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Abstract

In this thesis, Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) 

models are proposed for nonlinear time series, as an alternative to both the classi

cal Smooth Transition Autoregressive (STAR) models and Computational Bayesian 

STAR (CBSTAR) models. DBSTAR models are autoregressive formulations of dy

namic linear models based on polynomial approximations of transition functions of 

STAR models. Unlike classical STAR and CBSTAR models, their parameters vary 

in time, being suitable for modelling both global and local non-stationary processes. 

Since DBSTAR models are Bayesian, the models do not require extensive historical 

data for parametric estimation and allow expert intervention via prior distribution 

assessment of model parameters. Because they are analytical and sequential, DB

STAR models, respectively, avoid potential computational problems associated with 

CBSTAR models, such as convergence issues, and allow fast estimation of dynamic 

parameters sequentially in time, being thus suitable for real time applications. Pro

posed DBSTAR models have been applied to two data sets: the much used Canadian 

Lynx data set, in which the aim is to validate DBSTAR models by comparing their 

fitting performances with existing approaches in the literature, and a Brazilian elec

tricity load data set, for which existing models are not suitable.
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Chapter 1

Introduction

In time series analysis, values in the future depend, usually in a stochastic manner, 

upon the observations available in the past and the present (Box and Jenkins, 1970). 

Any observed time series can be viewed as a realisation of a stochastic process. This 

stochastic dependence may help to predict the future from the past and the present.

Let Yt be an observational time series and X t a latent process at time t  = 

1 ,2 , . . . ,  T. A simple general autoregressive model of order p >  1 is defined as

Yt = X t + et

X t = / ( ^ _ i , ^ _ 2 , . . . ,^ _ p,a )  +r)t (1 .1 )

where /( .)  is a function of past values of the latent process X t , a  = (oi, o 2, • • •»&p) 

is a p-vector with parameters associated with i — 1 , 2 , ...,p, et is the independent 

and identically distributed (i.i.d.) error term of the observational time series and 

rjt is the i.i.d. error term of the latent process; both et and r)t with probability 

distributions to be specified.
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The model (1.1) is a general autoregressive model which depends upon the form 

of the function /( .) . The most popular class of linear autoregressive time series 

models consists of Autoregressive (AR) models by Box and Jenkins (1970), for which 

uncorrelated error terms across time, et ’s, are normally distributed with E(et) = 0, 

Var(et) = of and E(etes) = 0, for t  ^  s.

A linear AR model of order p, or more succinctly AR(p), is defined as a linear 

combination of the most p recent observed values of the time series Yt, given by

Yt = a o 4- OLiVt-i +  Oi2Vt~2 +  ••• +  &pyt~p +  e* ; et ~  N (0, a 2) (1-2)

where a ^ i  =  0 , 1 , ...,p, is a finite set of weight parameters, et consists of a sequence 

of uncorrelated random variables normally distributed with zero mean and constant 

variance.

The model (1.2) has no time-dependent parameters a  and the first and second 

moments are also fixed over time. That model assumes that the process remains 

constant around its level, represented by the current information Yt through its 

immediate p past values y t-i, Ut-2 -, in a linear regression form. Such behaviour

characterises the concept of stationarity (Hamilton, 1994). Allowing the parameters 

a  to change over time, turns the model (1 .2 ) to a non-stationary model.

Although linear stationary AR models have been widely applied to time series 

in different areas, limitations in their parametric inference have been pointed out 

on both classical and Bayesian methodologies and extensions have been proposed in 

the literature. A notably extensive class of time series models can be derived from 

model (1 .1 ) by replacing the right-hand side by an arbitrary estimable function



C h a p t e r  1. I n t r o d u c t io n 3

/( .)  to obtain some nonlinear autoregressive models, as described in the following 

Chapter 2.

1.1 Research m otivation

Beyond the linear domain, there are many nonlinear forms to be explored in model

(1 .1 ) in order to deal with some complications, which include asymmetric cycles 

(slow increases and fast decreases, or vice-versa, within a period of time, of a time 

series), nonlinear relationship between lagged variables, among others.

Recently, an explosion of statistical models to analyse and forecast time series 

presenting nonlinear complexities have been proposed in the literature. Classical 

Smooth Transition Autoregressive (STAR) models of Chan and Tong (1986a) and 

Computational Bayesian STAR (CBSTAR) models of Lopes and Salazar (2005) be

long to the class of nonlinear autoregressive models which have been extensively ap

plied to time series in different areas. These powerful families of models are suitable, 

practical and quite flexible for representing the underlying nonlinear processes. The 

main areas of applications are macroeconomics, finance and energy - just to name a 

few. In those areas, it is crucial to investigate data presenting nonstandard features.

Certain aspects of the processes, such as asymmetric cycles, can be described 

by STAR-type models. However, some critical limitations were identified by in

vestigating both the classical STAR and CBSTAR models as well as their vari

ants. Generally, they require modification of the data set, such as using a Box-Cox 

transformation, during exploratory analysis in order to remove some problematic 

comportment, such as non-stationarity. In addition, both the classical STAR and
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CBSTAR models, as well as their variants, require large data sets to estimate the 

parameters. However, there are some applications in which the data are collected 

in wide time intervals, such as yearly data sets, say, to have enough data in hands 

to apply any of those models. In these cases, it takes over decades to collect data 

in order to have a large number of observations so these models can be applied.

On the other hand, data sets collected in very short periods of time may cause 

computational problems for existing models due to the large amounts of data, known 

as real-time or high frequency data sets. For instance, for data observed minute-by- 

minute, every half-hour, or hourly, decisions have to be made quickly and the model 

should estimate the parameters in real-time, practically.

Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) models are pro

posed in this thesis for non-stationary nonlinear time series as alternatives to both 

the classical STAR and CBSTAR models. DBSTAR models are appropriate for 

modelling nonlinear processes and can accommodate some unconventional and re

markable patterns, such as asymmetric cycles. In fact, the classical STAR and 

CBSTAR models can accommodate some of those patterns. However, DBSTAR 

models can be applied without the need for transforming the data, as we shall see 

in the application chapters, in cases of nonlinearity together with any (or all) of the 

following: non-stationarity, seasonality, asymmetric cycles and heteroscedasticity.

Tsay (1991) mentioned “the collection of nonlinear time series models is so vast 

that it is too much to expect that a single class of models is capable of capturing 

most of the observed nonlinear phenomena” . However, the non-standard features 

mentioned above can be accommodated in our approach just by adding compo
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nents into the model formulation. Accordingly, DBSTAR models bring simplicity, 

feasibility and interpretability to the underlying processes.

Since DBSTAR models are Bayesian, either small or large historical data sets 

can be used for parametric estimation. Appropriate prior distributions should be 

chosen for the parameters. In addition, the models allow expert intervention via 

prior distribution assessment of model parameters. Moreover, DBSTAR models 

are estimated sequentially in time, which allows fast estimation of the dynamic 

parameters, being thus suitable for real-time applications.

Unlike the classical STAR and CBSTAR models, DBSTAR models allow both 

the observational and the parameter variances to vary in time, being thus suitable 

for modelling heteroscedastic processes. DBSTAR models incorporate a variance 

discounting technique, assuming that the variability may change over time but only 

slowly and steadily.

Since DBSTAR models may adapt to the data sequentially over time accommo

dating changes in the parameters at each time, the assumption of both local and 

global stationarity in the proposals can be straightforwardly relaxed, just by adding 

appropriate components related to them into the models’ structure.

Once a DBSTAR model has been properly formulated, it can be used for various 

purposes, such as understanding and interpreting the mechanisms that generated the 

data and forecasting future events. We applied different formulations of DBSTAR 

models to the well-known Canadian lynx data set. The aim is twofold. On the 

one hand, we aim to validate the proposed DBSTAR models by comparing their 

performances against the performances of both the classical STAR and CBSTAR
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models. On the other hand, the aim to illustrate the extra features we can achieve 

by adopting sequential models with dynamic parameters.

To illustrate a case in which the existing classical STAR and CBSTAR models 

are not appropriate, i.e., a non-stationary nonlinear process requiring fast sequential 

computations, an advanced formulation of the DBSTAR model is proposed and 

applied to a series of hourly Brazilian electricity load.

1.2 Thesis outline

This thesis presents in Chapter 2  a description of developments of existing nonlinear 

autoregressive models, in particular the classical and Bayesian STAR models and 

their variants.

Chapter 3 describes Dynamic Linear Models (DLMs), which are a key approach 

for the proposed models in this thesis, together with the parametric prior-to-posterior 

updating methods, a Bayesian model selection criterion and the mathematical back

ground used for the development of DBSTAR models reported in subsequent chap

ters. Polynomial approximations methods, with a focus on Taylor series approx

imation, and splines basis functions, both methods for approximating transition 

functions at the model formulation stage, are described. A review of the Lagrange 

multipliers method for solving overdetermined systems of polynomial equations is 

also reported.

Chapter 4 defines and describes the proposed DBSTAR models based on both 

Taylor series approximations and splines basis functions for approximating the tran 

sition functions. The methodological advantages relative to existing methods (de
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scribed in Chapter 2 ) will be emphasized. That chapter will also include the preser

vation of parameter interpretability via a solution of overdetermined systems of 

polynomial equations and discussions.

Chapter 5 describes DBSTAR model extensions, such as modelling of processes 

with trend, cycle, seasonality, as well as the inclusion of predictor variables and 

multiple regimes modelling within the DBSTAR framework.

Chapter 6  reports the application of proposed DBSTAR models to the Canadian 

Lynx data set. One of the aims is to validate DBSTAR models by comparing their 

fitting performances with those of existing methods in the literature.

Chapter 7 reports a second application of proposed DBSTAR models, which 

refers to an hourly Brazilian electricity load data set. This is an application that 

will show a case in which existing approaches are not suitable for adoption.

Conclusion and future research are presented in Chapter 8 . That chapter sum

marises the main overall results of the proposed models as well as directions for 

further research which include extensions to the model for more than 2  regimes, 

multivariate DBSTAR formulations and the use of particle filtering for sequential 

parametric estimation, based on simulation methods for more precise posterior and 

predictive distributions.



Chapter 2

Literature review on STAR m odels

Autoregressive models which are key ingredients for the DBSTAR proposed in this 

thesis are described in detail in this chapter. It summarises the main developments 

in nonlinear autoregressive models. The focus is on the principal results on both the 

classical and Bayesian STAR models that more closely relate to DBSTAR models.

It is worth noting that this thesis concentrates on stochastic situations only, 

not covering for instance chaotic series or artificial intelligence approaches such as 

neural networks. Only discrete univariate time series models will be considered for 

which discrete time-intervals were specified during data collection such as hours, 

days, months, years, and so forth.

In the following sections, the notation adopted throughout this thesis will be 

introduced. A review on classical and Bayesian TAR and STAR models are covered 

in Sections 2.3 and 2.4, respectively. The fitting performance of some of these models 

are compared with the fitting performance of DBSTAR models in Chapter 6 .
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2.1 Important basic concepts in nonlinear tim e  

series

In this section, important basic concepts in nonlinear time series are described, as 

they will be used hereinafter.

2.1.1 N onlinearity of underlying processes

Many studies have detected nonlinearity of underlying processes by investigating 

some non-standard behaviours of the time series under analysis. An illustration of 

such behaviours is given in this section, with a focus on asymmetric cycles.

In time series analysis, cycles have repetitive forms measured within any period 

of time (Pole et al., 1994). For instance, a cycle can be identified hourly, daily, 

weekly, and so forth. A specific type of cycle is called seasonality, when the periodic 

repetition occurs within one-calendar year, such as monthly (1 2  periods), quarterly 

(4 periods), etc.

A distinctive non-standard behaviour that can be found in time series data sets 

is the asymmetric cycle, i.e., a time series that shows a slow increase and a fast 

decrease, or vice-versa, within a period of time. The rise/decline period of the cycle 

exceeds the descent/ascent period, characterising an asymmetric periodic behaviour 

in the frequency. This asymmetry is referred to as amplitude-frequency dependency 

(Tong and Lim, 1980).

Such cyclic oscillations with changes in the frequency and/or in the amplitude 

are investigated in different areas of research. For instance, Tong and Lim (1980) in-
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Figure 2.1: Canadian lynx time series, yearly observed from 1821 to 1934.

vestigated nonlinearity, related to amplitude-frequency dependency, in different data 

sets. Using the Canadian lynx data set illustrated in Figure 2.1, they concluded that 

the process presents cycles of approximately 10  years with varying frequency and 

amplitude. The rise period of the cycle exceeds the descent period, characterising an 

asymmetric periodic behaviour in the frequency. Notice the dashed vertical lines in 

the graph. Generally, it takes about six years to rise and just four years to descend. 

Similar analysis was carried out using a time series of sunspot. They also concluded 

that these were asymmetric cycles present in this process. The rise period of the 

cycle is shorter than the descent period, which runs in an opposite direction to tha t 

of the Canadian lynx.

Therefore, linear models would not be suitable for modelling such processes. 

The understanding of processes with asymmetric cycles would be more appropriate 

with the use of a much wider class of nonlinear models. Priestley (1988) stated: 

“if the series under study exhibits a cyclical phenomenon, but with asymmetrical 

cycles, then a nonlinear model may well provide a more satisfactory description of
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the data.”

Veselovsky and Tarsina (2002) also analysed nonlinearity of the solar cycles using 

a monthly averaged sunspot numbers data set. They state that “stronger solar cycles 

are shorter, as a rule”. Their results showed “non-sinusoidal time dependence with 

shorter rising phases and longer declining phases of moderate and strong cycles” .

Zhang and Duda (2013) examined nonlinearity of internal tidal waves provoked at 

the shelf break. Nonlinear effects in this application cause additional superharmonic 

and subharmonic internal waves, with the presence of a stronger nonlinearity on 

subharmonic waves. Subharmonics are oscillations at a fraction of the frequency 

and superharmonics are oscillation at a multiple of the frequency (Tong and Lim, 

1980). Both types of harmonics also describe asymmetric cycles.

A nonlinear time series model should then reflect these underlying characteristics 

present in such processes.

2.1.2 N onlinearity in tim e series m odels

The AR model in equation (1.2) present linearity in their parameters. Linearity, in 

this case, refers directly to the physical structure of the model in which the quantities 

to be estimated, the parameters a i} appear linearly in the formulation (Kutner et al., 

2005). Other physical model structures of the general model in equation (1.1), such 

as polynomials with power functions or other forms, also present linearity in their 

parameters, for instance,

Yt = & o +  otiyt - 1  +  oi2yl_i +  ... +  o^r'yl-i +  et (2 .1)
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where c^, i = 0 , . . . ,  r, are the coefficients of the polynomials. Notice tha t for r = 1, 

the model (2 .1) becomes an AR(1 ), however, r  =  2 describes a parabolic model and 

r =  3 represents an S-shape curve model. Nonetheless, those models also fall into 

a linear category of the above meaning. The possible reason for tha t could be an 

investigation of their first derivatives. Notice that the first derivative of the model

(2 .1 ) with respect to any of the parameters is independent of tha t parameter. On 

the other hand, if a parameter, say 7 , is introduced to the model, as follows,

Yt = a  0 +  ' y o c i y t - i  +  7 a 22/t-:L +  •■• +  7 arVt-i +  e t  (2-2)

the first derivative of the new model (2 .2 ) with respect to any of the parameters a* 

is not independent of 7 , or the first derivative with respect to 7  is not independent 

of any a* either. This would characterise nonlinearity in the parameters.

Using geometric concepts, Bates and W atts (1980) and Hamilton et al. (1982) 

stated that, intrinsic nonlinearity is inherent to the models (1 .1 ) with nonlinear 

parameter effects as above mentioned in model (2.2). A suitable linearisation of 

nonlinear models with particular choice of the parameters, such as the Taylor series 

approximation, produces satisfying reparametrisation of the models, as their math

ematical forms change from the form of model (2 .2 ) to the form of model (2 .1 ), 

say, which remove the parameter-effects nonlinearity. So a nonlinear model can be 

linearised by a Taylor series approximation.
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2.1.3 R egim es

In nonlinear autoregressive time series analysis, the relationship between Yt and 

its past Yt_p is analysed by attributing a different linear autoregression to each two 

distinct regions, called regimes. Basically, data are divided into sub-sets represented 

by linear autoregressive models.

The central idea of autoregressive models using regimes in their structure is to 

approximate a nonlinear relationship between Yt and its past by a piecewise linear 

autoregression model (1 .2 ) in each one of the regimes, i.e., there is a change in 

the linear coefficients according to an assumed value of an external variable st , 

denoted as the transition variable. So this variable is responsible for representing 

the information that is causing nonlinearity to the process. Therefore, autoregressive 

models with regimes are partly linear since they are linear in the parameters.

Either a complete switch or a smooth transition between linear autoregressive 

models may occur. This characterises one type of nonlinear autoregressive models 

(Tong, 1978), as the combination of these individual autoregressive models is seen 

as a piecewise linear model which assumes the role of imitating the nonlinearity 

present in the process.

2.1.4 D etectin g  nonlinearity in tim e series analysis

In general, time series components such as trend, cycle and seasonality, as well as 

heteroscedasticity can be straightforwardly diagnosed by graphical analysis. How

ever, certain characteristics such as asymmetric cycles and nonlinear relationships 

between variables are less straightforward to pick out.
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In time series analysis, it can be difficult to identify certain patterns tha t indicate 

nonlinearity by visual inspection alone. In those cases, more detailed investigation 

is usually required to detect nonlinearities in the underlying process. Hypothesis 

testing has been used to show whether linear or nonlinear models best represent the 

underlying process. There have been many approaches proposed in the literature. 

Usually, the null hypothesis is set to linearity against the alternative hypothesis of 

nonlinearity.

Tsay (1989) proposed hypothesis tests for testing linearity against threshold au

toregressive models whereas Luukkonen et al. (1988) and Terasvirta (1994) proposed 

tests for linearity against smooth transition autoregressive models. Both approaches 

have been widely used and extended since. More general tests can be also found in 

the literature, e.g., Tsay (1986), Chan and Tong (1986b) and Tsay (1991) proposed 

quite general procedures to detect various nonlinearities in univariate time series.

However, misidentification problems may occur when using these approaches. 

For identifying nonlinearity in time series, the existing methods first specify some 

linear and nonlinear models as for the null and alternative hypothesis, respectively, 

and then conclude for evidence of linearity or nonlinearity for the process. Notice 

that, in fact, the existing approaches only test linear AR models against nonlinear 

AR models, in an attem pt to identify the characteristics of linearity or nonlinearity. 

For example, the nonlinear model under investigation, such as a classical STAR 

model defined in Section 2.3, is set as an alternative hypothesis together with the 

null hypothesis of a linear model, e.g. a linear AR model. A problem associated 

with this hypothesis testing could be that the evidence for nonlinear structure in the
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data may be coming from some aspects of the data not following the specific linear 

AR model set as the null hypothesis, but from another linear model. In such case, 

the conclusion for modelling the data using a STAR model would be inaccurate.

In this thesis nonlinearity is not identified via hypothesis tests. Instead, an 

exhausting exploratory analysis is carried out based on either the concept of asym

metric cycles, i.e., trying to identify them, or the study of the relationship between 

the dependent time series and an external one.

2.1.5 N on-stationarity

There are different concepts of non-stationarity in the literature. The two most 

used are the weakly non-stationarity and the strictly non-stationarity (Hamilton, 

1994). Moreover, two subgroups of those can be identified, locally non-stationarity 

and globally non-stationarity (Priestley, 1988).

The process for Y t is weakly non-stationary if its moments depend on time £, for 

all t  = 1 , . . .  ,T . Generally, the first two moments are investigated. On the other 

hand, the process is strictly non-stationary if, for any values of j i , . . . ,  j n, the joint 

distribution of Y u  Y t+ j 1, . . . ,  Y t+ j n , depends on both the delays (j i , . . . ,  j n) separating 

the dates and on the date t itself, for alH  =  1 , . . . ,  T.

A locally non-stationary process is identified by splitting the time axis, represent

ing the parameter space, into a large number of small divisions and checking whether 

either weakly or strictly non-stationarity is detected in any division. Besides, a glob

ally non-stationary process is identified using the whole period t  = 1, . . .  ,T,  i.e., 

without splitting the parameter space to check the presence of non-stationarity.
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Further, if the vector of parameters a  in (1.1) changes over time, i.e., time- 

dependent parameters, the model becomes a non-stationary model. Notice that, 

in this thesis, the terminology “non-stationarity” itself means locally weakly non- 

stationarity, unless stated otherwise.

An example of a model that represents a stationary process is the model (1.2), 

which has no time-dependent first and second moments as well as fixed parame

ters over time. That model assumes that the process remains constant around its 

level, represented by the current information Yt through its immediate p past val

ues in a linear regression form. If the parameters a  are allowed

to change over time, i.e., a tJt =  1 , . . .  ,T,  the model becomes a non-stationary AR 

model, hence suitable for modelling processes with trend.

2.2 Historical remarks

Although linear stationary AR models are computationally simple and have been 

widely applied to time series in different areas, it soon became clear tha t many time 

series problems required a more sophisticated model. Limitations in the AR para

metric inference have been pointed out in both classical and Bayesian methodologies, 

as described in this section and extensions have been proposed in the literature, as 

reported in Sections 2.3, 2.4 and 2.5.

2.2.1 Classical inference

On the classical inference side, the first studies tha t detected limitations of linear 

models were conducted in The Fifties. Moran (1953) statistically analysed the well-
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known Canadian lynx data set, illustrated in Figure 2.1, using linear AR models in 

an attem pt to represent the process of population dynamics. In that paper, attention 

was drawn to the residuals that showed a curious behaviour. Two distinct groups of 

residuals were formed, one that the linear model produced from the sample points 

greater than the mean and another from the sample points smaller than the mean. 

It was detected that the former were significantly small compared with the latter. 

It was then concluded that, since there are some patterns leftover in the residuals 

which were not captured by the model, the underlying process is asymmetric and 

should not be modelled by a linear AR model.

W hittle (1954) analysed a water level time series collected in a rock channel 

on the New Zealand coast. This small channel contains atypical depths at shallow 

water and opens into partly protected water of a bay. In addition, it runs parallel 

to a corridor of breakers outside but it is disconnected from them by a strip of 

rocks. A significant arithmetical relationship was detected among the periods of 

the pronounced peaks of the waves. This relationship produced some evidence for a 

rather convincing nonlinear structure, which is beyond the domain of linear models. 

Hence, a more sophisticated model than the linear AR model is required.

Research in detecting changes in the parameters was discussed by Page (1954) 

when all observations were divided into sub-samples, each of which refers to a ran

dom sample from the same distribution but regarding different parameter values. 

Hypothesis tests were proposed by Page (1955, 1957) to detect that, given T  inde

pendent observations x \ , xt  observations, they come from the same population 

with distribution function F{x\6) against the alternative that the first r  observations
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come from a distribution function F(x\0i) and the remaining T —r  observations come 

from a distribution function F(x\92), with unknown r ,  0 <  r  < T  and 9\ ^  02. The 

main concern in splitting the sample into two is to detect changes in the parameter 

values from 9\ to 92-

Based on those findings, Quandt (1958) suggested a method of estimating a 

linear regression system obeying two regions, referred to as regimes, i.e., the method 

attributes a different linear regression to each two distinct regimes. Since the analysis 

is not affected by the number of explanatory variables, Xt, in the regression, for a 

time t, with t = 1,2, ...,T , define the case of two relationships between a dependent 

variable, Yt, and one explanatory variable X t:

Yt = 0 o,i +  0 i,iX t +  ei>t, t = 1 , . . . ,  r  (2-3)

Yt =  0o,2 +  01,2X t +  e2>t, t = r  +  1 , . . . ,  T  (2-4)

where for i — 1 , 2 , 0 of* and 0 *̂ are the model coefficients and is independent 

normally distributed error terms with zero mean and constant variances of. In ad

dition, assume e^t is also independent of the explanatory variable X t. For these two 

relationships, a total of T  observations is considered and divided into two regimes:

equation (2.3) for the first t  = 1, . . .  , r  observations and equation (2.4) for the re

maining t = r  +  1, . . .  ,T . The identified problem was to estimate the time r  at 

which the model switches from one regime to the other. This approach considered 

one likelihood function for the first r  observations and another for the remaining 

T  — r  observations. This method calculates the value of the likelihood function for
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all possible values of r ,  considering the entire sample. The value of r  is then selected 

as the one that maximises the likelihood estimate. Then, given this highest value 

of r , the maximum likelihood estimates for <f)01, >̂02? ^ n , (f> 12 and of are obtained in 

the usual way.

In The Sixties, extensions of the methods previously mentioned were proposed. 

Quandt (1960) published some advances on his research by testing the hypothesis 

that no switch occurred in the parameters of a linear regression system against the 

alternative that one switch took place. Furthermore, Robison (1964) and Hinkley

(1969) proposed maximum likelihood methods for the intersection of two regressions 

whereas Hudson (1966) proposed least squares methods. Both approaches estimate 

the parameters when the time r  is unknown.

More research in classical AR models after The Sixties are described in Section

2.3.

2.2.2 Bayesian inference

Still in The Sixties, Bayesian methods in this area started to appear in the literature. 

Some studies reviewed in this section pointed out the difficulty of computing the time 

r , at which the model switches from one regime to the other. Those concluded tha t 

neither maximum likelihood nor least squares methods are efficient estimators for 

r . Therefore, probability distributions were given to r  and approximation inference 

methods were developed for switching regression problems.

From a Bayesian point of view, Chernoff and Zacks (1964), Kander and Zacks 

(1966) and Mustafi (1968) proposed methods to extend the works of Page (1954,
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1955, 1957) from the classical side. The Bayesian approaches explored this area by

(i) giving an appropriate prior probability distribution to the time points of change 

r , (ii) investigating the amount of change in the parameters since appropriate prior 

probability distributions were also given to them, (iii) proposing Bayes estimators 

to the parameters, and (iv) designing simpler, more appropriate and more powerful 

alternative techniques to the hypothesis tests.

At the same time, Box and Tiao (1965) investigated non-stationary time series 

with a possible shift in the level after the occurrence of an event at a certain time r  

and proposed a Bayesian approach to make inference about it.

In the Seventies, Bacon and W atts (1971) proposed a Bayesian estimation ap

proach for detecting the switch r  between two straight lines. Their proposal extends 

the previous work in this area because it can accommodate either an abrupt switch 

or a smooth transition from one regime to the other, defined as

Yt = 4>o +  4>i{Xt ~  c) +  (f>2 (Xt — c)7[{(st — c )/7 } +  €t (2-5)

where 7 r{ .}  (short for transition) is a function which produces the transition from one 

regime to the other, with 7  as a transition parameter, st as a transition variable, i.e., 

an external variable that specifies the transition between regimes, c as a threshold 

point, i.e., the point when a transition between regimes occurs and et ~  N(0,cr2). 

This method can be used whether or not the nature of the transition (either smooth 

or abrupt) is known a priori Furthermore, under certain conditions, many transition 

functions 7 r { .}  could be adopted, such as the cumulative distribution function of 

a symmetric probability density function or the hyperbolic tangent function, as
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Figure 2.2: Hyperbolic tangent function as the transition function with 7  =  0.5 on 
Panel (a) and 7  — 10 on Panel (b) and, respectively, simulated time series from 
model (2.5) on Panels (c) and (d)

variability in the data mask any difference introduced by the choice of them. 

Consider the hyperbolic tangent function expressed as

tanh(x) =
sinh(x) 1 — e- 2 x

cosh{x) 1 +  e~-2x
(2 .6)

where tanh(x) is the hyperbolic tangent of x, sinh(x) is the hyperbolic sine of x  and 

cosh(x) is the hyperbolic cosine of x. Figure 2.2 illustrates the hyperbolic tangent 

function of (st — c)/y  used as the transition function between regimes for 7  =  0.5 on 

Panel (a) and 7  =  10 011 Panel (b), with threshold c =  50, together with simulated 

time series from model (2.5) on Panels (c) and (d), respectively, with </>0 =  0.1, (f)\ — 

—0.2, = 0.3 and et ~  fV(0,1). Notice that when 7  =  0.5, the transition between
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regimes is smooth, however when 7  increases to 10  the hyperbolic tangent function 

becomes smoother and, consequently, the transition between regimes occurs slower. 

This behavior is reflected in the simulated time series; the larger the 7  the more 

oscillations the time series have. Notice also from Panels (c) and (d) tha t the model 

(2.5) should be used to represent homoscedastic stationary nonlinear processes only.

Ferreira (1975) proposed Bayesian methods extending the work of Quandt (1958) 

for analysing the time r  that a switch from one regime to another occurs, for a known 

number of regimes. Prior probability distributions were given to r  with Bayesian 

estimation methods to obtain posterior probability distributions for the parameters. 

