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Abstract

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide
family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP
is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive
therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops
as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides
PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound
PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing
efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO),
and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina
was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically
administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1
receptor presumably due to a multifactorial protective mechanism.
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Introduction

Vasoactive intestinal peptide (VIP) and pituitary adenylate
cyclase activating polypeptide (PACAP) belong to the same
peptide family. PACAP exists in 27 and 38 amino acid forms,
and the shorter peptide shows 67% homology with VIP. They
also share their receptors: VPAC1 and VPAC2 receptors bind
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both VIP and PACAP. However, PACAP also has a specific
PACI receptor, which only binds PACAP. PACAP has a wide-
spread occurrence in the body and a broad array of functions
(Reglodi and Tamas 2016). Among others, PACAP influences
gastrointestinal, urinary and cardiovascular functions
(Heppner et al. 2018; Parsons and May 2018; Reglodi et al.
2018a), plays a role in reproduction and pregnancy (Lajko
et al. 2018; Reglodi et al. 2012; Ross et al. 2018), has diverse
behavioral and cognitive functions (Farkas et al. 2017; Gupta
et al. 2018; Han et al. 2014; King et al. 2017), plays roles
during both early development and aging (Fulop et al. 2018;
Reglodi et al. 2018b; Watanabe et al. 2007), as well as influ-
ences the functions of both endocrine and exocrine glands
(Bardosi et al. 2016; Egri et al. 2016; Prevost et al. 2013;
Sasaki et al. 2017). VIP has also been shown to have diverse
actions in addition to the originally described vasodilatory
effects (Gozes 2008; Hill et al. 2007; Moody and Gozes
2007; Vu et al. 2015). VIP was originally isolated as a vaso-
active peptide in the airways, later confirmed in the gastroin-
testinal tract (Vu et al. 2015). VIP is involved, among others,
in immunomodulatory pathways (Abad and Tan 2018;
Carrion et al. 2016; Jimeno et al. 2014), in nervous system
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development and in the acquisition of certain neurological
disorders (Maugeri et al. 2018a, b; Morell et al. 2012).

Both PACAP and VIP exert protective effects in several tis-
sues (Brifault et al. 2016; Giladi et al. 2007; Reglodi et al. 2011,
Shioda and Gozes 2011). VIP has stronger anti-inflammatory
effects (Olson et al. 2015), while PACAP is a more potent
antiapoptotic peptide (Reglodi et al. 2018c). In the eye, VIP
and PACAP have various biological effects. Among others,
PACAP has been described to participate in the iris sphincter
functions (Yoshitomi et al. 2002), stimulates tear secretion
(Nakamachi et al. 2016; Shioda et al. 2018) and modulates its
composition (Gaal et al. 2008), influences corneal keratinization
and wound repair (Ma et al. 2015; Nakamachi et al. 2016) and is
involved in the sensory innervation of the ocular surface (Wang
etal. 1996). PACAP and VIP also have protective effects on the
corneal endothelium (Koh et al. 2017; Maugeri et al. 2018a, b).
Both peptides and their receptors are distributed also in the
retina, where they are involved in information processing of
visual stimuli (Akrouh and Kerschensteiner 2015; Atlasz et al.
2016; Dragich et al. 2010; Pérez de Sevilla Miiller et al. 2017;
Webb et al. 2013) and have trophic functions (Endo et al. 2011,
Fabian et al. 2012).

