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Ah-receptors (AhRs) recognize and bind foreign environmental molecules as
well as some target hormones of other nuclear receptors. As ligands activate transcrip-
tion factors, they transmit the information on the presence of these molecules by binding
to the DNA, which in turn activate xenobiotic metabolism genes. Cross talk with other
nuclear receptors or some non-nuclear receptors also activates or inhibits endocrine
processes. Immune cells have AhRs by which they are activated for physiological
(immunity) or non-physiological (allergy and autoimmunity) processes. They can be
imprinted by hormonal or pseudo-hormonal (environmental) factors, which could
provoke pathological alterations for life (by faulty perinatal hormonal imprinting). The
variety and amount of human-made new environmental molecules (endocrine disrup-
tors) are enormously growing, so the importance of AhR functions is also expanding.
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Introduction

The category of polycyclic aromatic hydrocarbons (PAHs) contains diverse
compounds, which consist of three or more fused aromatic rings. They are
ubiquitously present in the environment as natural or artificial products. They
are produced by volcanic eruptions, incomplete burning of coal, gas, wood,
garbage or any organic substances as tobacco smoking, or overboiled meat. Many
of them originated as product of forest wild fires, residential wood or coal burning,
and mainly as exhaust from buses, trucks, and automobiles [1]. Aromatic
hydrocarbons or aryl hydrocarbons are recognized and bound by the Ah-receptors
(AhRs), which are present in the cytoplasm of most of the cells of human
organism.
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The Ah-Receptors (AhRs)

The inactive AhRs are settled freely in the cytoplasm of the receptor-bearing
cells, where the penetrating ligands [aromatic hydrocarbons, endocrine disruptors
(EDs), as bisphenol A, etc.] can find them and later they exist together. The complex
is associating with a aryl hydrocarbon receptor nuclear translocator (ARNT) and
enters into the nucleus, where it finds a specific response element (DNA-binding site
or sites) and induces the transcription of xenobiotic metabolism-regulating genes
[2]. Later, another group of genes starts an action to terminate the process: AhR
repressor is produced and heterodimerizes with the ARNT. During this process,
there can also be another heterodimerization: the AhR ARNT complex could be
heterodimerized with estrogen receptor alpha or beta and estrogen actions are
activated. This is a suitable example of combined effects by exogeneous (PAH) and
endogeneous factors. In this case, the sensor of environmental changes (the AhR)
activates an endogeneous physiological process. As immune cells contain both types
of receptors, combined effects can have a role in regulating physiological immune
processes as well as pathological ones, including autoimmunity and allergy [3].

The aforementioned facts mean that in the family of cytoplasmic-nuclear
receptors, nuclear receptor superfamily is a receptor for the PAHs. It is a
basic helix-loop-helix transcription factor, which after binding of such chemi-
cals, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), or some EDs enters into the
nucleus of the receptor containing cell and as transcription factors in general,
induces changes in gene expression, which is manifested in the response of the
cell [4], to which the interactions with chaperones, various regulatory, and
signaling proteins are also needed [5]. The responses are among others the
disruption of the normal signal pathways, immunotoxicity, cytochrome activity
changes (influence to xenobiotic metabolism), provocation of tumor develop-
ment (carcinogenicity), etc [6]. This receptor can influence the immune system
as immunosuppressant, in general, transmits information from cigarette smoke to
diesel fumes and cool tars [7]. Considering the PAHs, as natural components
were present already in the volcanic eruptions, this receptor could be one of the
most ancient receptors. However, its importance was grown after the appearance
of EDs in the human environment.

