close to the global mean, potentially adjusted for 

high heat flow at Olympus Mons (see Figure 5.1) or several representative sites where the 

relevant model parameters are well known. Sites with a minimal range of surface 

temperature variation are also ideal to avoid temperature dependent variation of thermal 

properties (see below), and minimise masking of the steady temperature by the unsteady 

temperature -  such sites are, for example, close to the equator. Equatorial sites also 

minimise the chances of encountering icy deposits (e.g Boynton et al., 2002) which can 

diminish the usefulness of the measurement due to the relatively high conductivity of ice. 

Equatorial sites also minimise the effect of longer period (>1 M yr) temperature changes 

due to Mars obliquity cycle (Grott et al., 2007b). Thicker crust focuses heat flow; therefore

4 The results are based on the same dataset, with similar methods.

5 Dividing the regions by colour (mW/m2) into red-orange (>23), yellow (21-23), green (17-21), light 

blue (15-17) and dark blue (<15); or respectively <40, 30-40, 17-30,15-17 and <15 mW/m2 for high 

Tharsis heat flow. Percentage differences are calculated by taking the means of the ranges and 

calculating the difference relative to a lower adjacent range.
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planetary heat tends to escape from regions of lower elevation than regions of higher 

elevation. This means the heat flow measured in a relatively flat region is least likely to 

suffer from distortions due to topography dependent lateral heat flow (e.g. Wang, 1992) 

though unknown subsurface heterogeneities may still produce lateral heat flow.

■■■■■■■■■— — —  ' i —
1 5  2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5

Surface Heat Flow [mW/m2]

— — — — — «• t  i
14  1 6  18  2 0  2 2  24

2
a Surface Heat Flow [mW/m ] ^

Figure 5.1. Expected surface heat flow distribution on Mars from surface crustal thickness and heat producing element 

abundance a. nominally and b: with active plume below the Tharsis region (red polygon). Credit: Dehant et al. (2012), based 

on the model of Morschhauser et al. (2011) -  also see Grott and Breuer (2010). Hahn et al. (2011) obtain a crustal heat flow 

distribution similar to that on the right with values between 0-13 mW/m2 (note that the distributions above take into account 

total surface heat flow, hence the higher values). The filled white circle indicates the approximate site of the Phoenix lander 

at ~234°E 68°N Zent et al., 2010.

Grott et al. (2007b) and Spohn et al. (2012) focus on the Elysium region of Mars for 

candidate landing sites (Figure 5.2, white ellipse). In this investigation, three sites (Figure 

5.2, small squares) are investigated which are distinguished as middle (green -1 7  

mW/m/K), high (red -2 2  or 40 mW/m/K) and low (blue -1 5  mW/m/K) expected heat flows, 

as mapped in Figure 5.1. These sites include the site modelled in Grott et al. (2007b) 

which is located at 120°E 20°N -  in the middle heat flow range, and the baseline landing 

site for the InSight mission Spohn et al., 2012 at 139°E 1°N -  in the low heat flow range. 

The high heat flow site on the Tharsis plateau at 253°E 2°N is selected due to current 

unknowns regarding the peak heat flow from that area (Grott and Breuer (2010); also see 

Figure 5.1).
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Figure 5.2. Potential heat flow probe landing sites (filled rectangles) identified on Mars Orbiter Laser Altimeter (MOLA) 

topographic map. The green rectangle (120°E 20°N, after Grott et al., 2007b) represents middle (~17 mW/m/K), the red 

rectangle (253°E 2°N) high (~22 or 40 mW/m/K) and the blue rectangle (139°E 1°N, after Spohn et al., 2012) low (~15 mW/m/K) 

heat flow regions as seen in Figure 5.1. The unfilled red rectangle identifies the Tharsis region, the unfilled red ellipse the 

Elysium region. The filled white circle indicates the approximate site of the Phoenix lander at ~234°E 68°N Zent et al., 2010. 

Topographic map credit: NASA

5.2 Further A Priori Information

The estimates of Martian basal heat flow discussed above form part of the a priori 

information available in an inversion. The quality of information on other Martian boundary 

parameters and regolith properties are assessed below.

5.2.1 Steady and Unsteady Surface Temperature

Typical seasonal and diurnal temperatures on Mars vary over 150-315 K (Piqueux and 

Christensen, 2011). Diurnal temperatures vary on the order of 100 K while seasonal 

temperatures vary on the order of 50 K (e.g. Grott et al. (2007b); Zent et al. (2010); also 

see Figure 5.3). While a measurement over a full Martian year is recommended for 

recovering the planetary heat flow (Grott et al., 2007b), this monitoring period may not be
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achieved (due to premature instrument failure, for example). Mars is, however -  apart 

from Earth -  the most observed planet in the solar system: there is therefore abundant 

empirical information from orbiters, landers and rovers on climatic variations across its 

surface.

Large scale simulations such as the Mars Climate Database (MCD -  Millour et al., 2012) 

and the Mars Global Reference Atmospheric Model (Mars-GRAM -  Justh et al., 2011) 

integrate these empirical data to model Mars climate parameters. The model presented in 

Chapter 4 does not recover unsteady surface temperature to a precision or accuracy 

which would see any gains in surface temperature information above in situ 

measurements and estimates by MCD or Mars-GRAM. Also, in situ surface data may be 

available from the surface elements of a heat flow probe, following a long term monitoring 

period. Additionally results in Sections 3.4.1.2, 3.6 and 5.3.1 below show that the surface 

temperature becomes more sinusoidal with depth. This means that temperature 

measurements taken below unknown short period variations can be satisfactorily 

modelled by simple sinusoidal surface temperatures. Therefore, in this context, the 

Martian surface temperature may be considered known and/or knowable to a degree 

which would exclude it from the list of predictions in a temperature inversion.

Empirical measurements and outputs by MCD and Mars-GRAM are, however, limited to a 

superposed surface temperature while the model used here treats the unsteady and 

steady temperatures separately, in a partitioned solution. The steady temperature can be 

considered the mean of measurements made over at least a full Martian year; subtracting 

this from the superposed temperature then gives the unsteady temperature. Unknown 

longer term variations may contaminate the steady temperature in this sense, however 

Grott et al. (2007b) show that these should not perturb the heat flow beyond 15 %. The  

model is capable of simultaneously optimizing the steady and unsteady temperatures 

along with the basal (planetary) heat flow (see Appendix 9.4.7). This can isolate long term 

unsteady temperature variations as shown for Earth-focused studies (Beck et al., 1992; 

Shen and Beck, 1992; Shen et al., 1992; Wang, 1992). However the <5 m depth scales



proposed for heat flow probes like HP3 are too shallow to effectively sample the effects of 

long term surface temperature variations.

The surface temperatures presented here (Figure 5.3) are simulated by Mars-GRAM, 

based on the measurement sites identified in Figure 5.2. Mars-GRAM surface 

temperatures are generated for each site using a nominal Martian climate scenario -  the 

timings loosely coincide with the proposed timeline of the InSight mission which is slated 

to land on September 20, 2016 and begin taking measurements around 60 Sols later or 

after the heat flow probe reaches its maximum depth, continuing for at least 700 Sols to 

the end of mission (Spohn et al., 2012; NASA, 2013b).

Figure 5.3 shows that the annual mean surface temperature (blue curve) varies 

appreciably with location, indicating that it is not the best candidate for steady temperature 

on Mars, in estimating global planetary heat flow. Mean Martian heat flow is expected to 

remain constant over timescales of millions of years (e.g. Grott and Breuer, 2010), 

therefore estimating the steady temperature over a longer term leads to a more accurate 

heat flow estimate. In the case where there is only short term data or data from a single 

measurement, steady temperature may be estimated from a long term temperature 

average as output by a Martian Global Climate Model (GCM). For the demonstration 

purposes of this project, the simple case of the annual mean surface temperature as the 

steady surface temperature is considered sufficient.
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Figure 5.3. Surface temperatures Ts and T$) used in simulations for measurement sites at 120°E 20°N (a, b), 139°E 1°N (c, d)

and 253°E 2°N (e, f) as seen in Figure 5.1. The left plots are of Martian temperatures over one Martian year while the right 

plots show temperatures for the first Sol of the year. The solid red curves show diurnal temperature variation, the dotted

green curve the diurnal mean, and the solid blue curve the annual mean. These temperatures were produced by Mars-GRAM

time stepping over 1 Martian hour (see the Mars Climate Database (2013) for guidance on timings used).6
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6 The differences in diurnal variations at different sites are due to measurements starting at 

different local times. At 120°E 20°N (b), the local time is 22:42:21, at 139°E 1°N (d) the local time is
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5.2.2 Thermal Properties

Estimates of thermal conductivity are derived from heat flow probe measurements using 

variants of the line heat source technique (or transient hotwire method -  e.g. Seiferlin et 

al., 1996; Banaszkiewicz et al., 1997) where the conductivity is determined from the rate 

at which heat diffuses into the regolith from a heat source. Surface thermal properties 

have been mapped from orbit (e.g. Kieffer et al., 1977; Mellon et al., 2000 -  see Figure 

5.4; Christensen et al., 2001) and verified in some instances by landers and rovers (e.g. 

Zent et al., 2010; Hamilton et al., 2013). The referenced orbital measurements are in the 

thermal infrared, from which thermal inertias (see Sections 3.5 and 3.6) are derived. 

Results of these measurements indicate appreciable variation of thermal inertia with 

temperature. Regional variations in thermal inertia are associated with variations in 

regolith particle size, which correlates strongly with thermal conductivity (Piqueux and 

Christensen, 2009a,b).

In-situ measurements of thermal conductivity and thermal capacity by the TECP in the 

north polar regions are presented by Zent et al. (2010). The results in Zent et al. (2010) 

show relatively moderate temperature dependence of the thermal conductivity (~37 % 

linear change over 185-255 K) compared to that of the thermal capacity (~44 % 

exponential change over 185-255 K), though there is appreciable scatter in the data. 

Piqueux and Christensen (2011) model the temperature dependent thermal inertia of 

loose, and cemented homogeneous Martian regolith. Their results point to strong 

temperature dependence of the specific heat (75 % change over 150-315 K), and bulk 

(average) conductivity (30-50 % over 150-315 Kfor loose regolith, being largely controlled 

by the pore filling gas conductivity; lower percentage for cemented regolith where pore 

filling gas conductivity is less important). The Martian atmosphere is predominantly C 0 2, 

the thermal conductivity of which is strongly temperature dependent, as noted by Piqueux 

and Christensen (2011).

23:58:21 and at and 253°E 2°N (f) the local time is 07:22:21 -  all times Local Mean Solar Time 

(LMST -  see Appendix 9.5.1).
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Figure 5.4. Nighttime thermal inertia mapped by the Thermal Emission Spectrometer (TES) projected onto a Mars Orbiter 

Laser Altimeter (MOLA) topographic map. Both instruments are aboard the now defunct Mars Global Surveyor orbiter. The 

rectangles show sites at 120°E 20°N, 253°E 2°N and 139°E 1°N as seen in Figure 5.2. The red rectangle identifies the Tharsis 

region, the red ellipse the Elysium region. The small white circle indicates the approximate site of the Phoenix lander at 

~234°E 68°N Zent et al., 2010. TES map after Mellon et al. (2000). MOLA projection credit NASA, Ames Research Center.

The model of Chapter 4 is not capable of simulating temperature dependent thermal 

properties; however, the largest (diurnal) variations of temperature are confined to the 

upper few cm of Martian regolith while seasonal effects are mitigated by the smaller 

variation in temperature. These effects are reduced with depth and as the temperature 

amplitude is damped. Therefore, at greater depth, the model’s limitations become less 

important in recovering the basal heat flow. Additionally the variation of the unsteady 

temperature about the steady (mean) value means that temperature dependent thermal 

properties will also vary about a mean value which can be associated with the steady 

temperature. Effectively this means that temperature averaged thermal properties 

(associated with the steady temperature) can be used in determining the heat flow. 

Therefore here, depth-dependent, annual temperature averaged thermal properties are
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used.7 Additionally, shallow subsurface depths, in which most of the temperature variation 

occurs, can be ignored, providing the number of heat flow probe sensors that access 

depths below this variation (at least two) is sufficient. Nonlinearities in the temperature 

dependence of the thermal conductivity can further lead to increases in the mean (steady) 

temperature -  any such increase can be captured by surface temperature measurements 

of the heat flow probe.

Grott et al. (2007b) model depth-dependent thermal conductivities which monotonically 

increase from -0 .01 W/m/K (the thermal conductivity of C 0 2 gas at the temperatures 

considered) to 0.02 and 0.1 W/m/K respectively, at depth -  the same model is used to 

present the model simulations in Section 3.3.3. Zent et al. (2010) derive an average 

thermal conductivity of 0.08 W /m/K for the dust mantle layer (-1 5  mm) at the Phoenix 

landing site fitting better to the high conductivity model of the former. The aforementioned 

conductivities are consistent with the thermal inertias of Figure 5.4. Piqueux and 

Christensen (2011) model thermal conductivities up to 0.15 W /m/K at a typical Martian 

pressure of 530 Pa and typical Martian temperatures of 150-315 K. Grott et al. (2007b) 

use a specific heat capacity of 600 J/kg/K and an monotonic density model analogous to 

the conductivity model from a surface value of 1000 increasing monotonically to 1750 

kg/m3. Piqueux and Christensen (2011) note the results of Robie et al. (1970) which 

present measurements for specific heats of Apollo lunar samples -  these show an almost 

linear variation of -430-730  J/kg/K, over 150-315 K while density varies little with 

temperature. Zent et al. (2010) measure an average thermal capacity of 1.05 MJ/m3/K for 

the Phoenix landing site dust mantle layer -  which equals the asymptotic value of Grott et 

al. (2005) and is compatible with results in Piqueux and Christensen (2011).

7 The validity of the use of temperature averaged thermal properties is reduced for instantaneous 

measurements, or measurements which fall well short of a seasonal or diurnal temperature cycle 

associated with the skin depth.
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The mean annual surface temperatures from the measurement sites (Figure 5.3) along 

with the thermal inertia model of Piqueux and Christensen (2011) for uncemented regolith 

are used to derive regolith grain sizes. Mars-GRAM simulations also show appreciable 

variation of annual mean surface pressure between the measurement sites (789, 709 and 

340 Pa for 120°E 20°N, 139°E 1°N and 253°E 2°N8 respectively) -  the annual mean 

pressure from each site is used, along with the measurements of Presley and Christensen 

(1997a,b), and the derived grain sizes to estimate associated surface thermal conductivity 

values. The specific heats and surface densities are reasonable estimates consistent with 

the former where smaller particle sizes are associated with lower densities. The 

derivations are summarised in Table 5.1.

Table 5.1. Derived regolith surface thermal properties at selected measurement sites based on the thermal conductivity- 

temperature relationships of Piqueux and Christensen (2011) and the thermal conductivity-pressure relationships of Presley 

and Christensen (1997a),1997b). The regolith is assumed uncemented. (pE is the location, T f is the annual mean 

temperature, P f the annual mean pressure, /  the mapped thermal inertia, I the derived particle size, k  the derived 

temperature and pressure averaged surface thermal conductivity, p derived surface density and c the calculated specific 

heats.

<Pe  [+°E +°N] T i [K]
Pi

[Pa]
/  [J/m2/K/s1'2] MM m] k  [W/m/K]

P

[kg/m3]
c [J/kg/K]

120°E 20°N 212 789 234 800 0.060 1100 830

139°E 1°N 217 709 234 1000 0.065 1200 702

253°E 2°N 218 340 76 30 0.008 1000 722

Hypothetical depth profiles are plotted in Figure 5.5. The regolith is assumed to be 

uncemented, due to the low thermal inertia, based on the results of Piqueux and 

Christensen (2011). The results of Bridges et al. (2010) suggest some degree of 

cementation may be possible at the Tharsis site though the results of Nowicki and 

Christensen (2004) support a fine grained, uncemented material, as used here. The upper

8 Note the high altitude of the Tharsis site (253°E 2°N) from Figure 5.2, hence the low pressure.
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5 m of regolith can have complex stratigraphy and lithology, as suggested by the results of 

Stack et al. (2013) -  the range of errors used in the measurements of Section 5.3.2 

account for unexpected temperature gradients which may occur in arbitrarily layered 

regolith. The lunar-like parameterizations of depth variation used in Grott et al. (2007b) 

are adapted here for thermal conductivity and density depth profiles. The results of 

Fountain and West (1970) and Presley and Christensen (1997a,b) indicate a linear 

relationship between conductivity and density, which is adopted in the profiles of Figure 

5.5. Here, the depth variation represents an idealised, thick dust mantle which is 

compressed at depth to the point of sedimentation. Asymptotic values of thermal 

conductivity and density are within the range of values discussed by Clifford and Fanale 

(1985) and are compatible with the values present in Piqueux and Christensen (2011). 

The thermal property values at depth are arbitrarily chosen to mirror the relative 

magnitudes of the surface values, given the fact that the depth variation of Martian 

thermal properties is currently unknown. The specific heat capacity is held constant with 

depth. Table 5.2 lists the resulting thermal property values at 20 m depth.

Table 5.2. Hypothetical regolith ‘high’ and ‘low’ subsurface thermal properties at selected measurement sites guided by the 

surface thermal properties listed in Table 5.1. These are in line with the analyses of Clifford and Fanale (1985) and compatible 

with values present in Piqueux and Christensen (2011). The latitude and east longitude are represented by <pE, k z0 is the

thermal conductivity and p 20 the density at 20 m.

k20 [W/m/K] p20 [kg/m3]
<Pe  [+°E +°N]

LOW HIGH LOW HIGH

120°E 20°N 0.1 1.0 1500 1800

_ _ _ _ _ _  0 2  “ 2.0 ~ 1700 2 2 0 0

___________ _  o.02 0.2 1200 1500
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Figure 5.5. Derived hypothetical conductivity k, density p and specific heat capacity c for measurement sites at 120°E 20°N 

(a-b), 139°E 1°N (c-d) and 253°E 2°N (e-f) as seen in Figure 5.1. The red curves show conductivity variation, the blue curves 

the density variation and the green curves the constant specific heat. The dotted and solid curves indicate associated 

thermal conductivities and densities.
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5.2.3 Heat Sources

The surface heat producing element distribution on Mars has been derived from 

measurements by the Gamma Ray Spectrometer (GRS) on the 2001 Mars Odyssey 

orbiter (Taylor et al., 2006; Boynton et al., 2007) -  these measurements are in fact used in 

producing heat flow maps such as that in Figure 5.1. The surface distribution of heat 

sources as mapped by the GRS is heterogeneous although the vertical profile is not 

conclusively known. Hahn et al. (2011) assume a homogeneous vertical profile citing 

several lines of evidence (or lack thereof) including no plate tectonics, extensive surface 

impact gardening, and no significant differences in the concentration of heat producing 

elements in impact ejecta. Grott and Breuer (2010) cite the arguments of Taylor et al. 

(2006) which include no plate tectonics and surface impact gardening, along with 

extensive volcanic intrusions smoothing any heterogeneities. Hahn et al. (2011) derive a 

global average heat production rate of 4 .9x10"11 W/kg. The effect of this level of heat 

production on the temperature is not discernible at the precision being considered here. 

The heat production rate derived from the map of Hahn et al. (2011) for each 

measurement site is 60, 55 and 50 x ic r11 W/kg for 120°E 20°N, 139°E 1° and 253°E 2°N, 

respectively. These are multiplied by the density (Figure 5.5b,d,f) to give the volumetric 

heat production with similar depth profiles.

5.3 Scenarios

The main questions arising from the above discussion of heat flow parameters cover the 

measurement precision and accuracy required for relatively low versus high heat flows 

and low versus high thermal diffusivities. Low heat flow is more difficult to measure while 

high thermal diffusivity reduces the damping of the unsteady heat flow, resulting in greater 

masking of the planetary heat flow. A shortened monitoring period or too-shallow 

measurement depth will compound these difficulties. Scenarios are presented below 

which attempt to address these questions. Unknown inaccuracies in the thermal diffusivity 

contribute to inaccuracies in the basal heat flow estimate. The effects of these are studied
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in Sections 4.2.1.2.3 and 4.3.1.3  

investigated in the scenarios.

5.3.1 Forward Models

Hypothetical temperature profiles are generated based on ‘high’ (stagnant lid) and ‘low’ 

(plate cooling) heat flow regimes (as identified in Section 5.1; also see Dehant et al., 

2012), and high and low conductivity models (Figure 5.5), for each measurement site. 

Representative temperature profiles generated by the forward model for the measurement 

sites are shown in Figure 5.6 (high conductivity) through Figure 5.7 (low conductivity) 

below -  both in the ‘high’ heat flow, stagnant lid regime.

Evidently, at the high conductivities the unsteady surface heat flow is present at non- 

negligible magnitudes from 2-5 m, but to varying extents. The relatively high conductivities 

at the Elysium sites (120°E 20°N, 139°E 1°N) result in greater masking of the steady 

basal heat flow with the unsteady surface heat flow compared to the Tharsis site (253°E  

2°N). Results of Section 4.2.1.2 indicate that several measurements, over a monitoring 

period of at least a seasonal cycle, are necessary to derive a robust estimate of the 

steady basal heat flow for the Elysium sites. Conversely, the former results suggest that 

one or two measurements over a monitoring period only a fraction of the seasonal cycle 

may suffice for the Tharsis site.

At low conductivities the unsteady surface heat flow is still universally present from 2-5 m 

at the Elysium sites (Figure 5.7a-d) but at much smaller amplitudes than the high 

conductivity scenarios. They are comparable to the high conductivity case at the Tharsis 

site (Figure 5.6e-f) -  similar measurement requirements can be deduced. The steady 

basal heat flow is accessible towards 5 m at the Tharsis site for low conductivities (Figure 

5.7e-f).

165

-  the results can be applied here and are therefore not
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Figure 5.6. Forward modelled temperature profiles for measurement sites. The left contours are overlays of depth-dependent 

temperature T over time t of 669 Sol in -13 Sol steps (overlapping contours indicate periods of relatively constant diurnal 

mean temperatures); the right contours are overlays of time-dependent temperature Tu over depth z of 2.3-4.7 m in 0.3 m 

steps (larger amplitudes towards the surface). These are from the respective high conductivity models of Figure 5.5 based 

on the ‘high’ heat flows of the stagnant lid regime where at 120°E 20°N (a-b), 139°E 1°N (c-d) and 253°E 2°N (e-f) the heat 

flow is 17,15 and 22 mW/m/K respectively.
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Figure 5.7. Forward modelled temperature profiles for measurement sites. The left contours are overlays of depth-dependent 

temperature T over time t of 669 Sol in -13 Sol steps (overlapping contours indicate periods of relatively constant diurnal 

mean temperatures); the right contours are overlays of time-dependent temperature Tu over depth z of 2.3-4.7 m in 0.3 m 

steps (larger amplitudes towards the surface). These are from the respective low conductivity models of Figure 5.5 based on 

the ‘high’ heat flows of the stagnant lid regime where at 120°E 20°N (a-b), 139°E 1°N (c-d) and 253°E 2°N (e-f) the heat flow is 

17,15 and 22 mW/m/K respectively.

In an ideal situation an inversion is unnecessary for the Tharsis site with low conductivity, 

as the steady temperature gradient is between 0.65-1.45 K/m which dominates the
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unsteady temperature envelope of between 1-30 mK (Table 5.3). Measurements are, 

however, likely to contain noise of unknown amplitude due to unknown subsurface 

heterogeneities and transient temperature perturbations9. Random noise with an 

amplitude of 1 K would obscure all temperature variation at 3-5 m for all the modelled 

scenarios, except the high conductivity cases at the Elysium sites (Figure 5.6a-d) and the 

low conductivity case at the Tharsis site (Figure 5.7e-f). Illustrations for the forward 

modelled results of the ‘low’ heat flow plate cooling regime (here, simply half the ‘high’ 

heat flow) can be found in Appendix 9.5.2 -  the profiles are similar, as would be expected, 

save for a smaller temperature gradient, which requires greater measurement precision. 

Generally, low conductivity, and high heat flow which promote a steeper temperature 

gradient, and high thermal capacity which rapidly attenuates the unsteady surface heat 

flow with depth, are beneficial for basal heat flow measurement. This, of course, also 

follows from the forward model results of Chapter 3.

9 For example due to volatiles.
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Table 5.3. Unsteady temperature amplitudes and steady temperature gradients at depths z of 2, 3 and 5 m, along with heat 

flows and bulk conductivity; <pE is the location, kBULK the bulk thermal conductivity down to 20 m, FSB the basal heat flow,

d T sTua the annual unsteady temperature amplitude and —  the steady temperature gradient at depth.

<pE *  [ml
k B U L K  r , O c

[W/m/K] [mW/m2]
T" [K] ^ - [K /rn ] [K] ^ - [K /rn ] TJH [K] ^ - [K /m ]

0.517
17

2.37
0.026

1.63
0.023

0.81
0.020

120°E 8.5 0.013 0.011 0.010

20°N
0.073

17
1.05

0.222
0.42

0.211
0.07

0.199

8.5 0.111 0.106 0.099

1.02
15

3.06
0.011

2.30
0.010

1.35
0.009

139°E 7.4 0.006 0.005 0.005

1°N
0.122

15
1.52

0.107
0.81

0.098
0.24

0.089

7.4 0.054 0.049 0.045

0.102
22

0.96
0.167

0.53
0.148

0.17
0.133

253°E 11 0.026 0.020 0.015

2°N
0.013

22
0.16

1.54
0.03

1.42
0.001

1.31

11 0.770 0.710 0.653

5.3.2 Measurements

Measurement profiles are derived from the tem perature profiles in Figure 5.6-Figure 5.7, 

with Gaussian noise of varying amplitudes as with the scenarios in Section 4.3. The noise 

considered here is of amplitude 10 mK, 100 mK and 1 K. These amplitudes are constant 

with depth10 and reflect potential errors related to forward model lim itations in simulating 

unknown subsurface heterogeneities and transient phenomena. Noise of the am plitude

10 It may be the case that the noise decreases because transient insolation and atmospheric effects 

are restricted to the upper subsurface in nominal scenarios, or instrument precision increases with 

depth due to larger sensors being used, averaging temperatures over an increased depth range. 

These cases are tested in Section 4.3.1 and the results can be applied here.
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used here is likely to obscure noise based on instrument precision which should be of the 

order of 1 mK (Grott et al., 2007b; Dehant et al., 2012), leading, in principle, to a 

temperature gradient error of the order of 1.5 mK/m. Fifteen sensors are used in the 

hypothetical heat flow probe based on the HP3 description of Spohn et al. (2001b).11 

Measurement scenarios are tested both with accurate and inaccurate sensor locations, 

where the inaccuracies tend to increase with depth (Figure 5.8).12

Independent of the noise (error) level, several measurement scenarios are considered 

including a successful measurement down to 5 m over the course of a Martian year at 

high (1 Sol) time resolution13 -  here considered an ideal measurement. In other 

measurement scenarios the measurement is made for only a fraction of a Martian year 

(0.25, 0.5 and 0.75, for example due to instrument failure) and a fraction of the desired 

depth (2, 3 and 5 m, for example due to obstacles such as sedimented layers and/or large 

rocks, or instrument failure). A grid of the 36 resulting measurement scenarios for each of 

the 4 site scenarios is shown in Table 5.4. Representative profiles are shown in Figure 5.9 

for the low conductivity, high heat flow (stagnant lid) measurement scenario. Equivalent 

profiles for the high conductivity scenario are shown in Appendix 9.5.3.

11 Recall that in Section 4.2.1.2.2 no consistent trends in accuracy are observed when inverting a 

heat flow probe measurement to obtain the heat flow, using 10, 15, 20 or 25 sensors for a given 

measurement depth.

12 A heat flow probe’s position is known less accurately the further it travels into the regolith and is 

dependent on the accuracy and precision of its accelerometers. Encounters with material of varying 

density may also affect the positional accuracy.

13 Here the measurement frequency is limited to 1 Sol where the diurnal mean is used for the 

unsteady surface temperature -  considered reasonable as, here, the diurnal skin depth is less than 

25 cm and does not play a part in masking the planetary heat flow. The temperature envelope 

down to 25 cm does affect the determined steady surface temperature, but a local mean surface 

temperature over 1 Martian year is not a true representation of the long term steady temperature, 

as pointed out in Section 5.2.1.
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1.10 -0.05 0.00 0.05 0.10
Signed Deviation [m]

Figure 5.8. Errors in sensor depth z. The large blue squares represent the accurate sensor locations, the small grey squares 

the inaccurate sensor locations. The black diamonds represent signed deviations Az of inaccurate from accurate sensor 

locations. An accompanying table can be found in Appendix 9.5.3.

Table 5.4. Grid of measurement scenarios (36 in total per scenario) simulated for each of the forward modeled scenarios of 

Section 5.3.1 and Appendix 9.5.2.

MONITORING PERIOD [-MARTIAN YEARS]

0.25 0.5 0.75 1.0

2.0
E
x  3.0 

S  5.0

ERROR 
[K] 

0.01-1.0

OPTIMAL

168 (1) 334(1) 501 (1) 669 (1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL]14)

All other measurement scenarios can be visualised using those plotted in Figure 5.9 (c, d, 

f): measurements which fall short of one Martian year are more constrained in the range

14 For monitoring periods of 0.25, 0.5 and 0.75 Martian years simulations were run with 

measurement frequencies (timer resolution) of 3.91, 1.99 and 1.33 Sol. The results follow those in 

Section 4.2.1.2.2 such that the denser measurements produce more accurate optimized heat flows, 

particularly at shallower sensor depths.
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of temperatures; measurements which fall short of the desired depth are cut off at 2, 3 or 

5 m as shown in Figure 5.9 (a, c, e -  physically interpreted as the failure of the lowest 

sensors to record temperatures or approach the required depth). 1 K noise is considered 

a worst case scenario; therefore smaller noise levels simply have smaller deviations from 

the true profiles.
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Figure 5.9. Representative profiles for measurements with 1 K additive noise for sites at 120°E 20°N (a-b), 139°E 1°N (c-d) 

and 253°E 2°N (e-f) for the low conductivity, high heat flow scenario. The plots are overlays of temperature-depth profiles in 

-33 Sol steps over a monitoring period of: (a, c, e) 168 Sol down to 2 m depth; (b, d, f) 669 Sol down to 5 m depth. The solid 

grey curves represent the noisy measurement while the dotted blue curves illustrate the true profiles. The grey squares are 

sensor locations (innacurate) plotted at the true mean temperature at a particular depth -  the surface sensor is not 

representative due to the high amplitude, high frequency diurnal variation of surface temperature
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5.3.3 Inversion Results 

5.3.3.7 Initial Estimates

Due to the large diurnal surface temperature amplitude, the larger the time interval 

between measurements, or the shorter the monitoring period, the less accurate is any 

derivation of the diurnal and/or annual mean surface temperature (see Figure 5.3, green 

dotted curves). Therefore here, temperatures forecast by Mars-GRAM are used to ensure 

reliable results. In practical situations without MCD or Mars-GRAM the temperature 

measurement may be inverted for the surface temperature as well as planetary heat flow 

(see Sections 4.2.2-4.2.3). Also, the upper few cm of data can be ignored, as noted in 

Section 5.2.1 -  here, the surface sensor is ignored.

Initial basal heat flows are estimated by first averaging the temperatures from sensors 

below the diurnal skin depth (see Section 3.4.2), which provides an estimate of the steady 

temperature. This is then multiplied by the bulk thermal conductivity to give a basal heat 

flow. A contour plot of the result of using different ‘surface’ sensors on the initial heat flow 

estimate can be found in Appendix 9.5.4.1 for comparison purposes. Large errors are 

associated with shallow-depth, short-period measurements due to the larger unsteady 

temperature influence on the temperature gradient. Also, larger errors are associated with 

larger bulk conductivities and annual wave skin depths for individual measurement sites. 

The annual wave skin depths for the measurement sites are listed in Table 5.5 along with 

bulk conductivity.15

15 The averaging method provides an efficient standard procedure to use in calculating initial heat 

flows across the large number of scenarios. It leads to large inaccuracies in some cases, as 

evidenced by the numbers in Table 5.6-Table 5.8 and Appendix 9.5.4.1. In practice, other a priori 

information is necessary for a reasonably accurate first estimate of the heat flow.
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Table 5.5. Measured skin depths of the annual unsteady temperature zSKIN of the forward modelled site scenarios along 

with bulk conductivity kBULK down to 20 m16

LOCATION [+°E +°N] 

120°E 20°N

k b u l k  [W/m/K] 

0.517

Z S K IN  [m l

1.45

0.073 0.91

139°E 1 °N
1.02 1.89

0.122 1.07

253°E 2°N
0.102 0.56

0.013 0.44

For the Elysium site at 120°E 20°N (see Table 5.6 and Appendix 9.5.4.1) only 18 of the 

144 initial estimates fall within 10 % of the true value ( e F so <  0.1) -  these are nearly all low

conductivity (kBULK = 0.073 W/m/K) site scenarios where the monitoring period is 1 Martian 

year with 2 high conductivity (kBULK = 0.517 W/m/K) exceptions. All sensor depths (2-5 m) 

and both high (17 mW/m2) and low (8.5 mW/m2) heat flow scenarios are represented.

Only 13 of the initial estimates fall between 10-25 % of the true value (0.1 <  eFso <  0.25) -

these are nearly all high conductivity site scenarios where the monitoring period is 1 

Martian year, with 2 low conductivity exceptions. All sensor depths and both high and low 

heat flow scenarios are represented.

Just 5 of the initial estimates fall between 26-50 % of the true value (0.25 <  eFso <  0.5) -

these are high conductivity site scenarios monitored over 1 Martian year, nearly all with 

sensor depths down to 5 m, and high and low heat flows. There is one exception with a 

sensor depth of 3 m.

16 These skin depth estimates are therefore high and are to be considered in a relative sense.
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The 108 other initial estimates range between 50-8233 % 15 inaccurate (0.50 <  eFso <

82.33). They include all measurement and site scenarios except those where the 

monitoring period is 1 Martian year. Of the preceding estimates: low conductivity site 

scenarios with longer monitoring periods and deeper sensor depths tend to be in the more 

accurate sub-range; high conductivity site scenarios with shorter monitoring periods and 

shallower sensor depths tend to be in the least accurate sub-range.

IF50 ITable 5.6. Grid of initial heat flow estimate relative error magnitudes e Fso = h j f  -  1 (green borders -  see Appendix 9.1 for
B \F  B \

symbol definitions) at Elysium site 120°E 20°N for the low conductivity k scenario with a heat flow FSBT of 17 mW/m2. The 

shaded cells show values which are not improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] 

and zSKIN [m] is the skin depth.

k-BuiK — 0.073
MONITORING PERIOD [-MARTIAN YEARS] 

0.25 0.5 0.75 1.0
Fbt = 0.017

11.37 4.98 1.45 0.00 1.0

o
csi

11.59 5.04 1.49 0.05 0.1

11.60 5.04 1.49 0.05 0.01

TT
7.61 3.85 1.32 0.03 1.0

m
73

X  o  

£  «
7.65 3.86 1.33 0.05 0.1 §  

73
111
O 7.65 3.86 1.33 0.05 0.01 3

3.72 2.04 0.74 0.10 1.0

o
LO

3.71 2.02 0.73 0.10 0.1

3.71 2.02 0.73 0.10 0.01

z s k i n  =0.91 m
168 (1) 334 (1) 501 (1) 669(1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
120°E 20°N

For the Elysium site at 139°E 1°N (see Table 5.7 and Appendix 9.5.4.1) just 5 of the 144 

initial estimates fall within 1 0  % of the true value ( e F s o < 0 . 1 )  -  these are all low

conductivity {kBUlK = 0.122 W/m/K) site scenarios, nearly all with monitoring period of 1
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Martian year with 1 exception over 0.5 Martian years. Interestingly, only sensor depths (2- 

3 m) are represented while both high (15 mW/m2) and low (7.4 mW/m2) heat flow 

scenarios are represented.

Only 16 of the initial estimates fall between 10-25 % of the true value (0.1 <  eFso <  0.25) -

these are nearly all low conductivity site scenarios where the monitoring period is 1 

Martian year, with 1 high conductivity (kBULK = '\.02 W/m/K) exception and 2 exception 

where the monitoring period is 0.5 Martian years. All sensor depths and both high and low 

heat flow scenarios are represented.

Similarly, 15 of the initial estimates fall between 26-50 % of the true value (0.25 <  eFso <

0.5) -  these are mostly high conductivity site scenarios monitored over 1 Martian year, 

with 2 exception monitored over 0.5 Martian years. All sensor depths and both high and 

low heat flow scenarios are represented.

The 108 other initial estimates range between 50-4839 % 15 inaccurate (0 .5 0 < e Fso<

48.39). They include all measurement and site scenarios with low conductivity site 

scenarios tending to be in the more accurate sub-range and high conductivity site 

scenarios tending to be in the least accurate sub-range.
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I F ' ^  ITable 5.7. Grid of initial heat flow estimate relative error magnitudes eFso = - f f  -  1 (green borders -  see Appendix 9.1 for
B I F b I

symbol definitions) at Elysium site 139°E 1°N for the low conductivity k scenario with a heat flow FSJ  of 15 mW/m2. The 

shaded cells show values which are not improved by the algorithm. The bulk conductivity down to 20 m is kBUlK [W/m/K] 

and zSKIN [m] is the skin depth.

k-BULK — 0.122
MONITORING PERIOD [-MARTIAN YEARS] 

0.25 0.5 0.75 1.0
F iT =0.015

5.20 0.04 5.26 0.03 1.0

o
c\i

5.50 0.17 5.20 0.10 0.1

5.48 0.19 5.20 0.11 0.01

'e
5.76 1.40 3.23 0.02 1.0

m
73

X  o
£  «
ID
Q

5.71 1.40 3.23 0.13 0.1 §  
73

5.71 1.38 3.23 0.12 0.01 *

4.30 1.81 1.25 0.19 1.0

o 4.19 1.83 1.22 0.19 0.1

4.19 1.82 1.22 0.19 0.01

Z S K IN  =107
168(1) 334 (1) 501 (1) 669(1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
139°E 1°N

For the Tharsis site (see Table 5.8 and Appendix 9.5.4.1), 29 of the 144 initial estimates 

fall within 10 % of the true value (eFso < 0 .1 )  -  these are all over monitoring periods of

0.75-1 Martian year. All sensor depths (2-5 m), high (kBULK = 0.102 W/m/K) and low 

ikBULK =  0.013 W/m/K) conductivity and both high (22 mW /m2) and low (11 mW/m2) heat 

flow  scenarios are represented.

Further, 22 of the initial estimates fall between 10-25 % of the true value (0.1 <  EpSo <
bB

0.25) -  a sim ilar range of scenarios as with the preceding more accurate estimates is 

represented, though with the inclusion of 0.5 Martian year monitoring periods.
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Additionally 24 of the initial estimates fall between 26-50 % of the true value (0.25 <  

eFso <  0.5) -  again, all scenarios are represented except m easurem ents covering a 1

Martian year monitoring period.

A total of 69 other initial estimates range between 50-744 % 15 inaccurate (0.50 <  eFso <

7.44). They include all measurement and site scenarios except those where the 

monitoring period is 1 Martian year. Of the form er estimates, high conductivity site 

scenarios tend to occupy the least accurate sub-range.

IF50 ITable 5.8. Grid of initial heat flow estimate relative error magnitudes eFso = -J f -  1 (green borders -  see Appendix 9.1 for
B  *

symbol definitions) at Tharsis site 253°E 2°N for the low conductivity k scenario with a heat flow FSBT of 22 mW/m2. The 

shaded cells show values which are not improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] 

and zSKIN [m] is the skin depth.

k B U L K  —  0-01 3
MONITORING PERIOD [-MARTIAN YEARS]

0.25 0.5 0.75 1.0
F i T  =  0.022

0.86 0.28 0.30 0.00 1.0

o
c\i

0.86 0.28 0.31 0.01 0.1

0.86 0.28 0.32 0.01 0.01

I f
0.57 0.21 0.16 0.04 1.0

m
73

X  o  
£  «

0.57 0.22 0.16 0.03 0.1 §  
73

HI
D 0.57 0.22 0.16 0.03 0.01 *

0.42 0.22 0.01 0.12 1.0

o
to

0.42 0.22 0.01 0.12 0.1

0.42 0.22 0.01 0.12 0.01

Z S K IN  = 0-44
168 (1) 334 (1) 501 (1) 669(1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
253°E 2°N

The results above indicate a more strict sensitivity to monitoring period than to 

measurement depth which is confirmed in a general trend analysis. The initial heat flow
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estimate accuracy negatively correlates with the measurement noise level though the 

effect is negligible.17. Generally, the initial heat flow estimates are more accurate for 

shallower skin depth, higher true heat flow, deeper sensor penetration and longer 

monitoring period, all else being equal. This explains why the initial estimates for the 

Tharsis site are generally better than those for the Elysium sites. Notably, the relative 

accuracy of initial estimates is approximately inversely proportional to the heat flow 

magnitude -  i.e. when the true heat flow doubles, the error in the initial estimate is 

approximately halved, all else being equal. Figure 5.10 illustrates trends in the initial heat 

flow estimate accuracy, using the averaging method, arising from 3D interpolation of data 

points -  the small effect of the measurement noise level is not visible.

Inaccurate sensor locations lead to inaccuracies in thermal properties and temperature, at 

depth, which in turn lead to inaccurate heat flow estimates. However, in most cases the 

location inaccuracies used here do not perturb the errors in initial or optimized heat flows 

by more than 1-3 %. The 2-3 % errors occur towards the surface (2 m) while the 1 % 

errors occur at 3-5 m, despite the fact that location inaccuracies tend to be smaller 

towards the surface. The difference is due to the larger temperature gradients towards the 

surface where location accuracy is more important.

