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Abstract

The birth of the new field of Microplasma Physics, at the turn of the century, follows 

decades of miniaturization of plasma sources. The empirical Paschen law from the 

early twentieth century ensures that increasing the pressure allows a reduction in 

the reactor dimensions and vice versa. However stable operation of a direct current 

microscopic discharge had been elusive, until the end of the 1990s.

At microscopic dimensions the importance of surface reactions is magnified, 

emphasizing the role of the reactor materials. Diamond, obtained synthetically 

by Chemical Vapour Deposition, offers unprecedented versatility and robustness. 

By selecting, during deposition, between insulating and semiconducting thin films, 

diamond-based micro-reactors were fabricated and operated for the first time. The 

ignition conditions were similar to results reported with other microplasma sources, 

in argon and helium at pressures ranging from a few torr to atmospheric pres­

sure. The same abnormal and normal glow modes were obtained by comparing 

the V -I  characteristics with those obained with more common microplasma reactor 

materials.

The dielectric spacer was shown to drive heat transfer through the reactor. Its 

role on the microplasma was studied via gas temperature measurements. Measure­

ments in diamond were compared with glass-based results. Occupying opposite 

ends of the thermal conductivity spectrum, they led to significantly different re­

sults. Owing to the excellent thermal conductivity of diamond, gas temperature 

decreased with reactor diameter. That is, heat transfer through the dielectric pre­
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vailed over that through the gas phase. To the contrary, glass-based microdischarges 

were hotter at smaller diameters, when heat conduction through the dielectric was 

too poor.

Finally, diamond outlived glass and is poised to become a material of choice for 

microplasma research. Indeed, no diamond-based reactors suffered any failure from 

the microplasma operation, showing signs of long lifetime.
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Chapter 1

INTR O D U C TIO N

For more than a century, research into plasmas and gas discharges has enriched sci­

entific understanding and driven significant technological progress. This promises 

to continue with the advent of miniaturized plasma sources, called microplasmas or 

microdischarges. This chapter provides a concise introduction to the field of plasma 

physics and sets the scope for the research reported in this thesis.

The chapter is divided as follows. Section 1 .1  briefly describes the plasma and 

its research context. Fundamental concepts are introduced in Section 1.2 Plasma 

Physics, with the microplasma studies in mind. Section 1.3 Microplasma Physics 

and Recent Research discusses this emerging field and the background to the current 

research. This introduction finally outlines the main topic of this thesis: Diamond- 

Based Experimental Studies of microplasma.

1.1 W hat Is a Plasma?

A plasma is an ionized gas, which can occur in stars, fusion reactors as well as 

discharge light tubes, barcode scanning devices, plasma television pixels,... to name 

just a few. This vast parameter space is of particular interest to this work. Those 

examples range from astronomical expanses down to microscopic volumes. Similarly,
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CH APTER1. INTRODUCTION 12

gas temperatures can be a few Kelvin for cryoplasmas [Noma et al., 2008] to solar 

values. Despite tightly limiting dimensions, the realm of microplasmas offers a rich 

interplay of scientifically fascinating interactions. Some basic classification will help 

appreciate them.

The plasma is defined as a quasi-neutral ensemble of charged particlces in dy­

namic equilbrium within a neutral gas environment. The ionization fraction, x , 

quantifies the fraction of charged and neutral particles (ng):

with the density of ions, rij, assumed to be equal to the electron density, ne. In the 

first two highest energy examples above, x  approaches 1. But in the electrical dis­

charges of interest to us, it can be as low as 1 0 -5. An example is the CF4 plasma used 

to etch silicon for microelectronics fabrication [Lieberman and Lichtenberg, 2005]. 

The central role of the charged particles is obvious from the fact that mostly neutral 

systems behave as a plasma.

A critical distinction exists between the different sources of energy to ionize 

(some of) the gas atoms. The fusion plasmas in the introductory paragraph derive 

this energy from intense heat. As a result, very energetic collisions cause a high 

level of ionization and perfect coupling between all species, charged or not. In our 

laboratory gas discharges the main mechanism for plasma ignition is the ionization 

collisions with neutral atoms of electrons accelerated in the applied electric field. 

The higher mobility of electrons leads to a very different distribution of energy 

among all particles.

Further differentiation of electrical discharges is associated with a custom in the
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usage of energy units. It is conventional to express the energy of a charged particle 

in electronvolts (eV). To a temperature T  in K corresponds an energy equivalent 

k sT  — with Boltzmann’s constant, ks  =  1.38 x 10~ 23 J K-1 . Prom the correlation 

eV = Ub T , 1 eV is therefore associated with T  = 11605 K. Conversely a tempera­

ture can be expressed in eV. For room temperature this gives &BTroom = 0.026 eV. 

Only a factor of e distinguishes between a particle distribution described in eV or 

V. The former is often simply referred to as a voltage and is the adopted standard 

in this work.

Two representative types of plasma are the arc and the glow discharge. The 

former encompasses among other things lightning, arc welding devices and sparks. 

Due to a single temperature for electrons, ions and neutrals, it is labelled thermal 

The latter, found in discharge tubes, is reminiscent of the natural glow of Northern 

(or Southern) Lights or Aurorae Borealis (or Australis). In these cases the electron 

energy ranges from a few eV to the applied voltage whereas ions and neutrals main­

tain temperatures below a couple thousand Kelvin. This state of affairs is referred 

to as a non-equilibrium or non-thermal plasma.

The non-thermal glow discharge is a case study in the organization of the electric 

field in the bulk and at the boundary of the plasma. It was first obtained by passing 

current through low pressure gas tubes. Early versions of these discharge tubes were 

called Geissler tubes, after the German glass-blower who invented them in 1855 

[Kitsinelis, 2010a]. This development triggered intensive studies in gas discharges. 

The neon tubes used for brightly lit outdoor signs can be thought of as their modern 

equivalent.

The characteristic geography of the glow discharge consists of bright and dark 

regions, represented in Fig. 1 .1  from [Braithwaite, 2000]. The products of ionization 

and excitation reactions emit light when the parent atoms return to lower energy
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Crookes dark space

Faraday dark space

negative glow

Anode darkspace

positive column

potential

electric Field

0

net space charge

0

Figure 1.1: The structure of a glow discharge; with the shading intensity matching 
the light intensity [Braithwaite, 2000].

levels. The visible structure therefore maps the space charge regions, as explained 

below and illustrated in the graphs under the figure. The ignition and sustainment 

of a direct current (DC) glow discharge were described by [Townsend, 1900] in terms 

of:

•  the exponential increase — so-called avalanche — of electrons resulting from 

ionization collisions in the inter-electrode gap

• the electron emission induced by ion-bombardment of the cathode

Most of the potential drop between the electrodes actually occurs in the dark 

region called the cathode fall or sheath1. The resulting high electric field causes 

a significant increase in electron energy. The exponential density of positive ions 

peaks at the edge of the sheath. Inside the high field sheath, high velocity elec­

trons (ejected from the cathode) and ions (about to bombard the cathode) can 

hardly recombine. In the adjacent negative glow, intense ionization-recombination 

and excitation-relaxation take place; explaining its brightness. In the Faraday dark

space, the build-up of negative space charge and ensuing increase in electric field

1 Termed the Crookes dark space in Fig. 1.1.
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magnitude is necessary to re-accelerate the electrons and sustain the next region. 

The positive column is a uniform, quasi-neutral region. It will expand as long as 

the electrodes are spaced out, provided that the voltage is sufficient to sustain it. 

The situation is different when the electrodes are brought too close together. The 

electrode sheaths persist and the negative glow tends to remain the same size; irre­

spective of the separation. However the positive column can be confined so much 

that it ceases to exist. The anode fall conserves electrons inside the plasma, only 

allowing the most energetic ones to the anode; ensuring the viability of the quasi­

neutral plasma. Understanding plasma phenomena therefore requires consideration 

of self-organization together with the role of the confining boundaries.

Going back through history, basic and applied plasma physics research have been 

closely linked. The “father” of the field, Irving Langmuir, was the first to “use the 

name plasma to describe this region containing balanced charges of ions and elec­

trons” [Langmuir, 1928]. He was then working at the General Electric Company on 

improving the incandescent lamp through the use of noble gas. Earlier, the inventor 

of that lamp in 1879, Thomas Edison, had himself stood on the shoulders of giants 

in the area of ionized gases generated by thermionic emission [Kitsinelis, 2 0 1 0 b]. Sir 

Humphrey Davy’s spectacular first demonstration of the arc plasma between two 

carbon rods in 1801 in front of the Royal Society had led to the birth of electrical 

lighting_______ ________  —  ----- ------  ------------------- ------  ------------ -------

More recently, microelectronics and the whole of Information Technology were 

made possible thanks to an improved understanding of plasma physics. The study of 

materials processing with plasma (e.g. etching, sputtering and thin film deposition) 

is epitomized by the standard work “Principles of plasma discharges and materials 

processing” by [Lieberman and Lichtenberg, 2005]. The importance of these topics 

is confirmed by the adoption of this book as the reference for students and re­

searchers alike.
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This section put the plasma into context and described some conventions about 

its constituting particle populations. One of several types of discharges, the structure 

of the glow discharge was introduced. A brief history of plasma physics and its 

impact on science and technology finally set the stage for the current research.

1.2 Plasm a Physics

The theoretical framework will now be laid out for later scientific discussions. Key 

plasma physics concepts are explained, with definitions and figures taken from 

the aforementioned reference ([Lieberman and Lichtenberg, 2005]), unless otherwise 

stated. The objective is to inform the subsequent introduction to microplasma 

physics. Gas phase reactions are introduced, followed by surface interactions and 

ending with charged particles behaviours. In each case the focus is on the regimes 

of relevance to microplasma physics.

1.2.1 Gas Phase

A discussion on plasma physics is aptly started with the kinetic theory of gases. The 

number density of non-interacting particles described by a Boltzmann distribution 

is given by

133 p . .
n 9 = ~ ĵ jT  (1-2)

where, from now on, the pressure, p, is expressed in torr. For typical pressures 

between 1 torr and 760 torr (atmospheric pressure) at room temperature, T  =  300 K, 

the gas density is 3 x 1022 m" < rig  < 2 x 1025 m 3. The charged particle population 

originates from this neutral population.
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The average distance between collisions, or mean free path, is given by

Ad =  —  (1.3)
n no

for the case of a point-size particle colliding with a gas atom and

Ael =  T~ (1.4)4 nga

for the case of similar sized atoms colliding. Elastic collisions are assumed here 

between hard spheres of cross-sectional area a = irr2 and radius r. The factor of 

four is required to account for the size of the projectile atoms as well as the targets 

[Braithwaite, 2000]. Substituting for ng above and the radius of an argon atom, 

r — 1.5 x 1 0 -1 0  m, yields 0 .1  pm < Aei <  1 0 0  pm for the pressure regimes of interest 

to microplasma research. The micrometer therefore seems like an appropriate scale 

to describe interatomic collisions in this thesis.

The frequency of interatomic collisions can now be calculated, making use of the 

mean speed of atoms

Inserting the value for the mass of argon atoms, M  = 40 x 1.67 x 10 27 kg, yields 

~  4 x 102 m s-1. The collision frequency takes the form --------  ---------

* =  f  (1 -6 )

with values of 4 MHz at 1 torr and 3 GHz at atmospheric pressure.

There follows from the above that the operating pressure and power affect the 

spatial distribution of a plasma. The collisions inside a gas discharge will generate
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heat. Once a temperature gradient is established, the gas density will vary and 

result in a local pressure gradient. In a gas this translates into a flow of particles. 

The spatial distribution of the plasma will therefore be determined by the input 

power and the operating pressure.

The various relevant types of interactions between particles are now presented. 

Binary collisions are by far the most common, the type of which determines the 

energy and distributions among the electrons, ions and neutrals [Chapman, 1980]. 

In elastic collisions, an electron can transfer a maximum fraction of 10- 4  of its en­

ergy to an atom. But an atom can transfer all of its kinetic energy to a similar 

mass atom. In inelastic collisions an electron can transfer virtually all of its energy 

to an atom whereas two atoms can exchange at most half of their kinetic energy. 

The identity of the interacting particles is therefore as important as their respective 

energies. This leads to the next topic on the origin and fate of the charged particles.

The main sources of charged  partic le s  of interest to us are as follows:

1. Electron-impact ionization is the major source. An electron transfers energy 

into the creation of another electron, expressed by

e fast +  A r  A r +  +  2 e ^ow O - 7 )

 with typical ionization energies of a few tens of eV; e.g. 15.7 eV for the case

of argon.

2. Metastables are excited atoms for which electric dipole radiation2 is forbidden. 

These are excited by a combination of direct electron impact

e fast +  A r  A r * +  e s"iow ( 1 -8 )

2by far the dominant de-excitation mechanism at low pressure and still important in higher 
pressure systems.
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and relaxation reactions in which atoms in higher energy states relax into their 

metastable levels. With their relatively long lifetimes (milliseconds to seconds) 

they offer a two-step ionization alternative, called Penning ionization. An 

atom, A, and a metastable, B*, interact to ionize the former, as in

A +  B* A+ +  B +  e“ (1.9)

Metastables can also be ionized by electron impact in a similar process to that 

shown in Eq.1.7. They are obviously closer to their ionization threshold than 

ground state atoms. Examples of energy thresholds are 11.5 and 11.7 eV in 

argon.

3. Photoionization by a photon with energy hv is expressed by

A ^  +  hu —y A+ +  e

with typical energies in the ultraviolet band.

(4.) Charge transfer is an important process in which an electron from a neutral 

atom transfers to a positively charged ion by collision of the latter with the 

neutral atom

______________________________ A +  A+ A+ +  A---------------- (1 .1 1 )

The rate at which this reaction occurs increases with pressure but it does not 

result in the net creation or loss of charge.

The loss o f charged  partic le s  is dominated by the following reactions:

1. Three-body recombination is the process whereby ions and electrons recombine

(1.10)
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via collision with a third body

20

e_ + A + +  M —>-A +  M (1.12)

where M is required for conservation of momentum. The third body might 

also be a surface atom facing the plasma, in which case the reaction is written

e" +  A+ +  S ^ A  +  S (1.13)

The surface reaction occurs at a much higher rate than the volume process; 

all incoming positive ions in the energy range 10-1000 eV are neutralized.

2. Radiative recombination is a similar process, in which the extra energy and 

momentum are carried away by a photon:

e~ +  A+ —»• A +  hu (1-14)

It is however so unlikely that it is usually ignored.

The above reactions are ranked according to their rate coefficients. This is related 

to the cross-section, which was simplified to the cross-sectional area of the atoms, cr 

(Eq.1.4 on page 17). However charged particles add an element of probability. For 

instance, the outcome of electron impact (elastic or excitation/ionization collisions) 

depends on its kinetic energy (for the reaction timescale) and the local electric field 

(for its final approach).

The rate coefficient incorporates an effective cross-sectional area and the particle 

velocity. The collision frequency (Eq.1 .6 ) can be expanded to

v
v = —— = ng a v

^el

where the mean free path Eq.1.3 was taken in order to focus on electron projectiles.
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l*»2

Elastic
i-13

,-14

Excitation

l-15B

,-16

,17
Ionization

Figure 1.2: Elastic, excitation and ionization rate coefficients for electrons in argon 
as a function of electron energy [Lieberman and Lichtenberg, 2005].

The rate coefficient, K , expresses the volume rate of a reaction:

v — ngK  (1-15)

A plot of K  against the particle energy3 gives a visual classification of the various 

reactions for the particle and gas under study. In Fig. 1.2 the rate coefficients for 

electrons in argon show tha t elastic collisions occur at all energies, increasing in rate 

with the electron energy. The excitation and ionization of the gas only take place 

beyond certain thresholds.

1.2.2 Surface In terac tions

Among the various plasma-surface interactions, the most determ inant are secondary 

electron emission, bombardment by neutrals or ions, and sputtering. O ther pro­

cesses, such as etching and film growth, can occur in principle. But these are not

3More precisely the voltage equivalent of its temperature, from Section 1.1.
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relevant for microplasma physics and we shall focus on the three most important 

interactions.

Secondary electron emission plays an essential role in the creation (ignition) 

and stability of the discharge. The mechanism involves the collision of positive 

ions with the cathode surface, as mentioned earlier and originally described by 

[Townsend, 1900] for a DC glow discharge. Electron-ion recombination indeed oc­

curs for virtually all incoming positive ions (Eq. 1.13).

The surface emission of electrons is due to Auger emission. Considering electrons 

at the Fermi level within the surface of a metal electrode, the minimum potential 

barrier for their emission is the work function , of the material, as illustrated in 

Fig. 1.3(a). This diagram also shows the closely spaced (grey region) electron energy 

levels from zero at the bottom of the conduction band up to the Fermi energy, Sp­

in Fig. 1.3(b), an incoming ion within an atomic radius, aeff, of the metal surface 

offers a potential well £xz\ its ionization potential. A tunneling electron with energy 

Se would neutralize the ion by entering either:

• an excited level, via

e~ +  A+ +  S -> A* +  S

 Unless A* is a metastable, it would then emit a photon upon de-excitation

from its level £* «  £lz — £e.

•  the ground state, thereby allowing the (Auger) emission of a second electron 

if £lz -  £el > £e2.

The ignition and maintenance of a DC discharge therefore depend on £lz for 

the gas and the cathode’s work function. For the noble gases argon and helium, 

£lz are 15.7 eV and 24.5 eV, respectively. Metastables can also readily trigger sec­

ondary electron emission if £* > £e. Example of metastable energies are 11.5, 11.7
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Figure 1.3: Work function, £$, Fermi energy, £F, and secondary electron emission 
by Auger emission [Lieberman and Lichtenberg, 2005].

eV for argon and 19.8, 20.6 eV for helium. As for the cathode material, typical 

work functions are 5.1 eV for gold [Lakits et al., 1990], 4.3 eV for molybdenum 

[Lieberman and Lichtenberg, 2005] and 4.9 eV for tantalum [Hagstrum, 1953]. The 

secondary emission coefficient, 7 , indicates the number of secondary electrons cre­

ated per incident ion. For 100 eV ions grazing a molybdenum surface, 7 Ar+ =  0.115 

and 7 He+ =  0.274.

Heavy particles can also sputter the wall material. High voltage sheaths, which 

connect the plasma with confining surfaces, can accelerate ions to material-removing 

energies; particularly at the cathode, with the highest voltage. The sputtering yield,

7 s P u t ,  gives the number of surface atoms removed per incident ion. The threshold for 

this reaction is at 20 — 50 eV, rapidly increasing in the hundreds of eV. Sputtering 

consists in the surface penetration by heavy ions followed by a cascade of energy 

transfer collisions between the (sub-)surface atoms in the impact region. W ith Ar+ 

at 600 V, typical values are 7 sput =  1.18 for gold and 7 sput =  0.32 for tungsten.
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In addition to particle exchanges, heat transfer is a critical interaction at the 

plasma-wall interface. Firstly, by affecting the balance of charged particles, gas 

rarefaction induces discharge instability4. Secondly, the operating temperature of 

the gas determines the choice of material and lifetime of the reactors. The last 

point raises the issue of thermal compatibility, describing how the differential ther­

mal expansion of the constituent materials can affect the mechanical stability of the 

microdischarge device. Thirdly enhanced sputtering of the wall materials by the ap­

plied heat affects both the wall stability and the purity of the microdischarge (again

leading to charge imbalance hence instabilities). Finally the relative importance of

competing heat transfer routes vary with the operating parameters; size, pressure, 

input power. From the above, heat transfer is therefore critical for improving the 

operating conditions as well as for fundamental understanding of the microplasma- 

reactor interactions.

In Joule heating, energy from the electric field, E , is converted to heat by elec­

trons in elastic collisions with the gas. The power per unit volume deposited in that 

way into the discharge is given in [Fridman and Kennedy, 2004]:

p in =  <je?  = ( i . i 6 )
m eve i

with the conductivity, <r, and electron-neutral elastic collision frequency, ue\. In 

steady state, this will equal the output power density:

P o u t  =  ngcp{T -  Tq)vt  (1.17)

with the specfic heat per atom, cp, the gas discharge temperature, T, the ambient 

temperature, To, and the heat transfer rate, vt- Heat transfer out of the discharge 

occurs by conduction and convection. For a cylindrical discharge of radius, R : and

4Discussed in the next section.
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length I, these two mechanisms are expressed by

_  8k(T  -  T0) 2u n,gCp (T -  T0) 
out R? + I

with the coefficient of thermal conductivity, k , and gas flow velocity, u.

1.2.3 Charged Particles’ Behaviour

The initial stage of a plasma is the breakdown of the gas, during which free charge 

carriers are released to create a conductive pathway. Our focus is on DC discharges 

between two electrodes of fixed polarity: the positive anode and negative cathode. 

The breakdown voltage, beyond which plasma ignition occurs, can now be defined, 

based on the description by [Townsend, 1900].

On the one hand electrons are accelerated by the applied voltage and multiply 

exponentially by ionization. After a displacement, x , in the direction of the electric 

field, electrons go from an initial number, A0, to

N  = N q exp ~  N o exp (ccx) (1-19)

where AiZ is the mean free path for electron impact ionization collisions. This mech­

anism is sometimes described in terms of a , the number of electrons produced per 

unit length per travelling electron. This phenomenon is referred to as an electron 

avalanche. On the other hand, secondary electron emission occurs by Auger emis­

sion at the cathode, with the corresponding 7  coefficient.

To be self-sustaining, the a  and 7  mechanisms must balance all the particle 

losses; at the walls as well as in the volume of the plasma. This can be expressed 

in terms of the position-dependence of the electron flux, r e(x), and ion flux, r*(x) 

over the thickness of the cathode sheath (0 <  x < d). From the continuity of charge 

and the definition of secondary electron emission (Te(0 ) =  7  T^O)) the following

25

(1.18)
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relationship is obtained:

ad = In ^ 1  +  — ) (1 .2 0 )

For a linear electric field E  = Vb/d, the breakdown condition, Vb, becomes

Bpd
Vb =

In (>+s)]
( 1.21)

In Apd — In

where A  and B  are determined experimentally, with the typical values for:

•  argon: A  =  11.5 cm- 1  torr - 1  B  = 176 V cm- 1torr - 1

•  helium: A = 2.8 cm- 1  torr- 1  B  = 77 V cm - 1  torr - 1

The importance of the relationship between pressure, p, and electrode separa­

tion, d, is illustrated by the Paschen curve, a plot of Vb against pd. According to the 

graph of Eq.1.21 in Fig. 1.4, Vb is maintained by keeping the product pd constant. 