The Endocrine Disruptors

According to the statement of the (International) Endocrine Society “an
endocrine disrupting chemical (EDC) is an exogeneous chemical or mixture of
chemicals, that can interfere with any aspect of hormone action. The potential for
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deleterious effects of EDC must be considered relative to the regulation of
hormone sysnthesis, secretion and actions and the variability in regulation of
these events across the life cycle” [8, 9]. As there is a broad spectrum of EDs,
restrictions in the definition were rather problematic; however, sometimes it is
supplemented with “human-made” “synthetic” artificial and natural. At present,
human-made synthetic products are dominating the biological and medical
research on EDC effects. This is understandable as these products are connected
with our modern age and their enormously growing amount seems to be more
dangerous than others, which were known 100 years ago. However, these latter
disruptors sometimes exist since man is living in the earth; however, they had
been categorized as “disruptors” only after the discovery of human-made
disruptors, in contrast to their effects that are at least as dangerous as the effects
of human-made products. This category belongs to the PAHs. EDs can also be
bound by many hormone receptors (estrogen and androgen receptors, glucocor-
ticoid receptors, etc.) influencing the binding of physiological hormones,
consequently hindering or mimicking the target hormone. However, they are
recognized and bound by AhRs. The effects are among others the disruption of
the normal signal pathways, immunotoxicity, cytochrome activity changes
(influence to xenobiotic metabolism), and provocation of tumor development
(carcinogenicity), etc [6].

PAHs and the Immune System

PAHs negatively influence many systems of the human organism; however,
their effects on the immune system (through AhRs) seem to be one of the most
importants, considering the role of this system in the maintenance of life, by
defending against infections and the disturbances of inside tissue harmony. In the
immunity, there is a broad spectrum effect from the influence of immune cell
development to death (apoptosis) of them to the selection of cells [10] and
regulation of cytokine (IL17 and IL22) formation [11].

Autoimmunity and AhRs

Autoimmune diseases are present when the immune system, the task of
which would be the defense of organism from outer invaders or inside aberrations,
attacks the self components. Environmental factors have a prominent role in the
provocation of the offensive, which is transmitted by the binding of small
molecules to the AhRs, as ligand activated transcription factors. These small
molecules could be originated from the diet, commensal flora, environmental
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pollutants, and metabolism [12, 13]. However, the AhRs, as environmental
sensors are initially present in mucosal and barrier tissues [14], also can be
found in many cell types of the immune system. These receptors bind EDs
activating the production and transformation of immune cells [15]. DNA
methylation determines the expression of genes in the immune cells, conse-
quently the change of the methylation pattern provokes functional alterations
in them, causing self-perishing actions, manifested in autoimmune diseases,
e.g., in the manifestation of lupus [16]. Methylation pattern of T-cell DNA,
modifies the behavior of T-cells and induces autoreactivity [16]. This could also
be in the case of faulty perinatal hormonal imprinting [17]. Similar process can
happen in case of a prominent ED, bisphenol A (164), which influences T- and
B-cell functions, as well as macrophage and dendritic cell biology [18]. Several
data were gained by laboratory exoprotein sensitization experiments; however,
it seems to be valid for men, but fortunately men’s AhR is less sensitive than
that of rodents [19].

Lipopolysaccharides influence the expression of AhR in dendritic cells,
consequently the antigen presentation, contributing the development of immune
disorders. In contrast, dioxin negatively influences dendritic cell homeostasis [20],
also influencing the manifestation of immune disorders. Tobacco smoke (in which
aromatic hydrocarbons are present) seems to increase the manifestation of lupus
[21]. Polychlorinated biphenyls, which are present in frequently consumed human
diet (fish, hamburger, and poultry are the most contaminated), increase autoim-
munity rates [22] as well as aromatic hydrocarbons present in atmospheric
contaminations [23].

The aryl hydrocarbon receptors bind benzpyrene. This can explain why
smokers have more frequently atopic dermatitis by epicutaneous sensitization
(218) and autoimmune arthritis [24].