This was slightly more complicated than the maximum likelihood method but pro

duced very similar results when applied to the same data set as in Quandt (1958).

As it can be noticed from the above in this section, the historical remarks on 

nonlinear autoregressive models show that the early studies conducted in this area 

are based on limitations of linear AR models. All the above surveyed works from 

both the classical and Bayesian inference sides motivated the subsequent works, 

described in the following Sections 2.3, 2.4 and 2.5.

2.3 Classical STAR m odels

In spite of the vast applicability and dominance of linear models, it had long been 

noticeable that there are many aspects of time series in different fields which cannot 

properly be analysed within the traditional framework of linear autoregressive time 

series models. However, extensions of those models have been proposed in the liter

ature. In this section, some classical nonlinear autoregressive models are introduced
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and their properties are discussed. Some identified issues are also presented.

2.3.1 Threshold A utoregressive (TAR) m odels

Some limitations in linear AR models for stationary processes by Box and Jenkins

(1970) motivated the development of Threshold Autoregressive (TAR) models, with 

a focus on applications where there are different frequencies of oscillations for differ

ent amplitudes: this is fundamentally a nonlinear phenomenon. This is just one of 

the observed phenomena which indicated the need to move beyond linear models.

The first ideas about TAR models were published by Tong (1977) in a contri

bution to the discussion of the paper by Lawrance and Kottegoda (1977) and then 

defined in more details in Tong (1978, 1983, 1990) as alternative models for describ

ing non-standard periodic time series that cannot be captured by linear time series 

models. Analysing the residuals gives evidence tha t TAR models provide a pertinent 

description of the data.

Let 7t b e a  univariate time series, for t  = 1 , 2 , . . . ,  T. TAR models with autore

gressive order p are defined as:

<*0,1 +  E L i  aj,iVt-j +  ei ,ti if St < c
(2.7)

<*o,2 +  J7j=i +  e2,t, otherwise

where a o ..., aPji, i =  1 , 2 , are the coefficients associated with the autoregressive 

part of the model, ~  N (0 ,a 2) are the error terms, st is a transition variable, i.e., 

an external variable that specifies the transition between two regimes and c is a 

parameter called threshold that indicates when the transition occurs.
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TAR models can be seen as piecewise linear time series models and they em-

values of Yt. The main idea is to represent the nonlinearity present in the process 

as locally stationary linear autoregressions by attributing a different linear autore

gressive model to each of the two distinct regimes, based on the assumed value of a 

candidate transition variable. Their success partially lies in their simplicity in terms 

of both model-fitting and, perhaps more importantly, model-interpretation.

W ith Gaussian distributions given to the error terms, the likelihood function can 

be easily written down and the maximum likelihood estimates of the parameters 

derived. The parameters can also be estimated by ordinary least square methods. 

Therefore, TAR models work in a similar way as linear AR models, since they are 

piecewise linear models. The AR order p and the threshold parameter c can be 

chosen by using Akaike’s Information Criteria - AIC (Akaike, 1974).

The model in (2.7) can be rewritten in a vectorial form, such as

where i = 1, 2, is a (p-f-l)-vector with autoregressive coefficients, z t =  (1 , y t - u . . .  ,y t-

The use of an indicator function as the transition function allows TAR models

anate as a natural candidate of /( .)  in model (1 .1), i.e., a nonlinear function of past

Yt = d e l i s t ;  c) +  z ta 2[ 1 -  I (s t] c)] +  et (2 .8)

contains the lagged values of the variable Yt, and /(.)  is an indicator (or step) func

tion defined by:

0 , otherwise

1 , if st <  c
(2.9)

to abruptly switch from one AR model (regime 1) to another (regime 2). That
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function specifies an abrupt switch at the time the transition variable assumes the 

value st = c.

A problem with the models’ structure is that the likelihood functions present 

discontinuities tha t affect statistical inference due to the abrupt switching between 

regimes (Terasvirta, 1994). They also require large data sets to estimate the pa

rameters due to the use of maximum likelihood or ordinary least square estimation 

methods. Thus, they are not useful for real-time application. In addition, these 

models require the parameters, including the variance, to be fixed over time, and so 

are not suitable for heteroscedastic processes. Consequently, TAR models require 

locally stationary data sets (locally in each regime) for parameter estimation, and 

hence are not suitable for processes presenting a long-term stochastic (upward or 

downward) trend.

2.3.2 Self-E xciting TA R  (SETAR) m odels

A question tha t rises when using TAR models is how to choose the transition vari

able st ?. Tong and Lim (1980) defined then Self-Exciting Threshold Autoregressive 

(SETAR) models. These models determine the transition between two regimes by 

taking the transition variable st in equation (2.9) as a lagged value of Yt itself, hence 

the self-exciting part of the name. The ability of self-excitements of the TAR family 

were shown in the role of amplitude-frequency dependency (Tong and Lim, 1980), 

for example.
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SETAR models are defined as,

Yt =  dtQLiHyt-d] c, d) +  ^£2 [1 -  I{yt-d\ c , d)] +  et (2.10)

where d is a delay parameter introduced to the model which determines the lag yt-d 

of the transition variable that is provoking an abrupt change in the process. Notice 

that the indicator function (2.9) is adapted to I(yt-d\ c,d)  as

Like TAR models, either maximum likelihood or ordinary least squares methods 

can be used for estimating the parameters and the AIC can also be used to select 

the AR order p,  the threshold parameter c and the delay parameter d.

To illustrate this idea, we report a SETAR model applied to the Canadian lynx 

data set by Tong and Lim (1980):

This estimated SETAR model can be interpreted as follows (recall that the con-

lower regime, that is, yt ~ 2  <  3.1163, corresponds to the ascent period of the cycle 

that, generally, takes a long time to reach highest amplitudes. The linear AR model

(2 .11)

0 , otherwise

0.5239 +  1.0359jfc_i -  0.1756j/,_2 +  0.1753y(_3 -  0.4339s/(_4+

Y t = < +0.3457j/ t _ 5 -  0.3032j/(_6 +  0.2165y(_7 +  0.0043y4_8, y4_ 2 < 3.1163

2.6559 +  1 .4 2 4 6 2 ft-! -  1.1618y(_2 -  0.1094y(_3, yt- i  >  3.1163

cept of amplitude-frequency dependency has been described in Section 2.1.1): the
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attributed to this regime is Yt =  0.5239 +  1.0359^_i — 0.1756'</£_2 +  0.1753^-3 — 

0 .4 3 3 9 ^ - 4  +  0 .3 4 5 7 ?/t_5 — 0.3032yt_6 +  0 .21652 /t _7  +  0.0043?/t_8. Notice that the slow 

rise period of the cycle depends on observations of the previous 8  years (autoregres

sive order p =  8 ). On the other hand, the upper regime, that is, yt- 2 >  3.1163, 

corresponds to the descent period of the cycle that, usually, takes a short time to 

reach the lowest amplitudes. The linear AR model attributed to this regime is 

Yt = 2.6559 +  1.4246yt_i — 1.1618yt-2 — 0.1094^_3. In this case, since there is a fast 

decrease in the cycle, observations from the past 3 years only (autoregressive order 

p =  3) are needed. In ecology, they name the lower regime as population increase 

and the upper regime as population decrease phases, which can only be reflected by 

a nonlinear model. For further interpretations, see Stenseth et al. (1998).

SETAR models have also been well-used for many other time series data. They 

are particular cases of TAR models when the indicator transition variable assumes 

a past value of the dependent endogenous time series. Since the use of an indicator 

function still applies, similar discontinuity problems tha t affect statistical inference 

due to the abrupt switching between regimes in TAR models are also detected for 

SETAR models. In addition, the other limitations of TAR models are also observed 

in SETAR models.

2.3.3 Sm ooth  Transition A utoregressive (STAR ) m odels

A generalisation of TAR and SETAR models incorporating a smooth monotonically 

increasing transition between the two regimes was proposed by Chan and Tong 

(1986a) called Smooth Transition Autoregressive (STAR) models. One of the great
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advantages in using models with smooth transition is the possibility of specifying 

the transition from one regime to the other in order to avoid the problem of having 

an abrupt threshold between them, i.e., the discontinuities in the conditional mean 

which are implicit in TAR and SETAR models can be avoided.

The mathematical expression representing a STAR model of autoregressive order 

p with two regimes is given by

Yt = dtQLi^{st\^ ,c ) + z ta 2[l -7r(st;7,c)] + et ; et ^ N ( 0 , a 2) ( 2 .1 2 )

where for i = 1 , 2 , =  (aoij , aPi) are (p +  l)-dimensional vectors with el

ements dji (j =  0 , 1 , . . .  ,p) representing autoregressive coefficients associated with 

each component j  of the AR regime i\ z t = (1 , t/i_i, . . . ,  Vt-p) is a (p+  l)-dimensional 

vector; 7r(.) is a nonlinear smooth transition function in the range [0,1] with param

eters 7  G R+ and c G l  defined as smoothing and threshold, respectively, and st G M 

defined as a transition variable (usually in practice being either an external variable 

or lagged dependent variable yt-d , where d is a delay parameter, as in the previous 

Section 2.3.2), and et is independent and identically normally distributed.

In the literature, we can find STAR models with different transition functions 

such as the first- and second-order logistic functions, the exponential function (Terasvirta, 

1994), and others such as the cumulative distribution function (Chan and Tong, 

1986a) and the hyperbolic tangent function (Bacon and Watts, 1971). See Terasvirta 

(1994) for more details on alternative transition functions. The most commonly used 

transition function, and the one we will be adopting in Chapters 6  and 7, is the first-
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Figure 2.3: Logistic function 7r($t,7 , c), with 7  =  0,0.1,0.5,1,10 and c =  100, 
together with the indicator function / ( s t ; c), c =  1 0 0 , both as the transition function.

order logistic function defined as

7r(st ; 7, c) =  [1 +  ex p { -7 (si -  c) } ] _1 (2.13)

The parameter 7  is responsible for the degree of smoothness of the transition between 

the two regimes and the parameter c represents the moment when the transition oc

curs. Figure 2.3 illustrates the logistic function 7r(st , 7 , c), when 7  =  0,0.1,0.5,1,10 

with threshold c =  1 0 0 , together with the indicator function I (s t ’,c) from equa

tion (2.9). Notice that when 7  tends to zero the logistic function becomes constant 

(tt(st ; 0, c) =  0.5) and the STAR model is reduced to an average between two linear 

AR models. As the values of 7  increase, the logistic function tends to an indicator 

function and the transition from one regime to the other becomes more abrupt, 

resembling a TAR model.

r . .
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-----  y = 0
- - - -  y = 0.1
-----  y = 0 .5
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. . . .  7=10
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A strategy for statistical parametric inference in STAR models was proposed by 

van Dijk et at. (2002) who used ordinary least squares for estimating the autoregres

sive coefficients and nonlinear least squares for the parameters within the logistic 

function. An important point to notice is that the nonlinear least squares used by 

classical STAR models adopt linear approximations of the nonlinear function at each 

iteration step. In proposed DBSTAR models, this approximation is carried out at 

the modelling stage rather than at the estimation stage as we shall see in chapters 

4 and 5.

There have been many applications of STAR models to time series data, including 

the benchmark Canadian lynx (Tong, 1990).

STAR models have some limitations in their model structure. Like TAR and 

SETAR models, discontinuity problems in STAR models are detected when the 

smoothing parameter 7  takes very large values (1 0  or larger), since the smoothing 

transition function then becomes an indicator transition function. In this case, all 

the limitations of TAR/SETAR models, that is, the requirement of large data sets, 

fixed parameters including the variance and stationarity, are also observed.

An additional problem is related to the convergence of the nonlinear least squares 

algorithm to estimate the smoothness 7  and the threshold c parameters. This al

gorithm is an iterative procedure that requires the choice of initial values for the 

parameters. So different convergences may be obtained for different starting values. 

Another problem with the nonlinear least squares algorithm is that, despite some 

choices that can guarantee local convergence, global convergence can be very slow 

and is not guaranteed, as shown in Terasvirta (2005). Therefore, STAR models are
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not generally appropriate for real-time applications, especially in areas where the 

time series are observed in very short periods of time.

STAR as well as TAR/SETAR models use a high autoregressive order which tries 

to capture the periodic behaviour. By doing so, the models may not be parsimonious 

and, what is more, they may not give accurate specification of the cyclical/seasonal 

behaviour of the time series.

They also demand data transformation during exploratory analysis, in case the 

data do not meet all the requirements, such as stationarity and homoscedasticity.

2.4 Bayesian STAR models

The vast majority of nonlinear autoregressive time series models make use of clas

sical inference. However, Bayesian approaches in this area have also been proposed 

recently. In this section, some Bayesian nonlinear autoregressive models are intro

duced and their properties are discussed. Some identified issues are also presented.

2.4.1 Bayesian TA R  m odels

Many Bayesian TAR models and their variants have appeared in the literature. The 

Bayesian framework considers the model parameters, a ,c  and a2, as random quan

tities and interpret probabilities as degrees of belief about particular realisations of 

each random quantity (or variable) conditional upon the availability of information.

Broemeling and Cook (1992) were the first to propose Bayesian analyses of two- 

regime threshold autoregressions. Given the data, Bayesian inference updates prior 

beliefs, expressed before observing the data, into posterior beliefs via Bayes’ theorem,
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as follows

(2.14)

where, yt is the sample observation at time t = 1, . . . ,  T, 0_ = (a, c, a 2) is the vector 

of the model parameters, f(0 )  is the prior probability distribution tha t quantifies 

the beliefs before observing the data, f(yt\@) is the probability distribution of the 

sample observations conditional on the parameters (i.e., the likelihood), f(y t)  is the 

marginal probability distribution of the sample and, finally, p(9\yt) is the posterior 

probability distribution of the parameters tha t is updated after observing the data.

Chen (1998) proposed the Bayesian Generalised TAR model by incorporating 

exogenous variables into Bayesian TAR models and also allowing the transition 

variable st to be a function of the exogenous variables. Using notation from equations

(2.8) and (2.9), a two-regime Bayesian Generalised model is defined as:

where, X_t denotes a vector of set of exogenous variables in each regime and /? is

Bayesian Generalised model:

• is reduced to a Bayesian TAR model if the exogenous variables X_t are deleted.

are deleted.

•  becomes a nonhomogeneous linear regression model if only the noise variance 

cr2 is different for each regime.

(2.15)

the vector of coefficients associated with the exogenous variables. Observe tha t the

• is reduced to a switching regression (Quandt, 1958) if the lagged variables z t
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To implement the Bayesian Generalised TAR models, the conditional posterior 

distribution of each parameter, given all the others, is derived. To this end, prior 

distributions are specified: (i) independent normal distributions for the parameters 

« i (ii) independent inverse gamma distributions for the variances at each

regime cr2, (iii) a continuous uniform distribution for the threshold parameter c and 

(iv) a discrete uniform distribution for the delay parameter d in case the transition 

variable st is set as a lagged exogenous variable x t-d- In summary, all conditional 

densities were identified with the exception of c, when Metropolis-Hasting algorithm 

(Gilks et al., 1996) was employed.

In general, Bayesian parametric inference for nonlinear autoregressive models rely 

on computer intensive numerical simulation methods due to the loss of analytical 

tractability in calculating approximate posterior distributions of underlying param

eters. They are, thus, not generally appropriate for real-time applications because 

of computation time for small time intervals, for which sequential prior-to-posterior 

parametric updating and forecasting would be more pertinent.

Bayesian Generalised TAR models avoid discontinuity problems in classical TAR 

models by using Markov Chain Monte Carlo (MCMC) algorithms to assess the 

posterior distributions of the parameters. In this case, they also address some of 

the limitations of the classical TAR models, as they do not require large data sets 

to estimate the parameters. However, the other limitations still stand: Bayesian 

Generalised TAR models have fixed parameters, and hence are not suitable for non- 

stationary processes, and they also demand data transformation during exploratory 

analysis, in case the data do not meet all the requirements.
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2.4.2 Bayesian SETA R  m odels

Bayesian versions of SETAR models have also been proposed in the literature. 

Geweke and Terui (1993) were the first to propose Bayesian SETAR models. Basi

cally, the model in (2 .1 0 ) is extended in the sense that probability distributions are 

given to its parameters.

In addition, the autoregressive order p and the delay parameter d can also be 

added to the vector 9 in (2.14). By doing so, the AIC criterion is no longer used to 

select p and d, as in classical inference, but prior probability distributions are given 

to p and d, and posterior probability distributions are assessed after collecting data.

Chen and Lee (1995) introduced a Bayesian analysis to the TAR model in (2.7) 

by transforming it into a change point problem. Intractable joint distributions were 

then explored via MCMC to assess the posterior distributions.

So and Chen (2003) also developed an MCMC algorithm for SETAR models, 

which extracts marginal posterior probability distributions for the threshold and 

delay parameters, c and d, respectively, from the fully conditional probability dis

tribution for d, which is not easily obtained.

Campbell (2004) developed a reversible jump MCMC algorithm (Green, 1995) 

for SETAR models with different unknown autoregressive orders p in each one of 

the regimes.

Koop and Potter (1999, 2003) compared classical and Bayesian SETAR models 

through Bayes’ factors. They considered Bayes’ factors as the ratio of marginal like

lihoods of linear and nonlinear models. They concluded that Bayesian TAR models 

provide superior statistical evidence over classical tests in assessing the significance
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of nonlinearities in economic time series. It suggested tha t the use of Bayes’ fac

tors was better at identifying nonlinearities than the hypothesis tests of classical 

methods.

The Bayesian formulations of SETAR models still present some limitations. Var

ious MCMC algorithms have been proposed to overcome those and there is still some 

ongoing research in this area.

2.4.3 Bayesian STA R  m odels

Bauwens et al. (1999) was the first work to propose computational Bayesian ap

proaches for STAR models as given in (2.12). They used a sampling importance 

resampling algorithm (Gelfand and Smith, 1990) for posterior inference of parame

ters of a STAR model with known AR order p.

Lopes and Salazar (2005) further developed Bayesian STAR models where (i) a 

Gibbs sampler approach was used for inferences on the parameters a 1} a 2, 7 , c, d and 

a2 of the logistic STAR in (2.12) and (2.13) when the AR order p  is known, and

(ii) a reversible jump MCMC algorithm for posterior assessment of unknown p was 

included.

We refer to Lopes and Salazar (2005) approach as computational Bayesian STAR 

(CBSTAR) models to differ from Bayesian STAR models proposed in this thesis. 

The former, uses computer intensive numerical simulation methods due to the loss 

of analytical tractability in calculating approximate posterior distributions of un

derlying parameters. The latter, uses sequential prior-to-posterior updating analysis 

due to conjugacy properties.
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CBSTAR models are based on Lubrano’s prior distributions as in Bauwens et al. 

(1999). Conditional posteriors obtained via Gibbs sampling algorithm for the AR 

coefficients a x and a 2 follow a normal distribution with the variance a 2 having an 

inverse gamma distribution. A Metropolis-Hasting algorithm was adopted to obtain 

the conditional posterior distributions for the nonlinear parameters 7  and c. They 

considered st = yt-d in (2.13) and obtained a conditional posterior distribution for 

the delay parameter d as p (d |y ,0 ) oc p(y\d,Q)p(d) from a discrete prior set for 

d £ {du  d2, . . . ,  dmax}, where di < . . .  < dmax, for a large upper bound dmax with 

p(di) = Pr(d — di).

Lopes and Salazar (2005) concentrated their attention on Bayesian STAR models 

where the transition function has the form of a logistic function. Their work focused 

on proposing a reversible jump MCMC algorithm that accounts for uncertain model 

order, by assuming that p is one of the parameters of the model. The model selection 

was based on three different information criteria: AIC, Bayesian Information Criteria 

(BIC) (Schwarz, 1978), and Deviance Information Criteria(DIC). The last criterion 

was developed and discussed in Spiegelhalter et al. (2002).

2.5 Variants of STAR m odels

2.5.1 M ultip le R egim es STA R  m odels

Even though two regimes might be sufficient in many applications, it can be desirable 

to obtain a STAR model that accommodates more than two regimes. An alternative
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transition function in STAR models is the exponential function defined as

tt(s*; 7 , c) =  1 — exp{—7 (s* -  c)2} (2.16)

where the parameters have similar interpretations to the logistic function defined 

in (2.13). W ith this transition function, exponential STAR models present three 

regimes: the first regime is for observations at left upper corner of the exponential 

function, the second regime is for observation in the middle of the curve and the 

third regime for observations at the right upper corner of the exponential function.

A more general form to allow for m  =  2k, k > 1, different regimes was proposed 

by van Dijk and Franses (1999), which extends STAR models, called multiple regimes 

STAR models.

The multiple regimes STAR models with m  regimes are defined by adding m  — 1 

transition variables, as well as m — 1 smoothness and threshold parameters to STAR 

models in (2 .1 2 ), as

Ft =  %_t—1 "F 2̂ 1 (̂ Iti Tlj dO +  • • • +  1 (̂ (m— 1)£; 'Im—li Cm—l) T (̂ •̂ ■̂ )

where Kj(sjt'i7 j,C j),j = 1 , . . .  , m — 1 , are the transition functions in the range [0 , 

1] as in (2.13) with several transition variables Sjt, smoothness parameters 7 j > 0 

and threshold parameters Cj. Notice that subscripts j  have been added to the 

parameters, one for each of the m  regimes. It is possible to have a single transition 

variable st = Sjt for all regimes. In addition, when smoothness parameters become 

very large, STAR models become SETAR models with m  regimes.
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Multiple regimes STAR models have been used to describe business-cycle asym

metry (van Dijk and Franses, 1999; Dufrenot et al., 2003). W ith STAR models (2 

regimes) it is possible to detect only two states of the economy -  contraction and 

expansion. Whereas applying multiple regimes STAR models, different phases of 

contractions and expansions can be explored, van Dijk and Franses (1999) applied 

multiple regimes STAR models with k = 2 , hence 4 regimes, to Yt = US real Gross 

National Product. A variable nominated as Current Depth Recession (CDR) to 

detect whether growth is increasing or decreasing was used as a transition variable 

sit =  C D Rt- 2 as well as a second transition variable to measure whether the level 

of real Gross National Product is above or below its previous value (s2t =  A j/t-i), 

where A yt-i is the difference between yt- \  and yt- 2 .

2.5.2 T im e-V arying STAR m odels

Most of the evidence for nonlinearity has been obtained under the assumption of 

parameter constancy. However, there are some processes that present both nonlin

earity and a structural break. The structural break is an unexpected shift in the 

time series.

Lundbergh et al. (2003) developed a STAR model considering the idea of making 

it possible to model both smooth transition-type nonlinearity and a structural break, 

simultaneously. So-called time-varying STAR models are special cases of multiple 

regimes STAR models. They describe Yt by STAR models considering the time t  as
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the transition variable in the second transition function, as follows

Yt = dtQLi +  dtQ&xlO id 7 i> ci)zta 27r2(t] y2, c2) +  et (2.18)

van Dijk et al. (2003) show an application of this model to investigate business 

cycle fluctuations on seasonal patterns with a single structural break.

There are some improvements in this model compared with previous STAR mod

els regarding changes over time in the parameters, but time-varying STAR models 

still present some limitations. The autoregressive coefficients change at each regime, 

which are determined by the second transition variable s2* =  t. However, those 

changes are not appropriate for modelling non-stationary processes. Although the 

model (2.18) is called a time-varying model, it is only suitable for processes present

ing a single or few structural breaks. If there are too many unknown breaks, the 

underlying process is considered non-stationary and, thus, this model is no longer 

appropriate. In such cases, time-varying autoregressive coefficients or explicit com

ponents for modelling the (upward or downward) trend should be allowed in the 

model structure.

2.6 Summary

The possibility of modelling nonlinear autoregressive processes with two regimes by 

considering a model that can detect change and switch between regimes was well- 

investigated by Tong (1978). TAR models were proposed in that paper, which use an 

indicator function as the transition function to abruptly switch from an AR model



Chapter 2. Literature review on STAR models 40

to another. Tong and Lim (1980) extended TAR models by treating lagged variables 

{Yt-d) as transition variables and, thus, defining SETAR models. TAR and SETAR 

are piecewise linear models and can therefore have their parameters estimated by 

ordinary least squares. They have been well-used in many time series data applica

tions, including some benchmark data sets, such as Canadian lynx data. A problem 

with those two models is that their likelihood functions present discontinuities tha t 

affect statistical inference due to the abrupt switching between regimes.

A generalisation of TAR and SETAR models incorporating a smooth transition 

between the two regimes via a pre-defined transition function was proposed by Chan 

and Tong (1986a) and called STAR models. One of the main advantages in using 

models with smooth transitions is the possibility of specifying a gradual transition 

from one regime to the other in order to avoid an abrupt switching between them. 

However, convergence of the algorithm to estimate the smoothness 7  and the thresh

old c parameters depends upon given initial values and can be very slow and is not 

guaranteed.

STAR models also require large and stationary data sets for parameter estima

tion. In addition, STAR models require that parameters and observational variance 

be fixed over time. In an attem pt to model periodic processes, STAR models may 

not be parsimonious or may not give accurate specification of the cyclical behaviour. 

Generally, the data are transformed during exploratory analysis, in case they do not 

meet all the requirements.

The vast majority of time series models make use of classical inference, so the 

parameters in the models are seen as unknown quantities which can be estimated
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using well-known estimation methods. For instance, ordinary least squares for esti

mating the autoregressive coefficients and nonlinear least squares for the parameters 

within the transition function.

Nevertheless, several Bayesian approaches in nonlinear autoregressive models 

have been proposed recently. In general, Bayesian parametric inference for nonlinear 

autoregressive models rely on MCMC methods due to the loss of analytical tractabil- 

ity in calculating posterior distributions. They are, thus, not generally appropriate 

for real-time applications that require sequential prior-to-posterior parametric up

dating and forecasting as the convergence of the chain may be slow.



Chapter 3 

Dynam ic Linear M odels and 

M athem atical background

This chapter describes Dynamic Linear Models (DLMs) and some supporting math

ematical methods, which are both essential for proposing DBSTAR models in the 

next two chapters.

The term dynamic in DLMs is because the models allow time-varying parameters 

due to changes of the process over time. These models are described in Section 3.1 

and their estimation methods in Section 3.2. Bayesian model selection approaches 

used in the next chapters are defined in Section 3.3.

Polynomial approximations, with a focus on Taylor series expansions, are in

troduced in Section 3.4, and spline functions are introduced in Section 3.5: both 

methods are used for approximating the transition functions from STAR models, 

fundamental stages for proposing DBSTAR models.

During the approximation stage, systems of polynomial equations are formed.

42
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After the estimation stage, it will be required to find estimated values of the original 

parameters («i, 0 2 , 7 , 0). A method for finding solutions for those is presented in 

Section 3.6.

3.1 Dynam ic Linear M odels

In the last few decades, state space models have received enormous attention, having 

a very wide range of applications (West et al., 1985; Barbosa and Harrison, 1992; 

West and Harrison, 1997; Dordonnat et a l , 2008). In a Bayesian framework, when 

normality and linearity are assumed, a special case of state space models are referred 

to as Dynamic Linear Models (DLMs) (West and Harrison, 1997).

State space models and consequently DLMs, are sequential models where a t

tention is focused on making inferences about the future, conditional upon existing 

information. They present some impressive advantages, such as, much more flexibil

ity than static models in modelling non-stationary time series and structural breaks, 

and also they can be interpreted more easily. These characteristics have attracted 

researchers from many fields.

Given a time series Ytj t = 1 , . . . ,  T, DLMs assume that there exists an underlying 

state process 9t, t = 0 , . . . ,  T  that generates the observable time series, at each time. 

Notice that 9q represents the initial beliefs of the underlying process. Figure 3.1 

shows a graphical representation of the conditional independence structure of a 

DLM. DLMs must satisfy the following two fundamental assumptions: (A) 9t is a 

Markov chain, that is, 9t depends only on 9t-1 and a random error (not illustrated 

in the figure for simplicity), refer to the arrows in the figure from 9{-1 to 9{,i  =
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Figure 3.1: Graphical representation of the conditional independence structure of a 
DLM

1, . .. , t  +  3, and (B) conditional on 6t , the observed values of Yt are independent 

and also Yt depends only on the state process 0t and a random error term, refer to 

the arrows from 6_j to Y), j  =  1 , . . . ,  t  +  2 .

West and Harrison (1997) emphasised some fundamental principles of DLMs 

which are summarised as follows,

• Parametrisation may be dynamic (sequentially over time)

• Information may be represented as probability

• Forecasts are produced as probability distributions

• Useful information from experts may be incorporated

The most attractive advantage of DLMs is when online inference is required. 

These models allow fast computations recursively, i.e., conjugate analytical models, 

according to the arrival of observations sequentially over time. It is a consequence 

of Bayes’ theorem in equation (2.14) when the posterior probability distribution of 

the parameters 9t is updated, incorporating new information and assimilating past 

history.