The curve minimum represents the most efficient conditions for electron induced 

ionization. To the left of the minimum, a smaller d reduces the distance allowed for 

establishing sufficient electron avalanche. This is similarly hindered by the reduced 

density of neutral targets for electrons at lower p. As a result the Paschen curve 

rises steeply left of its minimum. On the other hand an increase in p gradually limits 

the mean free path hence the highest energy achieved by the electrons. At larger 

d the discharge requires a higher voltage to cross the inter-electrode gap. The last 

two phenomena translate into a small gradient to the right of the curve minimum.

The choice of gas and cathode material are both determinant for the ignition a 

discharge. For a given gas the lower Vb is obtained with the lower £$. In Fig. 1.4, 

the value of 4.3 eV for molybdenum versus 5.1 eV for gold yields a smaller Vb for the 

former. Auger emission, driving secondary electron emission at the cathode, was 

shown to depend on £iz. This is consistent with the low Vb in noble gases, with high
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Figure 1.4: Paschen curve (Eq.1.21) in argon and helium with gold or molybdenum 
cathodes.

S\z: 24.5 eV in helium and 15.7 eV in argon. These two gases are commonly used 

in plasma studies, including in this thesis.

Different discharge stages or modes are identified by their voltage-current or 

V -I  characteristic. Fig. 1.5 shows the general relationship between discharge cur­

rent and applied voltage for a non-equilibrium plasma. Going from left to right 

on the diagram, the applied voltage in the first gradually increases the a  and 7  

contributions until they are self-sustaining. In this Townsend discharge the current 

increases by charge multiplication rather than acceleration; hence the voltage does 

not increase. The differential resistance, d V /d l, is zero there. The current densities 

are not yet sufficient to modify the vacuum electric field. In the glow discharge, 

charge and current densities are so high that the sustaining voltage drops and the 

electric field is controlled by the reactor geometry (e.g. Fig. 1 .1 ). The normal mode 

maintains a negative to zero V -I  slope and constant current density. Increasing I  

requires plasma growth on the cathode. When this becomes impossible, a higher V  

is needed to increase I  (positive slope) in the so-called abnormal mode.
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Figure 1.5: Volt age-Current (V-I) characteristic of electrical discharges
[Lewin, 1965]. The inset shows the corresponding circuit diagram.

At higher current, the discharge transitions from a glow to an arc. An excess 

or shortage of charged particles jeopardizes the plasma stability [Kunhardt, 2000]. 

In a self-sustained discharge the steady state is expressed in terms of the earlier 

generation and loss rates, G and L :

G ne = L ne (1 .2 2 )

Though not mentioned so far, the reduced electric field, E /n g, is decisive. For 

instance it directly affects Te via Aei oc 1 jn g. Instabilities are:

•  electronic: G /L  imbalance leads to local space charge gradients

• thermal: heating causes gas rarefaction hence E /n g increase

The current density and increased Te conspire to further enhance the instabilities.
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This can lead to a glow-to-arc transition; often fatal for the reactor.

29

The charged particles influence each other over a characteristic length: the Debye 

length. This process helps explain the establishment of sheaths and space charge 

regions (as in Fig. 1 .1 ) while maintaining the overall plasma quasi-neutrality. Any 

electrically floating surface exposed to the plasma rapidly acquires a negative charge, 

owing to the relative fluxes of electrons, Te, and ions, T*:

^  neve „  UiVi .
r e =  >  r* =  - j 1 (1.23)

following from Te and the higher electron mobility5. The potential, <j), around 

the resulting space charge, p, obeys Poisson’s equation:

V20 =  — (rii -  ne(x)) (1-24)
£o £o

with £q = 8.85 x 10“ 12 F m_1  is the permittivity of free space. The parentheses 

describe an excess of ions in the near-wall region. Indeed, electrons are depleted 

by repulsion while ions are assumed too little mobile to change n*. Electrons are 

assumed in thermal equilibrium, with the Boltzmann relation

n e = n0 exp (!-25)

that can be substituted into Eq. 1.24, before simplifying to

V2</> =  with (j)= ~ (t) o  exp ( ^  (1.26)so k T e \X D e

5Given by p =  e/mve\, where me -C m* and ue\ is the elastic collision frequency.
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The Debye length, Aoe, is that over which the plasma remains quasi-neutral:

Typical Debye lenghts are in the micrometer scale. In the pressure range from 

1 to 760 torr, the mean free path was earlier given for argon at 0 .1  fim  < Aei < 

100 fim. As for charged particle interactions, substituting in Eq.1.27 typical values of 

Te = 4 eV and ne =  1016 m - 3  from [Lieberman and Lichtenberg, 2005] yields Aoe =  

0.14 mm for low-pressure glow discharges. In conditions of microdischarge operation 

(next section) the relevant values are ne = 1020 m-3, similar Te [Kushner, 2005] and 

Ace ~  1 /im. This offers a transition into the realm of micrometer-sized plasmas, 

where the theoretical limit of quasi-neutrality is approached.

This section presented the necessary background theory on plasma physics. In­

side the volume and at the surface of a laboratory electrical discharge, the main 

processes were discussed. Typical figures and phenomena relevant for this thesis 

were put forward. From the above, the micrometer scale stands out as particularly 

interesting.

1.3 Microplasma Physics and Recent Research

in the context of microplasma. The role of dimension and reactor geometry are 

explained in this section. A background literature review is provided, that will

and behaviours of interest to the current research. This will give the scope of our 

diamond-based research in the last section.

(1.27)

Some of the aforementioned plasma phenomena take on a particular importance

be useful for later analyses. The section concludes with characteristic parameters
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Even though miniaturization is an ancient plasma physics topic, the acceptance 

of Microplasma Physics as a field in its own right results from recent breakthroughs. 

It has been known since [Paschen, 1916] that increasing pressure should allow a de­

crease in size and vice versa. Gas discharges started to be intensively researched 

in the 1950’s for display applications. W hat follows is based on the topical review 

by [Boeuf, 2003]. As an example, the Plasma Display Panels found in television 

sets are an expression of the current stage of that technology. A typical pixel con­

sists of a noble gas discharge operated at 500 torr inside a 100-^m gap. Most 

applications involve the operation of electrodes covered with an insulator — in Di­

electric Barrier Discharge configuration — which requires AC current. While DC 

pixels were also investigated, the first report of the stable operation of a micro­

scopic high pressure DC plasma arrived in [Schoenbach et al., 1996]. This marked 

the birth of Microplasma Physics, epitomized by the creation in 2003 by Professor 

Tachibana (Kyoto University, Japan) of the biennial series of “International Work­

shops on Microplasmas” . Probably, the difference with the past research was that the 

scientific endeavour regained its freedom from any preconceived technological out­

come. All the major plasma conferences now boast dedicated microplasma sessions. 

Additionally numerous review papers have illustrated the cross-disciplinary ap­

peal of microplasma research and technology [Tachibana, 2006, Becker et al., 2006,

 Foest et al.,_2006, Iza et al., 2008]. Applications have already been realised. Most

recently, the research team of Profs J. G. Eden and S.-J. Park (University of Illinois, 

USA) have commercialized microplasma-based light sources and water purification 

tools6. The concepts introduced in the first parts of this chapter will now serve to 

introduce this lively field of microplasma physics.

6Eden Park Illumination (http://edenpark.com) and EP Purification, Inc., respectively.

http://edenpark.com
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1.3.1 Confining Dimensions

In a microplasma more than in any larger discharge, the reactor dimensions deter­

mine the operating conditions. The Paschen curve was earlier shown to link the 

breakdown voltage and pd. This is based on the assumption that the governing self- 

sustaining mechanisms are (i) the electron avalanche and (ii) ion-induced secondary 

electron emission at the cathode.

The successful operation of a DC non-thermal microplasma near atmospheric 

pressure by [Schoenbach et al., 1996] has triggered multiple research and technology 

perspectives. Figure 1.6 represents a cross-section of their original device. A mica 

insulator (250 fim  thick) separated molybdenum electrodes. A 700-fim diameter 

blind cavity housed the microdischarge, which was operated at hundreds of volts. 

Several criteria confirmed the non-thermal nature of Townsend and glow discharges:

• visual: diffuse or glow-like, but not filamentary like an arc

• electrical: the V -I  characteristic of Townsend, normal and abnormal glow 

modes

• thermal: the electron energies required for ionization — several eV — would 

exceed the melting temperatures of the materials if coupled with the heavy 

particles; below 2000 K for mica and 3000 K for molybdenum

Microscopic discharges have existed for decades, namely used in the pixels in plasma 

television panels. The major difference was that at least one electrode was cov­

ered with an insulating layer; precluding DC operation and ignition/sustainment 

by the two mechanisms cited above. Microplasmas have now been operated in AC, 

RF (13.56 MHz), microwave and with all the power supply variants of “macro”- 

plasmas, via capacitive7 or inductive8 coupling [Iza et al., 2008]. The new micro-

7Breakdown of a gaseous dielectric between opposite electrode polarities.
8Operation by induction with a driving electrode often outside the reactor.
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Figure 1.6: First microplasma molybdenum-mica-molybdenum device from
[Schoenbach et al., 1996] with dimensions.

Figure 1.7: Cross-section (not to scale) through the diagonal of a square MHCD 
device, showing the electrodes (yellow) either side of the dielectric (black) as well as 
the through hole.

plasma offers the possibility to study microscopic replicas of the non-thermal low 

pressure glow discharges that have been of so much interest, e.g. in the work of 

[Lieberman and Lichtenberg, 2005].

The pd (Paschen) relationship is supported in general, but significant electric field 

enhancements are notable microplasma peculiarities. A Paschen curve was experi­

mentally obtained in argon for several electrode materials by [Sismanoglu et al., 2010] 

Their source was a microhollow cathode discharge (MHCD) (Fig. 1.7); basically a 

through-hole version of the “original” model (Fig. 1.6). Their device consisted of 

100-/mi thick metal foils separated by a 250-/xm thick mica spacer and a hole 200 

pm  in diameter. Their curve in Fig. 1.8 is reminiscent of the theoretical graph 

in Fig. 1.4. As expected, the lowest work function (increased Auger emission) of 

aluminium leads to the lowest 1 4 ; the converse is true for nickel.
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Figure 1.8: Paschen curves in a 200-/im diameter argon MHCD with fixed d = 
250 fim  and various electrode materials [Sismanoglu et al., 2 0 1 0 ].

The Paschen law fails for low pd, i.e. to the left of the minimum Vb. W ith the 

close electrode proximity, dx, the applied voltage, dV, significantly enhances the 

electric field, Ex, in a microplasma: Ex = — dV/dx. This, along with electrode 

surface roughness, has long been linked to a higher electron extraction by so-called 

ion-enhanced field emission [Llewellyn Jones and Morgan, 1951]. Experiments with 

d < 40 fim  [Slade and Taylor, 2 0 0 2 ] or <  2 0  fim [Sismanoglu and Amorim, 2008], 

placed the importance of this effect at the smaller dimensions only.

Very steep potential gradients and high pressure lead to high charged particles 

densities [Kushner, 2005], reflected in the current densities. In fact the typical power 

per volume in a microplasma, in the MW cm- 3  to GW cm-3, is similar to what is 

found in a fusion plasma rather than in low pressure centimetre-sized discharges 

(W cm-3). Under these conditions a “macro”-plasma should contract into an arc 

by positive feedback of electric and thermal instabilities [Kunhardt, 2000]. The 

stable non-thermal microplasma may therefore be the result of strong stabilizing 

mechanisms that are yet to be understood.

electrodes material 
—• —zirconium 
—• —tantalum 
—*—molybdenum 
—• —tungsten 
—♦—titanium 
—■<—nickel 
—►—cuprum 
—• —aluminum

pd(Torrcm)
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The confining vessel sets the surface-to-volume ratio and controls the competition 

between gas and surface processes. Indeed that ratio is 1 :1  for common (centimetre­

sized) plasmas versus 300:1 in a microplasma. As an example, heat transfer may 

become important through the dielectric when it is a few orders of magnitude thicker 

than the electrodes in an MHCD reactor.

The gas temperature increase with current was modelled in argon by [Kushner, 2005] 

in agreement with experimental results from [Penache et al., 2 0 0 2 ]. Gas rarefaction 

due to heating — from 360 K at 0.15 mA to 1100 K at 4 mA — was responsible 

for the increased current density via high E /n g. Indeed, the electron multiplication 

mechanisms at the cathode did not match the current density increase.

Besides the dimensions, the shape of the reactor plays a determining role in 

microplasma physics. This is now explained, along with a thorough description of 

the specific geometry of interest to our research.

1.3.2 Reactor Geometry

The reactor geometry affects the microplasma behaviour. Gas and plasma effects 

due to heating or electric field distribution are different in blind and through-hole ge­

ometries9. This differential confinement can also enhance certain surface and volume 

reactions, intensifying the effects of miniaturization highlighted previously. This is 

particularly true of one geometry.

For decades the hollow cathode discharge (HCD) has benefited research and 

technology, and its microplasma version, called the microhollow cathode discharge 

(MHCD) is being explored for applications by many groups. Its main parameters are

displayed for the general cross-section of the cylindrical10 cathode cavity in Fig. 1.9.

9As in Figs. 1.6 and 1.7, respectively.
10The important geometrical criterion is actually to have cathode falls facing each other.
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Figure 1.9: Cross-section of the hollow cathode discharge (HCD) geometry with the 
main parameters [Kogelschatz et al., 2005].

Diametrically opposite cathode falls give rise to a radial potential distribution which 

enhances the electric field once space charges develop inside the hole. Unlike plane 

parallel electrodes, radially accelerated electrons that reach a cathode region are re­

flected back into the plasma. As they oscillate, these pendulum electrons make more 

inelastic collisions. This helps limit instabilities since any charge build-up would 

quench the oscillation-driven ionization [Kogelschatz et al., 2005].

This geometry favours high electron energies. [Gill and Webb, 1977] measured 

their energy distribution in a 15 torr helium, 8  mA HCD at the cathode sheath- 

negative glow interface. Fig. 1.10 represents the signal intensity received at a re­

tarding field analyzer, as a function of the retarding voltage. The following energy 

groups were identified:

• a “beam” of electrons with energies corresponding to the cathode fall

 •  beam electrons after a single inelastic collision; the second peak occurs after a

separation equivalent to the first excitation potential of helium.

• high-energy electrons in the long tail; more than in linear geometries

• electrons with energies similar to those in the bulk of the plasma, at the 

distribution maximum

An extra pD  relationship depends on the cathode opening diameter, whereas 

the anode shape is irrelevant. For 0.1 torr cm < pD < 10 torr cm the discharge
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Figure 1.10: Electron energy (in terms of voltage of a retarding field analyzer) for a 
HCD in 15 torr helium at 8 mA [Gill and Webb, 1977].

develops in stages [Kogelschatz et al., 2005]. In the low current, diffuse, Townsend 

mode the electric field resembles that in the absence of a plasma. It grows into the 

hole at higher current, forming a virtual anode.

In the hollow cathode mode the plasma and power densities increase inside the 

negative glow [Kushner, 2004] translated in a negative V -I  slope. The efficiency of 

the MHCD was detected by [Frame et al., 1997] in the emission spectrum of neon. 

The intensity of high energy Ne+ states (indicated by asterisks in Fig. 1.11), which 

require energies above 30 eV, was attributed to beam electrons. At higher pressure 

Te decreases in higher-frequency collisions and cancels the hollow cathode effect. 

The spectrum at 200 torr was identical to emission from a plasma column. The 

role of opposite cathode regions was confirmed by [Moselhy and Schoenbach, 2004] 

when they operated an MHCD-like reactor with a flat (zero-depth) cathode flush



CHAPTER 1. INTRODUCTION 38

1.0

Ne
300 K 
3.0 mA0.8

0.6e4><= 55 Torr _4>
>•a

0.4

100 Ton* ~

0.2

j \  200Torr "

360 370320 330 350340 380

Wavelength (nm)

Figure 1.11: Neon UV emission in a 400-/mi diameter MHCD. High energy Ne+ 
states (asterisks) signal the hollow cathode mode [Frame et al., 1997].

with the dielectric. In the absence of radially oscillating electrons, this forced the 

abnormal mode, with positive V-I. Microplasmas are strong UV emitters, but the 

related mechanisms are further enhanced by the concave MHCD shape.

The incurved geometry enhances species retention and efficiency. An example 

is the metal-ion laser described in [Lieberman and Lichtenberg, 2005] and based on 

the HCD. Beam electrons ionize noble gas atoms, which drive the main ionization 

reaction of metal atoms via charge-exchange. The metal ions are the major source 

of secondary emission and sputtering. Noble gas metastables also contribute to the 

high energy levels of metal ions and are “more effectively retained by the concave 

geometry of the HCD” [Gill and Webb, 1977]. The latter tested the efficiency of 

beam electrons by measuring the dependence of ionization rates on metal vapour 

concentration. It took 10% in the HCD and only 0.1% in a linear geometry to ob­

serve ionization decrease; explained by the consumption of electrons in low metal 

ionization potentials.
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Figure 1.12: Pressure dependence of an excited argon atom emitting visible light 
(left-hand axis) and an excimer (right) [Kushner, 2005].

Strong UV emission follows from high pressure and energies, which foster three- 

body reactions and stepwise processes. The lifetime of species like metastables, e.g. 

Ar^, is longer than the inter-collision time. The excited dimers (or excimers), ArJ, 

produced as follows emit in the UV

Ar^ +  2 Ar —>■ Ar^ +  Ar (1.28)

with a strong p-dependence. Indeed in their MHCD unodel [Kushner^2005] showed 

that metastable density “scales with the square of the Ar density” , while the excited 

state Ar(4p) emits in the visible and scales linearly (Fig. 1 .1 2 ).

It is clear that microplasmas, in various geometries, have distinct operating 

regimes that are often governed by the role of the enclosing surfaces. This in turn 

affects the operating characteristics of the discharge, which is the subject of the next 

section.
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1.3.3 Operating Characteristics

Certain operating characteristics of the microplasma, particularly the MHCD, are 

described here, that will be of interest for the analysis of our results.

Microplasmas can be operated in both normal and abnormal glow modes. As is 

the case for any glow discharge in the normal mode, the plasma maintains a constant 

current density at higher power by expanding over the cathode surface. W ith the 

cathode covered up or intentionally limited, [Dufour et al., 2008] turned a helium 

MHCD to abnormal mode.

The cathode sheath shrinks with pressure. This general plasma behaviour was 

confirmed in MHCD’s in experiments [Lazzaroni et al., 2010] and a simulation 

[Kushner, 2005]. The former took Ar+ emission (427.752 nm) to indicate the peak 

ion density at the cathode sheath edge, that shifted towards the walls of a 400-fim 

diameter MHCD at higher pressure and compressed the sheath (Fig. 1.13, left-hand 

side). The right-hand side shows the maxima of ionization by electron beams move 

towards a 300-jLim diameter cathode (illustrated with the rates 5ebeam in cm- 3  s-1).

The various microplasma stages introduced earlier for operation at 0.1 torr cm < 

pD  < 10 torr cm were illustrated by [Schoenbach et al., 1997]. In argon at 56 torr, 

a central plasma column grew with increasing I  inside a 200-/im diameter MHCD. 

The initially negative V -I  curve — consistent with a hollow cathode mode — turned 

flat at high current, during cathode-side expansion. At 250 torr the microplasma 

started as a diffuse ring, with positive resistivity — consistent with a Townsend 

mode. It only developed into a column inside the hole at higher I. At 896 torr, the 

microplasma was radially asymmetric for the entire current range.

This review of microplasma fundamentals emphasized the dependence of various
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Figure 1.13: Radial profile of the negative glow inside an MHCD: (left
[Lazzaroni et al., 2010]) measuring the Ar+ emission and (right [Kushner, 2005]) 
modelling ionization rates by beam electrons (in cm- 3  s-1).

reactions on the size and shape of the reactor. As a special case, the MHCD provides 

a convenient tool for further exploration of this topic. In particular, the focus of 

this thesis is on the role of materials (electrode and dielectric) on various aspects 

of microplasma operation. The next section concludes our introduction with the 

motivation and scope for research in diamond-based devices.

1.4 Diamond-Based Experimental Studies

This section first introduces the motivation for studying the role of materials on 

microplasma characteristics then sets the scope for temperature studies.
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1.4.1 Influence of Different Materials

The dielectric material affects the electrical characteristic of the microplasma. V -I  

curves for MHCD’s based on thin films of aluminum oxide (AI2O3 ), boron nitride 

(BN) or barium titanate (BaTiOs) were obtained by [Park and Eden, 2003]. Other 

conditions like pressure, p, and dielectric thickness, d , were also varied. For 50- 

f im  diameter devices, the abnormal glow mode was obtained in alumina (AI2O3 ) 11 

at 0.1 mA < I  < 0.4 mA, BN12 at 0.08 mA < I  < 0.25 mA and BaTiOs13 

0.15 mA < I  <  0.4 mA at 400 torr or above 0.25 mA at 800 torr. W ith a thicker 

AI2O3 layer ( 2 0 0  fim) the abnormal glow mode occurred only at 600 torr whereas 

from 700 to 1 2 0 0  torr the discharge transitioned from Townsend (negative V-I)  

to normal glow (flat curve). That the most significant change is due to a thicker 

dielectric is not surprising. Indeed, with all three materials chosen for their ther­

mal properties, the latter must be determining in driving heat transfer. A better 

understanding of the heat transfer routes inside a microplasma therefore requires 

experimental characterization of the temperature conditions.