Cross talk between receptors

Cross talk between AhRs and other (nuclear) hormone receptors. As it was
mentioned, the AhRs belong to the family of cytoplasmic-nuclear receptors,
which are responsible for a lot of endocrine regulations (estrogen receptors,
androgen receptors, corticocosterone, dezoxycorticosterone receptors, thyroid
hormone receptors, peroxysome proliferator receptors, vitamin A and vitamin
D receptors, some orphan receptors, etc.). In this receptor family, the overlaps
between the originally specific receptors or dimerization with related receptors are
frequent and there are also intersections and interactions in the case of aryl
hydrocarbon receptors. There is an interaction between the AhR and retinoic acid
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signaling pathways, resulting in changes of retinoic acid synthesis, catabolism,
transport, and secretion. AhR binding of PAHs also influences estrogen and
thyroid hormone pathways [25]. Estrogen receptor alpha and beta are also targeted
by PAHs, inducing some effects in the estrogen system [26]. Genes regulated by
AhR-ER alpha cross talk are influenced by pesticides. In this type of cross talk,
cytokine/growth factor-related signal transducers (EGF-family, TNF-α, and
TGF-β) are also participating [27]. They have striking anti-estrogenic activity
[28]. These can be used as inhibitors of mammary tumor development [29]. AhR
ligands are bound by androgen hormone receptors, and modulation of signaling by
the sexual hormones is disturbed by the effects of PAHs [30]. PAH receptors are
also involved in the deleterious effects of other EDs, as it is demonstrated by
the effects of bisphenol A on the immune response [18]. There is a bilateral
transcriptional interference between TCDD and testosterone-mediated signal
transduction pathways [31]. TCDD also has a cross talk with glucocorticoid
receptor [32]. These receptors are very similar: they are structurally and function-
ally closely related proteins [33]. The cross talk with sex-hormone signaling is an
intrinsic function of AhR [34] and this is manifested in the effect of xenobiotic
chemicals (e.g., pesticides) [35]. There is also a cross talk with the thyroid
hormone receptors, influencing tadpole metamorphosis [36].

Cross talk with non-nuclear receptors. It is not surprising that AhRs can cross
talk with other nuclear receptors [37–39], such as estrogen and andogen receptors;
however, it seems to be enthusiastic that a cross talk can be supposed between the
AhR and other non-nuclear receptors, such as prolactin and epidermal growth
factor receptors [39–42]. AhR knockout mice have less follicle-stimulating
hormone and luteinizing hormone amount than wild mice, and AhR is needed
for normal ovulation [43]. AhR deficiency enhances insulin sensitivity, improves
glucose-tolerance expression, protects against metabolic rhytmicity, and attenu-
ates fibroblast growth factor [44–46]. As the cells of the immune system contain
all of the mentioned receptors, the cross talk between the AhR and other ones
supplementing the direct effect by molecules that influence the immune system
forming a network regulates the whole immunity [47–50].

Faulty Hormonal Imprinting of the AhR

In the develping endocrine system, the first encounter between the devel-
oping hormone receptor and their target hormones provokes the hormonal
imprinting, which has a decisive importance on the hormone recognition and
binding for life. This is a physiological process, which is needed for the later
normal function of the endocrine system. However, in the perinatal critical period
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molecules, similar to hormones or related molecules can be bound by the
receptors, which also influence the state of the endocrine connections for life.
This latter is the faulty perinatal hormonal imprinting, which could be the cause of
diseases manifested in later (adult) age [51, 52]. PAHs are very strong faulty
imprinters in animal experiments as well as in human cases. In rats, faulty
imprinting with benzpyrene provokes the change of serotonin and endorphin
content of white blood cells and mast cells [53]. Thymic glucocorticoid receptors’
binding capacity was also influenced by a single (imprinting) dose neonatally [54]
and combination with a phytoestrogen (genistein) does the same. Imprinting by
combination with other imprinters caused the same process [55]. The effect of
faulty imprinting is transmitted by mother’s milk [56]. By these treatments, the
microsomal enzyme system was also disturbed [57, 58] and the faulty imprinting
by benzpyrene was also valid at growing age [59]. The immune system (immune
response to infection and vaccination) was modulated [33]. Autoimmune diseases
are more frequent in animals after neonatal steroid hormone treatment [60].
Some diseases are manifested after prenatal exposure of dioxin [61] and causes
autoimmunity [62].

Although the mentioning of industrial EDs is more fashionable, the “tradi-
tional” disruptors are dangerous or more dangerous. These are the PAHs,
produced by tools or services, which are absolutely needed for the mankind;
however, the incomplete combustion is characteristic to them [63–65]. The annual
emission of polycyclic organic material is about 11.000 metric tons. The residen-
tial heating is one among them that gives about 35% of PAHs and is supplemented
with the agricultural open burning, which is plus 11%, forest wild fires about plus
14%, the mobile (auto and truck) tools plus 20%, and industrial production about
7%. However, it was not significant to mention the volcanic emission, which is
present in a very high variable amount since the presence of life in the Earth or
before it.

