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ABSTRACT 

Technological development in the fields of electrical and 

mechanical engineering as well as computer and 

communication sciences in the last decade, have dramatically 

increased the popularity and fields of application of 

Unmanned Aerial Vehicles (UAVs). Despite the technological 

advancements, there are still very important challenges related 

to the operation of UAVs. One of the main challenging task 

for UAVs is to accurately determine their attitude during the 

flight, using the onboard sensors. This paper presents a 

framework for attitude determination of an UAV from single 

camera vector observations in a known environment. The 

framework has been experimentally evaluated. The results 

from the conducted evaluation suggest that the proposed 

method is appropriate and that it can be used in the control 

process. 
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1. INTRODUCTION 
Nowadays the Unmanned Aerial Vehicles (UAV’s) find a 

wide spectra of use in our society. UAV has initially been 

designed as entertainment toys but, today they are used as 

sophisticated information gathering tools in dangerous 

environments [1]. The technological advancements made the 

UAV’s available in many different sectors. This is a result not 

only on the advancements in material design and their low 

prices but, also due to the development of novel control 

paradigms as well as development of Artificial Intelligence 

(AI). The growing popularity of the Artificial Intelligence 

(AI) and its application in various fields [2], starting from 

tourism [3], through medicine [4-6], biology [7], education 

[8], robotics [8-12], and also in economy [13], is mainly due 

to the apparatus i.e. the models and techniques used to mimic 

the human reasoning, learn and improve during time. 

The common problem of the UAVs, even today, remains the 

accurate attitude determination. It is a high point of interest to 

know the attitude of the UAV, because of the safety of the 

vehicle itself and for the entire mission. For better description 

of this approach for solution of the attitude estimation 

problem, it can be assumed that every mission starts from a 

point in the environment that is known. This approach is 

based on ubiquitous visual sensor i.e. a video camera. A 

single camera can provide a wide source of information about 

the environment, and also it is a cost efficient, small and 

compact to attach to an UAV.  

In the proposed approach the information obtained from the 

camera will be used as relative measurement between the 

UAV navigation parameters (attitude, position and velocity) 

and the environment. Assuming to have a known 

environment, using the relative measurements, the UAV 

navigation parameters can be determined. One drawback of 

the single camera approach may be the lack of depth 

information. 

The navigation environment could be represented in a form of 

a map, with defined map points. Considering the known 

position of the UAV obtaining the single camera position 

vector can be performed. Having this in mind, one may 

represent the navigation frame for attitude determination as a 

system composed of map points (environment) and the 

position of the UAV in the environment. In this paper two 

different iterative numerical methods for calculating the 

position vector will be investigated and compared. The first 

one is an iterative numerical solution based on Gauss-

Newton’s method and the second one is Levenberg-Marquardt 

method. 

2. RELATED WORK 
Various approaches for UAV’s attitude estimation are 

reported in the literature. UAVs nowadays are equipped with 

Inertial Navigation Systems (INS). These systems usually 

employ Micro-Electro-Mechanical Systems (MEMS) inertial 

sensing technologies, which are low-cost and low-power 

consumption devices. The use of MEMS has become crucial 

part for position and movements of a UAV estimation [14]. 

Despite the advantages of the inertial systems based on 

MEMS technology they often have low precision, poor 

accuracy and degraded performance. Usual way for increasing 

their precision is to apply additional filtering and data fusion 

algorithms. One approach is presented in [15] where the 

authors are presenting fusion of data gathered from integrated 

gyroscopes and three-axis accelerometers.  

Very interesting approach for attitude determination using the 

UKF and the TRIAD algorithm which include accelerometers, 

gyroscopes and magnetometers has been proposed in [16]. 

But, however the easiest and cheapest way to get a lot of 

information about the position and attitude of a UAV is 

through the visual sensor. Specific approach with single 

camera observations are described in [17], [18]. They are 

using monocular camera for gathering information and also 

combining the results with inertial sensors. This was actually 

the main point why we proceeded in this approach, asking the 

question what if the UAV can use only the visual sensor. The 

real time single camera SLAM [19], [20] method is the great 

step forward into detecting the position of a UAV. 
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3. PROPOSED METHOD 

3.1 Frame setup 
The orientation of a UAV in space is represented as 

orientation of one coordinate system (camera frame attached 

to the UAV) in reference to another coordinate system (a 

fixed coordinate system) for example World coordinate 

system or in this case navigation frame. The axes of these two 

system are connected through a linear transformation, usually 

it is done with transformation matrix. This matrix can be 

presented as a group of coordinates, like: Euler angles, 

quaternions, direction cosines, etc. The use of quaternions is 

very common in these cases, because of the linearity of the 

quaternions, the avoidances of usage of trigonometric 

functions and the small number of parameters for successful 

implementation. The only disadvantage of the quaternions is 

that they don’t have a simple geometric representation, so 

because of that they can’t be measured directly [21]. While 

the problem with the measurement from the single camera is 

the lack of precise depth data, so it may be assumed that this 

distance is known and constant.  