The essence of the Bayesian approach is associated with probabilistic represen

tation of all uncertain knowledge about the future (Jeffreys, 1961). The initial in

formation, including history, is used to form initial relevant views about the future
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of all defining unknown model quantities (0t). As time evolves, new information 

may be incorporated by updating or reviewing the modeller’s view of the future. 

The beliefs of the modeller are structured in terms of a parametric model, where 

the parameters are dynamic, i.e., subject to variation over time to adapt influential 

information affects.

Let Dt = (yt, Dt~i) represent the information available at time t after observing 

Yt. So, Do represents the existing information available to, and recognised by, a 

modeller at time t = 0. Similarly, at any time t, t > 0, the existing information 

is represented by Dt with the difference that Dt includes Do and the values of the 

observations yt , y t-i, •••, Vi- In summary, for t >  0, Dt comprises all the informa

tion available at time t. Thus, the only new information becoming available is the 

observed value yt.

The basic formulation of DLMs is specified by the following three probabilities: 

the conditional distribution of the observation,

(3.1)

the conditional distribution of the parameters (state)

(fi, I (€!«&_!, W ,) . (3.2)

and the initial information of the parameters,

(So I A>) ~  N  (mo. c o ), (3.3)
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DLMs are completely determined by initial information with probability distri

bution p(Ojq | D0) and the conditional probability densities p(Yt \6t) and p(Q_t \fLt_ \)• 

For each time t, define a quadruple A t = {F_t , G t , Vt, W*}, where F_t is a design 

vector of known values of variables, Gf is an evolution matrix, Vt is the unknown 

scalar observational variance and W t is an unknown evolution covariance matrix. 

A DLM is then specified by the quadruple A*.

DLMs have also the advantage of incorporating components into the quadruple 

At , representing different characteristics of the underlying process, such as trend, 

cycles and seasonality.

3.1.1 A R  m odels in DLM  form

Any AR model by Box and Jenkins (1970) can be written in DLM form. More 

formally, it is possible to find a DLM whose measurement process (Yt) has the same 

distribution as the given AR model.

Many different forms of representing AR models have been proposed in the liter

ature. In this thesis, only one form is considered, which is probably the most widely 

used -  see West and Harrison (1997, p.272,305) for further discussion.

E xam ple 3.1. Consider the linear AR(p) models defined by equation (1.2). Con

sider also the quadruple A t that defined DLMs. For an autoregressive order p = 1, 

AR(1) models can be rewritten into DLMs form with F(t = [l,l^_i], the 2  x 2 - 

dimensional G t = I (the identity matrix), the scalar Vt =  of and a null 2 x 2 state 

variance W* =  0, and a state vector 6t = [0ot>0«] associated with F(t . Consider 

now an AR(2) model. Then, the components of the quadruple A t are expanded to
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]£t = [1 5 Yt- i ,  3 x 3  identity matrix Q t = I, Vt = cr̂  and W* =  0 , as well as 

dt — [@0t: Olt> @21\-

From Example 3.1, it becomes straightforward that AR(p) models can be written 

in DLM form by defining the quadruple A t to be: — [1, Yt-i, Y t-2 , •••,

the {p +  1 ) x (p +  l)-dimensional identity matrix G* =  I, Vt = of and the null 

(p +  1) x (p +  1 )-dimensional state matrix W* =  0 . Notice that, AR(p) models are 

for modelling stationary processes, therefore the state matrix W* has zero elements 

in all positions, which gives all the parameters the aspect of being fixed over time, 

i.e., dt-i — dti f°r t-

3.2 Parametric prior-to-posterior updating

In this section, a parametric prior-to-posterior updating procedure to linear filtering, 

smoothing and forecasting problems adapted from Kalman (1960) is described. It 

was originally related to physical systems in engineering applications, nevertheless, 

due to computation simplicity, easy implementation and fast parameter estimation, 

the Kalman filter, as it is known, has been extensively applied in different areas, 

including time series analysis.

On the one hand, this parametric prior-to-posterior updating procedure sequen

tially over time uses past data to make inference about parameters incorporating 

information collected at the same time. This stage is referred to as filtering. On the 

other hand, the use of recent data to revise the filtered information, i.e., estimate the 

parameters retrospectively backward in time, is referred to as smoothing. Moreover, 

the past and the current data are used to make inference about the future, for which
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it is referred to as forecasting.

Consider a DLM with a constant but unknown observation variance, i.e., Vt =  V. 

The quadruple changes to A t = {F t , G t, V, LW f}. Notice that the system variance 

matrix W t is scaled by the unknown observational variance V. When A t is defined 

in this way, a Bayesian conjugate prior-to-posterior analysis can be developed by 

assuming that (9t , V \D t) has a multivariate normal/inverse gamma distribution (see 

Gelman et al. (1995)). The marginal posterior distribution of interest (Qt \Dt) has a 

multivariate Student-t distribution and (V\Dt) an inverse gamma distribution.

The Kalman filter is an algorithm that calculates the posterior distribution for 

0t sequentially over time, given all information D t , (9t \Dt), due to parametric prior- 

to-posterior conjugacy above mentioned. It is repeated each time tha t a new obser

vation yt becomes available. Also, with the prior distribution for 6t we can calculate 

the 1-step ahead forecast distribution of Yt. West and Harrison (1997) referred to 

this procedure as the Bayesian forecasting system, which can be used when both 

variances V  and W t are assumed to be either known or unknown.

3.2.1 Prior distributions

The initial information at time t  = 0, including history, is used to form initial 

relevant views about the future for all model parameters. In case of no prior knowl

edge about the parameters, non-informative prior distributions can be used. At 

time t = 0 , the distribution of the state vector is given by the specification of a
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multivariate Student-t distribution with no degrees of freedom

(0o I Do) ~  Tno (mo, C 0)

where, tuq and Co are the prior mean vector and covariance matrix. The initial 

distribution for the observational variance Vo is an inverse gamma with hyperpa

rameters no and Sq

3.2.2 F iltering distributions

The parametric prior-to-posterior updating procedure sequentially over time uses 

past data to make inference about parameters incorporating information collected 

at same time. At time t — 1 , all beliefs about the parameters 9t~i are represented 

by the posterior probability distribution

where n t - 1  is degree of freedom of a multivariate Student-t distribution, m t_x and 

Cf_i are the posterior mean vector and covariance matrix, respectively. And also, 

the beliefs about the observational variance are represented by the posterior proba

bility distribution

where St- 1  is the point estimate of the observational variance.

At time t before observing Yt, the posterior distribution dynamically evolves

(9_t-1 I D t- i) ~  Tnt_1 C^-i)
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into prior distributions. These priors distributions represent the prior beliefs of the 

modeller about the parameters. The prior probability distribution for the state 

vector 0t is

(it I A - l )  ~  Tnt-i (tkiSt-i&t)

where at = G tm t_i and K t = G tC t^iG't Jr W t are the prior mean and prior variance 

of (9t | A - i ) ,  respectively. And also, the prior probability distribution for the 

observational variance V  is

(K I A - l )  ~  IG  .

After observing Yt = yt, new information are incorporated into previous prior 

probabilities and the modeller’s beliefs are updated, being then represented by pos

terior distributions. The posterior probability distribution for the state vector 9t

(fit I A ) ~  Tnt (m4, C()

where nt =  n,_i +  1, ?n, =  fe +  (RtEt/Qt)et and Ct = ^ (R -t  -  Rt£t/<?t£tR*)>

and the posterior probability distribution for the observational variance V

(V  I Dt) ~  IG

with St =  St-1 +  ~  1 ) an (  ̂ et — Vt — ft,  t h e  one-step-ahead forecasting error.

This sequential algorithm repeats these steps over time incorporating new infor

mation and assimilating past history.
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Consider now that the unknown observational variance changes over time (Vt). 

It is desirable to retain the gamma form for the resulting prior distribution of 

(Vt | A - i )  as well as the posterior distribution of (Vt \ Dt) so the conjugacy analysis 

models can be straightforwardly adapted. In such case, it is possible to use an ap

propriately chosen variance discounting technique for Vt , which is assumed to change 

but only slowly and steadily over time to avoid potential unpredictable behaviour 

that can lead to loss of analytical tractability (Broemeling, 1985). Therefore, for an 

unknown observation covariance Vt , this prior-to-posterior approach can be adapted 

for which a discount factor Sy, satisfying the condition 0  < Sy <  1, is considered.

Then, at time t — 1, the observational variance has the posterior probability 

distribution

(K _x| A _ 1) ~ 7 C ? ( ^ = i , ^ ^ i )

At time t before observing Yu the posterior distribution dynamically evolves into 

prior distribution as

(Vt I A -l)  ~ IG

Comparing the expected value of prior and posterior distributions of the observation 

variance, respectively, it is possible to see that E(Vt | A - i )  =  E\Vt | A ] =  sT7 ’ tha t 

means that both inverse gamma distributions have the same location. However, the 

dispersion increased with the inclusion of the discounting of the degrees of freedom 

parameter, i.e., 5yn t - 1  < nt~i- For further discussion, see West and Harrison (1997, 

p. 111,360-362) and references therein.
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At time t after observing Yt = yt , the posterior distribution for the observational 

variance is updated to

To update this distribution, the observational variance discount factor Sy has to be 

included into the hyperparameters of the gamma distribution. Thus, n t = 5ynt- i  +  l

Furthermore, the unknown state covariance matrix may change over time. 

For similar reasons regarding conjugacy, it is also possible to use an appropriately 

chosen variance discounting technique for W* assuming that the parameters 9t 

change but only slowly and steadily over time to avoid loss of analytical tractability 

(Broemeling, 1985).

Therefore, this prior-to-posterior approach can be adapted for which a discount 

factor Sw , satisfying the condition 0  < Sw <  1 , is considered as follows,

where C t~i is a prior covariance matrix for 9t. Notice that when Sw = 1> the state 

variance is a null matrix W* =  0  which means that the state process is constant

more variability is present in the state vector 9t .

Usually, Sy takes values between 0.9 and 0.99 and Sw takes values between 0.8 

and 0.99 (West and Harrison, 1997).

SyTlt SyntSt

and St — St- i  +  — 1) in the usual notation.

over time, whilst the smaller the Sw , the larger the values of W t and consequently
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3.2.3 Sm oothing distributions

Recent data are used to revise the filtered distribution of the parameters in order 

to understand better what happened to the estimates parameters retrospectively 

backward in time. This procedure can be implemented with the use of the Kalman 

smoother approach which can be straightforwardly implemented, like the Kalman 

filter, as a backward-recursive algorithm. This algorithm depends only on the data 

used for filtering and the one-step-ahead forecast moments. A reason for using the 

Kalman smoother algorithm after filtering is that it makes static and dynamic mod

els comparable in the sense that it uses the whole data set for estimating backward 

the parameters. West and Harrison (1997) refer to this procedure as retrospective 

analysis.

Firstly, we need the posterior probability distribution for 9t , at each time t , pro

vided by the Kalman filter. Thus, we go (forward) filtering (9t \Dt). The backward- 

recursive algorithm starts with

(S.t I D t)  ~  Tni(at(0),R((0))

where at(0) =  mT, the posterior mean vector and Rt(0) =  C t,  the posterior co- 

variance matrix, both computed by the last updating of the Kalman filter. Then, 

we go (backward) smoothing this distribution to provide the smoothing probability 

distribution for iovt = T — 1, T  — 2 , . . . , 1 .  Therefore, the Kalman smoother

algorithm provides the conditional probability distributions of 9t given the data D t , 

for any time t < T .
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For 1 < k < t ,  the smoothing probability distributions for the state are

nt
&t-k

wherea t ( - k )  = m t_k+ C t- kG[_k+1R t\ +1(at( - k + l ) - a t_k+1) a n d R t ( - k )  = 

C t- kG[_k+1R - \ +1(R t- k + i-1& t{ - k + l) ) 'R t \+1G t- k+1C't_k. And the corresponding 

smoothed probability distribution for the level of the series are

M - k ) ,  ^ - £ _ * R ,(-* )£ ,_ *
Ot-k

where f t{ - k ) =  F̂ t_kat( -k ) .

3.2.4 Forecast D istributions

The past and the current data are used to make inference about the future, for which 

it is referred to as forecasting. Conditional forecast distributions for the states and 

observations at a future time t  +  k, given the data up to time £, are recursively 

determined. Since these forecast distributions are Student-t, it is enough to compute 

their means and variances.

The 1-step ahead forecast probability distribution for yt is

(Yt | Dt- i)  ~  Tnt_x ( fu Qt)

with f t = F̂ tat and Qt = E ^ t E t  +  &t-1-

W ith at(0) =  m t and R*(0) =  Q , i.e., the distributions for the future take
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information from the filtering distributions at time £, the k > 1 -step ahead forecast 

probability distribution for the state vector is

{it+k I Dt) ~  Tnt (at(k) , StHt(k))

where at(k) = G t+kat(k — 1) and R t (k) =  G t+k^t{k — l)G't+k 4- "Wt+k- And for the 

future observation yt+k, the forecast probability distribution is

(Yt+k\ Dt) ~ T nt U t{k),Q t(k))

with f t (k) = £ t+kat (k) and Qt(k) =  F̂ t+kR t(k )F t+k +  St+k.

3.3 Bayesian m odel selection for determ ination of  

parameters

In this section, we describe a Bayesian approach to obtain values of unknown quan

tities, such as autoregressive order p and delay parameter d, which cannot be ac

commodated in the state vector 0t of DLMs. This method is based on either fitting, 

smoothing or predictive performance of different models and involves sequentially 

processing observations y i,y 2, . . .  ,yt, easily calculated from the one-step ahead pre

dictive distribution p(yt \ Dt_i). Notice that it is important to keep the same model 

structure to use this method, differing only in the values of parameters. For a philo

sophical viewpoint, see Good (1985); for a general discussion, see West (1986) and 

West and Harrison (1997).
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3.3.1 Bayes factor criterion

Let r  represent an unknown discrete parameter, e.g., the autoregressive order p, 

that can take integer values for which the most likely value r* is to be determined. 

Using a Bayesian parametric prior-to-posterior updating approach, we have for each 

observation yt the one-step ahead predictive density p(yt \ It is worth

clarifying that each p(yt | Dt- i , r )  is obtained after observing pi, y2l. . . ,  yt but before 

observing yt+i, yt+2 , • • •, Vt- The joint predictive density

T

p(yt ,y t- i : . . . , y i  \ D0, t )  =  J ~[p(yt | A - i , t )  (3.4)
t= i

is the predictive likelihood of all observations y t,y t-1 , • • •, 2/i conditional on the un

known r . We use the Bayes’ factor (Jeffreys, 1961), or weights of evidence (Good, 

1985), defined as the ratio between the predictive likelihoods of two models, say 

model A and model B, differing only in values of the parameter r ,  evaluated at the

observed values of Yt = yt i t = 1, . . . , T .  Thus, from (3.4), the logarithm of the

Bayes’ factor is

T  T

log(BF) =  X ) lo g \pA(yt I Dt- i , r  = r1)] -  ^ \ o g \ p B{yt | D t-u T  = T2)] (3.5)
t=i t=i

This measure gives us evidence in favour of (log(BF) > 0) or against (\og(BF) < 0) 

model A relative to model B, according to their predictive performances when t 

assumes either r\ or r2. The farther from zero log(BF) is, the stronger the evidence 

and for log (BF) — 0 there is no evidence either way.
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3.3.2 Log-predictive likelihood criterion

Alternatively, the idea of the Bayes’ factor for choosing values for r  can be gener-

can also be obtained by checking which log-predictive likelihood (LPL), the log of 

the joint predictive density defined in (3.4), is the largest. Operationally, r* is cho

sen by calculating the LPL for different models differing only in the value of t ,  and 

selecting the model which gives the largest LPL. Notice that, contrary to a fully 

Bayesian approach where all unknown quantities are included in the model param

eter set (6_t) and in principle requires no data initially, the LPL approach requires 

an initial data set.

3.3.3 L og-sm oothing likelihood criterion

The log-smoothing likelihood (LSL), conditional on the parameters, is defined in 

a similar way to the LPL from previous Section 3.3.2. The LSL gives evidence in 

favour of a model for fitting purpose, which presents the largest value of the joint 

smoothing density of all observations yt: yt~i , . . . ,  yi, conditional on the unknown r , 

after having observed Y^, i.e., the observation at the last time point T, as follows

The LSL criterion is used alternatively to the LPL when the aim is to select dynamic 

models based on fitting performance rather than forecasting performance. Generally, 

the interest lies in improving understanding about the process in order to detect

alised when comparing more than two models. The evidence in favour of a model

T

(3.6)
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unexplained changes. In addition, the LSL criterion can also be used for making 

dynamic and static models comparable.

3.4 Polynom ial approximations

In this section, the use of polynomial approximations is described as simple mathe

matical functions generally used to represent curves which are difficult to evaluate. 

Our interest lies in using them to determine the underlying functional forms of non

linear transition functions, as we will see in chapters 4 and 5. A survey in polynomial 

approximations is given by Atkinson (1988). Notice that, we call polynomial order 

as n and degree as r = n  — 1 .

A general expression for polynomials Pr(st) of degree r on a variable st is denoted 

as a weighted sum of basis functions Bi(st) ,i  =  0 , . . . ,  r, and can be written in the 

form

where a*, i =  0 , . . . ,  r, are coefficients of the polynomials which determine the shape 

of the polynomial approximation. There are many different types of polynomials 

in the literature. They are determined by choosing different basis functions, B i ( s t ),  

such as power functions or other forms as shown in subsequent sections of this 

chapter, where three different ways to obtain approximations are described. The 

Weierstrass Theorem (Atkinson, 1988) affirms that there is always a polynomial 

uniformly suitable to approximate any continuous function defined on closed interval

r

(3.7)
t= 0
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A first-degree polynomial is just the equation of a straight line with a slope 

which characterises a linear approximation. The basis functions of this polynomial 

are B0(st) = 1 and B i(s t) = st and can be represented in a matrix form called a 

design matrix, as follows

B(s t)

1 si

1 S j 1

Polynomials with higher degrees have superiority in representing general nonlinear 

relationships due to their flexible approximation, such as a second-degree polynomial 

that describes a parabola and a third-degree polynomial representing an S-shape 

curve, and so forth. The flexibility comes with the increment of the polynomial 

degree by adding more basis functions to the design matrix. The general polynomial 

Pr(st) in equation (3.7) with Bi(st) as power functions has the design matrix as

B(s t) =

1 si s\ .

1 5 2 Si

1 5y 5j> . . . Srp

A good basis function should be chosen such tha t characterisation of the un

derlying nonlinear transition function can be well specified. Also, the polynomial 

approximations should be flexible enough to exhibit the required curvature where 

needed.
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Taylor polynom ials

Taylor polynomials are approximation methods used to represent underlying func

tions. The method requires the functions to be infinitely differentiable at the real 

points where the approximations are performed. The resulting polynomials are in

finite sums of power series.

A Taylor polynomial Pr(st) of degree r for a function f ( s t) with a variable st 

near a value a can be given by

Pr(st) — f ( a) +  " — a) +  ^St — a ) 2 +  • • • +  ^   ̂(st ~~ r Y  +  -^r(st) (3-8)

where =  1 , 2 , . . .  , r,  is the i-th derivative of f ( s t) evaluated at the point a

and i\ is the factorial of i. The difference between the polynomial approximation and 

the function is called the remainder term (Atkinson, 1988), expressed as R r(st) = 

Pr(st) ~  / ( 5*)- The approximation is expected to be as close to the function as 

possible so that limr _>.00 Rr{st) =  0 .

The function f ( s t) is expanded around a given specific point a and, usually, the 

function is well approximated if sufficient terms are included in Pr(st). Differenti

ation of power series can be performed term by term so the polynomial Pr{st) is 

straightforwardly obtained.

E xam ple 3.2. Consider the logistic function in equation (2.13) stated again

7T(st; 7 , c) =  [1 +  exp{—7 (5* -  c)}] -1

The Taylor series approximation of degree r = 1 of the logistic function around the
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Figure 3.2: Taylor series expansion of (a) degree r =  1 and (b) degree r — 3, of a 
logistic function around at st =  c with 7  =  0.3 and c — st

point where the transition variable assume the value st = c is given by,

P l(s<) =  4 ^ ( 2 4  “  127c +  73c3) +  ^ ( 127 -  373c2)st +  Ri{st) (3.9)

Similarly, the Taylor series approximation of degree r = 3 of the same function at 

around the same point st = c is given by,

P^(st) = T ^ ( 2 4 - 127 c + 7 3c3) + 7 ^ ( 1 2 7 - 373c2) s i  +  - ^ 7 3c s 2 - ^ - s ^  + (3 .10)
1 1

Figure 3.2 illustrates examples of a Taylor series expansion of the logistic function 

from equation (2.13), at the point which the transition variable assumes the value 

st = c. Panel (a) illustrates the case with degree r  =  1 from equation (3.9) and 

Panel (b) with degree r =  3 from equation (3.10). In both cases, it was assumed 

7  =  0.3 and c = st . The degree r  =  1 is definitely not recommended for this case 

as the straight line cannot represent the logistic function. Including more terms in 

the Taylor series, such as increasing the degree to r  =  3, it approximates better
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in the vicinities of st = c, whilst discrepancies are still observed at the extremes 

of the curve. Overall, the approximation in Panel (b) can be considered a good 

approximation as it maintains the S-shape of the underlying logistic function. It is 

an acceptable approximation but still not the most appropriate.

There may be some nonlinear transition functions that present some complexi

ties, such as discontinuities. In such cases, the Taylor polynomials cannot represent 

such functions and other approximation methods, such as splines, should be used 

instead.

3.5 Spline functions

Taylor polynomials assume that the functions are known explicitly, so tha t ap

proximations can be found based on their derivatives. However, very frequently it 

is necessary to obtain approximations based on very little information about the 

underlying process. Spline functions address situations where no fixed function is 

known.

Generally, polynomial approximations oscillate around a specific function value. 

Splines, however, represent the function by using a combination of low degree local 

polynomials joined together to form the polynomial Pr(st). Also called piecewise 

polynomial functions, they can be determined by dividing the domain, say [a, 6], of 

the variable st into intervals. These intervals are separated by points tha t are called 

knots, represented by /c, which give [a,Ki , . . . ,  b]. Therefore, polynomial curves

are specified in each interval, [a, /q], [/ci, «2] , . . . ,  [/c*, b].

In this section, two approaches are described, the Truncated Power Basis (TPB)
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and B-splines. The spline polynomial Pr(st) is obtained by imposing continuity and 

differentiability to the piecewise polynomials up to a certain order at the knots, 

where two adjacent segments join.

3.5.1 Truncated Power Basis (T P B )

To impose continuity on the piecewise polynomials at the knot k , truncated power 

functions of degree r can be used. Constraints on the parameters are imposed such 

that the function f ( s t) can be continuously approximated by the polynomial Pr(st). 

Truncated power functions are defined as

(st -  Ki)+ =  (st -  Ki)rIst>Ki(st) ,i  = 1 , . . . ,  k (3.11)

where, / St>Ki(st) is an indicator function and the symbol “+ ” means tha t the function 

takes the value 0  for st located at the left of and (st — fti)r otherwise, tha t is

0 , if st <  Ki
(st -  Ki)r+ = <

(st — Ki)r , otherwise

Piecewise polynomials of order n  and, consequently, degree r  =  n —1 connected at 

knots «i, k2, . . . ,  ft* have truncated power basis 1 , 5*, . . . ,  (st — « i )+ , . . . ,  (s* — «A:)+ 

and their linear combination gives a spline function which has continuous derivatives 

up to degree r  as:
r  k

P M )  =  I > « s ?  +  5 1  Prb{st - « ( . ) ;  (3.12)
a=0 6=1

where f$aia = 0 , . . .  r are coefficients associated with the first part of Pr (st), for
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which a polynomial of degree r, is specified, and firb,b = 1 , . . .  ,k  are

coefficients associated with the second part of Pr(st), for which a truncated power 

function of degree r related to the knots, J2b=i@rb(st ~  «&)+} is specified. Notice 

that the first part has sum of power series, therefore, this polynomial form is similar 

to that of Taylor series approximations. This characterises continuity of Pr(st) for 

the whole polynomial. On the other hand, the second part is the part responsible 

for specifying piecewise polynomials at each interval of knots.

From the polynomials in (3.12), it is possible to extract the matrix that contains 

the functions of the variable st. That matrix is referred to as the design matrix and 

is specified as,

B (st) =

1 Si . . .  s[ (s i -  K i ) r+  

1 S2 . . .  sr2 (s2 -  «i)+

1 ST  . . .  Sjp ( St  — K  i ) +

(si -  Kfc) + 

(«2 -  «*)+

( s t  — K k ) +

(3.13)

E xam ple  3.3. Figure 3.3 illustrates two scenarios of a TPB spline function of 

degree r = 1 approximating the logistic function in equation (2.13) with variable 

= 0.3 and c = st . Panel (a) shows the case when only the truncated power 

functions related to the knots is considered, that is, the piecewise polynomials /?o +  

Pi St, using only the first two columns of the design matrix (3.13). Notice that in this 

illustration, there are three knots, = 20, n2 — 4 0  and k3 =  60, identified in the 

figure as dashed vertical lines. Therefore, four polynomial straight lines are specified 

in each interval [0, 20], [20, 4 0 ], [4 0 , 60] and [60, 80] to approximate the logistic
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Figure 3.3: (a) Piecewise polynomials of degree r — 1 and (b) Truncated Power 
Basis approximation of degree r =  1, of a logistic function at variable st , 7  =  0.3 
and c — st

function. Panel (b) shows the complete TPB approximation of degree r =  1 of the 

logistic function, that is, the piecewise polynomials (3o +  /3iSt +  Ylb= 1 Pib{st. ~  kb)+> 

using the corresponding columns of the design matrix (3.13) when r = 1 and k = 3.

The advantage of the TPB spline function is that the representation of a function 

is straightforwardly obtained and very attractive for statistical work. However, there 

are some limitations of that method, mainly associated with numerical problems, 

such as, rounding errors (Ramsay et al., 2009), numerical instability if the number 

of knots is large (Ruppert et al., 2003) and the design matrix may contain only a few 

zeros that prevents the TPB spline function from using sparse matrix techniques to 

reduce computational time (de Boor, 1978).

3.5.2 B-Splines

Although derived from truncated power functions, B-spline functions are piecewise 

polynomials with more stable numerical properties than TPB functions (de Boor,
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1978).

The B-spline function extends the TPB spline function by adding n  knots in the 

interval [a, b], in a non-decreasing sequence, such as «i =  k2 = . . .  =  /cn- i  =  <

^n+l ^  ^  l̂ n+k ^  ^n+fc+1 — ^n+fc+2 — • • • — ^2n+ki where K>n — CL and K,n+k-±-i b.

Usually, the extra knots at the lower extreme «i, «2} • • • > ^n-i are equal to a and 

at the upper extreme nn+k+1, ^n+fc+2 , • • •, î 2n+k are equal to 6 , respectively, so the 

sequence of knots in the interval [a, b] becomes a = . . .  = a < Kn+\ < . . .  < Kn+k < 

b — . . .  = b. In this way, the k interior knots («n+ i , . . . ,  Kn+k) in the interval [a, 6], 

excluding the extremes a and 6 , are similar to those knots in TPB spline function. 

However, it is also possible to give other arbitrary values to the extra knots. Either 

ways, the B-spline approach requires those knots extra to be added to the k  interior 

knots, so the basis function can be completely specified.

B-spline approximations of order n  has m  = n + k basis functions in their for

mulations, i.e., the number of columns in the design matrix is equal to the B-spline 

order n  plus the number of interior knots k , and their linear combination gives a 

spline function as:
m

A(s«) =  $ >  iSi(st) (3.14)
i= 1

where a i:i — 1, . . .  ,m, are coefficients associated with the B-spline basis function 

Bi(st). The basis functions Bi(st) ,i  = 1 , . . . ,  m, are obtained recursively by the Cox- 

de Boor algorithm (de Boor, 1978), given the order n, whose details are skipped here,
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and are expressed as

_ [ 1 ) Ki — St < Ki+U

0 , elsewhere,
(3.15)

Efficiently computed using sparse matrix techniques, the basis functions Bfist) pro

duce the design matrix that can be expressed as

B(s t) =

Bi(si)  B 2(si) . . .  B m(si)

B i(st) B 2(st) . . .  B m(st)

(3.16)

E xam ple  3.4. Figure 3.4 illustrates two scenarios of a B-spline of orders n = 2 in 

Panels (a) and (c) as well as order n = 4 in Panels (b) and (d), to approximate 

the logistic function in equation (2.13) with a variable st and parameters 7  =  0.3 

and c = st . The graphs in Panels (a) and (b) show the m = 4 and m = 6 B-spline 

functions, respectively, those from the design matrix (3.16), with interior knots at 

positions 20, 40 and 60 of st, identified in the figure as dashed vertical lines. The 

shape of the curve changes from straight lines to cubic curves, once the order n 

increases from 2 to 4 • Panel (c) presents the four polynomial straight lines specified 

in each interval [0, 20], [20, 4 0 ], [4 0 , 60] and [60, 80] to approximate the logistic 

function. This B-spline function with r =  1 is an alternative approximation to that 

from the TPB spline function with r = 1 shown in Figure 3.3. Panel (d) shows 

the B-splines approximation with degree r = 3. The gain in increasing the degree 

of the polynomials is noticeable, since the approximation with r = 3 is closer to the
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Figure 3.4: B-spline basis functions of (a) degree r =  1 and (b) degree r  =  3, of 
a logistic function at variable st, 7  =  0.3 and c =  st , as well as the corresponding 
B-spline approximations (c) and (d), respectively.
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function.