Silicon-based devices offer interesting electrical, thermal and fabrication charac­

teristics. Established semiconductor processing techniques have successfully been 

adapted, namely by the groups of Profs J. G. Eden and S.-J. Park (University of 

Illinois, USA) and R. Dussart (GREMI, Universite d ’Orleans, Prance). The advan­

tages cited are its high thermal conductivity (148 W m_1  K-1), melting temperature 

(1685 K) and resistance to ion sputtering [Frame et al., 1997, Dussart et al., 2010]. 

As a semiconductor, silicon enables more stable operation as well as a distributed 

resistive ballast for an array of microplasma in parallel. Compared to metal elec­

trodes, it allowed more homogeneous discharges and stability over a wider range of 

conditions [Portsel et al., 2009]. The negative V -I  slope or indeed any instability

11 d =  120 f i m ,  400 < p < 1100 torr
12d ~  30 f i m ,  500 < p <  1100 torr
13d  =  1 0 0  f i m
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can potentially lead to unsustainable current levels. Ballast resistors are therefore 

placed in series with the (micro)plasma, or indeed each reactor in an array of several 

microplasmas. Using a semiconductor like silicon offers the same single safeguard 

for all the reactors in the same substrate [Shi et al., 1999].

Several limitations of silicon devices were nevertheless highlighted. A typical life­

time limiting failure includes the vaporization or sputtering of the nickel thin film, 

often used as the anode material [Park et al., 2001, Dussart et al., 2010]. Both con­

ducted DC operation of MHCD-like devices with a blind cathode. When the hollow 

silicon was used as the cathode, the devices were unstable or failed as well. Further 

tests suggested that silicon sputtering and redeposition contributed to short-circuits 

and eventually failure [Kulsreshath et al., 2 0 1 2 ]. Finally, semiconductor fabrication 

techniques are indeed successful but they involve numerous steps. Combined with 

the various layer materials, this is detrimental to both operation (e.g. surface short- 

circuits) and study (plasma contamination).

Enhancing the electron emission of the cathode material can improve the perfor­

mance of microplasma devices. In [Park et al., 2004] carbon nanotubes, selected for 

their high field emission properties, were grown on the surface of the nickel cathode 

of a DC operated MHCD. The ignition and operating voltages were lowered, mean­

while increasing the output power. Alternatively, a high- 7  material can be envisaged 

to enhance electron emission.

Now, before outlining the potential of diamond for addressing the above issues, 

we present the scope for investigating temperature conditions.
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1.4.2 Temperature Studies

Temperature effects influence both the operation and study of a microplasma. While 

discussing the role of dielectric on the mode of microplasma operation, heat transfer 

appeared a good candidate to characterize the different materials. And even though 

silicon is favoured for its thermal properties, it is evident that its lifetime — perhaps 

owing to wide ranging thermal characteristics in the various materials making up a 

reactor — is determined by heat related reactions. More generally, there is a lack 

of background data on how repeated exposure of reactors to thermal conditions of 

a microplasma affect the reproducibility of experimental results. It also brings into 

question the significance of the customary assumption of a cathode fixed at room 

temperature in microplasma models, e.g. [Kushner, 2005, Boeuf et al., 2005].

Microplasma can be operated at a wide range of gas temperatures. For an 

argon microplasma, [Penache et al., 2002] obtained experimental values by diode 

laser atomic absorption spectroscopy. In a hole 300 fim  in diameter through a sand­

wich of copper-Kapton®-copper (130-50-130 fim  thick), at constant 0.1-W input 

power, the gas ranged from about 400 K at 40 torr to 1100 K at 300 torr. In a 200- 

fim  diameter MHCD with molybdenum-mica-molybdenum (100-250-100 fim  thick), 

[Sismanoglu et al., 2010] derived the gas temperature from two methods: based on 

the emission line profile of OH and Ar. Considering the different uncertainties of the 

two methods, the values ranged from 460 to 640 K for 7 < I  < 15 mA at ~  230 V 

— 1.6-3.5 W — at atmospheric pressure. These lower temperatures were attributed 

to the 700-sccm flow of argon; reporting static gas values around 2000 K.

Assessing the relative importance of the gas and confining wall materials for heat 

transfer requires the systematic study of gas temperatures in a variety of such ma­

terials. The range of coefficients of thermal conductivity, k , covered by the current 

research is illustrated in Table 1.1. It also contains values for typical dielectric and



CHAPTER 1. INTRODUCTION 45

Table 1.1: Thermal conductivity, k , of some materials used in microplasma devices 
(in bold for this research).

Material k /  W m " 1 K - 1 References
Kapton® f 0 .1 2 DuPont [kap, 2006]
Glass 1.38 [Incropera and DeWitt, 1996]
Alumina 36 [Incropera and DeWitt, 1996]
Silicon 148 [Incropera and DeWitt, 1996]
Copper (pure) 401 [Incropera and DeWitt, 1996]
Diamond* 2050 [Worner et al., 1996]

electrode materials reported in the microplasma literature. Some electrode mate­

rials are listed, although dielectrics are typically thicker by orders of magnitudes 

in an MHCD. The latter are therefore expected to play a role in the heat transfer 

competition between solid and gas.

The above literature review has underlined the critical role of the wall materials 

and highlighted the need for further research in this area.

1.4.3 Outline of this Thesis

The background in this chapter has shown evidence of the rapid development of 

the newly established microplasma research. The increased understanding in funda­

mental aspects of microdischarge behaviour has been demonstrated in the literature,

—conferences and technological breakthroughs. However the effect of device materials------

on the operating characteristics remains underinvestigated, despite its overwhelming 

influence in microplasma physics.

The research reported in this thesis addresses two topics mediated by the walls 

and/or electrode materials: the influence of semiconductivity and the competing 

heat transfer modes inside MHCD reactors. Their systematic study was conducted 

inside micro-devices based on diamond obtained by Chemical Vapour Deposition (CVD).
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Chapter 2 provides additional background that will be necessary in the subse­

quent discussion chapters. The CVD process, conducted within our research consor­

tium, will be described in detail along with the properties of the resulting material. 

An established technique for gas temperature measurement will finally be described, 

which is based on the discharge emission spectrum.

The experimental methods and equipment employed in this research are pre­

sented in Chapter 3, along with the computer program used to extract temperature 

values from the spectroscopic data.

Chapter 4 reports on the first operation of diamond-based microplasma. A brief 

description of the fabrication by our consortium partners is followed by results and 

discussions about electrical and optical characterization at various pressures, dimen­

sions and gases.

In Chapter 5, the focus will be on the interface between the microplasma and 

the dielectric with an emphasis on heat transfer. For that reason, the reported ex­

periments will concern temperature studies conducted with reactors based on two 

materials at opposite ends of the thermal conductivity range: diamond and glass.



Chapter 2

RESEARCH BA CK G R O U ND

This thesis focuses on the characterization of micro discharges operated inside diamond- 

based reactors. In this chapter, the background required for the research presented 

in later chapters is introduced. The topics include synthetic diamond, microplasma 

modelling and the basis of one important experimental technique.

Section 2.1 CVD Diamond discusses the essential properties of this versatile 

material and their control during fabrication. Finally, Section 2 .2  Gas Temperature 

Measurements describes an established technique based on the study of the emission 

spectrum from traces of N2.

2 .1  CVD D iam ond------------  ------------ ------  ----

This section explains the chemical vapour deposition (CVD) of diamond. The de­

scription will concern its essential properties and how they can be tailored, e.g. to 

optimize the microplasma reactors for this research. The precise conditions deter­

mine the type and hence the properties of the resulting thin film. These ultimately 

determine the function of the diamond layer, i.e.: electrode or dielectric. The ver­

satility of CVD is now further described.

47
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2.1.1 Chemical Vapour Deposition

Chemical vapour deposition (CVD) is a technique for depositing thin films of many 

different materials and is the standard technique for controllably depositing lay­

ers of diamond. Applied for decades, it is however in the 1980’s that prospective 

technological and scientific progress simultaneously motivated the development of a 

“standard model” for its description. It is still the m atter of adjustments and re- 

evaluations but it remains the accepted theory on which the following explanations 

are based.

Diamond CVD can be summarized as the activation of a carbon-containing gas 

(e.g. methane) in order to deposit a thin film of diamond on a substrate. The 

dissociation of the hydrocarbons to release carbon atoms is conducted by hydro­

gen [Ferro, 2002]. For this reason the gas mixture inside the reactor chamber is 

required to contain an excess of hydrogen, typically in the ratio 1 % CH4 /H 2 . En­

ergy is needed to dissociate H2 into reactive H atoms. The latter react at the solid 

surfaces, with the carbon precursor gas or recombine into H2. Within the gas, the 

most important reaction is the creation of the methyl radical, CH3, which plays a 

driving role in the growth of the diamond film. At the surface, various hydrocarbons 

are added to the surface (adsorbed) while others, along with hydrogen atoms, are 

subtracted (desorbed). As long as the right conditions are maintained, this results 

in the construction of diamond crystals. The steady state between all the reactions, 

hence the net deposition of carbon on the surfaces, is therefore controlled by a set 

of surface and volume conditions, including the substrate temperature.

Common sources for the activation energy are plasma enhanced CVD (PECVD) 

and the hot filament method [Butler et al., 2009]. In the former, a plasma is gen­

erated inside the deposition reactor right above the substrate. This energetic envi­

ronment drives the dissociation of hydrogen, mainly via electron impact excitation



CHAPTER  2. RESEARCH BACKGROUND 49

CVD reactor CH4/H2 
|(+ B2H6)

hot filament ^

substrate

heater-
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Figure 2.1: (a) Diagram of the chemical vapour deposition of diamond, (b) Photo­
graph (taken from the current research) of the substrate holder/heater outside the 
reactor chamber. A diamond wafer lies underneath the filament.

or collisional energy transfer. Indeed collisions are frequent at the typical operating 

pressure of 20 torr. W ith the hot filament, H2 is thermally dissociated at its surface, 

which is maintained at a temperature above 2300 K. Materials with a high melting 

point are thus used, e.g.: tungsten (3683 K) or tantalum (3269 K). The hot fila­

ment method is illustrated in Fig. 2 .1 . Part (b) depicts a holder, about 5 x 5  cm2, 

that heats the substrate to optimize diamond deposition. The system (used in this 

research) was taken out of the CVD reactor, the controls of which are visible in the 

background. Underneath the filament lies a commercially available diamond wafer 

on top of which another layer of diamond was grown. The substrate and the filament 

are separated by a couple of millimetres. All the surface and volume reactions de­

pend on a complex set of coupled parameters such as the energy distribution for the 

various populations (Tc, Tgas, Th), nu or the dominant hydrocarbon species present. 

Different methods of energy input act differently on those parameters; resulting in 

various rates of diamond deposition. Nevertheless, typical values are between 0.1 

and 1 0  jum per hour [Ashfold et al., 1994].
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2.1.2 Thin Film Diversity

Diamond is not the only thin film obtained during CVD. Carbon, whether naturally 

occurring or synthetic, exists in very different phases. For the state of thermody­

namic equilibrium, they occupy distinct pressure-temperature regions on a phase 

diagram. Graphite is found in the region corresponding to the conditions of in­

terest here. It is thus thermodynamically stable under these conditions. Diamond 

has a higher mass density, with p = 3513 kg mT3 versus 2260 kg m ~ 3 (at 293 K), 

which is consistent with its creation in high pressure, high temperature environ­

ments [Ashfold et al., 1994]. However, it takes so long to convert to graphite under 

standard conditions of pressure and temperature that, to all intents and purposes, 

it is also stable. It is said to be kinetically stable. Not all carbon atoms would nec­

essarily take on either of these two crystal structures. From now on, the remaining 

arrangements will together be referred to as amorphous carbon. In a diamond thin 

film the three phases can actually cohabit.

The three main forms of carbon give rise to an extremely vast range of basic prop­

erties. Graphite is conductive and slippery (it is used as a lubricant). Every atom 

is covalently bonded to three neighbours, forming a sheet of hexagonal rings; this is 

actually graphene. In the third dimension, these sheets are stacked, held together by 

weaker van der Waals interactions; explaining the slippery nature. Diamond is an 

insulator and the hardest known material. Every atom is covalently bonded to four 

neighbours in a three-dimensional cubic crystal structure. Both phases have similar 

thermal properties whereas amorphous carbon has a thermal conductivity k «  2  W 

m - 1  K - 1  a thousand times smaller. The coefficient, k , can be thought of as the 

sum of the contributions from free electrons, ke, and vibrational states of the crystal 

lattice, ki [Incropera and DeWitt, 1996]. In non-metals ki is dominant, and highly 

dependent on the regularity of the lattice; hence the lower thermal conductivity in 

the amorphous structure.
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The selective growth of diamond is controlled by the substrate temperature 

[Ferro, 2002]. Diamond CVD is possible over a wide range of temperatures but 

in practice temperatures in the range 1200-1400 K are used. Lower temperatures 

lead to low deposition rates while higher temperatures favour graphite deposition. 

The actual process of selection is based on the preferential etching of graphite versus 

diamond by hydrogen. Concurrently, the most abundant radical in the gas, H, com­

bines with a surface H. H2 is desorbed above 1098 K [Butler et al., 2009], thereby 

enabling a strong C-C bond to be completed by CH3. Further desorption and bond 

reconstructions gradually build up the three-dimensional diamond structure.

Multiple nucleation sites lead to the growth of poly crystalline diamond 

[Ashfold et al., 1994]. The film is thus made up of many diamond crystals with vary­

ing orientation and size. This is evident from the scanning electron micrograph in 

Fig. 2.2(a). It depicts a thin film that was deposited on a silicon substrate (not vis­

ible), with a 5-pm scale in the bottom right corner. All cubes appear to have sides a 

couple of pm. Such films with crystal dimensions in the micrometer range are called 

microcrystalline. In single crystal diamond a single lattice is maintained throughout 

the sample. But it is more challenging to grow via CVD. Sometimes (synthetic or 

natural) single crystal diamond is implied when the superlative properties of dia­

mond are described. However certain studies have focused on polycrystalline CVD 

diamond, which show promising applications [Sussmann, 2009] and share many of 

those properties, e.g. thermal conductivity [Worner et al., 1996] (see Table 1.1).

The size of the diamond crystals is controlled by the substrate temperature and 

the partial pressure of CH4 [Ashfold et al., 1994]. This dependence on the deposi­

tion conditions is represented in Fig. 2.2(b). The ordinate gives the ratio of CH4 

to the total CH4+H 2 , ranging from 0 .1  to 1 0 0  %. On the abscissa the substrate
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Figure 2.2: Poly crystalline diamond thin films [Ashfold et al., 1994]. (a) Microcrys­
talline diamond, (b) Film type dependence on growth conditions.

temperature goes from 800 to 1000°C. At constant temperature, increasing the rel­

ative amount of CH4 leads to the deposition of microcrystalline diamond thin films 

(regions b, c, d, e) varying in their dominant crystal orientation. In region f  the 

film consists of nanocrystalline diamond — i.e. with sizes in the nanometer range 

— and graphite. Regions a  and g correspond to a negligible presence of diamond. 

A similar evolution in the film structure could be obtained by increasing the tem­

perature at constant CH4 concentration. During CVD, microcrystalline diamond is 

columnar, i.e. its crystals grow perpendicularly to the deposition plane. Moreover 

the grain size increases the further away from the substrate.

The film structure at the boundaries between the crystals is a determining factor 

for the various films’ properties [Isberg, 2009, Garrido, 2009]. Microcrystalline dia­

mond has higher thermal and electrical conductivities than the nano crystalline one. 

As mentioned above, other forms of carbon can exist in the film. While graphite 

is pervasive in nano crystalline diamond, a relatively low graphite content exists in 

microcrystalline films; mostly concentrated at the boundaries between the crystals. 

The grain boundaries are also the site of defects. They can take the form of pinholes
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or be regions of high impurity concentration. The latter can come from contamina­

tion of the processing gas or from intentional doping of the film in order to change 

its electrical behaviour, as explained next.

2.1.3 Sem iconducting Diamond

This section describes how diamond thin films can be made semiconducting, funda­

mentally changing the properties and hence the applications of the deposited layer. 

The preceding discussion focused on the deposition techniques and film properties of 

insulating diamond. Co-existing forms of carbon were shown to follow from CVD, 

though the process can be optimized to obtain mainly diamond. Even then, the 

resulting crystal structure was further controlled by the deposition conditions. As 

was the case for insulating films, the properties of a semiconducting diamond film 

can be finely controlled through the parameters of the CVD process.

Adding atoms of the appropriate dopant species to the gas phase initiates ex­

trinsic semiconductivity. In a semiconductor, the bandgap designates the forbidden 

electron energy levels that separate the valence band from the conduction band. 

Diamond is a so-called wide bandgap semiconductor. Its insulating character follows 

from the 5.47 eV barrier to conduction facing the electrons in its valence band. As 

a comparison, electrons need only surmount 1.12 eV in silicon; room temperature 

corresponds to a thermal excitation of 0.026 eV. Impurity atoms incorporated into 

the crystal structure offer additional energy levels to the semiconductor. The lat­

ter becomes p-type when the so-called acceptor dopant atoms have fewer valence 

electrons and the majority charge carriers are positive holes. In an n-type semicon­

ductor, the extra electrons of the donor dopants drive conduction.

Boron is the main (p-type) dopant for diamond. Starting with the CVD meth­

ods introduced earlier, the only requirement is the addition of a few percent of
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diborane, B2H6 , into the gas mixture. Upon dissociation, diborane will release the 

atoms and enabling B-doping of diamond. The energy for activating conduction in 

the B-doped layer is reduced to 0.37 eV. With its smaller atomic radius, boron fits 

into the tight diamond structure. But for donor atoms to the right of carbon in the 

periodic table, the converse poses a challenge to the development of n-type doping 

[Ashfold et al., 1994].

The conductivity of diamond is controlled during CVD via boron concentra­

tion and crystal structure. At very high concentrations, metallic-type conduction 

is achieved [Isberg, 2009]. Indeed, beyond a level of 1021 cm-3 the conduction is 

not thermally activated anymore. Rather, it resembles conduction in a metal, with 

zero activation energy. A typical value for the resistivity p is 10-3 Pi cm for mi­

crocrystalline diamond. For comparison, graphite has 7 x 10-6 < p < 4 x 10-5 Pi 

cm. Nanocrystalline diamond has the lowest conductivity, due to the larger density 

of grain boundaries. The crystal structure controls the carrier mobility. A typical 

value for single-crystal CVD diamond is 3800 cm2 V-1 s-1 [Kasu, 2009]. However in 

microcrystalline diamond it falls to 1200 cm2 V-1 s"1, which is comparable to silicon 

(1450 cm2 V-1 s-1) [Bruzzi, 2009]. The majority carriers are holes in diamond and 

electrons in silicon.

In electronic device ̂ applications, the breakdown voltage and the quality of the 

electrode contacts with the outer electrical circuit are of paramount importance. Ide­

ally ohmic contacts are sought for, in which resistance is independent of the applied 

voltage. This can be achieved through metallization of a heavily doped diamond 

layer with carbide forming metals. For the latter the list includes Ti, Zr, Hf, V, Nb, 

Ta, Cr, Mo, W [Ferro, 2002]. Other metals with the required electrode properties 

are added on top of that, which do not react with carbon but bond with the above 

elements. The list includes: Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, C(graphite), Ge,
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Sn, Pb. The resulting contacts combine electrode and adhesion quality, a common 

example being gold-on-titanium (Ti-Au) [Bruzzi, 2009]. In terms of breakdown, 

due to its wide bandgap, the maximum sustained electric field is around 108 V /m  

[Kasu, 2009]. This obviously benefits diamond-based insulating layers. But it is also 

essential for diamond electrodes since a high breakdown voltage widens the operat­

ing window in which no short-circuit would damage them.

The thermal properties of CVD diamond make it all the more apt for microelec­

tronics applications [Kasu, 2009]. It shows negligible temperature increase during 

operation. At 1 W input power, the rise was less than for any other semiconductor. 

And when forced to operate at high temperature, the carrier mobility was not af­

fected. The carrier (hole) mobility actually becomes temperature independent above 

the threshold boron concentration cited above [Isberg, 2009].

2.1.4 Fine Control of Surface Properties

The previous section focused on properties of diamond films that are controllable 

during film growth. These are mainly related to the nature and structure of the 

crystal atoms inside the bulk of the layer. Further electronic properties are linked to 

the surface conditions. This section discusses the surface properties of the deposited 

films and how they can be controlled.

Surface properties affect the electron emission characteristics of the diamond 

film. Secondary emission by Auger emission — introduced in Chapter 1 along with 

its coefficient, 7  — is mediated by the ionization potential of incoming ions, Slz. It 

was shown to play a key role in plasma ignition and stability. The condition for it 

to occur is:

S1Z > 2 { E g  +  x) (2 .1)
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Eg is the semiconductor bandgap: the energy difference between the conduction 

band minimum and the valence band maximum, x  the electron affinity: the 

energy barrier for an electron escaping from the conduction band minimum. The 

right-hand side corresponds to the energy barrier for extracting two electrons from 

the surface; one neutralizing the ion and one net electron released into the plasma.

Electron emission depends on the type of termination of the diamond surface. 

This designates the non-carbon atoms that complete the free carbon bonds at the 

end of the CVD process. An electric dipole moment results, perpendicular to the 

surface, due to the difference in electronegativity of the bonded atoms. It can either 

impede (positive x) °r favour (negative x) the emission of an electron. For instance 

hydrogen, less electronegative than carbon, leads to negative electron affinity of the 

surface. The converse occurs with oxygen, the other usual termination for CVD 

diamond. The significance of electron emission is evident in plasma display panels 

(PDP). MgO is usually the high- 7  material of choice for coating the electrodes in 

each pixel, thereby enhancing their performance. [Bachmann et al., 2001] reported 

on the higher 7  for H-terminated films compared with MgO.