The retinoprotective effects of PACAP are well-documented
and have been proven in different injury models, such as
excitotoxic, ischemic, UV light-induced, traumatic, diabetic
and oxygen-induced injuries (Atlasz et al. 2008, 2011, 2016;
Kvarik et al. 2016; Shioda et al. 2016; Szabadfi et al. 2016;
Vaczy et al. 2016). VIP, on the other hand, seems to be a less
potent retinoprotective peptide. VIP has been shown to exert
retinoprotective effects mainly in conditions involving inflam-
matory processes (Shi et al. 2016; Tuncel et al. 1996). However,
in ischemic retinopathy, VIP was proven to be ten times less
active than PACAP (Szabadfi et al. 2012). In most in vivo retinal
disease models, PACAP and VIP have been administered as
intravitreal injection in order to guarantee that the injected pep-
tides reach the retina in high enough concentrations to exert
protective effects. As PACAP exerts dramatic retinoprotective
effects proven by dozens of studies, therapeutic use is implied
and so the need for a non-invasive approach has emerged. One
possible approach is to enhance cell penetration of these pep-
tides. The cell penetrating peptide TAT (GRKKRRQRRRPQ) is
derived from the HIV Tat protein (Schwarze et al. 1999). TAT
has protein transduction domains (PTDs) with the ability to
efficiently traverse cellular membranes. TAT can not only trans-
fer different types of molecules (peptides, large molecular pro-
teins, DNAs) into a variety of cell types, but can also bring the
linked molecules across many biological barriers such as the
blood-brain barrier (BBB), mucosal barrier and lung respiratory
epithelium in vivo (Dietz and Bahr 2004). Our previous study
reported that the tagging of TAT at the C-terminus of neuropep-
tides PACAP/VIP enhanced the traversing ability of the peptides
through the biological barriers, such as BBB and blood—air bar-
rier and blood—testis barrier (Yu et al. 2012a, b). Furthermore,
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we found that VIP-TAT has higher activity on the activation of
PACAP preferring PAC1receptor than VIP (Yu etal. 2014). The
structure analysis showed that TAT has a two-dimensional struc-
ture similar to that of PACAP(28-38), and PACAP(28-38) has
been shown to facilitate the binding and the activation of PAC1-
R (Vaudry et al. 2009).

PACAP in the form of eye drops has first been shown to
exert local effects on the cornea. It has been shown to enhance
corneal wound regeneration and nerve regrowth after injuries
(Fukiage et al. 2007; Ma et al. 2015; Nakamachi et al. 2016;
Shioda et al. 2018). Similarly, VIP has been shown to enhance
corneal wound repair after alkali burn injury (Tuncel et al.
2016). Our recent studies have demonstrated that PACAP
eye drops not only lead to topical effects, but PACAP is able
to pass the ocular barriers and reach the retina, where it can
exert retinoprotective effects (Werling et al. 2016, 2017). We
hypothesize that the passage through ocular layers can be
further enhanced by the binding of TAT peptide, which is
known to increase passage of peptides through biological bar-
riers. We have previously shown that intravitreally adminis-
tered VIP is able to protect the retina against hypoperfusion-
induced injury, but only in a dose ten times higher than that of
PACAP (Szabadfi et al. 2012). We hypothesized that TAT-
bound PACAP and VIP (PACAP-TAT, VIP-TAT) could be
more effective in exerting retinoprotective effects when given
in eye drops, by increasing the traversing efficacy and enhanc-
ing the activation of the PAC1 receptor. The aim of the present
study, therefore, was to investigate the potential
retinoprotective effects of PACAP-TAT and VIP-TAT admin-
istered in eye drops following bilateral carotid artery occlusion
(BCCAO)-induced retinopathy in rats.

Materials and Methods
Materials

The peptides PACAP38, VIP, PACAP-TAT (tagging TAT at
the C-terminus of PACAP38) and VIP-TAT (tagging TAT at
the C-terminus of VIP) were chemically synthesized by GL
Biochem Ltd. (Shanghai, China).