3.6 Solution for overdetermined system s of poly

nomial equations

This section presents a method for finding a solution for the overdetermined systems 

of polynomial equations, obtained during proposing DBSTAR models in the next 

Chapter 4. Systems of polynomial equations generally hold for more problems than 

systems of linear equations. Overdetermined systems are those with several equa

tions and a restricted number of unknowns, i.e., the systems present more equations 

than unknowns.

There are many methods for finding solutions for overdetermined systems of 

polynomial equations in the literature. For a review, see Ortega and Rheinboldt 

(1970). In this thesis, we adopt a method that is applied for minimising a function 

/( .)  subject to constraints h(.) = b in an optimisation problem. This method uses 

the Lagrange multipliers technique.

Consider a system with q equations on n  unknowns aq, . . . ,  x ni where q > n, and 

which are functions Mn —> M1, /i,...,g(£ i , . . . ,  xn). The Lagrange function is defined 

as

A(r r i , . . . , xn,A) =  . . . ,  x n) +  A [h(xu  . . . ,  x n)\

h ( x i , . . . , x n) = b (3.17)

where A is called Lagrange multiplier, /i(aq,. . . ,  xn) is the function defining the
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constraints on x i , . . . ,  xn and b is the value of the function with constraints.

The first derivative of the Lagrange function A(.ti, . . .  ,x n, A) with respect to the 

Lagrange multiplier A is set to zero, denoted by VaA(.Ti, . . .  ,x n, A) = 0, and needs 

to be solved, which implies h ( x i , . . . , x n) = b. By differentiating the constraints 

h(x i , . . .  ,x n) with respect to each unknown x ^ i  =  1 , . . .  ,n  and giving consistent 

initial values t o x i , . . . , x n and A, a minimisation algorithm, such as descend methods 

or Newton’s method (Ortega and Rheinboldt, 1970), is needed for which the values 

of the Lagrange function iteratively decreases at each stage to find the solution for 

each unknown Xi in the overdetermined systems of polynomial equations.

E xam ple  3.5. Consider a simple illustration of this method with an overdetermined 

systems of linear equations. An example of an overdetermined system of polynomial 

equations is presented in Chapter 4, in which has similar idea to this example de

scribed here with linear equations.

A stationary linear A R  model of order p from (1-2) can have its parameters 

estimated with Lagrange multiplier method. The model with p = 1 is stated as

Y t  =  a  o +  ® i y t - i  +  et-

Assuming that the number of observations is greater than two (T > 2), this AR(1) 

model forms an overdetermined system with T  equations and 2 unknowns (ao and



Chapter 3. Dynamic Linear Models and Mathematical background 71

a \)} as follows

Yi — ĉ o +  &iyo +  £i

Y2 =  OL 0 + OL\yi + 6 2

Yt  =  <To +  (XlVT-l +  eT

To estimate the parameters ao and a 1; given a set of data points yt, t  = 1, . . .  , T, 

we need to find the value for each parameter a ^ i  = 0 , 1 , that minimises the sum  

of squared residuals, i.e., Y^=i(Vt ~~ a o ~  ^ lV t-i)2- Notice that this is similar to 

a linear least squares problem. However, suppose that the estimated values of both 

parameters have to be identical, i.e., do =  d \. With this constraint, the Lagrange 

function in (3.17) in this case is as

T

A ( a 0 , a u  A) =  ^ 2 (y t -  a 0 -  a i ^ _ i )2 +  A (a§ -  af)
t= 1

a l - o c \  = 0. (3.18)

Then, a minimisation algorithm can be applied to find the solution for parameters

OCi.

3.7 Summary

In this chapter, fundamental mathematical and statistical backgrounds were de

scribed in order to set the scene by defining the key modelling concepts to then
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propose DBSTAR models in the next Chapters 4 and 5.

The models surveyed in the previous Chapter 2 have all the parameters fixed 

in time. The idea is to rewrite them into the DLM form so tha t the resulting 

models will allow parameters to change over time. Approximation methods such 

as the Taylor Series expansion or Splines for the transition function are required 

in this stage. The method used for estimating the parameters in such situation is 

the Kalman Filter technique. Overdetermined systems of polynomial equations are 

formed when approximating the transition function. Therefore, after obtaining the 

estimates of polynomial coefficients using the Kalman Filter algorithm, Lagrange 

Multiplier method is required to find estimated values of the original parameters 

fe ll ,  Oa, 7 , c) .

In summary, the estimation algorithm step-by-step is:

• Take the STAR model and its transition function

• Apply an approximation method to its transition function

• Rewrite the polynomial into the DLM form

• Estimate its parameters using the Kalman Filter algorithm

• Obtain estimates for the original parameters of the STAR model using the 

Lagrange Multiplier method

This estimation algorithm is fully illustrated in Section 4.2.1.



Chapter 4

Dynam ic Bayesian STAR m odels

The aim of this chapter is to introduce a class of Dynamic Bayesian STAR (DB- 

STAR) models which generalises classical STAR models of Chan and Tong (1986a) 

and CBSTAR models of Lopes and Salazar (2005). DBSTAR models allow time- 

dependent parameters including observational variance and are suitable for mod

elling local non-stationarity and heteroscedastic processes. DBSTAR models make 

use of the Kalman filter for fast sequential parametric estimation and are thus suit

able for high frequency time series.

We start by defining DBSTAR models that can be customised for different tran

sition functions as well as for different approaches for approximating those as we 

shall see. In particular, Taylor series expansions used to approximate logistic tran

sition functions define Taylor DBSTAR models. Similarly, the use of splines bases 

to approximate transition functions will define Splines DBSTAR models. We also 

show approaches for retaining parametric interpretability related to STAR models 

that involve solving systems of polynomial equations.

73
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4.1 M odel definition

We start by rewriting the classical STAR models in (2.12) as follows

Yt = itQLiK(st, 7, c) + z ta 2[ 1 -  7r(st; 7, c)] + et

= dtain(st; 7, c) +  -  ^a27r(st; 7, c) +  e*

=  ^ 2 + ^ f e i “ « 2 M 5*;7,c) +  et

=  ^ 1 + l ^ ( ^ ; 7 ,c) +  ei ; et ~ N ( 0 , a 2) (4.1)

where (f> = a 2 and <̂>2 =  (a2 — « i) are (p +  1 )-dimensional vectors with elements

f a  (J = 0 , 1 , . . .  ,p, i =  1 , 2 ) representing autoregressive coefficients associated with

each component of z t =  (1 , yt_i , . . .  , 2/t-p)• Recall that 7r(.) is a nonlinear smooth 

transition function in the range [0,1] with parameters 7  G M+ and c G M, respec

tively, and st G l  defined as a transition variable (usually in practice being either an 

external variable or lagged dependent variable yt-d, where d is a delay parameter), 

and et is independent and identically normally distributed.

For a time series process Yt , at time t = 1 ,2 , . . . ,  T1, STAR models of order p in

(4.1) can be rewritten as,

Yt = z t$ lt + z t$2tit{su 7 t ,ct) + et ; et ^ N ( 0 , a 2) (4.2)

where =  {(f)i0t, (j>m , . . . ,  <£1̂ ) and <£2t =  (02ot, • • •, <̂2Pt) are (p-f-l)-dimensional

vectors with elements representing time-dependent autoregressive coefficients, a2 is 

a time-dependent variance, and 7r(s*;^) is a dynamic nonlinear smooth transition
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function in the range [0 , 1] at each t given by

n{st;± t) = [1 +  e x p { -7 *(s* -  c* )} ]- 1  (4.3)

The autoregressive coefficients, the nonlinear parameters of the transition function 

and the variance are now allowed to change over time. In such a way, they be

come time-dependent parameters $ lt,$ 2t ^ t:Ct an<̂  °t likewise ^ e  transition func

tion 7r(st'i It, ct). Extending STAR models by allowing both the parameters and tran

sition function to be dynamic means that, at each time t, the transition between AR 

regimes may happen with different degrees of smoothness and/or at different thresh

olds. Further to that, the variance can also be adapted each time a new observation 

becomes available. This approach may better reflect reality in many applications. 

However, these extensions have implications in terms of estimation, since the usual 

linear and nonlinear least squares methods adopted by classical STAR models cannot 

be used for this approach. The reason is tha t classical STAR models are static ap

proaches that require the processes to be stationary. MCMC algorithms adopted by 

CBSTAR models cannot be used either, since MCMC approach is computationally 

intensive for sequential estimation and convergence of the chains may be slow.

DBSTAR models avoid these estimation problems by reformulating the model 

with time-dependent parameters in (4.2) as DLMs and, thus, using the Kalman filter 

algorithm for estimation parameters and producing forecasting. DBSTAR models 

allow computations to be made recursively according to the observed data arriving 

sequentially over time, incorporating new information and summarising the past 

history into the dynamic parameters.
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E xam ple  4.1. Suppose that we are interested in modelling Electricity load, Yt , in 

a specific region and we have Temperature as a transition variable, st , as we shall 

see in Chapter 7. Different patterns through time are identified for both yt and st . 

Any transition occurring during Winter time may not be the same as in Summer. 

Hence, smooth transitions between regimes are naturally expected to occur at different 

temperatures, according to the season, so the values of c in 7r(st; j ,c )  may change. 

In addition, smoother transitions may occur during Winter than in Summer or vice- 

versa, therefore the values of 7  may also change over time.

DBSTAR models use approximation methods, such as polynomial approxima

tions or splines, during the model formulation stage to represent a generic dynamic 

transition function 7r(st;7 f, q ) whilst both the classical and Bayesian STAR models 

reviewed in Chapter 2 use approximation methods, such as nonlinear least squares 

or MCMC, during the estimation stage.

DBSTAR models are thus defined based upon the use of approximation methods 

to a generic dynamic transition function 7r(st; 7 t,c t) shown in equation (4.2), as 

follows. A general form of a STAR model using an approximation 7r(st ;^t ,ct) to a 

transition function 7r(st; 7 *, <7 ) can be expressed as

Y t  =  z t ^ l t  +  z t^ 2t TT(st ; j h c t ) +  e t

= + it< t 2̂ ( 5*; 7t, ct) +  & (4-4)

where =  et +  z t^ 2tR t(st;^u ct), with R t(st ;^uCt) = 7r(s*;7 e,c4) -  7t(st ;^ t ,c t) the 

remainder term from the polynomial approximations or splines. The approximation
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is expected to be as close to the dynamic transition function as possible so that 

lim^oo R t(st; 7 $, ct) = 0 , therefore for good approximations, this remainder term 

does not affect the properties of the errors and hence they should have approxi

mately zero mean and variance of,

The polynomial approximations will help to characterise 7 r ( s t ] 7 *, q ) ,  so that par

ticular cases of approximate STAR models can be specified before defining DBSTAR 

models. Notice that we focus on some of those approximation methods presented in 

Section 3.4, but other methods could also be used.

The use of polynomial approximations, such as Taylor series expansions, for 

the dynamic transition function 7r(st;7 t ,Q) are reasonably the simplest approaches 

for approximating nonlinear functions. Generally, a smooth transition function 

7r(5 t ;7 f,Q) is specified first, e.g., an S-shape curve in relation to nonlinearity of 

the underlying process. The first-order logistic function defined in equation (2.13) 

is the most commonly used function. Correspondingly, we find its Taylor approx

imation 7r(si;7 t , c*), as shown in equation (3.10). Notice that, despite focusing on 

the logistic function, the results here are valid for any other transition function as 

mentioned in Chapter 2.

Consider a generic polynomial approximation Pr(st) — ^{st] 7 *, ct) for the tran

sition function 7r(st’̂ t,C t)  as in equation (3.7) given by

V
Pri^t) ^  ^

i =0

where a i,i = 0 , . . .  , r, are coefficients of the polynomial which determine the shape 

of the polynomial approximation. The general form of the model introduced in (4.4)
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becomes

-21
i = 0

+  6  ; 6 ~ w ( o , s ? ) (4.5)

where the polynomial degree r and the form of #»(.), i = 0 , . . . ,  r, with Bo(st) = 1, 

need to be specified, as we shall see. Notice tha t limr._>00[7r(si; c$)—7f(s*; 7 1, Ct)] — 0

should be valid for a good approximation method subject to —» et, therefore 

#[ft] =  E[et\ = 0 and a} =  Var[£t] = V  ar[et] = of.

E xam ple  4.2. For a polynomial degree r = 3 and B i ( s t ) = s \,i = 1,2,3, set as 

power functions, as defined in equation (3.7), the model defined in (4-5) becomes

y t = z t i u + h i 2t 'y * aust
i= 0

— —t&2,t l- ^ 04 aitSt a2tSt +  a 3tSt] +  £*

— +  a0tZt$2t a i t ~ ti.2 tSt a2 t- t i-2 tS* a ^ t i_ 2 tS^  ^

— zJLit +  (ztst)62t +  (zts2)93t +  (zts\)9_4t +  & (4.6)

where 0lt = <fu  +  a 0$2t,92t = a i<£2f, =  OL2<f_2t and 9^t =  a z<f2t are tfie coefficients

associated with both the autoregressive part of the model and the transition variable 

St. Notice that a itii = 0 , . . . ,  3 are scalars and (j> and <j> are vectors so the product 

of them hold.

The following Section 4.2 defines Taylor DBSTAR models.
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4.2 Taylor DBSTAR M odels

To define Taylor DBSTAR models, with a Taylor series expansion of degree r, we 

first need to approximate the dynamic nonlinear transition function with the most 

appropriate Taylor series expansion. The degree r  is assumed fixed. In cases where 

data are initially available, r can be determined, for example, by a grid search 

approach for optimal values that minimise a forecasting error statistic. Alternatively, 

model selection criteria such as those described in Section 3.3, e.g., the Bayes’ factor 

method proposed by West (1986) for monitoring a model’s predictive performance 

via the likelihood function could also be used.

Adopting the logistic function as the dynamic transition function 7Tt (.) and its 

Taylor series approximation, the model in (4.5) becomes

Yt =  zJLit +  )(L t +  • • • +  (Zts t ) i ( r + i ) t  +  6  (4-7)

where for i = 1 , . . . ,  r  +  1 ,6_it =  #*(7 *, c*)^, and fiufiy*, ct) are polynomial functions 

of 7 1 and Ct obtained from the i-th coefficient of the Taylor series expansion, tha t is

= 5f7r(sy, 7 t , Ct)
ds\d^ltdc\

(4.8)
st=so,7t=70)Ct=co

where, for 2 =  0 , fiot =  7r(so; 7 0 , Co), with s0 , 7 o and Co being constant values around 

which the Taylor series expansion is to be carried out. In addition, E[£t] = 0 and 

Var[^t\ =  of.

Notice that the Taylor series expansion approximates 7r(.) better in the vicinities 

of <so,7 o an-d cq, so that, at each time t, those values can be conveniently chosen
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to improve the approximation (e.g. they can be chosen to be closer to the turning 

points of the transition function when it is known that a regime change is about to 

happen).

E xam ple  4.3. For a Taylor series of degree r = 3 expanded around the point st = ct, 

the model defined in (4-V becomes

Vt — K t i i t  +  (z.ts t)&2t +  (z.ts t)@3t +  (z.ts t ) ( h t  +  6  (4-9)

where the Taylor series expansion’s coefficients as in (4-8) are

Pu =  2 4 -1 2 7 ,0 ,+  7 ^

P* =  ( 4 ’ n )

f t ,  =  ^  (4.12)

f t ,  =  (4-13)

and, consequently,

24^2, -  12l',Ct^2, +  2, +  48t t
48

Z-2t n  t ±-2t
- 2 t  4 g

37l c t j2t 
48

2^ 2,
48

(4.14)

(4.15)

(4.16)

(4.17)

where Q_it,i  = 1 , . . . , 4 ,  are the coefficients associated with both the autoregressive 

part of the model and the transition variable st .



C h a p t e r  4. D y n a m i c  B a y e s i a n  STAR m o d e l s 81

For each time Taylor DBSTAR(r,p) models with p as the autoregressive order, 

r as the Taylor series degree and the quadruple A t = {F t , Q t , Vt , W f} , where F_t is

a known (r+ l)(p+ l)-d im ensional vector, G t is a known ( r + l ) ( p + l ) x ( r + l ) ( p + l )  

matrix, Vt is an unknown scalar and W* is an unknown (r +  l ) ( p + l ) x ( r  +  l)(p  +  l) 

matrix, are uniquely defined by the following three probabilities: 

the conditional distribution of the observation,

{Yt | &) ~  JV (A fit, Vj) (4.18)

the conditional distribution of the parameters (state),

(Si \Ot- 1) ~ N ( G tet_1,W t) .  (4.19)

and the initial information of the parameters,

(&, | Do) - I V ( a , C o ) ,  (4.20)

Using the components of A* as well as a dynamic transition nonlinear function 

7r(s*; t t , ct) with real values in the interval [0 , 1], where st is a transition variable, 7 1 is 

a dynamic parameters associated with smoothness and q  is the threshold parameter, 

Taylor DBSTAR(r,p) models are specified by rewriting the model in the equation 

(4.7) into the observational process Yt conditional on the parameter vector 8t in 

(4.18), where F̂ t = [zt , z tst , . . .  ^ztsrt \ with a known (r +  l)(p  +  l)-dimensional vector 

of polynomial regression variables s\zt (i — 0 , 1 , . . . ,  r) with z t = (1 , yt- 1 , . . . ,  Vt-p)',
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9t is the state vector containing parameters associated with the components of F_t, 

i-ej fit — {fLlt! • • •

The (r +  l)(p +  l)-dimensional state vector 9t in (4.19) has a conditional mul

tivariate Student-t distribution with nt- i  degrees of freedom, with Q t as the state 

evolution matrix with elements gijt (for row i and column j) chosen according to 

the desired structural form of association between 9t and 9t_i. In the case tha t no 

structural form is known, the random walk is used by setting G t = I, the identity 

matrix. Other structural forms of G t are given in Chapter 5 for modelling periodic 

processes, for example. Furthermore, W* is the state covariance matrix, for which 

a discount factor 5w-> satisfying the condition 0  <  5w <  1 , is considered, as follows,

w( = ( ^ p )  G(c t_lG;.

where Q _ i is a prior covariance matrix for 9t . Notice that in the case when 5w = 1, 

the parameters have zero variance (W* =  0 ).

The observational variance Vt is defined by an appropriately chosen variance 

discounting technique. Vt is assumed to change but only slowly and steadily over 

time to avoid potential unpredictable behaviour that can lead to loss of analytical 

tractability. In this way, the algorithm for obtaining the prior-to-posterior updating 

is adapted to this case of heteroscedasticity.

E xam ple 4.4. A t each time t, a simple Taylor DBSTAR(3,1) model (with no in

tercept, Taylor series degree r = 3 and autoregressive order p = 1), and transition 

variable st = y t - i is specified by the distribution of the observational process in equa

tion (4-18) and the distribution of the state vector in equation (4-19), with the com-
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ponents of the quadruple A t as a 4-dimensional vector F t = [yt-i, Vt-n Vt-n 2/t-iL a 

4 x 4  evolution matrix G t = I  as the identity matrix and a 4 x 4  state covariance 

matrix W* specified by a value of 5w- Also, 9t = $2*, #34] is a 4-dimensional

state vector containing parameters associated with each element of F_t and they are 

functions equal to those given in Example 4.3. Notice that in the case that 9\t , 9it 

and $ 3 1 are zero, the Taylor DBSTAR(3,1) model is reduced to a linear AR(1) model 

written in DLM form.

In the following Section 4.2.1, we show that STAR models are particular cases of 

DBSTAR models. We propose methods for obtaining the corresponding parameters 

of STAR models to enable us to interpret them accordingly. One advantage of 

DBSTAR models over both the classical and Bayesian STAR models is tha t we are 

able to obtain estimates of the corresponding parameters and interpret them at each 

time t, whilst STAR models have static parameters for the whole period.

4.2.1 E stim ating A R  and transition  param eters

As we have seen in Section 4.2, the state parameters 9it, i = 1 , 2 , . . . ,  (r +  l)(p  +  1), 

of Taylor DBSTAR(r, p) models are compounded of coefficients tha t are polynomial 

functions of the corresponding parameters in STAR models, i.e, the AR coefficients 

0 and 0 , the smoothness and threshold parameters, 7 * and ct , respectively. Addi

tionally, at each time t , after observing Yt = yt, the first two moments (but not the 

probability distribution) of the parameters (l)lti (t)2p ^ t an<̂  Ct can obtained from 

the first two moments of the posterior Student-t distribution of 9t by solving a sys

tem of ( r + l ) ( p + l )  polynomial equations on (2p+4) variables for the posterior mean
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E(6t \Dt) =  m t and another system for the posterior variance Var(Q_t \Dt) =  diag(C^).

for short) for the first two moments of Taylor DBSTAR models is given in detail in 

Section 3.6.

The SPEs are originally obtained from the model in equation (4.7). Each of the 

(r +  1 )(p +  1 ) coefficients 0it is a polynomial function of degree r  of their (2p +  

4) arguments (t)u i (t)2t^ t an<̂  Ct on^T once we have obtained the filtering

distribution moments through the Kalman filter, we will be solving two SPEs at 

each time t, namely (i) for the posterior means

A description of a method available to solve systems of polynomial equations (SPE

™>u =

m 2t = f2t(<tltA 2VluCt)

^(r+l)(p+l)t f 0 2f’ 7b (4.21)

and (ii) for the posterior variance

Git =

C 2t = /2t(0lt^ 2p7t,Ci)

(4.22)

E xam ple  4.5. The model in Example 4-4 has the following SPEs for the posterior
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means, at each time t, corresponding to (i) as defined in (4-21)

24^21 ~  127tQ02t +  7t +  480itm lt =  

m 2t = 

m 3t = 

m4t =

48
127t02* ~

48

48
I t h t

48

where the estimated posterior means m^, i =  1 , . . . ,  4 are obtained from the Kalman 

filtering distributions, and SPEs for the posterior variances corresponding to (ii) as 

defined in (4-22)

2 4 V ar(0 2 i) -  I Z V a r ^ V a r ^ V a r ^ t )  +  K a r (7 t )3K a r (Q )3R a r ( 0 2*) +  4 8 F a r(0 i* )
Ci t — -----------------------------------------------------

C2t = 

C3t = 

C4t =

48
12V ar{p/t)V  ar{(f)2t) ~  ZV a r ^ t f V  ar(ct)2V  ar^fat)

48
W  ar{^t)zV  ar(ct)V  ar(fi)2t)

48
VarfirtfV  ar((f)2t)

48

where the estimated posterior variances C u,i = 1 , . . .  ,4 are also obtained from the 

Kalman filtering distributions.

It is required to use mathematical methods for finding solutions for these SPEs. 

The Lagrange Multipliers (LM) method, described in Section 3.6, finds solutions for 

unknowns subject to constraints. In order to associate the SPEs (4.21) and (4.22) 

with optimisation problems, so the LM method can be applied, first, disturbance 

terms 77̂ , . . .  ^(r+i^p+^t ar^ added individually to each (r +  l){p  +  1 ) polynomial



C h a p t e r  4. D y n a m i c  B a y e s i a n  STAR m o d e l s 86

equation, at each time t , as follows

m u = h M ltA 2tnuC t) +7]U

m 2t = f 2t(<£lt,<l>2t,'yt,ct)+ ri2t

m (r+l)(p+l)t = f(r+l)(p+l)t{$_u i Ci) V(r+l)(p+l)t (4.23)

and (ii)

C i t  =  fit(i.lt^ 2t^ u c t)+r]*lt 

=  f 2M lVt 2tnuC t)+ r]lt

C(r+l)(p+l)t =  /(r+l)(p+l)t(^u’^ 2t ’^<,C<) “•"77(r+l)(p+l)t> (4.24)

Notice that both SPEs (4.23) and (4.24) have same aspects as the system of linear 

equations shown in Example 3.5. Therefore, the LM method finds the solution that 

minimises for the system (i), i.e., we obtain the posterior means of

each corresponding parameter given by the real part of a polynomial function of 

degree r of their (r +  1 )(p +  1 ) location point estimates gjt(pit)jj — !?•••> (^P +  4), 

i.e., =  Re{git(mt)}, ^  =  Re{g2t(mt)}, = Re{g3t(mt)} and ^  = Re{gu(m t)},

where ^  =  E (^t\D t) and Re{} is the real part of the number; and similarly for 

the system (ii), we obtain the posterior variances of each original parameter given 

by the real part of a polynomial function pJt(Cjt), i.e., Var(^> \Dt) — Re{(^t ( C y },
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Var(<f2t\A ) =  R e{tf^(C y}, V a r(it \Dt) = R e { ^ (C it)} and Var(ct \Dt) =  Re{#|*(Qt)}.

E xam ple  4.6. Suppose that, at time t = 2, the Kalman filter algorithm assessed 

posterior means m i2 =  0.20, m 22 =  0.34, m32 =  0.17 and = —0.06. By using the 

LM  method, we can find the values of fa2, fa 2,y2 and c2, i.e. posterior means for 

each parameter u, fa u l t  and <1, at time t = 2.

In this example, it took half a second to run the LM  method using the software 

Mathematica version 9, that gave fa2 =  0.28, fa2 =  —1 .8 7 ,7 2  =  1.18 and c2 = 0.92. 

Those were the values that minimised the Lagrange function, i.e., the sum of squared 

disturbance with the constraint that one of the parameters is positive A2 > 0, thus, 

S t = i ^ 2  =  2 x 10-29. This can be considered a very small number and therefore 

can be considered negligible. Consequently, each r]i2 is also considered very small 

disturbance, which means that the estimated values fv u fa u fa  and c2 satisfy the 

conditions of the SPEs.

In summary, the estimation algorithm step-by-step is:

• Take the STAR model from equation (4.2)

Yt =  z tf_u +  z tf 2t7r(st; i t ,  ct) + e t ; et ~  N(  0, of)

• Take also its transition function, for example, the logistic function

n (su ± t) = [1 +  e x p { -7 t (s* -  fa)}}-1

• Apply an approximation method to its transition function and obtain the
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polynomial model

Vt — zt6lt +  (z tst)62t +  {zts2t )0^t +  (z ts\)dAt +  £t

• Rewrite the resulting polynomial model into the DLM form 

F_t — \zt , z tst, . . .  ,z tsrt], G t = I, Vt, Wt, 0t (0lt, . . . ,  0(r+i)t).

• Estimate its parameters using the Kalman Filter algorithm (obtain the mo

ments m it and C it, i = 1 , 2 , . . . ,  (r +  l)(p  +  1 ))

• Obtain estimates for the means of the original parameters ((f)lti <P2t ^ t,Ct  ̂

the model (4.2) using the Lagrange Multiplier method to solve the following 

overdetermined system of polynomial equations

2 4 ^ 2( -  12"'tctrh t + 1?C? K  +  48A  
m u  =   — ------ —  + mt

- 2t =  ---------- 48----------- + V2t
H ct4>2t 

m t =  — jg —  + mt

m t =  — +  va

Obtain estimates for the variance of the original parameters ((/> , 02t ,7 i} ct) of 

the model (4.2) using the Lagrange Multiplier method to solve the following 

overdetermined system of polynomial equations, similarly to the previous item
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48
1 2 7 ^  -  37(3̂ 2t

2‘ -  ---------- 48----------- +  %t
3 7 ?ct<p

° 3t =

, ,
c « =  - ~ w + *

4.3 Splines D BSTA R  m odels

The use of polynomial approximations for the dynamic nonlinear transition func

tions, for example, Taylor series approximations, to define Taylor DBSTAR models 

in the previous Section 4.2 presents some limitations in their formulations, as men

tioned in Section 3.4, for example, the transition functions have to be infinitely 

differentiable at the real points where the approximations are performed. Although 

polynomial approximations are attractive techniques, these limitations may affect 

the model performance as the approximations are carried out in the early stages 

of the formulations. They could compromise either parameter estimation or fore

casting performance. However, alternative ways of approximating the transition 

functions in DBSTAR models, which avoid limitations of Taylor series in general, 

are presented in this section. Their use constitutes Splines DBSTAR models.