H-termination actually represents an alternative source of (surface) conduction to 

“standard” hole (bulk) conduction described above [Kasu, 2009]. As a result of the 

negative x, a current channel is set up with holes as charge carriers. Whereas bulk 

conduction was seen to rely on the crystal structure, surface conduction depends 

on the state of the H-layer; i.e. atoms adsorbed on — i.e. attaching to — the 

surface can modify its electronic properties, intentionally or not. For instance O- 

termination can be used instead, in order to inhibit conduction on specific regions 

of a microelectronic circuit. H-termination simply consists in exposing a surface to 

H plasma prior to air.
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2.2 Gas Temperature M easurements

This section explains an established technique for measuring the gas temperature in 

a plasma via emission from N2 , a technique that is used to determine gas temperature 

in the microplasma studies presented in Chapter 5 M ICROPLASMA-DIELECTRIC  

INTERFACE . In this method, emission from vibrational and rotational transitions 

in N2 is used to determine vibrational and rotational temperatures for the molecule, 

and the rotational temperature is then taken as being representative of the molecule’s 

translational temperature.

This explanation starts with a discussion of the rotational and vibrational exci­

tation of molecules in a plasma environment. Next, the N2 second positive system  

is described. Finally the coupling of its UV emission to the temperature of the 

background gas is presented, which is the key to using this technique as a remote 

temperature diagnostic tool.

2.2.1 Rotational and Vibrational Excitation

The notation used in the upcoming paragraphs is best explained by way of an exam­

ple. A transition of interest in N2 occurs between the states C 3Uu and B 3II5. The 

orbital angular momentum is indicated for molecular states with an upper case greek 

letter [Lieberman and Lichtenberg, 2005], e.g.: X, II, A for A =  0 ,1 ,2 , respectively. 

The upper case roman letter distinguishes between electronic states, increasing in 

energy with alphabetical order. The ground state is conventionally labelled X. The 

multiplicity, 25+1, is obtained from the total spin, 5, and written as the superscript 

prefix to the greek letter. The wavefunction of a homonuclear molecule like N2 can 

either conserve or change its sign when describing the situation of interchanged nu­

clei. The symmetry of the invariable wavefunction is highlighted by the subscript g , 

from the German word for even: gerade. The antisymmetric wavefunction receives
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the subscript u, for ungerade: odd. A selection rule forbids any transition between 

two even or two odd states.

In addition to their electronic states, molecules possess vibrational and rotational 

energy states. The respective symbols and typical magnitudes of the energy sepa­

ration between these states are ASv ~  0.2 eV and AS j  ~  0.01 eV, to be compared 

with £e in the eV range [Lieberman and Lichtenberg, 2005]. Fig. 2.3(a) — repro­

duced from [Herzberg, 1950] — is an energy level diagram for two electronic states 

A and B, showing their respective vibrational (v" and v') and rotational (J" and J') 

states. The above three scales of energy are highlighted with three double arrows 

increasing in length from rotational, vibrational through to electronic transitions.

Focusing on emission spectroscopy, an electronic transition occurs between (a 

certain vibrational level of) an excited state and a range of vibrational levels in the 

lower state. By convention the upper and lower vibrational states are respectively de­

scribed by v' and v". For instance a group of transitions with v' = 0 —> v" = 1 , 2, 3,4 

would translate into four emission peaks. Their separation corresponds to ASv and 

their wavelength increases with v". Each vibrational band consists of a fine rota­

tional structure resolved at A Sj.

 If the upper and lower vibrational quanta have similar magnitudes, bands form

characteristic sequences with constant A v = v' — v" [Herzberg, 1950]. An example is 

displayed in Fig. 2.3(b), reproduced from [Bayram and Freamat, 2012]. The lower 

diagram in Fig. 2.3 shows various transitions in the UV region for the N2 Second 

Positive System  (SPS); the topic of the next section. They are grouped in sequences, 

with the corresponding A v  indicated above and energy levels on the right-hand side. 

The peaks in the spectrum on top of it match the underlying arrows and are labelled 

with the values of v' — v".
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Figure 2.3: (a) Energy level diagram for electronic states A and B with their vibra­
tional (v" and v') and rotational (J" and J ') states [Herzberg, 1950]. (b) Constant 
A v  sequences from N2 SPS [Bayram and Freamat, 2012].
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When taking into account the rotational states in vibrational (de-)excitation, the 

selection rules lead to grouping in so-called branches [Herzberg, 1950]. As outlined 

earlier, a peak (more precisely a vibrational band) in Fig. 2.3(b) is made up of 

electronic, vibrational and rotational contributions:

v =  ve +  vv +  vr

The first two terms are constant for a given band. For the rotational quantum 

number J , the selection rule is A J  =  —1, 0,1 and gives rise to three series of lines, 

respectively the P, Q and R branches. Expanding the vr term above into rotational 

terms of the upper (F') and lower (F ") states yields:

v = constant +  <

F ' ( J - T )  

F' (J)  

F ’(J  + 1 )

(P branch) 

(Q branch) 

(R branch)

► -  F"(J) (2 .2)

The branching creates band-heads in molecular emission spectra [Herzberg, 1950]. 

The expression above is in fact of the quadratic form — in ra2 — referred to as a 

Fortrat parabola. Each line in the fine structure is numbered by a value of that 

integer m. Although beyond the scope of the current discussion, this helps visualize 

the origin of the shading in the emission spectrum. Plotting the above v  as the 

wavenumber on the abscissa and m  on the ordinate results in a diagram such as Fig.

2.4 (reproduced from [Herzberg, 1950]). The head-forming branch and m  may vary 

and lines from different branches — P and R in this graph — may coincide. The 

band resolved in this figure occurs at 388.3 nm in the CN spectrum. Underlying the 

graph is a spectrum at the same scale, demonstrating the accumulation of spectral 

lines around a band-head; towards the lower wavenumbers. W hat is of interest here
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Figure 2.4: Fortrat parabola and the concept of band-head [Herzberg, 1950].

is how this results from branching. This is indeed a characteristic of the molecular 

system that is discussed next.

2.2.2 N 2 Second Positive System

This section focuses on one particular set of transitions in molecular nitrogen, the 

set that is relevant for determining gas temperature. Previously the fine structure 

of molecular spectra was introduced in terms of the quantization of vibrational and 

rotational degrees of freedom. In particular, the condition for vibrational bands 

occurring in sequences of constant A v  was explained as well as t he appearance of 

band-heads. Attention is now drawn to the so-called N2 second positive system. Its 

excitation and relaxation mechanisms are explained and linked to the thermal state 

of the neutral background gas in a plasma.

The N2 second positive system consists of C 3n u — B 3n 5 transitions. The N2 (C) 

state gets populated from the vibrational ground state X 1E5. Electric dipole emis­

sions occur in the UV and visible regions (see Fig. 2.3(b)). The narrow separation
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of the rotational levels allows their description in terms of a Boltzmann distribu­

tion. Therefore a rotational temperature, Trot, can be assigned to the corresponding 

vibrational band. In fact, the aforementioned figure exemplifies a too-low resolution 

spectrum in which the rotational structure of the bands is not detected.

Trot in the excited N2 (C) and ground N2 (X) states can be equalled under certain 

circumstances. Stepping back to the electronic level of the molecule, its value Se 

depends on the interatomic distance, R. However the typical electron-neutral col­

lision interaction time (tc ~  1 0 - 16- 1 0 -1 5  s) is shorter than the molecular vibration 

time (tvib ~  10“ 14 — 10~ 13 s) [Lieberman and Lichtenberg, 2005]. As a result R  

is assumed fixed during electron excitation in the so-called Franck-Condon princi­

ple. Therefore, under this excitation mechanism, the rotational quantum number 

of the N2 (C) state is that of the original ground state. In other words Trot,c gives a 

measure of Trotjx- Furthermore, the N2 (X) state is in rotational-translational equi­

librium with the neutral gas at the high pressures of interest in this thesis 1 0 2 

torr). Consequently Trot,c ~  Trot,x «  Tg.

2.2.3 Gas Temperature Coupling

This section explains how the above N2 SPS characteristics are applied to extract 

the gas temperature in a nitrogen-containing discharge. A common limitation is 

also presented.

With its second positive system N2 offers a convenient diagnostic tool. Nitrogen 

in the discharge can either come as an impurity or added to the background gas. 

A fraction of a percent is enough to conduct gas temperature measurements. The 

resulting emission in the near UV is prominent and therefore easily detected. Vari­

ous transition sequences are available for this type of study. The most intense lines
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corresponding to A v = 0,1, 2 ,3 ,4  were highlighted in red in Fig. 2.3(b).
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The gas temperature is obtained by fitting simulated and experimental spectra. 

The former is generated by computing the relative positions and intensities of the 

P, Q and R branches of the N2 emission from molecular constants. An initial value 

of Trot is given to the algorithm as an input fitting parameter. Then the algorithm 

iterates over new values until a best fit is achieved with the measured spectrum. 

Under the coupling conditions outlined above, the final value is therefore equivalent

to Tg.

Limitations of this technique are known in the presence of argon. In this case 

the assumption of N2 (C) excitation driven by direct electron excitation of N2 (X) 

is flawed. Indeed in the discharge, the energy of argon metastables, ArJ^, matches 

the excitation energy of the latter. This mechanism of heavy-paticle collisions is all 

the more important at high pressure. Various studies have recently focused on this 

phenomenon. Building on previous studies that showed the prominent influence of 

argon at high values of J ', [Wang et al., 2007] developed a two-temperature fitting 

method for their experimental data. The resulting better agreement at low J ' im­

proved the confidence in the model results. In [Friedl and Fantz, 2 0 1 2 ] experimental 

spectra were studied for N2-Ar mixtures ranging from 0.1 to 100 % of nitrogen. The 

dependence on pressure of various reactions was also investigated and all results 

were compared with a model.

The general conclusion of these works is that evaluating the gas temperature 

via the N2 SPS with argon present leads to an overestimation of Tg. The thermal 

studies reported in Chapter 5 were conducted in argon as well as helium and so this 

problem does not concern the latter. Its significance will be discussed in the next 

chapter in section 3.5 N2SPS Fitting.



Chapter 3

M ETHODS

This chapter presents the experimental methods for the operation and characteriza­

tion of the microplasmas. Describing the microplasma behaviour can be done in a 

number of ways, prompting the following chapter structure.

Section 3.1 General Set-Up introduces the laboratory environment designed for 

the current research. Section 3.2 Electrical System  details the electrical aspects of 

experimental measurements. In Section 3.3 Optical Imaging, the equipment for the 

visual observation of the microdischarges is described. A more specific set-up is the 

topic of Section 3.4 Optical Emission Spectroscopy. The results of the latter serve 

as input for the temperature measurement technique. For that purpose, section 3.5 

N2SPS Fitting describes the algorithm employed to extract the gas temperature from 

N2 spectra.

3.1 General Set-Up

The present section lists the general tools and parameters used to conduct all the 

studies reported in this thesis. A more specific description of the various micro­

plasma reactors is the topic of the following chapter.
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(b) (c) (d)

Figure 3.1: General set-up for microplasma operation and study.

The vacuum chamber assembled for this research is depicted in Fig. 3.1. It 

consists of a stainless six-way cross, with the following items:

• all evacuation components are localized in the foreground. A turbo-pump 

( L e y b o l d  V a k u u m : Turbovac 50, 1200 Hz) is identified by its black cylin­

drical power supply unit. It is connected via the flexible hose to a backup 

roughing pump (E d w a r d s :  5 Two stage E2M5); not visible. These items can 

be isolated from the vacuum rig by a gate valve (VAT: A-594306); offering 

pressure control withjninimal handling of the pumps.  _____ ___ _____

• a pressure gauge ( P f e i f f e r  V a c u u m : Compact FullRange Gauge PKR251) 

sits on top of the rig as a white cylinder. Its “Dual Gauge” controller ( P f e i f f e r  

V a c u u m : TPG262) cannot be seen.

• a flange (facing the red chest of drawers) contains a linear translator (MDC 

V a c u u m  L t d .) ,  depicted in Fig. 3.1(b). This offered control on the distance 

between the micro-device and the measuring apparatus, fine-tuned with a 

micrometer scale.
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• at the bottom left of the photograph and across the chamber from the previous 

flange, a viewing port (window flange) is visible. All diagnostic equipments 

were set up on an adjacent optical table. Fig. 3.1(c) shows a white device 

holder at the end of the translator; with the red and yellow electrode clips 

(more on this later).

All of the micro discharge operation was conducted inside a controlled atmo­

sphere. The above equipment could achieve very high vacuum. However its sole 

purpose was to offer a controllable and reproducible working environmnent. Prior 

to microdischarge ignition, the vacuum chamber was evacuated to 1 x 1 0 - 5  torr 

then backfilled with the required gas (mixture). Research grade argon or helium 

were supplied to the chamber via a system of overhead taps. During temperature 

measurement experiments, 0.5% per volume of nitrogen were added. Between two 

experiments at different pressures, the power supply was always turned off and the 

chamber evacuated.

3.2 Electrical System

The electrical equipment and measurements are now presented.

The electric circuit was made up of a high-voltage power supply ( S t a n f o r d  R e -  

— SEARCH S y s t e m s :  PS325/2500V-25W), a micro-reactor connected inside the cham­

ber and two 68 kfi wire-wound carbon film resistors (RS COMPONENTS: nr 132-933,

0.5W) in series. Electrical contact with the micro-device electrodes was achieved 

by mechanically pressing 8-/im  tantalum foil ( A d v e n t  R e s e a r c h  M a t e r i a l s :  

TA213911) strips against the corresponding surface. These strips were in turn  con­

nected to the circuit wiring through crocodile clips. In Fig. 3.1(c), the yellow and 

red clips connected the back and front electrodes, respectively. Halfway between 

those, the microplasma device is made apparent by a cutout in the white holder.
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PTFE holders were purpose built to house the microplasma devices inside the 

vacuum chamber. Their dual goal was to offer mechanical support and ensure con­

sistent and reliable electrical connections. Once mounted, the microplasma reactor 

system comprised the following sandwich, from front to back in Fig. 3.1(c): a 

PTFE layer (white in the photograph), a tantalum foil, the micro-device, a tanta­

lum foil, a PTFE layer. Mechanically, four plastic screws pressed the PTFE layers 

together, thereby immobilizing the reactor and ensuring good electrical contacts. 

Electrically, the device holder increased the separation between opposite contact 

polarities, thereby ensuring that breakdown would occur inside the cavity, e.g. as 

opposed to between the crocodile clips. As can be seen in Fig. 3.1(c), a 1 0 -mm 

diameter circular cutout allowed continuous observation of the cavity.

The electrical characterization was conducted via a digital oscilloscope ( T e k t r o n i x :  

TDS 2014 B). High-voltage probes continuously read the gap voltage: the poten­

tial difference between the powered electrode and ground. The applied voltage was 

increased in 10 V maximum increments until breakdown was reached. Subsequent 

increments depended on the experimental goals and constraints, ranging from 1 0  

to 100 V. All steps of voltage and current were recorded. The latter came from 

the power supply read-out, compared to concurrent output of a digital multimeter 

( F lu k e :  27 II)_________________________________________ —  --------

3.3 Optical Imaging

In this section, the optical gear is described, along with the good practice estab­

lished to perfect the development and characterization of microplasma reactors and 

sources.
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All imaging was conducted with the device held face-on behind the viewport of 

the vacuum chamber. The set-up in Fig. 3.1(c) is shown magnified during micro­

plasma operation in Fig. 3.1(d). An optical table lay adjacent to the general set-up 

presented above. This isolated the diagnostic hardware mechanically from the op­

erating equipment. The stable, bread-board type table enabled an accurate and 

reproducible horizontal and vertical alignment of all the optics.

A USB digital microscope (ANMO E l e c t r o n i c s  C o r p o r a t i o n :  Dino-Lite 

AM-4013 TL) served as the general tool for visual characterization. Offering photo­

graphic, video and live feed functions, it facilitated the set-up, calibration and visual 

control of every experimental procedure. Its built-in magnification was sufficient to 

study the development of a microplasma in and around the cavity; e.g. when cou­

pling observation with electrical measurements for investigating the cathode side 

expansion.

More accurate imaging was carried out with intensified charge-coupled device 

(ICCD) cameras. The two models used were the S t a n f o r d  C o m p u t e r  O p t i c s  4 

Picos-DIG and the A n d o r  460 model DH534-18F-01. Both allowed time-resolved 

measurements. They were used behind magnifying optics in order to characterize 

the spatial distribution of the microplasma -inside the reactor.— ---------  — --------

Magnification of the microplasma source during operation was achieved through 

the following combination of optical elements. A 1 ", f=50.0 mm visible achromat 

(THORLABS: AC254-050-A-ML) was maintained 75 mm from the object under ob­

servation. A lOx microscope lens (OLYMPUS: Plan N) was 115 mm away from 

the achromat. The magnified image was focused 270 mm behind the front of the 

lOx lens. In this configuration, the magnification was determined by substituting
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Figure 3.2: (a) Test target for calibrating and measuring the magnification of the 
optical system, (b) SEM of a diamond-based micro-reactor.

a 3" x  3" negative test target ( T h o r l a b s :  USAF1951, R3L3S1N) for the object. 

Fig. 3.2(a) illustrates the increasingly smaller periodic pattern occurring on the tar­

get. A look-up table converts the identification number of the smallest grid being 

in focus into an optical resolution. Under back-illumination, the magnification for 

the above optical system worked out to x  14. This value offered the best compro­

mise between image size, number of optics and length of the complete optical train.

When further magnification was necessary, a Scanning Electron Microscope (SEM) 

was employed (Zeiss: SUPRA 55VP). Fig. 3.2(b) depicts a micro-cavity prototype 

for this research. The SEM was used to identify the various layers of CVD diamond:

• from the bottom nearly all the way up, the B-doped diamond wafer (obtained 

commercially) is more or less uniform

• the top surface and rim consist of microcrystalline B-doped diamond deposited 

by CVD by this research consortium

• between the two, a thin dark band (most visible on the right- and left-hand 

sides of the rim in the above picture) was identified as the undoped diamond 

layer, also deposited for this work.

Such high-resolution micrographs assisted in the resolution of device breakdown 

problems. Having linked the latter with a too thin dielectric layer, subsequent
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consortium meetings ordered that CVD start with a (250-/xm) thick commercially 

available undoped wafer. The electrodes were then applied, as described in the next 

chapter. The various coloured patches on the cavity walls were not unambiguously 

identified. However they led to the critical decision of systematically acid-cleaning 

the reactor holes as the ultimate packaging step. This was designed to remove any 

potential unwanted conductive graphite patches resulting from laser ablation of di­

amond.

The signal-to-noise ratio was maximized for optical as well as spectroscopic mea­

surements (discussed next). Indeed, from the viewing port to the entire optical table, 

the laboratory area was kept under a shroud during all operation. The individual 

lenses were further obscured by connecting them with an optical tube ( T h o r l a b s ) .

3.4 Optical Emission Spectroscopy

This final section on experimental equipment discusses Optical Emission Spectroscopy 

(OES). The hardware is first described, followed by its calibration and resolution.

The following monochromator was used in conjuction with either of the ICCD 

presented above: H o r ib a  J o b in - Y v o n  Triax 320, nr 07435D-04-05. A low resolu­

tion 300-mm_1 and a higher resolution 1800-mm-1 gratings were available, blazed 

at 500 nm. Alignment (horizontal and vertical) with the optical system and source 

was carried out with a laser. It was first shone from the approximate position of 

the centre of the ICCD, i.e. behind the monochromator. In so doing, the internal 

mirrors of the latter, the optics in front of it and the micro-cavity inside the vacuum 

chamber were all aligned. Next the laser was substituted for the micro-reactor, al­

lowing a fine adjustment of the x-y position of the ICCD.
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The entrance slit width was optimized by measuring the spectral resolution 

with visible He-Ne laser at 632.8 nm. It was set up behind a ground glass dif­

fuser ( T h o r l a b s :  1.0", 120 GRIT, DG10-120-MD), again at the position of the 

microplasma. Openings from 30 to 100 fim  were compared on the basis of the full 

width at half maximum of the ICCD signal. The resolution was sensibly less at 100 

\im and the signal significantly weaker for the 30 /im opening. The best resolution 

of 0.1 nm was obtained with the final slit width of 50 fim. Equally importantly, it 

turned out that, over the whole range of microplasma operation, the signal was too 

weak for smaller openings and overexposed at larger ones.

The signal-to-noise ratio was optimized, as explained above for optical imaging. 

In addition, between every spectrum recording, a background signal was acquired 

and subtracted from the corresponding data.

3.5 N2SPS Fitting

The algorithm used to obtain the gas temperature results reported in this thesis is 

now described. From the emission spectrum of the N2 SPS, data extraction follows 

the technique explained at the end of the previous chapter. The model was used 

under the guidance of one of its authors, P. C. Johnson.

An algorithm, which shall be referred to as N2SPS, computes rotational and vi­

brational temperatures; Trot and TV1 b. It uses the sequence with A v = 2  in the 

C 3n u — B 3Ug system. In particular the lines corresponding to v' — v" transitions 

0  — 2 (at 380.5 nm) and 1 — 3 (375.5 nm) are analyzed. With transition probabilities 

studied by the model authors in [Hartmann and Johnson, 1978], TVib is derived from 

the relative intensities of the vibrational band-heads. Furthermore, Trot is computed 

from the shapes of those vibrational bands. The P, Q and R branches are evaluated,
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Figure 3.3: Example from the current research of a model fit (red) of the measured 
spectrum (black) of the N2 Second Positive System. Between the vibrational band- 
heads, the rotational levels are resolved.

based on rotational terms from [Herzberg, 1950], up to rotational terms J  =  80. 

The resolution of the rotational levels can be seen in Fig. 3.3 between the peaks or 

vibrational band-heads.

The position and resolution of the spectral lines are analyzed prior to the ac­

tual fitting. A M a t h C a d  program detects the band-heads in the output data from 

the ICCD and corrects their wavelengths. A slit function is automatically applied, 

starting from an initial input value,-that iteratively determines the spectral line 

broadening that corresponds to the measured spectrum. The limit in spectral reso­

lution was attributed to the optical system.