Peptides Labeled with Fluorescein Isothiocyanate

In order to trace the drugs, peptides were labeled with fluores-
cein isothiocyanate (FITC) using a FITC Protein Labeling Kit
from ChangRu Biotech Ltd. (Guangzhou, China) according to
the manufacturer’s protocol. After the labeling reaction, gel
filtration was used to remove the free FITC. In order to deter-
mine the amount of the residual free FITC, the peptides were
submitted to ultrafiltration using Amicon Ultra — 0.5 mL
(Millipore, USA) with a molecular sieve of 2000 Da. After
centrifugation (1000xg, 10 min) the peptide was subjected to
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fluorescence measurements performed with the multi-
wavelength scanner Victor 3 (GE, USA) at the excitation of
495 nm and the emission of 520 nm. Protein concentrations
were determined using the K4000 Bradford Protein
Quantification Kit (Innovative, Guangzhou, China). The la-
beling efficiency was calculated using the following formula:
label efficiency (LE) = fluorescence value (FV)/peptide mass
(mol) (PM), representing the fluorescence intensity (AU) per
mol of peptide (mol).

The Efficiency of Reaching the Retina

Male rats with body weight from 160 to 180 g were purchased
from the Medical and Experimental Animal Center
(Guangdong, China). Rats were randomly assigned to one of
the experimental groups (7 rats per group) and subjected to
eye drops with FITC labeled peptides (100 nmol/kg) and PBS
as control. Rats were sacrificed by anesthesia 2 h after the eye
drop administration and the retina was separated, weighed,
washed three times with PBS and divided into two parts.
One part was prepared on the glass slide with glycerin and
subjected to fluorescence microscopic observation of FITC
with 495 nm excitation/520 nm emission. All images, focused
on the left upper regions of the retina, were taken with 500 ms
exposure time. The other part of the retina was subjected to
grinding and ultrasonication in PBS at a concentration of
100 mg weight tissue per milliliter of PBS. The supernatant
was collected by centrifugation and the fluorescence intensity
in the supernatant (100 uL) was determined. The valid fluo-
rescence intensity (FI) for each sample treated with FITC la-
beled peptide was corrected by subtracting the fluorescence
value of the sample treated with PBS, which was used as a
blank background. The Efficiency of Traversing Eye to Retina
(EtE) was expressed as the percentages of the FITC labeled
peptide mass in the retina to the total FITC labeled peptide
mass. The EtE was calculated using the following formula:
EtE = tFI/LE/PW % 100% (tF1 presents the fluorescence inten-
sity of retina (arbitration unit, AU); LE presents the label ef-
ficiency of each peptide which has been determined above;
PW presents the peptide mass (mole)).

cAMP Accumulation Assay

PAC1-CHO cells cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) at 37 °C were scraped off the surface with
rubber policeman, washed twice with PBS and the density of
the cells was adjusted to 2 x 10° /mL. Peptides were added to
500 uL cells suspension with the corresponding varying work-
ing concentrations of the detected factor. After incubation at
37 °C for 5-10 min cells were harvested and the lysates were
subjected to cAMP quantification using the enzyme immuno-
assay kit for cAMP (Biyuntian, Shanghai, China), following
the manufacturer’s instructions. Protein concentration of each

sample was determined using BCA assay, and the cAMP level
of each sample was calculated following the formula: cAMP
level (pmol/mg protein) =cAMP concentration (pmol/mL)/
protein concentration (mg/mL). The cAMP level in each sam-
ple was plotted as the percentage (%) of the maximal cAMP
level in cells treated with PACAP27 versus the logarithmic
value of the peptide concentrations. All experiments were
run with at least four parallel samples and were repeated three
times.