To define Splines DBSTAR(r,k ,p) models, with fixed polynomial degree r, k 

knots and autoregressive order p, we do not necessarily need to know beforehand 

what the transition function is. The use of splines will assist in determining the
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underlying functional forms of the dynamic nonlinear transition functions by using 

pieces of polynomials. Likewise with the Taylor series degree, the spline degree r 

can be determined, in cases where data are initially available, for example, by a 

grid search approach for optimal values that minimise a forecasting error statistic. 

The most common choice for polynomial degree is r = 3, which characterises cubic 

splines. Alternatively, model selection criteria such as those described in Section 3.3 

could also be used.

The approximation 7t(st; 7 1, ct) to the transition function 7r(st ; 7 $, ct) in the model 

(4.4) can also be specified by the use of piecewise polynomials. Depending on the 

splines function, e.g., truncated power basis, B-Splines and others, Splines DBSTAR 

models can be defined accordingly. The parameters in Splines DBSTAR models 

are interpreted in intervals, specified by the knots which are associated with each 

piecewise polynomial.

E xam ple  4.7. For a Splines DBSTAR model using temperature as a transition 

variable (st — tem,peraturet) with 1 inner knot, say knot = 25°C. Consider then 

m in(st) = 10°<7 and m ax(st) = 35°C, therefore, we have then 2 extra knots to 

characterise the piecewise polynomials, knoti = 10°C and knot2 = 35°C. So, one 

polynomial is given for the interval [10°C', 25°C] and another for  [250C, 35°C], and 

their autoregressive coefficients are interpreted according to the interval that St lies 

in.

The next subsections define Truncated Power Basis DBSTAR models and B- 

Splines DBSTAR models.
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4.3.1 Truncated Power Basis D B ST A R  m odels

The quadruple At, defined in the previous Section 4.2, with p as the autoregressive 

order, in conjunction with r as the polynomial degree, can be directly extended to 

accommodate k as the number of knots, so that known (r+& +  2 )(p+l)-dim ensional 

vector F_t, a known (r +  k +  2)(p +  1) x (r +  k +  2)(p +  1) matrix Gt, an unknown 

scalar Vt and an unknown (r +  k +  2)(p +  1) x (r +  k +  2)(p +  1) matrix W t, to 

propose distinctively Truncated Power Basis DBSTAR models. The model in (4.5) 

with a suitable truncated power basis approximation as in equation (3.12) is defined 

as follows,

where Slot = = P j t x  and Sara =  i.ru 'tit’ with =  0  and F a r Kd =  °t-

Notice that if all elements of 9^rbt are zero, the model is analogous to a Taylor 

DBSTAR model, which indicates that Taylor DBSTAR models are particular cases 

of Truncated Power Basis DBSTAR models. In addition, if all elements of 02at and 

0^rbt are zero, the model is then reduced to a linear time-dependent AR(p) model 

written in DLM form.

r k

"b $2t—‘t ^  v @ats t d" ^   ̂Prbt(s t ^ ) +  d~
6=1

r k

iiotZt +  £ & « * * &  +  ~  Kb)r+ +  6  (4.25)

Recall that the +  sign in (st — Kb)r+ symbolises the function takes values
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Truncated Power Basis DBSTAR(r, k,p) models are specified by rewriting the 

model in the equation (4.25) into the observational process Yt conditional on the 

parameter vector 9t via the sequentially normal distribution as in equation (4.18), 

where F̂ t = [zt ,z tst, . . .  , z ts\, zt (st — fti)+, . . . ,  zt(st — «*)+] with a known (r +  k +

2 )(p +  1 )-dimensional vector of polynomial regression variables, and 9t is the state 

vector containing parameters associated with the components of F t . The observa

tional variance Vt is defined by an appropriately chosen variance discount technique, 

as shown in Section 4.2.

The (r +  k +  2)(p +  l)-dimensional state vector 9t has a conditional multivariate 

Student-t distribution with n t~i degrees of freedom as in equation (4.19).

E xam ple  4.8. For each time t, consider a simple Truncated Power Basis DBSTAR{3,1,1) 

model with no intercept and transition variable st = yt- 1 - The components are hence 

established as a 6-dimensional vector F[t = [2/ t - i ,y t- i ,2/i_1, 2/|L1, 2/t_1, 2/t- i(2/t-i ~

«i)+], a 6  x 6  evolution matrix G t = I, the identity matrix, and a 6  x 6  state 

covariance matrix W*. Also, 9t = [0iot>02ot>02it}022t>023t>033it] a 6-dimensional 

state vector containing parameters associated with each element of F_t .

4.3.2 B -splines D B ST A R  m odels

The adoption of truncated power basis functions as approximations for the dynamic 

nonlinear transition functions to define the models in the previous Section 4.3.1 

makes DBSTAR models appealing due to their simplicity to set up. Nonetheless, 

truncated power basis functions can suffer from numerical instability, in some cases, 

such there are a large number of knots. Other limitations are mentioned in Section
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3.5.1. These limitations can be avoided by using sufficiently more stable similar 

basis functions known as B-splines.

As well as in the previous Section 4.3.1, where p is the autoregressive order and 

r is the splines degree, with the exception of designating k as the number of inner 

knots, as stated in Section 3.5.2, and m  = r + l+ k ,  the components in the quadruple 

A*, defined in the previous Section 4.2, are adjusted to a known (m +  l)(p +  1)- 

dimensional vector a known (ra +  l)(p  +  1 ) x (m +  l ) ( p + l )  matrix Gt, an 

unknown scalar Vt and an unknown (m +  l ) ( p + l )  x (m +  l ) ( p + l )  matrix W t, 

appropriately to describe B-splines DBSTAR models.

The model (4.5) with a suitable B-splines approximation as in equation (3.12) is 

defined as follows,

where 910t = (j)_lt,92it = i = 1, • • •, m  and E[£t] = 0 and Var[£t] == erf. If

AR(p) model written in DLM form.

Consequently, B-splines DBSTAR(r, k,p) models are specified by rewriting the 

model from equation (4.26) into the observational process Yt as in (4.18) conditional 

on the parameter vector 9t as in equation (4.19). The components of At are, hence-

vector of polynomial regression variables, G t , W< and Vt are defined as in Section

771

771

(4.26)
7—1

all elements of 92it are zero, the model is then reduced to a linear time-dependent

forward, F̂ t = \zt ,z tB i( t) , . . .  , z tBm(t)\ with a known (m +  1 )(p +  l)-dimensional
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4.2.

E xam ple  4.9. For each time t, consider a simple B-splines DBSTAR(3,1,1) model 

with no intercept, B-splines degree r = 3, k = 1 knot, autoregressive order p — 1 

and transition variable =  y t-1 - The components are hence established as a 6 - 

dimensional vector E ' =  [yt_ i , 2/ i - i^ 3 (^)52/* -i^4 (^),2/*-i-B5(̂ )]̂  

a 6  x 6  evolution matrix G t = 1, the identity matrix and a 6  x 6  state covariance 

matrix W t . Also, 9t = [9iot , $2it, $22^ #2345 #24^ #25t] a 6-dimensional state vector 

containing parameters associated with each element of F t .

4.4 Discussion

In this chapter, we described both the Taylor and Splines DBSTAR models for 

non-stationary nonlinear processes as alternative to both the classical and compu

tational Bayesian STAR models. DBSTAR models belong to the class of nonlinear 

autoregressive models and are required for generating the data with the appropriate 

nonlinear characteristics in order to represent the underlying process.

DBSTAR models sequentially update their dynamic parameters as well as the 

observational variance through time in a Bayesian analytical fashion via Kalman 

filtering based on the Dynamic Linear Model formulations of West and Harrison 

(1997). Computationally cheap, sequential analytical forms for posterior parametric 

and forecast distributions are obtained at each time step tha t includes estimation 

of the interpretable parameters (by solving systems of equations).

DBSTAR models in their simplest forms can be seen as approximations of the 

classical STAR model, where the smooth transition function, such as the logistic in
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(2.13), is represented by approximation methods, such as polynomial approximations 

or splines. We adopt a dynamic smoothing transition function where

parameters 7 1 and <7 , treated as unknown, are allowed to vary in time and to adapt 

to data sequentially. The transition variable st can be either an exogenous variable 

or a past value of the process, depending on the application. In the latter case, 

st = yt-d with delay parameter d determined a priori. Again, in cases where initial 

data are available, a model predictive performance approach, as described in 3.3, is 

straightforward for determining the unknown delay parameter d.

Some parameters in the DBSTAR model do not belong to the state vector for a 

few important reasons: (i) they do not need to be updated sequentially in time, (ii) 

analytical computations would be intractable, therefore we would lose the conjugacy 

properties in the prior-to-posterior updating analysis, (iii) they do not belong to the 

model definition originally. Bayesian model selection methods are therefore recom

mended for the following parameters, in case values cannot be specified beforehand:

• The Taylor series degree r, where r = 1,2,..., rmax,

•  The Splines degree r, where r = 1 , 2 , ...,rmax,

• The autoregressive order p, where p  =  1,2, ...,pmax,

•  The delay parameter d of the transition variable st = yt-d , where d = 1,2,..., dmax,

•  The number of knots k , where k = 1,2,..., kmax,

• The discount factor 5w of the state variance W t, where 0 < 8w <  1,

• The discount factor 5y of the observational variance Vt , where 0 < 6y <  1.
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If all the above mentioned parameters can be individually identified, which is un

likely, this stage should be skipped and the parametric prior-to-posterior updating 

can be carried out using the given values. In case the modeller needs to decide about 

two possible values for one parameter, say for example, pmax — 2 , so two candidate 

models will be under analysis, one for p = 1 and another for p = 2, then, the Bayes’ 

factor described in section 3.3.1 should be used to identify p. In the case there 

is, however, a need of identifying more than two possible values for one or more 

parameters, then more than two candidate models will be under analysis, therefore 

the joint log-likelihood predictive should be instead used to select them.

Unlike the classical STAR and CBSTAR model formulations, the observational 

variance Vt of the underlying nonlinear AR process, Yt, is treated as an unknown dy

namic parameter whose distribution sequentially adapts to data in the usual normal- 

inverse-gamma conjugate analysis.



Chapter 5 

M odelling further com ponents in 

D BSTA R  m odels

In this chapter we present extensions of DBSTAR models defined in the previous 

Chapter 4 and incorporate seasonal, cyclical, regression and other components into 

the model structure.

There are many time series processes, in practice, that present not only nonlinear

ity but also other rather important characteristics, such as global non-stationarity, 

seasonality or dependence on covariates. The existing class of STAR models might 

not deal easily with such processes.

This chapter specifies models that can capture these different features of time 

series by using components. Each of these different features is represented individu

ally by a DLM component added together to the DBSTAR formulation, producing 

more general DBSTAR models for the processes under investigation. The compo

nents are appropriately accommodated by using additive decomposition techniques

9 7
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(West and Harrison, 1997). Notice that it is also possible to specify the models 

using multiplicative decomposition. Alternatively, additive decomposition can be 

used for series for which multiplicative decomposition is more appropriate after a 

log-transformation. A DBSTAR formulation for modelling processes with multiple 

regimes is also described.

5.1 DBSTA R  m odels for non-stationary processes

DBSTAR models, as defined in the previous Chapter 4, are suitable for modelling 

local non-stationary but global stationary processes free from additional model com

ponents. Recall from Section (2.1.5) that a locally non-stationary process is iden

tified by splitting the time axis into small time intervals and checking whether 

non-stationarity is detected in each of them, and a globally non-stationary process 

is identified by checking the presence of non-stationarity using the whole period 

* =  1 , . . . , T .

Local non-stationarity is modelled by DBSTAR models since the parameters 

are time-dependent and, according to the observed data arriving sequentially over 

time, the local (upward or downward) trend can be incorporated into the dynamic 

parameters, at each time t. However, there are other processes that present global 

non-stationarity in their structures and the existing models described in Chapter 

2 may not be appropriate to address those features. For instance, in Lopes and 

Salazar (2005), it was necessary to difference (Yt — Yt- i) the US IPI (Industrial 

Production Index in the US) data four times to achieve stationarity and remove 

possible seasonality before modelling it using the CBSTAR model. Many other
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formulations from both classical and Bayesian inferences with the use of MCMC 

need to first difference the series then model the differenced series as the dynamic 

changes cannot be handled by stationary models so they eliminate the trend by 

differencing the series.

One rather important advantage of the formulation proposed in this section over 

existing models reviewed in Chapter 2 is that there is no need for differencing the 

series in case it presents non-stationarity. Our dynamic stochastic formulation pro

posed here can be directly applied to the undifferenced time series. Furthermore, 

either linear or nonlinear time trend curves can be accommodated into our formu

lation.

We define in this section the DBSTAR formulation for modelling both local and 

global non-stationarities as well as nonlinearity that may be conjointly present in 

the process. The difference between these and models from the previous Chapter 

4 lies simply in an augmentation of elements in the quadruple A t to accommodate 

components directly related to the presence of trend in the process. The addition of 

explicit components increases the dimension of vectors and matrices of the models 

structure compared with the previous formulation. This approach follows similar 

work for the DLM by West and Harrison (1997).

In this approach, the quadruple A t = {F t , G*, Vt, W*} is extended to F_t — 

(F u ,F 2t) ,G t = {Gu ,G 2t) and W* =  (W it, W 21), where F_lt, G it and Wi* are asso

ciated with the nonlinear autoregressive components as in Section 4.1, and F_2U G 21 

and W 21 are associated with the trend components. DBSTAR models for non-
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stationary processes are defined as follows,

(Yt I ~  N  ( £ iA  + £a lt>  Vt) (5.1)

(&  I f i t - l )  ~  ( G u S t - l . W u ) (5.2)

(it I I t - 1) ~  T„,_l (G 21t,_1,\N.11) (5.3)

where, 6t is defined as in Section 4.2 and r t is a /-dimensional vector with the trend 

function defined as a Z-th polynomial DLM. For instance, models with I = 1 have a 

component called the local level and I — 2  is referred to as the local level plus local 

linear growth rate. It is scarcely recommended / >  3, as the first two degrees are 

usually sufficient to represent most of the non-stationary behaviour of processes.

The /-dimensional vector F_2t = [1 , 0 , . . . ,  0 ] is a fixed canonical vector associated 

with the trend in r t, with 1 representing changes in the mean response, which 

gives a shift in the current level of the series and 0  representing the other elements 

of the state vector associated with the changes linearly through time, which may 

themselves also evolve. The evolution matrix of the trend components is as

1 1  0  0  . . .  0

0  1 1 0  . . .  0

0  0  . . .  0  1 1

0  0  . . .  0  0  1

and the state covariance matrix W 2* =  diag[W 2i , . . . ,  W(/+i)<] for which a dis

count factor Sw , satisfying the condition 0  < 5w <  1 , is considered.
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These DBSTAR models are thus more flexible than the previous version of the 

DBSTAR formulation when only a local linear trend could be modelled.

5.2 DBSTA R  m odels for periodic processes

In this section we present DBSTAR models for modelling observed repetitive be

haviour in terms of cyclical/seasonal components added to the model structure of 

Section 4.1. Notice that they can be also added to the model defined in the previous 

Section 5.1 in case the process presents both non-stationarity and cyclical patterns, 

including seasonality. In this thesis, we distinguish cycle and seasonality. The for

mer has repetitive form within any period of time, such as hourly, daily, weekly, and 

so forth whereas the latter has variation within one calendar year, such as monthly, 

quarterly, etc.

A useful and functional representation of periodic forms is given in terms of 

trigonometric functions (West and Harrison, 1997, p.246). Fourier form representa

tions are considered as sine/cosine waves which provide economic characterisation 

on parameters.

DBSTAR models for periodic processes extend the quadruple A t to F t = (F_lt1 F_2t), G t = 

(Gi t ,G2t) and W* =  ( W i t , W 2t), where F_lt,G u  and are associated with the 

nonlinear autoregressive components as in Section 4.1, and F_2t,Q 2t and W 2t are 

associated with the periodic components. Hence, with explicit components for re

peated patterns, DBSTAR models with h harmonics for periodic processes are de

fined as follows

( r t 1 t t )  ~  N  ( £ i A + v‘)  (5-4)
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(it I i t - 1) ~  (G ttl t^ ,  W 1() (5.5)

{ i t  I i t - 0  ~  W2<) (5-6)

where, -0 is a 2 /i-dimensional vector with the periodic functions, which is a lin

ear combination of trigonometric terms, ^  W]> be., a sum_

mation of the /i harmonics, <%(£) =  a,jcos{tojj) +  bjsin{tujj)  and their conjugate 

Sj(t) = —ajsin(tujj) +  bjCos{tujj). The frequency of each harmonic is defined as 

ujj = with s the period of the cycle, for example, s = 24 for hourly data within 

a day or s = 7 for daily data within a week; furthermore, the seasonality, normally 

s = 12 for monthly data or s = 4 for quarterly data. The quantities aj and bj are 

called the Fourier coefficients.

The 2/i-dimensional vector F_2t is a canonical vector associated with the har

monics in with 1 regarding the harmonic positions and 0  otherwise, which gives 

F_2t = [1 , 0 ] for 1 harmonic, F 2t =  [1,0 , 1 , 0 ] for 2  harmonics, and so forth. The evo

lution matrix of the periodic components G 2* has |G 2t| =  cos2{tuj) +  sin2{tujj) = 1 . 

The discrete-time evolution of the j —th  harmonic from time t  to time t + 1 is given 

by

1 S j(t + 1) ^  1 ~ ■ ^
— G 21

y s j ( t + 1) J

The (2h x 2 /i)-matrix W 2t contains the covariances of the cyclical components.

The first harmonic, called the fundamental harmonic, is expected to dominate the 

seasonal pattern, having a strong sinusoidal signal. The higher frequency harmonics 

oscillate faster than the fundamental one and are more appropriate for modelling 

higher frequency repetitive behaviour. Obviously, the larger the h the more accurate
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the modelling of periodic variations in the data. However, adopting the parsimony 

principle we look for the smallest h that can still provide a good representation of 

the seasonality in the underlying process.

For cases where large enough initial data points are available to enable the inves

tigation of the seasonal behaviour, the parsimonious value of h can be determined, 

for example, by applying a Bayesian approach, similar to those described in Section

3.3.

5.3 Incorporating predictor variables in D B STA R  

m odels

It is straightforward to extend DBSTAR models to allow for predictor variables 

x t =  [xu, . •. ,Xgt] over time as exogenous regressors to be incorporated into the 

formulations defined in Chapter 4 as well as in the previous sections 5.1 and 5.2.

This approach, called DBSTARX (eXogenous) models, investigates the depen

dence of a variable Yt not only on the past values of the series but also on the values 

of other time series predictor variables. Therefore, autoregression and regression are 

both investigated in this formulation.

There are various possible sources of information that could be used as predictor 

variables in DBSTARX models. The vector x t may accommodate (i) exogenous 

time series observed at same time points as the dependent variable Yt, (ii) lagged 

exogenous time series, i.e., past values of other time series variables (x t_d, where 

d is the delay parameter) and/or (iii) dummy variables. Any number of predictor
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variables can be added to the model structure.

For each time t , with p as the autoregressive order and q as the number of 

external variables, DBSTARX models extend the dimensions of the components in 

the quadruple A t to a known (r +  l)(p  +  q +  l)-dimensional vector F t: a known 

(r +  l)(p +  0 + l )  x (v +  l)(p  +  q +  l) matrix G^, an unknown scalar Vt and an 

unknown (r +  l)(p  +  q +  1 ) x (r +  l)(p  +  q +  1 ) matrix W*. The components in 

A t are associated with both the nonlinear autoregressive part of the model and the 

predictor variables, which uniquely define DBSTARX(g, r, p) models.

Firstly, with the addition of q exogenous variables, the model in equation (4.2) 

becomes as follows,

Yt = z tl lt + z t$2tn{st;7t,ct) + x tPt + et ; e*~jV(0,of)  (5.7)

Using the components of At as well as a dynamic transition nonlinear function 

7r(st]'Yt,ct) with real values in the interval [0,1], DBSTARX(g, r,p) models are de

fined by rewriting the model in the equation (5.7) into the observational process Yt 

conditional on the parameter vector 6t in (4.18), where F̂ t — [zt , z ts t j . . .  , z ts l ,x t] 

with a known (r +  l)(p  +  q +  l)-dimensional vector of polynomial regression vari

ables s\zt (i =  0 , 1 , . . . ,  r) with z t =  (1 , yt- U . . . ,  yt- p) and x t =  (x lt, . . . ,  x qt)\ 9t is 

the state vector containing parameters associated with the components of F_t, i.e., 

9t = (1h t , • • • }£(r+i)tj^y- Notice that all the parameters in 6t may vary in time, 

including the /? ’s.

The (r +  l)(p  +  q +  1)-dimensional state vector 61 has a conditional multivariate 

Student-t distribution with n t~i degrees of freedom as in (4.19), with as the
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state evolution matrix with elements gijt (for row i and column j) chosen according 

to the desired structural form of association between 6t and 9_t_v  In the case that 

no structural form is known, the random walk is used by setting G t = I, the identity 

matrix. Furthermore, W* is the state covariance matrix, for which a discount factor 

5w, satisfying the condition 0 < 5w <  1, is considered as in (4.2) given by

w- ■ ( i r )  a ' c - a '-'

where Ct~i is a prior covariance matrix for 6_t . Notice tha t in the case when 5w — 15 

the parameters have zero variance (W* =  0 ).

E xam ple  5.1. A t each time t, a simple Taylor DBSTARX( 1,3,1) model with q = 1 

external variable {x\t) as well as a Taylor series expansion of degree r = 3, autore

gressive order p =  1 (with no intercept) and transition variable st = yt- i  is specified 

by the distribution of the observational process in equation (4.18) and the distribution 

of the state vector in equation (4-19), with the components of the quadruple A t as a 

5-dimensional vector — [yt-i, Vt-1> Vt-n Vt-ii a 5 x 5 evolution matrix G t and 

a 5x5  state covariance m atrix 'W f Also, 6_t = [0ot, 6\t , #2*, 03t, At] is a 3-dimensional 

state vector containing parameters associated with each element of F_t . Notice that 

in case Q \t^2t and d^t are concomitantly zero, the Taylor DBSTARX(1,3,1) model 

is reduced to a linear A R X (l)  model written in DLM  form.



C h a p t e r  5. M o d e l l in g  f u r t h e r  c o m p o n e n t s  in  DBSTAR m o d e l s 106

5.4 M ultiple Regim es D BSTA R  m odels

DBSTAR models can be extended to a more embracing form in order to accommo

date more than 2 regimes. We refer to this extension as multiple regimes DBSTAR 

models which present m  =  2 fc, k > 1 regimes.

Like classical multiple regimes STAR models by van Dijk and Franses (1999) 

defined in equation (2.17), multiple regimes DBSTAR models also have m  — 1 tran

sition variables as well a sm  -  1 smoothness and threshold parameters to compose 

m  regime models.

Generic multiple regimes DBSTAR models are thus defined based upon the use 

of approximation methods to all dynamic transition functions =

1 , . . . ,  m  — 1 , with nonlinear parameters 7 jt and c^], as follows.

Vt — — 5 ■ ■^Zt$_mt^(rn—l)(S(rn—l)ti'y(rn—l ) t i (-'(Tn—l)t)~^~£t (5-8)

where Kj(sjt','Yjt,Cjt)>j — 1 , . . .  — 1 , are the approximations for the dynamic

transition functions in the range [0,1] and ~  N(0, of).

To define multiple regimes DBSTAR models, with m  regimes, using a Taylor 

series expansion of degree r and with p  as autoregressive order, we first need to 

approximate each of the dynamic nonlinear transition functions 7Tj with the most 

appropriate Taylor series expansion as in equation (3.10), so the models as in equa-



C h a p t e r  5. M o d e l l in g  f u r t h e r  c o m p o n e n t s  in  DBSTAR m o d e l s 107

tion (4.4) become as follows,

Vt — zJLoit +  { z ts i t )S ll t  +  ( z ts j t )612t +  . . .  +  { z t s rl t )6_lrt +  . . .  +

+  6  (5.9)

where ^  ~  JVfO, of) and fo ri =  1, . . .  , r  and j  =  1,. .  - ,m ,9 jit = P jutjjt, with

Cjt) are polynomial functions of 7 jt and q  obtained from the z-th coefficient 

of the Taylor series expansion within the j - th  regime.

Similarly to define DBSTAR models, for each time t , the quadruple A* =  

{F t , G t, Vt, W*} contains vector and matrices with higher dimensions, as F_t is a 

known (m — l) ( r  +  1 ){p +  l)-dimensional vector, G* is a known (m — l ) ( r  +  l)(p  +  

1 ) x (m — l ) ( r  +  l ) ( p + l )  matrix, Vt is an unknown scalar and W* is an unknown 

(m — l )( r  +  1 )(p + 1 ) x (m — l )( r  +  l)(p +  1 ) matrix.

Using the components of A t as well as dynamic transition nonlinear functions 

7Vj(sj t ', 7 jt, Cjt) with real values in the interval [0,1], Taylor multiple regimes DBSTAR 

models are defined by rewriting the model in equation (5.9) into the observational 

process Yt conditional on the parameter vector 9t as

(5.10)

where =  [zt ,d tsu, ■ ■ -,d ts it, ■ ■ • It-V.i, • • • > d.Katl with a known ( m -  l) ( r  +  l)(p +  

1 )-dimensional vector of polynomial regression variables s %j tz t (z =  0 , 1 , . . .  ,r,  j  = 

0 , 1 , . . . ,  m) with z t = (1 , yt- 1, • • •, yt-p)\ i.t is the state vector containing parameters 

associated with the components of F t: i.e, 0* =  (0Qlt, 0m , . • • A \ rt Am it, • • • ,(Lmrt)-2.1 It ,  • • • 3 2.1 •
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The (m —l)(r+ l)(p+l)-dim ensional state vector 9t has a conditional multivariate 

Student-t distribution with n t- 1 degrees of freedom

(it I it-i) ~  (Gtfie-i, W () (5.11)

where Gf is the state evolution matrix according to the desired structural form of 

association between 6t and 0t_1} and W* is the evolution covariance matrix, both 

are specified as in Section 4.2.

5.5 General DBSTA R  m odels

Each approach described individually in the previous sections of this chapter may 

be combined together to form a generic formulation which we refer to as General 

DBSTAR models.

The clearest way to examine a time series and decide which components should be 

included in the model is with exploratory analysis, such as scatterplots, boxplots, 

autocorrelation plots, partial autocorrelation plots, and other techniques. Those 

analyses would support the separation of each characteristic into components rep

resenting trend, seasonality, cyclical irregularity, and so forth.

General DBSTAR models extend the quadruple A t to F t = (F_lt, . . . ,  F_kt) ,  

Qt = (Gu, • • • > Gto) and W< =  (W ^ ,. . . ,  W**), where k is the number of desir

able components, F_lt, and are associated with the nonlinear autoregressive 

components as in Section 4.1, and (F_2t, . . .  ,F kt), (G2t, • • •, G**) and (W 2t, • • •, W kt) 

are associated with the additional components.
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General DBSTAR models are defined as follows,

(5.12)

(fiu  I f i u - i )  ~  T n t_ ,  ( G A . l W u ) (5.13)

(dkt I h t - i) ~  T nt-x (Gkt6kt^ , W kl) (5.14)

where, 0lt is a vector with the parameters associated with the nonlinear part of 

the model and 02t, . . . . ,0 kt contain the parameters associated with the additional 

components. The matrix G* is the state evolution matrix with elements gijt (for 

row % and column j) chosen according to the desired structural form of association 

between 6t and 0_t_x. Furthermore, W t is the state covariance matrix, for which a 

discount factor 5w , satisfying the condition 0 < 5w <  1, is considered as in (4.2) 

given by

where C t- i  is a prior covariance matrix for 9t . Notice that in the case when 5w — 1, 

the parameters have zero variance (W t =  0 ).

5.6 Discussion

In this chapter, we have introduced a General DBSTAR model along with interesting 

special cases. The addition of further components in DBSTAR models are convenient 

when working with general time series data and are suitable for modelling a wide
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variety of behaviours, such as, trend, cycle or seasonality.