Another M a t h C a d  program, that calculates the model-data best fit, does so 

with four parameters. The values of Trot and Tvib are provided as input and subse­

quently iterated over. The background emission level is determined and subtracted 

in the early stages of the simulation. The population of the N2 (C) state provides a
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measure of the emission intensity. Finally a Levenberg-Marquardt algorithm (run by 

the M a t h C a d  Genfit function) combines those parameters to fit the resulting model 

spectrum to experimental data. The algorithm was tested in a previous research at 

the Open University with the same measuring equipment [Sutton, 2011] against an 

established model (Specair) and another Levenberg-Marquardt method. An average 

uncertainty of 7% was then determined from test spectra comparisons. This is taken 

in later chapters as the uncertainty in the temperature values. In addition, given 

the limitations arising for N2 SPS coupling with argon-based measurements (see end 

of the previous chapter), the corresponding values will be interpreted as maxima.



Chapter 4 

M ICRODISCHARGES IN  

D IAM O ND SUBSTRATES

4.1 Introduction

The aim of the research reported in this chapter was to achieve the first operation of 

diamond-based devices and make preliminary comparison of their operating charac­

teristics with those obtained from similar microhollow cathode devices by other re­

searchers. Part of this work has been reported more concisely in [Mitea et al., 2012]. 

A key aim was to confirm the suitability of diamond-based reactors for this and fu­

ture microplasma research.

Prior to any experimental study, the design and fabrication of the aforemen­

tioned devices was the result of a consortium comprised of partners based at the 

University of Bristol and the STFC Rutherford Appleton Laboratory (RAL). In the 

School of Chemistry at the former, a team of diamond experts led by Professor Paul 

W. May1 were in charge of the diamond insulators and electrodes in the microplasma

:Dr Neil A. Fox, Dr Judy Hart and PhD student Monika Zeleznik (EPSRC grant 
EP/G069980/1).
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reactors. At RAL, work in the Micro and Nanotechnology Centre2 was conducted 

by Professor Robert Stevens3 and Chantal Fowler on the use of novel techniques for 

laser drilling microcavities and device packaging.

The current author’s contribution to the design and packaging consisted of dis­

cussion and feedback on device performance rather than direct fabrication. A brief 

description of this process is nevertheless necessary. This is given in Section 4.2.

The rest of this chapter is divided as follows. Section 4.3 presents observations 

and measurements of the performance of the first diamond-based devices. Section

4.4 contains a discussion of these results, including comparisons with experiments 

and theoretical descriptions reported by other research teams.

4.2 Diamond-Based Micro-Reactors

4.2.1 Fabrication

The diamond-based devices were based on 250 /im-thick substrates of polycrystalline 

diamond insulator. The two principal designs are represented schematically in Fig. 

4.1. Their common substrate, formed of insulating diamond and shown as the 

larger black square in the figure, was obtained from Element Six as mechanical- 

grade freestanding 10 x 10 mm2 wafers4. This determined the dimensions of the 

final devices. The undoped substrate was therefore the central part of the electrode- 

dielectric-electrode sandwich.

The device shown in Fig. 4.1(a) consists of the insulating substrate with ad­

ditional layers of boron-doped diamond deposited on each side of the wafer. The 

boron-doped diamond is semiconducting and so these layers act as the electrodes

2EPSRC grant EP/G060886/1
3Now Professor in Smart Materials and Devices - Nottingham Trent University.
4Product code 145-500-0015.
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(a) (b)

Figure 4.1: Diagram of diamond devices. A central hole is shown, along with a cut­
out of the electrode-dielectric-electrode sandwich, (a) B-u-B, B-doped-undoped-B- 
doped diamond and (b) G-u-G, gold-undoped diamond-gold.

in the final microhollow cathode device. The discharge cavity was formed by laser 

drilling a hole through the three-layered substrate. For the rest of this thesis, these 

devices, formed of a B-doped diamond layer, the undoped insulting diamond sub­

strate and a second B-doped conducting layer, will be referred to as B-u-B reactors.

The device shown in Fig. 4.1(b) has a similar geometry but the electrode layers 

are formed of titanium-gold layers deposited onto the insulating diamond substrate. 

These devices, consisting of a thin metal electrode, the insulating substrate and a 

second metal electrode, will be referred to as G-u-G devices; a mnemonic for “gold- 

undoped-gold” .

Some preparation of the wafers was necessary prior to the addition of the elec­

trodes. Their first treatment was a warm bath of concentrated nitric acid in order 

to clean off any residue from polishing. The latter was a default post-production 

operation on one of the wafer faces by the supplier. Depending on the type of elec­

trode, a different team and deposition technique was involved. For the final step a 

central cylindrical through-hole was drilled.

The following process was used to fabricate the B-u-B devices. The boron-doped



CHAPTER 4. MICRODISCHARGES IN  DIAMOND SU BSTRATES 77

Figure 4.2: The mask in (a) prevented contamination of the substrate during deposi­
tion of the B-doped layer, which has matching shape in (b). Similarly, the substrate 
edges were covered during metal layer deposition (c). Close-up top view of the final 
micro-reactors and holes: (d) B-u-B and (e) G-u-G.

semiconductor electrodes were added by chemical vapour deposition by the Bris­

tol team. Accidental contamination of the undoped substrate by boron impurities 

needed to be avoided to prevent short-circuits between the upper and lower B-doped 

diamond layers. Inside the CVD reactor, a silicon mask was therefore applied to 

cover the edges while the zone intended for diamond growth was exposed through 

cutouts. A photograph of a mask is presented in Fig. 4.2(a), with the resulting 

B-doped regions on an undoped wafer in Fig. 4.2(b). The rectangular shape follows 

from tests carried out on various packaging formats. Further precaution consisted in 

laser trimming the outer edge of the sample. The final thickness of the B-doped layer 

could vary between 2  and 3 fim. A 300-/im diameter hole was drilled with a Nd:YAG 

laser-based micro-machining system5 and is shown magnified in Fig. 4.2(d). The 

sample was cleaned in ^  80°C sulfuric acid (90%) and potassium nitrate (2 g in 

40 ml of acid) for 15 minutes. This was aimed to remove possible surface contam­

ination by graphite from laser etching; offering conduction. Hydrogen termination 

was obtained by exposition of the device to a hydrogen atmosphere for a few minutes.

The G-u-G reactors were fabricated using the following process. Metal electrodes 

were added to the undoped diamond substrate by the RAL team. First, a 30-minute 

dehydration bake of the wafer on a hot plate removed any prior contamination. A 

layer of titanium (100 nm) then gold (500 nm) were deposited in an SVS E-Gun

5Alpha, Oxford Lasers, UK.
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(b) (c)

Figure 4.3: (a) The first prototype integrated eight microplasma reactors on a single 
chip, (b) They were addressed through a set of independent surface tracks and pins, 
(c) The whole chip was sealed and fed with copper gas pipes.

evaporator. Titanium  improved the stability of the gold-diamond interface. The 

edges of the wafer were protected with a Kapton® adhesive tape. As with the silicon 

mask above, this resulted in an electrode-free border, which is visible on the face-on 

photograph of a G -u - G  device in Fig. 4.2(c). The yellow region is gold, surrounded 

by the underlying black undoped diamond. Residual m etal stress from the film 

deposition was removed by rapid therm al annealing at 500°C for two minutes. A 

hole was drilled with a micro-machining system based on a 355 nm diode-pumped 

solid-state laser6 with a diameter of 100 or 200 /im. A magnified example is shown 

for the latter in Fig. 4.2(e). Finally, each device was exposed to an oxygen plasm a7 

for 60 minutes in order to clean off any contamination of the diamond substrate 

from the fabrication process.

4.2.2 Failures and  M odifications

In order to facilitate set-up and limit handling of the reactors, early designs allowed 

the device chips to be integrated into a single package. The result was a microplasma 

reactors-on-chip reminiscent of a surface mount microchip. Such a device is shown 

in Fig. 4.3, where 8 devices have been fabricated on a single 10 x 10 m m 2 wafer, 

complete with pads for electrical connections. The black square in Fig. 4.3(a) is 

overlaid by eight square gold electrodes arranged in two rows. Some of the larger

6This task was outsourced to Micronanics Ltd, based on the RAL premises.
7PVA TePla America Inc.
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holes are visible in the centre of the respective electrodes, with the largest having a 

diameter of 70 //m. Small connecting gold wires can be seen to bond to contact pads, 

which look like smaller electrode squares. In Fig. 4.3(b) conductive tracks radiate 

from the diamond wafer, connecting each electrode (through gold bond wires) to a 

pin (labelled in red). The back of the diamond wafer was taken to be the ground 

electrode. The two rows of five pins, for mounting on a printed circuit board, can 

be seen above and below the blue-framed microchip holder in Fig. 4.3(c). This 

configuration was meant to allow switching between microplasma reactors via the 

corresponding pin-circuit, i.e. without handling the diamond chip itself. A sealed 

quartz window created a confined environment. Long copper gas pipes (left and 

right on Fig. 4.3(c)) were added to feed the gas in and out via the left and right 

circular openings in Fig. 4.3(b).

Although early designs promised simple handling and operation, there were sev­

eral practical problems. In the reactors-on-chip device, discharges would occur 

around the wire-bonds instead of inside the cavity. It was not clear whether the 

failure was due to a fault in the electrical wiring or in the diamond wafer. This 

uncertainty was addressed by adopting single device chips, such as the G-u-G one 

depicted in Fig. 4.2(c). Subsequently, a single holder and electrical connection 

arrangement was used, as described in Section 3.2, for all devices; making fault 

tracking easier _______   — ----------------------------------- ---------- -----------

The B-u-B and G-u-G devices described earlier were both based on an insulating 

diamond substrate, with conducting electrodes deposited on both sides of the wafer. 

Another early design consisted of a conducting B-doped diamond substrate, coated 

with an insulating diamond layer on one side and then another conducting layer 

on top of that. This device had a very thin insulating layer, typically < 5 fim, 

decided in part to compensate for the very slow deposition rates achieved within
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our consortium. It promised different operating characteristics to the devices based 

on a thick insulating layer. However this appeared to favour device breakdown before 

any possible microplasma ignition, linked to pinholes bridging the undoped diamond 

crystal. Also, surface conductive pathways were detected along the insulator. The 

above issues were identified on single devices. As a result it was agreed to base all 

subsequent reactors on commercially available thicker (250 fim) undoped wafers and 

to use the aforementioned masking procedure.

4.2.3 Success M ilestones

The previous section described some problems faced during development of diamond- 

based microplasma devices. However, the fabrication problems were overcome with 

the designs shown in Fig. 4.2 and successful electrical connection was achieved with 

both types of discharge device. For the gold electrode devices, the electrodes were 

connected mechanically by pressing tantalum foils onto the gold surface, using a 

specially designed PTFE holder (see Section 3.2). For the boron-doped diamond 

electrodes however, their semiconducting nature meant that reproducible reliable 

contact was required. This was achieved by building on the patterning techniques 

from the reactors-on-chip. Contact pads in (titanium-)gold were deposited in a cor­

ner of the diamond. In addition the diamond electrode films were doped to near 

metallic conductivity with a measured boron concentrations of 3 x 1027 m - 3  (esti­

mated fronrcalibrated SIMS analysis [May et al., 2008]).

The type of microdischarges generated inside both types of diamond-based reac­

tors were typical of those observed in MHCD’s by other teams. The operating win­

dow was confirmed by repeated operation under the intended conditions of study. 

The results of subsequent electrical and optical studies are reported in the next 

section.
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4.3 Results

Electrical and optical measurements were carried out to determine the type of 

(micro-)discharge obtained inside the reactors described above. They also served to 

characterize the ignition stage and the influence of key parameters on the behaviour 

of steady state microplasmas. The following results were obtained in helium and 

argon at pressures from a few torr to beyond atmospheric pressure. In order to 

validate this microplasma study, the first to use diamond as the substrate material, 

results are benchmarked in the Discussion section against reports by other teams 

using similar micro discharge devices.

4.3.1 Paschen Curves and Ignition M echanism

Paschen curves were obtained in both helium and argon microplasma and indicated 

conventional glow discharge ignition mechanisms. When ignition and sustainment 

are driven by electron avalanche between the electrodes and secondary electron emis­

sion at the cathode, the typical skewed U shape is obtained8. Experimental plots 

are displayed in Fig. 4.4 for G-u-G reactors and Fig. 4.5 for B-u-B reactors. The 

ordinates represent V&, corresponding to the applied voltage at which ignition was 

detected visually (bright light turning on) and confirmed electrically (simultane­

ous current rise and voltage drop). On the abscissa is the product pd, in torr cm. 

Each point corresponds to a different experiment for which the breakdown condi­

tions were recorded. The legend to the graphs indicates the diameter of the devices 

ranging from 100 to 300 jim. The same linear-logarithmic scale was used as in Fig.

1.4 that served to introduce the Paschen relationship. The corresponding theoret­

ical curve appears as a black solid line, matching the A, B  parameters (taken in 

[Lieberman and Lichtenberg, 2005]) and 7  coefficients to the gas and cathode ma­

terial in each graph.

8first presented in Figs.1.4 and 1.8, with the theoretical expression in Eq.1.21 (p. 26).
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Figure 4.4: Paschen curves for G-u-G reactors of various diameters, D.
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Figure 4.5: Paschen curves for B-u-B reactors with D  =  300 fim.
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The case of helium microplasma in G-u-G devices is illustrated in Fig. 4.4(a). 

The value of 7  =  0.5 was taken from [Hayden and Utterback, 1964]. Results for ar­

gon microplasma in G-u-G reactors are shown in Fig. 4.4(b). The value for 7  =  0.04 

comes from [Lakits et al., 1990]. A minimum is observed, although it appears shifted 

towards higher pd and V& relative to the theoretical curve. The shape of the curve 

and similarity with that of other glow discharges (discussed in the next section) 

nevertheless confirm the manifestation of conventional breakdown mechanisms of 

electron avalanche and secondary electron emission.

An overvoltage at ignition contributes to the higher experimental V&. The micro­

plasma can turn on at a higher voltage than its true breakdown value. Indeed, 

despite every precaution to reach the breakdown voltage gradually (10 V or less 

increments in this work) the microplasma would often be detected with current in 

the mA range.

Helium and argon microplasma data generated with B-u-B reactors is presented 

in Fig. 4.5. The values of 7  =  0.34 for helium and 7  =  0.3 for argon were taken from 

[Matsunaga et al., 2003]. There is a stronger discrepancy with the theory than for 

the case of gold cathode. The only other difference was the diameter of the cavity.

On the one hand all of the graphs adopt the shape of the theoretical Paschen curve, 

i.e. the same evolution along the pd axis. On the other hand there is overall a—  

significant increase in V&. This is specifically linked to the semiconductive nature of 

the electrodes in Section 4.4. Still, the B-u-B reactors remain governed by the same 

breakdown mechanisms as above.

4.3.2 V-I  Characteristics and Normal Glow M ode

In the normal mode, the V -I  characteristic takes on a flat gradient. This corre­

sponds to a constant current density mode, in which the current increase at higher
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input power is accompanied by the expansion of the discharge, hence its surface 

area, on the cathode surface. Once the latter electrode is fully covered, any further 

current rise can only be sustained by a voltage increase. The resulting positive V -I  

gradient signals the abnormal glow mode.

Fig. 4.6 presents V -I  data for three reactor configurations, obtained at 400 torr. 

Two G-u-G (diameters 100 and 200 pm) and one B-u-B devices are compared. The 

legend to each graph specifies the materials and hole diameters. Voltage (in V) is 

plotted against current (in mA). The value of the former corresponds to the gap or 

inter-electrode voltage, expressing the total potential drop across the entire micro­

plasma. The data points were obtained by a high-voltage probe connected between 

the ground and the powered electrode. Alternatively, subtracting the potential drop 

across the series ballast resistor (132-kO here) from the applied voltage yielded a 

close value. The excess voltage obtained with the latter calculation is displayed as 

one-sided uncertainty bars in Fig. 4.6. Contributions to it were not systematically 

investigated but include a potential drop at the imperfect electrode contacts and a 

higher than nominal resistance due to ballast heating.

In helium, Fig. 4.6(a), the gradients for all reactors are flat or slightly posi­

tive for most of the operating range. Argon data in Fig. 4.6(b) also supports the

operation in normal glow mode The curves indeed show a flat V -I  gradient. In

both conditions the voltage rise is not sufficient to characterize the glow mode as 

abnormal, as was further confirmed by visual inspection of the microplasma growth 

outside its cavity.

Consistently with operation in the normal glow mode, the microplasma was ac­

tually seen to gradually cover the cathode surface with increasing current. The 

situation in helium is pictured at three different pressures in Fig. 4.7 and Fig. 4.8
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(b) argon microplasma

Figure 4.6: Gap voltage V  against discharge current / ,  obtained by increasing the 
input power during discharge operation. The gas pressure was 400 torr. The reactor 
type and hole diameter are labelled in the key to each figure.
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(a) 0.27 mA (b) 1.48 mA (c) 3.57 mA
1.5 kA m -2 1.7 kA m “ 2

(d) 0.17 mA (e) 3.44 mA (f) 6.41 mA
16 kA m -2 12 kA m-2

(g) 1.25 mA (h) 3.54 mA (i) 6.49 mA
24 kA m -2 27 kA m ~2 31 kA m “ 2

Figure 4.7: Cathode-side expansion of a helium microplasma in a 100-pm diameter 
G-u - G  reactor at (a-c.) 100 torr, (d-f) 400 torr and (g-i) 760 torr. A 100-/im red scale 
is visible at the bottom  left of each picture.

(a) 0.81 mA (b) 1.57 mA (c) 5.04 mA
0.3 kA m -2 0.3 kA m -2 0.5 kA m -2

(d) 0.78 mA (e) 1.32 mA (f) 3.53 mA
1.6 kA m ~2 1.4 kA m -2 1.0 kA m -2

(g) 0.98 mA (h) 3.65 mA (i) 5.10 mA
0.6 kA m -2 1.7 kA m -2 1.6 kA m -2

Figure 4.8: Cathode-side expansion of a helium microplasma in a 300-pan diame­
ter B - u - B  reactor at (a-c) 100 torr, (d-f) 400 torr and (g-i) 760 torr. The bright 
horizontal line at the top of (a-c) signals the presence of the tantalum  foil used for 
electrical contact. A 300-pm red scale is visible at the bottom  left of each picture.
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for the G-u-G and B-u-B reactors, respectively. Each row of photographs was ob­

tained by increasing the input power at constant pressure: 100, 400 or 760 torr. The 

caption indicates the current; in black. The current density, in red, was obtained by 

dividing the discharge current by the cathode area covered by the microplasma. For 

the area, the cross-section of the discharge inside the hole was excluded in order to 

emphasize the role of the cathode material around the hole (discussed next). The 

diameter of the hole was 100 fim  for the G-u-G reactor in Fig. 4.7 and 300-/im di­

ameter for the B-u-B device in Fig. 4.8. The same behaviour was observed in argon.

These results show that the discharge behaviour depends on the background gas 

pressure and on the current density of the plasma generated in the device. These 

two trends are examined in more detail in the next two subsections.

4.3.3 M etal vs. Sem iconducting Electrodes

Current density differentiates strongly between metal and boron-doped diamond 

electrodes. The values in red in the caption of Figs.4.7 and 4.8 are now compared. 

In order to isolate the material dependence of the cathode surface outside the hole, 

the cross-sectional microplasma area inside the cavity was excluded in computing 

the density tabulated below. The area was extracted from the magnified optical 

images using the built-in tool for surface area computation from a microscopy soft­

ware9. Table 4.1 compares^experimental data from three different reactors: 1 0 0 -/im 

diameter G-u-G (Fig. 4.7), 200-/xm diameter G-u-G and 300-/mi diameter B-u-B (Fig. 

4.8). Three stages are plotted (Nr 1-3) with row colours matching the gas (helium) 

pressure for every device configuration.

Boron-doped diamond electrodes maintain a lower current density than gold 

electrodes. Microplasma expansion was more significant on the semiconducting dia-

9Macnification by Orbicule.
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Table 4.1: Current density in helium with gold and B-doped cathodes.

D evice ty p e  
[0 |im]

P re ssu re
[torr]

J  [ A m 2] 
Nr 1

J  [A m~2] 
Nr 2

J  [A m-2] 
Nr 3

G-u-G [100] 1 0 0 hole limited 1.5 x lO 3 1.7 x 103

400 hole limited 1 .6  x 1 0 4 1 .2  x 1 0 4

760 2.4 x 10“ 2.7 x 104 3.1 x 104

G-u-G [200] 1 0 0 7.2 x 105 1 .1  x 1 0 “ 1 .0  x 1 0 6

400 2.4 x 106 5.4 x 106 5.9 x 106

760 1 .1  x 1 0 7 1 .2  x 1 0 7 1.3 x 107

B-u-B [300] 1 0 0 300 300 500
400 1 .6  x 1 0 3 1.4 x 103 1 .0  x 1 0 3

760 600 1.7 x 103 1 .6  x 1 0 3

mond cathode than on the gold cathode, at identical pressure and current. The red 

captions in Figs.4.7-4.8 suggested current densities an order of magnitude smaller 

for boron-doped diamond relative to gold. However they concerned a variation of 

cathode material as well as hole diameter. In order to study further the effect of 

the cathode material, Table 4.1 incorporates data from a more similar geometry,

i.e. 2 0 0 -/xm diameter G-u-G. Comparing the latter to the 300-/rm diameter B-u-B 

results, the current density excess in the case of the metal cathode increased to three 

to four orders of magnitude.

The (semi-) conductivity of the electrodes controls the behaviour of microplasma. 