17 The initial estimate accuracy is also affected by the accuracy of the conductivity (see Grott, et al., 

2007 for an analysis). In particular, the non-linear conductivity gradient results in a nonlinear 

temperature gradient which is not assumed in any heat flow estimate using bulk conductivity and 

two (surface and basal) temperature sensors.
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Magnitude of Initial Basal Heat Flow Relative Error 
5.9 7.7 9.6 11.4

0.50 0.75
Fraction of Seasonal Period

13.2

1.00

Magnitude ot Initial Basal Heat Flow Relative Error 
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IF I-§f — 1 of initial heat flow estimates FSB° to the true value FSB across all 

measurement scenarios, interpolated from 3D scatterplots. The Tpjo can be considered as central estimators of the heat flow 

distribution at particular postions defined by the axes. Contour: a. shows Tĵ sE as a function of the ratio of basal sensor 

depth to annual skin depth r z, and the ratio of monitoring period to seasonal period r t; b. shows as a function of r z 

and measurement noise amplitude <jd (the standard deviation); c. shows ?^so as a function of r t and ad. Note that eFso 

values for each crd, r t and r z are respectively stacked in a., b. and c., accounting for the differences in ê so extrema.

5.3.3.2 O ptim ized Heat Flow

In optimizing the heat flow , the assumed error in the temperature data measurement d 

-  the standard deviation ad -  is set to the added noise levels of 10 mK, 100 mK and 1 K. 

The error in the initial basal heat flow estimate -  the standard deviation o^s -  is set an

order of magnitude greater than the data error. This is consistent with the results of
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Section 4.2.1 which suggest the ratio of standard deviations of the basal heat flow to the

F** F̂data measurement -  SD ratio rdB -  produces the most accurate results at rdB = 1 0 . For 

the measurement scenarios which fall short of the ideal depth, the simulations are limited 

to the depth of the deepest sensor. This is because heat flow probe thermal property 

measurements are limited to the same depth.

p S

Data from additional sets of simulations with rdB =  100, initial basal heat flow estimates 

consistently inaccurate by a factor of 2, recording frequency <1 Sol, and sensor locations 

with improved accuracy are considered throughout, though not explicitly presented. 

Below, low conductivity, high heat flow scenarios are presented in line with the 

measurement plots shown in Section 5.3.2 and the initial estimate tables in Section 

5.3.3.1. This is done to limit the length of the main text presentation. However, all results 

are discussed and -  specific results not included in the main text are presented in 

Appendix 9.5.4.2.

Optimization results generally mirror what is expected based on the extent to which the 

steady temperature gradient is accessible (including its magnitude), and the extent to 

which the unsteady surface heat flow can be characterised and essentially removed in the 

inversion. Having low thermal capacity, high conductivity, or failing to access the planetary 

heat flow at the target depth all have the effect of increasing the amplitude of the unsteady 

temperature measured by the sensors. Having an incomplete measurement of the 

seasonal cycle reduces the in situ information available on the unsteady temperature, 

impairing the accuracy of a derived steady temperature. Figure 5.11 illustrates trends in 

the accuracy of the optimized heat flow.
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Magnitude of Optimized Basal Heat Flow Relative Error 
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Figure 5.11. Trends eFsi in relative errors/ = f e  -  l l r  of optimized heat flow estimates F SB to the true value F SJ  across
B B |F b  I

all measurement scenarios, interpolated from 3D scatterplots. The TpiJ can be considered as central estimators of the heat 

flow distribution at particular postions defined by the axes. Contour: a. shows as a function of the ratio of basal sensor 

depth to annual skin depth r z ,  and the ratio of monitoring period to seasonal period r t ; b. shows ey7 as a function of r z  and 

measurement noise amplitude a d (the standard deviation); c. shows TJsj as a function of r t and a d. Note that e f s /  values 

for each ad, r t and r z  are respectively stacked in a., b. and c., accounting for the differences in ejsl extrema.

Comparing the central estimators eFsi of Figure 5.11 to eFso of Figure 5.10 shows that
B B

there is some improvement on initial estimates. The eys7 are still fairly large, mostly due to

large errors in optimized heat flow for the high conductivity, low heat flow scenarios at the 

139°E 1°N Elysium site (see Table 5.9-Table 5.11 and Appendix 9.5.4.2).
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The trends from Figure 5.11 indicate that larger errors in the data measurement tend to 

produce smaller errors in the optimized heat flow, particularly at non-optimal 

measurement depths and periods.18 This counterintuitive result follows from those of 

Section 4.3.1.2 (also see Appendix 9.4.8): the larger standard deviation ad which 

accompanies the noisier measurements increases the size of the space of acceptable 

solutions of the algorithm such that it finds a more acceptable solution, despite the SD

ratio rdB being held constant.

It is important to note that the counterintuitive noise effect is fairly small and is not 

universal, as an examination of the individual numbers can confirm (see Table 5.9-Table 

5.11 and Appendix 9.5.4.2). The most prudent inference from this result is that a one-to- 

one correlation between the precision of an instrument and other associated random 

noise in a temperature measurement should not be assumed.

Notably, the accuracy of the optimized heat flows show no significant dependence on the 

accuracy of the initial value, which is consistent with the results of Section 4.2.1 and 4.3.1. 

Generally, the model functions most effectively for large sensor depth and shorter 

measurement times, which is confirmed by examining the ratio of initial error of the heat 

flows to the final error (see Appendix 9.5.4.2).

More specifically, for the Elysium site at 120°E 20°N (see Table 5.9 and Appendix 9.5.4.2) 

only 21 of the 144 optimized heat flows fall within 10 % of the true value (eFso <  0.1) -

these are all low conductivity (kBULK =  0.073 W/m/K) site scenarios. The full range of 

sensor depths (2-5 m) and monitoring periods are represented with mostly high (17 

mW/m2) and 2 low (8.5 mW/m2) heat flow scenarios.

A total of 30 of the optimized heat flows fall between 10-25 % of the true value (0.1 <  

eFso <  0.25) -  these are nearly all low conductivity site scenarios with 3 high conductivity

Q̂ bulk =  0.517 W/m/K) exceptions. All sensor depths, monitoring periods and both high

18 Recall this effect from Section 4.3.1.2 (Table 4.2).
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and low heat flow scenarios are represented. The high conductivity scenarios only 

associate with the 1 Martian year monitoring period.

Only 18 of the optimized heat flows fall between 26-50 % of the true value (0.25 <  eFso <

0.5) -  these include all scenarios where the monitoring period is greater than 0.25 

Martian years.

A total of 75 other optimized heat flows range between 50-4172 % 19 inaccurate (0.50 <  

eFso < 41 .7 2 ). They include mostly high conductivity site scenarios and all measurement

scenarios. Of the former estimates: low conductivity site scenarios tend to be in the more 

accurate sub-range; high conductivity site scenarios tend to be in the least accurate sub

range.

The preceding results show statistical improvement on the initial estimate and largely 

follow the trends illustrated in Figure 5.11. Flowever there are outliers: some where the 

heat flow is found to relatively high accuracy in non-optimal scenarios (e.g. Table 5.9 at

2.0 m and 0.5 Martian years); others where the heat flow estimate is not improved in 

optimal measurement scenarios (e.g. at 1 Martian year). These are discussed towards the 

end of this section.

19 Even for the wildly inaccurate optimized heat flows, there is some improvement on the even

more inaccurate initial estimates in several cases. Still, the large inaccuracies involved render

these cases useless in practice.



186 5 MARS

if5/ ITable 5.9. Grid of optimized heat flow relative error magnitudes eFsi = d r -  1 (green borders -  see Appendix 9.1 for
B \F b  I

symbol definitions) at Elysium 120°E 20°N for the low conductivity k scenario with a heat flow FSBT of 17 mW/m2, The shaded 

cells show values where there is no improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is 

kBULK [W/m/K] and zSKIN [m] is the skin depth.
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For the Elysium site at 139°E 1°N (see Table 5.10 and Appendix 9.5.4.2) none of the 144 

optimized heat flows fall within 10 % of the true value (eFso <  0.1).

Just 9 of the optimized heat flows fall between 10-25 % of the true value (0.1 <  eFso <

0.25) -  these are all low conductivity (kBULK =  0.122 W/m/K), and mostly high heat flow 

(15 mW/m2) site scenarios with 3 low heat flow (7.4 mW/m2) exceptions. Interestingly, only 

sensor depths of 3 m and monitoring periods between 0.5-0.75 Martian years are 

represented.
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Only 14 of the optimized heat flows fall between 26-50 % of the true value (0.25 <  eFso <

0.5) -  these include the same range of scenarios as the latter, more accurate case.

A total of 121 other optimized heat flows range between 50-12969 %20 inaccurate 

(0.50 <  eFso <  129.69). They include the entire range of site and measurement scenario

with low conductivity site scenarios tending to be in the more accurate sub-range and high 

conductivity site scenarios tending to be in the least accurate sub-range.

The preceding results are statistically worse than the initial estimates, despite there being 

improvements in several cases. It shows that the Elysium site measurement scenarios at 

139°E 1°N are appreciably more pathological to invert for the heat flow, than the 120°E 

20°N site.

20 Even for the wildly inaccurate optimized heat flows, there is some improvement on the even

more inaccurate initial estimates in several cases. Still, the large inaccuracies involved render

these cases useless in practice.
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I pSI |
Table 5.10. Grid of optimized heat flow relative error magnitudes eFsi = - J r -  1 (green borders -  see Appendix 9.1 for

B i f b i

symbol definitions) at Elysium site 139°E 1°N for the low conductivity k scenario with a heat flow FSJ  of 15 mW/m2. The 

shaded cells show values where there is no improvement on the initial estimate (divergence). The bulk conductivity down to 

20 m is kBULK [W/m/K] and zSKIN [m] is the skin depth.
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For the Tharsis site (253°E 2°N -  see Table 5.11 and Appendix 9.5.4.2) a respectable 51 

of the 144 optimized heat flows fall within 10 % of the true value (eFso <  0.1) -  these are

mostly low conductivity {kBULK =  0.013 W/m/K) site scenarios with 6 high conductivity 

(^bulk =  0.102 W/m/K) exceptions. The full range of sensor depths (2-5 m) and 

monitoring periods (0.25-1 Martian year) are represented with mostly high (22 mW/m2) 

and several low (11 mW/m2) heat flow scenarios.

A total of 39 of the optimized heat flows fall between 10-25 % of the true value (0.1 <  

eFso <  0.25) -  all site and measurement scenarios are represented while, interestingly,
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sensor depths of 5 m are in the least accurate of the range. Notably, though, the latter 

consistently associate with high conductivity scenarios.

Only 27 of the optimized heat flows fall between 26-50 % of the true value (0.25 <  eFso <

0.5) -  these are all high conductivity site scenarios, mostly with high heat flows. All 

monitoring periods and sensor depths are represented. Notably, the low heat flow 

scenarios fall towards the least accurate end of the range.

A relatively small 27 of the optimized heat flows range between 50-114 %21 inaccurate 

(0.50 <  eFso <  1.14) -  they include high conductivity, mostly low heat flow site scenarios.

All sensor depths and monitoring periods are represented.

The preceding results show statistical improvement on the initial estimate and largely 

follow the trends illustrated in Figure 5.11. Flowever there are outliers: some where the 

heat flow is found to relatively high accuracy in non-optimal scenarios (e.g. Table 5.9 at

2.0 m and 0.5 Martian years); others where the heat flow estimate is not improved in 

optimal measurement scenarios (e.g. at 1 Martian year). These are discussed towards the 

end of this section.

The preceding results show appreciable improvement on initial estimates in most cases, 

except where the monitoring period is 1 Martian year -  the reason for the ineffectiveness 

of the model at 1 Martian year is explored in the next paragraph. A Tharsis scenario with 

exceptionally high heat flow of the order of 40 mW/m2 is not tested but the trend analyses 

point to such a scenario being more effectively optimized by the model, if at all 

optimization is necessary.

21 Even for the wildly inaccurate optimized heat flows, there is some improvement on the even

more inaccurate initial estimates in several cases. Still, the large inaccuracies involved render

these cases useless in practice.
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Table 5.11. Grid of optimized heat flow relative error magnitudes eFsi = d f  — 1 (green borders -  see Appendix 9.1 for

B I F b I

symbol definitions) at Tharsis site 253°E 2°N for the low conductivity k  scenario with a heat flow FSJ  of 22 mW/m2. The 

shaded cells show values where there is no improvement on the initial estimate (divergence). The bulk conductivity down to 

20 m is k BVLK [W/m/K] and zSKlN [m] is the skin depth.
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The shaded cells show that in some instances simpler methods (see Section 5.3.3.1) may 

be more suited to estimating the basal heat flow, in particular when the monitoring period 

is 1 Martian year. Examination of the tables show that nearly all scenarios indicated by the 

shaded cells have the most accurate initial heat flow estimates for the particular site, skin 

depth, and true heat flow. Interestingly, tests carried out with initial estimates consistently 

inaccurate by a factor of 2 (eFsi =  1) show very similar results, confirming that the

algorithm is fairly insensitive to the accuracy of the initial estimate of the basal heat flow. 

This is because the assumed error in the heat flow is set large enough to decrease the 

sensitivity of the algorithm to the initial estimate (also see Section 4.2.1.1). The algorithm 

is, however, sensitive to the sign of the relative error, as tabulated in Appendix 9.4.2 such
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that a low initial estimate produces a low optimized heat flow and a high initial estimate 

produces a high optimized heat flow. The shaded cell results are therefore not dependent 

on the initial heat flow estimate. The results point to instabilities introduced by temperature 

residuals caused by truncation errors coupled with the high frequency variation of the 

surface temperature (see Section 8.2.1). Truncation errors lead to increased data 

residuals for a measurement with multiple recordings over a monitoring period, versus 

those for an instantaneous measurement. This is because there are more temperature 

profiles within each of the former, with which data residuals are calculated and summed. 

This can be mitigated by ignoring more22 affected sensors (close to the surface) and/or 

scaling the standard deviation of the temperature measurement to higher values within the 

bounds noted in Section 4.2.1.2.2.

The non-shaded cells all show marginal to substantial improvement on the initial basal 

heat flow estimate based on the skin depth, sensor depth, monitoring period, and 

magnitude of the true basal heat flow -  they follow the trends established in Figure 5.11 

and Figure 9.4-6 in Appendix 9.5.4.2. A substantial number of the tested scenarios result 

in optimized heat flows which are inaccurate by a factor of at least 2 (eFsi >  1) where the

skin depth is large and the heat flow is low -  the Elysium site at 139°E 1°N presents the 

most difficult measurement scenarios. The model is likely inapplicable to scenarios 

involving similarly large skin depth and shallow sensor depth. The heat flow is most 

measureable at the Tharsis site where the skin depth is shallow and the heat flow is high. 

There are some non-optimal scenarios in which the heat flow is found to relatively high 

accuracy -  these are effectively due to chance where, for example, the unsteady 

temperature amplitude over the monitoring period is not large. The lack of diurnal 

variations due to the use of the diurnal mean surface temperature in the inversion also

22 Recall that the surface sensor is ignored in the simulations.



plays an increasing role at shallower sensor depths.23 See Appendix 9.5.4.2 for an 

example with the Elysium site at 139°E 1°N at 2 m sensor depth.

Figure 5.12 shows examples of the inputs and outputs of the model for the least and most 

optimal measurement scenarios, as tabulated above. The effects of the use of the diurnal 

mean temperatures over the monitoring period are most evident for the shallow 

measurements up to 2 m. For the Elysium site at 120°E 20°N the basal heat flow is 

underestimated (eFsi =  |-1.45|, see Table 5.9) to counteract the highly positive (from

surface) temperature gradients introduced by the unsteady temperature (eFso =  11.37, see

Table 5.6). For the Elysium site at 139°E 1°N the unsteady surface heat flow introduces a 

negative temperature gradient (eFso =  |-5.20|, see Table 5.7) which is coupled with high

heat content introduced by the large diurnal surface temperature amplitude. The diurnal 

mean surface temperature used in the inversion underestimates the surface heat input 

over the monitoring period. The basal heat flow is therefore underestimated but still 

increased from the initial estimate (eFsi =  |-3.37|, see Table 5.10). Shorter monitoring

periods therefore require more accurate surface temperature estimates. The unsteady 

temperature amplitude is significantly reduced at 2 m for the Tharsis site at 253°E 2°N, 

therefore allowing a fairly accurate estimate of the heat flow (eFsi = 0 .1 1 , see Table 5.11),

improved from a low initial estimate (eFso =  |-0.86|, see Table 5.8). For the longer

monitoring periods, with high recording frequency, and deeper penetration of sensors, the 

influence of the unsteady surface heat flow on the optimization is smaller. For the Tharsis 

scenarios, the basal heat flow can therefore be recovered with relatively high reliability.

23 This effect is also an artefact of the 1 Sol timestep used in the simulations. Shorter timesteps, 

with a surface temperature of equivalent resolution, can more accurately reproduce the higher 

frequency components at shallow depth, where these cannot be ignored. However, the effect is 

increased demand for computing power or longer simulation time.
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Figure 5.12. Representative profiles for temperature inversions at sites at 120°E 20°N (a-b), 139°E 1°N (c-d) and 253°E 2°N (e- 

f) for the low conductivity, high heat flow scenarios with noise of 1 K amplitude. The plots are overlays of temperature-depth 

profiles over time where the dotted blue curves represent the true profiles, the solid grey curves the profiles with 1 K error 

and the solid green curves represent the optimized temperature profiles. The plots on the left (a, c, e) cover a monitoring 

period of -168 Sols in 1 Sol steps. The plots on the right (b, d, f) cover a monitoring period of ~669 Sol in 1 Sol steps. The 

steps are displayed every ~33 Sol for visibility. The grey squares are sensor locations and are plotted at the mean of the true 

temperature profile at a particular depth -  the surface sensor is not representative due to the high amplitude, high frequency 

variation of the diurnal surface temperature
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5.4 Summary

A heat flow measurement on Mars can aid in the selection of thermal models which most 

accurately describe Martian thermal evolution. Different models predict global averaged 

heat flows from 5-45 mW/m2, and a variation of surface heat flow between 14-55 mW/m2. 

With such large differences, even a crude heat flow estimate can invalidate some thermal 

models, though high accuracy of typically <10 % is required to validate estimates of the 

variation of heat flow across the surface. The achievement of an accurate heat flow 

measurement on Mars (in situ), while potentially challenging, is feasible if the 

measurement is restricted to the drier, dustier equatorial regions, and specific conditions 

are met in terms of the depth and time period over which the regolith is monitored. 

Inversion of the temperature measurement has the potential to improve upon initial 

Martian heat flow estimates.

To test the potential of inversion for improving heat flow estimates, an inverse model is 

applied to several feasible heat flow probe measurement scenarios for three locations on 

Mars. One of these locations is on the Tharsis region with its potential for high heat flow 

relative to the global mean, and two are in the Elysium region, which is considered an 

ideal landing site and heat flow measurement location. These scenarios include surface 

temperatures from NASA’s Mars-GRAM Martian atmospheric model. Temperature and 

pressure averaged, depth-dependent shallow subsurface thermal properties are used with 

guidance from observed surface thermal inertia. The scenarios involve both relatively low 

and high heat flows as predicted by different thermal models. The derived measurements 

have noise of the order of 10 mK to 1 K added to account for potential modelling and 

measurement uncertainties. Monitoring periods cover 0.25-1 Martian year with different 

measurement frequencies and maximum sensor depths fall between 2-5 m.

Results show that in cases where the monitoring period is at least 1 Martian year, 

inversion may not be necessary as the heat flow can be initially determined to an 

accuracy (typically <20 %) which the algorithm does not improve upon. In cases where
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the skin depth is particularly large (1.89 m) even crude estimates, ~50% inaccurate and 

larger, are not improved. For monitoring periods less than 1 Martian year, sensor depths 

at least 1.3 times the skin depth allow for a heat flow estimate within 20 % of the true 

value, providing the unsteady surface temperature amplitude is not too large. A higher 

frequency of measurements over a monitoring period improve optimized heat flow 

accuracy -  more so at shallower sensor depths. Unique features of the unsteady surface 

temperature over the monitoring period also affect the accuracy of the optimized heat 

flow, more so, again, for shallower measurements. For example, if measurements are 

restricted to high temperature or low temperature periods in the cycle, respective negative 

or positive biases are introduced into the steady temperature gradient. Larger steady 

temperature gradients therefore lead to more accurate optimized heat flows.

Heat flow optimized from noisy data shows trends of marginally improved accuracy, 

though this is traced back to the larger assumed temperature data standard deviations 

used to initialise the inverse model. It appears to be most prudent to assume large 

temperature data standard deviation to avoid inverse model instabilities, even where the 

noise level appears to be low (e.g. with high heat flow probe precision; also see Section 

4.3.1.2). Inaccurate thermal properties also affect the accuracy of the optimized heat flow. 

These are not investigated here but approximate one to one correlation in accuracy 

between underestimated bulk conductivity and heat flow is observed in the results of 

Sections 4.2.1.2.3 and 4.3.1.3.

Measurement depth relative to the skin depth and the measurement time are confirmed as 

additional primary factors which determine the accuracy of the optimized heat flow. It is 

found that measurement depths at least twice the skin depth and monitoring periods of at 

least 0.5 Martian years, or measurement depths at least 5 times the skin depth and 

monitoring periods of at least 0.25 Martian years, are required for the model to improve an 

initial heat flow estimate to within 10 % of the true value. Outside these bounds the model 

tends to be ineffective (or diverges), in particular with shallow skin depth and a long 

monitoring period approaching a full seasonal cycle (a product of truncation errors due to
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large timesteps -  Section 8.2.1). The latter may require some experimentation with the a 

priori standard deviation of the affected sensors, to improve the accuracy of the optimized 

heat flow.
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6.1.1 Mercurian Thermal History

Mercury’s bulk density is the highest of the planets suggesting a large metallic core >75 % 

of the diameter of the planet. Its small size points to relatively rapid cooling from its time of 

formation, however it has been observed to have a magnetic field which may be due to 

remnant magnetism (e.g. Purucker et al., 2009), or an active dynamo pointing to an at 

least partially molten core. A fluid core is contrary to the perception that a large metal core 

should, given the time since Mercury’s formation, be frozen. Lobate scarps, have been 

observed across the Mercurian surface; these have been interpreted as thrust faults 

suggesting global contraction of the planet by ~1-2 km, significantly smaller than that 

predicted by simple cooling models with a large metallic core (also see e.g. Stevenson et 

al., 1983; Breuer et al., 2007; Zuber et al., 2007; Michel et al., 2013 and references 

therein).

The former observations raise important questions about the history of Mercury’s heat 

loss, which appears to be smaller than its size suggests. Observational evidence supports 

a variety of thermal evolution models of Mercury, which provide a number of potential 

solutions to the enigma. These range from an insulating crust (Grott et al., 2011), through 

a mainly conductive mantle (e.g. Zuber et al., 2007; Head et al., 2012; Smith et al., 2012) 

to a large metallic core alloyed with light elements such as Si and S (e.g. Smith et al., 

2012; Hauck et al., 2013). These models predict current global heat flow in the range IQ- 

40 mW/m2, therefore a heat flow measurement with <50 % uncertainty can help to 

eliminate less plausible models.

A heat flow measurement will provide a constraint on the depth of the crust and an upper 

limit on the distribution of radioisotopes at depth. The MErcury Surface, Space 

ENvironment, GEochemistry and Ranging (MESSENGER) orbiter Gamma-Ray  

Spectrometer (GRS) has measured gamma ray abundances at Mercury and allowed 

estimates of radiogenic heat production at its surface (down to a few 10s of cm -  e.g.
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Evans et al., 2012).1 An in situ heat flow measurement can help to verify these while 

potentially avoiding many of the complexities associated with orbital measurement, as 

discussed further in Section 6.1.2 (also see Peplowski et al., 2012).

With the concentration of radioisotopes in the crust determined, the crustal component of 

the heat flow can be removed from the surface value, thereby allowing an estimate of the 

heat flow out of the mantle.2 This will provide consequent insights into the thermal state of 

the mantle and core (e.g. Spohn et al., 2001). Therefore, considered with evidence noted 

above and other observations such as gravity field measurements (Smith et al., 2012), the 

heat flow can provide robust constraints on existing Mercurian thermal evolution models.

6.1.2 Mercurian Heat Flow Measurement

Keihm (1984) discusses microwave (5-30 cm) mapping of heat flow from orbit, citing 

several surface scattering effects which complicate the interpretation of brightness 

temperatures. The Mercury Thermal Imaging Spectrometer (MERTIS) instrument is due to 

arrive at Mercury aboard the BepiColumbo Planetary Orbiter in 2024 (Benkhoff and 

Helbert, 2006; ESA, 2013). MERTIS will attempt to map the surface heat flow from the 

night side of Mercury. Howett et al. (2011) use similar observations from the Cassini 

Composite Infrared Spectrometer (CIRS) to determine the heat flow at Enceladus south 

polar hot spot. The methods used by Howett et al. (2011) and those discussed in Keihm 

(1984) involve the same base principle as with an in situ heat flow probe measurement -  

the removal of the surface unsteady heat flow signal to reveal the subsurface steady heat 

flow signal. Orbital measurements, however, require the characterisation of several 

surface processes which include the electrical properties of the regolith, and assumptions 

are necessary about subsurface thermal properties. A heat flow probe has direct access

1 This involves various methods of removing background signals from the gamma ray spectra. 

Models with varying elemental abundances are then fitted to the resulting spectra.

2 As discussed throughout Section 1 (also see Section 5.1.1) the surface (planetary) heat flow is 

the sum of crustal heat flow due to radioisotope decay and cooling of the mantle and core.
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to the subsurface and depth dependent thermal properties and in principle, therefore, 

does not suffer from the former limitations. The Heat Flow and Physical Properties 

Package (HP3), as mentioned in Chapters 1 and 5 is a heat flow probe developed for 

deployment on terrestrial bodies (Spohn et al., 2001; Spohn et al., 2010; Komle et al., 

2011; Dehant et al., 2012; Spohn et al., 2012). Here, the model of Chapter 4 is applied to 

Mercury as an airless terrestrial planet to assess the characteristics of a potential HP3 

measurement.

Keihm (1984) suggests a nominal heat flow for Mercury of 40 mW/m2 as suitable for 

orbital microwave measurements while the models of Spohn (1991) give values between 

22-30 mW/m2. Watters et al. (2002) use crustal faulting studies to estimate the heat flow of 

Mercury to be 10-43 mW/m2, about 4 billion years ago. Ruiz et al. (2013) use similar 

studies of the Northern Rise (centred on ~30°E 68°N) and Kuiper regions (centred on 

324°E 0°N) of Mercury (see Figure 6.1) to estimate palaeo-heat flows between ~27-36  

mW/m2 and current values between ~15-30 mW/m2. The thermal evolution models of 

Breuer et al. (2007) are compatible with the former estimates and suggest present day 

values of the order of 12 mW/m2. Egea-Gonzalez and Ruiz (2013) obtain a lower limit of 6 

mW/m2 by comparing the Mercurian regolith layer to the more insulating lunar 

megaregolith layer. Spohn et al. (2001) note the widely varying estimates of Mercurian 

heat flow of the order of 10-30 mW/m2 due to different assumptions. They also note that 

heat flow on Mercury is expected to show less surface variation than on Earth due to a 

thin mantle -  the MESSENGER results of Michel et al. (2013) suggest a thinner mantle 

than previous estimates. Despite this, the heat flow is likely to vary appreciably across the 

Mercurian surface based on the crustal thickness findings of Smith et al. (2012).

Crustal thickness largely correlates with surface altitude, the northern half of which is 

shown in Figure 6.1 along with potential heat flow measurement sites at 80°E 38°N, 

160°E 25°N and 272°E 85°N. The selection of the sites is discussed in Section 6.2. Here, 

the heat flow is investigated in the context of low, intermediate and high estimates of 10, 

20 and 30 mW/m2, respectively. These are not associated with any specific heat flow
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measurement site: this is because at the sites chosen -  based on crustal thickness 

estimates and the assumption of uniform volumetric heat production throughout the crust 

-  the heat flow should not vary by more than a few percent. The heat flow estimates, 

combined with conductivity estimates, allow for a broad analysis of the various steady 

temperature gradients which may be encountered on the Mercurian surface.

o
Longitude

-0.08 

Altitude [km]

Figure 6.1. Mercury Laser Altimeter (MLA) map of the northern half of Mercury from Johns Hopkins University (2013). The 

map altitudes largely correlate with the crustal thickness estimates of Smith et al. (2012) and the map shows heat flow 

measurement sites (circled) at 80°E 38°N, 160°E, 25°N and, 272°E 85°N used in further in the text.

6.2 Further A Priori Information

Mercury is often compared to the Moon due to their similar sizes and surface geology 

(e.g. Linsky, 1966; Campbell and Taylor, 1983; Ernst et al., 2010). Chase Jr et al. (1976) 

find thermal properties similar to lunar values, in analysing data from the Mariner 10 flyby. 

Because Mercury is an airless body, its surface temperature can effectively be modelled 

similar to that of the Moon (see Section 3.6). The quality of these and other pieces of a 

priori information is discussed below to further assess the constraints on a reliable heat 

flow probe measurement.

6.2.1 Surface Temperature

Being the closest planet to the Sun, Mercurian surface temperatures are high with solar 

flux varying between 6290-14490 W /m 2 from aphelion to perihelion (Spohn et al., 2001). 

Mercurian surface temperature has been modelled and analysed in several investigations
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using sophisticated surface energy balance models (e.g. Chase Jr et al., 1976; Vasavada 

et al., 1999; Yan et al., 2006). Chase Jr et al. (1976) compare modelled diurnal surface 

temperatures to measurements returned by Mariner 10. They also discuss the uniqueness 

of the surface temperature profiles at different longitudes due to the 3:2 Mercurian spin- 

orbit resonance. This results in a bimodal distribution of surface temperatures where 

longitudes 0°E and 180°E, in turn, face the Sun at perihelion and longitudes 90°E and 

270°E, in turn, face the Sun at aphelion. The effect of this is a solar day which is twice the 

orbital period -  about 176 Earth days (Vasavada et al., 1999; Spohn et al., 2001). This 

bimodal distribution can be seen in Peplowski et al. (2012), which uses the model of 

Vasavada et al. (1999). Vasavada et al. (1999) and Yan et al. (2006) show how near 

surface layering can affect the night time temperature, which is controlled by the shallow 

subsurface thermal properties. Generally the temperatures of the preceding studies range 

from a little over 100 to 600 (Vasavada et al., 1999) and 700 (Yan et al., 2006) K.

The surface energy balance model presented in Sections 2.1.2.2.2 and 3.6 is not as 

sophisticated as the preceding examples but replicates major features of the Mercurian 

surface temperature, similar to those presented in Vasavada et al. (1999) and Yan et al. 

(2006). The temperatures are presented in Section 6.3.1. As discussed in Section 5.2.1 a 

reliable determination of steady surface temperature involves long term and global 

averages, the length of which depend on data availability. The simple approach of Section

5.2.1 is adopted here: the steady surface temperature is taken as the local average over a 

Mercurian solar day. Surface temperatures are modelled at both the perihelion and 

aphelion facing latitudes to determine their effect on a heat flow probe measurement. The 

exact latitudes and longitudes are informed by further consideration of the surface 

geophysics, as discussed below.

6.2.2 Thermal Properties

Surface energy balance (see Sections 2.1.2.2.2 and 3.6), which determines the surface 

temperature, is affected by the albedo A and emittance s at the surface of Mercury. A 

common value of emittance used throughout the investigations referenced here is 0.9
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while assumed global albedo varies between 0.10-0.2. The albedo at individual locations, 

of course, varies where high albedo features correlate with impact craters and ejecta and 

low albedo features with older, space weathered terrain (Robinson et al., 2008; Hughes 

and Vaughan, 2012; Riner and Lucey, 2012). Taking into account the results of 

Hagermann and Tanaka (2006) (see Section 6.2.3) it may be prudent to avoid high albedo 

areas, however the heavily cratered Mercurian surface coupled with the map of Hughes 

and Vaughan (2012) suggest this may be challenging. Mercury does have smooth plains 

which cover ~27 % of the surface (>65 % being volcanic in origin) according to the finding 

of Denevi et al. (2013), mostly in the northern half (Figure 6.2). Taking a heat flow 

measurement on smooth plains avoids focusing effects by rough surface terrain, therefore 

simplifying interpretation of the measurement. These and former considerations lead to 

locating three potential heat flow measurements sites at: 80°E, 38°N where equatorial 

temperatures are close to a global minimum; 160°E, 25°N inside the Caloris basin where 

temperatures approach the global maximum and; 272°E, 85°N in the low temperature 

polar regions (Figure 6.2).
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6.2 Further A Priori Information

Figure 6.2. Potential heat flow measurements sites shown on MESSENGER Mercury Dual Imaging System (MDIS) colour 

mosaic with cyllindrical projection Johns Hopkins University, 2013. The colour mosaic is overlaid on a grayscale mosaic to 

elliminate some lack of coverage northward of 30° Latitude. The green areas identify smooth planes as identified by Denevi 

et al. (2013). Potential heat flow measurements sites (white circles) are shown at: 80°E, 38°N where equatorial temperature 

are close to a global minimum; 160°E, 25°N inside the Caloris basin where temperatures approach the global maximum and; 

272°E, 85°N in the low temperature polar regions.

Chase Jr et al. (1976) used Mariner 10 TIR data to calculate the thermal inertia along the 

ground track ranging from 62.76 to 129.704 J/m2/s1/2/K, which is noted as being sim ilar to 

lunar values. These values are consistent with small grain sizes and low thermal 

conductivity k with extrapolation of the results of Presley and Christensen (1997). Values 

of conductivity used in other investigations range from lows of ~1 mW /m/K (Chase Jr et 

al., 1976; Yan et al., 2006) for the shallow subsurface to highs of -1 0  m W /m/K (Vasavada 

et al., 1999; Spohn et al., 2001) throughout the whole column, or at depth (assuming a 

mean surface tem perature of 400 K) -  they are adopted here. Vasavada et al. (1999) and 

Yan et al. (2006) use 2-layer depth profiles consistent with a thin (< 0.5 m) dust mantle 

over a basalt bed. A 2-layer model is also used here, though parameterizations sim ilar to 

those in Section 5.2.2 (also see Grott et al., 2007) are used. Two conductivity profiles are 

assumed: one a heterogeneous profile with continuously varying therm al properties (1- 

layered), the other a 2-layered profile (see Section 3.3). As in Section 5.2.2 the profile for
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density p is correlated with the conductivity profile, and the specific heat capacity c is held 

constant. Densities used in other investigations include Lunar values of 1300 kg/m3 at the 

surface, with an exponential increase to 1920 kg/m3 (Spohn et al., 2001), at depth or 1800 

kg/m3 in a lower layer (Vasavada et al., 1999; Yan et al., 2006). The specific heat is 

calculated via the mean surface thermal inertia /  =  ^kpc  =  96.232 J/m2/K/s172 from the 

results of Chase Jr et al. (1976), using bulk thermal conductivity k and density p. The 

calculated surface value of c is then held constant with depth. The profiles are shown in 

Figure 6.3 with associated numbers shown in Table 6.1.

Table 6.1. Derived regolith properties for 1-layered and 2-layered regolith models on Mercury based on a mean surface 

thermal inertia /  = Jkpc = 96.232 J/m2/K/s1,z. The same two models are used for all measurement sites. The thermal 

conductivity is k and p is the density at select depth z.

MODEL z [m] k [W/m/K] p [kg/m3] c [kg/m3]

1-LAYERED 0 0.001 1050 859.577

MODEL 0.5 0.0095 1852.5 859.577

2-LAYERED 0 0.005 1350 768.765

MODEL 0.5 0.01 1950 768.765
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Figure 6.3. Hypothetical conductivity k, density p and specific heat capacity c depth profiles for potential heat flow 

measurement sites. In: a. the solid and dotted red curves show conductivity variation; b. the solid and dotted blue curves the 

density variation and the solid and dotted purple lines the constant specific heat. The dotted and solid curves indicate 

thermal properties respectively associated with the 1-layered and 2-layered regolith models. The pofiles overlap in the 

surface layer (0-50 cm).

б.2.3 Heat Sources

MESSENGER results o f Peplowski et al. (2012) indicate some variation of potassium (K) 

across the surface of Mercury -  the variation of thorium (Th) being relatively insignificant -  

with the implication that the K/Th ratio varies across the surface. The high K deposits can 

be associated with the northern volcanic plains though the Caloris basin appears to be an 

area of low K. The working hypothesis is that the K is transported by surface processes 

(e.g. due to high temperatures) and redeposited or lost to Mercury’s exosphere which 

would suggest that the K enriched deposits are fairly thin. However, if the K enriched 

deposits are fairly thick, the analysis of Hagermann and Tanaka (2006) may need to be 

applied.

6.3 Scenarios

The thermal properties derived in Section 6.2.2 suggest shallow skin depths, allowing 

access to the unmasked steady basal heat flow  at relatively shallow depths. Still, a heat 

flow  probe may not penetrate to desired depths, therefore the question of how the 

temperature amplitudes affect measurements above the target is important. This is in
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addition to the question of how unknown layering and different heat flow magnitudes may 

affect the measurability of the basal heat flow.

6.3.1 Forward Models

Forward models are simulated which generate unique temperature profiles for each of the 

three potential heat flow measurement locations identified earlier. The temperature 

profiles for each location are based on a unique surface temperature, a 1-layered (Figure 

6.4) and 2-layered (see Appendix 9 .6 .1)3 Mercurian regolith, and three basal heat flow 

estimates, as discussed in Section 6.1. Therefore, a total of 6 unique profiles are 

simulated for each location. Only the highest heat flow scenarios (highest temperature 

gradient) are presented in figures -  the differences caused by the change in temperature 

gradient are nearly indistinguishable and therefore do not offer any new visual information.

The temperature-depth profiles show that the skin depths for the relatively low 

conductivities used here are shallow, meaning the basal heat flow can be accessed at a 

depth of ~1.25 m. For the 2-layered model, the higher conductivity of the lower layer 

results in a small reduction in the magnitude of the temperature gradient and a slight 

increase in skin depth.3 The low conductivity upper layer attenuates most of the surface 

heat. Previous results in Sections 4.2.1, 4.3.1 and 5.3.3 (Tharsis site on Mars) illustrate 

what can be expected for scenarios with shallow skin depth and low heat flow. For 

example, the dependence of optimized heat flow accuracy on random error amplitude is 

found, in Section 5.3.3, to be small. Therefore themes related to the amplitude of random 

errors in measurements are not explored here. Systematic errors are discussed in Section 

7.3. The relationship between skin depth and optimized heat flow accuracy is established 

in Sections 4.2.1, 4.3.1 and 5.3.3, therefore neither is that theme explored here.

3 Despite the increase in skin depth between the 1-layered and 2-layered models being small, and 

visually indistinguishable at the scales shown in Figure 6.4 (also see Appendix 9.6.1), the inversion 

results do show a non-negligible response of the algorithm to the change.
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The temperature-time profiles illustrate the results of the Mercurian bi-modal temperature 

distribution, with peak temperatures of ~660 K close to the 180°E hot pole and ~550 K 

close to the 90°E ‘cool’ region (see Appendix 9.6.1 for relevant surface energy balance 

parameters). The prominent ‘second sunrises’ respectively at 80°E 38°N and 272°E 85°N  

are because of retrograde motion of the Sun as Mercury’s orbital velocity at perihelion 

outpaces its angular velocity (e.g. Vasavada et al., 1999). It is important to note that the 

surface energy balance calculation provides a first order estimate of the Mercurian surface 

temperature, which serves the purposes of this work. In practice, more sophistication may 

be introduced into the model, or more sophisticated models used to achieve more 

accurate surface temperature predictions.
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Figure 6.4. Forward modelled temperature profiles for measurement sites. These are from the respective 1-layered models 

(see Figure 6.3) with the ‘high’ heat flow (30 mW/m2) regime at 80°E 38°N (a-b), 160°E 25°N (c-d) and 272°E 85°N (e-f). The left 

contours are overlays of depth-dependent temperature T over time t of 2 orbital periods in -3.5 d steps; the right contours 

are overlays of time-dependent temperature T over depth z of 5 m (larger amplitudes towards the surface). All simulations 

are run over the same time period from midnight at perihelion (also see Appendix 9.6.1).4

4 The forward models with lower heat flow are visually indistinguishable from that presented in 

Figure 6.4 and are therefore not shown.
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6.3.2 M easurem ents

Since some themes are explored in other chapters, the most relevant questions arising 

from the discussion above are how: 1. the geographic location (and therefore temperature 

amplitude); 2. the time of an instantaneous measurement (considering the steep dayside 

and flat night-side temperature-time gradients) and its effectiveness compared to longer 

time periods; 3. assumptions about subsurface layering, affect a heat flow probe 

measurement.

Noise of amplitude 100 mK is applied to each measurement, constant with depth. 

Instantaneous measurements are included, because it is likely that the harsh surface 

thermal conditions on Mercury will shorten the lifetime of any instrument -  these are at 

peak daytime, transitional heating and cooling, and minimum night-time temperatures. A 

monitoring period of 1 Mercurian solar day is also included to assess any benefits of 

longer monitoring periods. A maximum of 15 sensors are used with maximum sensor 

depths of 0.5 (7 sensors) and 2 m (15 sensors). This leads to 10 measurement scenarios 

per site scenario -  a grid of which is shown in Table 6.2. Representative measurements 

are shown in Figure 6.5 for the 1-layered model (2-layered model measurements are 

presented in Appendix 9.6.2).

Table 6.2. Grid of measurement scenarios (10 in total per site scenario) simulated for each of the forward modeled scenarios 

of Section 6.3.1 and Appendix 9.6.1.
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Figure 6.5. Temperature profiles for measurements at sites at 80°E 38°N (a-b), 160°E 25°N (c-d) and 272°E 85°N (e-f) for the 

1-layered regolith model with a heat flow of 30 mW/m2. The plots are overlays of: (a, c, e) temperature-depth profiles for 

instantaneous measurements at peak daytime, (solid red), transitional heating (dotted orange) and cooling (dashed green) 

and, minimum nightime (dot-dashed blue) temperatures and; (b, d, f) temperature-time profiles for measurements covering 1 

Mercurian solar day. The squares represent sensor locations: in space (a, c, e, plotted at the basal temperature value); and 

time (b, d, f, plotted at the times and temperatures of, and colour coordinated with the instantaneous measurements).
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6.3.3 Inversion Results

The inversion tests are carried out by assuming initial basal heat flows which are 

inaccurate by a factor of two -  considered reasonable because current estimates vary by 

a factor of 3 or less.5 Initial heat flows are also estimated using bulk conductivity, and the 

temperature gradient of the two lowest sensors of a measurement, to facilitate comparison 

to the more complicated optimization estimates (Table 6.3 to Table 6.5; also see Appendix 

9.6.3.1).