For the purpose of the experiment it is assumed that the 

camera is mounted on the UAV on such a way that the 

camera frame is at the center of gravity of the UAV and is 

aligned with the body frame of the UAV. The camera frame 

is represented with                , where P stands for the 

center of perspective for observations, and also the center of 

gravity of the UAV.  

 

Fig 1. Camera setup vector measurements 

On figure 1, two related frame systems are shown. One with 

center P, the center of the camera frame, and the other with 

center 0, the center of the navigation system of the 

environment (coordinate system of the World). Starting from 

P, the axis    can be seen, defined in forward direction, which 

is perpendicular to the horizontal component u of the camera 

image. The axis   , is perpendicular with the vertical 

component v of the camera image. And the last axis   , which 

completes the right handed orthogonal coordinate system is 

perpendicular to booth axis    and   . On our figure     has a 

negative sign because it is pointing to the center of the camera 

image and is equal to the focal length of the camera. The 

camera image is shown as a parallelogram with sides u and v 

and origin in 0. 

On figure 1 in the camera frame the vector    is measured. The 

unit vector in the direction    noted as     may be calculated as  

    
  

    
    (1) 

Vector     can be transformed in the navigation frame with the 

transformation matrix,     , that transforms body frame 

coordinates into navigation frame coordinates. 

The transformation process is explained in the following: 

           (2) 

In the last equation, the transformation matrix Cb2n is given in 

quaternion form: 

      

   
    

    
    

                          

               
    

    
    

              

                           
    

    
    

  

  

                (3) 

After the transformation for vector r, the following applies: 

a)       

b)    
   

     
 

c)       , where   is an unknown parameter. 

The    is the difference between the map point vector   and 

the position vector   and may be written as  

        (4) 

The unit vector in the direction   noted as    in the navigation 

frame also may be evaluated as  

   
 

   
    (5) 

The quaternion vector              used in the 

transformation matrix is with unit normalization  

       
    

    
    

     (6) 

The advantage of the quaternions is that they could be used 

for a transformation of the unit vector     in the camera frame 

system, into a unit vector    in the navigation frame: 

             (7) 

It is assumed that the data about the vector  , vector   from 

where the measurement is taken and the position where the 

single camera is mounted, are known. Measurements and 

observations are conducted with the camera to the map points, 

in order to find out the attitude of the UAV (camera) in 

accordance with the environment, like in figure 1.  

Actually the quaternion vector               is 

going to be computed. With the measurements and 

observations from the camera, the unit vector     is computed 

in the camera frame system, equation (1). Using the vectors   

and   the depth   can be determined with the equation (4). 

Next the depth   it is used in the equation (5) in order to 

compute the unit vector    in the navigation frame system. 

Now that the two vectors are known, one in the camera frame, 

and the other in the navigation frame, the quaternion vector   

can be determined. The equation (7) in matrix form can be 

written like this: 
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(8) 

Since the quaternion vector   is a four element vector, 

additional vector should be added to equation (8) in order to 

calculate the four unknowns in  . The property of the 

quaternion vector to be unit normalized can be added to the 

equation, i.e. equation (6) can be added to equation (8), and 

system of nonlinear equations is formed: 

 
 
 

 
 
        

    
    

    
                                        

                        
    

    
    

                       

                                         
    

    
    

      

     
    

    
    

 

   

      (9) 

In order to solve this system of four nonlinear equations, two 

approaches are used, Gauss-Newton and Levenberg-Markart 

method. 

The nonlinear system of equations (9) can be written as: 

                (10) 

The approach that Gauss suggest is to use a linear 

approximation to the nonlinear function to iteratively improve 

an initial guess    for   and keep improving the estimates 

until there is no change [4]. Expanding the nonlinear function 

        in first order Taylor series about   as  

              
 
           

            
   

           
   where   

    
        

   
                      (11) 

and if all N cases are included, it can be written as 

                     (12) 

where    is the N x N derivate matrix with elements      . 
This is equivalent to approximating the residuals,        
    , by  

                   (13)   

where            and       . Then the Gauss 

increment    can be calculated to minimize the approximate 

residual sum of squares           using  

             (14) 

     
      (15) 

          (16) 

and so 

   
       (17) 

The point  

                   (18) 

now should be closer to y than      , and it can be moved to 

this better parameter value          and perform another 

iteration by calculating new residuals           , a new 

derivative matrix   , and a new increment. This process is 

repeated until convergence is obtained, that is, until the 

increment is so small that there is no change in the elements 

of the parameter vector. Convergence implies that the best 

estimates of the parameters are obtained. The Gauss Newton 

method provides solution even if the system may not have a 

zero i.e. returns a point where the residual is small. If the 

Jacobian of the system is singular the Gauss Newton method 

might converge to a point that is not a solution of the system 

of equations [22]. 