Histological Procedure in the Retina

Adult male rat litters were housed in the animal facility in
individual cages in a 12 h light-dark cycle with food and water
ad libitum. Animal housing, care and application of experimen-
tal procedures were in accordance with institutional guidelines
under approved protocols (No: BA02/2000-26/2017,
University of Pecs). Under isoflurane anesthesia, common ca-
rotid arteries were exposed on both sides through a midline
incision and then ligated with a 3-0 filament. A group of ani-
mals (sham group) underwent all steps of the operating proce-
dure except ligation of the carotid arteries. Immediately follow-
ing the operation, the right eye of the animals was treated with
derivatives of PACAP (PACAP-TAT /n= 17/ or VIP-TAT /n=
17/) eye drops (1 pg/drop). Dose and schedule of the eye drop
treatments were based on our previous experiments (Werling
et al. 2016). In the experiment for histological analysis, the
different derivatives were dissolved in benzalkonium solution
for ophthalmic use (solutio ophthalmica cum benzalkonio
(SOCB)). The left eye, serving as a control, was treated with
vehicle containing neither PACAP-TAT nor VIP-TAT. Animals
were treated for five consecutive days, twice a day with one
drop of drug, under brief isoflurane anesthesia (max. 5 min).
Fourteen days after the operation, rats (» =10 SHAM and
n =24 BCCAO) were killed with anesthetic and the eyes were
processed for histology. The eyes were removed and the ret-
inas were solved in phosphate buffered saline (PBS), fixed in
4% paraformaldehyde dissolved in 0.1 M phosphate buffer
(PB) (Sigma, Budapest, Hungary) and embedded in
Durcupan ACM resin (Sigma, Budapest, Hungary). Retinas
were cut at 2 pum and stained with toluidine blue dye (Sigma,
Hungary). Sections were mounted in DPX medium (Sigma,
Hungary) and photographs were taken with a digital CCD
camera using the Spot program. Central retinal areas within
I mm from the optic nerve were used (n =5 measurements
from one tissue block). The following parameters were
measured: (i) cross-section of the retina from the outer limiting
membrane (OLM) to the inner limiting membrane (ILM),
(i1) the width of individual retinal layers (outer nuclear
layer [ONL], outer plexiform layer [OPL], inner nuclear
layer [INL], inner plexiform layer [IPL]), (iii) the number of
cells/100 um section length in the GCL, and the (iv) number
of cells/l um2 in the OPL and in the IPL. Results are
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presented as mean + SEM. Statistical comparisons were made
using the two-way ANOVA test followed by Tukey’s post hoc
analysis.

Results

TAT Tagging Enhances the Efficiency of Reaching
Retina

The fluorescence imaging results of the retina after the treat-
ment with eye drops of FITC labeled peptides (Fig. 1) showed
that the FITC fluorescence density per area unit in the retina
treated with eye drops of PACAP-TAT (Fig. 1a) and VIP-TAT
(Fig. 1c) was much higher than in retinas treated with eye
drops of PACAP/VIP, indicating that PACAP-TAT/VIP-TAT
reached the retina more efficiently than PACAP/VIP. The cal-
culation of the Efficiency for Traversing Eye to Retina (EtE)
showed that the PACAP-TAT/VIP-TAT reached the retina
with the efficiency (3.66+0.67%, 3.05+0.58%) about
three-fold that of PACAP/VIP (1.23 +0.56%, 0.97 + 0.47%),
respectively.

TAT-Tagging Enhanced the Activity of PACAP/VIP
on the Activation of PAC1-R

The results of cAMP assay (Fig. 2) showed that PACAP-TAT
had EC50 of 23.6 £4.4 pM significantly higher than

FITC

Fig. 1 The efficiency of FITC a
labeled PACAP/PACAP-TAT (a,
b) and VIP/VIP-TAT (c, d)
traversing to retina given in eye
drops. The retina was separated

2 h after the eye drops and
submitted to the fluorescence
microscopic observation of FITC
fluorescence signal (A, C) and the
calculation of Efficiency of

PACAP

PACAP

Traversing Eye to Retina (EtE) (b, -TAT
d). The data are means = SEM of
four experiments
Cc FITC
ViP
VIP-TAT
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PACAP38 with 11.7+3.1 pM, whereas VIP-TAT had EC50
of 0.14+0.02 nM about 1/200 of the EC50 of VIP 30.1 +
4.1 nM. These results showed that TAT-tagging enhanced
the activity of VIP on the activation of PAC1-R, but inhibited
the activity of PACAP38.