The error in the temperature measurement is assumed to be additive noise of 0.1 K 

amplitude, constant with depth, which is consistent with the noise model used to 

synthesise the measurement errors (see Section 6.3.2).

The steady surface temperature is taken as the mean of the simulated surface 

temperature (see Sections 6.2.1 and 6.3.1) used for each measurement site. The 

unsteady surface temperature is taken as the difference between the simulated surface 

temperature and the mean.

To assess the effect of layering assumptions, all the optimizations are performed with 

assumed 2-layered and 1-layered regolith (conductivity and density) scenarios 

independent of the true regolith profile. This results in overestimated skin depth for the 1- 

layered regolith model and underestimated skin depth for the 2-layered regolith model 

(red bordered cells, Table 6.3 to Table 6.8; also see Appendix 9.6.3).

6.3.3.7 Initial Estimates

Errors in the initial heat flow estimates (Table 6.3 to Table 6.5; also see Appendix 9.6.3.1 

-  the grey shaded cells indicate initial estimates using bulk conductivity, which are not 

improved by optimization) show that, for a sensor penetration depth of 0.5 m, where the

5 This is an academic note as it is already established that the magnitude of errors in the optimized 

heat flows show no significant dependence on the magnitude of the initial error (there is 

dependence on the sign of the error such that low estimates are optimized to a low value -  

Sections 4.2.1.1 and 4.3.1.1, and Appendix 9.4.2)
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unsteady perturbations of the subsurface heat flow are still significant, the higher heat flow 

site scenarios (with steeper temperature gradients) produce more accurate results 

(though still inaccurate by factors between 8-125). At 2 m the dependence of the initial 

heat flow estimate accuracy on the magnitude of the true heat flow is lost, as the unsteady 

heat flow from the surface is damped to negligible values, and the precision errors present 

in the measurements become more significant (accuracies between 0-63 % of the true 

values).6

An interesting trend emerges in terms of the accuracy of the assumed regolith profiles: for 

nearly all instantaneous measurements, up to 0.5 m sensor penetration depth, the 

assumption of a 1-layered regolith (conductivity) model produces the most accurate heat 

flow estimates, regardless of the true regolith model; for nearly all measurements covering 

a full Mercurian solar day -  and also instantaneous measurements at 2 m sensor 

penetration depth -  the 2-layered regolith model produces the most accurate results.

The preceding result is because, above 0.5 m, the conductivity is lowest; therefore the low 

1-layered bulk estimate is closer to the true bulk value. Up to 2 m, the conductivity is 

highest, meaning the high 2-layered bulk estimate fits better to the true values. 

Additionally, at 0.5 m sensor penetration depth, the instantaneous measurements have 

steep temperature gradients due to the unsteady heat flow, which overestimates the 

magnitude of the basal heat flow. A low conductivity estimate mitigates the former 

overestimate. For the measurements over a full solar day, the gradients are averaged: 

this, while avoiding the biasing effect of an instantaneous measurement, tends to hide 

(underestimate) the underlying steady temperature gradient. Therefore the high bulk

6 This is important as it demonstrates the consistency of results between those in Section 4.2.1.1, 

where the ideal heat flow results show no significant dependence on heat flow magnitude, and 

those in Section 5.3.3.1 which show direct dependence on heat flow magnitude. This is further 

evidence for the conclusion that, once the role of the unsteady heat flow is damped out, the heat 

flow magnitude has a less significant impact on optimized heat flow accuracy.
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conductivity estimate of the 2-layered assumption results in more accurate estimates as it 

produces higher heat flows with the (low) steady temperature gradient estimates.

At 0.5 m, the most accurate initial estimates are obtained from the sites with the smallest 

temperature amplitudes. These are, in turn from the sites at 272°E 85°N (127 K), 80°E  

38°N (241 K) and 160°E 25°N (301 K). At 2 m the unsteady temperature variations are 

damped to negligible values, therefore there is no dependence on the temperature 

amplitudes, with most estimates falling within 40 % accuracy. For the instantaneous 

measurements, there are no consistent trends in accuracy in terms of the point in the 

cycle where the measurement is taken. The most accurate estimates are from the 

monitoring periods over a full Mercurian solar day (accurate to within 12 %).
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Table 6.3. Grid of initial heat flow estimate relative error magnitudes eFso = -fr -  1 (green borders -  see Appendix 9.1 for
B >f b  '

symbol definitions) from measurement sited at 80°E 38°N on Mercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  tml <s the skin depth. The shaded cells show values which are not improved by optimization.
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Table 6.4. Grid of initial heat flow estimate relative error magnitudes eFsp = -  l |  (green borders -  see Appendix 9.1 for

symbol definitions) from measurement sited at 160°E 25°N on Mercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  lml is skin depth. The shaded cells show values which are not improved by optimization.
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IF50 ITable 6.5. Grid of initial heat flow estimate relative error magnitudes eFso = \-4 f -  1 (green borders -  see Appendix 9.1 for

symbol definitions) from measurement sited at 272°E 85°N on Mercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k in  Iml is the skin depth. The shaded cells show values which are not improved by optimization.
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6.3.3.2 O ptim ized H eat Flow

Optimization causes meaningful improvements on the initial estimates in several cases at 

shallow (0.5 m) penetration depth, in particular, and to a lesser degree, at 2 m (Table 6.6 

to Table 6.8; also see Appendix 9.6.3.2 -  the grey shaded cells indicate initial estimates 

using bulk conductivity that are not improved by optimization).

For the instantaneous measurements penetrating up to 0.5 m depth, errors in the 

optimized heat flows show that the higher heat flow site scenarios (with steeper steady 

temperature gradients) produce more accurate results. For measurements covering a full 

Mercurian solar day and/or measurements up to 2 m depth, the former trend is maintained 

at the 160°E 25°N site, but appears reversed at the 80°E 38°N and 272°E 85°N sites 

(though with values that differ by 0-4 %). The difference between sites is related to the 

relative temperature amplitudes, where 160°E 25°N has the largest, as noted in Section

6.3.3.1 (recall that as the unsteady temperature amplitude becomes negligible, 

dependence of the accuracy of optimized heat flow on heat flow magnitude diminishes).

At 0.5 m, the most accurate optimized heat flows are obtained from the sites with the 

smallest temperature amplitudes, similar to the case with the initial estimates. Also, for 

instantaneous measurements at 0.5 m, heat flows optimized from peak daytime 

temperatures are the most accurate (though still inaccurate by factors greater than 1). The 

peak daytime temperature measurements provide the most accurate optimized heat flows 

because the surface temperatures do not undergo rapid changes around the time of 

measurement. The transitional temperatures are taken at a time of rapid change, with 

sharp transitions in the subsurface temperature-depth gradient, and the minimum night

time temperatures occur just before the sharp transition to sunrise (see Figure 6.5 and 

Figure 6.6). These sharp transitions introduce ambiguities into the inverse model such that 

several surface temperatures can fit a temperature profile within a particular timestep. The 

most accurate estimates are from the monitoring periods over a full Mercurian solar day 

(most, accurate to within 50 %).
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At 2 m the optimized heat flow accuracies display no explicit dependence on the location 

(amplitude) of the measurement, or the point in the cycle at which the measurement is 

taken. This follows from the damping of the surface heat flow to negligible values at depth.

IF57 ITable 6.6. Grid of optimized heat flow relative error magnitudes e Fsi = d r -  1 (green borders -  see Appendix 9.1 fors |Fb I

symbol definitions) from measurement sited at 80°E 38°N onMercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  [m] is the skin depth. The shaded cells show values which are not improved by optimization.
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I pSI  1
Table 6.7. Grid of optimized heat flow relative error magnitudes ef s/ = 1| (green borders -  see Appendix 9.1 for

symbol definitions) from measurement sited at 160°E 25°N onMercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k in  tm] is  the skin depth. The shaded cells show values which are not improved by optimization.
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Table 6.8. Grid of optimized heat flow relative error magnitudes eFsi = d ? -  1 (green borders -  see Appendix 9.1 forB I Fb I

symbol definitions) from measurement sited at 272°E 85°N onMercury. This is for the 1-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBVLK [W/m/K] and 

2 s k i n  lml >s the skin depth. The shaded cells show values which are not improved by optimization.
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In all scenarios, the 2-layer assumed regolith profiles produce more accurate optimized 

heat flows, which can be explained by the effects of the bulk conductivity on the 

temperature amplitude and gradient at depth and truncation errors due to the low 

sampling of the surface and subsurface temperatures.7

Towards the surface, above -0 .5  m, truncation errors cause the temperatures to be 

underestimated for peak daytime and transitional heating measurements, and 

overestimated for transitional cooling and minimum night-time measurements (see Figure 

6.6 for the 1-layered regolith model and Appendix 9.6.3.2 for equivalent 2-layered model 

examples, examples with maximum penetration depths of 0.5 m, and examples for a full 

solar day measurement). The inverse model therefore compensates for the surface 

inaccuracies by producing high heat flows in the case of underestimates, and low heat 

flows in the case of overestimates. Assuming the 1-layer (lower conductivity) model 

increases the magnitude of the preceding effects relative to the 2-layer model assumption 

(effects of conductivity are discussed in Sections 3.2.2 and 3.4.2). The rapid changes in 

the transitional temperatures also exacerbate the effect which explains why the peak 

daytime temperatures produce the most accurate results.

7 Truncation errors are caused by the use of relatively large control volumes such that the thermal 

capacity coefficient (see Section 3.4.1.1) becomes large, reducing the efficiency of unsteady heat 

transfer between control volumes. This arises in the use of implicit time discretization, which is the 

case here; however, tests using explicit time discretization produce equivalent results. In practice, a 

trade-off is necessary between time and depth resolution, and computer processing time. Because 

of the theoretical context of this presentation and the appreciable number of scenarios being 

tested, minimum processing time is given priority.
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Figure 6.6. Temperature profiles for optimized heat flows, compared to true profiles, for sites at 80°E 38°N (a-b), 160°E 25°N 

(c-d) and 272°E 85°N (e-f) for the 1-layered instantaneous measurement scenario with a heat flow of 30 mW/m2. The left plots 

(a, c, e) highlight the effects of the unsteady surface heat flow down to depth z = 1m. The right plots (b, d, f) show the 

temperature gradients between 1-2 m depth where the unsteady surface heat flow becomes negligible. The curves are 

associated with measurement times according to: solid (peak daytime); dotted (transitional heating) and, dashed (cooling) 

and; dot-dashed (minimum nightime). The colored curves (red, orange, green, blue) are measured profiles, the grayscale 

curves are the optimized profiles where medium greys and dark greys respectively represent correct (1-layer) and incorrect 

(2-layer) layering assumptions. The grey squares are sensor locations and are plotted at the true basal temperature.
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6.4 Summary

Mercury is an enigmatic planet: its small size, which suggests a rapid cooling history, is 

coupled with a high density and a magnetic field, which points to it having a large, 

metallic, at least partially fluid core. Its surface features lobate scarps, the extent of which 

suggests smaller global contraction than that expected from the cooling of a large metallic 

core. The former observations require a mechanism which slows Mercury’s cooling. A 

variety of thermal models exist which seek to provide insight into the processes that have 

influenced Mercury’s current state; these predict current global heat flow in the range of 

10-40 mW/m2. A planetary heat flow measurement, accurate to within 50 %, can therefore 

aid in the selection of the most plausible of these models.

To test the viability of a Mercurian heat flow measurement, an inverse model is applied to 

several feasible heat flow probe measurement scenarios for three locations on Mercury: 

one close to one of the hot poles at 160°E 25°N, and two in the cooler regions at low 

(80°E 38°N) and high (272°E 85°N) latitudes. The Mercurian surface temperature is 

estimated using a surface energy balance model. Surface thermal properties are derived 

from observed surface thermal inertia; these are extrapolated downwards with 1-layer and 

2-layer (with a high density, high conductivity layer below 0.5 m) regolith models. The 

scenarios are forward modelled with a range of heat flows between 10-30 mW/m2.

Instantaneous measurements are derived from the different forward models at peak 

daytime, transitional heating and cooling, and minimum night-time temperatures. 

Measurements are also derived which cover a full Mercurian solar day, to quantify the 

potential of longer term measurements. The measurement scenarios involve sensor 

penetration depths of 0.5 m (with appreciable unsteady temperature variation) and 2 m 

(where the unsteady temperature is negligible). They have noise of the order of 100 mK 

added to account for expected measurement uncertainties due to instrument precision.

The measurements are inverted with assumed initial heat flows inaccurate by a factor of 

2; however, simple estimates are calculated, using bulk conductivity and the temperature
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gradient at the lowest 2 sensors, to quantify the potential effect of inversion on heat flow 

accuracy. The true surface temperature profiles are used in the inversion, while inaccurate 

and accurate regolith model assumptions (1-layer and 2-layer) are applied in turn to the 1- 

layer and 2-layer regolith models to test the effect of inaccurate layering assumptions.

The forward models have shallow skin depth (0.15-0.16 m) such that inversion may not be 

necessary given the target depths of proposed heat flow probes. Below 1 m, the basal 

heat flow is largely accessible and can be initially determined to within 50 % in nearly all 

cases, and 20 % in most cases. Optimisation improves approximately half of these (by 

between 1-98 %) to within 10 % in most cases.

For penetration depths up to 0.5 m, long monitoring periods (1 Mercurian solar day tested) 

are required to derive accurate heat flow estimates without optimization (most fall within 

10 %). Optimization, while improving nearly all of the initial heat flow estimates (inaccurate 

by factors >7) for instantaneous measurements by large factors, provides marginally 

useful results (still inaccurate by factors >1) in only a few cases. Low (inaccurate) 

conductivity estimates tend to mitigate the steep temperature gradient biases present in 

shallow measurements.

Significant truncation errors are present in the inverted temperature results because of the 

use of large control volumes in the inverse model, matching the number of measurement 

sensors -  these complicate the interpretation of results with respect to incorrect layering 

assumptions. Conductivity overestimates appear to mitigate the effects of the use of large 

control volumes. Despite the former, optimization improves upon initial estimates, using 

bulk conductivity, in many instances, as noted above.

More accurate heat flows are optimized from measurements at Mercurian locations with 

lower temperature amplitudes; in order of decreasing accuracy these are 272°E 85°N (127 

K), 80°E 38°N (241 K) and 160°E 25°N (301 K). The basal heat flows are most accurate, 

optimized from a peak daytime temperature, when the variation in the unsteady surface 

temperature is small. Taking instantaneous measurements where there are rapid, or
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sharp temperature transitions exacerbates the problem with truncation errors and makes it 

more difficult for the inverse model to find a unique temperature solution at a particular 

timestep.

These results show that inversion of instantaneous temperature measurements at 

Mercury produces improvements on initial heat flow estimates where a heat flow probe 

does not penetrate far enough below the skin depth (and does not persist over a 

Mercurian solar day). These, though inaccurate by factors >1, can still provide useful 

constraints on thermal models which predict heat flows varying by up to a factor of 4. 

Inversion can also improve upon measurements at ideal depths (2 m tested) and an ideal 

monitoring period of 1 Mercurian solar day, producing highly accurate heat flow estimates. 

To maximise the chances of success it is best to seek out sites with the lowest 

temperature amplitudes and take measurements at times when the rate of change of the 

surface temperature is slow.
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7.1.1 Thermal Evolution of Vesta

Asteroid (4) Vesta, while differentiated is not in hydrostatic equilibrium (e.g. Neumann et 

al., 2013; Russell et al., 2013; Rayman and Mase, 2014). Vesta, like the dwarf planet (1) 

Ceres, is classed as a protoplanet (e.g. Reddy et al., 2012). It is thought to have formed 

during the first million years of Solar System history (e.g. O ’Brien and Sykes, 2011; 

Pieters et al., 2011; Formisano et al., 2013), its accretion towards a larger mass likely 

stopped by the disruptive effects of Jupiter (e.g Coradini et al., 2011; Zuber et al., 2011).

Vesta, as a differentiated asteroid, raises important questions about the sources of heat in 

the early Solar System which facilitated its melting and its subsequent cooling history (e.g. 

Zuber et al., 2011). These are currently thought to be short-lived radio isotopes such as 

26AI and 60Fe, as confirmed by studies of so-called HED (Howardite, Eucrite and 

Diogenite) meteorites, where evidence points to Vesta being their parent body (e.g. 

Bogard and Garrison, 2003; Coradini et al., 2011; Cloutis et al., 2013; Formisano et al., 

2013; Russell et al., 2013).

Vesta is therefore a unique repository of information on the early Solar System, even 

though substantial thermal and impact evolution since its formation may have erased 

much of its primordial features (Coradini et al., 2011). The observation of pitted terrain on 

its surface, associated with low albedo, hydrogen rich area, for example, points to an 

active surface potentially rich in volatiles (e.g De Sanctis et al., 2012; Prettyman et al., 

2012; Russell et al., 2013). Understanding the nature of the pitted terrain can lead to a 

better understanding of Vesta’s impact and thermal history.

The planetary heat flow from the Vestan surface is expected to very low if not, possibly, 

reversed; its interior is likely frozen and internal heating mechanisms extinct (e.g. 

Formisano et al., 2013; Elkins-Tanton et al., 2014). While this may be the case an in situ 

heat flow measurement can provide an important confirmation of the expected thermal
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state of the Vestan interior, as well as useful information on properties affecting its surface 

energy balance, as is proposed for other small Solar System bodies (e.g. Spohn et al., 

2007; Jaumann et al., 2014).

7.1.2 Measuring Heat Flow on Vesta

The first in-situ measurement of heat flow on a minor solar system body is planned for the 

Multi-Purpose Sensors for Surface and Subsurface Science Penetrator (MUPUS PEN), 

scheduled for a landing on comet 67P/Churyumov-Gerasimenko (67P/CG) in late 2014. It 

is part of the MUPUS payload on the Rosetta space probe lander, Philae (Spohn et al., 

2007; Komle et al., 2011; Kargl et al., 2012; ESA, 2013), which is designed to measure 

the temperature gradient of the upper 30 cm of the subsurface. The focus of MUPUS is 

the surface energy balance, which is primarily driven by processes related to coma 

formation (Hagermann, 2014).

A basal heat flow measurement on Vesta likely requires thermal sensor penetration below 

30 cm to access the steady temperature gradient which allows the basal heat flow to be 

determined. There are almost no published estimates of the heat flow on Vesta -  a zero 

value is used in the models of Formisano et al. (2013) while Stubbs and Wang (2012) do 

not explicitly consider it. Here arbitrary thermal conductivities (see Section 7.2.2), the 

internal temperatures of Formisano et al. (2013) (200 K at 270 km from centre) and 

equatorial surface temperatures of Stubbs and Wang (2012) (see Figure 7.2) are used to 

produce nominal equatorial values of 0.33-3.33 pW/m2.

As noted in Section 5.1 planetary heat preferentially escapes from thinner crust, as thicker 

crust forms an insulating lid. This suggests that the crustal thickness of Vesta may be 

used to select measurement locations where the heat flow is expected to be relatively 

high, and therefore most resolvable. Figure 7.1 shows surface topography and gravity of 

Vesta determined from observations of the NASA Dawn mission to the asteroids. These 

can be used to infer crustal thickness (e.g. Asmar et al., 2012; Ermakov et al., 2012) and
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are used to guide the selection of the identified measurement location at 120°E 20°N, 

which is also informed by further a priori information, discussed below.
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Figure 7.1. a. Surface topography of Vesta, relative to an ellipsoid of 285 kilometers by 285 kilometers by 229 kilometers. The 

topographic map is constructed from the analysis of more than 17,000 images from Dawn's framing camera that were taken 

with varying sun and viewing angles (after NASA, 2013c); b. Gravity of Vesta derived from results of Dawn’s gravity 

experiment (after NASA, 2013b). The white circles identify a potential heat flow measurement location at 120°E 20°N based 

on an expected low crustal thickness (e.g. Asmar et al., 2012; Ermakov et al., 2012), and relatively high heat flow (also see 

further discussions in the text).
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7.2.1 Surface Temperature

The surface temperature on Vesta varies between 50 and 275 K (Titus et al., 2013 and 

references therein). These temperatures depend on its orbital parameters and thermal 

properties as discussed in Section 2.2.5. The orbit of Vesta lies beyond any significant 

tidal influences in the asteroid belt between Mars and Jupiter therefore no such effects 

should significantly affect its surface temperature. The Solar Constant at the orbit of Vesta 

varies of the order of 200-287 W /m 2 between aphelion and perihelion. The amplitude of 

the annual temperature variation is therefore expected to be small, though its particularly 

long orbital period of 3.63 Earth yr (Williams, 2014a) suggests deeper annual thermal skin 

depth than for Lunar or Mercurian equivalent regolith thermal properties. Conversely the 

Vestan rotation period of 5.342 hr (Reddy et al., 2013) is relatively rapid, leading to a 

shallow diurnal thermal skin depth for equivalent regolith thermal properties. The shape of 

Vesta -  less the 500 km Rheasilvia impact basin -  approaches that of a prolate spheroid 

(Stubbs and Wang, 2012).1 It has simple rotation with the rotational axis pointing towards 

309.03° R.A. and 42.24° Dec. (Reddy et al., 2013; Russell et al., 2013). This allows the 

simple surface energy balance model presented in Section 3.6 to be used to calculate 

surface temperatures (see Section 7.3.1). The obliquity of Vesta has been determined 

using observations by NASA’s Dawn mission to be 27.46° (Reddy et al., 2013; Russell et 

al., 2013; Williams, 2014a) which is expected to result in seasonal variations of 

temperature, like on Mars (Section 5.2.1) and unlike Mercury (Section 6.3.1). Stubbs and 

Wang (2012) use a sophisticated thermal model to calculate mean (steady) temperatures 

across the Vestan surface and use them to determine the stability of water ice (Figure

1 Vesta has a J2 gravitational moment of 0.0317799 (Russell et al., 2013), compared to 0.00108263 

for Earth (Williams, 2014b), 6*10'5 for Mercury (Williams, 2014d) and 0.00196045 for Mars 

(Williams, 2014c).
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7.2). The findings of Stubbs and Wang (2012) are used to guide the choice of 

measurement location (Section 7.3).

Longitude

I I I I I I
123 129 134 140 145 151

Temperature [K]

Figure 7.2. Mean surface temperatures across the Vestan surface. Latitudes poleward of the grey lines denote areas where 

the average surface temperatures allows for the existence of stable water ice (after NASA et al., 2012). The dashed black line 

is the equator, the dotted black lines at ±27.2° the tropical circles, and the white dashed lines at ±62.8° the polar circles 

(Stubbs and Wang, 2012). The white circle identifies a potential heat flow measurement location at 120°E 20°N chosen based 

on the high mean temperature lowering the likelihood of stable water existing at that site (also see futher discussions in the 

text).

7.2.2 Thermal Properties

The thermal properties of Vesta determine the temperature of the surface and subsurface. 

Vestan (Bond) albedo and thermal inertia determine the surface temperature due to solar 

irradiation via a surface energy balance relationship (see Section 2.2.5). Albedo has been 

observed to vary over a relatively large range across Vesta (e.g. Reddy et al., 2012; Titus 

et al., 2013) with low albedo areas associated with the presence of hydrated minerals 

(e.g. De Sanctis et al., 2012; Prettyman et al., 2012; Russell et al., 2013; also see Figure

7.3). Low albedo areas are therefore avoided, although the unsteady surface temperature 

amplitude is smaller in these areas, therefore minimising masking of the steady
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temperature. In any event, the inverse model of Chapter 4 is limited to simulating dry 

regolith; therefore avoiding low albedo area simplifies the interpretation of results.

0
Longitude

Figure 7.3. Bond albedo and hydrogen (H) abundance across the surface of Vesta. Areas poleward of ~60° and between -75° 

to -90° latitude are unmapped. The yellow countours show H abundance, with units of pg/g of surface material. The dotted 

white curves indicate the outlines of the largest and second largest impact basins on Vesta, Rheasilvia and Veneneia. Marcia 

crater is indicated with an X (after NASA, 2013a). The white circle identifies a potential heat flow measurement location at 

120°E 20°N chosen based on the relatively high albedo (low volatile content) and lowered H abundance (also see futher 

discussions in the text).

Thermal inertia has been preliminarily calculated from Dawn Visible Infrared Imaging 

Spectrometer (VIR) data to vary across the surface of Vesta from 25-35 J/m2/K/s1/2 (e.g. 

Capria et al., 2012; Palmer et al., 2013). Leyrat et al. (2012) use Herschel IR observations 

to produce a lower global estimate of 20 J/m2/K/s1/2 with large uncertainties (+20, -10 

J/m2/K/s1/2). This agrees with the optimized global value of 10-20 J/m2/K/s1/2 by Mueller 

and Lagerros (1998), using far IR observations of the imaging photopolarimeter ISOPHOT  

on board the Infrared Space Observatory (ISO). Gundlach and Blum (2013) use a less 

optimal result of Mueller and Lagerros (1998) (25±13 J/m2/K/s1/2) to derive average Vestan 

grain sizes of the order of 54 pm. The results of Piqueux and Christensen (2011) can be
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applied to the former range of Vestan thermal inertia estimates (10-35 J/m2/K/s1/2) by 

extrapolation to vacuum pressures, using the results in Presley and Christensen (1997). 

This leads to particle sizes between 1-50 pm, consistent with thermal conductivities of the 

order of 10"4- 10~3 W/m/K -  these are consistent with a seasonal skin depth of 0.148 m 

used in the models of Stubbs and Wang (2012). Surface thermal capacities of the order of 

1-1.225 MJ/K/m3 can be derived from the thermal inertia and thermal conductivity values. 

These are arbitrarily split into surface densities between 1100-1250 kg/m3 -  less than the 

surface value used on Mercury in Section 6.2.2. -  and specific heat capacities of 909-980  

J/kg/K. The lunar-like thermal property depth variation models used in Chapter 5 and 6 

are used here with end member scenarios at the limits of the identified thermal property 

value ranges. Thangjam et al. (2013) identify the site at 120° E 20° N as Howardite rich -  

Burbine et al. (2001) study Howardite EET 87503 and estimate particle sizes of <63 pm 

and 106-150 pm, consistent with preceding estimates. Arbitrarily, then, a particle size of 

106-150 pm is assumed, at depth 5 m, corresponding to thermal conductivities of ~10'3 

W/m/K (Presley and Christensen, 1997). Models of Vesta in Zuber et al. (2011) use an 

upper crustal density of 2800 kg/m3 -  this value is adopted at 5 m. Specific numbers are 

shown in Table 7.1. Figure 7.4 shows the profiles.

Table 7.1. Regolith properties for high and low conductivity regolith models on Vesta based on a mean surface thermal 

inertia /  =  j k p c  =  10-35 J/m2/K/s1'2. The thermal conductivity is k  and p is the density at select depth z  in metres

REGOLITH MODEL z [m] k [W/m/K] p [kg/m3] c [J/kg/K]

0 0.0001 1100 980
LOW CONDUCTIVITY

5 0.0005 2800 980

0 0.001 1250 909.09
HIGH CONDUCTIVITY

5 0.005 2800 909.09
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Figure 7.4. Hypothetical conductivity k, and thermal capacity pc depth profiles for a potential heat flow measurement site on 

Vesta at latitude 120° E 20° N. In: a. the solid and dotted red curves respectively show low and high conductivity variation; b. 

the solid and dotted blue curves respectively show low and high density variation; the solid and dotted purple lines 

represent the specific heat capacity. The dotted and solid curves indicate associated thermal properties.

7.2.3 Heat Sources and Sinks

The heating of Vesta is thought to have been dominated by short lived radioisotopes as 

discussed in Section 7.1, it is therefore expected that the current heat production rate is 

negligible. This is also suggested by the results of the models of Formisano et al. (2013). 

Radiosotope heat sources are therefore not considered. However, due to the potential for 

degassing events (e.g. Denevi et al., 2012), heat source solutions are used to model 

systematic noise which may result from volatiles being released or transported in the 

regolith close to the axis along which a heat flow measurement is taken (see Appendix 

9.7.2 for plots). The heat source solutions provide scenarios which allow a first order 

assessment of the effects of volatile degassing on a heat flow measurement.

7.3 Scenarios

The primary question arising from the discussion above is the measurability of heat flow in 

the shallow subsurface of Vesta, considering it is likely very low and what, if any, other 

useful information can be extracted from the measurement. Forward models are therefore 

produced to check the skin depth of the Vestan annual temperature and determine the 

scenarios which may present a challenge to a heat flow measurement.
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7.3.1 Forward M odels

Forward models are generated based on the surface and subsurface thermal properties 

presented in Section 7.2.2 and heat flows of Section 7.1. The surface energy balance 

relationship of Section 2.2.5 is used to generate surface temperatures. Four models are 

therefore simulated with two end member thermal property profiles, and two end member 

heat flows. Figure 7.5 and Figure 7.6 show the resulting temperature profiles -  relevant 

model parameters are tabulated in Appendix 9.7.1.
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Figure 7.5. Forward modelled temperature profiles for Vestan measurement site located at 120°E 20°N. These are with a 

‘high’ heat flow of 3.33 pW/m2 and high (a. and c.) and low (b. and d.) conductivities as presented in Section 7.2.2. The red 

upper contours (a. and b.) are overlays of time-dependent temperature T over depth z of 2 m (larger amplitudes towards the 

surface). The blue line shows the annual mean temperatures of 176.819 K for the high and 165.010 K for the low conductivity 

scenario; the lower contours (c. and d.) are overlays of depth-dependent temperature T over time t of 1 orbital period in 

~26.5 day steps. The simulations are run from high noon at perihelion.
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Figure 7.6. Forward modelled temperature profiles for Vestan measurement site located at 120°E 20°N. These are with a low 

heat flow of 0.33 pW/m2 and high (a. and c.) and low (b. and d.) conductivities as presented in Section 7.2.2. The upper 

contours (a. and b.) are overlays of time-dependent temperature T over depth z of 2 m (larger amplitudes towards the 

surface). The blue line shows the annual mean temperatures of 176.819 K for the high and 165.010 K for the low conductivity 

scenario; the lower contours (c. and d.) are overlays of depth-dependent temperature T over time t of 1 orbital period in 

~26.5 day steps. The simulations are run from high noon at perihelion.

The surface temperatures fall within the range identified in Section 7.2.1, though the mean 

temperatures are appreciably higher than those calculated by Stubbs and Wang (2012) 

(Figure 7.2). There are several possible reasons for the difference as the code of Stubbs 

and Wang (2012) is appreciably more sophisticated -  the current model uses: a solar 

constant which is 3 W /m 2 higher; higher magnitude thermal properties in the topmost 

control volume leading to greater skin depth and; a simple shape model such that Vesta is 

assumed to have a smooth spherical surface. Also, the appreciable difference of 10 K 

between the mean temperatures of the low and high conductivity models is unusual and
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appears to be due to rounding errors in the integration of the topmost control volume.2 

Notably the high heat flow models have slightly higher mean surface temperatures, 

illustrating the effect of the heat flow on the surface energy balance. The diurnal variation 

in surface temperature at the high conductivity site (Figure 7.6a) is appreciably smaller 

than at the low conductivity site (Figure 7.6b). This is because the high conductivity site 

has higher thermal diffusivity3 (see Section 3.4) which allows heat to diffuse more readily 

into the subsurface, limiting the increase in surface temperature.

There is a clear distinction between high conductivity and low conductivity models. The 

annual skin depth4 of the high conductivity model (1.06 m; 0.12 m for low conductivity) is 

relatively high -  substantially higher than the case for Mercury in Section 6.3.1 where the 

surface temperature cycle is a relatively short 176 d. The low and high heat flow models 

are visually indistinguishable, though there are differences in the temperature at depth, as 

illustrated by Figure 7.7.

2 Note that the surface energy balance temperatures are calculated separately, then read into the 

forward models to calculate the subsurface temperatures. Therefore any inaccuracies in the 

calculation of surface temperatures are unlikely to affect the conclusions of this study with regard to 

the subsurface temperature profiles.

3 The thermal diffusivity for the high conductivity scenarios is 8.16E-10 m2/s. For the low 

conductivity scenarios the thermal diffusivity is 1E-10 m2/s.

4 The skin depth is calculated using depth-averaged thermal properties.
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Figure 7.7. Steady temperature Ts for forward modelled temperature profiles at Vestan measurement site located at 120°E 

20°N. Plot: a. shows Ts for the high conductivity model; b. shows Ts for the low conductivity model -  with respective heat 

flows of 3.33 (solid lines) and 0.33 (dotted lines) pW/m2.

The basal heat flow is accessible from -1 .5  m for the high conductivity scenario, with the 

temperature gradient between 1.5-2 m being -0 .7 5  mK/m for high heat flow. The same for 

the low conductivity scenarios are -0 .5  m and -1 2  mK/m. With a penetration depth of 2 m 

the steady temperature gradient is accessible over 0.5 m for the high conductivity case 

and 1.5 m for the low conductivity case. For a heat flow probe with precision of the order 

of 1 mK (the required precision of some proposed heat flow probes -  e.g. Grott et al., 

2007; Dehant et al., 2012): the steady temperature gradient is, in principle resolvable in 

the low conductivity, high heat flow case, over 1.5 m -  i.e. 18 ±1.5 mK/m; while being 

completely unresolvable in the high conductivity, high heat flow case over 0.5 m -  i.e. 

0.375 ±1.5 mK/m. It is immediately clear that the temperature gradient in the low heat flow 

cases is completely unresolvable.

7.3.2 M easurem ents

Despite the clear immeasurability of the heat flow in the high conductivity and low heat 

flow models, tests are conducted with them to assess the response of the model to the 

minute heat flows and completely obscured temperature gradients. Two end member 

cases are considered: an instantaneous measurement, and one which extends over the 

full orbital period of Vesta. The instrument is assumed to penetrate to a depth of 2 m, 

enough to access the steady temperature gradient, and therefore the basal heat flow.
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Gaussian noise of the order of 1 mK (expected instrument precision) is added to each 

measurement. Also, a series of 3 non-Gaussian noise profiles with amplitudes ranging 

from 10'6-10'1 K is introduced into the measurements to quantify how the model handles 

systematic noise. The former are based on source solutions with regolith properties 

equivalent to the site scenarios they are applied to; they are designed to reflect (to first 

order) the effect of degassing events of varying magnitudes (see Section 7.2.3) -  they are 

presented in Appendix 9.7.2. This leads to a total of 8 measurement scenarios per site 

scenario, a grid of which is shown in Table 7.2. Measurements for the high heat flow 

scenarios are shown with Gaussian error in Figure 7.8 and non-Gaussian errors in Figure 

7.9 (similar plots for the low heat flow scenarios can be found in Appendix 9.7.2).

Table 7.2. Grid of measurement scenarios (8 in total per site scenario) simulated for each of the forward modeled scenarios 

of Section 7.3.1.

MONITORING PERIOD [ORBITAL PERIOD]

0.0 1.0
NOISE AMPLITUDE

E
I  2 
I—
CL
UJ
O

OPTIMAL 10J GAUSSIAN [K]

10'5 LOW k 

10'3 SYSTEMATIC 

10‘1 [K]

10 b HIGH k 

10'4 SYSTEMATIC 

10'2 [K]

1 (-) 1326 (-1.0) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION 

[DAY])

With Gaussian noise of amplitude 10'3 K, the basal heat flow is accessible from 0.5 m in 

the low conductivity scenarios (in principle, to accuracies of the order of 0.4 %), as noted 

earlier; therefore, with a penetration depth of 2 m inversion may be unnecessary. However
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the main questions being addressed here are the response of the model to non-Gaussian 

noise, and its sensitivity to such low heat flows (and steady temperature gradients).

With non-Gaussian noise of the order of 0.2 K there is a notable negative deflection of the 

temperature gradient, completely obscuring the steady temperature gradient in some 

cases (Figure 7.9). The former is expected to be the case for non-Gaussian noise of 

amplitudes greater than or of the order of the Gaussian noise amplitudes (10'3 K).
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Figure 7.8. Temperature measurements for Vestan site located at 120°E 20°N. These are with a ‘high’ heat flow of 3.33 pW/m2 

and high (a. and b.) and low (c. and d.) conductivities as presented in Section 7.2.2. The plots show depth-dependent 

temperature T: for an instantaneous measurement (left); over time t of 1 orbital period in ~26.5 day steps (right). The grey 

squares are sensor locations.
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Figure 7.9. Temperature measurements for Vestan site located at 120°E 20°N with high systematic noise as shown in 

Appendix 9.7.2. These are with a ‘high’ heat flow of 3.33 pW/m2 and high (a. and b.) and low (c. and d.) conductivities as 

presented in Section 7.2.2. The plots show depth-dependent temperature T\ for an instantaneous measurement (left); over 

time t of 1 orbital period in -26.5 day steps (right). The grey squares are sensor locations.
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7.3.3 Inversion Results

The optimizations are carried out by assuming an initial basal heat flow of 0 W /m 2 across 

all scenarios. However, heat flows are separately estimated with the two deepest sensors, 

which generally yield the best results and bulk conductivity over 2 m. The true surface 

temperatures are used, as calculated in Section 7.3.1 (though truncated due to fewer 

timesteps)5. The measurement error is assumed to be uniformly 1 K with depth and the 

error in the basal heat flow 10 W /m 2.

Table 7.3 to Table 7.6 show the resulting heat flow estimates. It is immediately clear that 

inversion does not produce estimates more accurate than a simple bulk conductivity 

estimate in any scenario. In scenarios where the monitoring period is 1 Vestan year 

inversion is unnecessary as a simple estimate using bulk conductivity produces results 

within 30 % accuracy, where the error amplitude is 1 mK or less. This is unexpected 

based on the analysis in Section 7.3.1 which suggests that the temperature gradients 

should be completely masked in the high conductivity and low heat flow scenarios. It is 

likely the case that averaging the temperatures for multiple measurements tends to 

smooth out the effect of the Gaussian errors, such that they mutually cancel. Otherwise 

the bulk conductivity estimates are highly inaccurate except with an instantaneous 

measurement in the low conductivity, heat flow case, with error amplitude 1 mK, or less.

The high magnitudes of the heat flow relative error are due in part to the small magnitudes 

of the true heat flows being investigated (Figure 7.10 and Figure 7.11 show errors in the 

temperature measurement and inverted temperatures), and the use of the bulk 

conductivity to calculate the heat flow.6 Also, in the inversion, there is a downward shift in 

the mean temperatures by ~0.4 K for the high conductivity scenarios and ~0.2 K for the

5 The unsteady temperature used in the inversion is extracted from the higher (time) resolution 

version used to simulate the forward models.

6 The accuracy of the initial estimates improve approximately 4-fold when the true conductivities at 

depth are used.



7.3 Scenarios 255

low conductivity scenarios. This is because the unsteady temperature used in the 

inversion is a truncated version of that in the forward model, such that more diurnal 

temperatures are selected below the annual mean, than above the annual mean. These 

shifts are not explicitly accounted for in the inversion (to do so involves simultaneously 

optimizing the surface temperature with the basal heat flow) therefore the inverse model 

overestimates the basal heat flow to mitigate the steady surface temperature 

underestimate.7

The preceding effect is balanced by the non-Gaussian noise due to heat sinks shown in 

Appendix 9.7.2. The heat sinks lower the gradient of the temperature measurement and 

therefore the apparent basal heat flow. The model then underestimates the basal heat 

flow to fit the errant temperature measurement. The net effect of the lowered steady 

temperature and decreased temperature gradient is smaller optimized heat flow errors for 

larger non-Gaussian noise magnitudes, as observed in Table 7.3 to Table 7.6.

The algorithm loses sensitivity to non-Gaussian noise at 10‘6 K, when it is dominated by 

the Gaussian noise due to instrument imprecision. The sensitivity displayed to the non- 

Gaussian noise magnitude shows an effective positive correlation -  i.e. the greater the 

magnitude of the non-Gaussian noise, the greater the response of the algorithm in 

underestimating the basal heat flow. This result can be compared to the cases with Mars 

in Section 5.3.3 and earlier in Section 4.3.1.2, which display positive correlation between 

optimized heat flow accuracy, and Gaussian noise amplitude. These results point to the 

model being robust in handling Gaussian noise relative to systematic noise with long 

tailed distributions.

Notably, the optimized heat flows are appreciably more accurate for the instantaneous 

measurements in the high conductivity scenarios and marginally more so in the low 

conductivity scenarios. This illustrates the instability caused by the truncation errors due to

7 The result is analogous to results obtained in Appendices 9.4.7.1-9.4.7.3 where basal heat flow 

F | is simultaneously optimized with steady 7 /  and unsteady 7 /  surface temperatures.
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the larger timesteps coupled with the high frequency surface temperature variation, similar 

to the case on Mars. The small steady temperature gradient magnitudes compound the 

issue. For the low conductivity scenarios the temperature gradient is further from the 

sensitivity threshold of the model and the results are less affected by the destabilizing 

effect of the unsteady temperature profiles. Also, following from previous results in 

Sections 5.3.3 and 6.3.3, the relative accuracy of the heat flow estimates reflects the 

relative magnitudes of the true heat flows.

Figure 7.10 shows Gaussian and Figure 7.11 non-Gaussian errors in temperature 

measurements and inverted temperatures for the high heat flow scenarios presented in 

Figure 7.8 and Figure 7.9 (similar plots for the low heat flow scenarios are presented in 

Appendix 9.7.3). The errors in the inverted temperatures are reduced at depth but 

increase towards the surface, and away from the boundaries. Smaller error margins 

(instrument precision) are required at depth for more accurate optimized heat flow 

estimates. The increased errors towards the surface illustrate the destabilizing effect of 

the unsteady temperature, which cannot be precisely replicated with a truncated unsteady 

surface temperature. The non-Gaussian errors illustrate an appreciable negative shift in 

the subsurface temperatures in addition to the negative biasing of the temperature 

gradient, discussed earlier.
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Figure 7.10. Errors in measurement (Gaussian AT0 -  dotted grey) and optimized (AT1 -  solid blue) temperatures for Vestan 

site located at 120°E 20°N. These are with a high heat flow of 3.33 pW/m2 and high (a. and b.) and low (c. and d.) 

conductivities as presented in Section 7.2.2. The plots show AT: for an instantaneous measurement (left); over time t of 1 

orbital period in ~26.5 day steps (right). The grey squares are sensor locations.
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Figure 7.11. Errors in measurement (non-Gaussian AT0 -  dotted grey) and optimized (AT1 -  solid blue) temperatures for 

Vestan site located at 120°E 20°N. These are with a high heat flow of 3.33 pW/m2 and high (a. and b.) and low (c. and d.) 

conductivities as presented in Section 7.2.2. The plots show AT: for an instantaneous measurement (left); over time t of 1 

orbital period in ~26.5 day steps (right). The grey squares are sensor locations.