General DBSTAR models as proposed in Section 5.5 can be interpreted as de

composing an observed time series into various components. These, however, are 

not the most general possible (see Chapter 8  for extensions), but they do encompass 

a wide variety of models. To understand the types of behaviour General DBSTAR 

models allow for, it is helpful to discuss their particular cases. In chapter 4, we 

proposed DBSTAR models suitable for local non-stationary processes, in which the 

coefficients in the state vector 0t may accommodate a short-term stochastic trend, 

being permissible to change only locally over time. However, in general, the trend 

behaviour implies that a time series can wander expansively. DBSTAR models for 

non-stationary processes proposed in Section 5.1 have further components to accom

modate the long-term stochastic trend terms. Those components are responsible for 

measuring the relative sizes of the trend and may have variance which may change 

over time increasing or decreasing, therefore probability distributions were given at 

each time t.

Cycles and seasonality can be modelled with DBSTAR models proposed in Sec

tion 5.2. Classical and computational Bayesian STAR models use high autoregres

sive order trying to capture the periodic behaviour. On the other hand, DBSTAR 

models for periodic processes use low autoregressive order and model the cycle or 

seasonality explicitly using Fourier analyses. By doing so, the models are more parsi

monious and more than that, they give accurate specification of the cyclical/seasonal 

behaviour of the time series which are key features for modelling such processes.

Even though the use of external variables may be in a nonlinear form, such as
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the variable st in 7r(st; .), DBSTARX models were proposed for processes for which 

there is still some additional linear relationships between exogenous and dependent 

variables. In this approach, both autoregression and regression are accommodated.

DBSTAR models trivially deal with missing data. Other existing approaches, 

in particular using STAR type models, have enormous difficulties in handling miss

ing values (West and Harrison, 1997). Recall that Dt = (y ^D t-i)  represents the 

information available at time t after observing Yt. So, for the case of a missing 

value yt, the information set at time t is just the previous available information, 

i.e., Dt = Dt- i .  On the one hand, during the filtering stage of the parametric prior- 

to-posterior updating procedure, there is no new information to be incorporated so 

the prior probability distributions of each 9it: i = 1 , . . . ,  k, from model (5.12)-(5.14), 

i.e., (9it | Dt- 1) ~  (ait, St-i^Ut) are not updated, therefore the posterior dis

tributions are equal to the prior distributions, viz., (9it | Dt) ~  Tnt (m it, C«), with 

m it = ait and C** =  StRit as weH as St =  S*_i and n t = n t- \ .  This sequential 

algorithm will then update the distributions once a new information becomes avail

able (West and Harrison, 1997). Nevertheless, if a new observation does not become 

available, forecast distributions can still be obtained. On the other hand, it should 

be pointed out that uncertainty should really increase as a consequence of missing 

data. Using this sequential algorithm, this does not actually happen. For a missing 

value yt , the posterior distribution (9it | Dt) ~  Tnt (mit, C it) should not have pos

terior variance equals to the prior variance (C^ =  StRit) but instead an increase 

in the variance should be taken into account, such as C# =  StRit +  U^, where 

represents uncertainty due to a missing data. By doing so, DBSTAR models are
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also able to produce accurate forecast distributions since a 2 -step ahead forecast 

distribution has greater uncertainty than a 1-step ahead forecast distribution.



Chapter 6

M odelling Canadian lynx data

In this chapter, appropriate formulations of DBSTAR models defined in chapters 4 

and 5 are applied to the well-known Canadian lynx data set. Approaches described 

in both chapters can account for the cyclic behaviour observed in the data either 

through a high AR order or with the inclusion of components.

The aim here is twofold. On the one hand, the aim is to validate proposed 

DBSTAR models by comparing their fitting performances against the performances 

of both the classical STAR and CBSTAR models. On the other hand, the aim is to 

illustrate the extra features that can be achieved for modelling nonlinear time series 

by adopting sequential approaches with time-dependent parameters.

Section 6.1 describes the data set and exploratory analyses to demonstrate why 

DBSTAR models may be appropriate for modelling this series. Section 6.2 describes 

formulations of DBSTAR models suitable for the Canadian lynx series. Section 6.3 

describes selected DBSTAR models based on the retrospective smoothing procedure 

adopted to allow goodness of fitting measures to be compared to existing static

113
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STAR approaches. Section 6.4 presents results comparing the fitting performances 

of DBSTAR models with the classical STAR and CBSTAR models. The chapter 

ends in Section 6 .6  with a discussion of this application exercise.

6.1 The data set and initial data analysis

The Canadian lynx data set consists of the annual series of the number of Canadian 

lynx trapped in the Mackenzie River district of North-west Canada from 1821 to 

1934, giving therefore a total of 114 observations. This data set was first published 

by Elton and Nicholson (1942) and originally recorded to support the understanding 

of the population dynamics of the ecological system in tha t area. Analyses of this 

time series can be found, for example, in Tong (1990), Terasvirta (1994) and Lopes 

and Salazar (2005).

Figure 6.1 (a) and (b) show the time series plots of the Canadian lynx data 

and the log-transformed series, respectively. As can be seen in both plots, the most 

prominent features of the Canadian lynx time series are (i) the lack of trend, (ii) the 

presence of irregular changes in the amplitude over time, and (iii) the presence of 

persistent non-regular cyclic oscillations with periods of 10 or 11 years. Regarding 

the cyclic oscillations, observe that there is an apparent asymmetry in each of the 

cycles with long ascent times occurring between 5 and 7 years followed by shorter 

descent times of only about 3 and 4 years. The vertical dashed lines at intervals 

of 10 years in both plots help to identify such irregularities. These features have 

been familiar to biologists for a long time and are prominent in historical records 

of trappings of lynx in Canada (see, for example, Elton and Nicholson (1942) and
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Figure 6.1: (a) Original Canadian lynx time series and (b) log-transformed Canadian 
lynx time series, yearly observed from 1821 to 1934

the references therein). The asymmetry in the cycles suggests the use of nonlinear 

models, since linear models fail to deal with those characteristics (Moran, 1953).

The original time series was logi0-transformed to (i) remove the marked right

skewness of its frequency plot, (ii) bring some outliers close to the other data points, 

and (iii) allow for comparative fitting analysis, as both the classical STAR and 

CBSTAR models were applied to the log-transformed series. Figure 6.2 (a) and (b) 

show Normal Q-Q Plots of the Canadian lynx time series and the log-transformed
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series, respectively, to illustrate the points (i) and (ii) just mentioned.

Although the Canadian lynx data are counts and, therefore, a more appropriate 

probability distribution to model them being the Poisson distribution, researchers 

have been using the normal distribution for the log-transformed data instead (in

cluding Tong (1990), Terasvirta (1994) and Lopes and Salazar (2005)). In this 

thesis, the normal distribution for the log-transformed data is also considered. The 

Normal Q-Q plot of the original series in Figure 6 .2  Panel (a) presents (i) the points 

following a persistent nonlinear pattern with great departures from the 45-degree 

reference straight line for larger negative and positive values of the theoretical quan- 

tiles, (ii)points not covered by the 99% confidence interval, being then considered 

outliers, and (iii) high level of positive skewness: all of those suggest that the data 

are not normally distributed. After taking the log-transformation, the Normal Q-Q 

plot of the log-transformed series in Panel (b) shows (i) most points fall approx

imately along the reference line, (ii) most points lying within the 99% confidence 

interval with only a few outliers at the high end of the line: these suggest that the 

data can be reasonably approximated by the normal distribution. Moreover, the 

reasons the data are log-transformed are also because DBSTAR models make the 

assumption of normality of the underlying process so tha t the Kalman filter can 

be implemented, and additionally, the performance from DBSTAR models will be 

compared to the performance of existing approaches, in which the data was also 

log-transformed.

Figure 6.3 (a) and (b) show the autocorrelation function (ACF) and the partial 

ACF (PACF) plots of the log-transformed series, respectively. There seems to be a
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Figure 6 .2 : Normal Q-Q Plot of (a) original Canadian lynx time series and (b) 
log-transformed series
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Figure 6.3: (a) Autocorrelation function (ACF) and (b) Partial ACF of log-
transformed series
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Figure 6.4: Periodogram of original Canadian lynx time series

slow sinusoidal decay along time in the ACF together with a cut after lag 2 in the 

PACF, assuming the PACFs on lags 4 and 7 are spurious. Such behaviour from both 

the ACF and PACF plots suggest that the Canadian lynx data should be modelled 

by an autoregressive model. Notice that there is a significant peak at lag 10 in the 

PACF that seems to show a cyclical period of 10 years.

Figure 6.4 shows the Bayesian periodogram (Bretthorst, 1988) of the Canadian 

lynx data set. The periodogram gives a better idea about the periodicity of the 

cycle in the data set, particularly since the cycles are not related to the regularly 

seasonality (when the periodic repetition occurs within one-calendar year), which 

would have given 12 periods for monthly data or 3 periods for quarterly data.

The Bayesian periodogram method uses the log-likelihood of a single sinusoidal 

regression model yt =  a,cos{2nt/X) +  bsin(2Tit/\) +  ct, where ct ~  N (0 ,a 2) and 

A is the periodicity or wavelength (the time it takes to complete a full cycle) of



C h a p t e r  6 . M o d e l l in g  C a n a d i a n  l y n x  d a t a 119

the process Yt, to determine the variation of the amplitude with the frequency. 

The predominant spike of the periodogram appears at around the 0.1 frequency. 

Exploration of the periodogram values points out that the peak occurs at nearly 

exactly this frequency. This indicates a wavelength of 1/0.10 =  10 years, suggesting 

a sustained and persistent cyclical feature of that time period. Consequently, there 

appears to be a dominant periodicity of about 10 years in the Canadian lynx data set 

and harmonics with wavelength of 10 years should be included in DBSTAR models. 

This result was also obtained by Elton and Nicholson (1942), who found the length 

of 10 years for the cyclic repetition of the Canadian lynx data.

6.2 Formulating D BSTA R  m odels

Various DBSTAR formulations were applied to the Canadian lynx time series, which 

are described in this section. Figure 6.5 summarises each particular version of DB

STAR models that was implemented. The diagram should be read from the top to 

the bottom. The first division relates to DBSTAR models using two alternative ap

proximation methods to the nonlinear transition function: the Taylor series defined 

in Section 4.2 or Splines defined in Section 4.3. Notice that the latter could make 

use of either the Truncated Power Basis or the B-splines function. The subsequent 

partition reveals the standard formulations, free from additional model components 

described in Chapter 4, or the periodic approaches described in Section 5.2. The 

last splitting identifies the models depending on the specification of their state co- 

variance matrices W*, which indicates whether the parameters in the state vectors 

are either static or dynamic, in the sense that they do or do not change over time,
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respectively (if W* =  0, then the model is static). All possible combinations are 

then individually identified as Model 1, Model 2, . . Model 12.

In this application, the Taylor DBSTAR(r,p) formulations defined in Section

4.2 use the Taylor series expansion of the logistic function in (2.13) as the smooth 

transition function between the two regimes. For this specification, the Taylor series 

degree, r, needs to be odd, since for even degrees the derivatives of the logistic 

function evaluated at the point we are expanding around are zero. For high Taylor 

series degree (r =  5,7,9, . . . ) ,  approximations have only marginal improvements. 

Therefore, for parsimony reasons, we use r = 3 in the models. In addition, lagged 

values of the log-transformed series are used as the transition variable, so that st = 

yt-d , as in Terasvirta (1994) and Lopes and Salazar (2005).

Splines DBSTAR(r, k,p) models defined in Section 4.3 use either the Truncated 

Power Basis or the B-splines to represent the nonlinear transition function. In 

both approaches, both the polynomial degree r and the number k of knots need 

to be defined. In this application, we used the most common choice r = 3, which 

characterises the cubic splines, and k was decided by a model selection criterion. 

Again, lagged values of the log-transformed series are used as the transition variable, 

so that st = yt-d-

There are other parameters which are not accommodated in the state vectors 

either and the use of the Bayesian approach based on the predictive performance 

of different models, described in Section 3.3, is recommended, as initial data are 

available. Those parameters were then considered unknown and we had to specify 

(i) the autoregressive order p, where p =  1 , 2 ,..., 1 2 ; (ii) the delay parameter d of
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Figure 6.5: DBSTAR model configurations structured by a classification tree
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the transition variable st = yt-d» where d = 1 , 2 , 1 2 ; (iii) the discount factor 6w 

of the state variance W*, where 0  < 6w <  1 (^v — 1)> 0V) the number of knots k 

and (v) the number of harmonics h.

Several models were run which differed only in values of these five parameters 

and those were selected by the log-smoothing likelihood (LSL) conditional on the 

parameters, as defined in Section 3.3.3. The LSL criterion gives evidence in favour 

of a model which presents the largest value of LSL. The reason the LSL criterion is 

used rather than the log-predictive likelihood (LPL) is that we aim to select dynamic 

models based on fitting performance rather than forecasting performance in order 

to make them comparable to both of the static approaches, the classical STAR and 

CBSTAR models. The use of the LPL criterion is shown in Chapter 7, where the 

focus is on selecting models for forecasting purposes.

This step is evaluated jointly with the parametric prior-to-posterior updating 

described in Section 3.2 using the above given values. The LSL criterion selected 

h = 2 for periodic DBSTAR models, with the components dominating the cyclical 

pattern by having strong sinusoidal signals.

Both the observational variance and the state variance matrices are specified 

to be the same for all models. The former is set as Vt = V, which means the 

unknown observational variance of the underlying nonlinear AR process was not 

detected to be stochastically changing from exploratory analyses, for this reason a 

variance discount technique for Vt was not used in this analysis. This implies we 

can make use of a simpler algorithm, since Vt is set to be fixed and does not have to 

be updated sequentially over time, and also the discount factor associated with it
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does not have to be identified. So that, 5y = 1 and for the state covariance matrix 

W t, the use of its discount factor 8w is needed in order to allow (slow) dynamic 

parameters adaptation.

The remaining two components in Ai? i.e., the polynomial regression variables 

from F_t and the evolution state matrix G 4, vary according to the model specifica

tions, as follows:

• Models 1 and 2: F̂ t = [zt , z tst , z ts2, z^sf] and Q t = I;

• Models 3 and 4: F_lt and G it are set as above for Models 1 and 2, and F_2t =  

[1 , 0 , 1 , 0 ] and G 2* has |G 2*| =  cos2(tojj) +  sin2{tuj) = 1 , which gives pre

specified trigonometric evolution changes for the state parameters from time 

t — 1 to

• Models 5 and 6 : F* =  \zt , z tst ,z ts2,z ts f ,z t{st -  « i )+, . . . ,  zt(st -  «*)+] and 

G< =  I;

•  Models T and 8 : F_lt and G it are set as above for Models 5 and 6 , and F_2t an<̂  

G 21 are set as for Models 3 and 4;

• Models 9 and 10: F'[t — \zt ,z tB i( t) , . . .  , ^ 5 m(t)] and Q t = I; and

• Models 11 and 12: Fmlt and G ^  are set as above for Models 9 and 10, and F_2t 

and G 21 are set as for Models 3 and 4.

Notice that when the evolution state matrix is set as G t = I, the identity matrix, 

random walk evolution changes are assumed for the state parameters from time 

t — 1 to t. Moreover, the state vector 9t accommodates the polynomial coefficients
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associated with the polynomial regression variables in F_t and, for periodic models, 

i/) is a state vector associated with the linear combination of trigonometric terms 

for representing the periodic behaviour. Both vectors 9t and ^  are sequentially 

updated over time as shown in Section 3.2.2. Non-informative prior distributions 

were used to form initial relevant views about the future for all model parameters, 

as we did not have any prior knowledge about them. Thus, we set rriQ = 0 and large 

variances Co =  31 as the prior mean vector and covariance matrix, respectively.

6.3 Configuring D BSTA R  m odels

The Kalman filtering together with the Kalman smoothing algorithms, were imple

mented using the software R (version 2.15.2). In order to obtain the results that 

account for the whole Canadian lynx data set at once, a retrospective analysis using 

Kalman smoothing was carried out on dynamic models. As with Kalman filtering, 

Kalman smoothing can be straightforwardly implemented as a backward-recursive 

algorithm, which depends only on the data used for filtering and one-step-ahead 

forecast moments. A retrospective analysis makes static and dynamic models com

parable in the sense that it uses the whole data set after the Kalman filtering is 

applied, as described in Section 3.2.3. Firstly, we need the posterior probability 

distribution for 6t , at each time t, provided by the Kalman filter. Then, the Kalman 

smoothing provides the conditional probability distributions of 6t given all the data 

D t , for any time t < T .

Table 6.1 presents the final DBSTAR model configurations. This table relates 

to Figure 6.5 to name the type of each DBSTAR models under analysis. Both the
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Taylor series and splines degrees were fixed as r = 3. Splitting the table in two 

parts, it is possible to reveal some important points: (i) the autoregressive order 

is higher for the standard approaches than for periodic models, (ii) the number 

of parameters to be updated sequentially in time is large, particularly so for the 

standard approaches, (iii) the delay parameter is selected as d = 3 for all model 

configurations.

A point to note from point (i) above is tha t standard models try  to capture the 

cyclic behaviour with the use of large autoregressive orders. On the other hand, 

periodic models use low autoregressive orders and model the cycle explicitly using 

Fourier analyses. This gives an accurate estimate of the cyclical behaviour of the 

Canadian lynx data set which is a key feature for modelling such series. From (ii), 

the large number of parameters is directly related to the type of approximation 

methods as well as to the autoregressive orders. Notice that, in general, the number 

of parameters is lower for periodic models. Comparing the pairs of corresponding 

static models, which differ only in whether they are standard or periodic models, 

i.e., (1 and 3), (5 and 7) and (9 and 11), we note a reduction in the number of 

parameters by about 50%. For pairs of dynamic models, the reduction is of around 

30% for models (2 and 4) and (6  and 8 ) and of 6 8 % for the pair (10 and 12). For 

parsimony reasons, periodic models should be considered for further analyses.

The LSL criterion selects 6w < 1, Le., to model the Canadian lynx data we should 

make use of DBSTAR models with time-dependent parameters. Notice tha t the 

parameters of those models vary in time but slowly as the discount factor is less than 

1 but not much, i.e., either 8w = 0.80 or 8w =  0.85. Nonetheless, DBSTAR models
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Table 6.1: Final DBSTAR model configurations for the Canadian lynx data set
Type Model AR order Polynomial degree Delay Harmonics Knots 8w No. par am.

1 12 3 3 - - 1 65
2 9 3 3 - - 0.85 50

Standard 5 11 3 3 - 5 1 156
6 8 3 3 - 5 0.85 108
9 12 3 3 - 5 1 130

10 8 3 3 - 5 0.85 108
3 5 3 3 2 - 1 34
4 5 3 3 2 - 0.85 34

Periodic 7 5 3 3 2 5 1 76
8 5 3 3 2 5 0.85 76

11 5 3 3 2 5 1 64
12 2 3 3 2 5 0.80 34

with 8w =  1 were also analysed in order to have static versions of DBSTAR models 

to make them directly comparable to existing models, which are static approaches.

Figure 6 .6  (a) and (b) show the evolution over time of the 2 harmonics of both 

periodic models 11 and 1 2 , respectively. Recall that Model 11  does not allow the pa

rameters to vary in time whilst Model 12 does. As can be seen in Panel (a), the har

monics for Model 11 are constant in time and there is a constant sinusoidal function 

with two different positive amplitudes of around 0.05 and 0.10. Such characteristics 

in these components attempt to capture the changes in the cycles throughout the 

observed period, according to the changes detected during the exploratory analysis 

in Section 6.1. On the other hand, Model 12 has time-dependent parameters in

cluding the harmonics in favor of capturing the irregular changes in the amplitudes 

of the cycle over time. Figure 6 .6  Panel (b) shows that the harmonics of Model 12 

has changing amplitudes with a large increase from around 1830 to 1850 as well as 

for around 1890 to 1930. Therefore, the dynamic cycle present in the data should 

be taken into account and modelled explicitly in order to obtain a more accurate
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Figure 6 .6 : Harmonics of (a) Model 11 and (b) Model 12

specification of the cyclical behaviour.

Figure 6.7 shows plots of observed versus fitted values for the 12 models. Panels 

(a) - (d) show the plots for Taylor DBSTAR models 1 - 4 ,  respectively, Panels (e) 

- (h) for Truncated Power Basis DBSTAR models 5 - 8 ,  respectively, and Panels 

(i) - (1) for B-splines DBSTAR models 9 - 12, respectively. The closer the data 

are to the line on the main diagonal of plots, the better the model fits the data. 

For those models with time-dependent parameters, the fitting performances are the 

most appropriate. Overall, all 12 DBSTAR models do not show distant points from 

the lines. Comparing both the standard and periodic DBSTAR models, the latter 

improve fitting, even though good fittings were observed for the former. It shows, 

therefore, that DBSTAR models fit Canadian lynx data well.
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Figure 6.7: Observed versus fitted models - Panels (a) - (d) Taylor DBSTAR models 
1, 2, 3 and 4, Panels (e) - (h) Truncated Power Basis DBSTAR models 5, 6 , 7 and 
8 , and Panels (i) - (1) B-splines DBSTAR models 9, 10, 11 and 12
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6.4 Comparative m odel analysis

In this section, 12 DBSTAR models configured in Section 6.3 have their fitting

STAR models, as in Lopes and Salazar (2005). The CBSTAR uses delay parameter 

d = 3 whilst the classical STAR uses d = 2. Both models use autoregressive order 

p = 1 1 . The CBSTAR presents better fitting performance compared to classical 

STAR models.

Table 6.2 presents the mean absolute errors (MAE) and the root mean squared 

errors (RMSE) for 12 DBSTAR models as well as for the two competing models, 

where the measures MAE and RMSE are defined as follows,

It should be emphasised that static models 1, 3, 5, 7, 9 and 11 were fitted in the 

interest of making DBSTAR models equivalent to the competitors, since the LSL 

criterion indicated that the models are dynamic instead. This is because the op-

large values of MAE and RMSE compared to the CBSTAR model, despite the fact 

that both models improved fitting compared to the classical STAR model. Both the 

classical STAR and CBSTAR models have their parameters static over time. On 

the other hand, all other static model configurations improved fitting. It is worth

performances compared to the performances of both the classical STAR and CB-

M A E  = (6 .1)

R M S E  = . 5 3 (6 .2)

timal value of 5w is less than 1 . Out of the 1 2  models, only models 3 and 7 have
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Table 6.2: Model comparison - mean absolute errors (MAE) and root mean squared 
errors (RMSE) - DBSTAR models versus Competitors

Type Model MAE RMSE
Competitors CBSTAR(11, 3) 0.118 0.153

Classical STAR(11, 2) 0.142 0.179
1 0.109 0.141
3 0.135 0.171

Static 5 0 .1 0 2 0.134
7 0.130 0.166
9 0.061 0.082

11 0.105 0.139
2 0 .0 1 2 0.015
4 0.023 0.032

Dynamic 6 0.014 0.027
8 0.019 0.032

10 0.014 0.027
12 0.006 0.013

distinguishing B-splines DBSTAR models which showed superior improvements over 

Taylor series and TPB DBSTAR models. Under other conditions, all the models 

with time-dependent parameters (2, 4, 6 , 8 , 10 and 12) present significantly smaller 

MAE and RMSE compared to the competing models. It shows tha t the adapta

tion to the slight changes in pattern from year to year definitely improves fitting 

performances, regardless the DBSTAR model under analysis.

6.5 Forecasting performance

In this section, an out-of-sample analysis is carried out in order to evaluate the fore

casting performances of competing DBSTAR models. The Canadian lynx data set 

was divided into two parts. The first part is the in-sample period, with observations 

from 1821 to 1924, while the second part corresponds to the out-of-sample period, 

which has the last 10 years of the data set, from 1925 to 1934. This division is rather
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important to evaluate the forecasting performances of competing DBSTAR models.

When evaluating model forecasting performance, it is essential to take into ac

count not only the performance of point forecasts but also the rigor of their accuracy. 

Therefore, a measure which determines the accuracy of the joint forecast distribu

tion for the out-of-sample period under investigation, rather than just the point 

forecasts at each time individually, is preferred. Such a measure is the LPL, defined 

in equation (3.4). Recall that the larger the value of the LPL, the more evidence in 

favour for the corresponding model.

Table 6.3 presents the LPL of each DBSTAR model in the out-of-sample period. 

All the even models show low values of the LPL and evidences for them are little. 

The LPLs for the even models, i.e., dynamic models, are all lower than the LPLs 

for the odd models, i.e., static models. This implies that the out-of-sample forecast 

performance of static models is better than for dynamic models.

Recall that dynamic models allow the parameters to vary in time. During in- 

sample period, their adaptive behaviour are fast and precise tha t they present very 

small forecasting error compared to static models, as shown in previous Section 6.4. 

However, in the out-of-sample period, their forecasting performance are affected 

by the parameters’ dynamism. Figure 6 .8  shows the observed series during out-of- 

sample period, along with 1-step ahead forecast means and 95% credible interval 

of Models 3 (a), 7 (b) and 11 (c). The forecast means are, overall, accurate but 

the forecast uncertainties are overestimated. This overestimation leads to low LPL 

values. This could be interpreted as an indicative that there may be factors, such 

as external variables, affecting the variability which are not captured by DBSTAR
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Table 6.3: Out-of-sample log-predictive likelihood (LPL) of each DBSTAR model 
Model I 2 3 4 5 6 7 8 9 10 II 12“
LPL -3.05 -25.40 0.44 -12.91 -2.57 -4.43 0.25 -11.51 -4.20 -28.00 -1.89 -8.09

models with time-dependent parameters.

Note that Table 6.3 contrasts the previous analysis from Figure 6.7. On the one 

hand, fitted models plotted in Figure 6.7 are based on the LSL criterion, which uses 

filtering algorithm each time an observation becomes available then smoothing algo

rithm after the last observation is collected to go backward adjusting the estimation 

of the parameters for the entire sample period. On the other hand, models in Table

6.3 use out-of-sample period only and are based on the LPL criterion. This criterion 

uses filtering algorithm only, i.e., no backward adjustment is carried out. Therefore, 

LSL criterion selects models based on fitting performance in order to make them 

comparable to existing models in the literature (as shown in Table 6.2) whilst LPL 

criterion selects models based on predicting- performance in order to use them for 

forecasting purposes.

Among all odd models, there are three of them, identified as bold face in Table 

6.3, that present the largest values of LPL. They are models 3, 7 and 11, respectively. 

Recall that these models accommodate periodic components and low autoregressive 

orders in their structures. Both the observed series in the out-of-sample period, the 

1-step ahead forecast means and the 95% credible interval of those three models are 

illustrated in Figure 6 .8 . There is periodic behaviour during the out-of-sample period 

and those three models’ intervals cover most of the observation series. Therefore, 

DBSTAR models are suitable to model the Canadian lynx data set and produce 

accurate 1-step ahead forecasts.
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Figure 6.8: Observed series during out-of-sample period, along with 1-step ahead 
forecast means and 95% credible interval of Models 3 (a), 7 (b) and 11 (c).



C h a p t e r  6 . M o d e l l in g  C a n a d i a n  l y n x  d a t a 134

6.6 Discussion

In this chapter, we focused on validating the proposals by capturing the appropriate 

nonlinear characteristics in order to represent the underlying process. Some of the 

proposed Taylor and Splines DBSTAR models were applied to the well-known Cana

dian lynx data set which presents nonlinearity as well as irregular cyclical behaviour. 

The persistent non-regular cyclic oscillations are apparently asymmetry suggesting 

the use of nonlinear modelling. Accordingly, different formulations of both the Tay

lor DBSTAR(r,p) and Splines DBSTAR(r, k,p)  models were analysed. The models’ 

parameters were estimated by Kalman filtering as either static or time-dependent. 

Retrospective analysis using Kalman smoothing was carried out in the interest of 

making them comparable and the LSL conditional on the parameters was used as 

a criterion for determination of unknown discrete parameters. Out of 1 2  DBSTAR 

models, all of them improved fitting compared to classical STAR models and most 

of them compared to CBSTAR models.

The analysis during the in-sample period suggests that DBSTAR models with 

time-dependent parameters should be used to model the Canadian lynx data rather 

than static DBSTAR models. The former presents adaptive behaviour which is 

fast and precise, producing then very small residuals and, consequently, smaller 

MAE when compared to the latter. Since the first two moments of the forecast 

distributions from the former are updated sequentially over time, its forecasts are 

more accurate than the latter’s forecasts, whose first moment only is updated. Such 

behaviour is also expected during the out-of-sample period, however the forecast 

means from both dynamic and static models are, overall, accurate but the forecast
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uncertainties from dynamic models seem to be overestimated.

The cycle components changing throughout the observed time series period were 

appropriately modelled by the time-dependent parameters approaches, including the 

harmonics in favour of capturing the irregular changes in the amplitude of the cycle 

in time. We concluded also that standard DBSTAR models attem pt to capture 

the cycle using high autoregressive orders, as do the classical STAR and CBSTAR 

models, whilst periodic DBSTAR models use low autoregressive orders plus periodic 

components to model the cycle explicitly.