Morphological Analysis in the Retina after BCCAO

Carotid occlusion caused significant thickness reduction in all
layers compared to sham animals. The most marked reduction
in thickness was found in the outer and inner plexiform layers,
and as a consequence, the total retinal thickness (OLM-ILM)
was significantly less than in control retinas (Figs. 3 and 4).
PACAP derivatives (PACAP-TAT, VIP-TAT) administration
alone in sham animals did not cause any changes in the retinal
thickness (Figs. 3 and 4). Eye drops containing PACAP-TAT or
VIP-TAT caused significant amelioration in all retinal layers
compared to the sham group. The thickness of the major retinal
layers was significantly larger than that of the degenerated ones
(Figs. 3 and 4). This was especially conspicuous in the OPL,
which almost disappeared in several BCCAO-induced
degenerated retinas and was preserved in PACAP-TAT or
VIP-TAT-treated animals. The number of cells in different reti-
nal layers also changed. BCCAO led to a significant cell loss in
the ONL, INL and GCL. Eye drops with PACAP-TAT
counteracted the effects of the BCCAO in all nuclear layers.
The cell numbers in the GLC/100 pum, in the ONL/500 um2
and in the INL/500 um?2 were significantly higher compared to
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Fig. 2 cAMP assay results showing the effects of PACAP/PACAP-TAT
(a) and VIP/VIP-TAT (b) on the activation of PAC1-R. The intracellular
cAMP accumulation in PACI1-CHO cells induced by PACAP38(®),
PACAP-TAT (), VIP(#) and VIP-TAT (€) in their respective

the BCCAO-induced degenerated retinas. VIP-TAT administra-
tion also led to reduced cell loss in almost all nuclear layers,
except in the ONL/500 um?2 (Figs. 5, 6 and 7).

Discussion

In the present study we demonstrated the efficacy of TAT-
bound PACAP and VIP peptides to reach the retina and exert
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a retinoprotective effect in a model of ischemic retinopathy in
rats. The retinoprotective effects of PACAP are well-
documented in models of many different retinopathies
(Atlasz et al. 2011, 2016; Shioda et al. 2016). Intravitreal
injections of PACAP have been shown to lead to robust
retinoprotective effects in various models of retinal injuries
(Atlasz et al. 2016). The protective effects have been demon-
strated to affect all neuronal cell types, from ganglion cells
(Atlasz et al. 2010; Shoge et al. 1999) to photoreceptors and

Fig. 3 Light microphotographs of retinal sections. Retinal tissue from
BCCAO+SOCB (d) showed severe degeneration compared to SHAM+
SOCB (a), SHAM + PACAP-TAT (b) or SHAM + VIP-TAT (c). The
retinal layers of BCCAO+SOCB rats following treatment with eye drops

containing PACAP-TAT (e) or VIP-TAT (f) showed only mild
degeneration. Abbreviations: PL, photoreceptor layer; ONL, outer
nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;
IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar: 20 pm

@ Springer



N
S
]

J Mol Neurosci (2019) 68:397-407

a OLM-ILM b ONL c OPL
E 1507 g_ 40~ g_ 5+
2 g # =
" [ * * Q | #
g * & 30 g4 —
£ 100- * = = Z *
© £ £ 31
S 204 b
© Y= w 24 * ——
£ 501 ° o
- [] 2]
E c f=
s S S
2 o » = Z o : : = 0- 1 -
'—
& \s ® 3 & v P v ® a P v
Y < £ Q’ M Q M Q’ £ Q’ o Q
X v~ X v~ X v~ X v~ X v X v~
& ) o ) 8 ) o o) & o) o )
‘\’b \'od ov' el Qy' QV’ 0?' \el Qy' \'al o?’ \'ol
) éx (€ ox S X (€ X & x (€) X
% M ¥ & M ¥ Sl M ¥
& (o X od X <~
3 & <3
d INL e IPL
5 251 5 50+
S - #
S, 20 * $. 404 N
& . &
£ 157 £ 30 _
I3 — ° *
5 101 %5 201
8 3 —p—
o 51 @ 104
f= f=
4 4
[%] [
E 0‘ T T E 0" T T
& A 3 e $ L v
o Q’ 2 Q’ ) Q ) Q’
X v~ X v~ X v X v-
o O o (@ o ) o O
G v v v Ca v s v
6¢ X c,o 3 gé X 0 3
% @ © ol ¢ ¥
2 © 2 <~
@ <@