7.4 Summary

Asteroid (4) Vesta, is an important repository of information on the early Solar System. 

Understanding the formation of its differentiated interior is important to theories of early 

Solar System formation and evolution. Its topographically heterogeneous, apparently 

volatile rich and active surface holds useful information on the type and nature of 

collisions of small planetary bodies in the early Solar System. W hile the heat flow on 

Vesta is likely very low, a m easurement can provide important information on the thermal 

state of the Vestan interior and its surface energy balance, therefore assisting in 

constraining thermal and impact evolution theories of the early Solar System.
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An inverse model is applied to a single measurement on Vesta, located at 120°E 20°N, to 

test the measurability of plausible values of planetary heat flow at its surface. The surface 

energy balance of the site is modelled with a Bond albedo of 0.2 and emittance of 0.9. 

High and low conductivity (10‘3 and 1C4 W/m/K), and high and low heat flow (3.33 and 

0.33 pW/m/K) end member models are simulated. Measurements are derived from these 

models with additive Gaussian and non-Gaussian noise -  the non-Gaussian noise 

mirroring the effect of heat sinks. The measurements all cover a depth of 2 m and are 

either instantaneous or span a full Vestan year.

The temperature gradients produced by the forward models over 2 m are within the range 

of sensitivities for a heat flow probe with 1 mK precision. For the derived measurements, 

the larger the amplitude of the non-Gaussian noise (at least 1 mK modelled) the greater is 

the perturbation of the heat flow estimate from the true value, all else being equal. 

Downward shifts of 0.4 K and 0.2 K in mean surface temperature, which are not 

accounted for in the optimization, cause all the optimized heat flows to be overestimated 

(see Section 7.3.3). This is despite the presence of non-Gaussian noise, based on heat 

sinks, which deflects the temperature gradient to the left by decreasing temperatures 

(Figure 7.11; also see Appendix 9.7.2-9.7.3).

With temperature noise amplitude of - 3  mK and a monitoring period covering one Vestan 

year, simple heat flow estimates, using bulk conductivity and the temperature gradient at 

the deepest two sensors, are accurate to within 30 % of the true value. The latter is also 

the case for an instantaneous measurement with the low conductivity, high heat flow 

model. For instantaneous measurements where the conductivity is high and heat flow low 

and/or where the noise amplitude is above 3 mK, the heat flow estimates contain very 

large errors. The large inaccuracies are due, in part, to the use of bulk conductivity -  using 

the (accurate) depth dependent conductivity improves the estimates approximately four

fold. Overall, however, these results demonstrate the feasibility of measuring a very low 

heat flow, given a long enough period of measurement.
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While optimization works well for Mars (see Section 5.3.3) and Mercury (see Section 

6.3.3), with heat flows of the order of mW/m2, meaningful optimized estimates of heat flow 

which is of the order of pW/m2 are not obtained in the Vestan application of the inverse 

model. Despite this, the model responds similarly to heat flows of different relative 

magnitudes such that true heat flows which differ by a given factor produce estimates 

which differ by the same factor, all else being equal -  this result may be useful with a 

network of heat flow probes.

The most accurate heat flow estimate obtained by optimization is a little more than 4.5 

times the true heat flow. The large errors in the optimization estimates are due in part to 

the high frequency variation of the surface temperature (and surface heat flow) which 

requires high recording frequencies (sampling rates) for an accurate representation of its 

variation and mean value. Also, the low heat flows of 0.33-3.33 pW/m2 are equivalent to 

steady temperature gradients of 0.33-3.33 mK/m at a bulk conductivity of 1 mW/m/K; 

these are close to the sensitivity threshold of a heat flow probe with 1 mK precision.
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8.1 The Problem, Restated

The purpose of this study is to present a method by which planetary heat flow 

can be recovered from a shallow subsurface heat flow measurement on a 

terrestrial planet. The shallow subsurface heat flow is a superposition of 

planetary heat flow, and heat flow due to unsteady surface processes. The 

extent of superposition depends on the maximum depth covered by the heat 

flow measurement, coupled with the regolith skin depth (see Section 2.2). 

Deeper measurements access more of the pristine basal heat flow as the 

unsteady surface heat flow is damped to negligible levels below the skin 

depth.

An ideal heat flow measurement therefore depends on two or more sensors 

penetrating far enough below the skin depth to access the pristine basal heat 

flow. This may not happen for several reasons: the heat flow probe may 

encounter subsurface obstacles which stop its progress; some sensors may 

fail or return data that is unusable; the skin depth may be significantly deeper 

than expected, meaning the heat flow probe may not access the pristine basal 

heat flow, even at its target depth.

In the instance where the pristine basal heat flow is not accessed, the signal of 

the unsteady surface heat flow can be removed by monitoring the regolith over 

extended periods -  at least one seasonal cycle over the skin depth is required, 

with at least ten measurements (see Section 4.2.1.2.2) to adequately 

characterise the unsteady heat flow so it can be removed. However, there is, 

naturally, no guarantee that a heat flow probe will function at full capacity 

throughout a seasonal cycle in the extreme thermal environments of the 

terrestrial planets.

To guarantee useful returns from any planetary heat flow probe measurement, 

a method is required which is capable of handling all the preceding
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eventualities. The method of choice in this study is Function Specification 

Inversion (FSI), first applied to the deep borehole heat flow measurements on 

Earth (e.g. Shen and Beck, 1991,1992; Tarantola, 2005). FSI is the focus of 

this study through Chapters 2-7. In Chapter 2, the theory is presented; in 

Chapter 3, a forward model -  an important element of FSI -  is presented; in 

Chapter 4, FSI is parameterized and tested on synthetic scenarios; in 

Chapters 5-7 it is applied to realistic scenarios which may be encountered on 

select terrestrial planets -  namely Mars, Mercury and Vesta. What follows is a 

discussion of results of the various applications of the FSI model.

8.2 Model Behaviour

The inverse model (Chapter 4) is essentially composed of a forward model1 

(Chapter 3 -  based on the 1D Finite Control Volume (FCV) method of 

Patankar, 1980), solved iteratively with: primal and dual boundary conditions; 

dual heat sources which arise from the residuals between a calculated primal 

temperature and the measured temperature; and an optimization function 

which updates the forward model parameters (optionally, basal heat flow, 

steady and unsteady surface temperature, and thermal capacity). The model 

finds a best fit solution based on the a priori information supplied along with 

the temperature measurement.

8.2.1 Truncation Error

In this study, the temperature measurements are obtained from forward 

modelled simulations with relatively dense grids in space and time, at select 

gridpoints and timesteps.2 These truncated versions of the densely gridded

1 The calculations are partitioned into steady and unsteady states.

2 Synthetic measurements generated by the FCV numerical forward model are verified 

against synthetic measurements generated by an analytical forward model in 

Appendix 9.4.9.
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forward simulations have random or systematic errors added. The preceding 

procedure effectively replicates the measurement process of a heat flow 

probe.

In an inversion, then, the primal temperature calculations may contain 

truncation errors which increase with the size of the timesteps. The density of 

gridpoints has no significant impact on truncation errors (see Section 

4.2.1.2.2). Therefore, timestep related truncation errors determine how well 

the temperature calculation fits the data measurement and consequently, 

impact the accuracy of the optimized heat flows.

Truncation errors are most evident when comparing the scenarios of Chapter 

4 to the planetary scenarios of Chapters 5-7. In Chapter 4, the inversions are 

carried out with the same timesteps as the forward model simulations (~86400 

s); in Chapters 5-7 the inversion timesteps are 86400 s in all cases, while the 

forward simulation timesteps are 3600 s. Additionally, comparing the results of 

Mars (Section 5.3.3.2), Mercury (Section 6.3.3.2) and Vesta (Section 7.3.3), 

truncation errors affect the results of Mars and Vesta substantially more so 

than they do those of Mercury. This is because the Mercurian surface 

temperature does not contain a large number of short period variations. On 

Mars, only the surface sensor is ignored, however it is likely that ignoring the 

first 2-3 sensors on Mars, and the first 2 on Vesta can produce more accurate 

optimized heat flow estimates.

The use of timesteps of the order of 3600 s require simulation times several 

times the equivalent cases with 86400 s timesteps (see Appendix 9.8.1 for a 

plot of simulation times for different grid spacing and timesteps). The 

appreciable number of inversion scenarios tested means there is a necessary 

trade-off between simulation time and accuracy. For the purposes of this 

study, calculation speed is given precedence over accuracy of the calculated
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primal temperatures (and absolute accuracy of the optimized heat flows). 

Therefore, the heat flow optimization results of the planets must be taken in a 

relative to the presence of truncation errors. Reducing truncation errors will 

likely lead to better accuracy; however the effect of truncation errors is 

considered less important than errors related to skin depth, thermal properties, 

and instrument and systematic noise.

8.2.2 Convergence and Covariances

When optimizing basal heat flow only, the model converges3 in a few iterations 

(usually less than 10), though there are some instances when the iterations 

pass a termination point of 50 iterations. Steady surface temperature, 

conductivity and heat source convergence is similar in behaviour to that with 

the basal heat flow. Convergence of thermal capacity requires a few more 

iterations than with the preceding parameters. The unsteady surface 

temperature requires several tens of iterations before the inverse model can 

be terminated (see Chapter 4 and Appendix 4 for example convergence plots). 

In cases of simultaneous optimization the number of iterations vary, though in 

most cases there is no significant improvement beyond the first few iterations. 

To allow for instances where the model covariance is too small, the model is 

allowed to progress beyond the minimum to a second stationary point, where 

it is terminated (see e.g. Appendix 9.4.6).

As discussed in Section 2.2.1.3.3, the path of optimization of the function Sm, 

is determined in large part by the design of the covariances. Model parameter 

covariances which are small tend to dictate the path of optimization. 

Therefore, the covariances are one of the key a priori parameters to

3 In the referenced instances, the stepping factor is 1 (see Section 2.2 for details). 

Tests conducted with smaller stepping factors result in a greater number of iterations 

before convergence (see Appendix 9.2.1-9.2.2).
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determine. The most natural inference is that the relative magnitudes of the 

model parameters are already accounted for by their fundamental unit 

relationships. However, there is some level of trial and error involved in 

designing the covariances (see Section 4.4).

Throughout Chapter 4 and Appendix 9.4.7, relationships between parameter 

standard deviations (SDs) are noted which guide the design of the relative 

magnitudes of the covariances (termed SD stability ratios), though the 

relationships are not analytical, and therefore not precise; this aspect of FSI 

warrants further investigation. A preliminary effort to establish analytical 

relationships is outlined in Appendix 9.8.2; it shows how a reduction of the 

covariance standard deviations to units analogous to energy densities predicts 

SD ratios consistent, to first order, with those identified in Chapter 4. If the 

analytical relationships hold true, the gridding plays a critical role in the values 

of the SD ratios; they must be evaluated at each unique spatiotemporal 

gridpoint.

8.2.3 Measurement Error

A counterintuitive result encountered in inverse model testing is more accurate 

optimization of heat flows with an increase of random noise in the temperature 

measurement (see Sections 4.3.1.2 and 5.3.3.2). As noted in Section 4.3.1.2, 

the result is mainly due to small assumed data standard deviations, relative to 

the model standard deviations in their respective covariance matrices. This is 

coupled with increased skin depth and length of measurement. These 

increase instabilities in the inverse problem (see Section 2.2) by, effectively, 

increasing the ill-determinacy of the problem for a given basal sensor depth 

(by increasing the number of different temperature gradients measured by any 

two sensors, to which the algorithm must match a single basal heat flow).
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The results of Vesta (Section 7.3.3) show that the presence of systematic 

noise effectively perturbs the temperature gradient (and optimized heat flow) 

in a manner proportionate to the noise amplitude. The presence of any 

systematic noise which is above the random background (or instrument) 

noise, and affects the steady temperature gradient (such as the unknown heat 

sources or sinks with Vesta in Section 7.3; also see Wang, 1992), is likely to 

render optimized heat flows inaccurate. However, if other parameters are 

known with confidence, the systematic noise can be characterised and 

accounted for in the inversion or removed from the measurement pre

inversion.

8.2.4 A Priori Parameter Errors

While treated separately, a priori model parameter errors are not completely 

separate from measurement errors. For example, the systematic noise 

present in the Vesta simulations (Section 7.3) is due to heat sources. If these 

are accounted for in the a priori model then their presence in the temperature 

measurement does not adversely affect the optimized heat flow accuracy.

Overestimated or underestimated model parameters are accompanied by 

effects on the temperature distribution, similar to what would be seen with a 

simple increase or decrease of said parameters in the forward model (see 

Chapter 3). In the case where the heat flow is the only free parameter, the 

inverse model attempts to mitigate the effects of the incorrect parameters by 

overestimating or underestimating the heat flow. The effects are collated in 

Appendix 9.8.34 -  effectively: overestimated conductivity and underestimated 

thermal capacity increase skin depth and lead to poorly constrained heat flows

4 Results for thermal properties are described in Sections 4.2.1.2.3 and 4.3.1.3, while 

similar results for thermal properties, and also surface temperature and heat sources, 

can be deduced from the simultaneous optimization results of Appendix 9.4.7.
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and vice versa; overestimated surface temperature amplitude decrease heat 

flow accuracy and vice versa; overestimated mean surface temperatures lead 

to high heat flow estimates and vice versa.

8.2.5 Interpretation of Results

Determining the accuracy of optimized heat flow results is probably the 

greatest challenge, given the numerous occasions in this study, where nearly 

equivalent measurement scenarios give largely divergent heat flow results 

(some accurate, some not). The resolution analyses of Section 2.2.3.5 may be 

applied in the case of simultaneous optimisation of parameters or inversion of 

different temperature measurements with the same a priori model. The 

analyses are strictly related to an equivalent linear problem but can give a 

sense of how resolved a parameters is, based on the a priori covariances. Of 

course, the a priori covariances may contain significant design flaws, as noted 

in Sections 8.2.2 and 8.2.4. To obtain accurate heat flows, with high 

confidence, the primal temperatures must be brought to acceptable agreement 

with the measured temperature. While being relatively accurate, optimized 

heat flows with high random noise (e.g. 1 K noise on Mars), can only be 

accepted with large error bars.

8.3 Heat Flow from the Planets

8.3.1 A Note on the Measurement

The synthetic measurements formulated here are considered at a post

processed stage, after the influence of the heat flow probe on the 

measurement environment has been accounted for. Prior to this a 

measurement effectively reflects the properties of the heat flow probe and its 

immediate environs as a combined thermal system. Physical effects such as 

soil compaction, which modifies the thermophysical properties of the regolith, 

as well as ‘shunting’ of the heat flow where the conductivity along the probe
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axis is non-negligible are irreversible and must be accounted for to achieve 

accurate heat flow estimates (e.g. Langseth et al., 1972; Langseth et al., 1976; 

Hagermann and Spohn, 1999; Grott, 2009). These require further numerical 

modelling and are be beyond the scope of this project.

It is conceivable, for example, that the inverse model applied to the synthetic 

data herein can be applied to Apollo 15 and 17 ALSEP data (e.g. Langseth et 

al., 1976; also see Section 1.1.3.2); however, in addition to the processing 

required above, there are several practical issues to overcome. The data used 

in the preliminary Apollo lunar heat flow studies (e.g. Langseth et al., 1972; 

Langseth et al., 1976) is available from the National Space Science Data 

Center (NSSDC; NASA, 2015).

The NSSDC ALSEP data for Apollo 15 and 17 consist of absolute temperature 

data from four thermocouples and temperature difference, and average 

temperature data from two bridge temperature sensors on the two main probe 

sections (see e.g. Langseth et al., 1976; Nagihara et al., 2015 for probe 

configuration). The bridge sensor data are therefore not of the depth accuracy 

required for a reasonable determination of the heat flow.

A rudimentary application of the GPHL01 inverse model to ALSEP data is 

shown in Appendix 9.8.4; the thermocouple temperature data has been used 

with the bridge sensors to increase the effective depth of the absolute 

temperature data. The results of Appendix 9.8.4 demonstrate the applicability 

of the inverse model to real-world data and illustrates its inherent limits with 

highly temperature-dependent thermal properties.
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8.3.2 Mars

Simple initial (a priori) heat flow estimates5 for Mars (Chapter 5) suggest that, 

in most cases, optimization is a requirement where the monitoring period is 

0.75 Martian years, or less, and heat flow probe sensors penetrate up to 5 m. 

In most of these cases heat flows are inaccurate by factors of 0.5-83, 

generally in order of decreasing depth and monitoring period. There are a few 

instances with heat flows accurate to within 50 % at a skin depth6 of 0.44 m. 

The initial heat flow estimates are accurate to within 20 % where the 

monitoring period is 1 Martian year. All the preceding estimates are improved 

with more accurate conductivity profiles.

Optimization improves upon most of the initial estimates. There are exceptions 

where the measurements are taken over 1 Martian year because of truncation 

errors (discussed in Section 8.2.1). There are also exceptions where the skin 

depth is below ~1. m and monitoring periods are at least 0.25 Martian years at 

2 m sensor depth, or 0.75 Martian years at 3 m sensor depth. The exceptions 

are, also due to the increased ill-determinacy of the heat flow problem as 

monitoring period and skin depth are increased, as discussed in Section 8.2.3.

To minimise truncation errors (Section 8.2.1) in the case of the high frequency 

(~24 h), high amplitude (~40 K) Martian diurnal surface temperature variation, 

small model timesteps, or improvements in the accuracy of the model at larger 

timesteps, are required to accurately reproduce the associated temperatures. 

The relatively small amplitude of the annual temperature variation ( -1 0  K) is

5 The simple a priori heat flow estimates are calculated with the bulk conductivity over 

the measurement depth, and the temperature gradient at the two deepest sensors.

6 The skin depths in this case are calculated using bulk thermal diffusivity and are 

therefore high estimates, to be considered in a relative sense.
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beneficial below the diurnal skin depth (-1 .5 -7  cm), minimising masking of the 

steady temperature gradient.

The overall results suggest that heat flows can be optimized from a Martian 

temperature measurement -  with thermal properties known -  to within -1 0  % 

accuracy where the measurement is taken at twice the skin depth over 0.5 

Martian years or 5 times the skin depth over 0.25 Martian years. This is within 

the threshold required to correlate the measurement with estimates of the 

variation of heat flow across Mars surface and constrain the parameters of 

specific thermal evolution models.

8.3.3 Mercury

A sensor penetration depth of 2 m for Mercury (Chapter 6) is approximately 13 

times the skin depth. Unsurprisingly, bulk conductivity estimates produce heat 

flows accurate to within 40 % in most cases -  at these depths the dependence 

on monitoring period is largely lost as the unsteady surface temperature is 

damped to negligible values. Despite this, optimization does produce marginal 

improvements in some cases (substantial in a few), though the results 

(improvement or not) are largely unpredictable (likely a function of the 10 mK 

random errors). If heat flow probe sensors do not penetrate below 0.5 m, a 

measurement over a full Mercurian solar day can recover the heat flow to 

within 20 % -  instantaneous measurements up to 0.5 m are inaccurate by 

large factors.

The special case of the Mercurian surface temperature has benefits and 

drawbacks in optimization. The lack of short period variations means 

truncation errors are kept to a relative minimum; however the steep transitions 

between terminator and peak daytime temperatures require high time 

resolution for accurate modelling. Notably, results show that instantaneous 

measurements are best taken at peak temperatures, where the variation in
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surface temperature is slow. The shallow skin depths (0.15-0.16 m) mitigate 

the effects of the large surface temperature amplitudes (127-301 K). Below 0.5 

m the amplitude of the temperature envelope is approximately the same as 

that at the Martian surface due to the Martian annual unsteady temperature 

variation (5-13 K). Therefore, where sensors penetrate below 5 m, results are 

expected to be on par with or better than results for Mars.

8.3.4 Vesta

The low heat flows at Vesta (~pW/m2 modelled) are not successfully optimized 

by the model. Simple initial heat flow estimates are determined to within 20 % 

where there is minimal systematic noise, heat flow of the order of 3 pW/m2 and 

bulk conductivity of the order of 10'5 W /m/K in the measurement. This is the 

case for instantaneous measurements, as well as measurements taken over a 

Vestan year. Heat flows are also found to within 20 % for Vestan year-long 

measurements with bulk conductivity of the order of 10-4 W /m /K and heat flows 

of the order of 0.3 pW/m2.

The Vestan surface temperature has very short period diurnal variations (5.36 

h; 17-115 K) coupled with long period annual variations (5-10 K). The use of 

smaller model timesteps and/or the reduction of truncation errors may 

therefore produce more accurate optimization results. The Vestan surface 

energy balance produces a negligible diurnal skin depth (less than -1 .4  cm) 

and relatively substantial annual skin depths of 1.06 m (higher than Mercury, 

and potentially Mars) and 0.12 m. Therefore for a reliable heat flow 

measurement penetration depths are required towards 2 m and monitoring 

periods approaching 1 Vestan year.

8.3.5 Estimating Planetary Heat Flow

The geology of the planetary measurement sites discussed above is described 

in the relevant Chapters. Sites are chosen primarily on their likelihood of being
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dry. It is noteworthy that the high latitude site at Mercury (85° N) is one 

possible source of icy regolith, the high conductivity of which will bias a heat 

flow measurement; however the overriding focus at the site is the low 

temperature amplitude. A trade-off is necessary between: sites with low 

temperature amplitude, which are more likely in high latitude shadowed 

regions, with rough topography and icy regolith; and sites with high 

temperature amplitudes, which are more likely in low latitude areas, with 

smooth topography and dry regolith. The presented inverse model can only 

simulate dry regolith, therefore if icy conditions are met the model is 

inapplicable and/or further work may be necessary.

The preceding discussion shows that it is possible to obtain improved 

planetary heat flow estimates from a shallow subsurface measurement by 

optimization using the discussed FSI model. However, it is important that 

specific conditions are met. Where there are high frequency variations in 

surface temperature, it is best to ignore the affected surface sensors, or invert 

the measurements with high density grids. Where only short period 

measurements are likely, it is best to time those such that they are taken when 

the surface temperature is peaked, and relatively unchanging. It is important to 

accurately characterise errors in non-heat flow parameters, such that they can 

be optimized with the heat flow, either individually or simultaneously, 

otherwise the heat flow will contain related inaccuracies.

The improved estimates can further constrain current heat flow estimates for 

Mars and Mercury if the measurement is far enough below the skin depth (at 

least twice for Mars, and 3 times for Mercury), though this is dependent on 

monitoring periods: shorter monitoring periods require deeper sensor 

penetration. Optimization at the grid densities used here does not improve 

upon the low heat flows at Vesta even though a measurement is possible with 

the low conductivity models produced in this study. Even a single, short period
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heat flow measurement, on a planetary body, is a critical first step; 

extrapolation to global heat flow estimates involve analyses of local and 

regional surface and subsurface geology. As noted earlier, and evidenced by 

studies mentioned in Chapter 1, appropriate site selection maximises a 

successful outcome.

8.4 Further Applications and Enhancements

8.4.1 Applications

The inverse model in this study is designed for application to a terrestrial 

planet, though limited to simulating dry regolith in 1D, and ignoring 

temperature dependence of regolith thermal properties. Mercury, Mars and 

Vesta are the focus of the current study, in part because of the abundance of 

scientific data and focus on these from numerous Martian space missions (the 

planned InSight mission, in particular), Mariner, MESSENGER, the planned 

Bepi-Colombo and Dawn. However, equally valid candidates for application 

are Venus, the Martian moons Phobos and Deimos, and the Moon (see 

Appendix 9.8.4 for a demonstration).

Venus is an interesting candidate because of its size similarity to Earth, with 

unique orbital characteristics and high surface temperatures coupled to a 

dynamic atmosphere, and potentially high heat flow (e.g. Ruiz, 2007). 

Important questions surround the origin of the Martian moons by accretion, 

capture or giant impact (e.g. Craddock, 2011; Rosenblatt and Charnoz, 2012; 

Murchie et al., 2014); a heat flow measurement can help to differentiate 

between these by providing information on the internal temperatures. The  

Apollo lunar heat flow measurements suffered from several ambiguities, and 

are still subject to refinement (e.g. Hagermann and Tanaka, 2006; Siegler et 

al., 2010). Lessons from the Apollo measurements are being applied to the 

design of future heat flow probes and measurement techniques because of
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the high scientific priority of a reliable lunar heat flow measurement (e.g. 

Kiefer, 2012; Zacny et al., 2013).

8.4.2 Enhancements

8.4.2.7 Temperature Dependence

In applying the FSI model to airless bodies with short rotation periods, like the 

Moon, Phobos, Deimos or Vesta the non-linear effect of radiative thermal 

conductivity (~T3 dependence) is non-negligible towards the surface regions. 

This results in a rise in mean temperatures7 and may lead to a heat flow 

underestimate (e.g. Keihm and Langseth, 1973; 1975; Siegler et al., 2010). In 

cases where a heat flow probe penetrates only to shallow depths, temperature 

dependence must be taken into account where the affected sensors cannot be 

ignored. Along with the former, where the regolith monitoring period falls short 

of the seasonal cycle associated with the skin depth, accounting for the 

potential biases introduced by temperature dependence may lead to more 

accurate heat flows. For the lunar demonstration in Appendix 9.8.4, the 

internal heating effect of temperature dependent thermal conductivity is 

approximated with internal heat sources. Incorporating the non-linearity of 

temperature dependence into FSI requires an extensive, but potentially 

straight-forward re-work of the theory presented in Chapter 2.

8A.2.2 Gas Diffusion

In applying FSI to bodies which may be volatile rich or bodies with 

atmospheres, it is useful to be able to account for gas diffusion (advection), 

which is not possible with the current model. Advection becomes important in 

volatile rich porous media where the volatile conductivity component is greater 

than that of the grain contact conductivity component (e.g. Piqueux and

7 The ~T3 dependence of conductivity causes more heat to enter the surface during 

that daytime than escapes during night time.
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Christensen, 2011). Accounting for advection requires augmenting the current 

FSI model to include mass flow solutions coupled to the solution of the HFE as 

defined in Section 2.1, and modification of the inverse theory of Section 2.2 to 

account for the resulting non-linearities. The critical step in modifying the 

inverse theory is deriving an appropriate expression for the dual problem. 

Misfit functions capable of dealing with strong non-linearities in the inverse 

problem are discussed in Tarantola (2005).

8A.2.3 3D

Hopcroft et al. (2009) show that more accurate inverse solutions are possible 

from 3D inversions, where lateral inhomogeneity in regolith thermal properties 

invalidates the assumption of isotropy in 1D modelling. 3D inversion effectively 

involves a 3D forward model, reduced to 1D in the inverse model by methods 

of Principal Components Analysis (e.g. Jolliffe, 1986), where in Hopcroft et al. 

(2009) the so-called Proper Orthogonal Decomposition method is used (e.g. 

Liang et al., 2002a,b ;Hosotani and Nishi, 2010). Patankar (1980) presents the 

extension of the FCV forward model to 3D. 3D modelling requires more 

simulation time and demands advanced computing resources. However, it 

may lead to longer term efficiencies in accounting for surface and subsurface 

topography, when extrapolating local heat flows to regional and global 

planetary estimates.

8A.2A  Simplicity

The former considered, it is important to keep in mind that time and resource 

limitations may demand the use of the simplest approach to solving the 

inverse problem. The FSI approach presented in this study is not the simplest 

of approaches, but it can provide useful information about the inverse problem 

solution, even where truncation errors are non-negligible. Rapid, low 

resolution simulations can be performed to loosely characterise the solution
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space of the inverse problem, then higher resolution simulations can be run 

within the identified solution space, to improve accuracy (this is demonstrated 

in Appendix 9.8.4). The use of the dual problem introduces a layer of 

abstraction to the problem, which may take some amount of study to master; 

therefore it is important to weigh these considerations in choosing between 

FSI and more standard methods.
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9.1.1 General Formatting Notes

•  Non-bold

o Italics  reference any parameters

o Non -  italics (except the transpose mathematical operator [•••]T reference 

a space

• Bold

o Ita l ic s  references a functional array operator 

o  Normal references a discretized (array) operator

•  Superscript8

o U and S reference unsteady and steady parameters 

o P and D reference primal and dual parameters

o Others (except mathematical operators and GRID parameters) generally 

reference a time or iterative sequence 

o Superscript 0 refers to initial

• Subscripts

o S and B reference surface and basal parameters (except with independent . 

parameter t  where B references beginning (start) and E represents the end 

of a period)

o Others generally reference a depth sequence or more generally, elements 

of vector parameters 

o See note for m (except with independent GRID parameter t  where m  

references the number of timesteps)

• m <=> m  3 m  <=> [7^, 7 / ,  FB, k, p, c, S]

•  In browsing the alphanumeric list, note that characters in parameter AB take 

precedence in the order A, B, C.
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9.1.2 Symbols: Alphanumeric List

A, B, As, B$

Ab

A t  ' ......................................................

a n

bm Cn

C <=> c ( z )  «  Cn

Q  9 Cd0» Cd

Cdid2

L*m ^ ^m/ 

r

Cnii

Sd

Sd

Sm

8 m

Szt, 8zi+ 

8 z,z'-,t,t'

Atm

A z n

d 9 di t d 3 d i

D

d

D

d u, d s

d;

d%. dn

9.1 Introduction

Fourier constants 

Bond albedo

Layer interface contact area

Current grid temperature coefficient

Previous grid temperature coefficient

Discretized heat flow equation conductance

temperature coefficients

Specific heat capacity

Data covariance

Data cross covariance

Model covariance

Model cross covariance

A posteriori model covariance

Data residual

Dual of data residual

Model perturbation (update)

Dual of model update

Node distance, right node-interface distance

Identity operator

Timestep

Control volume size (interface distance)

Data vector

Data space

Dual of data vector

Data space dual

Unsteady, steady data vectors

Data solution vector

Discretized heat flow equation source term
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E

e d> 6 d 0

E o
fb

e

E

eP

F,FS

F

F

F U, F S

p*

Fb ^  FB(t)

F$

fS O  p S I  ztS P  
> -V B  /

F% «  FBu(t) 

f i

f r . f z

y i. r ,  n

7/Ki

yd = [yTs, yFfi, y fc, ypc, y5], yf, ym, y f

& 3

G
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Emittance

Mean relative error between data solution and 

true values

Mean relative error between model solution and 

true value

Relative error between optimized and true basal 

heat flows interpolated from 3D scatterplots 

Relative error between a priori and true basal 

heat flows interpolated from 3D scatterplots 

A vector element of a linear space 

A linear space

A parameter of a linear space 

Temperature Fourier (surface) components 

Tridiagonal system of temperature coefficients 

Linear forward differential operator 

Unsteady, steady linear forward differential 

operators

Non-linear forward differential operator 

Basal heat flow 

Steady basal heat flow

A priori, a posteriori, true steady basal heat flow

Unsteady basal heat flow

Internode interface location

Model parameter covariance function

Steepest ascent vector

Misfit function Frechet derivative

Misfit function Frechet derivative data, model

components

General inverse operator 

General Green’s function
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G

G

9 Ui 3 s 

Gu, Gs 

G t

Gt

G m

Gs*> Gs*, G§*

Gs*, Gs, Gb, G°

Gs, G§*, Gs, Gb 

G I  G s, G $, G§

tfsi Vm

h, hi 

H, ^

H, Hi

Hd =  [B Ts, HFb, Hk, H?c, Hm, H f

i

I

K <=> K (Z )

k <=* k(z)

I . 0  1,1 1 .T
»V f  i v  f  IV

9.1 Introduction

Linear inverse operator

General Green’s operator and data Frechet

derivative operator

Unsteady, steady inverse operator

Unsteady, steady Green’s operators

Data Frechet derivative

Data Frechet derivative operator at maximum

likelihood (solution) point

Model resolution operator

General, steady, unsteady dual Green’s

operators

Green’s operators respectively associated with 

sources , surface boundary, basal boundary, 

initial temperature

Unsteady surface and steady: source, surface,

basal Green’s operators

Unsteady surface and steady: source, surface,

basal Green’s functions

Sensor and modelling (or discretization) data

noise

Hertz factor

Heat transfer coefficient (conductance)

Misfit function Hessian derivative

Misfit function Hessian derivative data, model

components

Control volume interface; Iteration number 

Thermal inertia 

Thermal diffusivity 

Conductivity

A priori, a posteriori, true conductivity
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kBULK

kt

K  

I

Ln 3 Z/2 =  ll®l 

P

P. Pi. Pi 

m

m 3 mi, m 3 mu mu 

m 

M 

M 

M 

m B 

m/

M u M . M i

Mf

m P 

n 

N

a), a^

(O f

<P 

Ve

4>(d)

4>(d, m)

^(m)

Bulk conductivity

Control volume interface conductivity 

Layer (or discretized/nodal/grid) conductivity 

Regolith particle size

A norm of order n (not related to layer number)

Fourier frequency multiple

Stepping constant

Timestep/recording number

Model vector

Dual of model vector

Total number of timesteps

Model Space

Model space dual

Boundary parameter model vector

Model solution vector

Model distance quantifying metric

Preconditioned model distance quantifying

metric

Property parameter model vector

Layer (or node/grid) number

Total number of layers (or nodes or gridpoints)

Fourier frequency

Temperature oscillation frequency

Surface temperature phase

Planetographic location (east longitude)

Solar incidence angle 

Data probability density function 

Joint probability density function 

Model probability density function
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Probability density function constant 

Period

Preconditioner

Mean atmospheric pressure

Density

Thermal capacity

A priori, a posteriori, true thermal capacity

Layer (or discretized/nodal/grid) thermal

capacity

Exponential rate

Heliocentric distance

Model sensitivity operator

Model:data standard deviation stability ratio

Ratio of optimized heat flow error to initial heat

flow error

Model parameter standard deviation stability 

ratio

Ratio of the misfit function at the maximum 

likelihood point to the misfit function at 

initialization

Ratio of monitoring period to period of 

temperature variation

Ratio of maximum sensor penetration depth to 

skin depth

Ratio of depths of surface to basal sensors used

in estimating heat flow

Stephan-Boltzmann constant

Data standard deviation

Data variance

Standard deviation of data noise
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S  < = » 5 ( z ,  t )

S

S

s

s

s

s°, s1, ST 

SD

s°

sp

sDU, sDS

Ss < = >  Ss(z)  

S u & S u ( z , t )  

Su, S s 

Su, S s

9  S S•-’mi

m/

Sfh

sc° n

STJ n

5 l | d | | » 5 l | d | |  

^ l l m l l i  •S ’l l m l l

Model parameter standard deviation

Model parameter variance

Estimator of dispersion

Source term

Source space

Dual of source space

Array of source terms

Primal source field

Dual source field

A priori, a posteriori, true source term 

Dual source 

Solar constant 

Primal source

Unsteady, steady dual sources 

Steady sources 

Unsteady sources

Unsteady, steady primal source fields

Unsteady, steady dual source fields

Misfit (objective, cost) function

Misfit function at maximum likelihood point

A dual misfit function

Layer (or discretized/nodal/grid) constant

linearized source term component

Layer (or discretized/nodal/grid) temperature

dependent linearized source term component

Data residual norm

Model misfit norm

Time lag

Correlation time
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Time

Simulation time 

Temperature 

Temperature space 

Dual of temperature space 

Array of temperatures 

Initial temperature 

Steady temperature 

Unsteady temperature 

Time

Arbitrary temperature

Begin

End

Layer (or discretized/nodal/grid) temperature

Initial (or previous) layer (or

discretized/nodal/grid) temperature

Layer (or discretized/nodal/grid) time series of

temperatures

Surface temperature

Surface steady temperature

Surface unsteady temperature

Surface unsteady temperature amplitude

Primal temperature field

Dual temperature field

Dual temperature

Unsteady, steady dual temperatures 

A posteriori temperature field 

Primal temperature

Unsteady, steady primal temperature fields
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t u, t s Unsteady, steady dual temperature fields

7 ’ SO rr S I  rr S T  
1 S > * S  > 1 S

A priori, a posteriori, true surface steady 

temperature

A priori, a posteriori, true surface unsteady
T uo T ui t u t  
*s > l s > 1 S

temperature

z , z n Depth

Z Total depth

z ’ Depth

zACC Accurate sensor depth

zB, zN Base

zERR Inaccurate sensor depth

zs, zx Surface

zSKlN Skin depth

V Divergence operator

[D, M] Joint data and model space

(e) A linear space parameter mean

Absolute relative error between data solution
\€ d l  kd0|

kml

and true values

Absolute relative error between model solution 

and true value

9.1.3 Symbols: Topical List

9.7.3.7 Forward Problem

GRID

z, zn Depth

zs, zx Surface

b̂> Base

Z Total depth
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Azn Control volume size (interface distance)

Szu 8z i+ Node distance, right node-interface distance

ft Internode interface location

A t Layer interface contact area

n Layer (or node/grid) number

N Total number of layers (or nodes or gridpoints)

i  Control volume interface

t, tm Time

tB, t 0 Begin

tB, tM - i  End

tsm  Simulation time

P  Period

A tm Timestep

m Timestep number

M  Total number of timesteps

BOUNDARY

A  Bond albedo

£ Emittance

(pt Solar incidence angle

R  Heliocentric distance

a Stephan-Boltzmann constant

S°  Solar constant

T  « = >  T ( z , t )  Temperature

Layer (or discretized/nodal/grid) time series of
7*771
1n

temperatures

Initial (or previous) layer (or
rpO
1 n

discretized/nodal/grid) temperature 

Tn Layer (or discretized/nodal/grid) temperature

Ts <=> rs(t) Surface temperature
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T° o  T°(z)

T u o  T u(z ,t)

Tsu »  T / ( t )

rr U A
* S

Q)f

<P

F,FS

0), (j)p

A, B, As, Bs 

Ts <=> Ts(z)

Tsl S

Fb ^  FB(t)

Fg * *  Fb ( t)

F i

[PROPERTIES

I .........................................