The cross talk between the AhRs (environmental sensors) and different
receptors of the superfamily (endogeneous sensors) could influence such processes,
as hormonal imprinting or tumor formation. In case of faulty imprinting [54], it was
mentioned that benzpyrene imprinting was modified by the presence of genistein in
the rat thymus. As thymus is a priviledged site of T-lymphocyte generetion, it has a
determining role in aging and lifespan [66–68]; the cross talk between the steroid
receptors and AhRs seems to be important. Stressing the thymus mainly happens
by the transmission of AhRs [69] and this is wearing out the organ [70]. This
imagination is supported by the protective effect of genistein to the tumorigenic
effect of benzpyrene. However, this latter can also be a hormetic effect, when the
diet mediated induction of glutathione S-tranferases protects mammary epithelial
cells from cancerogenic effects of genotoxic carcinogens [71].
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Discussion

It is interesting that there is a PAH – aryl hydrocarbon receptor system,
which is rather peculiar, as receptors of the endocrine system are used for
endogeneous hormones and the aromatic hydrocarbons are exogeneous factors,
which have a “built-in” receptor for themselves, which usually transmits a
negative message for the given cell and the organism. However, there is no
doubt that the existence of this receptor has been considered as a full-right member
of a major receptor family. This receptor can influence the immune system as
immunosuppressant in general, transmitting information from cigarette smoke to
diesel fumes and cool tars. Considering PAHs, as natural components are present
already in the volcanic eruptions, this receptor – as it was mentioned – could be
one of the most ancient receptors.

During evolution, a co-evolution of hormones and receptors can be ob-
served. Without the target hormone, the presence of receptor is meaningless as
well as the presence of hormone without the recognizing and binding structure of
the receptor. However, one of the two could be present for a time, provoking the
appearance of other one, forming the suitable pair. It seems to be likely that in the
case of the alien-molecule recognizing – activating pair, the aromatic hydro-
carbons provoked the development of their receptors in a time, when mankind has
not a significant role in the formation of the environment. Nuclear hormone
receptors could serve as model, or some members of the nuclear receptor family
(orphan receptors) have been specialized for this aim, as aromatic hydrocarbons
are lipid-soluble molecules, which can penetrate across the plasma membrane.
This possibility is manifested in the similarity of structure and functional
characteristics between the AhR and glucocorticoid or sexual-steroid receptors.
The nuclear receptor superfamily has variable members and about 48 are known
by names with specific function however with many overlappings. The function of
AhR is not so specific, as it can recognize a lot of alien molecules, along with
binding specific hormones. By the activation of the receptor, there is a transmis-
sion of the message to the executing system. As environmental molecules (as
aromatic hydrocarbons) are dangerous to the living organisms, the main function
of the AhRs is the recognition and catching them, activating the cells of the
organisms to defend themselves.

Originally, the AhRs could have a modest role in the general reception
process, as one of the members of nuclear receptor superfamily, because the
regulation by endogeneous molecules is more important, while the environment
was quiet, balanced, and stable. However, in case of the modern man, the situation
basically changed. Mass of new molecules appeared in the environment forcibly
introducing themselves into the organisms and only AhRs were completely able to
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recognize them, alerting the invaded cells directly or by cross talk with hormone
receptors. As new molecules were increasing in the environment, the importance
of AhRs has been increased – as expected – and it will reach the significant
position. This is especially important in case of the immune system, which is
working in the frontline of defense.

If immune cells are in the frontline of defense in animal and human
organisms, it is understandable that the cells containing them are well stocked
with AhRs and these instruct the physiological function of different immune cells
as well as can direct them to a pathological destination, named allergic or
autoimmune disease. However, immune cells are also equipped with other nuclear
(estrogen, androgen, glucocorticoid, peroxysome proliferator, thyroid, and
orphan) receptors, which also have regulatory roles in immune processes. In
addition, there is a cross talk between them and sometimes with non-nuclear
receptors, the receptorial influence could be confused and the derailment is not
infrequent, causing disturbances of immunity.

Although AhRs can also recognize endogeneous molecules (hormones),
their main function is the recognition of exogeneous (hormone-like) molecules,
functioning as sensors of the surrounding milieu. This milieu has been altered in
the last time, containing not only the natural molecules, but also a lot of synthetic
ones and not only the variety of these has been increased, but also their amounts.
In addition, these molecules are enormously consumed by human beings, as
they are present in the urban air, in waters, drinking by us, in foods, eating by us,
in our tools and medicaments and there is a continuous contamination from birth
to senescence. During this period, the immune system is also continously
changing, from development to decline and its built-in reactions are different in
the various periods. As the reactions of the immune system are setting to a
relatively stable situation, the continuous change of stimuli makes troubles, which
are manifested in diseases and some of them were unknown before (e.g., irritable
bowel syndrome [72, 73]).