Although the above analysis characterized the discharge as a normal glow in the var­

ious conditions and reactor types, boron-doped electrodes ensured a more uniform 

discharge behaviour over the three pressures being considered. Visually, the micro­

plasma on the metal (gold) cathode evolves in Fig. 4.7 from a glowing disc (100 

torr) through a gradually completed disc (400 torr) and finally a near filamentary 

discharge (760 torr). But on diamond, the plasma maintains a glowing appearance 

of seemingly constant brightness at all pressures. In fact, the only non-circular 

extra-cavity component at 400 torr is more reminiscent of an off-centred disc than
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Figure 4.9: Radial symmetry of the microplasma present at low pressure (70 torr) 
helium (a-b) but not at higher pressure (550 torr) (c-d). The 200-//m hole is outlined 
in red and surmounted by a 2 0 0 -/im scale.

the moon crescent observed on metal. Electrically, the range of current densities for 

G-u-G reactors increases sensibly from 100 to 400 and 760 torr. On the other hand, 

the rise is less evident for semiconducting diamond.

4.3.4 Behaviour with Increasing Pressure

A higher pressure causes a decrease in the collision mean free paths, resulting in 

smaller microplasma volumes. In Figs.4.7 and 4.8 this appeared as smaller extra­

cavity regions for similar currents. This high pressure confinement also leads to a 

breakdown of the radial symmetry. Indeed at the low hundreds of torr, the micro­

discharge appears to take on the cylindrical geometry of the cavity throughout the 

range of operating current. This is evident for the region on the cathode surface 

for which the radial symmetry at 100 torr is absent at 400 and 760 torr. For the 

intra-cavity region, this is more easily observed by looking at the anode side, where 

the discharge is limited to the interior of the hole. Fig. 4.9 compares the situation

 for a 200-/im diameter G-u-G reactor operated in helium at two pressures: 70 torr

for the left pair and 550 torr for the right pair of images. Some marks on the surface, 

visible here on the left of the hole, are scratches or similar slight imperfections in 

the metal film. They were present ever since the devices were delivered and did not 

influence the operation. Throughout the experiment at 550 torr, the microplasma 

was radially asymmetric. The orientation could change during operation but with­

out creating a perfect cylinder as for 70 torr.
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An increase in pressure also decreased the operating voltage. This results from 

the multiplication of targets for ionization collisions. It was shown (Chapter 1) 

that to the right of the Paschen curve minimum — i.e. increasing pressure at 

fixed electrode separation d — a higher breakdown voltage was required to offset 

the electron energy lost in more frequent collisions. But once the discharge has 

been established, these more frequent collisions mean that similar ionization rates 

can be maintained at higher p with lower voltages. Fig. 4.10 shows data from 

a G-u-G reactor with diameter D = 100 /xm. The gap voltage is plotted against 

current as the applied voltage was increased after ignition. Data sets are coloured 

according to the operating pressure (see figures’ legend). The range of pressures and 

current plotted are representative of the overall range covered in this research. As 

pressure increased from 100 to 830 torr, the corresponding curves were shifted to 

lower operating voltages in both helium and argon microdischarges.

4.3.5 Behaviour with Increasing Current

The microplasma becomes brighter at higher current density. In the previous section 

this translated into a more diffuse, less bright discharge component on the cathode 

surface for the lower current density in B-u-B reactors. This is most striking when 

comparing the gold- and diamond-based expansion at 760 torr; third row of Fig. 4.7 

and 4.8, respectively. By way of explanation, higher current requires more ionization 

collisions, the corollary being more light-emitting recombination and de-excitation 

events. When it comes to the interior of the cavities, since the cross-sectional area 

of the micro discharges is similar in all the reactors, identical currents yield identical 

brightness levels.

With increasing current, the microplasma grows. This does not refer to the 

cathode-side expansion anymore. In fact it is more clearly observed when looking 

at the anode side; where any growth is confined to the hole. Fig. 4.11 represents
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(a) helium microplasma
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(b) argon microplasma

Figure 4.10: V -I  curves for a G-u-G reactor (D = 100 fim).
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f t
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(a) 0.04 mA (b) 0.18 mA (c) 0.36 mA (d) 1.71 mA (e) 3.85 mA

Figure 4.11: As more current is drawn through the microplasma it grows, here inside 
a 200-fim diameter G-u-G reactor at 1 0 0  torr helium; viewed from the anode side. 
In red, the outline of the hole is surmounted by a 200-/im scale.

II

Figure 4.12: Schematic set-up for face-on microplasma observation.

photographs of the anode of a 2 0 0 -/im diameter G-u-G reactor operated in helium at 

1 0 0  torr; each labelled with the discharge current. As more current is drawn through 

the hole, the ionization region grows and gradually fills the cylindrical cavity.

4.4 Discussion

The results presented earlier coupled optical imaging of the microplasma with elec­

trical measurements as a means to valuable insight into its operation. Indeed the 

dependence of (micro-)discharges on current and pressure, characteristic of their 

operating mode, were best described with these combined diagnostics. When imag- 

ing the diamond-based devices, concurrent observation of the microplasma inside 

the hole and quantification of its extra-cavity expansion were made possible by the 

set-up presented in the previous chapter and schematically represented in Fig. 4.12. 

Inside the vacuum chamber, behind a window flange, the hole was magnified and 

its axis aligned with and centred on the optics.

In the previous section, the first successful operation and characterization of 

diamond-based microplasma reactors was presented. The optical and electrical re­
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suits acquired with G-u-G and B-u-B devices are now compared to similar results 

reported by other microplasma research teams.

4.4.1 Ignition and Stability of M H C D ’s

Here the ignition parameters reported earlier are compared to equivalent conditions 

reported for glow discharges in general and microplasma research in particular.

A first general observation of the Paschen diagrams above shows that microscopic 

discharges of various configurations share a small Vb — pd region. For point-to-plane 

gaps — a cathode needle and a plane anode — [Slade and Taylor, 2 0 0 2 ] studied the 

breakdown between electrical contacts in air; confirming the Paschen relationship 

for d > 6  /xm. The resulting Vb was between 300 and 400 V for a pd range10 of

0.5 — 1.5. [Park et al., 2001] operated blind MHCD devices in the shape of an in­

verted pyramid, with an opening 50 x 50 /xm2 and 35 /xm deep. The breakdown 

voltages in neon lied between 200 and 300 V over the range11 0.56 < pd < 0.96 torr 

cm. [Petrovic et al., 2008] studied the breakdown between parallel plates of variable 

separation. The d value closest to the diamond-based configuration (250 /xm) was 

100 /xm. For the range of pd in common with that research, namely 2 to 5 torr cm, 

the reported Vb agrees very well with Fig. 4.4(b). Numerous articles have treated 

the strong departure from theory to the left of the Paschen curve minimum and/or 

at much smaller d. The aforementioned article is no exception, but since that para­

metric space is out of reach for the experiments in this thesis, that departure falls 

out of the scope of this discussion. The ignition parameters of the current diamond- 

based devices are therefore consistent with other microscopic sources.

The helium curves in Fig. 4.4(a) on page 82 are consistent with other glow dis­

charges. In MHCD’s with a blind silicon cathode and open nickel anode,

[Schwaederle et al., 2 0 1 2 ] studied the breakdown in helium from 100 to 1000 torr.

10Taking 760 torr and 6 < d < 20 /xm from Fig. 3 in the corresponding article.
11 Taking 700 < p < 1200 torr and a dielectric spacer with d ~  8 /xm.



CHAPTER 4. MICRODISCHARGES IN  DIAMOND SU BSTRATES  95

The electrode separation was a mere 6 -/im and the diameter 100-/im, to be com­

pared with, respectively, 250 fim  and diameters of 100 or 200 fim  for diamond-based 

metal-dielectric-metal devices in this thesis. The resulting pd region is distinct from 

that populated in the corresponding diagram above. In their Fig. 7 (a) for the single 

device case, Vb was more or less constant at 310 — 330 V at 0 .1 2  < pd < 0.6 torr cm, 

increasing to 400 V when going down to pd >  0.06 torr cm. Two differences with the 

G-u-G results above are a Paschen curve shifted to < 1 torr cm and a flat gradient 

in the right-hand branch. Nevertheless, they also reported (their Fig. 13 (a)) a 

stronger gradient either side of the Paschen minimum in reverse polarity; i.e. with 

the open cathode and blind anode. The resulting minimum appeared slighly shifted 

to higher pd, but still lower than with G-u-G devices. An experimental curve was 

presented in [Lieberman and Lichtenberg, 2005] (their Fig. 14.4 (a)) for low pressure 

parallel plate glow macro-discharges. Similarly to the G-u-G results, the Paschen 

minimum was shifted to higher Vj, relative to the theoretical value and the (near­

vertical) left-hand branch was confined to pd > 1 torr cm.

The case of argon, in Fig. 4.4(b), also agrees with other microplasma results. An 

overvoltage was suggested, as in the work of [Sismanoglu et al., 2010]. Micro-devices 

identical to the G-u-G reactors12 were operated with several electrode materials. Vb 

was consistently higher than the theoretical values of the black solid line in Fig. 

4.4(b). In breakdown studies by [Petrovic et al., 2008] with gaps d < 100 fim, over­

voltage was discarding all but the lowest breakdown voltages. No such filtering of 

data was applied here, making the fidelity of the Paschen curve for argon G-u-G 

microplasmas all the more encouraging.

The cathode material is a key factor in the discharge breakdown, especially at 

microscopic dimensions. Field emission has long been cited to explain the departure

12Diameter D =  200 /im and inter-electrode spacing d =  250 /im.
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from the Paschen curve to the left of its minimum [Llewellyn Jones and Morgan, 1951, 

Boyle and Kisliuk, 1955]; again, out of reach for the current experiments. Recently, 

[Go et al., 2009] described the use of highly-graphitic poly crystalline diamond to 

significantly enhance the field emission hence reduce the voltage throughout the pd 

range. However their devices were operated in pre-breakdown mode. Given that 

diamond has on top of that a high 7  coefficient, the V5 values for B-u-B reactors in 

Fig. 4.5 seem surprisingly high.

A contact resistance between the tantalum foil and the semiconducting B-doped 

electrode contributes to the aforementioned V& overestimation. The intrinsic resis­

tivity of the semiconductor film was experimentally determined for a B-u-B device 

with a four-point probe. The resulting value of 9 x 104 D m was then used to de­

termine the extra voltage drop between the edge (location of the tantalum contact) 

and the centre (location of the cavity) of the device. Assuming constant parameters 

for the conductive pathway, that voltage was subtracted from the values reported 

earlier. Fig. 4.13 was adapted with that correction from the helium results of Fig. 

4.5(a). The general downward shift brings the curves in the same region as their 

counterpart reactors with the metal electrodes. This confirms that a contact resis­

tance exists for B-u-B devices and that it can be accounted for. Further parameters 

could be considered like contact potential of metal on B-doped diamond, spatial 

distribution of the charge carriers in the CVD thin film around the micro-cavity and 

their dependence on the operating conditions. But this could form an entire research 

project and falls outside the scope of the current microplasma characterization. For 

the remainder of this thesis, the corrected gap voltage can satisfactorily be assumed 

to have the same meaning for both metal and semiconducting electrodes.
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Figure 4.13: Paschen curves for B-u-B reactors in helium, corrected for surface 
resistance.

4.4.2 Microplasma M odes and Pressure D ependence

The V -I  characteristics of similar micro discharges indicate that they usually operate 

in normal or abnormal glow mode. In the seminal work by [Schoenbach et al., 1996], 

a 700-fim  diameter and 2.1 mm deep blind molybdenum cathode was surmounted by 

a 250 fim  thick mica dielectric and a molybdenum anode. In argon below 16.5 torr, 

positive differential resistance was maintained throughout the current range. While 

at 56 torr a negative slope appeared above 30 mA. The positive slope was associ­

ated to low current density Townsend mode, which precedes the glow mode. The 

positive-to-negative discontinuity was linked with the onset of the normal glow mode 

governed by the hollow cathode effect, i.e. more efficient ionization by pendulum 

electrons. A similar kink in the V -I  was observed in Fig. 4.10.

Later [Schoenbach et al., 1997] argon microplasma was generated with a blind 

anode surmounted by a 250 fim  mica layer and 100 ^m cathode with a range of 

openings: 200, 350 and 700 fim. A  similar V -I  transition was observed. This 

was accompanied with discharge expansion on the cathode and followed, at higher
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current, with a very faint gradient. K. H. Schoenbach found another interpretation 

in [Boeuf et al., 2005] for the transition: namely an abormal glow discharge inside 

the hole turning into a normal glow discharge spreading on the cathode.

Similar experiments were conducted by [Kulsreshath et al., 2 0 1 2 ] with 150-/xm 

diameter helium and argon microplasmas at 370 torr inside a blind cavity, 200 /xm 

deep. A hollow silicon substrate and a thin film of nickel were the electrodes, sep­

arated by a ~  6  /xm S i0 2 layer. With the blind hollow silicon cathode, the V -I  

characteristic was positive and the discharge confined to the hole, a clear indication 

of an abnormal mode. But when using the open nickel electrode as the cathode, 

the microplasma spilled over it at higher current, maintaining a very slight gradi­

ent; both hallmarks of the normal glow mode. These results agree with the coupled 

optical-electrical measurements in the previous section, in which the onset of a nor­

mal glow mode was confirmed by microplasma growth on the cathode surface.

The micro discharge shrinks and loses its radial symmetry at higher pressure. 

Similarly to the results obtained in G-u-G reactors, [Schoenbach et al., 1997] pub­

lished photographs of 200-/xm diameter argon micro discharges at 56, 250 and 896 

torr. As in Fig. 4.9, the circular glow at the lowest pressure took the form of a 

gradually completing disc with increasing pressure.

The mechanism controlling the spatial distribution of the microplasma inside the 

hole is the cathode sheath shrinkage. The phenomenon was experimentally studied 

and modelled by [Lazzaroni et al., 2010] and also in [Kushner, 2005] in argon for 

metal-dielectric-metal MHCD’s. As the collisionality in cathode sheath enhances 

ionization, the microplasma gets more tightly confined against the electrode. Under 

microscopic dimensions, rough electrode patches would locally magnify the electric 

field. This could explain the selection of a discharge orientation when the cathode 

sheath is so close to the metal at higher pressure.

The lower current density in B-u-B devices could be explained by a lower sput-
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tering of the diamond electrode. Spectral measurements in [Schoenbach et al., 1996] 

indicated that the transition to high current mode was accompanied with stronger 

emission by the cathode metal vapour. Furthermore, it was established by 

[Gill and Webb, 1977] that the HCD geometry strongly favoured vapour emission. 

On the other hand diamond is hardly affected by the nearby discharge, either chem­

ically or thermally. This was confirmed in the current research by post-operation 

visual inspection of the reactors. Without the added contribution of cathode vapour, 

the microplasma operates at lower current density on semiconducting diamond elec­

trodes. The combined role of diamond and semiconductivity is compounded by 

silicon-based device failures due to excessive cathode material redeposition 

[Kulsreshath et al., 2 0 1 2 ] or too high injected current [Dussart et al., 2010].

4.5 Summary

The research reported above achieved the first successful operation and characteriza­

tion of diamond-based microdischarges [Mitea et al., 2012]. Two families of devices 

were designed, fabricated and tested; based on two electrode-dielectric-electrode 

sandwiches:

• boron doped-undoped-boron doped diamond (labelled B-u-B)

• gold-undoped diamond-gold (G-u-G)

The conclusions reached about the microplasma operating mode were compared 

with published research results obtained in MHCD’s. The same observations could 

be made based on V -I  and optical diagnostics of the discharge. This allowed 

the description of the effect of various parameters: pressure, current, electrodes’ 

(semi)conductivity and breakdown condition.

Diamond substrates show encouraging potential as a new microplasma technology. 

Based on reports by other teams as well as comparison with non-diamond practice
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devices employed for this work, the data showed good reproducibility. In terms of 

lifetime, all of the diamond-based reactors are still in good working condition after 

several hours operation in various experiments. Even beyond one hour continuous 

operation, no failure has been detected yet. This represents an improvement from 

the DC silicon-based reported in the literature. It is worth emphasizing that no 

precaution was taken to alleviate the impact of heat or plasma degradation, such as 

was customarily reported in the literature: short DC pulses, sub-mA current limi­

tation, gas flow,...

The positive reception of diamond-based research by the microplasma commu­

nity was the ultimate milestone for this project. It offered a modest answer to the 

paucity of publications focusing on the role of wall materials that had been high­

lighted by [Pitchford, 2011]. In particular, the contribution of the current devices 

is evidenced by the upcoming investigation of the effect of the superlative thermal 

properties of diamond in Chapter 5 M ICROPLASMA-DIELECTRIC INTERFACE.

More encouraging still were the numerous comments received by the author fol­

lowing oral and poster presentations at several UK and international plasma physics 

conferences, lauding the arrival of more reliable devices based on an otherwise el­

ementary construction. It was even suggested that this could pave the way to all- 

important standardization and better data matching between research teams, owing 

to the reduced variations over operation time or between identical devices.



Chapter 5

M ICROPLASM A-DIELECTRIC

INTERFACE

5.1 Introduction

This chapter covers temperature studies of microplasma inside diamond-based re­

actors. It falls in line with the overarching scope of this thesis to assess this novel 

microplasma substrate material. A key aim was to better understand the role of the 

dielectric spacer in a microdischarge. The work reported here is being evaluated for 

publication.

We observed the evolution of the gas temperature when changing various exper­

imental parameters, with the aim to compare diamond and glass dielectric. The 

parameters were the input power, gas type, pressure and hole size. We assumed 

that the microplasma-dielectric interface was a fundamental reactor element for the 

following reasons. Prom a design perspective, it serves literally as the central me­

chanical support for the micro-device. During operation, its relative thickness — 

typically hundreds of micrometres compared to sub-micrometre electrode thin films 

— make it the main confining boundary for the plasma.

101
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We intended to correlate temperature with other parameters as well as evaluate 

the relative influence of the dielectric material. Gas temperature is known to be 

correlated with plasma properties such as electron density and temperature. We ex­

pect that gas temperature would increase with power and this served as the starting 

point for our research. By changing the other parameters over a set power range, 

we tested the response of that expected positive gradient. In parallel, we conducted 

the same experiments with diamond and glass as the dielectric spacer. The goal was 

to assess to what extent the influence of the dielectric competed with that of other 

operating parameters.

The structure for this chapter is as follows. In Section 5.2 the motivation for 

these temperature studies is presented, followed by a description of the reactors 

used and experimental methods. Experimental results are the subject of Section 

5.3, subdivided to reflect the various ranges of operating parameters. These results 

are then analysed in Section 5.4.

5.2 Research Description

The core of the experiments reported here consisted of remote temperature measure­

ments of the background gas during the operation of a microplasma. The motivation 

for this type of investigation was triggered by the intrinsic characteristics of the sub­

strate material, as explained below.

In order to put diamond-based results in perspective, an equivalent study was 

conducted in a material with markedly different thermal properties. These alterna­

tive micro-reactors are thus presented later.
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Table 5.1: Thermal conductivity, k , of some materials used in microplasma devices 
(in bo ld  for this research). Reproduction of Table 1.1.

M a te ria l k /  W m " 1 K - 1 References
Kapton® f 0 .1 2 DuPont [kap, 2006]
G lass 1.38 [Incropera and DeWitt, 1996]
Alumina 36 [Incropera and DeWitt, 1996]
Silicon 148 [Incropera and DeWitt, 1996]
Copper (pure) 401 [Incropera and DeWitt, 1996]
Diamond* 2050 [Worner et al., 1996]

Finally, the use of the relevant techniques introduced in Chapter 3 and the 

collection of data are described under the Methods heading.

5.2.1 M otivation

The thermal properties of diamond opened up the opportunity to study the inter­

action of heat with the dielectric. Table 5.11 compares the thermal conductivity k 

of diamond with that of common dielectric materials used in microplasma reactors. 

Our initial assumption was that the highest value of k for diamond could affect 

the heat balance of the discharge and its surroundings. Therefore a comparison 

was envisaged of the temperatures obtained with a poor thermal conductor such as 

glass, with the expectation to detect significant differences over our experimental 

range. Of interest for this thesis was the resulting assessment of the heat transfer 

in a microplasma and the role of the dielectric.----------------------  ----  ----- -----

The superlative properties of diamond further lent themselves to the character­

ization of operational advantages such as stability and lifetime. It is clear that the 

brunt of the plasma-surface interaction would occur at the electrodes in the form of 

ion/electron-wall collisions in the high-energy environment of the sheaths. Never­

theless, it was thought that the thermal stability of diamond could prove beneficial,

Reproduction of Table 1.1 on page 45.
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certainly compared to glass. Its chemical inertness and, in the case of all-diamond 

B-u-B devices, the use of a single solid material were further considered advanta­

geous for mechanical stability. If confirmed, this would translate into more robust 

reactors exhibiting more reproducibility for diamond than with glass.

5.2.2 Reactors

The first micro-devices studied here belong to either of the families introduced in 

Chapter 4, namely: G-u-G (gold electrodes and undoped diamond insulator) and 

B-u-B (same insulator but boron-doped semiconducting electrodes). The hole diam­

eters were 100, 200 and 300 /im . The substrate thickness was 250 gm.

The comparison material, glass, was the substrate in Ta-glass-Ta reactors. An 

8 -jum tantalum foil was glued by us to a 200 /im thick glass substrate. Similar di­

ameter holes as with diamond were laser-drilled by our partners at the University 

of Bristol: 100 and 300 but not 200 /im. Besides the much smaller k , the melting 

point is also lower, at 1883 K [Incropera and DeWitt, 1996].

The relative thickness of the dielectric in the current MHDC design led us to 

assume that it was a driving site for heat transfer through the reactor. A first 

reasoning is based on the direction of heat exchange. In the axial direction, heat 

transfer only occurs in the gas phase, with no interaction with the micro-device, 

whereas radially, the gas/plasma volume is confined by a solid boundary. For the 

latter, electrodes are typically an order of magnitude thinner than the dielectric; 

respectively < 10 f im  versus > 2 0 0  /im. A second reasoning is related to the major 

reactions involving gas/plasma particles. The surface interactions — reviewed in 

Chapter 1 , Section 1 .2 .2  — take place at three interfaces schematically represented 

in Fig. 5.1. On the one hand, energetic charged particles interact primarily with 

electrode surfaces — even when the plasma is contained inside the hole — under
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Figure 5.1: Various interfaces for surface reactions. The big double arrow emphasizes 
the relative importance of dielectric for heat transfer.

the influence of the high potential difference in the anode/cathode sheaths. On 

the other hand, energetic neutrals interact primarily with the dielectric due to the 

large surface area presented in the radial direction. As a result, where heat transfer 

between gas/plasm a and the micro-device is concerned, the dielectric is expected 

to have the major influence; this is symbolized by the bigger double arrow in the 

figure.