Levenberg-Markart method is the second approach that it is 

used in this paper. This approach represents a slight 

modification to the Gauss-Newton method and it has been 

used widely in the computer vision literature [23]. The main 

difference from the  Gauss-Newton method is to set      

and use instead                                

where      is a scalar determined by the following rules, 

initially it is assigned to small values, and then:  

1. If the current value of    results in a decrease in the 

error, then the iteration is accepted and   is divided 

by 10 as the initial value for the iteration. 

2. If     results in an increase in the error, then it is 

multiplied by 10, and the iteration is tried again 

until   is found that results in a decrease in the error. 

Because of this, the Levenberg-Marquardt method still works 

even if the Jacobian matrix is not of full rank, which occurs 

often in practice. The best description is that the method tends 

to adapt its step size through controlling the value of  , based 

on the history of values of the objective function. 

3.2 Camera calibration 
Geometric camera calibration can be used for estimation of 

the parameters of a lens and image sensor of an image or 

video camera. Afterwards these parameters can be used to 

correct the lens distortion, measure the size of an object in 

world units, or determine the location of the camera in the 

space. 

Camera parameters include intrinsic, extrinsic, and distortion 

coefficients. To estimate the camera parameters, a 3-D world 

points are needed and their corresponding 2-D image points. 

These correspondences can be obtained by using multiple 

images of a calibration pattern, such as a checkerboard. 

 

Fig 2. Checkerboard pattern for camera calibration 

The calibration pattern as it can be seen in figure 2 is a 

rectangle, with different number of squares on a side. We 

have to know the dimensions of each square of the pattern and 

also the dimension of the whole pattern. All this information 

is needed in the software for calibration. The pattern has to be 

printed and afterwards 10-20 pictures are taken of it from 

different angles. Through the calibration software the 

parameters are obtained. The calibration algorithm calculates 
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the camera matrix using the extrinsic and intrinsic parameters. 

The extrinsic parameters represent a rigid transformation from 

3-D world coordinate system to the 3-D camera’s coordinate 

system. The intrinsic parameters represent a projective 

transformation from the 3-D camera’s coordinates into the 2-

D image coordinates.  

The intrinsic parameters are the one that are needed because 

they include the focal length, the optical center, and the skew 

coefficient. The camera intrinsic matrix, K, is defined as: 

 

    
    

     
    (19) 

       - Optical center in pixels. 

        - Focal length in pixels. 

   
 

  
    (20) 

   
 

  
    (21) 

  - Focal length in world units, typically expressed in 

millimeters. 

       - Size of the pixel in world units. 

        - Skew coefficient. 

3.3 Quaternions expressed in terms of 

Euler angles 
In order to get the better representation of the UAV’s attitude, 

the quaternions can be expressed in terms of Euler angles, 

which are easier to understand at the end of the calculation of 

the system of nonlinear equations (9). 
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And this is the opposite expression of Euler angles into 

quaternion form: 

Roll angle:             
            

   
    

    
    

  
  (26) 

Pitch angle:                           (27) 

Yaw angle:             
            

   
    

    
    

  
  (28) 

4. EXPERIMENTAL EVALUATION 

AND RESULTS 
An experimental environment has been set up for the practical 

tests with dimensions: 2 meters along x-axis, 3 meters along 

y-axis and 0 meters along z-axis. The experimental 

environment and the coordinate center of the navigation 

system are shown on figure 3. 

 

 

Fig 3. Experimental environment and navigational system 

Camera Logitech C270 is mounted on a camera stand. The 

camera has focal length of 4 mm. With the process of camera 

calibration mentioned in 3.2, the pixel size can be calculated, 

which is 0.0070622 mm for each pixel. Three short videos are 

taken with the camera, at a frequency of 15Hz with pixel 

resolution 640x480 and duration of 20 seconds.  

In the first video the yaw angle of the camera is changed, in 

the second the pitch angle of the camera and in the third video 

the  roll angle of the camera is changed. 