Although AhRs are named frequently to dioxin receptors (as this molecule
influences it above all), it is binding a lot of EDs (bisphenol A, which was studied
above all) and their presence is reported by the sensor to different immune cells.
These cells that are deeply transformed by faulty perinatal hormonal imprinting
(caused by the presence of new alien molecules), and the cavalcade of different
new molecules is not able to execute normal immune reactions; abnormal
autoimmune reaction will develop. This backlashes to the whole endocrine system
influencing the lifespan (by the effect on the thymus) and causes easily non-
observable alterations in different organs.

Hormone receptor and its target hormone together form a unit, which is able
to influence an event, development of something, or production of something.
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In the organism of the ancient men, receptors and hormones could be together (as
it is in case of rat observations [74, 75]); however, it is not known, what could be
the provocator of the development of AhRs, which are not involved in physio-
logical processes, such as steroid or thyroid receptors. However, these materials
could be the contents of volcanic emissions, or some foods, as soy isoflavones.
This permits to hypothesize that genistein receptors and AhRs are related and
help hydrocarbon exposure; these molecules can be demonstrated intracellularly,
similar to hormones (to develop a common receptor family inside the nuclear
hormone receptor family of steroid hormones, thyroid hormones, etc.). It is also
possible that AhRs has an important role in the transmission of messages from
different endogeneous molecules; however, the research was focused to the
environmental factors to date [76]. There is also a possibility that being without
specific (endocrine) function, these receptors are solely sensors of outside
environmental changes [77], controlling the immune functions [78], and this
could explain why are so much cross talk between them and the different
hormone receptors [79]. According to some opinions, “Ah-receptors are such
transcription factors, which widely express in many immune cell lineages and
recognizes a range of ligands including endogeneous and dietary metabolites,
microbial derivatives and xenobiotics” [80, 81]. On the whole, a tool for
recognizing different message-bearing exogeneously originated or endogeneous
materials, which have not specific receptors. Their function is determined by
three factors: the amount of AhHs in any given cells, the abundance and potency
of AhR ligands within certain tissues, and the tissue microenvironment [82].
These could be the basis of their immunomodulatory role [86], which also leads
to autoimmune diseases [83–89].

Although the AhRs used to be mentioned as dioxin receptors, this does not
mean that the transmission of the message of dioxin is the most important task of
this receptor. About 48 named receptors belong to the nuclear (steroid) receptor
superfamily, with defined functions and – as it was mentioned – there are many
overlaps (cross talks) betwen them. However, it seems to be needed such a
receptor that can sense other molecules, which is a universal binding site and this
would be the AhR. It is stated that the AhR is present not only in vertebrates but
also in invertebrates, and there is a co-evolution of ligand-activated transcription
factors (as AhR) and xenobiotics-detoxifying enzymes [90]. The synthetic EDs
are newcomers in our environment; however, e.g., bisphenol A, which is an
outstanding member of EDs, is recognized and bound by AhRs. Although
immune cells have specific receptors for a lot of hormones, they also have AhRs
for non-hormonal molecules and junks, the universality of which it helps
recognize such molecules and can participate in the pathology of immune
system.
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Considering the sorting out function of natural selection during evolution, it is
not understandable that AhR is present in the people of our modern age. AhR
activates such properties of the cells and especially immune cells, which negatively
influences life prospects. It must be supposed that in the ancient times, these
receptors have some other beneficial function, which could compensate the negative
effects. The environmental effects also have not been so dangerous as in our present
time, so the endogeneous beneficial effect could override the negative ones. The
other possibility is that the AhR is a miscarried product of genetic variations, which
did not cause problems in a stable environment. However, it is causing problems in
our modern time and parallelly with the increasing number, and the amount of EDs
will increase the negative importance of immune cells’ AhRs. Thymus is extremely
sensitive to the effects transmitted by AhRs and this strongly impacts immune
defense, lifespan, and autoimmune disease [67, 68, 91–95].
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