I

K <?> K (Z)

k <=> k(z)

kn

ki

kBULK 

H , H i  

h, hi

pc &  pc(z) 

pnCn <=> pCn 

p  O  p ( z )  < = >  p n
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Initial temperature

Unsteady temperature

Surface unsteady temperature

Surface unsteady temperature amplitude

Temperature oscillation frequency

Surface temperature phase

Temperature Fourier (surface) components

Fourier frequency

Fourier frequency multiple

Fourier constants

Steady temperature

Surface steady temperature

Basal heat flow

Unsteady basal heat flow

Steady basal heat flow

Thermal inertia 

Regolith particle size 

Thermal diffusivity 

Conductivity

Layer (or discretized/nodal/grid) conductivity 

Control volume interface conductivity 

Bulk conductivity

Heat transfer coefficient (conductance)

Hertz factor 

Thermal capacity

Layer (or discretized/nodal/grid) thermal

capacity

Density
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c  < = *  c ( z )  o  c n  

S  < = >  S ( z ,  t )

S u & S u( z , t )

Ss « = >  S 5 ( z )

ScJ n

ST° n

ZSK1N

TDMA

bn> Cn 

d m du n i u n

an

an

F

T

S

9. J .3.2 Inve rse  P rob lem  

GENERAL

T

r

t'

z '

V

9 9 9Jmi

^||d||> |̂|d||> %n||» ■S’llmll

9.1 Introduction

Specific heat capacity 

Source term 

Unsteady sources 

Steady sources

Layer (or discretized/nodal/grid) constant 

linearized source term component 

Layer (or discretized/nodal/grid) temperature 

dependent linearized source term component 

Skin depth

Discretized heat flow equation conductance 

temperature coefficients 

Discretized heat flow equation source term 

Current grid temperature coefficient 

Previous grid temperature coefficient 

Tridiagonal system of temperature coefficients 

Array of temperatures 

Array of source terms

Time lag 

Exponential rate 

Time 

Depth

Arbitrary temperature

Misfit (objective, cost) function

Misfit function at maximum likelihood point

Data and model norms
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<Kd, m) 

4 > o

Ln 3 L2 =

CP

( e )

°vn

SPACES

E

[D,M]

D

D

M

M

T

T

S

S

OPERATORS 

g , 9

9 U , 9 S

A dual misfit function 

Joint probability density function 

Probability density function constant 

A norm of order n (not related to layer number) 

A vector element of a linear space 

A parameter of a linear space 

A linear space parameter mean 

Estimator of dispersion

A linear space

Joint data and model space

Data space

Data space dual

Model Space

Model space dual

Temperature space

Dual of temperature space

Source space

Dual of source space

General inverse operator 

Unsteady, steady inverse operator 

Linear inverse operator

General Green’s operator and data Frechet 

derivative operator

Data Frechet derivative operator at maximum 

likelihood (solution) point
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Gs*, Gs, Gb, G°

Gu, Gs

GbG§.,G j.GsB

Gs*, Gs*, G§*

Sz,zl -,t,t'

Cd 3 Cdo, Cd

Gm 3 Gm/ Cm 

r

Gm

Rd

Gdjdz

r
m 177i2

M i f M , M i

M f

Pi

Gi

F

F u, F s

p*

V

Y , Y i

?d =  [yT5, YFb, Yk, Ypc, y5], f t ,  Ym, ?T

9.1 Introduction 

Green’s operators respectively associated with 

sources , surface boundary, basal boundary, 

initial temperature

Unsteady, steady Green’s operators 

Unsteady surface and steady: source, surface, 

basal Green’s operators

General, steady, unsteady dual Green’s

operators

Identity operator

Data covariance

Model covariance

A posteriori model covariance

Model resolution operator

Model sensitivity operator

Data cross covariance

Model cross covariance

Model distance quantifying metric

Preconditioned model distance quantifying

metric

Preconditioner

Data Frechet derivative

Linear forward differential operator

Unsteady, steady linear forward differential

operators

Non-linear forward differential operator

Divergence operator

Misfit function Frechet derivative

Misfit function Frechet derivative data, model

components
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H , H i

Hd =  [ f t7*, HFb, H k, Hvc, Hs], H f, Hm, H™ 

DATA

d 3 dj, d 3 d-i

du, ds

m

8d

a

Sd 

d /

4>(d)

ol

<*d

Ed> 6d0

\C d l \Ed0\

eFso

Vs> Vm  

s \\d\\, S\\d\\

Z ACC

Z ERR

\ MODEL 

m 3 nij, m 3 mit mu

303

Misfit function Hessian derivative

Misfit function Hessian derivative data, model

components

Data vector

Unsteady, steady data vectors

Number of recordings

Data residual

Dual of data vector

Dual of data residual

Data solution vector

Data probability density function

Data variance

Data standard deviation

Mean relative error between data solution and 

true values

Absolute relative error between data solution 

and true values

Relative error between optimized and true basal

heat flows interpolated from 3D scatterplots

Relative error between a priori and true basal

heat flows interpolated from 3D scatterplots

Standard deviation of data noise

Sensor and modelling (or discretization) data

noise

Data residual norm 

Accurate sensor depth 

Inaccurate sensor depth

Model vector
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8m

m

8m

m B

m P

m7

f x . f z

4>(m)

Vm

am

kml

*̂ l|m||> ^||m||

PRIMAL PROBLEM (also see Forward Problem) 

T

yP

T u, Ts 

S

sp

Su,S s

G

GS, G°, Gb 

G I  Gs, G l, Gb

DUAL PROBLEM 

T

9.1 Introduction

Model perturbation (update)

Dual of model vector

Dual of model update

Boundary parameter model vector

Property parameter model vector

Model solution vector

Model parameter covariance function

Correlation time

Model probability density function

Model parameter variance

Model parameter standard deviation

Mean relative error between model solution and

true value

Absolute relative error between model solution 

and true value 

Model misfit norm

Primal temperature field 

Primal temperature

Unsteady, steady primal temperature fields 

Primal source field 

Primal source

Unsteady, steady primal source fields 

General Green’s function 

Surface, initial, basal Green’s functions 

Unsteady surface and steady: source, surface, 

basal Green’s functions

Dual temperature field
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y D

T u , T s

y D U  y D S

s
S D

S u, S s

sDU, sDS 

OPTIMIZATION

i

P, Pi. Pi 

Y i>  Y , Y i 

Mi 

p

17SO n S I  j?S TFb > Fb > Fb

f S O  f S I  f S T
l s > l s > l s

rpUO 'p U l  rr U T  
* S  > * S  > * S

u 0 u l  u T
#V f  IV f  IV

pc°, pcl , pcT

S ° , S 1, S T 

9 9 9

S

^ | | d | | >  ^ l l d l l j  ^ | | m | | >  ^ l l m l l

r m i'm2

~ r n
rd

Dual temperature

Unsteady, steady dual temperature fields 

Unsteady, steady dual temperatures 

Dual source field 

Dual source

Unsteady, steady dual source fields 

Unsteady, steady dual sources

nerauon number

Stepping constant

Steepest ascent vector

Model distance quantifying metric

A posteriori temperature field

A priori, a posteriori, true steady basal heat flow

A priori, a posteriori, true surface steady

temperature

A priori, a posteriori, true surface unsteady 

temperature

A priori, a posteriori, true conductivity 

A priori, a posteriori, true thermal capacity 

A priori, a posteriori, true source term 

Misfit (objective, cost) function 

Misfit function at maximum likelihood point 

Data and model norms

Model parameter standard deviation stability 

ratio

Modekdata standard deviation stability ratio
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Ratio of the misfit function at the maximum 

likelihood point to the misfit function at 

initialization

Ratio of optimized heat flow error to initial heat 

flow error

Ratio of monitoring period to period of 

temperature variation

Ratio of maximum sensor penetration depth to 

skin depth

Ratio of depths of surface to basal sensors used 

in estimating heat flow
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9.2 Theory

9.2.1 Forward Problem

9.2. J. 7 Unsteady Analytical Solution (Fourier Transform)

For a homogeneous isotropic medium with thermal properties constant in each layer over 

M  time intervals (see Appendix 9.1 for symbol definitions).

dTu d2Tu

~ d f  =  K~^zr ’ z  G Ẑs’ Zb■*’ 1 e  ^ 0' tu ~1-*' 9'2'1

where Su =  0. The surface and lower boundary are characterized by a surface 

temperature, r / ,  with heat propagating into the regolith and vanishing at depth:

Tu =  , z =  zs, t  E ( t 0, 9.2.2

Tu =  0, z  OO, t e  ( t 0, 9.2.3

The initial temperature is constant and zero,

Tu =  0, z E  [zs,z B), t  =  t 0. 9.2.4

Applying the discrete Fourier transform (DFT) due to the arbitrary nature of T /  (e.g. 

Arfken and Weber, 2005), temperature T u(z ,t), becomes F(z,co)

9.2.5

i  v 92710 19TU ■ *

m=0

z  E [zs,Z g ) ,m  E [0, M  -  1], t  E ( t 0, tM^ ] .

The Fourier frequency (0 with M  components is defined by

2nu
u  =  —j r ,  f i e [ o , M - i ] ,  9.2.6

where P is the period. The Fourier components are characterised by a fundamental

frequency a)f  at p =  1, all other components being integer multiples of (Of.
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This transform leads to a differential equation in the variable z (Carslaw and Jaeger, 1973; 

Lindqvist, 1984)

d zF  io)
f a 2 = T F' z E \-zs>zb)> 9-2-7

with converted boundary conditions

M - 1

F = Fs =  m H  ■ m E [0, M -1 ] ,  t  e (t0, tM.  J; 9.2.8

F  =  CONSTANT, z  6  (z5,z B); 9.2.9

F  =  0, z  -» oo. 9.2.10

This yields a Fourier domain solution which can be expressed as

F  =  A (o))ez^ ^  +  z e [ z s,z B). 9.2.11

The term Fs(co) =  As +  Bs at z =  0 corresponds to an input function. Upon converting F 

back to the time domain via the inverse DFT

M - 1

TU = Z
“ o x J 9.2.12

z  e  [z^ zjj) , /*  e [0, M  — l ] ,  t  e

the solution is (Carslaw and Jaeger, 1973)

T u =  r s°e z\Uif/2K cos — (p — zJ a ) f /2 fc ^ , z  G [ zs,z B), t  E ( t 0, tM- i ]  9-2-13

where r5° is the amplitude of the surface temperature corresponding to \FS\, oif  is the 

frequency of temperature oscillations and (p indicates the phase of the surface boundary 

temperature, the leftmost term being the phase shift with depth.

9.2.7.2 Steady Analytical Solution

The steady state analytical solution for a homogeneous, isotropic semi-infinite solid can 

be found from (see Appendix 9.1 for symbol definitions)
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- k  - ^ T  =  s S ’ z e  l z s> z b )>
d 2Ts

9.2.14

with boundaries

9.2.15

- f e — =  F | ,  z - z B. 9.2.16

Dividing both sides of Equation 9.2.14 by k ,  integrating and applying the boundary 

conditions gives

9.2.1.3 ID  Finite Control Volume Discretization

The 1D FCV discretization described here is adapted from Patankar (1980). Here the 

general HFE is discretized where the steady and unsteady variants emerge as special 

cases. The HFE is first integrated across the 1D control volume A zn M M ,  anchored by 

central node n of N  nodes in Figure 9.2.1, and over timestep Atm of M  timesteps such that

T s =  r /  -  -j^-z +  2 j£z2, z  e  [zs, zB). 9.2.17

t + A t j

9.2.18

o -
n-1 n

Az

O O - + z
n+1

i+1

Figure 9.2.1. Discretization of the domain into 1D control volumes Az *1x1 with interfaces i. The full control volume 

illustrated is anchored by central node n. After Patankar (1980).



310 9.2 Theory

Integrating along the spatial dimension (z) different profile assumptions can be made to 

make calculations easier (Patankar, 1980). Here a linear variation is assumed for the 

variation of temperature between each node n, resulting in a piecewise-linear profile 

across the N  control volumes as shown in Figure 9.2.2.

n+1

n-1

i+1
z

Figure 9.2.2. Linear variation of temperature between nodes. After Patankar (1980).

Therefore, integrating Equation 9.2.18 across control volume n from interface i  to 

interface i  +  1 using Figure 9.2.2:

a. LHS
•t+Atm Qrp

d t l i ]

r i + l  r t + A t m g f  r
pc J  dz J  d t —  =  pcAzn J

r t + A t m r i + l  g  . g T . r t + A t m d T \  (  d T \  f l + l

I  d t l  dzr A k ^ )  + s = j t dt(fcfeL-(*a?W dz5
b. RHS 9.2.19

- I

t+Atr

d t
k  (T n + l T n )  j  ( T n  T i-J
«•!+1 T OnL\zn

Szi4 Szt

The interface conductivities are derived from the assumed variation between nodal 

conductivities k n  defined earlier. The most useful representation, as suggested in 

Patankar (1980) is the previously stated interpolation
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M ^ 4 f.' K n - 1 *cn/

9.2.20

f i  =
6zi+
Szi

This is derived from the consideration of the heat flowing across the interface i. The 

interpolation factor {ft e [0,1]) is defined by the location of the interfaces between the 

nodes -  i.e. the nodal spacing 8zt, as illustrated in Figure 9.2.3 below. This representation 

of the interface conductivity in Equation 9.2.21 leads to the harmonic mean when the 

interface is located exactly halfway between the nodes =  0.5). This representation of 

interface conductivity will give more desirable results than, say, a linear representation, 

particularly in composite media where there may be abrupt changes in conductivity at the 

interface.

-Szj.

n-1

Figure 9.2.3. Locating the interfaces.

The integral source term of Equation 9.2.19b (/.l+1dz5) is cast in discretized form as 

SnAzn. Here Sn represents the average source contribution to the heat flowing out of 

control volume n. Various representations of Sn, which is often temperature dependent, 

are possible -  a general representation of a linearized Sn is as noted earlier is

Sn = S Z + S £ T n 9.2.21

where S% represents a constant component of the source term while S% is a temperature 

dependent component. For numerical stability in the forward problem, any heat sinks
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(negative components of Sn) are absorbed into S j while respective positive components 

are absorbed into S%.

Many assumptions are also possible for the variation from time t to t +  At of the nodal 

temperatures (Tn_lt Tn> Tn+1). Many of these can be generalized to the interpolation 

formula (Patankar, 1980)

r t+ A tm
l  dtTn -  [ f tTn +  (1  -  / t ) r n0]A tm, 9.2.22

where 0 <  f t <  1 is a weighting factor. Factor f t determines whether the time 

discretization results in an implicit ( f t =  1), Crank-Nicholson (ft =  0.5), explicit (f t =  0) or 

other (0 <  f t <  1; f t ±  0.5) scheme for solving the discretization equations (Figure 9.2.4). 

The implicit scheme, which assumes that the final temperature Tn prevails across the 

whole timestep, is the most numerically stable of these and is used to evaluate the 

integral.

t t

Figure 9.2.4. Variation of temperature over timestep Atm. After Patankar (1980).

Therefore using the implicit scheme, integrating the temperature (T) of Equation 9.2.18 in 

control volume n of Figure 9.2.4 along one timestep Atm:
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a. RHS
rt+Atm QY 

pcAzn J d t  —  =  pcAzn(Tn -  7n° ) ;

9.2.23

b. LHS

With the interfaces and source terms dealt with Equation 9.2.23 can be restated as

Finally the boundary conditions must be incorporated. These can take the form of 

temperature, temperature gradient, heat flow, heat source, or heat transfer coefficient. In 

cases where the boundary temperature is not provided, the same procedure as in 

Equations 9.2.19 and 9.2.23 is carried out, except -  due to the special nature of the 

boundary points -  the integration takes place across a half-control volume (Figure 9.2.3).

a.

b.

n e [ l , N ] ,

c.

z  E [z lt zN), 9.2.24

d. o n
Q-n ~  P n cn > nrm

m  e [0, M  — 1],

t  G ( t 0,

e. d  A 7  4 -u n  ' u n l n>

f. d n  — b n  +  Cn  +  £Zn Sn Azn,
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■Szj. 6z;.

AZ,

1/N ni

Figure 9.2.5. Half-control volume of the boundary point (shaded area). 

Therefore

' t + A t m q j

a. RHS

b. LHS

r  t - r u t j n

pcAzn J d t~^ =  PcAznO 'n  -  T n )>

9.2.25
t+Atn

dt
, ( T n + 1  Tn)  ̂ , r
i T Fi T SnAzn

( T n + i  ~  T n )
kt I  _ +  Fn +  SnAzn8z; A

where Fn is the boundary heat flowing from node n  towards node n +  1. This leads to

3. CLnTn — ^ n T x + l T  dn,

I. _  î+1
n J ,  'O Z i+ l

P r io r i

Azr

d.

Atm

d-n =  *̂ n Azn +  a°T^ + Fn, 

e. an — bn +  SnAzn.

The boundary coefficients q  and are respectively zero. In matrix form:

-c 2 a2
0 - q

0
.0

0
- b 7 0

0

a3 ••• 0
—bN~x 

0 — q  cq

r ^ l [d il
t 2 d2
t 3 = d3

1

__I

9.2.26

9.2.27

or

F T  =  S 9.2.28
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where F1 is a tridiagonal system of coefficients, T  an vector of temperatures, and S a 

vector of source associated terms. The solution can therefore be represented by

T  =  F -1 S. 9.2.29

The system can be solved using standard numerical methods.

9.2.2 Inverse Problem

9.2.2. J Dual of the Forward Differential Operator

Restating the forward problem and the dual problem in terms of the differential equations 

and with operator notation

dT d (  d T \  r
pC~ d t~ ~ d z \  d z )  ~ S =  F T  =  S’ z e  [zs> zB l t E  [tB, tE], 9.2.30

and

- p c - — (k- f o- J =  sD = f ts  =  r « f tt d = sd, z e  [zs,zB],t  e [tE, tB]. 9.2.31

The spaces T and S associated with Equation 9.2.30 have respective duals T and S such

that (T ,T )T =  <5,5)s or (FtS,T)t =  (S ,FT)s. Shen and Beck (1991) and Tarantola (2005)

show that in the particular case where S can be identified with T such that S Q T and T Q 

S, F  and F t  map T into T according to duality relations (Ft T d ,T p )t =  (T D,F T p) f  where 

[Tp,T d] e T and are appropriately termed the primal (P) and dual (D) temperatures. The 

scalars from the duality relation between S and T can then be defined such that

(SD, T p) j  =  (T D,S p)s =  f  B dz [  Edt TS, 9.2.32
Jzs h B

where [5P,5 D] e S.

1 The matrix F is usually denoted A in the literature but the convention has been broken here to 

allow certain notation conventions further along in the text.
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Reintroducing the primal and dual operators it is seen that

(F t T d , T p )t -  (T D, F T P)s =  f  B dz f  Ed t  F t T d T p -  T DF T P,
ZS 9.2.33

z  e  [zS)zB] , t  e  [tB, t E].

Tarantola (2005) shows that the transpose of the gradient operator is the negative of the 

divergence operator (VT =  -V );  likewise, in Shen and Beck (1991) FT, the transpose of 

the differential operator in Equation 9.2.30, is shown to take the form of Equation 9.2.31.

To show this, Equations 9.2.30 and 9.2.31 are substituted into Equation 9.2.33 to give 

(integrating by parts)

(F t T d , T p )t; — (T d , F T p )s

a.

=> (F t T d , T p )t  -  (T d , F T p )s

b.
9.2.34

(F t T d, T p)t  -  (T d, F T P)s =  -  T p

c.

z  e  [zs,z B] , t  e [tE, t B]

Therefore, by applying boundary and initial conditions such that

T p = T °  =  0, z  =  zs, t E  [tBl tE\, 9.2.35

d T p d T D 
k - r — =  k - r -  = 0 ,  z  =  zB, t e  [tB, tE\, 9.2.36
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and

T p — T D — 0, z E  [zs, z B], t  =  t B =  tE, 9.2.37

the RHS of Equation 9.2.34 vanishes to satisfy the definition of the transpose. Equations 

9.2.35-9.2.37 are the dual boundary conditions mentioned in Section 2.2.2.2.2.

The final result in Equation 9.2.34 shows that for FT to be the transpose of F, S is defined 

to be the bidual of T (the dual of T) therefore restricting the domains of both F  and F T to 

the subspaces of T such that [Tp 3 T P,T °  3 T ° \ Q T. This restriction serves a practical 

role in optimization -  the gradient of the misfit function is shown to occupy a dual 

parameter space and therefore requires finding the gradients of dual parameters. Once 

this is done the form of FT is deduced by applying the formal definition of transpose 

(Equations 9.2.33-9.2.34) and imposing dual boundary conditions (Equations 9.2.35- 

9.2.37).

The form of the respective unsteady and steady transpose operators (dual problems) can 

be obtained by a similar procedure.

9.2.2.2 Greens Function Solution to the Dual Problem

This derivation is after the more involved presentation in Shen and Beck (1991). For an 

arbitrary field of temperatures V  over the space T the Green’s function solution for an 

unspecified (primal or dual) problem can be written explicitly as

JTZB f t E  f z B f t E

dz d tS zz /; t t /T  =  I dz d tFG T , z , z '  E [zs,z B] , t , t '  E [tB, t E], 9.2.38

Z s  ^ t B J z s  • ' t s

G being a general Green’s function. Substituting the explicit forms of both the primal F  

(upper algebraic operators) and dual FT (lower algebraic operators) problem operators 

into Equation 9.2.38, integrating by parts and grouping terms results in a general 

representation for an arbitrary transient field
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a.

b.

Jr z B

dzpcGT\
Z c

Choosing a particular temperature field (dual or primal) and applying the relevant Green’s 

operator (FG =  GTFT =  I )  with appropriate boundary conditions produces a unique 

solution. The form of the first term on the RHS of Equation 9.2.39b suggests that choosing 

the Green’s operator G associated with the primal problem (Equation 9.2.39a upper 

operator) selects the dual temperature field T  while choosing the Green’s operator GT 

associated with the dual problem (Equation 9.2.39a lower operator) selects the primal 

temperature field T. To solve for the primal field the dual Green’s operator is selected in 

Equation 9.2.39a and the primal HFE substituted into Equation 9.2.39b. The primal and 

homogeneous boundary conditions are applied and variables transposed using G =  

G (z ,t )z ',t ')  =  GT =  G(z', t') z, t) giving

written more compactly as T  =  GS giving the structure of the Green’s operator as G =  

[Gs*,Gs,G b,G°] and the source as S =  [S,Ts,FB,T 0]. It is clear then that the Green’s 

solution corresponds to the inverse problem d =  g(rri). The field S can therefore be 

considered as a generalised field of sources which generate the temperature field T. 

Equations 9.2.39 and 9.2.40 show that the temperature field solution can be written 

T  =  G[F*T]m  where 5  is a nonlinear function of T =  T =  T u +  T s and model parameters 

m  =  \Ts,Ts,FB,k,p ,c ,S ]. This new form is useful in obtaining the form of the gradient.

9.2.40

z, z' e [zSl zB], t, t' e [tBl tE],
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To solve for the dual field the primal Green’s operator is selected in Equation 9.2.39a and 

the dual HFE substituted into Equation 9.2.39b. The dual boundary conditions are applied 

giving

recalling that spaces S 3 S Q T and S 3 S Q T (S and T are mutual duals) with T D e  T and 

SD e S. This is written more compactly as 5  =  Gt T  giving the structure of the dual Green’s 

operator as GT =  C5* and the source as f  =  SD.

9.2.2.3 M o d e l Residual

9.2.2.3.1 Residual Heat Flow Equation

The model residual 8m  is caused by a perturbation in the data parameters d =  T =  T U +  

T s as well as model parameters m  =  [T^,Ts,FB,k,p ,c ,S ] such that 8d =  8T =  8TU +  8TS 

and 8m  =  [STs, STf, 8Fb, 8k, 8p, 8c, 55]. This can be written

The explicit form o f5d  is obtained by applying the Green’s function solutions and 

substituting in the parameter residuals according to 8T  =  G8S. To do this for the primal 

problem the perturbations are substituted into the general HFE to produce

9.2.41

8 d  =  g ( m )  — d  =  g ( 8 m ) . 9.2.42

9.2.43

z 6 [zs,zB] , t E  (tB, tE].

This leads to
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dT d8T d (  dT dST dT d8T\
a. (pc +  8 p c ) ~  +  (pc +  8pc )-r— =  —  [k —  +  k —— +  Sk —  +  8 k - r — \ +  S +  8S

at dt d z \  dz dz dz d z )

dT dST d { dT d8T\
*  pCl ) i +SpC~di d z \k dz +  Sk~ d z J ~ S 9.2.44

b. dT dST d /  dST dT\=  - 5pc_ - pc_  +  _ ( k _  +  5k_ )  +  a .

z e \zs,zB\ , t  e (tB, t E].

The LHS of Equation 9.2.44b is approximately equal to zero, therefore -  keeping the first 

order terms -  the equation for ST can be written

d 8 T u d (  d 8 T u\  d T u d (  d T u\

pc— -Tz{k-dr) = - spc-dr+Tz{Sk-dr)+ss’
z  e [zs,z B\ , t  e ( tB, t E], 

or F U8TU =  8SU for the unsteady with boundary conditions

45
dST d (  d8T\ dT d (  dT\ r

p c ^ - T z { k ' d r )  =  ' Spc- d i + Y z \ S k w + s s ' 9.2..

or F8T  =  8S with boundary conditions

ST =  8TS, z =  zs, t  e {tB, tE] 9.2.46

dST dTB
- k - r -  =  SkB —  +  8Fb, z  =  zB, t  £ (tB, tE], 9.2.47

dz dz

where TB is the basal temperature, and initial condition

ST =  8T°, z E [zs, zB], t =  tB. 9.2.48

Equation 9.2.45 is the residual form of the HFE.

This result leads to analogous results for the superposed problem as

9.2.49
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where Tg is the basal temperature, and initial condition

8TU =  o, z e  [zs, zB\, t =  tB 9.2.52

For the steady residual

dz \  dz
d (  d8Ts

9.2.53

or F S8TS =  8Ss for the unsteady with boundary conditions

8TS =  8TSS, z =  zs, 9.2.54

9.2.55

where T§ is the basal temperature.

9.2.2.3.2 Residual H eat Flow Equation Primal G re e n ’s Function Solution 

The solution of the residual HFE is found by carrying out the .Green’s function procedure 

applied to the nominal HFE in Section 9.2.2.2 (also see Section 2.2.3.1) -  i.e. substituting 

9.2.45-9.2.55 into the Green’s function solution. This reveals the explicit form of the 

solution 8T =  G8S analogous to the form of 8d =  g{8m ) such that

with the same Green’s operator G =  [G5*; Gs, GB, G°] as the unperturbed solution and 

source 8S =  [ -S p c ^  +  £ ( s k j ^ )  +  8S,8Ts,8 k B^  +  8FB,pc8T0]. As before, the Green’s 

function solution and inverse problem can be combined to give 8T  =  G[F*T]8m  showing

Section 2.3.1 for the general discrete theory. The unsteady residual solution follows as

dT d 
dt dz ( - I H H

9.2.56

2 , z ' e [zs, zB\, t, t' e [tB, tE],

that the term G[F*T] corresponds to G =  the data Frechet derivative introduced in
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u fZB ' r  ' n  I 9T 9 iST =  dz dt G \—Spc +  —4 4 i dt dz
Jrts r lE r)T  ̂ r zB

d tk s— ? -d T % - \  dt GuB8kB- ? - +  dz pcGU08TU0, 
9* JtB J,r

9.2.57

z ,z ' e [zs,zB] ,t , t '  e [tB, tE],

written more compactly as 8TU =  GU8SU or T u =  Gu[F*vT u]8m  giving the structure of the 

perturbing unsteady Green’s operator as Gu =  [G^,Gs,G%,,GU0] and the source as

s» =  { - Spc^  +  ± ( s k ^ ' STu,SkB!> g ,STu° . The steady is

r zB

= J ‘s r  =  I dz G"
'ZS

9 (  9TS \ s—  8k  ) +  £S5
dz \  dz

9G s c + i s- v 5 7 i - C |  
dz

SkB —— f- 8Fb 
dz

9.2.58

z,z' e [zs,zB],

written more compactly as 8TS =  Gs8Ss or 8TS =  Gs[F*sT s]8m  giving the structure of the 

steady Green’s operator as Gs =  [Gf*, Gf, Gf] as with the unperturbed case and the

source as S* =  [ £ ( » £ )  +  S S ^S Ti,S kBd- ^ \

9.2.2.3.3 Residual Heat Flow Equation Dual Green's Function Solution

Applying the procedure to the analogous dual equations reveals the forms of the dual

residual solutions to be

8Td
JrZB ftE

dz'

7c J t

dt' G' r  T
Zs JtB

dTD d (  dTD .
5pW z  [ skn r ' + s s °

9.2.59

z,z' e [zs,zB] ,t , t '  e [tBltE],

or 8S =  GT8 f  =  GT[F*TS]8ni for the unpartitioned problem with Green’s operator GT = Gs*

and dual source2 8T  =  8 p c ^ -  +  ^ - ( s k ^ )  +  8SD
H dt  d z \  dz J

2 Recall that spaces T and S are mutual duals therefore S 3 Sp Q T b Td and T 3 Tp Q S 3 SD.
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9.2.60

z, z ' e \zs, zB], t, t ' e [tB, tE], 

or 8SU =  GuTSTu =  GuT [ f * 771̂ 77] 8m  for the unsteady with Green’s operator GuT =  Gf*

With these results a data residual 8d  is used to obtain an associated model residual 8m  

which is used to iteratively update a primal temperature T  <=> T p, reducing 8d  in 

accordance with the dual boundary conditions.3 These residual solutions are elements of

the misfit function gradient according to G =  which is the data Frechet derivative used

in optimizing the parameters with the least squares misfit function Sm (see Sections

2.2.1.3.2 and 2.2.3.3). Their role in the Frechet and Hessian derivatives is outlined below.

9.2.2.4 Frechet a n d  Hessian Derivatives

The misfit function can be represented functionally by (Tarantola, 2005)

and dual source 8TU =  +  +  8SDU and

9.2.61

z,z' e \zs,zB\,

or 8Ss =  GsT8Ts =  GsT [ f * 5T55] 8m  for the steady with Green’s operator GsT =  Gf* and

dual source 8TS =  8pc^ ) +  8SDS.
r  dt  d z \  dz J

3 Shen and Beck (1991) state that residual heat flow Equations 9.2.45-9.2.55 are best used to 

obtain 8d =  8T. The FSI algorithm allows the option to either update T using the former equations 

to obtain 8T or update T using m  updated with 8m. Here the simpler latter approach is preferred.
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1
srn =  2  [td “  do]TQ _1[d -  do] + [ m -  m 0] T Cm _ 1 [m  -  m 0]]  

=  i  [ ( 5 d ,  <Sd)D +  (8m, <Sm)M]

9.2.62

A series expansion of Sm about a point m 0 corresponding to model perturbation m 0 +  Sm 

gives

where 0 (8 m 3) «  o, f t  is the Hessian and y  the Frechet derivative. The operator y  e M is 

the dual of the steepest ascent vector y  e M which maps the model space M into the 

space of real numbers R according to

part of the dual space M and also map M into M. It then follows that GT the transpose of 

G ~  lm the data Fr®chet derivative is also a member of M according to m  =  GT d

The explicit form of 8d A 8T (Equation 9.2.56) can be used to derive the form of y  and H. 

To achieve this Equation 9.2.62 is differentiated and compared to Equation 9.2.63. This 

leads to the Frechet derivative

Sm0+Sm =  Sm o  +  (y, Sm) M  +  -{HSm , Sm)M +  0 (8m 3), 9.2.63

9.2.64

The Hessian H  =  and (in Newtonian descent optimization) its inverse metric M  are a

+  [m — m 0]TCm 1

9.2.65
IT  8d ~ 8d

~ 2 {f a l '6d)B +  <Sd'& S>B + 2 m )l>

i r  _ Sd Sd 
=  2 'Sm +  <siH’ Sd)D +  2<Sm)a ■
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Therefore the first order terms of Sm+Sm are

325

(y, S m )M =  -  [(Sd, Sd)D +  (Sd, Sd)D +  2 (Sm,  5 m )M] =  (Sd, Sd)D +  (Sm, S m )M. 9.2.66

Accordingly, the Hessian is

d2sm _ dy _ l
d m 2 d m  2

d2d  _1r , d d T _ , d d  d d T . dd
—— r  Cd { d - d 0\ + - —  Cd —— b ——  Cd t —  
d m 2 d m  d m  d m  d m

d 2d
+ [d — d0]TCd 1g^2 + 2 Cm 1

_ 1 
=  2

+  2 C,

' ^  5 2d  Sd S d K Sd Sd S2d

{Sd' s r t )D + s r iD + {siH'sia)D + W ’ 5d>D

- l

9.2.67

Therefore the second order terms of Sm+Sm are

l  _ i  _ _ _ _
- ( f i S m ,  S m )M =  -  [<5d, S2d ) D +  (Sd, S d )D +  (Sd, Sd)D +  (S2d, Sd)D +  2<5m )M] 

=  (Sd, Sd)D +  (Sd, S2d)  D +  (5 m )M,

9.2.68

and Smo+5m can be represented by

Sm0+8m — Sm +  (Gd, ST) D +  (Sm, S m )M +  (Sd, ST )D +  (Sd, 5 2T )D +  (5 m )M 

+ 0(5m 3).
9.2.69

Taking the terms in the data space D the aim is to get the function expressed in only the 

model space M as with Equation 9.2.63, therefore

a. (Sd, ST)b =  (Sd, G [F *T ]8 m )T =  (GTSd, [F *T ]S m )s =  ( [F *T ]TGT8d, S m )M,

b. (Sd, ST)d =  ( [F *T ]JGTCd~1ST, S m )M =  ( [F *T ]r GTCd~1G [F*T]Sm , S m )M, 9.2.70

( 8 d , 8 2T )D =  (Sd, S G [F*T]Sm )T =  (8 [F *T ]TGT8 d , 8 m ) M,
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where the terms have been transformed through different spaces using relevant operators 

explored earlier. This shows that y  and B  can be written as

a. y  =  y d +  y m = [F*T]TGTSd + Sm,

9.2.71

b. H = Hd + Hm =  [F *T ] t Gt C(T 1G [F*T ] + S F̂ P  G Sd + Cm_1,
dm

which corresponds to the discrete form in Section 2.2.1.3.3 (Equation 2.38). The form of 

f m, the component of the gradient dictated explicitly by the model parameters is y m =  

Sm  =  Cm_1[m -  m 0] and for the Hessian H m =  Cm-1 .

The explicit forms of the Green’s operators G and GT are not obvious, therefore further 

spatial transformations are performed to get their explicit forms and consequently the 

explicit forms of f d and B d. To do this the spatial relationships of spaces (M, M) and (D, D) 

to spaces (S,S) and (T,T) are utilized. With the dual source space S c D c O  a 

temperature perturbation ST =  Sd in D has a dual field corresponding to a source ST =  

Sd =  Cd_15 d  in D which generates a dual temperature field 8S in S such that SS =  Gt ST =  

8Td =  Gt 8Sd . With this particular case of the data perturbation f d and H d can be 

presented as

a. y d =  [F *T ]t STd =  [ f * uT u] t STdu +  [F*sT s] t STds,

9.2.72

b. H d = [F*T]TGTCd~1G [F * T ]+ ^ - ^ - 8 T D.
dm

Taking these new representations, noting that f d =  [?Ts,YFb>Yk,Ypc>YS] and B d =  

[H Ts,H FB,H ktH pc,H s] corresponding to the analogous model residuals Sm =  

[STs, SFb, Sk, Spc, 55] and again transforming spaces produces
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( [F *T ]t 8 T d, S m )M =  (Gt 8Sd, [F *T ]8 m )s =  (8SD,G [F *T ]8 m )T =  (8Sd , 8 T ) t ,

( [F *T ]TGTCd~1G [F*T]8m , S m )M =  {Cd~xG [F*T]8m , G [F*T ]S m )T =  {S f ,  ST)t 

=  (8S d , 8T ) t ,

Explicitly for y d\ substituting the primal temperature residual solution (Equation 9.2.56) 

gives

and substituting the Green’s function solution to the dual residual problem (Equation 

9.2.59) noting G =  GT  and, for the particular case of mutual duality, the boundary and 

initial conditions are quiescent gives

[ tE , dGs8Sg f tE , _ r 3Tb 1+ J d t ’ks gz , s STs -  I d t 'C E55^[5 fcB-g j-  +  5FBJ 9.2.74

[  Bdz' pcG°8SD08 T
Jz  c

f t£ n T dT d (  dT\ i r tE 
dz dtSTD — 8p c —  +  —  [ 8 k — ) +  8S +  I dtk<

dt dz \  dz)  J JtB dz

dtS Tg  8k,
tE dTn l  CZB

dt 8T£ SkB ~~~  "f" 8Fb I -I- I dz p c8T D08T°,
9.2.75

z e [zs,zB],t  e [tB, tE].

Expanding and integrating gives
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fZB rtE dST° dT CZB CtE dT 
(SSd,ST)t =  - \  dz d t—-— -=-Sk — I dz dtSTD —  Spc 

Jzs Jts dz dz )Zs ) tB dt

'ZBf z B f ^ E  0 * S T  f ZB f CE
- 8 S  dz dt a —  +  dz dtSTDSS

Jzs JtB d zd t JZs ) tB g276

f tE 88TP f tE CZB
+  dt8Tg8FB + \  dzpc8TD08T0,

JtB 3Z JtB Jzs

z e [zs,z„],t  6 [t„, t£]

which -  comparing with the misfit function of Equation 9.2.63 -  may be recognised as a 

superposition of Fredholm equations where (Yd,Sm )M <=$ d z \d ty d(z ,t)8 m (z \t). On

the RHS, rightmost terms in the products are components of 8m  and therefore the 

expressions on the left represent the kernels of y d such that

?Ts = ks
d8Ti

dz

YFb =  -8T g  

’tE dT d8T°f E
Yk =  -  dt

1" r>tB dz dz 9.2.77

f tE n dT
>pc =  -  dt 8T —  

i tB dt

f t E
YS =  dt 8Td, z  E [zs , z b ] , t E [tB, tE]. 

JtB

Elements of this derivation are taken from an alternative and more involved derivation in 

Shen and Beck (1991). It should be noted that f Ts» YFb and f s are separated into steady 

and unsteady components in the superposed problem where with steady y sS the 

integration collapses.
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A similar process reveals H d as

([F*TS]Sfh,ST)T = {SSd,8T)t

f ZB , f tE n \ dT d (  d T \  1
= l  dz L dt GSS l-spci*+TASki*)+5S]

+  j ‘E dt'ks^ ^ - S T s - j ‘Edt' GB8Sg\skB^  +  5Fe],

z,z' G [Zs,zB] , t , t ' G [tB, tg], 9.2.78

,8SD y f ZB f tE 8Td ( z ,  t) 6T d (  dT \
<— ,5T ) t  =  d z \ "  d t - ± - l [ - 5pc-  +  - ( Sk- )  +  SS

f tE 38TP f tE 8TS r 3Tb 1
+ l B d t k ^ ^ + l B dt^ h i F + s 4

z g  \zs,zB] , t e  [tB, tE],

As noted earlier the second order term (Equation 9.2.78b) is small and can lead to 

instabilities. Additionally taking the calculation any further appears cumbersome. It is 

therefore left at this stage and the optimization is further developed in quasi-Newtonian 

fashion involving only Equation 9.2.78a. Therefore, the first order Hessian term, as with 

the Frechet term is

(8Sd,8T)t =  (Hd8m,8m) M

fZB r t B d8T° dT f ZB f tE n dT 
=  — dz d t— — — 8 k — I dz dt 8 T — 8pc

I s  h B dz dz Jzs JtB d t

r zB ftE d28TD CZB r tE 9.2.79
— SS I dz I d t—r —z— I- I dz I dt8T°8S  

Jzs JtB dzdt Jzs ) tB

f tE dSTP f tE
+  dtks— — 8TS — I d t 8Tb 8Fb, z  G [zs,zB] , t  G [tB, t E].

J t B d z  J t B

On the RHS, all the rightmost terms in the products are components of Sm  and therefore 

the expressions on the left represent H d8m  giving the kernels as
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H pB =  -

8TS V 4 dz J 8TS 

d8TB d f FB
8Fr SFd

j tB 8 k \d z  dz ) ~  Sk 

CtE d ( n dT\ dypc
HPC= - L d t 8 ^ r D d F ) ^

_  f tE d8TD dys r
J d t~~8S~ 55 U s ’ Z 6 Zfi t 6

9.2.80

As with the Frechet derivative H Ts, H Fb and H s are separated into steady and unsteady 

components in the superposed problem where steady H sS the integrations collapses.
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9.3 Forward Models

9.3.1 Perfect Layer C ontact Parameters

Table 9.3.1 shows the parameters used to simulate the steady temperature for the layered 

medium with perfect contact, in Section 3.3.1, with derived steady heat flow for each layer.

Table 9.3.1. Parameters used to simulate temperature in a layered medium with perfect contact with derived steady heat flow

c  o AT-5
F \  Parameter z is depth, k conductivity, 7° the steady temperature, —  the steady temperature gradient.

LAYER z [m] k [W/m/K] Ts [K] —  [K/m] Fs [W/m2]

SURFACE 0.00 287.15
1 0.03 -2.49 0.075

BASE
1.52 290.93

SURFACE
2 0.30 -0.25 0.075

BASE
3.03 291.31

SURFACE
3 3.00 -0.025 0.076

BASE 5.00 291.36

Note that as k increases by factors of ten, —  decreases by factors of ten such that F
J Az

remains (approximately, given the numerical errors) constant.
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9.3.2 Im perfect Layer C ontact Parameters

Table 9.3.2 shows the parameters used to simulate the steady temperature for the layered 

medium with imperfect contact, in Section 3.3.2, with derived steady heat flow for each 

layer.

Table 9.3.2. Parameters used to simulate temperature in a layered medium with perfect contact with derived steady heat flow 

Fs. Parameter z is depth, hi the Hertz factor, k conductivity, Ts the steady temperature, —  the steady temperature 

gradient.

LAYER z [  m] /it[W/k] k [W/m/K] Ts [K] AT'*
£ ■ [  K/m]

Fs

[W/m2]

SURFACE
1

0.00
0.03

287.15
-2.50 0.075

BASE
1.53 0.5

290.97

SURFACE
2 0.30

293.76
-0.25 0.075

BASE
3.05 0.75

294.14

SURFACE
3 3.00

294.32
-0.026 0.077

BASE 5.00 294.37

Note that the interface conductivities can be stated as kf= 0.0545 and k f ’ 3 =  0.545

W/m/K (Section 2.1.2.2.1), modified by the Hertz factors to contact conductivities k I’2 =  

0.0273 and k 3’3 =  0.409 W/m/K. The resulting temperature differences give heat transfer 

coefficients of H 1,2 =  0.027 and H 2,3 =  0.42 (Section 2.1.2.3), approximately equal to the 

contact conductivities -  this indicates that for any interface i, Ht =  /ij/q.
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9.3.3 Lunar Surface Energy Balance Parameters

The parameters used in the lunar surface energy balance calculations of Section 3.6 are 

listed in Table 9.3.3 (see Section 2.2.5 for discussion and Appendix 9.1 for symbol 

definitions).

Table 9.3.3. Surface energy balance parameters used to calculate the surface temperature for lunar site at the sub-solar 

point.

PARAMETER 

Solar Constant S° [W/m2] 

Bond albedo A 

Emissivity e 

Heliocentric Orbit 

Aphelion [m]

Perihelion [m] 

Eccentricity 

Geocentric Orbit 

Aphelion [m]

Perihelion [m] 

Eccentricity

VALUE

1370

0.12

0.92

1.52098E11

1.47099E11

0.016710219

4.05696E8 

3.63104E8 

0.0549

Thermal properties conductivity k and density p are plotted in Figure 9.3.1. The specific 

heat capacity c is 600 J/kg/K and constant with depth.
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Figure 9.3.1. Conductivity k and density p used in lunar surface energy balance calculations. These are calculated on a 1000 

point grid and are based on the formulas presented in Grott et al. (2007).



336 9.3 Forward Models
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9.4.1 Notation

Before presenting the test results, it is prudent to outline the general principles underlying 

the notation used. Model parameters m  are defined such that 

m 3  m <=> \r<J,T§,FB,k ,p ,c ,S \  Using ACB to represent an arbitrary model parameter: A%T is 

the true value, A%° the initial guess and A% the optimized value (the value at which the 

algorithm is terminated). Therefore superscripts T, 0 and I  always reference true, initial (a 

priori) and final (a posteriori) parameter values, respectively. Likewise, arbitrary measure 

am is associated with model parameter m ^> A%. Specific measures used below include 

em, a measure of relative error between model parameter estimates and true values. As a 

general rule, k m| <  1 indicates improvements in the estimate of a model parameter: the 

smaller the value of |em|, the more accurate is the improved value of the model 

parameter.

The measures mentioned above are based on the results of optimization tests involving a 

range of initial model parameter estimates, and associated errors. The results lead to a 

‘space’ of different parameters (e.g. see tables in Appendix) which, collectively, measure 

how effectively a particular initialization of the inverse model optimizes a model 

parameter. These parameter results may be distributions of a few 10s or 100s or 1000s of 

data points which are presentable in 3D scatter plots. These points are interpolated using 

different 3D interpolation methods1, to highlight particular trends within the dataset, and 

presented as contour plots. Some methods of interpolation work better than others for 

different datasets, therefore different methods are used based on which method best 

reproduces the distribution as shown in the scatter plots. Results are also confirmed using 

the tabulated data.

1 The 3D interpolation methods used are Inverse Distance, Minimum Curvature, Quintic and Linear.
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Here results are presented which complement those presented in Chapter 3. Some 

results are tabulated to allow direct comparison of figures and numbers -  the quantity ami 

is the standard deviation of the solution, which is interpreted relative to the standard 

deviation amo of the a priori model.

9.4.2 Basal Heat Flow

Figure 9.4.1 shows the delta distribution of relative error in optimized basal heat flow F§  

for tests where stepsize n =  1 and 0.5. The two distributions are essentially identical 

though the convergence at large eFs is marginally better for the case with ^ =  0.5. The

values far from ers =  0 are where the Fr standard deviation is underestimated relative
t 'B  t B

to the standard deviation ad of the inverted temperature measurement.