With precise measurements the initial vector from the camera 

position is computed,                     . The 

initial Euler angles given in degrees are precisely determined: 

roll angle    , pitch angle        and yaw angle    .  

Three small circles with radius of 50 mm are set on the floor 

in the experimental environment. They are used as map 

(reference) points for attitude determination of the camera. 

The position of each circle is known and they are presented on 

figure 4 as:                  ,     

            ,                  .  

 

Fig 4. Three circles in the work environment 

The software that is being used is Matlab. In Matlab there is a 

package called Optimization toolbox, which includes ready to 

use optimization functions. In this case the function lsqnonlin 

is used. This function enables solving problems such as 

nonlinear least-squares problems and nonlinear data-fitting 

problems. The function lsqnonlin needs defining of a user 

functions for determining parameters in vector form. This is 

the basic form for optimization problem that can be solved 

with the use of lsqnonlin: 
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    (29) 

In the last formula, x is vector or matrix and f(x) is a 

function/s which returns vector or matrix values. For example 

written in Matlab  

                       (30) 

lsqnonlin begins from point x0 and finds the solution 

described with the function fun. 

Setting the option,  

options = optimset('LevenbergMarquardt', 'on'); 

the Levenberg-Marquardt method is set up and it has initial 

value λ = 0.01. With additional setting in 

options.LevenbergMarquardt into ‘off’ and 

options.LargeScale into ‘off’ the Gauss Newton method is set 

up. 

After all this is done the algorithms are executed, actually 

instead of processing the full videos, a few images are 

separated from each video and set for processing in the 

algorithms. This is time and cost efficient and still capable to 

calculate the results. 

 

Fig 5. Change of Yaw angle, before image processing. 

 

Fig 6. Change of Yaw angle, after image processing. 

 

 

Fig 7. Change of Pitch angle, before image processing. 

 

Fig 8. Change of Pitch angle, after image processing. 

 

Fig 9. Change of Roll angle, before image processing. 
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Fig 10. Change of Roll angle, after image processing. 

With both of the methods the new Euler angles of the UAV 

have been successfully calculated, actually the new attitude of 

the UAV has been determined after the simulated movement.  

Table 1. Comparison of the initial values and the new 

calculated values of the quaternions 

 q0 q1 q2 q3 

Initial 

(Fig 4) 

0.9995

335912

00424 

0 

-

0.03053

8501305

477 

0 

Fig 6 0.9108 0.3526 -0.0063 -0.0664 

   

One example is shown in detailed values before and after 

simulated movement. Initial and new calculated values for 

quaternions are shown in Table 1, but as mentioned earlier the 

representation of the quaternions itself doesn’t give much 

explanation of the attitude of the UAV or of the changes made 

on it. In order to see the difference in both situations, 

quaternions are expressed in terms of Euler angles, which are 

easier to understand and visualize, Table 2. 

Table 2. Comparison of the initial values and the new 

calculated values of the Euler angles 

 Yaw Pitch Roll 

Initial 

(Fig 4) 
0 -3.5 0 

Fig 6 -0.1313 0.0370 0.7362 

 

The idea of the movement in Figure 6 was to make simulation 

of attitude change of the UAV especially regarding the Yaw 

angle. The results that came after executing both of the 

algorithms, Gauss-Newton and Levenberg-Marquardt, for 

Figure 6 compared to the initial attitude of the UAV, Figure 4 

were not so simple. It can be seen that by moving the UAV 

only in direction relevant around the vertical axis with 

purpose to change the Yaw angle, changes are made in all 

three Euler angles. With this experiment it is emphasized that 

all Euler angles must be taken in consideration for attitude 

determination of the UAV. 

 

 

5. CONCLUSION 
Attitude determination of UAV in space is a difficult issue for 

solving. In this paper it was presented an approach for attitude 

determination of a UAV with the use of vector observations 

from a single camera into a known environment. Firstly 

through a function for circle detection in Matlab, the 3 circles 

were detected in the work environment, which location was 

known. So after that with the image processing, the 

appropriate solution was obtained for the attitude 

determination of the UAV. The solutions were calculated with 

the use of iterative numerical methods Gauss-Newton and 

Levenberg-Marquardt method. Quaternions were used, 

because of their linearity and the possibility of avoiding 

calculating trigonometric functions, as well as the small 

number of parameters needed for successful implementation 

and of course short time for processing. The results that came 

up from the 2 methods were compared and they show that the 

Levenberg-Marqardt method is the better solution for this 

problem. Actually the Levenberg-Marqardt method is an 

improved modification of the Gauss-Newton method and in 

these days finds wide specter of use in the literature of 

computer vision.  
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