Fig. 4 Quantification of retinal layers in SHAM+SOCB, in SHAM+
PACAP-TAT, in BCCAO+SOCB, and in BCCAO+PACAP-TAT
animals; the right eye was treated with PACAP-TAT eye drops, the left
eye served as controls receiving only SOCB. Comparison of all retinal
layers (a—e). Morphometric analysis showed that treatment with PACAP-

TAT eye drops improved the structure of all the retinal layers. Statistical
significance (*p <0.05 vs. SHAM+SOCB retinas, #p <0.05 vs.
BCCAO+SOCB retinas) was calculated by two-way ANOVA followed
by Fischer’s post hoc test
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Fig. 5 Quantification of the number of cells/100 pm GCL length (a), the
number of cells/500 umz ONL (b) and INL (c) areas in SHAM+SOCB, in
SHAM+PACAP-TAT, in BCCAO+SOCB, and in BCCAO+PACAP-
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TAT animals. Statistical significance (*p <0.05 vs. SHAM+SOCB
retinas, #p < 0.05 vs. BCCAO+SOCB retinas) was calculated by two-
way ANOVA followed by Bonferroni’s post hoc test
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Fig. 6 Quantification of retinal layers in SHAM+SOCB, in SHAM+VIP-
TAT, in BCCAO+SOCB, and in BCCAO+VIP-TAT animals; the right
eye was treated with VIP-TAT eye drops, the left eye served as control
receiving only SOCB. Comparison of all retinal layers (a—e).
Morphometric analysis showed that treatment with VIP-TAT eye drops

improved the structure of all the retinal layers. Statistical significance
(*p <0.05 vs. SHAM+SOCB retinas, #p <0.05 vs. BCCAO+SOCB
retinas) was calculated by two-way ANOVA followed by Fischer’s post
hoc test
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Fig. 7 Quantification of the number of cells/100 pm GCL length (a), the
number of cells/500 umz ONL (b) and INL (c) areas in SHAM+SOCB, in
SHAM+VIP-TAT, in BCCAO+SOCB, and in BCCAO+VIP-TAT

animals. Statistical significance (*p <0.05 vs. SHAM+SOCB retinas,
#p <0.05 vs. BCCAO+SOCB retinas) was calculated by two-way
ANOVA followed by Bonferroni’s post hoc test
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bipolar neurons (Szabadfi et al. 2016), the two main interneu-
ronal types, amacrine and horizontal cells (Szabadfi et al.
2012) and the main glial cells, Muller glial cells (Nakatani
et al. 2006; Werling et al. 2016). Furthermore, PACAP is an
endogenous regulator of retinal microglial cells/macrophages,
important in certain pathological conditions (Wada et al.
2013). PACAP not only affects the neurons and glial cells of
the retina leading to retinoprotection, but also helps to pre-
serve the integrity of the blood-retinal barrier (Scuderi et al.
2013) and protects the retinal pigment epithelial cells against
oxidative stress injury, a process important in preservation of
the outer barrier of the retina (Fabian et al. 2012).
Furthermore, PACAP influences retinal vasculogenesis, espe-
cially under pathological conditions (Kvarik et al. 2016).