5.2.3 M ethods

The equipment and data  collection techniques were described earlier in Sections 

3.4 Optical Emission Spectroscopy and 3.5 N2SPS Fitting. Once the discharge was 

ignited, each subsequent data point of tem perature was recorded after the same in­

cremental increase in the applied voltage. The discharge would be kept continuously 

on until measurements at all the desired voltages were completed. A background 

image was taken prior to each spectroscopic measurement. This, combined with 

the handling of the high voltage power supply, resulted in an effective stabilization 

interval of about 10 seconds at every new input power value prior to the collec­

tion of OES data. As explained towards the end of Chapter 3, the uncertainty in 

the tem perature fitting had been computed in a previous research with the same
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measuring equipment to be 7%. In addition for measurements of Trot in argon, the 

presence of N2 meant that temperature values could only be considered a maximum,

i.e. Tgas <  Trot.

The pressure was continuously monitored inside the vacuum chamber, but not 

inside the micro-cavity. Therefore the pressure readings reported in the upcoming 

plots and discussions represent nominal values, irrespective of the gradient arising 

from the operation of the microplasma. Once a series of measurements was com­

pleted at a certain gas pressure, the power supply was turned off and the chamber 

fully evacuated before filling with gas at the next pressure of interest.

Generally, the same experimental conditions were replicated between diamond- 

and glass-based devices. However the limited lifetime and lower reliability of the 

latter resulted in some data plot conditions being differently populated for the two 

materials. Thus these differences do not reflect any intentional planning.

Where the knowledge of the surface area of a microdischarge outside the reactor 

hole is reported, it was obtained via optical imaging, as explained in Section 3.3. The 

corresponding data was obtained by replicating the pressure and power conditions 

for the temperature experiments.

5.3 Results

The forthcoming results report the gas temperatures measured when varying three 

sets of parameters. First the microplasma was ignited in either helium or argon, 

at a range of pressures. Next came a variation in the microplasma dimensions; the 

reactor size and the microplasma volume (current-controlled). The third relationship 

links the gas temperature to the dielectric material. The structure of this section
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Figure 5.2: Gas tem perature against pressure in helium  (black open circles) and 
a r g o n  (red open circles) inside a 1 0 0 - / im  diameter G -u-G  reactor.

adopts the same parametric division.

5.3.1 T em p era tu re  against In p u t Pow er

Before presenting results of the parametric study, the dependence of gas tem pera­

ture on input power is demonstrated. For any electric discharge, the power to heat 

conversion is driven by the numerous collisions between the charged particles, ac­

celerated by the plasma field, and the neutral atoms.

In order to visualize the thermal effect of power, plots of tem perature results at 

two power levels are shown in Fig. 5.2. The i/-axis shows the rotational tem perature 

(in Kelvin) of the N2 second positive system — indicative of the background gas 

tem perature — and the x-axis the pressure (in Torr).

It can be seen from the figure th a t the gas tem perature increases with power. 

Between Fig. 5.2(a) at 0.5 W and Fig. 5.2(b) at 1.5 W, helium heats up by about
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100 K. For the same power difference argon sees its temperature rise by 100 to 200 K.

The direct response of the background gas temperature to electrical input power 

is the common thread throughout this Results section. Indeed, differences in this 

proportionality are useful sources of information about the influence of other pa­

rameters. In particular, the upcoming sections address the effect of such parameters 

as: the gas type and pressure, the reactor diameter, the dielectric material. These 

will best be expressed via temperature-power plots.

5.3.2 Temperature against Gas Type and Pressure

Micro discharges in argon cause the neutral gas to get hotter than in helium. As can 

be observed in Fig. 5.2, helium data points remain closer to the ambient temper­

ature value at 0.5 W. At higher power, argon heats up significantly more, with its 

red markers departing even more from the helium ones at 1.5 W. The argon data 

generally seems more spread out than that for helium, as expected from the inherent 

uncertainty in temperature measurements in N2-argon mixtures2.

The temperature responds directly to a change in the background pressure, as 

displayed in Fig. 5.3. Covering the same range of nominal pressures as in the pre­

vious figure, helium is singled out here, because of the richer data enabling more 

parametric combinations. In diagrams (a) to (d), data for three reactor diameters 

(100, 200 and 300 fim) are overlaid. Only a subset of the same data was represented 

in Fig. 5.2.

For a given input power, the gas temperature response varies non-linearly with 

pressure. Data for 400-500 torr seems to suggest slightly higher temperatures than 

at lower pressures. It is the most evident at 0.5 W (Fig. 5.3(a)) and 100 n m: Trot,

2see Section 2.2.3; N2 was 0.5% by volume throughout this research



C H APTER 5. M ICRO PLASM A-DIELECTRIC  INTERFACE 109

1000

800

600

400
0 100 200 300 400 500 600 700 800

Pressure [torr] 

100 11111 200 pm

(a) 0.5 ± 0 .1  W

300 Jim

1000

800

600

400
0 100 200 300 400 500 600 700 800

Pressure [torr] 

1 0 0  i n n  2 0 0  p m

1000

800

600

400
0 100 200 300 400 500 600 700 800

Pressure [torr]

100 11111 •  200 inn •  300 11111

(b) 1.0 ± 0 .1  W

1000

800

600

400
0 100 200 300 400 500 600 700 800

300 inn
Pressure [torr]

100 uni •  200 inn •  300 11111

(c) 1.5 ±0 .1  W (d) 2.0 ± 0 .1  W

Figure 5.3: Gas tem perature against helium  pressure at four input powers: (a) 0.5 
to (d) 2.0 W. D ata for three reactor diameters are overlaid: 100-yLan G-u-G (black), 
200-/im G-u-G (green) and 300-/im (red) B-u-B.
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Figure 5.4: Gas tem perature versus reactor diameter in 100 torr helium  and an 
input power of 0.5 W. Two families of micro-devices are differentiated: G-u-G (100 
or 200 /im) as open circles and B-u-B (300 /xm) as a closed circle.

rising about 50 K between 100 and 400 torr. In this case, the same decrease is 

observed from 500 to 760 torr. More generally, tem perature seems to level off at the 

highest pressure rather than  continue to increase from the lower pressures. This is 

an im portant result tha t will be discussed in Section 5.4.

5.3.3 T em pera tu re  against M icroplasm a D im ensions

The three available reactor diameters — 100, 200 and 300 /xm — responded differ­

ently to the pressure increase discussed previously: see Fig. 5.3. Only for 100 /xm 

does the curve seem to go to a maximum at medium pressures. The 300-/xm reactors 

seem to maintain the tem perature across the pressure range, being slightly cooler 

at 760 torr. The lack of tem perature values for 200 /xm precludes any extensive 

comparison.

The maximum tem perature appears to be affected by the reactor diameter. For 

100 torr helium at 0.5 W, this is depicted in Fig. 5.4. The higher the diameter, the
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hotter the gas. Between 100 and 300 /xm, the difference is about 100 K. It can also 

be seen in Fig. 5.3, although less distinctly at higher pressures. As for the diameter 

of 200 /xm, the temperature is undistinguishable from 300 /xm.

In Fig. 5.5 the temperature-power relationship can also be seen to be sensitive 

to the reactor diameter. First, at 100 torr helium (Fig. 5.5(a)), the temperature is 

consistently higher when the diameter is 300 /xm than in 100 /xm. The latter seem 

to be indistiguishable from the values for 200 /xm. This trend continues through the 

power range 100 mW < P  <  2500 mW.

Secondly, at pressures between 400 and 500 torr, the differences between various 

reactor diameters becomes insignificant over the entire power range (Fig. 5.5(b)).

Finally, at atmospheric pressure (760 torr) the temperature ranges for 100 and 

300 /xm (with no data available for 2 0 0  /xm) overlap completely (Fig. 5.5(c)).

5.3.4 Diamond vs. Glass Dielectric

This section aims to identify differences due the dielectric material, by replicating 

the above studies in glass substrates instead of diamond. The electrode-dielectric- 

electrode sandwich is now tantalum-glass-tantalum, referred to as Ta-glass-Ta de­

vices. As earlier, temperature-power dependence is first observed in argon and 

helium. Next, the effect of gas type, pressure and microplasma dimensions are stud­

ied. The intrinsic reliability of all types of micro-reactorsin this research will be the 

topic of the following subsection.

It can be seen in Fig. 5.6 that the gas temperature increases with power. Results 

for 300 /xm diameter are plotted for a power of 0.5 W and 1.0 W. The paucity of 

corresponding data, in particular in argon, is the reason for not choosing 1.5 W 

here, as opposed to previously. As it happens, this was a direct consequence of the 

limited durability of the glass substrate. From now on, square markers are used to
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Figure 5.5: Temperature-power relationship for three reactor diameters: 100-/mi G- 
u-G (black), 200-pm G-u-G (green) and 300-pm (red) B-u-B. The heliu m  pressures 
studied are: (a) 100, (b) 400-500 and (c) 760 torr.
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Figure 5.6: Gas tem perature against pressure in helium  (black open squares) and 
argon (red open squares) inside 300-/rm diameter Ta-glass-Ta reactors.

differentiate from diamond-based results. For both argon and helium, the difference 

due to a rise from 0.5 to 1.0 W  is between 100 and 200 K. This represents a rise of 

around 200 K for argon and 100 K for helium compared to diamond. Although for 

the latter the diameter was 100 /im versus 300 reported here. Nevertheless, trebling 

the size of the diamond reactors did not lead to such tem perature changes.

A microplasma in argon is hotter than  its helium counterpart, as can be seen in 

Fig. 5.6. For want of results at higher pressure, argon data is limited to <  100 torr. 

Temperature values are about 300 K higher in argon than in helium at 100 torr. As 

indicated above, this is thus significantly more than when diamond is the dielectric.

W ith glass as the dielectric substrate, Fig. 5.7 shows th a t the gas tem perature 

responds differently to pressure than in diamond. For helium microplasma inside the 

two available diameters — 100 and 300 finl — tem perature data  is plotted against 

pressure at 0.5 and 1.0 W input power. The limitation in the power range, compared
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Figure 5.7: Gas tem perature against helium  pressure at two input powers: (a) 0.5 
and (b) 1.0 W. Data for two diameters are overlaid: 100 \im and 300 /xm Ta-glass-Ta.

to the graph for diamond (Fig. 5.3) follows from the fact th a t the glass-based devices 

could not sustain operation up to the same electrical input power.

The differences with the diamond results are detected at every operating pres­

sure. For 100 /im  at 0.5 W, the tem perature does not show signs of levelling off at 

higher pressures. W ith 300-/mi reactors, tem perature increases steadily with pres­

sure at 0.5 W. And at 1 W  the tem perature seems to peak at medium pressure. In 

diamond, the latter was observed in the smaller diameter and the lower power value. 

In this limited pressure range, tem perature data is higher with 100 than with 300 /xm.

Fig. 5.8 shows tha t the influence of diameter on tem perature is also different in 

glass-based reactors with respect to diamond. No data  is available for 200-/xm and, 

in general, less data could be obtained with Ta-glass-Ta devices due to their inferior 

durability. First, at 100 torr, only the larger diameter could be studied. Secondly, 

for pressure between 400 and 500 torr, the 100-/xm reactor led to slightly higher tem ­

peratures. Finally, even at atmospheric pressure does the smaller diam eter sustain
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Figure 5.8: Temperature-power relationship for three reactor diameters: 100 /im 
(black) and 300 fim  (red) Ta-glass-Ta. The helium  pressures studied are: (a) 100, 
(b) 400-500 and (c) 760 torr.
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higher temperatures. In diamond, the difference was hardly noticeable for either 

condition. Also noteworthy is the steeper gradient of Fig. 5.8(a). All the latest 

diagrams show this stronger response of gas temperature to input power compared 

with diamond.

The reasons for these temperature effects are discussed in Section 5.4. The next 

section compares results from different devices with the aim of understanding device 

lifetime.

5.3.5 Reproducibility &; Lifetime of M icro-Reactors

Issues of reproducibility and lifetime of microplasma reactors are regularly reported 

in and between research groups, though conspicuously rare in the literature. Their 

reliability, hence that of the collected data, cropped up regularly in our lab meetings 

as well as at every conference that the current author attended. W hat follows is an 

introduction to issues with and the potential of the diamond-based micro-devices. 

They seem promising for future research or technology owing to their reproducibility 

and the lifetime of our first generation of devices. The data presented here was not 

specifically collected with the intention of a reproducibility study. Had time and 

resources permitted, a bespoke lifetime experiment would have been set up. The 

corollary is that the few available results represent a picture of the durability of the 

reactors in actual operating conditions.

The operating range and duration of each experiment was chosen freely by the 

author for diamond but constrained by the stability and lifetime of the glass-based 

devices. This is reflected in the number of corresponding data points. Table 5.2 

provides an exhaustive list of the operating times for all the micro-reactors em­

ployed for this thesis. The left-hand half reports the cumulative operation time 

of diamond-based reactors. The differences are merely due to the availability of
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Table 5.2: Operating times of the devices (f =  lifetime, for failed ones) used in this 
thesis. E-D-E refers to the electrode-dielectric-electrode sandwich.

E -D -E  — D i a m o n d - b a s e d T im e E -D -E  — N o n - d i a m o n d T im e
G-u-G (code SI) 14 h 55’ Ta-glass-Ta (code 1) f 1 h 30’
G-u-G (code S2) 2 h 15’ Ta-glass-Ta (code 2) f 4 h 15’
G-u-G (code S3) 6 h Ta-glass-Ta (code 3) f Oh 45’
G-u-G (code 100) 23 h 15’ Ta-glass-Ta (code 100) f 55’
B-u-B (code S51) 4 h 35’
B-u-B (code S85) 1 h 30’
B-u-B (code array) 1 h 45’

the corresponding devices for the experiments at hand. On the other hand, the 

times reported in the right half of the table are the maximum period before glass- 

based reactors started to fail. They would unexpectedly extinguish the microplasma 

while operating. Moreover they showed signs of short-circuits when subsequently 

attempting to set them up and operate them again.

Same device

Data reproducibility with the same device was studied by looking at the variation 

of the V -I  characteristics over operating times. For each of the three families of 

micro-devices, results are presented in Fig. 5.9 for a similar working condition. 

Data was obtained with a single device from those categories: (a) 100-/im  G-u-G,

(b) 200-fim G-u-G, (c) 300-/xm B-u-B and (c) 300-/mi Ta-glass-Ta reactors. Only one 

100-/im  Ta-glass-Ta reactor existed and it could not be operated in more than one 

experiment. Each subfigure was traced from data of one and the same micro-device 

for consistency. The gas was helium at a pressure of 100 torr. As already pointed 

out, obtaining comparable data was not facilitated by the variability of operating 

conditions and times. The latter were the result of an arbitrary experimental pro­

gramme, and lifetime issues for glass-based reactors. The total operating times give 

the cumulative hours over several days of weeks. The gaps can be explained by 

the fact that some of this time was used to test the experimental set-up, perform
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Figure 5.9: V -I  variation (for the same reactor) over time for 100-torr helium micro­
plasmas. After the pressure value underneath each diagram, the specification de­
scribes the reactor diameter and type, as well as an internal reference code. Different 
data symbols are used to differentiate between the total operating times.
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non-V -I  measurements or ignite microdischarges in different gas and/or pressures.

A general trend of Fig. 5.9 is that the V -I  curves maintain their shape within a 

graph but differ between graphs, i.e. between the type of micro-reactor. The G-u-G  

traces in each of Figs. 5.9 (a) and (b) have the same profile but they are spread 

apart over a range of > 50 V. The results were collected over 8 hours (1 0 0 -/im  G- 

u-G in 5.9(a)) and 14 hours (200-/xm G-u-G in 5.9(b)). For the all-diamond reactor 

S51 the voltage variation is less than 50 V (5.9(c)) over a time span of 3 hours. 

Data for glass-based device Ta-glass-Ta 1 are also separated by about > 50 V for 

the glass-based device. Although, remarkably for the latter, this occurred over as 

short a period as 30 minutes. Equally noteworthy is the fact that the glass-based 

device became inoperable at the end of these experiments, contrary to all of the 

diamond-based reactors.

Between identical devices

Data reproducibility between identical devices could be conducted in each of the 

device families under the same conditions as above: 100 torr helium. Table 5.2 lists 

the three groups of identical reactors, which are:

•  G-u-G reactors SI, S2 and S3

•  B-u-B  reactors S51 and S85, although they are more appropriately considered 

similar than identical since the fabrication was significantly upgraded between 

the two

•  Ta-glass-Ta reactors 1, 2 and 3

Only one 100-/im  G-u-G existed, explaining that one fewer diagram is provided in 

Fig. 5.10 on page 120.
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The most striking feature is the discrepancy between the V -I  characteristics 

of the two B-u-B micro-devices (5.10(b)). S51 was operated at nearly double the 

voltage necessary to sustain a microplasma inside S85. Apart from that, they both 

gave rise to a slightly positive gradient throughout the operating range.

All three G-u-G micro-devices operated in the same current and voltage range, 

with no more differences between devices than there is for a single device (see cor­

responding Fig. 5.9(b)).

Glass-based devices similarly occupy together the same region of their graph 

(Fig. 5.10(c)). As before, the main difference resides in the short time span over 

which the measurements were and could be performed. According to Table 5.2, 

device number two was actually operated subsequently, but not in 100 torr helium. 

Nevertheless, the ultimate outcome was a failure of all glass-based devices and no 

diamond-based ones.

5.4 Discussion

The results above are now analysed in the light of the microplasma-dielectric in­

terface for steady-state glow microdischarges. For the gas phase, the temperature 

dependence on the gas type and pressure is discussed. This is followed, considering 

the solid dielectric, by the influence of its dimensions and substrate material. In 

fact, the latter affects the lifetime of the micro-reactors, hence the time-span and 

reproducibility of the data collection. This will be the concluding topic of this sec­

tion. But first, the basic relationship between gas temperature and input power is 

demonstrated.
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5.4.1 Temperature—Power Relationship

The results shown earlier indicate that the gas temperature rises with input power. 

This dependence is plotted in Fig. 5.2 p. 107 for a diamond-based reactor and in 

Fig. 5.6 p. 113 for glass.

The basis for gas heating in an electric discharge was given in Eqs.1.16-1.18 

[Fridman and Kennedy, 2004]. In so-called Joule heating, ne/m 3 electrons are ac­

celerated into collisions with neutral molecules at a rate of ve\/s  by the electric field 

E  at a volume rate of:

n e2E 2
- j —  =  n9Cp( T - T „ K  (5.1)
m eve\

with the equality corresponding to the steady state. The brackets contain the rise in 

temperature from the ambient value. It depends on the specific heat cp, the density 

of neutral targets ng/uP  and the rate of heat transfer i/?- The latter is made up of 

contributions from conduction and convection.

The above two figures confirm gas heating as the input power rises from 0.5 

to 1.5 W or 1.0 W. Qualitatively, this is the case irrespective of the gas type or 

pressure in the vacuum chamber. This temperature-power relationship is analysed 

in the context of various parametric studies______ —  — ------  —  ---------

5.4.2 Effect of Gas-Phase Phenom ena

There is a clear dependence of the temperature on the type of background gas. For 

a given power, argon consistently produces higher temperatures than helium. Fig.

5.2 for diamond and Fig. 5.6 for glass agree.

This can be explained by helium’s higher thermal conductivity. The coefficient
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of conduction, k , is a component of Vt  in Eq. 5.1. The respective values are 0.0177 

W m-1 K-1 for argon and 0.1513 W m-1 K-1 for helium. Their specific heats are 

CHe =  5193.1 J kg-1 K-1 and = 520.33 J kg-1 K-1. W ith comparable densities 

(electrons and neutrals), electric fields and electron-neutral collision rates, those 

higher values for helium impose a smaller rise T  — To than in argon. Thermal 

conductivity of the wall material is expected to become important the more the 

microdischarge is confined inside the hole, i.e. when not spilling over the cathode.

If pressure was the driving factor controlling the temperature, the latter would 

steadily increase between 100 and 760 torr; in contradiction to the earlier diamond- 

based results. As nominal pressure (i.e. momentarily disregarding local gas rar­

efaction during operation) increases, so does the density of target neutrals for the 

heat inducing collisions by charged particles. As an estimate, from Section 1.2, the 

rate of momentum transfer collisions ranges from 0.4 GHz at 100 torr to 3 GHz at 

atmospheric pressure. The higher mobility of electrons in the bulk of the plasma — 

broadly speaking, inside the hole — ensures that Joule heating is driven by them, as 

expressed in the above formula from [Fridman and Kennedy, 2004]. However near 

the cathode — at and beyond the rim of the micro-cavity — thermalization of the 

background gas originates in collisions with ions [Revel et al., 2000]. Accelerated in 

the sheath, the latter transfer energy to fast neutrals, which subsequently distribute 

it in Jheir population. This transfer increases with charge density, which itself in­

creases with pressure, as modelled for argon microdischarges with the same MHCD 

geometry in [Kushner, 2005]. Whatever the heating mechanism, pressure limited 

results would therefore have a constant temperature-pressure gradient. This pic­

ture was offered by Kushner et al and confirmed by experimental measurements in 

argon microplasmas from 40 to 300 torr [Penache et al., 2002]. Unfortunately the 

most apparent departure from this trend in the current thesis only occurs closer 

to atmospheric pressure. Another key difference with the work by Penache et al
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was their limitation to a low input power: constant current of 0.5 mA and 200 V 

sustaining voltage. Over the operating range of interest here, results cannot be said 

to be pressure limited.