Compared to the existing approaches, DBSTAR models present a larger number 

of parameters to be sequentially updated over time. However, the algorithms run 

in just a few seconds for each model configurations. Hence, the proposals seem 

promising for real-time applications, as we shall see in the next Chapter 7.



Chapter 7 

Forecasting short-term  electricity  

load in Brazil

In this chapter, DBSTAR models are formulated and applied to an hourly time series 

of electricity load in Southeast and Central-West of Brazil. This is an application 

that neither classical STAR models nor CBSTAR models are appropriate to be 

adopted since the underlying series presents nonlinear and non-stationary behaviour 

including cycles with varying wavelengths and a very large number of data points.

This chapter starts with Section 7.1 describing the electricity sector in Brazil as 

well as a serious problem that happened in 2001-2002 (and may happen again if the 

statistical models do not produce accurate electricity load forecasts). The data set 

used in this application for forecasting analysis purposes is described in Section 7.2.

Section 7.3 reports the exploratory analysis carried out to determine components 

of the process and the effect of temperature that can help to formulate appropriate 

DBSTAR models. Section 7.4 specifies three DBSTAR models to be applied to this

136
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data set. In-sample analyses are presented in Section 7.5 and forecasting perfor

mances of the models are detailed in Section 7.6. Discussion of this application is 

reported in Section 7.7.

7.1 The Brazilian electricity market

The electricity market in Brazil is highly dependent on hydroelectricity generation, 

which meets over 80% of its electricity demand. Brazil has the largest capacity for 

water storage in the world, the largest electricity market in South America, and a 

large transmission network across regions (Soares and Souza, 2006).

This dependence on hydropower makes the country exposed to power source 

deficit in dry periods. Controlling the electricity market is a task rather challenging 

not only in Brazil but worldwide as the electricity system operators need to balance 

the power production and the demand. Therefore, it is crucial for the systems to 

optimise the processes by setting up a program for generation and transmission, 

including hourly demand load forecasts for various time horizons. Thus, the more 

accurate electricity load demand forecast the better, or less risky, are the contracts 

for both the generators and the distributors. Among the most important time 

horizons for forecasting hourly loads are those from 1 hour to 168 hours (one week’s 

time) ahead.

The National Interconnected System (in Portuguese, Sistema Interconectado Na

tional, SIN) constitutes the electricity organisations in the North, Northeast, South, 

Southeast and Central-West regions of Brazil. The electricity is freely transported 

within each region. In this thesis, we focus on the two most important regions,
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Figure 7.1: Brazil map - Southeast and Central-West regions

Southeast and Central-West. The total population in both regions is 94,422,504 

representing 49.5% of the total Brazilian population. Figure 7.1 illustrates the two 

regions under analysis.

7.1.1 E lectricity crisis in 2001-2002

Brazil had a serious electricity generation and transmission crisis in 2001-2002. The 

country had an electricity rationing period that lasted between June 2001 and Febru

ary 2002, having impacts in several sectors in its economy.

Before the electricity generation and transmission crisis in 2001-2002, consump

tion had been found to be increasing at similar rates to the Brazilian economy, 

whereas the installed capacity (the capacity to deliver power at a given time) had 

been also increasing, but at a slower rate. Brazil had already planned to have a 

privatisation model of the electricity sector (Perobelli and de Oliveira, 2013) with
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the creation of a national electricity regulatory agency, Agenda Nacional de Energia 

Eletrica (ANEEL), with a national system controller, Operador Nacional do Sistema 

(ONS). For more details on the Brazilian electrical system reforms, see Mendonga 

and Dahl (1999).

According to Rosa and Lomardo (2004), before these reforms implemented prior 

to the crisis, Brazil would not have supported any expansion to generate more 

electricity. Blackouts had already occurred a few times, indicating the nearing crisis. 

The level of water stored in reservoirs were lower year after year and supply could 

no longer be ensured. From 1995 to 2000, the maximum capacity of the reservoirs 

reached an average of at least 96%, 89%, 77%, 88%, 83%, 70% and 59%, successively, 

of its capacity each year (Rosa and Lomardo, 2004).

In 2001, the Brazilian Government admitted the electricity crisis. This was 

caused not only by the scarcity of rain, but also a lack of investment needed to 

expand generation and transmission capacity. A compulsory electricity rationing 

program was implemented for eight months in order to avoid more blackouts. So, 

between June 2001 and February 2002, consumers were encouraged to save elec

tricity by being given bonuses rewarded for consumption well below the target or 

being penalised for over-consumption otherwise. After that period, the country 

successfully achieved the goal of reducing the total consumption level.

After the electricity crisis, the reforms (implemented prior to the crisis) were 

tightly controlled with greater rigidity by ONS. Centralisation and regulation of 

supply, based on an electricity auction system, were the main instruments to guar

antee future supply to consumers (Mendonga and Dahl, 1999). The implemented
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auction system increased efficiency and attracted private capital investment to the 

electricity sector and created futures market for long-term electricity supply. Con

tracts for future supply introduced competition in the power generation segment for 

better agreements between generators and distributors (Moita, 2008). It constituted 

fair, solid and transparent regulations, planned to provide supply and the sustained 

extensions of the main intrinsic power sector activities - generation, transmission 

and distribution.

7.1.2 The need for electricity  load forecasting

Within the scenario of the Brazilian electricity sector privatisation, it became es

sential for providers to plan their purchases in advance. Electricity supply auctions 

are contracted for three to five years ahead of provision. The regulatory agency 

ANEEL required the providers to inform them of their load requirements and con

tract the required load entirely, subject to penalties in case of large forecast devi

ations. Problems of balance between electricity demand forecasts and production 

had been frequent before the reforms.

There are different types of electricity load forecasting methods categorised ac

cording to the forecast horizons. Short-term electricity load forecasting, usually 

observed hourly or half-hourly, are based on high frequency data for producing fore

casts for the next (half-) hour up to the next week or even 10 days.

Longer electricity load forecasting horizons are predominantly used for economic 

modelling. They help making decisions for maintenance programs investment plan

ning, which helps the generation process to obtain optimal production and also the



Chapter 7. Forecasting short-term electricity load in Brazil 141

distributors to extend their networks. Generally, the mid-term forecasting horizons 

are between a month and a year and the long-term forecasting horizons are longer 

than 1 year.

Producing accurate electricity load forecasts is fundamental to guaranteeing the 

enduring balance between electricity demand and production in the network, and 

help to avoid big problems such as the electricity crisis in 2001-2002.

7.2 Electricity load data set description

The electricity data set analysed in this thesis consists of the hourly electricity load, 

measured in MegaWatts (MW), and temperature, in degree Celsius (°C), in the 

Southeast and Central-West regions of Brazil from the first hour on 1 June 2003 to 

the last hour on 30 June 2010, giving therefore a total of 7 years of data, or 62,088 

hourly observations. The electricity load data are aggregated while temperature 

data are averaged across the states in both Southeast and Central-West regions of 

Brazil.

In Brazil, both Southeast and Central-West regions change time for the Brazilian 

Summer Time (BRST) around October/November and change it back to standard 

Brazilian Time (BRT) in February. The data set registers 23 hourly observations for 

the days that BRST starts (19 Oct 2003, 2 Nov 2004, 16 Oct 2005, 5 Nov 2006, 14 

Oct 2007, 19 Oct 2008 and 18 Oct 2009), when the BRT is about to reach midnight, 

clocks are turned forward 1 hour to 1AM local BRST. Similarly, there are 25 hourly 

observations for the days it ends (15 Feb 2004, 20 Feb 2005, 19 Feb 2006, 25 Feb 

2007, 17 Feb 2008, 15 Feb 2009 and 15 Feb 2010), as when the BRST is about to
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reach midnight, clocks are turned backward 1 hour to 11PM BRT instead.

With a view to avoiding complications such as missing data or duplication of data 

for the same hour in the data set, this changing time is not taken into consideration. 

In such a way, the data set is formed with 24 hourly observations throughout the 

period under investigation.

We also obtained external variables such as one to indicate the days of the week 

and another for holidays and bridge-holidays (defined below). In Brazil, there are 

National holidays, such as Christmas Day, New Year’s Day, Independence Day, 

Labor Day, Children’s Day, and so forth, and local holidays. We consider in this 

thesis only National holidays since the data are aggregated from two large regions 

of Brazil. Notice that a bridge-holiday, generally a Monday or a Friday, is the day 

before a holiday preceded by a weekend or the day after a holiday followed by a 

weekend. For instance, if the holiday is on a Tuesday, the Monday immediately 

before is considered a bridge-holiday. Or if the holiday is on a Thursday, the Friday 

immediately after is considered a bridge-holiday.

The data set under analysis was divided into two groups, denoted henceforth in- 

sample and out-of-sample periods. Table 7.1 illustrates the sample divisions. The 

first group starts the observation period at the first hour on 1 June 2003 to the last 

hour on 31 May 2010 and is referred to as the in-sample period. Analysis in this 

period is reported in Section 7.5. The second group is the observation of the whole 

last month of the data set, i.e., from the first hour on 1 June 2010 to the last hour 

on 30 June 2010 and is referred to as the out-of-sample period. The reason this 

period was reserved as out-of-sample is to evaluate the forecasting performances of
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Table 7.1: Sample division
Period Start End Observations

In-sample 1 June 2003 31 May 2010 61,368
Out-of-sample 1 June 2010 30 June 2010 720

Total 1 June 2003 30 June 2010 62,088

competing DBSTAR models, as we shall see in Section 7.6. Both in-sample and 

out-of-sample periods include all characteristics present in this type of data set, to 

challenge DBSTAR models to perform well in both periods.

7.3 Exploratory data analysis

This section describes the generic patterns of the electricity load series to determine 

components of interest to be considered for inclusion in the structure of DBSTAR 

models for the underlying process. Each component should have an explicit stochas

tic formulation and a direct interpretation.

Figure 7.2 shows a plot of the average hourly electricity load (MW) by days 

of the week plus holidays (Hoi) and bridge-holidays (BH) in the Southeast and 

Central-West regions of Brazil. Three distinct groups of intra-day patterns can be 

observed: weekdays, Saturdays plus holidays and Sundays plus bridge-holidays. On 

average, the consumption of electricity has similar patterns and levels from Monday 

to Friday, with slightly lower values on Mondays. There are different patterns for 

holidays and bridge-holidays. Recall that a bridge-holiday is always a weekday.

In general, the consumption of electricity decreases during the first 5 hours of 

the day regardless of the day of the week. On Sundays and bridge-holidays, the 

consumption keeps low, reaching lowest values until around 8-9AM. From Monday
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Figure 7.2: Average hourly electricity load (MW) by days of the week plus holidays 
and bridge-holidays - Southeast and Central-West regions

to Friday, due to normal activities such as work, school, university, the load starts to 

increase earlier than on Sundays and bridge-holidays, when most of the consumers 

starts their routines slightly later. The consumption also decreases at the end of the 

day, from around 9PM. Also, the demand for electricity appears to remain at same 

levels around lunch time for all days of the week. After lunch, the consumption 

increases back and remains high until 8-9PM. Peak times occur from 6PM to 9PM.

H olidays

Due to the often idiosyncratic behaviour of holidays and bridge-holidays, generally 

the forecasting error on those special days are significantly higher than on normal
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Figure 7.3: Average daily electricity load in (a) June 2008 and (b) June 2009. 
Notice that the shape of the curve (b) changes due to holiday and bridge-holiday, 
as identified between the two dashed lines

weekdays (Kim, 2013). Figure 7.3 illustrates a case when those changes are very 

noticeable. Panel (a) displays the average daily electricity load in June 2008 and 

panel (b) in June 2009. Notice that the shape of the curve in panel (b) changes due 

to a holiday and a bridge-holiday, as shown between the two dashed lines, which 

identify the electricity load from Thursday to Sunday. On Thursday 11 June 2009, it 

was the Corpus Christi (Latin for Body of Christ) holiday, a Catholic celebration on 

the Thursday 60 days after Easter. It is a mobile holiday as Easter varies from year to 

year. Notice that there is a drop in load on that day. A similar change was detected 

on the day after, Friday 12 June 2009, as it was a bridge-holiday. Comparing both 

days wdth the corresponding days the year before, Thursday 12 June 2008 and Friday 

13 June 2008, we detect that their electricity load were typical for Thursdays and 

Fridays. Therefore, the inclusion of holiday information in the modelling stage, 

using a predictor dummy variable to identify holidays and bridge-holidays, should 

be considered.
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N onlinearity caused by tem perature

Weather conditions play an essential role on the behaviour of electricity load, espe

cially temperature. Generally, a nonlinear association between them is detected, as 

illustrated in Figure 7.4, which shows the average weekly electricity load (MW) ver

sus temperature in degree Celsius (°C) in the Southeast and Central-West regions 

of Brazil. Notice that to better analyse such behaviour, the data were aggregated 

to a weekly basis, since the number of observations collected hourly is very large.

The electricity load increases when temperature is increased but in a nonlinear 

fashion. Typically, in countries where very low temperatures are recorded during 

Winter time, a U-shape is observed in the scatterplot of electricity load versus tem

perature (see, Pardo et al. (2002) and Dordonnat et al. (2008)). In those countries, 

the electricity load is typically high for very cold and very hot days. On the other 

hand, although very cold temperatures were not registered in Southeast and Central- 

West of Brazil in the period under analysis, the temperature effect on electricity load 

in those regions is not constant across time either. The minimum and maximum 

registered temperatures were 11 °C and 39 °C, respectively, and for cold and mild 

temperatures, the load increases slower than for high temperatures. Notice that, the 

influence of temperature on load is much larger with warmer temperatures (above 

25 °C). This analysis indicates that an S-shape pattern is present rather than a 

U-shape for the Brazilian data.

In addition, temperature seems to be more closely related to the electricity load 

yearly cycle, better than information coming from a categorical variable, such as sea

sons of the year, for very disaggregated data (i.e., hourly observations). Therefore,
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Figure 7.4: Average weekly electricity load (MW) versus temperature in degree 
Celsius (°C) - Southeast and Central-West regions. The curve indicates a S-shape 
pattern rather than a U-shape for the Brazilian data, which suggests a nonlinear 
relationship between electricity load and temperature.

in this analysis, temperature is used as the transition variable (st) in the modelling 

stage, due to its nonlinear association with electricity load (Yt).

N on-stationarity

Although hourly data show a rather weak either upward or downward trajectory, a 

more pronounced increasing pattern was detected in a more aggregated data, such 

as average monthly electricity load, as shown in Figure 7.5. It shows that electricity 

load is a long-term non-stationary process. Ideally, an effective model would require 

a trend component in its structure. Long-term non-stationarity may be modelled 

by DBSTAR models with the inclusion of such a component.



C h a p t e r  7 . F o r e c a s t i n g  s h o r t - t e r m  e l e c t r i c i t y  l o a d  i n  B r a z i l 148

o

ooo

oooo
CO

ooo

ooo
CD
CM

2004 2005 2006 2007 2008 2009 2010

Figure 7.5: Average monthly electricity load in MegaWatts (MW) - Southeast and 
Central-West regions

Cyclical patterns

Figure 7.6 reveals typical hourly electricity load curve shapes according to the season 

of the year. Panel (a) illustrates a fortnight in January 2009, therefore summer, and 

panel (b) a fortnight in June 2009, winter time.

Notice that the shape of the electricity load curve at peak times varies according 

to the season. During winter, there is a sharp aspect in the curve in the evenings 

which is not present in the summer curve due to the BRST that encourages the use 

of natural lights early in the evenings.

A within-day cyclical pattern of wavelength 24 hours is detectable from the sim

ilarity of the electricity load from one day to the next, particularly on weekdays. 

Similarly, a within-week cyclical pattern of wavelength 168 hours is visible when the 

electricity load of one week is compared to the corresponding weekday of neighbour

ing weeks.

It is also noticeable that a cyclical pattern exists from one year to the next,
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Figure 7.6: Typical hourly electricity load curve shapes according to the season of 
the year, summer and winter, respectively, (a) from Sunday, 11 January 2009 to 
Saturday, 24 January 2009 and (b) from Sunday, 14 June 2009 to Saturday, 27 June 
2009.

as illustrated with average monthly electricity load and temperature in Figure 7.7. 

Panel (a) shows a monthplot of average monthly electricity load in MegaWatts 

(MW), and panel (b) shows a monthplot of temperature in degree Celsius (°C) - 

Southeast and Central-West regions. How to read the monthplot? The monthplot 

allows us to detect both between-month and within-month cyclical patterns. The 

months are displayed on the X axis and the response time series on Y axis. The 

long red horizontal line is the average for the entire period of 7 years. In practice, 

this red line should only be used as a reference line. The 12 short black horizontal 

lines are averages of each 12 months of the sample period. The within-month curves 

are the monthly average for each of the 7 years. The figure shows that electricity 

load and temperature hourly data present cyclical patterns with different shapes. 

For temperature, it is quite clear that it follows a U-shape aspect, being high during 

summer and low during winter, and with transition behaviours during the other 

two seasons, spring and autumn. We detected that for the electricity load, however,
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Figure 7.7: Panel (a) Month plot of average monthly electricity load in MegaWatts 
(MW) and panel (b) Month plot of temperature in Degree Celsius (°(7) - Southeast 
and Central-West regions. The red lines are the average for the entire year.

a S-shape pattern is present rather than a U-shape due to the BRST with the 

use of natural lights early in the evenings. Observe that the monthly electricity 

load means are close to the mean for the whole year. Also, during the BRST 

(October, November, December, January and February), the loads are relatively 

low. In addition, these cyclical pattern changes from year to year were detected, so 

we consider it to be a non-stationary behaviour. This distorted pattern should also 

be taken into account for modelling (via transition variable temperature), which we 

expect to represent the yearly cycle more accurately than seasonality itself.

Hence, cycles with different wavelengths should be taken into account in order to 

model the cyclical patterns present in this data set in an appropriate way. To analyse 

each of the cyclical effects, three substances are considered: for the daily cycle, 

harmonic components of wavelength 24 periods, for the weekly cycle, harmonics 

components of wavelength 168 periods and finally for the yearly cycle, temperature 

is used as the transition function in DBSTAR models. As it was observed that
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the three electricity load patterns change with time, particularly in the periods of 

changing seasons, the harmonics in the models are time-dependent components.

7.4 DBSTAR m odel formulation

Following the developments reported in the previous Section 7.3, let Yt , t  = 1, . . . ,  T, 

be the electricity load time series and st be the temperature at each hour for the 

whole sample period. DBSTAR models should use the following modelling structure:

Yt =  Nonlinear A R (s t) +  Trend  +  Cycleday +  Cycleweek +  Holidays +  £t . (7.1)

Nonlinear AR (st) represents the polynomial part of the model, either the Taylor 

series defined in Section 4.2 or Splines defined in Section 4.3, with the use of tem

perature as the transition variable. Trend is the component for non-stationarity, 

as defined in Section 5.1. Cycleday represents the within-day cycle, Cycleweek the 

within-week cycle, and both components are incorporated into the models as defined 

in Section 5.2. Holidays is the dummy covariate for holidays and bridge-holidays 

which is incorporated in DBSTAR models as described in Section 5.3, and finally, 

~  iV(0, of) is the error term of the model, independent and identically normally 

distributed.

In this section, three suitable DBSTAR formulations are applied to the electricity 

load data set, denoted henceforth by Model A, Model B and Model C. Model A 

uses Taylor series to approximate the nonlinear transition function, as defined in 

Section 4.2, Model B uses Truncated Power Basis (TPB) and Model C uses B-
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splines function, both defined in Section 4.3. They are set similarly to those models 

for the Canadian lynx time series application, which were described in Section 6.2. 

Nonetheless, there are some particularities in the application to the electricity data 

set which are distinguished in this section. The mathematical formulation of the 

modelling structure in (7.1) is given as,

(Yt | i t ,  Tt, ± lt, ± 2t, a )  ~  N  ( £ u£( +  E.2tLt + E*t±u  +  & t ± 2t + FstPt, l )  , (7.2)

(e* l i t - i ) -  Tnt_x (Quit-!, w lt) , (7.3)

(rt l i t - i ) ~  T-at-i (G 2(r t_ i ,W 2t) , (7.4)

[ tu l ±u-i) ~  A t-i , (7.5)

±2t\ ±2t-1) ~  Tnt_1 | g , i ^ _ 1 , , (7.6)

(A 1 A-l ) ~  A.t_i ((?5iA-ii I'At) ■ (7.7)

The distribution (7.2) is given for each hourly electricity load (Yt), with the state 

vector 6t to accommodate each polynomial coefficient associated with the polyno

mial regression variables in F_lt, following the multivariate Student-T distribution 

specified in (7.3). The trend component uses a two-dimensional vector r t to detect 

non-stationarity and is referred to as local level plus local linear growth rate, follow

ing a multivariate Student-T distribution as in (7.4). The components for modelling 

the cycles are linear combination of trigonometric terms for representing the daily 

{^ lt)  - wavelength 24 hours - and weekly ('ip2t) - wavelength 168 hours - periodic
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behaviour and are distributed as in (7.5) and (7.6), respectively. Finally, the coef

ficient (3t is associated with the dummy covariate for holidays and bridge-holidays, 

following a Student-T distribution as in (7.7).

All the parameters in the model (7.2) are updated sequentially in time, as shown 

in Section 3.2.2, including the unknown observational variance Vt of the underlying 

nonlinear AR process as previously detected to be stochastically changing, as well 

as each state covariance matrix W*t,i =  1 , . . . , 4  and the scalar state variance Wm- 

For this reason, discount factors 5y for the observational variance Vt and 5w for the 

state covariance matrices W t, where 0 < 6 y  < 1 and 0 < 5 w  <  15 are used in this 

analysis.

Non-informative prior distributions were also used to form initial priors for all 

model parameters at time t  = 0, as we did not have any prior expert knowledge 

about them. Thus, we set tuq = 0 and Co =  31, with I the Identity matrix, as the 

initial prior mean vector and covariance matrix, respectively.

The polynomial regression variables from F_lt vary according to the models spec

ifications, as follows:

• Model A (Taylor series ): = \zt , z tsu z ts\ , z tsf[]

• Model B (T P B ):F 'lt =  \zu z tsu z ts l , z ts l , z t {st -  . . .  , z t {st -  Kk)\] ;

• Model C (B-splines): F̂ lt = \zt , z tB i( t) , . . .  , z tB m(t)].

The autoregressive degree p , within the vector z t is selected using the Bayesian 

approach based on the predictive performance of different models, described in Sec

tion 3.3 and should not be high, since the models have components for all cyclical 

patterns previously mentioned.
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7.5 In-sample analysis

In this section, the results of the implementation of model (7.2) are reported. The 

parameter estimation is based on observations from the first hour on 1 June 2003 

to the last hour on 31 May 2010, therefore 7 years of hourly data.

Kalman filtering was implemented using the software R (version 2.15.2) and 

run using a Linux server. The algorithms had to be run using the server because 

the software R on a PC Desktop (Intel Core 2 Duo CPU, 2.93GHz, 2.96GB of 

RAM, Windows XP) could not allocate vectors or matrices of high dimensions. The 

dimensions are large in this application as it is a high frequency data set. It takes 

approximately 2 minutes to run each algorithm, hence, the proposed models are 

suitable for real-time applications.

The idea is that rather than a least squares approach or an MCMC approach, 

Kalman filter algorithm is in use for estimating the parameters of the dynamic 

models based on recorded observations. This technique considers the accuracy of 

the predictions computed for the observations at each time, which explicitly exploits 

the dynamical structure of the studied models.

7.5.1 Configuring D B ST A R  m odels

The log-predictive likelihood (LPL) was used as a criterion for determination of 

unknown discrete parameters of DBSTAR models. In this application, the aim of 

the DBSTAR model is prediction, therefore it makes sense to determine the model 

based on prediction error rather than model fit such tha t the prediction error would 

be minimal. Several models were run which differed only in values of parameters
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that were not accommodated into the state vectors, such as, autoregressive order 

p and delay parameter d, and those were selected by the LPL conditional on the 

parameters based on models’ forecasting performance, as defined in Section 3.3.2. 

The LPL criterion gives evidence in favour of a model which presents the largest 

value of LPL.

Table 7.2 presents the final DBSTAR model configurations. For approximating 

the logistic function in (2.13) as the smooth transition function, the Taylor series 

degree is chosen r = 3 and both the TPB and the B-splines use polynomial degree 

r =  3. The AR order is selected as p = 1, as the models have components for all 

cyclical patterns previously mentioned, so no high AR order was expected. Temper

ature was used as the transition variable (st) and the delay parameter d for (st~d) 

is selected as d = 1 for all model configurations. The delay of an hour corresponds 

to the time that consumers react to the change in temperature to consume more (or 

less) electricity.

The LPL criterion selects only 1 knot for both the TPB and the B-splines, which 

is located at the median temperature 23°C. The LPL criterion also selects both 

Sw = 5y — 0.99. Notice that the parameters of these models vary in time, but 

slowly as the discount factor is very close to 1. This means that from time t — 1 

to time t, both the observational and the state variances get discounted by 1%, i.e., 

the model only brings 99% of the variability from the immediate time before (static 

models would bring 100%). In addition, the LPL selected two harmonics for each 

of the daily and weekly cyclical patterns to represent the periodic patterns in the 

series.



Chapter 7. Forecasting short-term electricity load in Brazil 156

Table 7.2: Final DBSTAR model configurations for the electricity load data set
Model A Model B Model C

Polynomial degree 3 3 3
AR order 1 1 1

Delay 1 1 1
Harmonics (day) 2 2 2

Harmonics (week) 2 2 2
Knots - 1 1

5w 0.99 0.99 0.99
Sv 0.99 0.99 0.99

No. param. 21 27 23

Models A, B and C present very similar configurations and the results obtained 

individually are also very similar. Model C was chosen to be analysed as it presented 

the largest LPL during the out-of-sample period.

7.5.2 M odelling th e com ponents o f D B ST A R  m odels

O bservational standard deviation  estim ate

The average (by days of the week plus holidays and bridge-holidays) of the estimated 

observational standard deviations (y/St) from equation (7.2) are presented in Figure 

7.8. Recall that a discount factor 5y for the observational variance was specified so 

the estimated variance is allowed to change sequentially in time.

Generally, the standard deviations present very similar patterns to the hourly 

electricity load, shown in Figure 7.2. On average, the variability of electricity load 

has similar patterns from Monday to Friday, decreasing successively, contrasting 

with the shapes of the curves at weekends and bridge-holidays. At weekends and 

bridge-holidays, there is a sharp increase in the variability at peak times, raising 

the forecast uncertainty. The higher the standard deviations the wider the credible
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Figure 7.8: Average in-sample hourly observational standard deviation estimate 
(y/S~t) in MW by days of the week plus holidays and bridge-holidays.

intervals, as we will see in Section 7.6. Overall, the electricity load cycles vary more 

for weekdays than for weekends and holidays.

Regardless of the day, the electricity load presents higher variability at peak times 

(from 6PM to 9PM), consequently, it is more difficult for the models to predict the 

load in that period, when the credible interval of the forecasts is wider, than during 

off peak hours.

Posterior m ean of A R  coefficients ( 9t )

Figure 7.9 illustrates the posterior mean of coefficients $t associated with the poly

nomial regression variables. A discount factor 5w for each of the state vectors was 

specified so the estimated coefficients evolve dynamically in time.

The first coefficient, 0lt, represents the intercept and local non-stationarity can
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Figure 7.9: In-sample posterior mean of coefficients associated with polynomial 
regression variables.

be represented by this coefficient. The second coefficient, 02t, is associated with 

a lagged value of electricity load (yt- 1). This coefficient can be interpreted as the 

contribution rate to the electricity load from the immediate load before. The effects 

of both 6lt and 92t are positive and more pronounced for the whole sample period 

compared to the other coefficients.

The remaining coefficients 9_it, i  — 3 , . . . ,  12, take into account the nonlinearity 

present in the data as they are associated with the interaction between electricity 

load and temperature. Notice that the posterior means of most of them are signifi

cantly different from zero, oscillating around 0.10 and 0.20, which suggests tha t the 

nonlinearity is represented by the model. The transition variable temperature also 

presents a yearly cycle, which confirms the nonlinear and periodic nature of these 

time-dependent coefficients.
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Figure 7.10: In-sample posterior mean of the trend component - the linear growth 
rate.