VIP has also been shown to have effects in the visual system
according to some studies, although most results point to its
involvement in photic neuronal transmission rather than its tro-
phic effects (Akrouh and Kerschensteiner 2015; Dragich et al.
2010; Pérez de Sevilla Miiller et al. 2017; Webb et al. 2013).
VIP is an important neuromodulator along the visual transmis-
sion pathways, not only in the retina, but all the way to the
cortex where it influences visual information processing
(Galletti and Fattori 2018; Wilson and Glickfeld 2014).
Regarding retinoprotection, a few studies indicate that VIP
may also exert trophic effects in certain retinal injuries.
Among others, VIP has been shown to protect retinal ganglion
cells against excitotoxic injury in vitro (Shoge et al. 1998). VIP
also protected against ischemia-reperfusion injury induced by
ophthalmic vessel ligation (Tungel et al. 1996), where both
systemic and intravitreal VIP decreased oxidative stress as
shown by reduced malondialdehyde levels. This led to a more
preserved histological structure, which is in accordance with
our present findings. Our earlier study, using the same hypo-
perfusion model used in the present study, showed that intravit-
real VIP administration led to retinal morphological ameliora-
tion, but only at doses ten times higher than PACAP (Szabadfi
et al. 2012). In the present study, we show a similar degree of
protection, using TAT-bound VIP. VIP’s actions include not
only direct effects, but also indirect effects, through stimulation
of activity-dependent neurotrophic protein (ADNP) and its
short fragment NAP, with highly potent neuroprotective effects.
Both ADNP and NAP exerted strong protection against a vari-
ety of stress factors (Steingart et al. 2000). In the retina, NAP
protected against laser-induced retinal damage (Belokopytov
et al. 2011), to decrease hypoxia-inducible factor levels in a
model of diabetic retinopathy (D’Amico et al. 2017, 2018;
Maugeri et al. 2017), to prevent apoptotic cell death (Scuderi
et al. 2014) and to promote neuronal growth after hypoxia-
induced injury (Zheng et al. 2010). VIP also affects autonomic
reflexes and choroidal blood flow, which eventually affects
retinal blood supply (Bill and Sperber 1990). Applying VIP
on the ocular surface in the form of eye drops has so far been
shown to exert local effects on the cornea.

@ Springer

Regarding ischemic injury, PACAP has been shown to be
protective in most cell layers affected in BCCAO-induced
retinal ischemia. VIP was previously proven to be ten times
less effective: intravitreal 100 pmol VIP, in contrast to the
same dose of PACAP, led to no ameliorating effect on the
retinal structure. However, 1000 pmol intravitreal VIP pro-
duced a protective effect. As eye drops, VIP was not effective
alone (not shown). However, in our present study, we confirm
that VIP bound to TAT peptide could effectively traverse the
ocular barriers and exert a neuroprotective effect in the retina.
PACAP-TAT did not prove to have significantly higher
retinoprotective efficacy than untagged PACAP, but VIP
exerted much stronger retinoprotective effects when bound
to TAT. These results were consistent with our previous report
that TAT with similar structure with PACAP(28-38) endowed
VIP with higher affinity for PAC1-R (Yu et al. 2014). As for
PACAP38, the tagging with TAT at the C-terminus of
PACAP38 would be redundant and interfere with the receptor
binding. This may be the reason why TAT tagging had some
negative effect on PACAP38’s activity on the activation of
PACI1-R. Also, as VIP has been implicated in a variety of
other ocular diseases as a possible therapeutic approach
(Berger et al. 2010; Cakmak et al. 2017; Satitpitakul et al.
2018), our results with topical applications leading to
retinoprotection may open new therapeutic approaches.

In summary, our present study provides evidence, for the
first time, that topical administration of PACAP and VIP de-
rivatives (PACAP-TAT and VIP-TAT) dissolved in SOCB at-
tenuate ischemic retinal degeneration via the PAC1 receptor
presumably due to a multifactorial protective mechanism.
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