The microplasma excursion out of its hole is an important factor controlling the 

background gas temperature. Varying power helps interpret the departure of our re­

sults from the pressure limited case. In the mode of operation of the diamond-based 

reactors, as reported in Chapter 4, as the input power increases the microplasma 

expands; initially out of the hole then onto the cathode surface. One direct con­

sequence is the increased surface area for heat transfer. For a 200-/im diameter 

MHCD, convective axial heat flow up to 23.6 m s-1 was computed in 250 torr argon 

at 2 mA [Kushner, 2005]. The peak was inside the hole and speed dropped off to 

< 5 m s-1 over less than 100 fim  from the cathode rim. Convection is thus signifi­

cant along the axis between the electrodes. Conduction will also play a role, mainly 

over the off-axis outer microplasma volume. These mechanisms compete with the 

temperature rise due to higher pressure/density, thus putting a cap on the gradient 

of Fig. 5.3.

The thermodynamical (above) over collisional (pressure limited) control is favoured 

by the diamond dielectric. In [Kushner, 2005] they compared the aforementioned 

situation with the case of two stacked MHCD’s. The anode of one was further 

separated from the cathode of the other by a dielectric.—Of interest to the current 

discussion is the slower convective flow (new maximum of 20 m s_1) and a marginal 

decrease in the maximum temperature (577 K from 581 K); both resulting from 

better heat transfer through the solid walls. A first noticeable difference in their 

double-MHCD geometry was that the flow around one cathode was fed into the 

other down the flow. A second difference is in the thicknesses of the reactor layers: 

100 jLtm for the electrodes and 200 fim  for the dielectric. Diamond dielectric in the 

current micro-reactors provide excellent thermal conduction — without the extra
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MHCD in the above simulation — with the added favourable relative thickness: 

< 5 jum for the electrodes and 250 /xm for the dielectric.

When heat transfer by convection-conduction through solid and gas is hindered, 

the temperature is more sensitive to pressure changes. Comparing the correspond­

ing results with diamond (5.3 (a-b)) and glass (5.7 (a-b)), the temperature-pressure 

gradient is somewhat increased in the latter. Moreover the glass-based data pointed 

to hotter gas inside the smaller diameter, i.e. the converse of the diamond situa­

tion. This also agrees with the temperature being controlled mainly by gas-phase 

(pressure) phenomena for a poor thermal conducting dielectric.

5.4.3 Effect of Reactor Dim ensions and M aterial

Differences between the results with various reactor diameters are now examined. 

So far the discussion was based on 0.5 and 1.0 W of input power. This section 

highlights an interesting diameter-dependent response at higher powers, with the 

aim to link it to key microplasma phenomena. Where available, this analysis will 

make use of results obtained with both dielectric materials.

With increasing input power, thermodynamical temperature control gives way 

to collisional control; in priority in the smaller reactors. It was explained previously 

that the temperature was mediated by convection-conduction in the solid and gas 

phases provided that the system presented a high enough heat transfer coefficient. 

At 0.5 and 1.0 W, it translated into somewhat flat temperature-pressure gradients 

for all the diamond devices. Whereas the gradients were slightly positive for glass- 

based reactors. Concentrating on 1.5 and 2.0 W — data only available for diamond 

— in Fig. 5.3, the slope for 100 /xm becomes slightly positive. But the same cannot 

be said for 300 fim. This is consistent with the earlier view that, as the intrinsic 

heat transfer capability of the microplasma-reactor system is overwhelmed by input
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power, the temperature returns to a pressure limited situation. This happened at 

low power for glass, i.e. 0.5 and 1.0 W. And now it happens for the smaller diam­

eter but not (yet) for the larger ones, since the power density is higher in the former.

The surface to volume ratio of micro discharges accentuates the effect of the 

wall material. Indeed, when the microplasma is more confined, the temperature is 

more material-dependent. Figs.5.5 and 5.8 compare the response of temperature 

to diameter. At 100 torr only diamond data is available and shows a sensibly 

lower temperature range for 100 /xm. Remaining with diamond, at medium then 

atmospheric pressre the smallest diameter shows an upward shift in temperatures 

that is hardly detected for the larger diameters. On the other hand with glass as the 

dielectric, the temperatures are generally higher (for both 400-500 and 760 torr), 

with the smallest diameter showing the more pronounced difference with equivalent 

diamond results.

5.4.4 Wall M aterials and M icroplasma Stability

Besides their influence on the microplasma behaviour discussed previously, the wall 

materials are determinant for the operation itself. The interest of this thesis lies with 

characterizing the reproducibility of the experimental data as well as the lifetime of 

the micro-reactors. Singling out diamond as a high durability material addresses a 

dual interest of our research consortium and the current author:

• establish the useful potential of CVD diamond as microplasma material

•  pave the way for more sustained Science and Enterprise innovations based on 

microplasma research.

Microdischarges, though non-thermal, pose a substantial thermal threat to their 

confining reactors; less so to diamond-based ones. As seen from Table 5.2 p. 117, 

Ta-glass-Ta reactors all suffered failures that G-u-G and B-u-B did not. Also, their
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operating times were comparable, even shorter than some diamond reactors. Neither 

were glass-based devices operated at significantly higher temperatures. In general, 

they were shown to yield higher temperatures and the bulk of the results and dis­

cussion covered helium microplasma. However the diamond devices were operated, 

in argon, at temperatures comparable to the ones attained with Ta-glass-Ta devices; 

see Fig. 5.2 (p. 107). The thermal properties of diamond never got caught out 

throughout the experimental conditions.

The thermal load of microplasma operation is a lifetime limiting factor for micro­

reactors. On the other hand, the cover glasses used as the dielectric were made from 

borosilicate glass. It is sometimes used in the technique of anodic bonding, in which 

Na+ ions are diffused away from the anode, leaving oxygen ions available to diffuse 

to and react with the atoms in the material to bond to. Typical bonding conditions 

at atmospheric pressure are 102 V and < 103 K [Rogers and Kowal, 1995]. The 

current experimental conditions would therefore explain the dielectric breakdown 

and observed short-circuits. In [Dussart et al., 2010], MHCD arrays were operated 

in helium at high pressure. They all showed signs of thermal damage of the nickel 

film and had lifetimes of 10 minutes with direct current input between 1 and 20 mA. 

Their structure consisted of a nickel electrode “a few microns” thick, a 5-//m thick 

Si02 dielectric and a semiconducting silicon substrate. A blind cavity was etched, 

about 60 p m  deep and 50 o r 100 fim  in diameter. Such reports about the durability 

of microplasma reactors are rare. And for most microplasma research reports with 

direct current, precautions are explicitly mentioned for limiting the thermal load on 

the reactors, such as pulsing the current. The thermal impact of microplasma opera­

tion is thus a serious though underinvestigated topic, and diamond proves promising.

Data reproducibility seems comparable in diamond- and glass-based reactors. In 

Fig. 5.9 p .118 each device maintained the V -I  characteristic shape throughout its
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total operating time. A voltage shift of little more than 50 V was observed for G-u-G 

and Ta-glass-Ta reactors, but significantly less than that for B-u-B. Nevertheless this 

was observed for the glass-based reactor over less than an hour, to be compared 

with between 3 and 14 hours for the other substrate material. The discrepancy 

between data obtained with identical devices was the subject of Fig. 5.10 p. 120. 

It appeared to be of the same magnitude as it was for individual devices, with the 

notable exception of B-u-B reactors.

The striking dissimilarity of the V -I  curves of B-u-B reactors (Fig. 5.10(b)) 

requires an explanation. The lack of experimental results for the S85 precludes a 

thorough comparison of their variability. But the difference can be understood from 

the difference in their fabrication. As emphasized in the previous chapter — Section

4.2 Diamond-Based Micro-Reactors — the CVD deposition of the semiconducting 

B-doped layer was an iterative process throughout the lifetime of this and the asso­

ciated thesis by Monika Zeleznik (University of Bristol). Reactor S85 was produced 

nearly a year after S51, after an optimization of the process. Their specifications 

are also slightly different, with the following layer thicknesses:

• S51: 4 /im B-doped, 250 fim  undoped, 4 /im B-doped diamond

• S85: 1.5 fim  B-doped, 250 fim  undoped, 1.5 /im B-doped diamond

From the point of view of microplasma operation, S85 is deemed an improvement 

over S51 thanks to its lower operating voltage. The two are therefore more appro­

priately considered similar than identical.

5.5 Summary

This chapter investigated the role of the dielectric through studies of the gas tem­

perature during microplasma operation. The dielectric spacer is both structurally
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critical and offers a plasma boundary with the highest surface to volume ratio. Mate­

rial dependent phenomena were isolated through the comparative study of diamond- 

and glass-based micro-devices.

The neutral gas temperature increases with power but is also controlled by var­

ious other parameters. The thermal conductivity of the background gas affects the 

maximum temperature as well as its pressure. W ith increasing collisions, the tem­

perature tends to increase as pressure rises from less than 100 to 760 torr. However 

as the microplasma expands out of the micro-cavity, convection and conduction are 

favoured, limiting the temperature-pressure dependence. The thermal conductivity 

of the dielectric also contributes to enhancing heat transfer out of the microdis­

charge. It was observed to be especially important the smaller the diameter.

The choice of dielectric also affects the durability of and data reproducibility by 

a microplasma device. Diamond-based reactors showed a high level of both and did 

not hint at any limit to their lifetime. Conversely, glass-based devices all terminated 

with failures, probably due to electrical breakdown of the dielectric at high temper­

ature and voltage. The reproducibility with Ta-glass-Ta was comparable with G-u-G 

and B-u-B.

The superlative thermal properties of diamond seem to translate into extremely 

durable microplasma reactors. This represents serious potential by allowing more 

extensive microplasma research without worrying about the long-term reliability of 

the data. More replicable results will be beneficial to the scientific community as 

much as for technological applications. Its merits also lie in shedding light on the 

reliability of micro-reactors, more often discussed than published.



Chapter 6

CONCLUSION A N D  FU T U R E  

W ORK

The aim of this project was to characterize microdischarges inside diamond-based 

reactors. This was achieved in two phases:

1. comparing CVD diamond with common microplasma materials

2. studying the influence of CVD diamond on microplasma behaviour

For the first phase, electrical and optical results from micro-reactors having diamond 

as the dielectric and/or the electrode material were compared with data from the 

literature. The role of CVD diamond on microplasma operation was then studied 

via gas temperature measurements. ____________  __  ___  __  ___ ___  __

A summary of the findings and general conclusions are presented below, followed 

by suggestions for further work.

6.1 CVD Diamond vs. Other Materials

The initial motivation for this thesis’ work was to characterize a microplasma inside 

a novel reactor material: insulating and semiconducting CVD diamond. This con-

130
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eludes a consortium research project aimed at deciding if and how CVD diamond 

could become the next generation of microplasma reactor substrate1. The prelimi­

nary steps for creating the reactors described in this thesis were recently published 

in a thesis written concurrently by Monika Allen2: “Fabrication of diamond-based 

microplasma devices” [Allen, 2014]. Microdischarges were characterized inside the 

micro-devices provided by this student colleague from the University of Bristol and 

the first results published in [Mitea et al., 2012]. A further comparison with data 

obtained with more commonly used materials was conducted in this thesis. Two 

families of microhollow cathode discharges were fabricated and successfully oper­

ated for the first time by combining boron-doped and undoped diamond:

• boron doped -  undoped -  boron doped diamond (tagged B-u-B)

• gold -  undoped diamond -  gold (tagged G-u-G)

CVD diamond offers interesting flexibility as a microplasma substrate material. 

During deposition, obtaining a seminconducting thin film is as straightforward as 

injecting a few percent of diborane per volume of the carbon-containing gas mix­

ture. The result is a p-type extrinsic semiconductor that can achieve metallic-type 

conduction with carrier mobility at least as favorable as silicon values. Among 

the other strengths of diamond are its very high breakdown voltage, beyond the 

MV/m and its superlative thermal conductivity and stability. Consequently, ho­

mogeneous electrode-dielectric-electrode sandwiches^ from the same material were 

made possible. This represents an advantage with respect to heterogenous structures 

that rely on a variety of materials and fabrication techniques [Park and Eden, 2003, 

Dussart et al., 2010].

A few challenges, some inherent to CVD diamond, were also identified from 

fabrication through to operation. Substrate contamination was countered by acid-

1 Under the EPSRC grant EP/G057176/1.
2 Monika Allen previously published as Monika Zeleznik.
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cleaning prior to CVD deposition and careful handling with non-metallic tweezers 

throughout the device lifecycle. Contamination sources include organic material 

and metallic objects that can deposit conducting material when scraped off by the 

harder diamond. Unwanted conductive pathways along the surface and in the bulk 

of the reactors were combatted by masking the edges in the deposition chamber 

and making precautionary cut-outs after the deposition of the B-doped layer. For 

the addition of gold electrodes, titanium was required to ensure the stability of the 

interface with diamond. Finally, for fear of contamination such as graphitization 

resulting from laser-drilling of the microplasma hole, the reactors were cleaned off 

in either acid or an oxygen plasma. During operation, dielectric layers as thin as 5 

ium or less appeared to favour device breakdown without microplasma ignition. As 

they were assumed to come from pinholes bridging the crystal, the insulating layers 

were from then on obtained commercially, with a thickness of 250 /im.

The ignition conditions observed in diamond-based devices were similar to those 

reported in the literature. The experimental Paschen curves matched those of com­

parable micro- and macro-discharges for G-u-G in argon and helium. However for 

B-u-B Vb was consistently overestimated, which was attributed to a contact resis­

tance between the semiconductor and the mechanically pressed metal connector.

 The U-J characteristics and optical diagnostics agreed well with results previ­

ously reported with other MHCD materials. At pressures up to about 500 torr, a 

steep positive slope at low current was followed by a nearly flat gradient beyond a 

threshold current. This was linked to an abnormal glow mode inside the hole turn­

ing to a normal glow mode upon expansion of the microplasma onto the cathode 

surface. Furthermore, the cylindrical glow at lower pressures was shown to become a 

radially asymmetric discharge at higher pressures. With enhanced ionization in the 

cathode sheath at higher pressure, the microplasma is drawn closer to the electrode.
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This would magnify any local electric field non-uniformity due to a rough surface, 

explaining the asymmetry.

Interestingly, B-u-B reactors maintained a lower current density for an equivalent 

gas pressure. The lack of cathode material sputtering and an excellent thermal sta­

bility were used to explain these lower current densities. This would also explain the 

robustness of all-diamond devices to high current and absence of device breakdown 

caused by long operation.

To conclude the assessment of CVD diamond as a novel microplasma substrate 

material, our reactors have shown uncompromised robustness. In terms of life­

time, all of the devices reported here are still in good working condition after sev­

eral hours total operation or beyond one hour continuous operation. Also useful 

for DC powered discharges, no protective measures against heat or plasma degra­

dation were put in place, such as short pulses, sub-mA current limitation, gas 

flow,... As a material of choice for microfabrication like silicon, CVD diamond there­

fore seems better poised to endure the microplasma environment than the latter 

[Park et al., 2001, Dussart et al., 2010]. In this thesis, the durability of diamond 

surpassed that of glass. Only the latter consistently led to failures, apparently due 

to electrical breakdown of the dielectric at high temperature and voltage. Never­

theless, the reproducibility with Ta-glass-Ta sandwiches was comparable to that in 

G-u-G and B-u-B.

6.2 Influence of CVD Diamond on Microplasma

Neutral gas temperature measurements were used to study the influence of the sub­

strate material on microplasma behaviour. Our first starting assumption was that 

heat transfer through the MHCD geometry would be driven by the dielectric; hav­
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ing electrodes < 10 fim  thick versus more than 200 /xm for the dielectric. Another 

assumption was that the superlative thermal properties of diamond would lead to 

distinguishable result features. With that in mind, results were compared with those 

in glass; a material at the opposite end of the thermal conductivity spectrum. The 

neutral gas temperature increased with power but was further controlled by other 

experimental parameters.

The neutral gas temperature was shown to depend on the gas species and pres­

sure. Argon consistently led to higher temperatures than helium, all else being 

equal. This was linked to the thermal conductivity and specific heat of argon being 

an order of magnitude smaller. With identical power inputs, increasing the pressure 

from 100 to 760 torr also increased the temperature. As more frequent momentum 

transfer collisions occur between the electrons and neutrals, Joule heating increases.

However pressure was not as effective at controlling temperature as the excur­

sion of the microdischarge outside of its hole. Indeed, from the onset of microplasma 

expansion on the cathode surface, the temperature-pressure dependence weakened. 

This is consistent with an increase in the surface area for heat transfer to the sur­

roundings.

Diamond favoured the -departure from a pressure-controlled temperature in­

crease. With CVD diamond as the dielectric substrate, heat transfer through the 

plasma-wall interface is enhanced. At higher power values, the temperature-pressure 

relationship was maintained in glass but decreased in diamond. Increasing the vol­

ume of gas/plasma would lead to a diminishing role of the solid-based heat ex­

changes. That is exactly what was observed in larger diameter diamond-based holes, 

yielding a steeper temperature-pressure gradient. The influence of the dielectric was 

further compounded by the observation of hotter gas the smaller the diameter for
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glass-based reactors; whereas in diamond the smaller diameters gave lower temper­

atures. Therefore, gas temperature is controlled by gas phase phenomena in poor 

thermal conductors. Whereas very good thermal conductors compete with the gas 

phase for heat transfer.

A CVD diamond substrate maintains more favourable microplasma operating 

conditions and longer reactor lifetimes. Even though the discharges studies in this 

thesis are referred to as non-thermal, the microscopic dimensions and high surface- 

to-volume ratios magnify the impact of gas temperature on the reactors. In that 

respect, the better control of temperature by diamond was discussed above. On top 

of that, diamond-based reactors lasted longer, not even suffering a single operation 

induced failure. This can be linked to the very good thermal conductivity and 

stability of the material. But also, the use of a single material, in the case of 

B-u-B reactors, precludes any thermal mismatch between layers; a pursuit of the 

semiconductor industry in general.

6.3 Future Work

The microplasma research reported here opens up interesting opportunities for aca­

demic and societal enterprises.

6.3.1 Academic Research

CVD diamond lends itself well to more thorough studies of the link between reactor 

materials and microplasma behaviour. Studies of this link have been highlighted as 

strategic for further developments by the Microplasma community [Pitchford, 2011]. 

They can be hard to set up for several reasons, that could now be addressed following 

the validation of CVD diamond-based microplasma reactors:

• Microplasma results are hard to compare. The literature is rich in materi-
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als, geometries, dimensions and other parameters that can hardly be directly 

compared, unless research groups developed or crafted their reactors together. 

With few fabrication steps and highly reproducible techniques from the semi­

conducting industry (for design, drilling and cutting, packaging), diamond 

CVD can produce a more standard set of micro-reactors that could be adopted 

by many research groups. In fact the current author enquired in a private dis­

cussion with N. St. J. Braithwaite (2012) about the appeal for a microscopic 

equivalent of the GEC RF Reference Cell, that has boosted the microelectronic 

research and industry since 1988 [Olthoff and Greenberg, 1995].

•  Microplasma is contaminated. Micro-reactors can contain materials that can 

interfere with microplasma operation such as glue, leftovers from etch masks 

or sputtered electrodes. Reactors of the B -u-B  family are both homogeneous 

in composition and resistant to sputtering, with the exception of oxygen-based 

plasma.

• The time and input power are limited by the reactor material. Although no 

extensive lifetime studies were conducted on the current CVD reactors, they 

show promising signs. In fact, a systematic lifetime study is a short-term 

research necessity in order to explore the full potential of diamond as a viable 

research platform.

Until such standardization is attained, further work based on the same two fami­

lies of G-u-G and B -u-B  devices could expand the range of parameters. Extending the 

range of power, gas types and dimensions would offer more overlap for comparing the 

results with similar devices in the literature. Moreover, it has been suggested inside 

our consortium that oxygen would be detrimental to the diamond, being the main 

source of CVD diamond etching. In the hope of operating unconfined atmospheric 

pressure microdischarges in air, it is essential that the right ratio of background gas 

to ambient air could be established by using oxygen containing mixtures.
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The current diamond micro-devices can be upgraded for an enhanced research 

portfolio. Early in this research, our consortium postulated that an optical link 

could be built in during the diamond deposition process. Having established in this 

thesis the driving role of heat transfer through the dielectric, it would be interesting 

to correlate data from the dielectric region with electrical or other measurements. 

W ith several dielectric thicknesses hence several possible axial positions for the opti­

cal link, the temperature and discharge position could be more accurately described 

with respect to the separation from either electrode. This could represent a step 

towards benchmarking results by [Kushner, 2005] on the axial gas velocity inside 

MHCD’s. The role of the dielectric could further be investigated by operating a 

larger set of devices based on the two families of G-u-G and B-u-B devices, changing 

only the diameter or the dielectric thickness.

6.3.2 Societal Impact

Diamond-based microplasma provides a way to facilitate academic research and 

enhance its societal impact; a keen interest to the current author. Having developed 

expertise in logistics in another career in the private sector, the availability and 

reliability of the first generation of diamond devices was the subject of particular 

concern and interest. Other research teams also reported limited device reliability 

during informal exchanges. Having demonstrated satisfactory robustness over the 

time span of one PhD, the reactors reported here could therefore offer a route to 

“guaranteed” research time and data to future researchers. Also, the portability 

and versatility of the same devices offer the possibility of turning this cutting-edge 

research tool into an appealing educational one. Through a business competition3,

a workshop4 and various exchanges with start-up business support organizations in

3OU-EPSRC Commercial Challenge Competition 2012
Enterprisers programme 2012, Judge Business School, University of Cambridge
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Belgium (2012-2014), this author has been exploring how to package ready-to-use 

diamond-based microplasma reactors for both research and high school institutions. 

The aspiration behind this is to facilitate the basic research in microplasma to a 

wider academic audience and to bridge the gap between classroom-based education 

and scientific careers.
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