E 60

0̂.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
B a s a l  H e a t  F lo w  R e la t iv e  E r r o r

0.6 0.8

c 60

0.0 0.2 0.4 0.6

b.
B a s a l  H e a t  F lo w  R e la t iv e  E r r o r

Figure 9.4.1. Accuracy of optimized basal heat flow eFs (blue histogram) from inversion of subsurface temperature 

measurement generated by a sinusoidal surface temperature with a 360 d period. The light green background histogram is 

the initial distribution of F SB error. Plot: a. is run with stepsize n = 1 while; b. is run with stepsize n = 0.5. The histogram 

binsize is 0.05.

Figure 9.4.2 shows general trends in the results highlighting the likelihood of convergence 

in different regions of the solution space when fi =  0.5. The contours are interpolated from 

3D scatterplots -  the values can be considered as central estimators and are not 

exclusively associated with any single data point.
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Optimized Basal Heat Flow Relative Error Log Misfit Function Value
-0.4 -0.2 0.0 0.2 0.4 0 2 4 6

Initial Basal Heat Flow Relative Error £>. Initial Basal Heat Flow Relative Error

Figure 9.4.2. Trends in the optimization of basal heat flow FSB from ideal data with stepsize ^  = 0.5. Contour: a. shows 

trends in the relative error eFsi = -  1 of optimal estimates FSB to the true value FSBT, with respect to initial relative errorB FB
pSO

e So = — — l  of initial estimates FSB° to the true value FSJ , and standard deviation oFs; b. shows trends in the misfit
p S T  B  I 'B

function value (log10 Sm,) at the optimal point. Symbol are defined in the text and Appendix 9.1.

The trends show that the case with =  0.5 produces marginally smaller errors in the 

optimized F§ than the equivalent case with /i =  1 discussed in Section 4.2.1.1.

Figure 9.4.3 shows an example of the progression of the algorithm to convergence. The 

results are essentially similar to the case with ;u =  1, except that the smaller stepsize 

means the space defined by Cd and Cm is explored in more detail requiring more 

iterations to get to Smr This typical illustration shows that the model can be terminated 

after 2-4 iterations.
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LL

I t e r a t i o n s

Figure 9.4.3. Convergence of the model in optimizing FSB. The base 10 logarithm of the misfit function Sm (solid blue) and its 

component data S||d|| (dotted red) and model (dashed green) parameter norms are used to highlight small changes 

over the number of iterations i. In this simulation standard deviation aFs = 1E-3 W/m2, initial relative error eFso = -0.10 and
^ B r  b

optimized FSB relative error eFsi = 1.11E-5. The general behaviour is similar in other convergent simulations.

The raw numbers from the optimization tests are tabulated below.

Table 9.4.1. Convergence of algorithm for different FSB initializations with stepsize nt = 1 (also see Section 4.2.1.1). Symbols 

are defined in Appendix 9.1.

Sm0 Smi i eFs° eFsi
B

a Fso [ W / m 2 ] a Fs, [ W / m 2 ;

4 . 3 1  E + 0 6 4 . 3 0 E + 0 6 2 - 0 . 7 5 - 7 . 4 9 E - 0 1 1 . 0 0 E - 0 5 8 . 9 3 E - 0 6

4 . 3 1  E + 0 6 3 . 6 2 E + 0 6 2 - 0 . 7 5 - 2 . 7 8 E - 0 2 1 . 0 0 E - 0 4 1 . 9 4 E - 0 5

4 . 3 1  E + 0 6 3 . 9 0 E + 0 4 2 - 0 . 7 5 - 1 . 2 5 E - 0 4 0 . 0 0 1 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 3 . 9 0 E + 0 2 2 - 0 . 7 5 9 . 2 3 E - 0 5 0 . 0 1 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 3 . 9 4 E + 0 0 2 - 0 . 7 5 9 . 8 6 E - 0 5 0 . 1 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 7 . 7 3 E - 0 2 2 - 0 . 7 5 9 . 8 4 E - 0 5 1 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 3 . 8 7 E - 0 2 2 - 0 . 7 5 9 . 8 5 E - 0 5 1 0 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 3 . 8 3 E - 0 2 2 - 0 . 7 5 9 . 8 5 E - 0 5 1 0 0 1 . 9 8 E - 0 5

4 . 3 1  E + 0 6 3 . 8 3 E - 0 2 2 - 0 . 7 5 9 . 8 5 E - 0 5 1 0 0 0 1 . 9 8 E - 0 5

1 . 9 1  E + 0 6 8 . 3 9 E + 0 6 3 - 0 . 5 0 - 3 . 9 8 E - 0 1 1 . 0 0 E - 0 5 8 . 9 2 E - 0 6

1 . 9 1  E + 0 6 1 . 6 1  E + 0 6 2 - 0 . 5 0 - 1 . 8 6 E - 0 2 1 . 0 0 E - 0 4 1 . 9 4 E - 0 5

1 . 9 1  E + 0 6 1 . 7 3 E + 0 4 2 - 0 . 5 0 - 9 . 4 0 E - 0 5 0 . 0 0 1 1 . 9 8 E - 0 5
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1.91 E+06 1.73E+02

1.91E+06 1.78E+00

1.91 E+06 6.12E-02

1.91 E+06 4.41 E-02

1.91 E+06 4.39E-02

1.91 E+06 4.39E-02

4.79E+05 2.10E+06

4.79E+05 3.98E+05

4.79E+05 4.33E+03

4.79E+05 4.34E+01

4.79E+05 4.77E-01

4.79E+05 4.82 E-02

4.79E+05 4.40E-02

4.79E+05 4.39E-02

4.79E+05 4.39E-02

7.67E+04 3.36E+05

7.67E+04 6.44E+04

7.67E+04 6.93E+02

7.67E+04 6.98E+00

7.67E+04 1.08E-01

7.67E+04 3.90E-02

7.67E+04 3.83E-02

7.67E+04 3.83E-02

7.67E+04 3.83E-02

1.92E+04 1.91E+04

1.92E+04 1.28E+04

1.92E+04 1.74E+02

1.92E+04 1.78E+00

1.92E+04 6.13E-02

1.92E+04 4.41 E-02

1.92E+04 4.39E-02

2 -0.50 7.42E-05

2 -0.50 8.03E-05

2 -0.50 8.03E-05

2 -0.50 8.04E-05

2 -0.50 8.04E-05

2 -0.50 8.04E-05

3 -0.25 -1.99E-01

3 -0.25 -1.07E-02

20 -0.25 -1.57E-05

2 -0.25 1.00E-04

3 -0.25 6.45E-05

3 -0.25 6.59E-05

3 -0.25 6.60E-05

3 -0.25 6.60E-05

3 -0.25 6.60E-05

3 -0.10 -7.96E-02

3 -0.10 -3.69E-03

4 -0.10 1.25E-05

2 -0.10 1.00E-04

2 -0.10 1.02E-04

2 -0.10 1.02E-04

2 -0.10 1.02E-04

2 -0.10 1.02E-04

2 -0.10 1.02E-04

2 -0.05 -4.90E-02

2 -0.05 -3.96E-02

5 -0.05 3.00E-05

2 -0.05 5.84E-05

2 -0.05 5.83E-05

2 -0.05 5.82E-05

2 -0.05 5.82E-05
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0.01 

0.1 

1 

10 

100 

1000 

1.00E-05 

1.00E-04 

0.001 

0.01 

0.1 

1 

10 

100 

1000 

1.00E-05 

1.00E-04 

0.001 

0.01 

0.1 

1 

10 

100 

1000 

1.00E-05 

1.00E-04 

0.001 

0.01 

0.1 

1 

10

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

8.92E-06

1.94E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

8.92E-06

1.94E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

8.94E-06

1.94E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05

1.98E-05
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1.92E+04 4.39E-02 2 -0.05 5.82E-05 100 1.98E-05

1.92E+04 4.39E-02 2 -0.05 5.82E-05 1000 1.98E-05

1.91E+04 1.90E+04 2 0.05 4.90E-02 1.00E-05 8.94E-06

1.91E+04 1.27E+04 2 0.05 3.96E-02 1.00E-04 1.94E-05

1.91E+04 1.73E+02 2 0.05 1.18E-04 0.001 1.98E-05

1.91E+04 1.76E+00 3 0.05 1.09E-04 0.01 1.98E-05

1.91E+04 5.56E-02 3 0.05 1.09E-04 0.1 1.98E-05

1.91E+04 3.85E-02 3 0.05 1.09E-04 1 1.98E-05

1.91E+04 3.83E-02 3 0.05 1.09E-04 10 1.98E-05

1.91E+04 3.83E-02 3 0.05 1.09E-04 100 1.98E-05

1.91E+04 3.83E-02 3 0.05 1.09E-04 1000 1.98E-05

7.65E+04 3.35E+05 20 0.10 7.97E-02 1.00E-05 8.92E-06

7.65E+04 6.42E+04 7 0.10 3.82E-03 1.00E-04 1.94E-05

7.65E+04 6.91 E+02 2 0.10 1.32E-04 0.001 1.98E-05

7.65E+04 6.95E+00 7 0.10 1.13E-04 0.01 1.98E-05

7.65E+04 1.07E-01 7 0.10 1.10E-04 0.1 1.98E-05

7.65E+04 3.90 E-02 7 0.10 1.10E-04 1 1.98E-05

7.65E+04 3.83E-02 7 0.10 1.10E-04 10 1.98E-05

7.65E+04 3.83E-02 7 0.10 1.10E-04 100 1.98E-05

7.65E+04 3.83E-02 7 0.10 1.10E-04 1000 1.98E-05

4.78E+05 4.75E+05 2 0.25 2.49E-01 1.00E-05 8.94E-06

4.78E+05 4.03E+05 2 0.25 8.96E-03 1.00E-04 1.94E-05

4.78E+05 4.33E+03 2 0.25 1.13E-04 0.001 1.98E-05

4.78E+05 4.33E+01 6 0.25 1.11E-04 0.01 1.98E-05

4.78E+05 4.71 E-01 6 0.25 1.12E-04 0.1 1.98E-05

4.78E+05 4.27E-02 6 0.25 1.13E-04 1 1.98E-05

4.78E+05 3.84E-02 6 0.25 1.13E-04 10 1.98E-05

4.78E+05 3.83E-02 6 0.25 1.13E-04 100 1.98E-05

4.78E+05 3.83E-02 6 0.25 1.13E-04 1000 1.98E-05

1.91 E+06 8.39E+06 20 0.50 3.98E-01 1.00E-05 8.93E-06

1.91 E+06 1.61 E+06 2 0.50 1.88E-02 1.00E-04 1.94E-05
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1.91 E+06 1.73E+04 2 0.50 2.62E-04 0.001 1.98E-05

1.91 E+06 1.73E+02 5 0.50 1.14E-04 0.01 1.98E-05

1.91 E+06 1.77E+00 6 0.50 1.10E-04 0.1 1.98E-05

1.91 E+06 5.57E-02 6 0.50 1.10E-04 1 1.98E-05

1.91 E+06 3.85E-02 6 0.50 1.10E-04 10 1.98E-05

1.91 E+06 3.83E-02 6 0.50 1.10E-04 100 1.98E-05

1.91 E+06 3.83E-02 6 0.50 1.10E-04 1000 1.98E-05

4.31 E+06 4.29E+06 2 0.75 7.49E-01 1.00E-05 8.93E-06

4.31 E+06 3.62E+06 2 0.75 2.80E-02 1.00E-04 1.94E-05

4.31 E+06 3.90E+04 2 0.75 2.95E-04 0.001 1.98E-05

4.31 E+06 3.90E+02 5 0.75 1.07E-04 0.01 1.98E-05

4.31 E+06 3.94E+00 7 0.75 1.13E-04 0.1 1.98E-05

4.31 E+06 7.73E-02 7 0.75 1.13E-04 1 1.98E-05

4.31 E+06 3.87E-02 7 0.75 1.13E-04 10 1.98E-05

4.31 E+06 3.83E-02 7 0.75 1.13E-04 100 1.98E-05

4.31 E+06 3.83E-02 7 0.75 1.13E-04 1000 1.98E-05

Table 9.4.2. Convergence of algorithm for different FSB initializations with stepsize f i( =  0.5 (symbols are defined in Appendix 

9.1).

sJ m0 Smi i eFso GpSo [W/m2] (JFsi [W/m2]

4.23E+06 1.84E+07 68 -0.75 -6.00E-01 1.00E-05 8.94E-06

4.23E+06 3.61 E+06 17 -0.75 -2.87E-02 1.00E-04 1.96E-05

4.23E+06 3.90E+04 41 -0.75 -2.51 E-04 0.001 2.00E-05

4.23E+06 3.90E+02 14 -0.75 -3.49E-05 0.01 2.00E-05

4.23E+06 3.92E+00 19 -0.75 4.30E-05 0.1 2.00E-05

4.23E+06 5.80E-02 22 -0.75 3.48E-05 1 2.00E-05

4.23E+06 1.94E-02 26 -0.75 3.82E-05 10 2.00E-05

4.23E+06 1.90E-02 29 -0.75 4.04E-05 100 2.00E-05

4.23E+06 1.90E-02 32 -0.75 3.83E-05 1000 2.00E-05

1.88E+06 8.17E+06 65 -0.50 -4.00E-01 1.00E-05 8.94E-06
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1.88E+06 1.61 E+06 18 -0.50 -1.91 E-02 1.00E-04 1.96E-05

1.88E+06 1.73E+04 20 -0.50 -1.66E-04 0.001 2.00E-05

1.88E+06 1.73E+02 11 -0.50 2.51 E-05 0.01 2.00E-05

1.88E+06 1.75E+00 18 -0.50 4.00E-05 0.1 2.00E-05

1.88E+06 3.63E-02 22 -0.50 2.83E-05 1 2.00E-05

1.88E+06 1.92E-02 25 -0.50 4.53E-05 10 2.00E-05

1.88E+06 1.90E-02 28 -0.50 4.86E-05 100 2.00E-05

1.88E+06 1.90E-02 32 -0.50 3.98E-05 1000 2.00E-05

4.70E+05 2.04E+06 66 -0.25 -2.00E-01 1.00E-05 8.94E-06

4.70E+05 4.01 E+05 15 -0.25 -9.55E-03 1.00E-04 1.96E-05

4.70E+05 4.33E+03 15 -0.25 -8.10E-05 0.001 2.00E-05

4.70E+05 4.34E+01 14 -0.25 4.19E-05 0.01 2.00E-05

4.70E+05 4.52E-01 18 -0.25 4.40E-05 0.1 2.00E-05

4.70E+05 2.33E-02 22 -0.25 3.59E-05 1 2.00E-05

4.70E+05 1.91 E-02 26 -0.25 4.05E-05 10 2.00E-05

4.70E+05 1.90E-02 29 -0.25 4.35E-05 100 2.00E-05

4.70E+05 1.90E-02 32 -0.25 3.59E-05 1000 2.00E-05

7.52E+04 3.27E+05 62 -0.10 -7.99E-02 1.00E-05 8.94E-06

7.52E+04 6.43E+04 17 -0.10 -3.80E-03 1.00E-04 1.96E-05

7.52E+04 6.93E+02 15 -0.10 -1.11 E-05 0.001 2.00E-05

7.52E+04 6.95E+00 15 -0.10 2.98E-05 0.01 2.00E-05

7.52E+04 8.84E-02 18 -0.10 4.56E-05 0.1 2.00E-05

7.52E+04 1.97E-02 22 -0.10 2.72E-05 1 2.00E-05

7.52E+04 1.90E-02 26 -0.10 4.38E-05 10 2.00E-05

7.52E+04 1.90E-02 29 -0.10 4.04E-05 100 2.00E-05

7.52E+04 1.90E-02 32 -0.10 3.84E-05 1000 2.00E-05

1.88E+04 8.19E+04 18 -0.05 -4.00E-02 1.00E-05 8.94E-06

1.88E+04 1.61E+04 200 -0.05 -1.90E-03 1.00E-04 1.96E-05

1.88E+04 1.73E+02 12 -0.05 -1.55E-05 0.001 2.00E-05

1.88E+04 1.75E+00 15 -0.05 2.77E-05 0.01 2.00E-05

1.88E+04 3.64 E-02 19 -0.05 4.25E-05 0.1 2.00E-05
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1.88E+04 1.92E-02 22 -0.05 3.53E-05 1 2.00E-05

1.88E+04 1.90E-02 26 -0.05 4.06E-05 10 2.00E-05

1.88E+04 1.90E-02 29 -0.05 4.31 E-05 100 2.00E-05

1.88E+04 1.90E-02 32 -0.05 5.14E-05 1000 2.00E-05

1.88E+04 8.16E+04 61 0.05 4.00E-02 1.00E-05 8.94E-06

1.88E+04 1.60E+04 12 0.05 1.98E-03 1.00E-04 1.96E-05

1.88E+04 1.73E+02 12 0.05 5.87E-05 0.001 2.00E-05

1.88E+04 1.75E+00 62 0.05 5.09E-05 0.01 2.00E-05

1.88E+04 3.63E-02 57 0.05 5.11 E-05 0.1 2.00 E-05

1.88E+04 1.92 E-02 64 0.05 5.05E-05 1 2.00E-05

1.88E+04 1.90E-02 80 0.05 5.14E-05 10 2.00E-05

1.88E+04 1.90E-02 77 0.05 5.11 E-05 100 2.00E-05

1.88E+04 1.90 E-02 75 0.05 5.05E-05 1000 2.00E-05

7.51 E+04 3.27E+05 61 0.10 7.99E-02 1.00E-05 8.94E-06

7.51 E+04 6.42E+04 14 0.10 3.85E-03 1.00E-04 1.96E-05

7.51 E+04 6.92E+02 14 0.10 5.03E-05 0.001 2.00E-05

7.51 E+04 6.94E+00 54 0.10 5.13E-05 0.01 2.00E-05

7.51 E+04 8.83E-02 64 0.10 5.06E-05 0.1 2.00E-05

7.51 E+04 1.97E-02 65 0.10 5.08E-05 1 2.00E-05

7.51 E+04 1.90E-02 68 0.10 5.07E-05 10 2.00E-05

7.51 E+04 1.90E-02 74 0.10 5.07E-05 100 2.00E-05

7.51 E+04 1.90E-02 80 0.10 5.13E-05 1000 2.00E-05

4.69E+05 2.04E+06 63 0.25 2.00E-01 1.00E-05 8.94E-06

4.69E+05 4.01 E+05 15 0.25 9.62E-03 1.00E-04 1.96E-05

4.69E+05 4.33E+03 14 0.25 1.38E-04 0.001 2.00E-05

4.69E+05 4.33E+01 48 0.25 5.03E-05 0.01 2.00E-05

4.69E+05 4.52E-01 68 0.25 5.04E-05 0.1 2.00E-05

4.69E+05 2.33E-02 70 0.25 5.15E-05 1 2.00E-05

4.69E+05 1.91 E-02 67 0.25 5.04E-05 10 2.00E-05

4.69E+05 1.90E-02 73 0.25 5.12E-05 100 2.00E-05

4.69E+05 1.90E-02 73 0.25 5.05E-05 1000 2.00E-05
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1.88E+06 8.17E+06 64 0.50 4.00E-01 1.00E-05 8.94E-06

1.88E+06 1.61 E+06 21 0.50 1.92 E-02 1.00E-04 1.96E-05

1.88E+06 1.73E+04 18 0.50 2.09E-04 0.001 2.00E-05

1.88E+06 1.73E+02 32 0.50 5.07E-05 0.01 2.00E-05

1.88E+06 1.75E+00 55 0.50 5.08E-05 0.1 2.00E-05

1.88E+06 3.63E-02 72 0.50 5.05E-05 1 2.00E-05

1.88E+06 1.92 E-02 71 0.50 5.07E-05 10 2.00E-05

1.88E+06 1.90 E-02 73 0.50 5.04E-05 100 2.00E-05

1.88E+06 1.90 E-02 69 0.50 5.12E-05 1000 2.00E-05

4.23E+06 1.84E+07 65 0.75 6.00E-01 1.00E-05 8.94E-06

4.23E+06 3.61 E+06 16 0.75 2.88 E-02 1.00E-04 1.96E-05

4.23E+06 3.90E+04 21 0.75 3.00E-04 0.001 2.00E-05

4.23E+06 3.90E+02 14 0.75 7.83E-05 0.01 2.00E-05

4.23E+06 3.92E+00 59 0.75 5.08E-05 0.1 2.00E-05

4.23E+06 5.80E-02 69 0.75 5.09E-05 1 2.00E-05

4.23E+06 1.94 E-02 78 0.75 5.06E-05 10 2.00E-05

4.23E+06 1.90E-02 75 0.75 5.14E-05 100 2.00E-05

4.23E+06 1.90 E-02 74 0.75 5.07E-05 1000 2.00E-05

9.4.3 Steady Surface Temperature

Figure 9.4.4 shows the delta distribution of relative error in optimized steady surface 

temperature 7 /  for tests where stepsize \i =  1 and 0.5. As with F§ the two distributions are 

similar though with more instability at ju =  0.5 as evidenced by initializations which fail to 

converge. Figure 9.4.6 shows the progression of the algorithm to convergence.
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Figure 9.4.4. Accuracy of optimized steady surface temperature eTs (blue histogram) from inversion of subsurface 

temperature measurement generated by a sinusoidal surface temperature with a 360 d period. The light green background 

histogram is the initial distribution of error. Plot: a. is run with stepsize fi = 1 while; b. is run with stepsize fi = 0.5. The 

histogram binsize is 0.05.

Figure 9.4.2 shows general trends in the results highlighting the likelihood of convergence 

in different regions of the solution space when ^ =  0.5. The contours are interpolated from 

3D scatterplots -  the values can be considered as central estimators and are not 

exclusively associated with any single data point.

O p t im iz e d  S te a d y  S u r fa c e  T e m p e r a tu r e  R e la t iv e  E r r o r  
-0.5 0.0 0.5

L o g  M is f it  F u n c t io n  O p t im a l  V a lu e  
6 7 8 9

I.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Initial Steady Surface Temperature Relative Error

3.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Initial Steady Surface Temperature Relative Error

Figure 9.4.5. Trends in the optimization of steady surface temperature r f  from ideal data with stepsize nt = 0.5. Contour: a.

jS I

shows trends in the relative error eTsi = -fj? -  1 of optimal estimates Tss' to the true value Tssr , with respect to initial relative5

error eTso = %  -  1 of initial estimates Tc° to the true value Tcr , and standard deviation a Ts\ b. shows trends in the

optimizal misfit function value log10 Sm . Symbol are defined in the text and Appendix 9.1.
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The trends show that the case with \i =  0.5 produces marginally smaller errors in the 

optimized F§ than the equivalent case with ^ =  1 discussed in Section 4.2.2.1. As with Fjj 

the two distributions are similar though with more instability at n =  0.5 as evidenced by 

initializations which fail to converge.

Figure 9.4.6 shows the progression of the algorithm to convergence. It shows that, as with 

Fg, the model can be terminated after 2-4 iterations when optimizing r / .

8
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Figure 9.4.6. Convergence of the model in optimizing r f .  The base 10 logarithm of the misfit function Sm (solid blue) and its 

component data Spy (dotted red) and model S||m|| (dashed green) parameter norms are used to highlight small changes 

over the number of iterations i. In this simulation standard deviation a Ts = 0.1 K, initial relative error eTso = -0.05 and 

optimized r f  relative error eTsi = -9.4E-6. The general behaviour is similar in other convergent simulations.

The raw numbers from the optimization tests are tabulated below.

Table 9.4.3. Convergence of algorithm for different r f  initializations for stepsize = 1 (also see Section 4.2.2.1). Symbols 

are defined in Appendix 9.1.

9°m0 Smj i E„salS E-SI aTso [ K ] aTs, [ K ]

5.11E+13 5.55E+11 3 -0.75 -1.03E-03 0.001 2.47E-05

5.11E+13 5.57E+09 3 -0.75 -9.43E-05 0.01 2.47E-05

5.11E+13 5.58E+07 2 -0.75 4.04 E-05 0.1 2.47E-05

5.11E+13 5.57E+05 3 -0.75 0.00E+00 1 2.47E-05
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5.11E+13 5.57E+03 3 -0.75

5.11E+13 5.57E+01 3 -0.75

5.11E+13 5.86E-01 3 -0.75

5.11E+13 3.53E-02 3 -0.75

5.11E+13 4.31 E-02 3 -0.75

2.27E+13 2.48E+11 3 -0.50

2.27E+13 2.47E+09 2 -0.50

2.27E+13 2.47E+07 3 -0.50

2.27E+13 2.47E+05 2 -0.50

2.27E+13 2.47E+03 2 -0.50

2.27E+13 2.48E+01 2 -0.50

2.27E+13 2.77E-01 2 -0.50

2.27E+13 3.22E-02 2 -0.50

2.27E+13 4.30E-02 2 -0.50

5.67E+12 6.19E+10 3 -0.25

5.67E+12 6.18E+08 3 -0.25

5.67E+12 6.18E+06 3 -0.25

5.67E+12 6.18E+04 2 -0.25

5.67E+12 6.18E+02 2 -0.25

5.67E+12 6.21 E+00 2 -0.25

5.67E+12 8.36E-02 2 -0.25

5.67E+12 3.04E-02 2 -0.25

5.67E+12 2.98E-02 2 -0.25

9.08E+11 9.90E+09 3 -0.10

9.08E+11 9.89E+07 3 -0.10

9.08E+11 9.89E+05 3 -0.10

9.08E+11 9.89E+03 2 -0.10

9.08E+11 9.90E+01 2 -0.10

9.08E+11 1.01 E+00 2 -0.10

9.08E+11 3.16E-02 2 -0.10

9.08E+11 2.98E-02 2 -0.10
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9.08E+11 2.97E-02 2 -0.10 0.00E+00 100000 2.47E-05

2.27E+11 2.48E+09 3 -0.05 2.40E-05 0.001 2.47E-05

2.27E+11 2.47E+07 3 -0.05 2.09E-07 0.01 2.47E-05

2.27E+11 2.47E+05 5 -0.05 3.48E-08 0.1 2.47E-05

2.27E+11 2.47E+03 4 -0.05 O.OOE+OO 1 2.47E-05

2.27E+11 2.48E+01 2 -0.05 O.OOE+OO 10 2.47E-05

2.27E+11 2.66E-01 2 -0.05 O.OOE+OO 100 2.47E-05

2.27E+11 2.14E-02 2 -0.05 O.OOE+OO 1000 2.47E-05

2.27E+11 5.71 E-03 3 -0.05 O.OOE+OO 10000 2.47E-05

2.27E+11 1.89E-02 2 -0.05 O.OOE+OO 100000 2.47E-05

2.27E+11 2.48E+09 3 0.05 -2.40E-05 0.001 2.47E-05

2.27E+11 2.47E+07 3 0.05 -2.09E-07 0.01 2.47E-05

2.27E+11 2.47E+05 4 0.05 O.OOE+OO 0.1 2.47E-05

2.27E+11 2.47E+03 16 0.05 O.OOE+OO 1 2.47E-05

2.27E+11 2.47E+01 16 0.05 O.OOE+OO 10 2.47E-05

2.27E+11 2.77E-01 2 0.05 O.OOE+OO 100 2.47E-05

2.27E+11 3.22E-02 2 0.05 O.OOE+OO 1000 2.47E-05

2.27E+11 2.98E-02 2 0.05 O.OOE+OO 10000 2.47E-05

2.27E+11 2.97E-02 2 0.05 O.OOE+OO 100000 2.47E-05

9.08E+11 9.90E+09 3 0.10 -4.79E-05 0.001 2.47E-05

9.08E+11 9.89E+07 3 0.10 1.26E-05 0.01 2.47E-05

9.08E+11 9.89E+05 3 0.10 1.74E-07 0.1 2.47E-05

9.08E+11 9.89E+03 2 0.10 O.OOE+OO 1 2.47E-05

9.08E+11 9.90E+01 2 0.10 O.OOE+OO 10 2.47E-05

9.08E+11 9.95E-01 7 0.10 O.OOE+OO 100 2.47E-05

9.08E+11 1.56E-02 6 0.10 O.OOE+OO 1000 2.47E-05

9.08E+11 5.78E-03 8 0.10 O.OOE+OO 10000 2.47E-05

9.08E+11 5.68E-03 9 0.10 O.OOE+OO 100000 2.47E-05

5.67E+12 6.19E+10 3 0.25 -1.20E-04 0.001 2.47E-05

5.67E+12 6.18E+08 3 0.25 3.14E-05 0.01 2.47E-05

5.67E+12 6.18E+06 3 0.25 4.53E-07 0.1 2.47E-05
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5.67E+12 6.18E+04 5 0.25 0.00E+00 1 2.47E-05

5.67E+12 6.18E+02 7 0.25 O.OOE+OO 10 2.47E-05

5.67E+12 6.19E+00 5 0.25 O.OOE+OO 100 2.47E-05

5.67E+12 6.75E-02 9 0.25 O.OOE+OO 1000 2.47E-05

5.67E+12 6.30E-03 7 0.25 O.OOE+OO 10000 2.47E-05

5.67E+12 1.13E-02 3 0.25 O.OOE+OO 100000 2.47E-05

2.27E+13 2.48E+11 3 0.50 -2.40E-04 0.001 2.47E-05

2.27E+13 2.47E+09 2 0.50 -2.99E-05 0.01 2.47E-05

2.27E+13 2.47E+07 3 0.50 9.05E-07 0.1 2.47E-05

2.27E+13 2.47E+05 7 0.50 O.OOE+OO 1 2.47E-05

2.27E+13 2.47E+03 11 0.50 O.OOE+OO 10 2.47E-05

2.27E+13 2.48E+01 14 0.50 O.OOE+OO 100 2.47E-05

2.27E+13 2.69E-01 2 0.50 O.OOE+OO 1000 2.47E-05

2.27E+13 2.42E-02 2 0.50 O.OOE+OO 10000 2.47E-05

2.27E+13 2.18E-02 2 0.50 O.OOE+OO 100000 2.47E-05

5.11E+13 5.55E+11 3 0.75 1.03E-03 0.001 2.47E-05

5.11E+13 5.57E+09 3 0.75 9.43E-05 0.01 2.47E-05

5.11E+13 5.58E+07 2 0.75 -4.04E-05 0.1 2.47E-05

5.11E+13 5.57E+05 6 0.75 O.OOE+OO 1 2.47E-05

5.11E+13 5.57E+03 13 0.75 O.OOE+OO 10 2.47E-05

5.11E+13 5.58E+01 2 0.75 -3.48E-08 100 2.47E-05

5.11E+13 6.00E-01 2 0.75 O.OOE+OO 1000 2.47E-05

5.11E+13 5.99E-02 2 0.75 3.48E-08 10000 2.47E-05

5.11E+13 1.15E-01 2 0.75 3.48E-08 100000 2.47E-05

Table 9.4.4. Convergence of algorithm for different T f initializations for stepsize n t =  0.5 (symbols are defined in Appendix 

9.1).

°m0

4.72E+09 

4.72E+09

S m j  i  € ^ T' s 1

4.76E+09 7 -0.75 -7.51 E-01 1.00E-04 1.00E-04

9.43E+09 200 -0.75 -8.13E-01 0.001 1.09E-03
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4.72E+09 6.21 E+09 6 -0.75 4.12E-02 0.01 2.63E-03

4.72E+09 5.60E+07 12 -0.75 5.54E-04 0.1 2.55E-03

4.72E+09 8.02E+05 19 -0.75 -4.27E-05 1 2.55E-03

4.72E+09 2.51 E+05 25 -0.75 -4.95E-05 10 2.55E-03

4.72E+09 2.45E+05 30 -0.75 -4.95E-05 100 2.55E-03

4.72E+09 2.45E+05 32 -0.75 -4.95E-05 1000 2.55E-03

4.72E+09 2.45E+05 35 -0.75 -4.96E-05 10000 2.55E-03

2.09E+09 2.11 E+09 7 -0.50 -5.00E-01 1.00E-04 1.00E-04

2.09E+09 4.18E+09 200 -0.50 -5.42E-01 0.001 1.09E-03

2.09E+09 2.76E+09 6 -0.50 2.75E-02 0.01 2.63E-03

2.09E+09 2.50E+07 12 -0.50 3.53E-04 0.1 2.55E-03

2.09E+09 4.93E+05 19 -0.50 -4.50E-05 1 2.55E-03

2.09E+09 2.48E+05 26 -0.50 -4.95E-05 10 2.55E-03

2.09E+09 2.45E+05 30 -0.50 -4.95E-05 100 2.55E-03

2.09E+09 2.45E+05 31 -0.50 -4.96E-05 1000 2.55E-03

2.09E+09 2.45E+05 35 -0.50 -4.95E-05 10000 2.55E-03

5.18E+08 5.23E+08 7 -0.25 -2.50E-01 1.00E-04 1.00E-04

5.18E+08 1.04E+09 19 -0.25 -2.71 E-01 0.001 1.09E-03

5.18E+08 6.90E+08 6 -0.25 1.37E-02 0.01 2.63E-03

5.18E+08 6.44E+06 12 -0.25 1.52E-04 0.1 2.55E-03

5.18E+08 3.07E+05 19 -0.25 -4.73E-05 1 2.55E-03

5.18E+08 2.46E+05 25 -0.25 -4.95E-05 10 2.55E-03

5.18E+08 2.45E+05 29 -0.25 -4.96E-05 100 2.55E-03

5.18E+08 2.45E+05 30 -0.25 -4.96E-05 1000 2.55E-03

5.18E+08 2.45E+05 35 -0.25 -4.95E-05 10000 2.55E-03

8.10E+07 8.17E+07 7 -0.10 -1.00E-01 1.00E-04 1.00E-04

8.10E+07 1.64E+08 200 -0.10 -1.08E-01 0.001 1.09E-03

8.10E+07 1.11E+08 6 -0.10 5.45E-03 0.01 2.63E-03

8.10E+07 1.24E+06 12 -0.10 3.09E-05 0.1 2.55E-03

8.10E+07 2.55E+05 19 -0.10 -4.86E-05 1 2.55E-03

8.10E+07 2.45E+05 27 -0.10 -4.95E-05 10 2.55E-03
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8.10E+07 2.45E+05 29 -0.10 -4.95E-05 100 2.55E-03

8.10E+07 2.45E+05 31 -0.10 -4.96E-05 1000 2.55E-03

8.10E+07 2.45E+05 35 -0.10 -4.96E-05 10000 2.55E-03

1.95E+07 1.97E+07 7 -0.05 -5.00E-02 1.00E-04 1.00E-04

1.95E+07 4.03E+07 18 -0.05 -5.42E-02 0.001 1.09E-03

1.95E+07 2.79E+07 6 -0.05 2.70E-03 0.01 2.63E-03

1.95E+07 4.94E+05 12 -0.05 -9.40E-06 0.1 2.55E-03

1.95E+07 2.48E+05 19 -0.05 -4.91 E-05 1 2.55E-03

1.95E+07 2.45E+05 31 -0.05 -4.95E-05 10 2.55E-03

1.95E+07 2.45E+05 28 -0.05 -4.96E-05 100 2.55E-03

1.95E+07 2.45E+05 31 -0.05 -4.96E-05 1000 2.55E-03

1.95E+07 2.45E+05 35 -0.05 -4.95E-05 10000 2.55E-03

2.31 E+07 2.33E+07 6 0.05 5.00E-02 1.00E-04 1.00E-04

2.31 E+07 4.43E+07 19 0.05 5.42E-02 0.001 1.09E-03

2.31 E+07 2.78E+07 6 0.05 -2.81 E-03 0.01 2.63E-03

2.31 E+07 4.92E+05 12 0.05 -9.00E-05 0.1 2.55E-03

2.31 E+07 2.48E+05 19 0.05 -5.00E-05 1 2.55E-03

2.31 E+07 2.45E+05 23 0.05 -4.96E-05 10 2.55E-03

2.31 E+07 2.45E+05 27 0.05 -4.96E-05 100 2.55E-03

2.31 E+07 2.45E+05 31 0.05 -4.96E-05 1000 2.55E-03

2.31 E+07 2.45E+05 35 0.05 -4.96E-05 10000 2.55E-03

8.81 E+07 8.89E+07 6 0.10 1.00E-01 1.00E-04 1.00E-04

8.81 E+07 1.72E+08 19 0.10 1.08E-01 0.001 1.09E-03

8.81 E+07 1.11E+08 6 0.10 -5.56E-03 0.01 2.63E-03

8.81 E+07 1.23E+06 12 0.10 -1.30E-04 0.1 2.55E-03

8.81 E+07 2.55E+05 19 0.10 -5.05E-05 1 2.55E-03

8.81 E+07 2.45E+05 24 0.10 -4.96E-05 10 2.55E-03

8.81 E+07 2.45E+05 28 0.10 -4.95E-05 100 2.55E-03

8.81 E+07 2.45E+05 30 0.10 -4.96E-05 1000 2.55E-03

8.81 E+07 2.45E+05 33 0.10 -4.96E-05 10000 2.55E-03

5.36E+08 5.41 E+08 7 0.25 2.50E-01 1.00E-04 1.00E-04
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5.36E+08 1.06E+09 19 0.25 2.71 E-01 0.001 1.09E-03

5.36E+08 6.90E+08 6 0.25 -1.38E-02 0.01 2.63E-03

5.36E+08 6.44 E+06 12 0.25 -2.51 E-04 0.1 2.55E-03

5.36E+08 3.07E+05 19 0.25 -5.18E-05 1 2.55E-03

5.36E+08 2.46E+05 26 0.25 -4.96E-05 10 2.55E-03

5.36E+08 2.45E+05 29 0.25 -4.96 E-05 100 2.55E-03

5.36E+08 2.45E+05 30 0.25 -4.96E-05 1000 2.55E-03

5.36E+08 2.45E+05 34 0.25 -4.95E-05 10000 2.55E-03

2.13E+09 2.14E+09 7 0.50 5.00E-01 1.00E-04 1.00E-04

2.13E+09 4.22E+09 19 0.50 5.42E-01 0.001 1.09E-03

2.13E+09 2.76E+09 6 0.50 -2.76E-02 0.01 2.63E-03

2.13E+09 2.50E+07 12 0.50 -4.52E-04 0.1 2.55E-03

2.13E+09 4.93E+05 19 0.50 -5.41 E-05 1 2.55E-03

2.13E+09 2.48E+05 25 0.50 -4.96E-05 10 2.55E-03

2.13E+09 2.45E+05 30 0.50 -4.96E-05 100 2.55E-03

2.13E+09 2.45E+05 31 0.50 -4.96E-05 1000 2.55E-03

2.13E+09 2.45E+05 34 0.50 -4.96E-05 10000 2.55E-03

4.77E+09 4.81 E+09 7 0.75 7.51 E-01 1.00E-04 1.00E-04

4.77E+09 9.49E+09 18 0.75 8.13E-01 0.001 1.09E-03

4.77E+09 6.21 E+09 6 0.75 -4.13 E-02 0.01 2.63E-03

4.77E+09 5.60E+07 12 0.75 -6.54E-04 0.1 2.55E-03

4.77E+09 8.02E+05 19 0.75 -5.64E-05 1 2.55E-03

4.77E+09 2.51 E+05 26 0.75 -4.96E-05 10 2.55E-03

4.77E+09 2.45E+05 30 0.75 -4.96E-05 100 2.55E-03

4.77E+09 2.45E+05 31 0.75 -4.95E-05 1000 2.55E-03

4.77E+09 2.45E+05 33 0.75 -4.96E-05 10000 2.55E-03

9.4.4 Unsteady Surface Temperature

The optimization results presented here complement unsteady surface temperature r5y 

results discussed in Section 4.2.3.
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Figure 9.4.7 shows the unsteady subsurface temperature profile T u optimized from ideal 

data measurements. The measurements are generated by a diurnal sinusoidal 

temperature profile such that 7 /  =  12sin(2TTt/86400) K, chosen at time t =  23, 17, 11 and 

5 hr into the cycle. These correspond to the optimized T$ shown in Figure 4.14. The 

exponential covariance function fT =  e~rr where r  is a real number provides the best 

qualitative fit to the sinusoidal 7 /  as discussed in Sections 4.2.3.2-4.2.3.3.
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Figure 9.4.7. Optimization of unsteady surface temperature Tus. Each plot represents the profile of subsurface unsteady 

temperature Tu inverted from a measurement at: a. time t = 23 hr into a sinusoidal T$ cycle with a covariance function 

f T = e~4r; b. time t = 11 hr into a sinusoidal T$ cycle with f r = e_4T; c. time t = 17 hr into a sinusoidal T$ cycle with 

f T = 0 .5e-4T( l  -  5c°pS7Tr); d. time t = 5 hr into a sinusoidal T$ cycle with f T = 0 .5e_4r( l  -  2cop7rT) where t  is the time

lag and P is the period of 7^. The dotted blue curves represent the true Tu profile (and ideal measurement) and the solid 

blue curves the optimized Tu. Grey squares are sensor locations.

Figure 9.4.8 shows the results of introducing frequency information into the initial 7 /  

estimate. The addition of frequency information to the initial 7 /  estimate minimises the
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misfit between the optimized and true T f  profiles. This, of course, is subject to the 

frequency information reflecting the true nature of the T$ profile. The more accurate fit of 

T's leads to a more accurate subsurface unsteady temperature T u fit, though 

investigations confirm that, due to the damping of information, several possible T$ profiles 

can produce similar T u profiles.
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Figure 9.4.8. Optimization of unsteady surface temperature T%. The dotted blue curves represent the true Tg profile, the 

dashed green curves constant initial Tg estimate, and the solid blue curves the optimized Tg. The upper plots represent a 

24 hr profile of Tg leading up to a measurement at: a. time t = 23 hr into a sinusoidal Tg cycle with a covariance function 

f T = e~4T; b. time t = 17 hr into a sinusoidal Tg cycle with f T = 0 .5e~4T( l  -  5cô 7rT) where x is the time lag and P is the

period of Tg. The lower plots (c. and d.) represent the profile of subsurface unsteady temperature Tu due to each of the 

upper plots.