Posterior m ean of the trend com ponent (rt)

Figure 7.10 presents the time variation in the posterior mean of the trend component 

of the vector r t . One of the elements in this vector can be interpreted as the 

linear growth rate. The posterior mean of the linear growth rate parameter rises 

sharply from around 0.01 up to 0.14 between 2004 and 2006, and remains at around 

same level until the end of the period. Global non-stationarity is well captured 

by the model, in accordance with the exploratory analysis pointed out in Figure 

7.5. The estimated values are always positive which indicates an increase in the 

electricity load for the whole period. This analysis ensures that both local and 

global non-stationarities, the former is modelled by time-varying AR components 

whilst the latter is modelled by the trend component, are appropriately modelled 

by the DBSTAR approach with positive growth at non-constant rates.
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Figure 7.11: In-sample posterior mean of the periodic components to represent (a) 
daily cycle and (b) weekly cycle with 95% credible interval. The period in (a) is 
from the first hour on 11 Jan 2009 to the last hour on 17 Jan 2009, and in (b) is 
from the first hour on 04 Jan 2009 to the last hour on 31 Jan 2009.

Posterior m ean of the periodic com ponents and ( ^ 2t)

Figure 7.11 shows the in-sample posterior means of the periodic components: Panel

(a) shows the daily cycle and Panel (b) shows the weekly cycle, with 95% credible 

intervals. The reason the daily cycle is not plotted with 95% credible intervals is 

that the intervals are quite tight. And the reason they are quite tight is because 

the periodic repetitions within each day are very well behaved. Nevertheless, this 

periodic component is statistically significant and should be kept in the model struc

ture. The credible interval for the weekly cycle can also be considered narrow, but 

the presence of holidays and bridge-liolidays increases some variability.

From Panel (a), negative effects are obtained for the first hours of the day and 

late nights. Those are the periods when the consumption of electricity are minimal. 

Positive effects are detected in the mornings and at peak times, with a drop in the 

afternoons. Such behaviour was identified during exploratory analysis as shown in



C h a p t e r  7. F o r e c a s t i n g  s h o r t - t e r m  e l e c t r i c i t y  l o a d  in  B r a z i l 161

ooq
o

inoq
o

o
q
d

q
d

o
o
di

o
COo
o Posterior mean 

95% Cl
Dummy for Hol/BH

incoq
di

2004 2005 2006 2007 2008 2009 2010

Figure 7.12: In-sample posterior mean of the component for holidays and bridge- 
holidays.

Figure 7.6. In Panel (b), negative effects are obtained for weekends and positive 

effects for weekdays, also identified in Figure 7.6 during exploratory analysis. These 

analyses indicate that DBSTAR models are appropriately modelling these patterns.

Posterior m ean of the coefficient (/3t) for holidays and bridge- 

holidays

Figure 7.12 shows the in-sample posterior means of the component for holidays and 

bridge-holidays together with 95% credible intervals as well as the dummy covariate 

(vertical grey lines when there is a holiday or bridge-holiday). This statistically 

significant coefficient affects the electricity load negatively, as the posterior mean is 

below zero for the entire period. It is in agreement with the exploratory analysis, as 

the electricity load shows a decrease during holidays and bridge-holidays, as shown
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in Figures 7.2 and 7.3. Accordingly, the effect of this coefficient was expected to be 

negative. Notice that both the posterior means and variances get updated only at 

the times identified as vertical grey lines. The high variability of this component at 

the start is because the model is learning and only being updated on a few holidays 

in that period. The holiday effects are essential in this application and are also 

notably at around the same level over time, especially from 2006 on.

7.5.3 In-sam ple 1-step ahead forecast error d iagnostic

Various diagnostic tools can be used to investigate the residuals. Figure 7.13 shows 

a histogram together with a normal density function (blue curve) in Panel (a) and 

a boxplot for each hour in Panel (b) of the in-sample 1-step ahead standardised 

forecast residuals obtained from Kalman filtering of the applied DBSTAR model 

C. For a well-specified model (7.2), the standardised forecast errors are serially in

dependent and normally distributed. From Panel (a), the residuals seem to follow 

approximately a normal distribution, since the density curve looks symmetric around 

zero and with no heavy tails. It is worth pointing out that there are more positive 

residuals than negative ones. It is clearer if we look at the bar between 0 and 1 

which is higher than between -1 and 0. The model seems to under forecast the 

electricity load fairly more often than over forecast, so the residuals present such 

a feature. Overall, the model presents well-behaved in-sample 1-step ahead stan

dardised forecast residuals, which is satisfactory to show that the DBSTAR model 

C does capture all dynamics well with respect to each component individually.

Since the main focus of this application is on 1-step ahead forecasting, concentra-
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Figure 7.13: In-sample Panel (a) histogram together with normal density function 
(blue curve) and Panel (b) boxplot of 1-step ahead standardised forecast residuals.
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tion is on the dynamic features of the forecast residuals. A particularly interesting 

diagnostic tool is the set of boxplots of the in-sample 1-step ahead standardised 

forecast residuals per each hour of the day as illustrated in Panel (b). This figure 

complements the analysis from Panel (a), indicating the periods of the day when 

the model forecasts are (are not) accurate, in accordance with the variability of the 

electricity load as shown in Figures 7.2 and 7.8.

Generally, the variability of the standardised residuals are low at the first 4 hours 

of the day, presenting a considerable increase at 5AM, with emphasis at 6AM and 

remains high until 9AM, when it drops back to low levels. The variability increases 

again at around lunchtime and decreases back in the afternoon. Between 5PM and 

8PM the residuals present very large variability. And after 9PM it drops back to 

low levels.

In summary, the peak times in the morning and in the evenings are more difficult 

to forecast. Overall, the dynamic structure of the standardised residuals of the 

DBSTAR model C is reasonably satisfactory.

7.6 Forecasting performance

In this section, the out-of-sample analysis is carried out in order to evaluate the 

forecasting performances of competing DBSTAR models. The observation period 

starts at the first hour on 1 June 2010 and finishes at the last hour on 30 June 2010, 

therefore 1 month of hourly data. This period presents not only standard weekdays 

and weekends but also particular non-standard behaviours such as holidays and some 

special events, such as the Brazilian Valentines’ Day and the World Cup matches.
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Table 7.3: Out-of-sample mean absolute percentage error (MAPE) and log-likelihood 
of predictive distribution (LPL) of each DBSTAR model and the random walk (RW) 
model __________________________

Model MAPE(%) LPL
A 1.99 -5983.59
B 2.19 -5990.85
C 1.98 -5982.78

RW 4.09 -

When evaluating model forecasting performance in this application, it is essential 

to take into account not only the performance of point forecasts but also the rigor 

of their accuracy. Therefore, the LPL defined in equation (3.4), is used to determine 

the accuracy of the joint forecast distribution for the out-of-sample period under in

vestigation. Recall that the larger the value of the LPL, the more evidence in favour 

of the corresponding model. In addition, the most famous measure of accuracy of a 

time series model in this area is also analysed. It refers to mean absolute percentage 

error (MAPE), expressed as,

m a p e  =  iooy]b^d
t= i

Table 7.3 presents the out-of-sample measures, the mean absolute percentage 

error MAPE (in %) and the LPL, both used to assess forecasting performance. The 

three DBSTAR models show very similar values of MAPE and LPL with a slightly 

better forecast accuracy for Model C, as it has the smallest value of MAPE and 

the largest LPL, as identified in black bold face. During the in-sample period, the 

models’ adaptive behaviours are very fast and precise tha t they present very small 

forecasting errors. Analogous performance is obtained during out-of-sample period.



Chapter 7. Forecasting short-term electricity load in Brazil 166

Table 7.3 also presents the out-of-sample MAPE (in %) of the random walk (RW) 

model used as a benchmark model. For a review, see Hamilton (1994). This non- 

stationary forecasting model is largely used in studies in many areas, and it is defined 

as

Yt = Vt-i +  e* (7.8)

where et is a white noise sequence with zero mean and variance a 2. From this 

benchmark model, the 1-step ahead forecast of electricity load is simply the observed 

electricity load from the immediate previous hour. Its MAPE is roughly two times 

larger than the MAPE from any DBSTAR model. It indicates tha t every time a 

considerably large increase or decrease in the electricity load from an hour to the 

next occurs, this RW model will produce an inaccurate forecast.

Figure 7.14 illustrates both the observed series in the out-of-sample period, the 

1-step ahead forecast means and the 95% credible interval of Model C; Panel (a) 

from hour 1 on 1 June 2010 to hour 24 on 5 June 2010, Panel (b) from hour 1 on 

6  June 2010 to hour 24 on 12 June 2010, Panel (c) from hour 1 on 13 June 2010 to 

hour 24 on 19 June 2010, Panel (d) from hour 1 on 20 June 2010 to hour 24 on 26 

June 2010 and Panel (e) from hour 1 on 27 June 2010 to hour 24 on 30 June 2010.

The past data up to the last hour of 31 May 2010 were used to make inference 

about the future - the whole month of June 2010. From the Kalman Filter algorithm, 

as described in Section 3.2.4, the forecast of the first observation in the out-of-sample 

period in Panel (a), i.e., lam  of 1 June 2010, is taken from the posterior probability 

distribution at the last hour of the day before, i.e., the last observation of 31 May 

2010 in the in-sample period. Recall that forecasts are produced as probability



C h a p t e r  7. F o r e c a s t i n g  s h o r t - t e r m  e l e c t r i c i t y  l o a d  in  B r a z i l 167

Wed Thu

(a)

§

Sun Mon Thu Fr Sat

(b)

Sun Mon Wed Thu Fri Sat

(c)

Mon Thu Fri Sat

(d)

§s

Sun Mon

(e)

Figure 7.14: Out-of-sample 1-step ahead forecasting performances of Model C: Panel 
(a) from hour 1 on 1 June 2010 to hour 24 on 5 June 2010, Panel (b) from hour 1 on 
6  June 2010 to hour 24 on 12 June 2010, Panel (c) from hour 1 on 13 June 2010 to 
hour 24 on 19 June 2010, Panel (d) from hour 1 on 20 June 2010 to hour 24 on 26 
June 2010 and Panel (e) from hour 1 on 27 June 2010 to hour 24 on 30 June 2010.
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distributions. After obtaining tha t forecast distribution, the first observation on 1 

June 2010 becomes available to be inserted into the Kalman Filter algorithm and 

then the forecasting performance of the DBSTAR model can be assessed. Also, this 

observation updates the probabilities distributions from the previous hour and the 

forecast distribution for the next hour can be obtained. These steps are repeated at 

each time a new observation becomes available until the whole month of June 2010 

is completely analysed and forecasted.

On Thursday 3 June 2010 was the Corpus Christi holiday. Note from Panel (a) 

that there is a change in the curve’s shape, mainly with a drop in consumption most 

of the hours on that day. Similar changes were detected on the day after, Friday 4 

June 2010, as it was a bridge-holiday, when compared with the other typical Fridays’ 

electricity load in that month. The inclusion of a dummy component for holidays and 

bridge-holidays information in the modelling stage was rather important to capture 

the drop in electricity load and produce accurate forecasts. W ithout the inclusion of 

this component, the forecasting error on those special days were significantly higher 

since the electricity load decreases during holidays and bridge-holidays.

From Panel (b) the electricity load curve behaves well as there was no special 

days on that week, although on Friday 11 was the World Cup Opening Ceremony in 

South Africa. Perhaps because it was on TV at 9AM in Brazil on a typical working 

day, this event did not change the consumption’s pattern. Moreover, on 12 June the 

Valentine’s Day is celebrated in Brazil. In that year, it was on a Saturday and no 

particular changes in the pattern were observed either. Overall, the electricity load 

this week behaved as a standard weekdays’ consumption from the in-sample period,
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therefore the DBSTAR model could produce accurate forecast distribution for the 

entire week. This is the only week in the out-of-sample period when the electricity 

load behaves as standard since no atypical behaviour is identified and difficult to 

predict.

The third week of June 2010 is illustrated in Panel (c). On Tuesday 15, Brazil 

played North Korea for the World Cup a at 3:30PM. That special event drastically 

affected the electricity load pattern on that day, as watching football in Brazil is a 

big event, especially World Cup. Schools, universities, offices, and other institutions, 

generally opened part-time on tha t day, exempting people from study/work in the 

afternoon. That means that computers, lights, air-conditioners, fans, etc, were 

switched off, which reduced the consumption in the afternoon. In addition, it is a 

very common characteristic for Brazilians to get together to watch the matches. This 

could also explain the reduction of electricity load during the match time as people 

were together watching the match either at a bar, a restaurant, or a public square on 

a big screen, and therefore they were not spending electricity as in a typical day, such 

as ironing or having warm shower (as June is Winter time in Brazil), which requires 

more electricity than a TV does. Culturally, people stop doing their activities to 

fully concentrate on the match in front of the TV. Right after the match is finished, 

it is noticeable the rise in the load curve, when people get back to their activities.

In the following week, there were two Brazil matches. From Panel (d), analogous 

changes in the electricity load curve are identified on Sunday 20, as Brazil played 

Ivory Coast at 9AM, and on Friday 25, when Brazil played Portugal at 11  AM.

In the last week of June 2010, Brazil played Chile on Monday 28 at 3:30PM and,

ahttp: / / www.fifa.com/worldcup/archive/southafrica2010/matches/groupstage.html

http://www.fifa.com/worldcup/archive/southafrica2010/matches/groupstage.html


Chapter 7. Forecasting short-term electricity load in Brazil 170

again, changes in the load pattern is identified as shown in Panel (e).

Accurate forecast distributions were obtained from the DBSTAR model, includ

ing the time when the electricity load drops during the World Cup matches, shown 

in Panels (c), (d) and (e). It can be explained by the fast degree of adaptability 

when a new observation becomes available to update all the probability distributions 

present in the model. In addiction, it does not take long to this new information be 

incorporated and forecast the load accurately. This is rather good results from the 

DBSTAR model since no extra components were included into the structure of the 

model to capture unexpected changes such as the World Cup matches.

Although June 2010 was a month full of special days for the electricity load, 

DBSTAR models presented a rather accurate forecasting performance as most ob

servations lie within their respective forecasting credible intervals. During the in- 

sample period, the coefficients associated with the polynomial regression variables, 

the non-stationarity, the nonlinearity, all the cycles involved and the holidays are 

well specified and estimated. They all are adapted dynamically in time. The model 

therefore produces accurate forecast means at each hour during the out-of-sample 

period.

Accurate forecast variances were also produced by the DBSTAR model. The 

95% credible intervals cover most of the observed series the entire period. It is 

worth noting that the credible intervals of the forecasts are wider at peak times 

(from 6 PM to 9PM) than during off peak hours, regardless of the day. This analyse 

in out-of-sample period follows similar patterns identified during in-sample period, 

shown in Figure 7.8. Higher variability is observed at peak times and, consequently,
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it is marginally more difficult for the models to predict the load in that period. It is 

a rather important result from DBSTAR models as the variance is allowed to change 

in time adapting the variability present in the electricity load, so the observed points 

at those times lie within the intervals.

7.7 Discussion

W ith rather satisfactory results shown in previous Chapter 6  obtained from proposed 

DBSTAR models, in this chapter, we focused on applying three DBSTAR models 

to a Brazilian electricity load high frequency data set. We aimed to capture the 

appropriate characteristics of the data in order to represent the underlying process 

with extensions of proposed Taylor and Splines DBSTAR models.

Temperature was used as the transition variable due to the nonlinear associa

tion between temperature and electricity load. The electricity load increases when 

temperature is increased but in a nonlinear shape, with an influence on load much 

larger with warmer temperatures. The shape of the electricity load curve at peak 

times varies according to the season. During winter, there is a sharp aspect in the 

curve in the evenings which is not present in the summer curve due to the BRST 

that encourages the use of natural lights early in the evenings, the peak times.

It was detected that electricity load is a long-term non-stationary process. There

fore, the models included a stochastic trend component for capturing explicitly the 

non-stationarity. This analysis ensures that both local and global non-stationarities 

are appropriately modelled by the DBSTAR approach with positive growth at non

constant rates.
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A within-day cyclical pattern was detected from the similarity of the electricity 

load from one day to the next, particularly on weekdays. Similarly, a within-week 

cyclical pattern of the electricity load was also identified. Accordingly, two periodic 

components were used to represent those cycles.

A dummy covariate for holidays and bridge-holidays was incorporated into DB

STAR models structure as those special days affect the electricity load negatively.

Kalman filtering was used for obtaining the posterior distributions of the pa

rameters as well as the forecast distributions of the electricity load. In-sample and 

out-of-sample analyses were carried out. During the in-sample period, the impor

tance of those components in the models was reinforced. The time-dependent struc

ture of DBSTAR models enables the parameters to adapt to periods with changes 

in patterns or special events, such as holidays. Overall, the models present well 

behaved in-sample 1-step ahead standardised forecast residuals, which gives strong 

evidence that DBSTAR models capture all dynamics present in the data well due 

to the use of explicit components individually. The result is a more parsimonious 

model, appropriate for time series with very short time intervals, since it avoids the 

inclusion of more parameters to capture these specific effects.

Out-of-sample analysis was carried out in order to evaluate the forecasting per

formances of competing DBSTAR models. The whole month of June 2010 was the 

period used to check the performances of the models. It contains special days with 

challenging patterns for the models to capture their electricity load’s characteristics.

DBSTAR models presented rather accurate forecasting performance the entire 

month as most observations lie within their respective forecasting credible inter
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vals. On Thursday 3 June 2010 was the Corpus Christi holiday and due to the use 

of a dummy variable, DBSTAR models detected the change in the curve’s shape, 

mainly with a drop in consumption for most of the hours on that day, and produced 

satisfactory forecasting results.

In that month, Brazil played five World Cup matches. Watching football in 

Brazil is a big event, especially World Cup, which affects drastically the electricity 

load pattern on those days. Culturally, people stop doing their activities to be 

fully concentrated on the matches in front of the TV. This could well explain the 

reduction of electricity load during the match times as consumers may not be using 

electricity as in a typical day.

The conclusion is that DBSTAR models adapt well to non-stationary nonlinear 

time series with particular patterns such as periodic repetitions, holidays and special 

events.



Chapter 8

Conclusion

8.1 Summary and main contributions

The main goal of this research is to propose Gaussian Dynamic Bayesian Smooth 

Transition Autoregressive (DBSTAR) models for non-stationary nonlinear autore

gressive time series processes. DBSTAR models consider analytical approximations 

for STAR models based on Dynamic Linear Models of West and Harrison (1997) 

as alternative to both the classical STAR of Chan and Tong (1986a) and CBSTAR 

models of Lopes and Salazar (2005).

Classical STAR models use ordinary least squares for estimating the autoregres

sive coefficients and nonlinear least squares for the parameters within the transition 

function. A problem with this approach is that it requires initial values to start 

off the algorithm to be chosen and convergence can be very slow and not guar

anteed. Lopes and Salazar (2005) developed CBSTAR models which use MCMC 

algorithms due to the loss of analytical tractability in calculating posterior distribu

174
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tions of parameters. Therefore, both the classical STAR and CBSTAR models are 

not generally appropriate for real-time applications, especially high frequency data.

Taylor series approximations and splines functions, such as Truncated Power 

Basis and B-splines, were used as solutions for the transition function 7r(st ;^  ), 

such as the logistic or exponential functions. DBSTAR models sequentially update 

their dynamic parameters in time via Kalman filtering. This solution estimates the 

parameters in analytical closed form sequentially in time. In this way, we can avoid 

some computational problems associated with classical STAR and CBSTAR models, 

such as different convergence for different starting values.

At each time £, the first two moments of the original parameters can be obtained 

from the first two moments of the posterior Student-t distribution of the state vector 

by solving one system of polynomial equations. It is worth mentioning that this 

analysis cannot be done using either classical STAR or CBSTAR models as they are 

static models and none of their constant parameters has evolution in time.

Due to the Bayesian formulation, proposed DBSTAR models also has the advan

tage over classical STAR models of allowing formal inputs and interventions from 

experts, where appropriate. In addition, DBSTAR models can be applied to time 

series data sets when non-stationarity is present. It is not necessary to difference 

the time series to achieve stationarity.

DBSTAR models can also be applied to data in the presence of heteroscedasticity 

based on a conjugate analysis. The assumption of constant observational variance 

might be unrealistic depending on the application. Unlike the classical STAR and 

CBSTAR model formulations, DBSTAR models incorporate a variance discount
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technique. We assume that the observational variance may change but only slowly 

and steadily over time.

Notice that classical STAR models are a particular case of DBSTAR models for 

a constant observational variance Vt = a2, fixed autoregressive coefficients 6t — 0, 

an identity matrix set for the evolution of the states G t = I, a null state covariance 

matrix W* =  0  (equivalently, for 5w — 1) and fixed smoothing parameter, 7 1 =  

7  and, consequently, 7r(si;7 *,c) =  7r(st;y,c). Recall that classical STAR models 

estimate the parameters using the whole data set, so for the purposes of comparison, 

the modeller should run both the Kalman filter and the Kalman smoother algorithms 

to compare fits.

Many stationary models from both classical and Bayesian inferences (with the use 

of MCMC algorithms) eliminate the trend by differencing the series (Yt —Yt- i)  as the 

dynamic changes cannot be handled by them. For instance, Lopes and Salazar (2005) 

differenced the US IPI (Industrial Production Index in the US) data four times to 

achieve stationarity and remove possible seasonality before modelling it using the 

CBSTAR model. However, DBSTAR models are suitable for modelling global and 

local non-stationary processes with additional model components to address those 

features. Furthermore, either linear trend or nonlinear time trend curves can be 

accommodated into their formulations.

DBSTAR models can be extended for modelling observed cyclical behaviour in 

terms of cyclical components added to the model structure. A periodic DBSTAR 

model is defined as a DBSTAR with an explicit component for a cycle with h har

monics. Fourier form representations of a cycle are considered as sine/cosine waves
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which provide economic characterisation on parameters. In general, we use lower au

toregressive order (less autoregressive coefficients) in the model when more weights 

are given to the past values of the dependent variable. The guaranteed parsimony 

of periodic DBSTAR models is balanced by larger amplitudes in the autoregressive 

coefficients. This is an advantage of periodic DBSTAR models over the standard 

DBSTAR, classical STAR and CBSTAR approaches, for modelling time series in 

the presence of cyclical behaviour.

DBSTAR models can be extended straightforwardly to investigate the depen

dence of a variable Yt, not only on the past values of the series, but also on the 

values of other time series predictor variables x t . Therefore, autoregression and re

gression are both investigated in this formulation. The vector x t may accommodate 

(i) exogenous time series observed at same time points as the dependent variable 

Ytl (ii) lagged exogenous time series, i.e., past values of other time series variables 

fe-cn where d is the delay parameter) and/or (iii) dummy variables. Any number 

of predictor variables can be added to the model structure.

Formulations of DBSTAR models were applied to the well-known Canadian lynx 

data in order to validate the proposals by comparing their fitting performances with 

the performances of both the classical STAR and CBSTAR models. The analyses 

during in-sample period suggest that the time-dependent parameters DBSTAR mod

els presented fast and precise adaptive behaviour producing very small fitting errors 

compared to static DBSTAR models. The cycle components changing throughout 

the observed time series period were appropriately modelled by them. We concluded 

also that standard models try  to capture the cycle using high autoregressive orders
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while periodic models use low autoregressive orders plus periodic components to 

model the cycle explicitly. Nonetheless, in the out-of-sample period, the forecast 

means are, overall, accurate but the forecast uncertainties are overestimated for 

time-dependent DBSTAR models.

Compared to the classical STAR and the CBSTAR approaches, DBSTAR models 

showed improved fitting performances. On the other hand, they present large num

ber of parameters to be sequentially updated over time. However, the algorithms 

run in just a few seconds for each model configurations. Hence, proposed DBSTAR 

models are promising for real-time applications.

W ith acceptable results shown in the application to the Canadian lynx data 

set, extended versions of DBSTAR models were applied to a Brazilian electricity 

load high frequency data set. W ith the inclusion of components in the models 

structures, we aimed to capture the appropriate characteristics from the data in 

order to represent the underlying process.

DBSTAR models performed reasonably well during both in-sample and out-of- 

sample periods. During the in-sample period, the importance of those components 

in the models was reinforced. Overall, the models presented well behaved in-sample 

1-step ahead standardised residuals in both periods, which gives strong evidence 

that DBSTAR models capture all dynamics well present in the data due to the 

use of explicit components individually. During the out-of-sample period, DBSTAR 

models presented a fairly accurate forecasting performance as most observations lie 

within their respective forecasting credible intervals.

The conclusion is that DBSTAR models adapt well to non-stationary nonlinear
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time series with particular patterns such as periodic repetitions, holidays and special 

events. The result is a more parsimonious model, very appropriate for very short 

time intervals data set, since it avoids the inclusion of more parameters to capture 

these specific effects.

8.2 Future research

There are some improvements that the current versions of DBSTAR models can ad

dress in order to make this class of models more suitable for non-stationary nonlinear 

time series processes.

In Section 5.4, we proposed DBSTAR models to accommodate more than 2 

regimes, called multiple regimes DBSTAR models. Those models were not applied 

to either data set in chapters 6  and 7, as simpler versions of DBSTAR seemed to 

work fairly acceptably. We suggest further investigation that may point out tha t 

those data sets require to be modelled by multiple regime approaches. For instance, 

the electricity load application that used temperature as a transition variable could 

be the case when DBSTAR models are split into more than two regimes, such as 

a regime for temperature below 150C, another for temperature between 15°(7 and 

25°C, and a third model when temperature is 25°C and 35°C  and finally for very 

hot days with temperature over 35°C.

In case they do not require more than 2 regimes in their models structure, mul

tiple regime models should then be applied to other data sets for further evaluation. 

One idea is to apply the multiple regimes DBSTAR models to the same data set 

used in van Dijk and Franses (1999) and compare their fitting performances with
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classical multiple regimes STAR models.

Another extension to be proposed in the future is the multivariate DBSTAR 

models for nonlinear time series with more than one dependent variable. This ap

proach will estimate all parameters simultaneously. A point to note is that going 

from the univariate to the multivariate version will require the estimation of more 

parameters. It should therefore be aimed to find parsimonious formulations of the 

multivariate model as the univariate versions already present large number of pa

rameters.

One example of an application of this suggested multivariate DBSTAR is in the 

electricity load data set. The load (Yt) would be a 24-dimensional vector instead of 

a scalar at each time t  to model concomitantly the 24 loads of each day. It means 

that the relationships between loads at different hours would be affected by the 

present and past of the loads, in addition to the transition variable temperature. It 

would be easier to work out k-step ahead forecasts for the next 24 hours. However, 

multivariate models are far more complicated, since they have big problems of how 

to estimate the covariance structure, see Barbosa and Harrison (1992) and West and 

Harrison (1997).

As an aside, multivariate DBSTAR models could be proposed to investigate the 

presence of co-integration in nonlinear processes. For details on co-integration see 

(Granger, 1988) and (Engle and Yoo, 1987). Co-integration is an important con

cept, mainly investigated in empirical macroeconomics, and relates to the number of 

stochastic trends which are present in a set of time series. Therefore, co-integration 

would be modelled by trend components incorporated into the structure of multi
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variate DBSTAR models.

It is also recommended to extend the current versions to non-normal DBSTAR 

models. There are countless time series that are modelled by Gaussian approaches 

whilst they should actually be modelled by non-Gaussian distributions. One example 

is the Canadian lynx application that is count data and should be modelled by a 

poisson process. Hence, a poisson DBSTAR model should be proposed to that 

case. This extended non-normal DBSTAR proposals seem to be straightforwardly 

implemented if the distribution belongs to the exponential family, since there are 

algorithms in the literature to estimate the parameters for this case (see West et al. 

(1985)).

Finally, a fully Bayesian DBSTAR approach tha t can be used in real-time ap

plication would use Sequential Monte Carlo methods, such as, Particle filtering, for 

updating all the parameters in the model. It is worth mentioning tha t the Kalman 

filter algorithm is a particular case of Particle filtering. For a review on Particle 

filtering methods, see Lopes and Tsay (2011) and Young (2011).

There are actually two possible ways of proposing DBSTAR models using Par

ticle filtering methods rather than the standard Kalman filter: (i) the structure of 

DBSTAR models is kept as proposed in this thesis, i.e., take the polynomial forms 

using approximation methods (Taylor series or splines) written in the DLM form, 

and just replace the estimation methods, i.e., use one of the Particle Filtering algo

rithms to assess the posterior distribution of the parameters rather than the standard 

Kalman filter algorithm used in this thesis; or (ii) take the STAR model with param

eters evolving in time from equation (4.2) and directly rewrite it into the DLM form
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without using any approximation methods for the transition function. That means 

rewriting a nonlinear model into a linear approach. The standard Kalman filter al

gorithm can no longer be used for assessing the posterior and forecast distributions 

in this case. However, Particle filtering methods should be implemented instead. In 

both methods, there will be no need for using model selection criteria for choosing 

values of parameters which cannot be accommodated in the state vector, such as 

the autoregressive order p, the Taylor series degree r or the polynomial degree n 

of splines, and others, since Particle filtering methods fully account for all model 

parameter uncertainties.

Knowing that there is no impeccable model, we pursue for further research in 

non-stationary nonlinear time series in the future.
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