Figure 9.4.9 shows the ratio of a priori to a posteriori standard deviations (SD ratios) for 

the temperature profiles shown in Figure 9.4.7 (see Figure 4.14 along with Sections 2.3.8 

and 4.2.3.2 for related discussions). The SD ratios effectively illustrate the relative
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information gain by the optimized 7 /  where smaller values indicate more information gain

(smaller errors). The similarity of the profiles from similar standard deviation profiles (a.

and b., c. and d.) confirm that the relative information gain is highly dependent on the form

of the initial data and model standard deviations. The smaller values towards later (more

recent) times follow from the fact that the exponential data standard deviation used in the

model (larger values towards the surface) allows larger changes to the initial 7 /  in recent

times. The same follows for the initial Ti7 standard deviation oTuo.
° s
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Figure 9.4.9. Each plot shows the ratio of a priori aTm to a posteriori oTm standard deviation (SD ratio) of unsteady surface 

temperature T$ inverted from a measurement at: a. time t = 23 hr into a sinusoidal T$ cycle with a covariance function 

f T = e-4r; b. time t = 11 hr into a sinusoidal cycle with f T = e~4r; c. time t = 17 hr into a sinusoidal 7$ cycle with 

f T = 0.5e-4T( l  -  5c°p7rr); d. time t = 5 hr into a sinusoidal T$ cycle with f r = 0.5e~4T( l  -  2c°^TrT) where r  is the time 

lag and P is the period of T$. The solid blue curves represent the SD ratios and the dashed green curves the distribution of 

aTuo. Grey squares separate the timesteps.
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Figure 9.4.10 shows the convergence behaviour of the model when optimizing the 

temperature profiles shown in Figure 9.4.7 (also see Section 4.2.3.3 and Figure 4.14). 7f  

evidently takes much longer than the other parameters to converge, which follows from 

the ill-posed nature of the 7SU optimization problem. The sharp changes at the start are 

due to the model establishing its location in the solution space [D,M] (in other words, 

testing different general profiles of 7f ) .  The algorithm then iteratively calculates an 

optimum path towards the optimum of the solution space -  i.e. a particular 7 /  profile is 

settled on and small changes are made to the profile as the iterations progress towards 

convergence.
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Figure 9.4.10. Convergence of the model in optimizing unsteady surface temperature T The base 10 logarithm of the misfit 

function Sm (solid blue) and its component data S | | d || (dotted red) and model S | | m || (dashed green) parameter norms are 

used to highlight small changes over the number of iterations i. T $  is optimized from a measurement at: a. time t =  23 hr 

into a sinusoidal T%  cycle with a covariance function f T = e -4 r ; b. time t =  11 hr into a sinusoidal T g  cycle with f z =  

e~4T; c. time t  =  17 hr into a sinusoidal Tvs cycle with f z = 0 .5e-4T( l  -  5~ ^7rT); d. time t  = 5 hr into a sinusoidal Tvs 

cycle with f z = 0 .5e-4T( l  -  2cô nr^ where r  is the time lag and P is the period of Tus. The general behaviour is similar in 

other convergent simulations. Not that while plots c. and d. appear constant for i >  2 , Sm continues to decrease with each 

iteration.

9.4.5 Thermal Properties

The optim ization results presented here complement conductivity k  and therm al capacity 

pc results discussed in Section 4.2.4 (Figure 9.4.11).

The noisy optimized k and pc profiles of Section 4.2.4 do not significantly affect the 

profiles of subsurface unsteady tem perature T u because the model effectively calculates 

a profile which optim izes the data norm S||d||. The SD ratios show that both therm al
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properties are more resolved towards the surface, though the small range of values 

suggests that this effect is insignificant. The convergence plots show that pc arrives at the 

optimal point in more iterations than k. Notably the model norm in Figure 9 .4 .11f, 5||m[| is 

less than the data norm at the optimal point, which is not the ideal situation (see 

Section 2.3.1). Cases like this where is greater than S||m|| suggest the magnitude of 

the model standard deviation om 3 [ak, apc] is too small relative to the data standard 

deviation ad.
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Figure 9.4.11. Optimization of thermal properties conductivity k and thermal capacity pc from an inverted subsurface 

temperature measurement T taken at time time t = 23 hr into a sinusoidal T$ cycle. For optimized k and pc, plots: a. and b. 

respectively show the temperature profiles (solid blue is the optimized T profile, dashed blue the optimized profile for steady 

subsurface temperature Ts and dotted blue the true T profile; c. and d. respectively show the ratio of a priori to a posteriori 

standard deviation (SD ratio crki /a ko and opci/o pco- solid blue) along with the initial distribution of standard deviation 

with depth; e. and f. show the convergence profiles measured by the base 10 logarithm of misfit function Sm (solid blue) and 

its component data S(|d|| (dotted red) and model S||m|| (dashed green) parameter norms.
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9.4.6 Heat Sources and Sinks

The optimization results presented here complement heat source and sink Ss results 

discussed in Section 4.2.5.

The noisy optimized Ss profiles of Section 4.2.5 do not significantly affect the profiles of 

subsurface unsteady temperature T u because the magnitude of the fluctuations is of the 

order of 1 pW/m3. The SD ratio shows that plot c is more resolved towards the surface, 

though the small range of values in plot d suggests that Ss is slightly more resolved 

towards the surface. The convergence plots show what the optimal point is reached after 

just 2 iterations. The data norm 5|jd|| is greater than the model norm S||m|| which suggests 

the magnitude of the Ss standard deviation <j s s o  is too small relative to the data standard 

deviation <rd.
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Figure 9.4.12. Optimization of steady heat sources and sinks Ss from an inverted subsurface temperature measurement T 

taken at time time t = 23 hr into a sinusoidal T% cycle. For optimized Ss, plots: a. and b. respectively show the temperature 

profiles (solid blue is the optimized T profile, dashed blue the optimized profile for steady subsurface temperature Ts and 

dotted blue the true T profile; c. and d. respectively show the ratio of a priori to a posteriori standard deviation (SD ratio 

(Tss i / a sso -  solid blue) along with the initial distribution of standard deviation with depth; e. and f. show the convergence 

profiles measured by the base 10 logarithm of misfit function Sm (solid blue) and its component data S[|d|| (dotted red) and 

model S||m|| (dashed green) parameter norms.
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9.4.7 Simultaneous Optimization

The preceding results demonstrate the critical importance of the covariance Cm in 

promoting convergence when optimizing a single parameter. Of course, more than one 

parameter may be unknown and it is therefore useful to be capable of optimizing several 

parameters in a single inversion. The role of Cm is equally important when optimizing 

multiple parameters. Test results are presented which illustrate the interaction of F§ with 

other unknown model parameters when they are simultaneously optimized in an inversion. 

All the simultaneous optimization tests are performed by inverting an ideal measurement 

profile from the end of a 24 hr sinusoidal temperature cycle with a heat flow of 0.076 

W /m 2. The initial estimates and covariances cover a similar range of values as the single 

parameter optimizations -  previous results are applied here where appropriate to ensure 

optimal stability of the model.

9.4.7.7 F% a n d  T§

Here, the covariance is defined by Cm 3 [cFs, Cr s] with each component respectively

associated with basal heat flow F |  and steady surface temperature 7 / .  The model is 

initialized with parameter estimates between 25-75 % inaccurate relative to the true 

values of 0.076 W /m 2 for F | and 287.15 K for 7 / .  The standard deviation am is tested in 

the range aFs e [10'2,102] W /m2 and a Ts 6 [10,104] K.

The model is stable in optimizing Fg for only a small number of the initializations tested, 

while being fairly robust in optimizing 7S5 (with exact convergence on the true value in 

most stable cases). The relative error in optimized F§ is negatively correlated with the 

relative error in optimized 7 /  such that high optimized F |  accompanies low optimized 7 / .  

This result can be understood in terms of the algorithm compensating for low 7 /  with high 

Ffl and vice versa to cancel any data residuals. The same result is expected when F |  is 

solely optimized with inaccurate 7 / .  The best results (within 3 % accuracy) are obtained 

for both parameters when the total error in the initial estimates is 100 % and -  introducing
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s s
ratio of standard deviations (stability ratio) r Ff  =  g f s / g t s  -  r Ff  e [10"4,10"5] W /m 2/K.

Ts r B l S Ts

Notably when the F§ error is 75 %, r F|  =  10-4 W /m 2/K and when the F§ error is 25 %
Ts

r F|  =  10'5 W /m 2/K confirming that the stability ratio is at least partially related to the
Ts

relative inaccuracies in the initial F |  and 7 /  estimates.

9.4.7,2 Fsb and Tus

Here, the covariance is defined by Cm 3 [iCFs, CTu] with each component respectively

associated with basal heat flow F |  and unsteady surface temperature 7 / .  The model is 

initialized with F§ estimates between 25-75 % inaccurate relative to the true value of 0.076 

W /m2, and Tg estimates with 50 % inaccurate amplitudes relative to the true value of 12 K 

and phase ± tt radians out of phase, or in phase, with the true phase of 2 tt radians. The 

standard deviation am is tested in the range o Fs e [10"2,102] W /m 2 and o T v e [10,104] K -

the same as with steady surface temperature 7 / .

Again the model is stable in optimizing F§ for only a small number of the initializations 

tested. The best optimized F§ (within 1 % accuracy) all occur when the initial 7 /  is in 

phase with, and its amplitude less than, that of the true 7 /  value. 7 /  with smaller 

amplitudes have a smaller masking effect on F§ which explains why the low amplitude T<- 

estimates produce more accurate results. Interestingly, a positive phase shift in Tg causes 

the optimized F |  to be underestimated while the opposite happens with a negative phase 

shift. This is because the positive phase shifted T$ produces substantially lower shallow 

subsurface temperatures than the negative phase shifted 7 /  at the time of measurement, 

therefore the model counterbalances the resulting low surface temperature residual by 

decreasing the F§ estimate. This produces a corresponding decrease in the steady 

temperature T s gradient bringing it closer in line with that of the data measurement. The 

profiles are shown in Section 4.2.3.1 and can be compared to the ideal measurement at 

the beginning of Section 4.2.1.1.
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The model follows previous results in optimizing 7 /  such that the solution is strongly 

dependent on the initial 7 /  estimate and the form of covariance C Tu -  in all cases

Ts =  Ts A s in  ( “  +  <p) +  f$ K  (see symbol definitions in Appendix 9.1) and CTu 3 aluf?
\  P /  1S *s

where f r =  e~rT ( r  adjusts the rate at which fT approaches the asymptote). In most cases 

the optimized 7f  does not progress very far from the initial 7f  estimate -  this is because 

in all cases /? =  0 which results in similar behaviour as when solely optimizing 7 / .  Also, 

the more positive the relative error in the initial Fg estimate, the better the optimized 7 /  

fits the true profile. It should be noted that /? =  7 / ,  the steady surface temperature, 

therefore setting /? =£ 0 effectively introduces an error into 7 / .  In any event, investigations 

show that the model is most stable with the optimized F |  approaching the true value for

S S
e [1 0 '6,0.1] W /m 2/K, the best (within 1 % accuracy) results occurring at r F® =0 .1

s Ts

W /m 2/K. Tests are presented in Section 9.4.7.4 which investigate the behaviour of the 

model when F§, 7 /  and 7f  are optimized simultaneously.

9.4.7.3 Tss and T%

Here, the covariance is defined by Cm 3 [cTs, CTu] with each component respectively

associated with steady and unsteady surface temperatures 7 /  and 7 / .  The model is 

initialized with the same 7 /  and 7 /  estimates, and range of standard deviations crm as are 

used in simultaneous optimization with basal heat flow F§ above.

The model is fairly stable in optimizing 7 /  though less so simultaneously optimized with 

TsV than with F§. A positive phase shift in 7 /  causes a high 7 /  estimate while a negative 

phase shift has the opposite effect. This is due to the shapes of the subsurface 

temperature profiles generated by the phase shifted 7 /  at the time of the instantaneous 

measurement. The positive phase shifted 7<u produces substantially lower shallow 

subsurface temperatures than the negative phase shifted 7 /  at the time of measurement, 

therefore the model counterbalances the resulting low temperature residual by increasing
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the 7 /  estimate. The profiles are shown in Section 4.2.3.1 and can be compared to the 

ideal measurement at the beginning of Section 4.2.1.1. Also, 7 /  estimates with a high 

amplitude result in less reliable optimized 7 /  estimates (greater scatter in the data), due to 

a larger shallow subsurface unsteady temperature T u envelope. Note the related results 

with F§ in Section 9.4.7.2.

The model follows previous results in optimizing 7 /  such that the solution is strongly 

dependent on the initial 7f  estimate and the form of C Tu -  the same initializations are

used as in the optimization of unknown 7 /  and F§ above. Investigations show that the 

model is most stable with 7 /  converging on the true 7 /  value when the ratio of standard

jS  _ *pS
deviations rJ , =  <j ts/ ctt u e [10,10 ] with progressively better results as r  £ increases. It

Ts i 5 *S Ts

s s s
should be noted that r \  can be derived, to first order, from r Ff  and r F® which are

Ts Ts Ts

j»S  p S  j  p S

discussed above, such that r j j  =  r j  j  r , f  -  generally r™* =  where mn refers to

a particular optimized parameter.

9.4.7.4 FsB, T ss a n d T vs

The previous results show that using the appropriate ratio of standard deviations r ^ 1 

promotes convergence. Here, the results are applied to covariance Cm 3  [cFs, C Ts, CTu] 

where the standard deviation om is tested in the range a Fs e [0.01,1] W /m 2, a Ts e [102,104]

K and (tt u g [0.1,10] K such that stability ratio r Ff  =  10"4 W /m 2/K, =  103 and r F*  = 0 .1
s Ts Ts Ts

W /m2/K. The respective subscripts associate each parameter with the basal heat flow F§ , 

and steady and unsteady surface temperatures 7 /  and 7SU. With the stability ratios 

constant the solutions display no dependence on the standard deviation am of any model 

parameter m.

Previous relationships established between F§, 7 /  and 7 /  are evident in the data (see 

Sections 9.4.7.1-9.4.7.3). Effectively the model adjusts free parameters in the optimization
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to minimize the data misfit. Where F |  and 7 /  are free parameters, the algorithm adjusts 

them to match the steady temperature T s gradient.2 Here, F |  is optimized to within 25 % 

of the true value when the initial 7 /  estimate is within 25 % of its true value and the initial 

F§ estimate is 75 % inaccurate. 7 /  is optimized to within 3 % of the its value in all cases. 

The results show no significant correlation between the error in optimized FB and the error 

in the initial T$ estimate. 7 /  does not progress in the optimization -  i.e. optimized 7 /  in 

most cases is essentially the same as the initial 75u estimate. There are indications of non- 

optimal balances in Cm and Cd therefore better stability may be gained by refining 

estimates of the stability ratios r ^ 1 and r™.

9.4.7.5 Fsb and k

Here, the covariance is defined by Cm 3 [cFs, Ck] with each component respectively

associated with basal heat flow F§ and conductivity k. The model is initialized with 

parameter estimates between 25-75 % inaccurate, relative to the true values of 0.076 

W /m2 for F |  and 3 W/m/K for k. The standard deviation om is tested in the range <xFs e

[1 O'2,102] W /m 2 and ak 6 [1,103] W/m/K.

The model is stable in optimizing F§ and k for only a small number of the initializations 

tested. The optimized F§ falls within 25 % of the true value when the initial k estimate is 

within 25 % of its true value. There is positive correlation between the error in F |  and the 

error in k. This can be understood in the sense of the algorithm compensating for changes 

in the steady temperature T s gradient where underestimated k (and overestimated F |)  

causes it to increase and vice versa (see Section 3.2.2). The algorithm therefore 

overestimates k to counteract overestimated FB and vice versa. No consistent trends

S S
emerge in terms of stability ratio r£ B =  a Fs / a k , though there are indications that high r£ B

2 This can be visualized in the sense of a lever in equilibrium with two balanced but opposing

forces (F I and 7 /) acting on opposite ends. If an unbalanced force (data residual) acts on one end, 

a reaction (model optimization) force will act on the opposite end to regain equilibrium.
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is more stable. Likewise, the convergence plots indicate non-optimal balances in Cm and 

Cd such that the standard deviations may need to be tested over a wider range of values.

9.4.7.6 F % a n d p c

Here, the covariance is defined by Cm 3 [cFs, Cpc] with each component respectively

associated with basal heat flow F§ and thermal capacity pc. The model is initialized with 

parameter estimates between 25-75 % inaccurate, relative to the true values of 0.076 

W /m2 for F§ and 2.133 MJ/K/m3 for k. The standard deviation am is tested in the range 

crFs e [10’2,102] W /m2 and ak e [102,108] MJ/K/m3.

The model is fairly stable in optimizing F§ while pc is not well optimized. Due to this the 

behaviour of the model is similar to that discussed in Section 4.2.1.2.3. f£  is optimized to 

within 5 % of its true value when the initial pc estimate is 25 % inaccurate and to within 30 

% of its true value when the initial pc estimate is 75 % inaccurate. The accuracy of the 

optimized F§ is positively correlated with the accuracy of the initial pc estimate while also 

having less accuracy with underestimated pc. This can be understood in the sense of low 

pc estimates causing more instability in the model by increasing the skin depth of the 

unsteady temperature. Related discussions are in Sections 3.4.2 (Forward Model), 4.2.1.2

and 4.3.1.3 (Inverse Model). In terms of the ratio of standard deviations rpB =  oFs/cjpc, the

pS A
best results occur when rp<f  =  10 mWK/MJ which is at the upper extreme of the range 

tested, so higher values may yield better results.

9.4 .7.7 F sb a n d  Ss

Here, the covariance is defined by Cm 3 [cFs, C5s] with each component respectively

associated with basal heat flow F§ and source term Ss. The model is initialized with 

estimates from 25 to 75 % above and below the true value of 0.076 W /m 2 for Fjj while an 

even distribution of sources and sinks is used to supply initial Ss estimates in the range
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±[10'5,10'3] W /m 3 about the true value of 0 W /m 3. The standard deviation am is tested in 

the range a Fs e [1 O'2,102] W /m2 and a ss e [1 O'5,10] W /m 3.

Tests show that the model is fairly stable in optimizing both F |  and Ss with the most 

accurate (within 3 %) optimized Fjj being obtained when the initial Ss estimate is most 

accurate. Negative correlation is observed between Ss and F |  which can be understood in 

the sense that overestimated Ss is compensated for by underestimated F§ as 

overestimated Ss increases the steady temperature T s gradient (see Section 3.2.3). As

F**with other parameters, a stability ratio can be defined such that r J  =  a Fs / a ss.
«j r B

Investigations show that the model is most stable with both parameters converging on

p S  .  p S  _

their respective true values for rsg > 1 0  m with the best results occurring at rs£  = 1 0  m.

9.4.8 Error Analysis of Counterintuitive Noise Results

Table 9.4.5 shows an example listing of counterintuitive error results for a series of 

inversions where basal heat flow standard deviation a Fso =  10 W /m 2. These accompany

the discussion in Section 4.3.1.2 regarding counterintuitive noise results. Note that, for this 

specific analysis, the data standard deviation ad is tested in the range ad e [lO^.IO8] K.

Table 9.4.5. Example listing of counterintuitive error results for basal heat flow standard deviation aFso =  10 W/m2 (symbols 

are defined in Appendix 9.1).

CTdl K] rdB eFSB° m <rv [K] k [W/m/K]

100000 0.0001 R+ 1 [0.01,1] 3

10000 0.001 R+ 1 [0.01,1] 3

1000 0.01 R+ 1 [0.01,1] 3

100 0.1 R+ 1 [0.01,1] 3

10 1 R 1 [0.01,1] 3

0.1 100 R 1 [0.01,1] 3

0.01 1000 R 1 [0.01,1] 3

0.001 10000 R 1 [0.01,1] 3
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0.0001 100000 R 1 [0.01,1] 3

100000 0.0001 R+ 1 [0.01,1] 0.3

10000 0.001 R+ 1 [0.01,1] 0.3

1000 0.01 R+ 1 [0.01,1] 0.3

10000 0.001 R+ 360 [0.01,1] 3

1000 0.01 R+ 360 [0.01,1] 3

100 0.1 R+ 360 [0.01,1] 3

10 1 R 360 [0.01,1] 3

0.1 100 R 360 [0.01,1] 3

0.01 1000 R 360 [0.01,1] 3

0.001 10000 R 360 [0.01,1] 3

0.0001 100000 R 360 [0.01,1] 3

100000 0.0001 R+ 360 [0.01,1] 0.3

10000 0.001 R+ 360 [0.01,1] 0.3

1000 0.01 R+ 360 [0.01,1] 0.3

100 0.1 R+ 360 [0.01,1] 0.3

10 1 R 360 [0.01,1] 0.3

0.1 100 R 360 [0.01,1] 0.3

0.01 1000 R 360 [0.01,1] 0.3

0.001 10000 R 360 [0.01,1] 0.3

0.0001 100000 R 360 [0.01,1] 0.3

Trends in the frequency of the counterintuitive noise results, correlated with the variables 

as illustrated in Table 9.4.5, are listed below.

Where Cd and Cm are fixed (and more generally) these trends are observed for the 

counterintuitive noise results:

1. significantly more cases occur with long-period measurements than with 

instantaneous measurements;

2. further to observation 1, the high skin depth scenarios (k =  3 W/m/K), account for 

most of the instantaneous measurements, while there is effectively an even split
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between high and low (k = 0.3 W/m/K) skin depth scenarios for long-period 

measurements.

Likewise, where Cd and Cm are not fixed:

3. the number of cases decrease with an increase in od for a given am -  i.e. as the

F‘**
stability (SD) ratio rdB decreases;

4. further to observation 3, the cases remaining as ad increases, are mostly those in 

which F |° is initialised with high estimates (eFso e[R 1);

5. further to observation 4, the cases vanish as <rd increases (or as rdB decreases) 

beyond given values, though at these points od is so high that the inverse model 

gives F p  as a solution;

6. curiously, in the high skin depth scenarios, the cases vanish at lower values of od

F^(higher rdB) than with otherwise equivalent low skin depth scenarios.

Considering the preceding observations, it is reasonable to conclude that the 

counterintuitive results are due to instabilities introduced by the large number of unique 

temperature gradients in the long-period measurement cases, and increased skin depth 

zs k in > as noted in Section 4.3.1.2. Increasing ad, within limits, goes some way towards 

removing the counterintuitive results, though this must be considered within the context of

F^the stability ratio rdB discussed throughout Section 4.3.1 (also see Sections 9.4.7 and 

9.4.9.3-0).

9.4.9 Inverse Model Verification

9.4.9.7 Forward Models

The inverse model is mainly presented in Chapters 2-4. As noted in the main text, it 

involves, iteratively, the solution of the primal problem (forward model) and the dual 

problem. The primal and dual problems utilize the same numerical IDL code (finite control 

volume (FCV) discretization solved by tri-diagonal matrix algorithm (TDMA), e.g.
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Patankar, 1980) to solve the respective primal and dual linear systems. The synthetic 

measurements used herein are all generated by the forward model, therefore a potential 

conflict exists where the same code is used to generate the data and solve the problem.

In Section 3.4.1.1, the forward model numerical solutions, used in the IDL code, are 

compared to analytical solutions discussed in Section 2.1.2.1 (also see e.g. Carslaw and 

Jaeger, 1986), which can be considered a step towards mitigating the issue. Given the 

former, several tests are performed which seek to assess any divergence in behaviour of 

the inverse model, in recovering unknown basal heat flow from synthetic data generated 

by the numerical forward model, versus the analytical model of Sections 2.1.2.1 and 

3.4.1.1. The tests involve end-member skin depth scenarios (four in total) with parameters 

similar to those tested in Chapters 3 and 4 (Table 9.4.6).3

Several important differences are observable between the numerical and analytical 

forward model calculations, which illustrate the limits of precision of the numerical model 

(Figure 9.4.13). Notably, where the modelled depth is not far enough below the skin depth 

(the basal boundary being too close to the surface -  at least ~7* appears reasonable), 

such that the instability of the unsteady temperature variation is negligible, the numerical 

diverges significantly from the analytical model. This is an artefact of the numerical 

calculation where the unsteady temperature gradient approaches zero with no specified 

basal temperature at which it can be fixed.4 Otherwise, the features highlighted in the grid 

convergence discussion of Section 2.1.2.1 can be observed.5

3 For simplicity, control volume size is kept constant for the numerical and analytical solutions, as 

opposed to the cases presented in Chapter 4 where the control volume size increases with depth.

4 The unsteady basal heat flow fK is known as a Neumann (derivative) boundary condition while 

the unsteady basal temperature Tg is a Dirichlet boundary condition. Non-uniqueness is a known

feature of Neumann boundary conditions, such that F% = - k ^ -  = —k^(Tg  + e), e being a 

constant (e.g. Saad, 2003).

5 Note that as grid convergence is approached the asymmetry of Figure 9.4.13c-f vanish.
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Table 9.4.6. Parameters used to calculate two numerical and two analytical forward model solutions. Symbols are defined in 

Appendix 9.1. All quantities are in standard SI units, except times, which are in days.

VALUE
PARAMETER

DIURNAL ANNUAL

Ts 287.15 287.15

rpJJ
<

4 II >> sin(2TTt/P) II sin(2TTt/P)

P 1 360

rr U A
l S 12 12

Fb 0.075 0.075

P 2000 2000

c 700 700

k 0.3 3 0.3 3

Z, zN 1 2 10 20

AzN 1/24 2/24 10/24 20/24

1 360

At 1/24 1
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Temperature [K]
a. b.

.1 0.0 0 
Temperature Difference [K]

.10 -0.05 0.00 0.05 0.10 0.15
Temperature Difference [K]

Time [d]
e. f.

Figure 9.4.13. Forward modelled analytical and numerical temperatures based on the annual parameters of Table 9.4.6: the 

left plots show the low skin depth scenarios and the right plots the high skin depth scenarios. Plots: a and b show overlays 

of depth-dependent temperature at different times (the solid red curves represent the numerical temperatures and the dotted 

green curves the analytical temperatures; c and d show the depth-dependent temperature differences (numerical -  

analytical); e and f show overlays of time-dependent temperature differences at different depth.

9.4.9.2 Synthetic M easurem ents

Measurements are synthesised by adding four levels of Gaussian noise with amplitudes of 

av =0.001-1.0 K, with order-of-magnitude steps, to temperature profiles extracted from

Temperature [K]

-0 2  ' ' '-----------
0 90 180 270 360

Time [d]
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the numerical and analytical forward model grids. Profiles are extracted as instantaneous 

measurements at the end of a simulated temperature cycle (e.g. Figure 9.4.14b and d) 

and long-period measurements with recordings throughout the temperature cycle (e.g. 

Figure 9.4.14a and c). To keep things simple the spatial and temporal grid densities are 

kept constant between forward model and measurement for the long-period measurement 

scenarios.

280 285 295 300290
Temperature [K]

'Q

V
284 286 288 290 292

Temperature [K]

i  - :T ; • -V T •• ^
• C.4 .-
"■Hi i '£ V / t V  V;2rv ’’

£ 1.0

285 290
Temperature [K]

300

d.

o.o

0.2

D 0.6

1'̂ 83 285 286
Temperature [K]

287 288 289284

Figure 9.4.14. Representative synthetic temperature measurements from analytical temperatures based on the annual 

parameters of Table 9.4.6 with 1.0 K additive Gaussian noise. Plot: a is a long-period annual temperature measurement for 

the high skin depth scenario; b an instantaneous measurement for the low skin depth, annual scenario; c a long-period 

diurnal temperature measurement for the high skin depth scenario; d an instantaneous measurement for the low skin depth, 

diurnal scenario. The dotted green curves represent the pristine profile, the solid grey curves the noisy profile. Grey squares 

are sensor locations.

9.4.9.3 Inverse M o d e l Results

The inverse model is applied to both the analytically derived (AD) and numerically derived 

(ND) synthetic measurements. For each measurement, the model is run with all boundary
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parameters accurate, except heat flow, which is constantly inaccurate by a factor of two -  

i.e. F § °  =  0.15 W/m2. The assumed data and model standard deviations a d and am 

respectively span equivalent ranges from 0.1-1000 K and W/m2, with order-of-magnitude 

steps.

While the general behaviour is the same, results show some divergence in the accuracy 

of basal heat flow optimized from AD versus ND synthetic measurements (Figure 9.4.15).

F**This is the case, in particular, towards extremes of SD ratio rdB and measurement noise 

amplitude Gn. Interestingly, the results for the analytical are consistently more accurate 

than those for the numerical. Note that the SD stability ratio effectively defines a solution 

subspace within the inverse model space defined by data and model covariances Cd and 

Cm (Figure 9.4.16c and d, shaded green triangles).

F^The most pathological results are at the low extremes of rdB, as was established in 

previous tests, and where data noise amplitude av is high. The range of accuracies 

achieved in the AD results is narrower than that achieved in the ND results such that ND 

results achieve greater accuracy in the well-behaved cases and greater inaccuracy in the 

pathological cases.6

Example profiles are shown in Figure 9.4.16 (to be compared to Figure 9.4.13). It is fairly 

evident in Figure 9.4.16a and b that the AD result closely matches the ND result. This is to 

be expected as the only differences between the AD and ND initialisations of the inverse 

model are the relatively small temperature differences exemplified by Figure 9.4.13 and 

random variation of the added Gaussian noise.

Most notably, misfits between the AD and ND results only occur in the steady temperature 

regime, which should be the case because the only free parameters are the subsurface 

steady temperatures T s and the basal heat flow F § .  Figure 9.4.16c and d show that,

6 These differences are not explicitly reflected in Figure 9.4.15 because the data points are 

centrally estimated.
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generally, the derived is more inaccurate with higher noise levels, however, as noted in 

Section 9.4.8, unexpected results do occur at high skin depth zSKIN (e.g. Figure 9.4.16d at 

0.1 K).

Basal Heat Flow Relative Error Magnitude 
-0.00154 0.20153 0.40460 0.60767 0.81074 1.01381

,2  0

ANALYTICAL

9 /

■ S90S9V0 ■

- 3. 0 - 2. 5 - 2. 0 - 1. 5 - 1. 0 - 0. 5
Log Noise Amplitude [K]

0.0

-0.088
Basal Heat Flow Relative Error Magnitude 

0.183 0.453 0.724 0.995 1.265

NUM ERICAL

9SO

- 3. 0 - 2. 5 - 2. 0 - 1. 5 - 1. 0 - 0. 5
Log Noise Amplitude [K]

Basal Heat Flow Relative Error Magnitude 
0.28 0.47 0.65 0.83

0 1 2 
Log Temperature Measurement SD [K] d.

Figure 9.4.15. Results of optimization of analytical (left) and numerical (right) synthetic measurements as outlined in the text. 

These are interpolated from mean values across all other varied parameters discussed in the text.7 The green triangles

highlight the subspace, the border of which is defined by the ratio of standard deviation r dB, which can be explored for the 

most viable solutions.

It is important to observe that, in the numerical and analytical forward model calculations 

there are no differences between the calculated steady temperatures T5; all differences 

occur in the unsteady temperatures T u. In the inverse model, the T u differences are

- 1 0  1 2  3
Log Temperature Measurement SD [K]

0.185
Basal Heat Flow Relative Error Magnitude 

0.351 0.517 0.682 0.848

7 Note that the negative num bers are an artefact of the Quintic interpolation method used in 

generating the contour lines from the scatter of data points.
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propagated into differences between the derived F§ and attendant Ts, because of the 

fixing of unsteady temperature parameters.

280 285
Temperature [K]

290
[K]

295 300

£  10

300295280 285
Temperature [K]

290
IK]

-0.006 -0.004 -0.002
Temperature Difference [K]

0.000
d.

£  10

$ 0 0 0 5  0.0000 0.0005 0.0010 0.0015 0.0020
Temperature Difference [K]

Figure 9.4.16. Inverse modelled analytical and numerical temperatures based on the annual parameters of Table 9.4.6: the left 

plots show the low skin depth scenarios and the right plots the high skin depth scenarios. Plots: a and b show overlays of 

depth-dependent temperature at different times (the solid red curves represent the numerical temperatures and the dotted 

green curves the analytical temperatures; c and d show the depth-dependent temperature differences (numerical -  

analytical) with noise amplitudes of 0-1 K in order-of-magnitude steps respectively represented (blue curves) by solid, 

dotted, dashed, dot-dashed and double dot-dashed lines. Compare to Figure 9.4.13.



380 9.4 Misfit Function Optimization

9.4.10 References

CARSLAW, H. S. & JAEGER, J. C. 1986. Conduction of heat in solids, Oxford, Clarendon. 

PATANKAR, S. V. 1980. Numerical Heat Transfer and Fluid Flow, New York, NY, London, 

Hemisphere.

SAAD, Y. 2003. Iterative Methods for Sparse Linear Systems, Society of Industrial and Applied 

Mathematics.



9.5.2 Forward Models 381

9.5 Mars

9.5.1 Local Mean Time on Mars

Figure 9.5.1 shows the local mean time for Mars on November 1, 2016, the time at which 

heat flow measurements commence in the scenarios investigated for Mars in Chapter 5 

(see Sections 5.2.1, 5.3.1 and 5.3.2).

180 210 240 270 300 330 0 30 60 90 120 150 180
Longitude

Figure 9.5.1. Mars map of Local Mean Solar Time produced by the Mars24 application of NASA GISS. The white rectangles 

represent landing sites at: 120°E 20°N, local time 22:42:21; 139°E 1°N, local time 23:58:21 and; 253°E 2°N, local time is 

07:22:21.

9.5.2 Forward Models

Figure 9.5.2 and Figure 9.5.3 represent the respective high and low conductivity scenarios 

for the measurement sites investigated for Mars in Section 5.3.1 in the low heat flow, plate 

cooling regime. The only distinction between these low heat flow, plate cooling models 

and the high heat flow, stagnant lid models of Chapter 5 is a smaller steady temperature 

gradient for the former, A smaller temperature gradient requires greater measurement 

precision and -  all else being equal -  is subject to greater masking by the unsteady 

temperature.
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Figure 9.5.2. Forward modelled temperature profiles for measurement sites. The left contours are overlays of depth- 

dependent temperature T over time t of 669 Sol in ~13 Sol steps (overlapping contours indicate periods of relatively 

constant diurnal mean temperatures); the right contours are overlays of time-dependent temperature Tu over depth z of 3.2-

4.8 m in 0.2 m steps (larger amplitudes towards the surface). These are from the respective high conductivity models of 

Section 5.2.2 based on the ‘low’ heat flows of the plate cooling regime where at 120°E 20°N (a-b), 139°E 1°N (c-d) and 253°E 

2°N (e-f) the heat flow is 8.5,6.5 and 11 mW/m/K respectively.
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Figure 9.5.3. Forward modelled temperature profiles for measurement sites. The left contours are overlays of depth- 

dependent temperature T over time t of 669 Sol in -13 Sol steps (overlapping contours indicate periods of relatively 

constant diurnal mean temperatures); the right contours are overlays of time-dependent temperature Tu over depth z of 3.2-

4.8 m in 0.2 m steps (larger amplitudes towards the surface). These are from the respective low conductivity models for Mars 

in Chapter 5 based on the ‘low’ heat flows of the plate cooling regime where at 120°E 20°N (a-b), 139°E 1°N (c-d) and 253°E 

2°N (e-f) the heat flow is 8.5, 6.5 and 11 mW/m/K respectively.
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9.5.3 Measurements

Table 9.5.1 shows accurate versus inaccurate measurement sensor locations and the 

absolute deviation.

Table 9.5.1. Accurate z ACc  and inaccurate z ERR sensor locations with absolute errors Az.

ZaccM ze r r [ m] bz [m]

0.000 0.000 0.000

0.128 0.113 0.015

0.223 0.244 -0.021

0.381 0.397 -0.016

0.560 0.574 -0.014

0.763 0.779 -0.016

0.993 1.018 -0.025

1.255 1.296 -0.041

1.659 1.619 0.040

2.009 1.994 0.016

2.407 2.429 -0.022

2.859 2.935 -0.077

3.556 3.523 0.033

4.161 4.206 -0.045

5.097 5.000 0.097

Figure 9.5.4 shows representative measurement profiles for the high conductivity 

scenarios, to be compared to the equivalent low conductivity profiles illustrated in Section 

5.3.2. Higher density, shorter period and/or shallower depth measurement profiles can be 

derived from those plotted in Figure 9.5.4 by respectively increasing the density of 

measurements, restricting the range of temperatures, or cutting off the measurement at 

shallower sensor depths.
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Figure 9.5.4. Representative profiles for measurements with 1 K additive noise at sites at 120°E 20°N (a-b), 139°E 1°N (c-d) 

and 253°E 2°N (e-f) for the high conductivity, high heat flow scenario. The plots are overlays of temperature-depth profiles in 

~33 Sol steps over a monitoring period of: (a, c, e) 168 Sol down to 2 m depth; (c, d, f) 669 Sol down to 5 m depth. The solid 

grey curves represent the noisy measurement while the dotted blue curves illustrate the true profiles. The grey squares are 

sensor locations (inaccurate) plotted at the true mean temperature at a particular depth.
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9.5.4 Inversion Results

9.5.4.7 Initial Estimates

Figure 9.5.5 shows trends in initial heat flow accuracy when using different ‘surface’ 

sensors to calculate it.

11.6
Calculated Basal Heat Flow Relative Error 
14.8 18.1 21.4 24.7

0.50 0.75
F r a c t i o n  o f  S e a s o n a l  P e r i o d

28.0

£  0.85

8 0.68
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Q)
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°  0.17 
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Figure 9.5.5. Trends eFso in relative error eFso = — 1 j of initial heat flow F|° to true value F SJ  across all measurement

scenarios, interpolated from 3D scatterplots. The e ^  can be considered as central estimators of the heat flow distribution at 

particular postions defined by the axes and is shown as a function of the ratio of surface sensor depth to basal sensor depth 

rzl, and the ratio of monitoring period to seasonal period r t.
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IF50 ITable 9.5.2. Grid of initial heat flow estimate relative error magnitudes eFso = -  1 (green borders) at Elysium 120°EB | Fg |

20°N for the high conductivity k scenario with a heat flow Fs/  of 17 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and z SKIN [m] is the skin depth.

kBULK — 0-51 7
MONITORING PERIOD [-MARTIAN YEARS]

0.25 0.5 0.75 1.0
F iT =  0.017

40.37 15.97 2.95 0.25 1.0

o
CN

39.96 14.74 2.78 0.17 0.1

40.08 14.68 2.79 0.16 0.01

E*
35.70 13.66 3.20 0.05 1.0

m
X

X O  

£
35.19 13.97 3.42 0.22 0.1 §  

33
HI
o 35.16 13.97 3.41 0.19 0.01 2

24.18 10.91 3.33 0.22 1.0

o
LO

24.20 10.96 3.28 0.27 0.1

24.20 10.96 3.29 0.28 0.01

Z SK IN  = 1-45
168(1) 334(1) 501 (1) 669 (1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
120°E 20°N
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|FX0 ITable 9.5.3. Grid of initial heat flow estimate relative error magnitudes eFso = |^Jf -  1| (green borders) at Elysium 120°E

20°N for the low conductivity k scenario with a heat flow FSJ  of 8.5 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the skin depth.

kb u l k  — 0.073
MONITORING PERIOD [-MARTIAN YEARS] 

0.25 0.5 0.75 1.0
F iT = 0.0085

23.18 10.20 3.10 0.10 1.0

o
c\i

23.30 10.13 3.04 0.04 0.1

23.26 10.13 3.03 0.04 0.01

S’
15.28 7.70 2.68 0.01 1.0

m
3J

I  o 
£

15.36 7.77 2.70 0.05 0.1 §  
33

LU
Q 15.35 7.77 2.70 0.04 0.01 £

7.47 4.08 1.52 0.11 1.0

o
uri

7.52 4.14 1.55 0.10 0.1

7.51 4.15 1.55 0.10 0.01

ZS K IN  = 0.91
168 (1) 334(1) 501 (1) 669(1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
120°E 20°N
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IF50 ITable 9.5.4. Grid of initial heat flow estimate relative error magnitudes eFso = - f y  -  1 (green borders) at Elysium 120°EB I Fb I

20°N for the high conductivity k scenario with a heat flow FSBT of 8.5 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKlN [m] is the skin depth.

kB U L K  —  0.51 7
MONITORING PERIOD [-MARTIAN YEARS] 

0.25 0.5 0.75 1.0
Fbt = 0.0085

82.34 28.98 4.99 0.17 1.0

0
01

80.57 29.69 5.79 0.11 0.1

80.32 29.57 5.76 0.15 0.01

E1
71.12 29.37 7.67 0.04 1.0

m
33

X o  
£  «

70.58 28.15 6.99 0.27 0.1 §  
33

LU
Q 70.53 28.15 7.03 0.18 0.01 2

48.14 21.97 6.62 0.23 1.0

o
LO

48.72 22.23 6.87 0.27 0.1

48.68 22.21 6.86 0.27 0.01

Z S K IN  =1-45
168(1) 334(1) 501 (1) 669(1) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [SOL])
120°E 20°N
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IF50 ITable 9.5.5. Grid of initial heat flow estimate relative error magnitudes e Fso = \ - § y  -  1 (green borders) at Elysium site 139°E
B 'FB I

1°N for the high conductivity k scenario with a heat flow FSJ  of 15 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zsiaN [m] is the skin depth.
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IF50 ITable 9.5.6. Grid of initial heat flow estimate relative error magnitudes eFso = -fr -  1 (green borders) at Elysium site 139°E
B I Fb I

1°N for the low conductivity k scenario with a heat flow FSBT of 7.4 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSK!N [m] is the skin depth.
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I pSO j
Table 9.5.7. Grid of initial heat flow estimate relative error magnitudes eyo = -Jf -  1 (green borders) at Elysium site 139°E

B I F g  I

1°N for the high conductivity k scenario with a heat flow FSJ  of 7.4 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKlN [m] is the skin depth.
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IF50 ITable 9.5.8. Grid of initial heat flow estimate relative error magnitudes e Fso = h f r  -  1 (green borders) at Tharsis site 253°E
8 IF B '

2°N for the high conductivity k scenario with a heat flow FSBT of 22 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKlN [m] is the skin depth.
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| pSO .
Table 9.5.9. Grid of initial heat flow estimate relative error magnitudes eFso = -Jf -  1 (green borders) at Tharsis site 253°EB *FB '

2°N for the low conductivity k scenario with a heat flow FSBT of 11 mW/m2. The shaded cells show values which are not 

improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and z SK i n  [m] is the skin depth.
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I Fso ITable 9.5.10. Grid of initial heat flow estimate relative error magnitudes eFso = - f f  -  1 (green borders) at Tharsis siteB I Fb I

253°E 2°N for the high conductivity k scenario with a heat flow FSBT of 11 mW/m2. The shaded cells show values which are 

not improved by the algorithm. The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the skin depth.
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9.5.4.2 Optimized Heat Flow

Figure 9.5.6 shows the effectiveness of the model in optimizing the heat flow based on the 

trivial (Section 5.3.3.1) and optimized (Section 5.3.3.2) estimates of Martian heat flow in 

Section 5.3.3.

across all measurement scenarios, interpolated from 3D scatterplots. The ratio r Fs is shown as a function of the ratio of

basal sensor depth to annual skin depth r z, and the ratio of measurement period to seasonal period r t. The r f s can be

considered as central estimators of the heat flow distribution at particular postions defined by the axes, hence the very high 

values due to high errors associated with 1 K noise amplitude.

Figure 9.5.6 must be interpreted in line with the trends in initial estimates presented in 

Section 5.3.3.1, Figure 5-9.

The tables below supplement the results in Section 5.3.3.

Ratio of Initial to Optimized Basal Heat Flow Relative Error 
2.07 3.56 5.04 6.53 8.02 9.51

12

10

Q.(U
0 8c
CO
o 6
c
o

2

0.25 0.50 0.75 1.00
F r a c t i o n  o f  S e a s o n a l  P e r i o d

eFsi
Figure 9.5.6. Trends in the ratio r Fs = —-  of optimized heat flow relative error e nsi to initial heat flow relative error e cso
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i f 5' iTable 9.5.11. Grid of optimized heat flow relative error magnitudes e Fsi = -Jp- 1 (green borders) at Elysium 120°E 20°N
B | F b  I

for the high conductivity k scenario with a heat flow FSJ  of 17 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the 

skin depth.
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20.89 15.76 7 .7 6 0.21 1.0

o
c\i

20.81 15 .68 7 .7 0 0 .1 8 0.1
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I pSI I
Table 9.5.12. Grid of optimized heat flow relative error magnitudes eFsi = -Jr -  1 (green borders) at Elysium 120°E 20°N

for the low conductivity k scenario with a heat flow FSJ  of 8.5 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is k BULK [W/m/K] and zSKIN [m] is the 

skin depth.
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i f 5' iTable 9.5.13. Grid of optimized heat flow relative error magnitudes eFsi = | ^ -  l |  (green borders) at Elysium 120°E 20°N

for the high conductivity k scenario with a heat flow FSB of 8.5 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKlN [m] is the 

skin depth.

kBULK —  0-517
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Table 9.5.14. Grid of optimized heat flow relative error magnitudes eFsi = 1 (green borders) at Elysium site 139°E
B | Fg |

1°N for the high conductivity k scenario with a heat flow FSBT of 15 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the 

skin depth.

^ BULK ~  1 -02
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F f  =  0.015
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I pSl I
Table 9.5.15. Grid of optimized heat flow relative error magnitudes eFsi = - f f -  1 (green borders) at Elysium site 139°EB •FB 1

1°N for the low conductivity k scenario with a heat flow FSBT of 7.4 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the 

skin depth.

k-BULK — 0.122
MONITORING PERIOD [-MARTIAN YEARS]
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F f  =  0.0074
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IF57 ITable 9.5.16. Grid of optimized heat flow relative error magnitudes eFsi = \-=§ f- 1 (green borders) at Elysium site 139°E
B IF B '

1°N for the high conductivity k scenario with a heat flow FSBT of 7.4 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the 

skin depth.
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Ip S I  I
Table 9.5.17. Grid of optimized heat flow relative error magnitudes eF|/ = -  1| (green borders) at Tharsis site 253°E 2°N

for the high conductivity k  scenario with a heat flow FSB of 22 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is k BULK [W/m/K] and z Sk i \  Iml ' s the 

skin depth.
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MONITORING PERIOD [-MARTIAN YEARS] 

0.25 0.5 0.75 1.0
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\ F SI I
Table 9.5.18. Grid of optimized heat flow relative error magnitudes e Fs i = -  1 (green borders) at Tharsis site 253°E 2°NB I Fb I

for the low conductivity k scenario with a heat flow Ff7 of 11 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is kBULK [W/m/K] and zSKIN [m] is the 

skin depth.
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Table 9.5.19. Grid of optimized heat flow relative error magnitudes ef s/ = -  l |  (green borders) at Tharsis site 253°E 2°N

for the high conductivity k  scenario with a heat flow FSBT of 11 mW/m2. The shaded cells show values where there is no 

improvement on the initial estimate (divergence). The bulk conductivity down to 20 m is k BULK [W/m/K] and z SKin  lm] is the 

skin depth.
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Figure 9.5.7 shows comparison plots of optim ization results at 2 m fo r the Elysium site at 

139°E 1°N where particular features of the unsteady tem perature allow fo r accurate 

optim ization of the basal heat flow. Examination o f the related surface tem peratures 

shown in Section 5.2.1 shows that, for monitoring periods shorter than 0.75 Martian years, 

only the lower temperatures of the cycle are measured, causing a positive shift in the 

mean tem perature gradient measured by the sensors. At 0.75 Martian years and longer, 

the full range of unsteady temperature extrema is sampled reducing the biases introduced 

by the unsteady tem perature variation -  this follows results in Section 4.2.1.2.
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Figure 9.5.7. Representative profiles for temperature inversions at the Elysium site at 139°E 1°N for the low conductivity, 

high heat flow scenarios with noise of 1 K amplitude, measurement depth up to 2 m. The plots are overlays of temperature- 

depth profiles overtime where the dotted blue curves represent the true profiles, the solid grey curves the profiles with 1 K 

error and the solid green curves represent the optimized temperature profiles. Plot: a. covers a monitoring period of 168 Sols 

in; b. 334 Sol; c. 501 Sol and; d. 669 Sol. The curves are shown in ~33 Sol steps though the calculations are carried out in 1 

Sol steps. The grey squares are sensor locations and are plotted at the mean of the true temperature profile at a particular 

depth.
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9.6 Mercury

407

9.6.1 Forward Models

Table 9.6.1 lists the critical parameters used to calculate the surface energy balance for 

the Mercurian scenarios presented in Section 6.3.1.

Table 9.6.1. Surface energy balance parameters used to calculate the surface temperature on Mercury.

PARAMETER VALUE

Solar Constant S° [W/m2] 1370

Bond albedo^ 0.1

Emissivity e 0.9

Solar incidence angles are after JPL (2014) and cover the period from June 13, 2024 to 

December 06, 2024 (perihelion to perihelion).

Figure 9.6.1 shows the forward modelled temperature profiles for the 2-layered models 

discussed in Section 6.3.1.



408 9.6 Mercury

80°E 38°N

£ 1.0

200 300 400
Temperature [K]

500

g  400

?  300

£ 200

100

2.00.0 0.5
Time [Orbital Period]

160°E 25°N

£ 1.0

800

200 400 600
Temperature [K]

« 400

0.5 1.0 1.5
Time [Orbital Period]

272°E 85°N0.0

0.5

E
caQ)
Q

2.0
350100 200

Temperature [K]
250 300150

*  250

<? 200

f.
0.5 1.0 1.5

Time [Orbital Period]

Figure 9.6.1. Forward modelled temperature profiles for measurement sites. These are from the respective 2-layered models 

(see Section 6.2.2) with the ‘high’ heat flow (30 mW/m2) regime at 80°E 38°N (a-b), 160°E 25°N (c-d) and 272°E 85°N (e-f). The 

left contours are overlays of depth-dependent temperature T over time t of 2 orbital periods in ~3.5 d steps; the right 

contours are overlays of time-dependent temperature T over depth z of 5 m (larger amplitudes towards the surface). All 

simulations are run over the same time period from midnight at perihelion (also see Appendix 9.6.1).1

1 The forward models with lower heat flow are visually indistinguishable from that presented in 

Figure 9.6 1 and is therefore not shown.
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9.6.2 Measurements

Figure 9.6.2 shows representative measurements for the 2-layered site scenarios 

discussed in Sections 6.2.2 and 6.3.1.
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Figure 9.6.2. Temperature profiles for measurements at sites at 80°E 38°N (a-b), 160°E 25°N (c-d) and 272°E 85°N (e-f) for the 

2-layered regolith model with a heat flow of 30 mW/m2. The plots are overlays of: (a, c, e) temperature-depth profiles for 

instantaneous measurements at peak daytime, (solid red), transitional heating (dotted orange) and cooling (dashed green) 

and, minimum nightime (dot-dashed blue) temperatures and; (b, d, f) temperature-time profiles for measurements covering 1 

Mercurian solar day. The squares represent sensor locations: in space (a, c, e, plotted at the basal temperature value); and 

time (b, d, f, plotted at the times and temperatures of, and colour coordinated with the instantaneous measurements).
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9.6.3. J In itia l Estimates

Table 9.6.2 to Table 9.6.4 show the errors in heat flow estimates, before optim ization, 

using bulk conductivity (down to 10 m) and the temperature gradient at the 2 lowest 

sensors. These are discussed in Section 6.3.

IF50 ITable 9.6.2. Grid of initial heat flow estimate relative error magnitudes eFso = -  1 (green borders -  see Appendix 9.1B I fb '

for symbol definitions) from measurement sited at 80°E 38°N on Mercury. This is for the 2-layered site scenario where the 

red shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] 

and zskin lm] is the skin depth. The shaded cells show values which are not improved by optimization.
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| fso I
Table 9.6.3. Grid of initial heat flow estimate relative error magnitudes eFsp = j^ff -  i j  (green borders -  see Appendix 9.1

for symbol definitions) from measurement sited at 160°E 25°N on Mercury. This is for the 2-layered site scenario where the 

red shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] 

and zSKIN [m] is the skin depth. The shaded cells show values which are not improved by optimization.
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IF50 ITable 9.6.4. Grid of initial heat flow estimate relative error magnitudes eFso = |^J f -  1| (green borders -  see Appendix 9.1

for symbol definitions) from measurement sited at 272°E 85°N on Mercury. This is for the 2-layered site scenario where the 

red shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] 

and zSKIN [m] is the skin depth. The shaded cells show values which are not improved by optimization.
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9.6.3.2 O ptim ized  Heat Flow

Table 9.6.5 to Table 9.6.7 show the errors in optimized heat flow estimates. These are 

discussed in Section 6.3.

I pSI I
Table 9.6.5. Grid of optimized heat flow relative error magnitudes e Fsi = M f -  1 (green borders -  see Appendix 9.1 for0 | Fb I

symbol definitions) from measurement sited at 80°E 38°N onMercury. This is for the 2-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  Im] is the skin depth. The shaded cells show values which are not improved by optimization.

MONITORING PERIOD [-SOLAR DAY]

80°E 38°N 0.0

(PEAK DAYTIME)

0.0

(TRANSITIONAL

HEATING)

0.0

(TRANSITIONAL

COOLING)

0.0

(MINIMUM

NIGHTIME)

1
2-LAYERED

8.65 23.75 22.04 22.53 0.14 0.01

4.18 11.97 10.95 11.38 0.16 0.02

0.5
2.75 8.03 7.23 7.67 0.17 0.03

11.19 35.50 31.27 34.48 0.38 0.01

5.35 17.95 15.45 17.46 0.40 0.02 x  
m >

I
X

3.44 12.10 10.16 11.79 0.40 0.03 H 
r~
QI—

CL
LLI
O

0.23 0.16 0.17 0.19 0.04 0.01 ^  

1
0.02 3

N)
0.14 0.10 0.06 0.13 0.05

2.0
0.12 0.09 0.01 0.11 0.05 0.03

0.24 0.82 0.51 0.81 0.16 0.01

0.21 0.49 0.17 0.50 0.17 0.02

0 .2 0 0.39 0.05 0.39 0.17 0.03

k-BULK  “

6.95E-3

1(-) 1(-) 1(-) 1(-) 176(1.0) 

NUMBER OF MEASUREMENTS (TIME RESOLUTION [DAY])
ZS K IN  =0.15



9.6.3 Optimization Results 415

I pSI |
Table 9.6.6. Grid of optimized heat flow relative error magnitudes e Fsi = d ? -  1 (green borders -  see Appendix 9.1 for
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symbol definitions) from measurement sited at 160°E 25°N onMercury. This is for the 2-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  (ml >s the skin depth. The shaded cells show values which are not improved by optimization.
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Ip S I [
Table 9.6.7. Grid of optimized heat flow relative error magnitudes e Fsi = -  1 (green borders -  see Appendix 9.1 for

B | Fg I

symbol definitions) from measurement sited at 272°E 85°N onMercury. This is for the 2-layered site scenario where the red 

shaded cells indicate a (incorrect) 2-layered regolith assumption. The bulk conductivity down to 10 m is kBULK [W/m/K] and 

z s k i n  [m] is the skin depth. The shaded cells show values which are not improved by optimization.
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Figure 9.6.3 shows example plots of optimization results with an instantaneous 

measurement for the 2-layered regolith model as discussed in Section 6.3.3.2, along with 

the 1-layered regolith model results.

Figure 9.6.4 shows 1 and 2-layered results with sensor penetration depths of up to 0.5 m, 

also discussed in Section 6.3.3.2.

Figure 9.6.5 and Figure 9.6.6 show the optimization results for measurements covering a 

full Mercurian solar day for the 1-layered, and 2-layered measurement scenarios, with 

different (correct, incorrect) layering assumptions.
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Figure 9.6.3. Temperature profiles for optimized heat flows, compared to true profiles, for sites at 80°E 38°N (a-b), 160°E 

25°N (c-d) and 272°E 85°N (e-f) for the 2-layered instantaneous measurement scenario with a heat flow of 30 mW/m2. The left 

plots (a, c, e) highlight the effects of the unsteady surface heat flow down to depth z  = 1 m. The right plots (b, d, f ) show the 

temperature gradients between 1-2 m depth where the unsteady surface heat flow becomes negligible. The curves are 

associated with measurement times according to: solid (peak daytime); dotted (transitional heating) and, dashed (cooling) 

and; dot-dashed (minimum nightime). The colored curves (red, orange, green, blue) are measured profiles, the grayscale 

curves are the optimized profiles where medium greys and dark greys respectively represent correct (2-layer) and incorrect 

(1-layer) layering assumptions. The grey squares are sensor locations and are plotted at the true basal temperature.
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Figure 9.6.4. Temperature profiles for optimized heat flows, compared to true profiles, for sites at 80°E 38°N (a-b), 160°E 

25°N (c-d) and 272°E 85°N (e-f) for the 1- and 2-layered (left and right, respectively) instantaneous measurement scenarios 

with a heat flow of 30 mW/m2. The curves are associated with measurement times according to: solid (peak daytime); dotted 

(transitional heating) and, dashed (cooling) and; dot-dashed (minimum nightime). The colored curves (red, orange, green, 

blue) are measured profiles, the grayscale curves are the optimized profiles where medium greys and dark greys 

respectively represent correct and incorrect layering assumptions. The grey squares are sensor locations and are plotted 

close to the mean surface temperature.
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25°N (c-d) and 272°E 85°N (e-f) for the 1-layered measurement over 1 Mercurian solar day, with a heat flow of 30 mW/m2. The 
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f ) show the temperature gradients between 1-2 m depth where the unsteady surface heat flow approaches negligible values. 

The curves are associated with regolith model assumptions according to: light blue solid (correct 1-layer assumption); dark 

blue dotted (incorrect 2-layer assumption). The grey squares are sensor locations and are plotted at the true steady 

temperature.
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25°N (c-d) and 272°E 85°N (e-f) for the 2-layered measurement over 1 Mercurian solar day, with a heat flow of 30 mW/m2. The 

left contours (a, c, e) highlight the effects of the unsteady surface heat flow down to depth z = 1 m. The right contours (b, d, 

f ) show the temperature gradients between 1-2 m depth where the unsteady surface heat flow approaches negligible values. 

The curves are associated with regolith model assumptions according to: light blue solid (correct 2-layer assumption); dark 

blue dotted (incorrect 1-layer assumption). The grey squares are sensor locations and are plotted at the true steady 
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9.7 Vesta

9.7.1 Forward Models

Table 9.7.1 lists the critical parameters used to calculate the surface energy balance for a 

site on Vesta located at 120°E 20°N in Section 7.3.1.

Table 9.7.1. Surface energy balance parameters used to calculate the surface temperature for site located at 120°E 20°N on

Vesta.

PARAMETER VALUE

Solar Constant 5° [W/m2] 1370

Bond albedo A 0.2

Emissivity e 0.9

Heliocentric Orbit

Aphelion [m] 3.84745E11

Perihelion [m] 3.21768E11

Eccentricity 0.08890

Shape

x-axis [m] 2.85E5

y-axis [m] 2.85E5

z-axis [m] 2.85E5

9.7.2 Measurements

Figure 9.7.1 shows time dependent heat sources used to simulate the source solutions 

(Figure 9.7.2 and Figure 9.7.3) used to perturb the measurements of Section 7.3.2. These 

represent, to first order, the effect of OH bearing volatiles being released (e.g. Denevi et 

al., 2012; Russell et al., 2013) or transported in the regolith off the axis of the heat flow



424 9.7 Vesta

probe (see e.g. Prialnik, 1992 for a discussion of gas transport in comets). The features 

are tied to the temperature-time plots of Section 7 .3 .11 and are explained below:

• t  =  0.0-0.25

Volatiles are likely to sublimate at peak temperatures -  when this happens heat energy is 

released, causing the temperature of the remaining regolith to fall. Assuming the regolith 

in which the probe is embedded (a cylinder of ~ 10s of cm radius, surrounding the probe, 

and roughly a cylinder radius longer than the probe length) is dry and experiences no 

degassing, a temperature gradient is created between the probe regolith, and the area of 

regolith were degassing occurred. This temperature gradient will be negative such that 

heat flows down the temperature gradient, away from the probe axis, towards the area of 

degassing. This is represented by the heat sinks, which starts at t  =  0 when the 

temperature gradient is at a maximum. As heat flows from the probe regolith to the 

degassed regolith, the temperatures equilibrate until the heat sinks vanish at t =  0.25.

• t =  0.25-0.75

The regolith temperatures are assumed to remain in equilibrium2 as temperatures are 

below a threshold value which triggers sublimation of volatiles.3

1 The pristine peak temperatures of Vesta are not high enough to permit the sublimation of -  e.g. 

H20, however heating may occur long after an impact event because of the low thermal diffusivity 

of Vestan regolith (e.g. Denevi et al., 2012).

2 It is unlikely that the temperatures would equilibrate on such a short timescale, given Vesta’s low 

thermal diffusivity, however, the exact profile of the heat sources are unlikely to affect the 

conclusions drawn from the presence of unknown heat source distributions in the regolith.

3 It may be the case that more gas from adjacent volatile rich areas flows into the volatile depleted. 

This may cause condensation and a subsequent rise in temperature, but is assumed to remain 

below the threshold temperature, which is only achieved at peak surface temperatures.
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• t =  0.75-1.0

425

As the temperatures begin to rise a threshold value is reached which triggers further 

degassing of regolith off the probe axis, which is left over from the earlier degassing 

event, or has built up in the interim. The degassing event re-establishes a negative 

temperature gradient between the probe regolith and volatile rich regolith such that heat 

flows away from the probe axis, towards the degassed regolith. The cycle is then 

repeated.

Figure 9.7.2 and Figure 9.7.3 show that with these specific heat source profiles (with 

accompanying assumptions and arguments), result in a temperature decrease at all 

modelled depths. The high conductivity model responds more to the variation in heat sinks 

than the low conductivity equivalents.
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Figure 9.7.1. Time dependent heat sinks used to model source solutions added as systematic errors to temperature 

measurements. They correspond, in time, with the forword modelled temperature of Section 7.3.1. These decrease in 

magnitude from a-c and correspond to degassing events of varying magnitude. These are applied at all depths.
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Figure 9.7.2. Forward modelled source solutions added as systematic errors to temperature measurements. These are based 

on the high conductivity models of Section 7.2.2 for Vesta. The left contours are overlays of depth-dependent temperature 

perturbation AT over time t of 1 orbital period in ~26.5 day steps; the right contours are overlays of time-dependent 

temperature T over depth z of 2 m (positive towards the surface). Grey squares represent sensor locations.
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Figure 9.7.3. Forward modelled source solutions added as systematic errors to temperature measurements. These are based 

on the low conductivity models of Section 7.2.2 for Vesta. The left contours are overlays of depth-dependent temperature 

perturbation AT over time t of 1 orbital period in ~26.5 day steps; the right contours are overlays of time-dependent 

temperature T over depth z of 2 m (positive towards the surface). Grey squares represent sensor locations.



9.7.2 Measurements 429

Figure 9.7.4 illustrate the temperature measurement profiles with the presence of the 

systematic noise shown in Figure 9.7.2 and Figure 9.7.3 for the highest noise amplitudes. 

The resulting negative temperature-depth gradient can clearly be seen in the low 

conductivity models. These can be compared to the case with Gaussian error in Figure 

9.7.5.
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Figure 9.7.4. Temperature measurements for Vestan site located at 120°E 20°N with high systematic noise as shown in 

Figure 9.7.2 and Figure 9.7.3. These are with a low heat flow of 0.33 pW/m2 and high (a. and b.) and low (c. and d.) 

conductivities as presented in Section 7.2.2. The plots show depth-dependent temperature T: for an instantaneous 

measurement (left); overtime t of 1 orbital period in ~26.5 day steps (right). The grey squares are sensor locations.
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9.7.3 Optimization Results

Figure 9.7.6 and Figure 9.7.7 respectively show Gaussian and non-Gaussian temperature 

measurement errors and errors in the related optimized temperature profiles.
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Figure 9.7.6. Errors in measurement (Gaussian AT0 -  dotted grey) and optimized (AT1 -  solid blue) temperatures for Vestan 

site located at 120°E 20°N. These are with a high heat flow of 3.33 pW/m2 and high (a. and b.) and low (c. and d.) 

conductivities as presented in Section 7.2.2. The plots show AT: for an instantaneous measurement (left); over time t of 1 

orbital period in -26.5 day steps (right). The grey squares are sensor locations.
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9.8 Conclusions

9.8.1 Simulation Times

Figure 9.8.1 shows the change in forward model simulation times as the grid spacing, and 

timesteps are refined. This data must be interpreted in a relative sense. Other factors, 

including the spatiotemporal grid size, inhomogeneity in grids and thermal properties, the 

shape of the surface unsteady temperature, and the presence of heat sources or sinks 

affect the simulation times.

S im u l a t io n  T im e  [m in ]
0 . 0 1 4 5  0 . 2 4 4 6  0 . 4 7 4 6  0 . 7 0 4 7  0 . 9 3 4 7  1 .1 6 4 8

T im e s t e p  [s ]

Figure 9.8.1. Forward model simulation times tSIM [min] with respect to grid spacing Az and timesteps At, for unsteady 

temperature due to Tg = TgA sin(2TTt/P) with amplitude TgA = 12 K and period P = 86400 s in a homogeneous medium 

where: thermal conductivity k = 3.0 W/m/K; density p = 2700 kg/m3 and; specific heat capacity c = 790 J/kg/K. This is 

based on the same data as the grid convergence study in Section 3.4.1.1.

9.8.2 Covariance Relationships

The units of the inverse model parameters can be reduced to achieve an idea of their 

relative magnitudes as listed in Table 9.8.1. Examining Table 9.8.1 shows that all the 

parameter units differ by factors involving length scale, time scale, and energy units. For 

example, the relative magnitudes of F§ and Ss differ by a length scale factor while, those 

of F§ and k differ by a factor of length x temperature. Therefore, in the inversion,
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accounting for the differences may involve updating the covariances, at each iteration, 

based on temperature residuals, control volume sizes and timesteps.

Table 9.8.1. Reduction of inverse model paramters to basic energy units.

PARAMETER UNIT

r /  +  Tsu =  Ts]T  = d  K

k J/smK

pc J/m3K

Ss J/sm3

F | J/sm2

Taking the first order estimates outlined in Chapter 4 and Appendix 9.4 these can be 

gridded as shown in Table 9.8.2 (the numerical SD ratios for untested simultaneous 

optimizations [red borders] are discerned using the relation =  r™ */r™ *). Assessing,

for example, r^B shows that the standard deviation for F§ is fundamentally larger than that for

Ss, which is reflected in the first order estimate r^B > 1 0 3 ( r ^ < 1 0 '3). Interestingly, the

relationship does not hold for the experimental values of r f B and r f  but it should be noted

F̂that rdB has been shown to be stable at values exceeding 10 (see Sections 4.2.1, 4.3.1 

and Appendix 9.4.9.3); the discussion below sheds further light on this.

The other SD ratios are not easily compared, analytically, save for the dimensionless, 

temperature-related quantities. However, taking the time and length scale units as control 

volume size Az and timestep At, these can be reduced to units involving J and K, 

analogous to energy densities. For example, taking Az and At from the lower extremes of

pS -

the range in Figure 9.8.1 such that Az =  0.05 m and At =  360 s gives rsSB =  0.05 m, r*s =

0.045 K/J and =  0.9 K/J, which are naturally consistent with the SD ratio relation. They

are not entirely inconsistent with the experimentally derived minimum values (Table 9.8.2) 

of 103m, 0.1 K/J and 1 K/J.
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A comparison between the analytical and experimental results is nontrivial because 

control volume sizes (grid spacing) is inhomogeneous, increasing with depth from -0 .1 -  

1.75 m (average 0.55 m) in the numerical experiments of Appendix 9.4.7.7. With Az < 1 m

the analytical approach suggests r f  and with Az > 1 m, . Analytical, then,

rdB should be smaller than r f  by a factor of about 20, with Az = 0.05 m and At =  360 s, 

nominally consistent with the experimental value of -10 . As noted above, though, this is

somewhat at odds with the experimental value of r  sB.

Table 9.8.2. Grid of derived first order numerical values (lower triangle) of SD (stability) ratios (upper triangle/lower triangle) 

and associated SI units (upper triangle). Numerical values associated with particular units are read diagonally along lower 

left to upper right with associated cell shading colours (red, green or blue). Red-bordered cells are values derived 

analytically.

CO
LU
D_i
§

1 IMITO r R0W 1
' '  ' W LCOLUMN J

T s q-'U
l S k pc Ss Fsr B d

T s*S sm K2/J m 3K2/J sm 3K/J sm 2K/J

’T'U
l s

OT

sm K2/J m 3K2/J sm 3K/J sm 2K/J

k - 1 0 7 -1 0 " m2/s m 2/K m/K J/sm K2

pc ~10y - 1 0 6 -1 0 " s/K s/m K J/m 3K2

Ss - 1 0 B - 1 0 4 -10 - 1 0 '1 1/m J/sm 3K

FsB < 105 10 < 10'2 < 10'4 <10‘3 J/sm 2K

d > 104 -10 > 104 > 105 > 10 > 1

The Function Specification Inverse (FSI) theory (Section 2.2.3) shows that the covariance 

plays a critical role in weighting the temperature residuals with data covariance Cd and 

weighting the model parameter updates with covariance Cm. The preceding analysis 

shows how the inverse problem may be stabilised with a systematic approach to 

nominally defining the relative sizes of Cd and Cm, as opposed to the trial and error 

approach used in the numerical experiments of Chapter 4 and Appendix 9.4. Of course,
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these quantities are largely unknown in the inverse problem, therefore, some trial and 

error may still be necessary in establishing their precise values.

9.8.3 Unknown A Priori Model Parameter Errors

Table 9.8.3 lists the various effects of high and low estimates of a priori model parameters 

which are not accounted for in optimization. These can prove useful in cases where 

unexpected results are obtained to assess potential inaccuracies in the forward model.

Table 9.8.3. Relative effects of unaccounted for errors in a priori model paramters.

ESTIMATE
PARAMETER

Tsl s

pc

HIGH

Low temperature 

gradient; high data 

residuals 

-High Amplitude 

-High Mean 

Increased skin 

depth; low 

temperature 

gradient 

Decreased skin 

depth

Increased internal 

temperatures and 

gradient

F i EFFECT

Low

-Less accurate 

-Low

Less constrained; 

high

More constrained; 

low

Low

LOW 

High temperature 

gradient; low data 

residuals 

-Low Amplitude 

-Low Mean 

Decreased skin 

depth; high 

temperature 

gradient 

Increased skin 

depth 

Decreased 

internal 

temperatures and 

gradient

High

-More accurate 

-High

More constrained; 

low

Less constrained; 

high

High
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9.8.4. J Data Format and Reduction

The Apollo 15 and 17 ALSEP probe data is available from the National Space Science 

Data Center (NSSDC; NASA, 2015). The data consists of absolute temperature data for 

four thermocouples and temperature difference and average temperature data for two 

Wheatstone bridge circuits on each of the two probes. The Wheatstone bridge sensors 

are respectively separated by 0.47 and 0.28 m on an upper and lower section of the probe 

(Figure 9.8.2); for the former reason, the average temperatures supplied in the inverse 

model, results in a large attendant depth inaccuracy, and heat flow inaccuracy. Since one 

thermocouple coincides with the uppermost gradient bridge sensor, that thermocouple 

temperature is combined with the gradient bridge temperature difference to calculate the 

temperature of the lowest gradient bridge sensor.

LOWER SECTION -UPPER SECTION

GRADIENT
BRIDGE

GRADIENT
BRIDGE

0  THERMOCOUPLE

RING RING

28 cm 28 cm

47 cm 47 cm

6 5  c m 5 0  c m  — 5 0  c m  — 1

Figure 9.8.2. Schematic of ALSEP heat flow probe (after Langseth et al., 1972; Langseth et al., 1976).

The data show that the measurements by the thermocouples and the upper and lower 

sections of the probe are recorded at different times within intervals of 10 s to 10 min, 

such that finding measurements along the probe length that coincide in time is a non

trivial task. Additionally the thermocouples, naturally, take measurements at a higher
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frequency than do the gradient bridge sensors, which are, nominally, below the skin 

depth.

To make things simpler, the former discrepancies are handled by creating a uniform 

temporal grid spanning a range of times which is shared by all sensors along each probe 

axis. The data is then projected onto the new, uniform temporal grid according to data 

times that most closely match those from the uniform temporal grid. The time 

discrepancies thus created are of the same order as those in the original data but are, in 

any event, associated at unique times along the probe axis.

The data contain several anomalous temperatures which have been associated with 

periods of heating by heaters incorporated into the probe axis (not shown in Figure 9.8.2), 

in line with thermal conductivity experiments. To keep the data as dense as possible, and 

given the variability in the data, the anomalous data is replaced with data equivalent to a 

boxcar average over 1/10th of the span of data points. Data is assessed as anomalous if it 

lies outside of a given multiple of standard deviations (< 1 for bridge sensors, > 1 for 

thermocouples) of the data mean. This process effectively reduces the prevalence of large 

outliers in and maintains the statistical properties of the data.

Thus extracted, useful data is found in the first of the Apollo 15 and both Apollo 17 probes. 

The co-temporal data, as defined on the uniform temporal grid span: -0 .41 Lunations with 

two thermocouples adjacent to the lower gradient bridge sensor down to 0.82 m, in the 

case of the Apollo 15 probe; and -0 .2  Lunations with all four thermocouples and the lower 

gradient bridge sensor down to -1 .7 5  m in the case of the Apollo 17 probes. This is 

enough for the GPHL01 inverse model, which, as has been demonstrated throughout 

Chapter 4 is effective with short duration or instantaneous heat flow measurements. An 

instantaneous measurement is derived from the end of the Apollo 15 span (Figure 9.8.3) 

while the full span of the Apollo 17 extracted data set is used (Figure 9.8.4).
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Figure 9.8.3. Apollo 15 Probe 1 derived instantaneous temperature measurement, taken towards lunar high noon at 

approximately 8.07099 Lunations after the start of 1971. Grey squares are sensor locations.
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Figure 9.8.4. Apollo 17 derived heat flow probe measurements. The upper plots are overlays of time dependent temperatures 

at different depths, with smaller temperatures at depth (red are thermocouples while green is the lower of the upper gradient 

bridge sensors at > 1.5 m; times are measured in Lunations since that start of 1972). The lower plots are corresponding 

overlays of depth dependent temperature at different times with grey squares indicating sensor locations.
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9.8.4.2 D ata  Inversion

The data extracted from the three probes are inverted independently. Surface boundary 

temperatures are taken from the surface temperatures measured by one surface 

thermocouple on each probe (Figure 9.8.5a-b). Thermal property data is not available 

from the NSSDC archive, therefore these are calculated using data presented in Langseth 

et al. (1976) and Heiken et al. (1991) (Figure 9.8.5c-d). Since the model is unable to 

handle temperature dependent thermal properties, the so-called “solid state greenhouse” 

effect on the Moon (e.g. Jones et al., 1975; Heiken et al., 1991) is approximated by a heat 

source distribution in the upper 10 cm of regolith (Figure 9.8.5e-f).1

The inverse model is run over a period of 12 Lunations in 24 h steps. The depth is 

restricted to that of the lowest sensor, which, due to the shallow lunar skin depth, 

experiences relatively small temperature variation at depth, over the period of 

measurement. The basal heat flow is initialised with values of 0.005, 0.010, 0.02, 0.03 and

0.06 W /m2 per parameter set where, in select instances, the conductivity is included as an 

additional free parameter (the regions).

A range of covariances are used, as in tests throughout Chapter 4 and Appendix 9.4. The 

range involves basal heat flow and conductivity covariances in Cm where the temperature 

measurement standard deviations in Cd are multiplied by factors from 10'7 to 107, in order 

of magnitude steps. Optimization is performed with stepping factor [i «  1 with variations of 

±1 O’2 or less.

1 The lunar solid state greenhouse effect is an observed ~45 K rise of the mean temperature from

the surface value to a depth of 0.35 m.
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Figure 9.8.5. Derived model parameters for Apollo temperature data inversion. Plots a-b are surface temperatures (Apollo 15 

times are measured in Lunations since that start of 1971 and, likewise, Apollo 17 since the start of 1972). Plots c-d are 

regolith thermal conductivity (solid red) and density (dotted blue). Plots e-f are heat source distributions. Note that, for 

Apollo 17, there is substantial overlap of the surface temperatures for Probe 1 (solid red) and Probe 2 (dotted red) and, 

likewise, the densities for Probe 1 (square symbols) and 2 (diamond symbols). The square and diamond symbols represent 

the spatial grids used for each probe.
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The approach of exploring the solution space by varying the values of the standard 

deviations creates a multidimensional space with the standard deviations of the 

temperature measurements, basal heat flow and thermal conductivity along with all the 

relevant misfit function parameters and the stepping factor -  i.e. a lookup table. The space 

associated with each probe is used to assess the most viable basal heat flow estimate in 

the range of returned values, and therefore a first order estimate of the lunar planetary 

heat flow.2 Contours of the solution spaces for the misfit function values and heat flow 

estimates are shown for each probe in Figure 9.8.6.

A linear feature (along a minor diagonal), demarcating the SD ratio rdB and solution region 

(green shaded polygon), can be observed in the misfit function spaces of Figure 9.8.6a, c 

and d. The feature is characterised by an oscillation in the misfit function value most 

visible along the basal heat flow standard deviation axis. The green shaded areas 

highlight the regions from which viable solutions can be taken -  outside these regions the 

heat flow is not modified significantly beyond its initial estimate.

Within the solution subspace defined by the standard deviations, there is a particular 

stepping factor at which the optimized basal heat flow and, in select instances, thermal 

conductivity provide a minimum misfit function value (Figure 9.8.6b, d and f). The plots in 

Figure 9.8.6 show inversions where only the basal heat flow is optimized (as opposed to 

simultaneous optimization with the thermal conductivity)3. A priori knowledge is used to 

select solutions from the entire pool of inversion results (the Apollo 15 Probe 1 results of 

Figure 9.8.6b, for example, can be considered as unlikely).

2 Given the caveats of the data being unprocessed, and further processing being necessary to 

correct the values for topographic and other environmental factors, as discussed in Sections 

1.1.3.2, 8.3.1 and 8.3.5.

3 The equivalent plots for simultaneous optimization of thermal conductivity and basal heat flow are 

not smooth, and are best displayed in three dimensions: they are therefore not shown here. The 

minimum points are simply extracted from the lookup table.
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Figure 9.8.6. Select results for Apollo temperature data inversion. Contours a-b, c-d and e-f are respectively for Apollo 15 

Probe 1, Apollo 17 Probe 1 and Apollo 17 Probe 2. The left contours are mean misfit function values over the range of 

initializations of basal heat flow and covariances (standard deviations) of the inverse model described in the text; the green 

shaded polygons highlight the areas that can be investigated for viable solutions. The right contours are misfit function 

values and optimized basal heat flows associated with select points (purple diamonds on left) in the space defined by the 

covariances, based on different stepsizes.
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Figure 9.8.7. Select results for Apollo temperature data inversion. Contours a-b, c-d and e-f are respectively for Apollo 15 

Probe 1, Apollo 17 Probe 1 and Apollo 17 Probe 2. The left contours are optimized conductivities (red squares are simulation 

gridpoints), while the right contours are optimized subsurface temperatures (blue squares are simulation gridpoints; red 

squares are sensor locations).
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The value of the basal heat flow (and thermal conductivity where applicable) at the 

minimum point marks the optimal combination of thermal parameters for the given ALSEP 

probe data set. The heat flows thus determined are 13 mW/m2 for Apollo 15 Probe 1 

(optimized with thermal conductivity), 5 mW/m2 for Apollo 17 Probe 1 (optimized with 

thermal conductivity) and 19 mW/m2 for Apollo 17 Probe 2. The best fit conductivities are 

plotted in Figure 9.8.7 along with the resulting temperature profiles.

9.8.4.3 Discussion

The former results give a best estimate of the basal heat flow given the largely 

unprocessed data set extracted from the NSSDC archive. The temperature data is not 

equilibrated; therefore the estimated basal heat flows are probably lower than the pristine 

value of the planetary heat flow. The initial conductivity estimate for the Apollo 17 Probe 2 

site appears to be the most stable of the three initial conductivity estimates, as it provided 

a stable heat flow solution without the need to simultaneously optimize the thermal 

conductivity. The Apollo 15 Probe 1 conductivity (or heat sources) appears 

underestimated towards the surface. A highly irregular conductivity is implied for the 

Apollo 17 Probe 1 site, which is likely underestimated at depth.

The primal (forward) temperature calculation directly influences the optimized conductivity 

estimates (see Section 2.2.3.3), which therefore means the latter is indirectly influenced 

by the shallow heat source distributions. Setting the shallow-depth thermal conductivity 

standard deviations crk to very small values ~0 reduces the influence of the shallow heat 

sources by maintaining the values of the initial conductivity estimates at the equivalent 

depths.

The heat flows obtained cannot be directly compared to estimates obtained by other 

authors because, as noted earlier, the temperature measurements have not been 

corrected for various effects. The purpose herein, is to demonstrate the application of the 

inverse model to a real-world data set.
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9.9 IDL Procedures and Functions (DVD)

This is a listing of the main IDL procedures and functions used in the FSI model. A

complete listing, along with example data, can be found on the included optical disc,

labelled G PHL01.

Definitions:

1. Procedure: an IDL procedure is analogous to a mathematical operator. It can act on

and return several parameters simultaneously, by reference.

2. Function: an IDL function is analogous to a mathematical equation. It returns one

main parameter, though it may return others by reference.

PROCEDURES AND FUNCTIONS DESCRIPTION

GPHL01 Procedure: General Planetary Heat fLOw in 1

dimension (pron. gee-flo one).

• Calculates forward model temperatures.

• Optimizes boundary and initial 

conditions from a temperature 

distribution.

INITIALIZE_PARAMETER Function:

• Initializes regolith property, and heat 

sources and sink arrays used in running 

forward and inverse model simulations.

ERROR_GENERATE Function:

• Initializes inverse model parameter 

error (standard deviation) arrays, to be 

read in by COVARIANCE.
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COVARIANCE Function:

TDMA

HEAT SOURCE

FRECHET DERIVATE

• Creates covariance arrays from error 

arrays output by ERROR_GENERATE.

Procedure: Tri-Diagonal Matrix Algorithm

• Calculates forward model temperatures 

using the TDMA at each timestep.

Procedure:

• Calculates heat sources from 

temperature residuals, and temperature 

measurement (data) covariance array. 

These are used in the TDMA calculation 

of the dual problem solution.

Procedure:

HESSIAN DERIVATIVE

• Calculates Frechet derivative(s) of

parameters being optimized, using 

TDMA dual problem solution, a priori 

model parameters and covariances and 

current model parameter estimates.

• Used in simple steepest, Newtonian 

and preconditioned descent 

optimization

Procedure:

• Calculates Hessian derivative(s) of

parameters being optimized, using 

Frechet derivatives calculated by

FRECHETDERIVATE.

• Used in Newtonian, or preconditioned
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descent optimization

ASCENT DIRECTION Procedure:

Calculates direction of steepest ascent 

of model parameters, using Hessian 

derivatives, Frechet derivatives, current 

and a priori model parameters, and 

covariances.

MODEL STEP Procedure:

PRECONDITION

MISFIT FUNCTION

TRACK

Optionally calculates optimal stepsize 

for model parameters to be updated 

with the direction of steepest ascent.

Procedure:

Optionally allows the inclusion of unique 

preconditioning operators to stabilize 

the optimization and/or accelerate 

convergence.

Procedure:

Calculates misfit (objective) function 

using covariance weighted temperature 

residuals and model parameter 

updates.

Procedure:

Monitors and records progress of 

optimization of misfit function and, 

optionally, other parameter specific 

variables (e.g. derivatives, directions of



steepest ascent).
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OPTIMIZE Procedure:

• Checks progress of the model in

optimizing the misfit function and 

determines termination of optimization 

(when the current point is assessed to 

be a stationary point).

• Optionally: performed by comparing the

misfit function shape to predetermined 

analytical function shapes; or using the

numerical values of the function to

determine the stationary point.

• Optionally calculates a posteriori 

covariance operator(s) to allow 

resolution analysis of the inverse model 

solution.

• Updates values of model parameters 

being optimized, which is then passed 

back to TDMA, if current point is not (or 

just past) a stationary point.

RESOLVE Procedure:

MODEL UPDATE Procedure:


