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Weiterer Prüfer: Prof. Dr. Christoph Lehner

Termin Promotionskolloquium: 20.05.2019



Contents

1 Introduction 5

2 Classical Hamiltonian dynamics 15
2.1 Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Linear stability of Hamiltonian systems . . . . . . . . . . . . . . . . . . . 18

2.2.1 The stability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Lyapunov exponents and the decomposition of the stability matrix 19
2.2.3 Pairing rule of the Lyapunov exponents . . . . . . . . . . . . . . . 21
2.2.4 Constants of motion and their relation to neutral directions . . . . 23

2.3 Properties of chaotic Hamiltonian dynamics . . . . . . . . . . . . . . . . . 25
2.3.1 Mixing and ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Semiclassical treatment of bosonic quantum many-body systems described by
the Bose-Hubbard model 29
3.1 Bosonic Fock space and its representations . . . . . . . . . . . . . . . . . . 30

3.1.1 Bosonic Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Creation and annihilation operators . . . . . . . . . . . . . . . . . 31
3.1.3 Quadrature operators and quadrature states . . . . . . . . . . . . . 32
3.1.4 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Bose-Hubbard models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 The semiclassical approximation for the propagator . . . . . . . . . . . . . 40

3.3.1 The time-evolution operator . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Feynman path integral representation of the propagator . . . . . . 42
3.3.3 The semiclassical approximation of the propagator . . . . . . . . . 46

4 Semiclassical analysis of out-of-time-order correlators (OTOCs) 51
4.1 The OTOCs and their expected behaviour for short times . . . . . . . . . 51

4.1.1 Wigner-Weyl transformations . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Expected behavior of OTOCs . . . . . . . . . . . . . . . . . . . . . 54

4.2 Semiclassical treatment of OTOCs for bosonic many-body systems . . . . 57
4.2.1 The trajectory-based semiclassical representation of the OTOC . . 58
4.2.2 Identification of the main contributions to the OTOC . . . . . . . 60
4.2.3 Geometry of encounters in phase space . . . . . . . . . . . . . . . . 62
4.2.4 Density, amplitudes and action difference of diagrams with en-

counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



2

4.3 Calculation of diagrammatic contributions . . . . . . . . . . . . . . . . . . 67
4.3.1 Contributions of four-leg diagrams . . . . . . . . . . . . . . . . . . 67
4.3.2 Contributions of two-leg diagrams . . . . . . . . . . . . . . . . . . 70
4.3.3 Contributions of zero-leg diagrams . . . . . . . . . . . . . . . . . . 72

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Pre-Ehrenfest behaviour . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Post-Ehrenfest behaviour . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Further remarks and implications . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Generalization of the methods to OTOCs with more generic oper-

ators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Generalization towards a Lyapunov spectrum and general hyper-

bolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.3 Non-ergodic many-body dynamics . . . . . . . . . . . . . . . . . . 81
4.5.4 Time-reversal invariance and higher-order quantum corrections . . 81
4.5.5 Small-h limit and single-particle systems . . . . . . . . . . . . . . . 82

5 Al’tshuler-Aronov-Spivak oscillations for interacting bosonic atoms 85
5.1 The Aharonov-Bohm ring with cold atoms . . . . . . . . . . . . . . . . . . 86

5.1.1 Bose-Hubbard Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Mean-field equations . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.3 Reflection and Transmission . . . . . . . . . . . . . . . . . . . . . . 91
5.1.4 Green’s function approach and the role of disorder . . . . . . . . . 93

5.2 Numerical predictions for Al’tshuler-Aronov-Spivak (AAS) oscillations . . 98
5.2.1 The noninteracting case . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Inversion of peaks of the AAS oscillations for interacting cold atoms101
5.2.3 Truncated Wigner approximation and its relation to the mean-field

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Diagrammatic approach towards Al’tshuler-Aronov-Spivak oscillations 107
6.1 The noninteracting case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Basic resummation of diagrams . . . . . . . . . . . . . . . . . . . . 108
6.1.2 Symmetry arguments to derive other resummed diagrams . . . . . 110
6.1.3 Further resummed diagrams . . . . . . . . . . . . . . . . . . . . . . 111
6.1.4 Full reflection and transmission amplitude in the noninteracting case113

6.2 The interacting case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.1 Perturbative treatment of interaction . . . . . . . . . . . . . . . . . 115
6.2.2 Effective reflection and transmission amplitudes in linear order in

the interaction strength . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Disorder averaged reflection and transmission probabilities in lin-

ear order in the interaction strength . . . . . . . . . . . . . . . . . 121
6.2.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Summary and outlook 127



3

Appendices 133
A.1 Evaluation of matrix elements of the Bose-Hubbard Hamiltonian . . . . . 133
A.2 Stationary phase approximation applied to the Feynman path integral . . 137
A.3 Calculation of the action difference . . . . . . . . . . . . . . . . . . . . . . 144
A.4 Calculation of encounter-related integrals . . . . . . . . . . . . . . . . . . 147

A.4.1 Frequently used integrals in the calculations of encounters . . . . . 147
A.4.2 Encounter integral of the four-leg diagram . . . . . . . . . . . . . . 148
A.4.3 Encounter integral of the two-leg diagram with the encounter at

the beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.4.4 Encounter integral of the two-leg diagram with the encounter at

the end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.4.5 Encounter integral of the zero-leg diagram . . . . . . . . . . . . . . 154

A.5 Scattering matrix elements for a discretized Y-junction . . . . . . . . . . . 156
A.6 List of resummed diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.7 Numerical averaging of reflection and transmission probabilities . . . . . . 159

List of publications 163

Notation 165

Bibliography 167

Acknowledgments 177

Index 179





1 Introduction

Wave interference and the semiclassical theory

The formation of waves is an omnipresent feature found in nature, taking place in a
variety of scenarios and length scales. Waves in water are observable in any amount
of the liquid, from glasses of water up to the ocean. The humans hearing relies on
capturing acoustic waves with the ears. Applications of electromagnetic waves are found
in numerous fields, such as in communication, in imaging, and in the manipulation of
matter. Finally, one of the fundamental axioms underlying the quantum theory is that
of particle-wave duality, i.e. particles behave as waves and waves admit a description in
terms of particles.

For the study of waves one in general employs a suitable theory describing in an
efficient way their formation and propagation in the system of interest. For instance, we
have Maxwell equations for classical electromagnetic waves or the Schrödinger equation
for non-relativistic quantum mechanical systems. They all have in common that they
comprise the interference of waves, leading to a lot of interesting phenomena such as the
formation of standing stationary solutions. Within the quantum theory, such solutions,
for instance, are what yield orbitals of an atom.

As one might imagine, using the wave equations becomes more cumbersome and even
impossible if the scales of the system, such as its diameter, are many orders of magnitude
larger than the wavelength or other scales provided by the wave. This raises the need
for effective theories, and their derivation relies on an analysis of the wave equation in
a formal limit of “~eff → 0”, where an effective Planck’s constant ~eff is used as a small
parameter comprising the relation of scales between the wave and the system. In case of
a single-particle wave described by the Schrödinger equation, this parameter is related
to Planck’s constant, ~eff ∝ ~, and the according limit is found to be the classical limit
governed by the Hamilton’s equations of motion. The theory responsible for drawing
the connection between classical and quantum physics is known as semiclassical theory
[1, 2], and not only explains the emergence of classical dynamics from the quantum
description, but also provides means to treat wave interference in quantum systems in
the semiclassical limit “~eff � 1”, for which a purely classical description is not yet
sufficient.

The semiclassical theory relates the description of the quantum system to the dy-
namics found in its corresponding classical limit. Its basic method is to take classical
paths, i.e. solutions of the Hamilton’s equations of motion, and associate them with a
weighting amplitude and with a phase accumulated along. Interference phenomena as
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a consequence of the quantum nature of the systems are in the semiclassical formal-
ism captured through the interference of contributions of multiple paths sharing the
same boundary conditions. This way, the semiclassical theory goes beyond the purely
classical description of the system, and even more, the picture of “interfering classical
paths” provides valuable insight into the interference mechanism leading to the observed
phenomena.

For instance, a typical system where the assumptions of classical physics are brought
to its limits are mesoscopic systems, where the length and energy scales are large com-
pared to atomic scales, but the coherence length is small compared to the system size.
This makes even a numerical treatment of the full-fletched quantum-mechanical problem
rather unfavorable, while a purely classical treatment is not able to capture the inter-
ference of the still coherent particle wave. The use of powerful semiclassical theories for
these systems allowed to successfully explain effects such as weak localization [3], where,
in comparison to the classically expected value, the interference contribution of a path
with its time-reversed partner leads to an enhancement of back-reflection (and there-
fore to an enhanced resistance) in the transport of particles through disordered media
or mesoscopic phase-coherent conductors. Due to the conservation of current, this en-
hancement is accompanied by a reduction of transmission (or conductivity), which could
semiclassically be attributed to the interference contribution of trajectories undergoing
self-crossings. The reduction of transmission is then explained by trajectory pairs, which
traverse the loop formed by the self-crossing in time-reversed directions [4].

Yet another prominent effect in mesoscopic systems is found in the electronic transport
through a ring penetrated by a magnetic field [5]. Within the semiclassical picture, the
magnetic field contributes an additional phase accumulated along the paths – an effect
known as Aharonov-Bohm effect [6]. It is observable through oscillations of the conduc-
tivity as a function of the flux encircled by the ring, which again within the semiclassical
theory can be quantitatively understood through the interference of paths. If the ring is
additionally subject to a disorder potential, which is weak and smooth enough to avoid
wave localization, the Aharonov-Bohm oscillations turn into Al’tshuler-Aronov-Spivak
oscillations [7] seen in the disorder-averaged transmission as a function of the encircled
flux. Interestingly, these oscillations show half the period of the conventional Aharonov-
Bohm oscillations. Its semiclassical explanation, which we will also re-encounter for a
different setup within this thesis, yields a similar mechanism as the one underlying weak
localization: the interference of time-reversed partners.

Bosonic quantum many-body systems and their mean-field description

Like for mesoscopic systems, the question of effective theories also arises in the context
of quantum systems containing many interacting particles. For bosonic quantum many-
body systems, which are the focus of this thesis, the still growing interest emerged from
the first realization of Bose-Einstein condensates (BECs) with rubidium (87Rb) [8] and
sodium atoms (23Na) [9] using magnetic trapping potentials and laser cooling techniques.
Since then, numerous experimental techniques have been developed to provide devices
to explore the properties of BECs, see for instance Refs. [10, 11] for a review.
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Potential landscapes can be generated using laser fields whose frequency is slightly de-
tuned to an internal transition frequency of the atoms. Through interference of multiple
high-intensity laser fields in opposite directions one can create standing waves, thereby
forming optical latices in three, two, and one dimension [12–14], or continuous ring-
shaped structures [15]. Furthermore, rapidly moving laser beams allow the creation of
optical billiards [16] or ring-shaped lattices [17]. Transport experiments are also feasible
through so-called atom lasers [18, 19], where through a controlled and coherent outcou-
pling process, a beam of atoms at well-defined energy and particle current density can
be released from a BEC into an optical waveguide. The generated structures have in
common that they are free of defects and allow a high experimental accessibility of its
parameters. If instead a highly controllable randomized disorder potential is needed,
this can be achieved, for instance, by a laser field passing through a diffusive plate to
produce an optical speckle field [20]. Finally, one can create synthetic gauge fields [21,
22], which play a similar role for the uncharged atoms than magnetic fields for electrons.

Apart from the above mentioned properties, possibly one of the most intriguing fea-
tures of cold atoms is that the strength of an effective particle-particle interaction is
highly tunable through means of Feshbach resonances (see Ref. [23] for a review): an
external magnetic field changes the internal structure through the (anomalous) Zeeman
effect such that in the scattering of two bosonic particles an excited molecular bind-
ing state comes in resonance. This significantly changes the scattering length, and can
be understood as an effective interaction. While this is known as magnetic Feshbach
resonance, the optical Feshbach resonance relies on an optical transition to an excited
rotational-vibrational level of the molecular state. In any case, near the resonance, the
strength of the effective interaction significantly grows but can also undergo a sign change
when tuning the field strength near the resonance condition.

As one of the many means to theoretically treat the quantum many-body problem,
effective theories are used, which replace the interacting many-body problem by an ef-
fective wave description of the system. For bosonic systems, such an effective theory is
found within the Gross-Pitaevskii equation [24, 25], obtained by the assumptions that
relevant single-particle states are occupied by a large number of bosons. This allows to
substitute the Heisenberg picture of bosonic quantum field operators in second quanti-
zation by scalar complex field, whose squared modulus is interpreted as the associated
occupation of the single-particle state – an approximation also known as mean-field ap-
proach. The dynamics is then described by an effective wave equation similar to the
single-particle Schrödinger equation, however with a term nonlinear in the matter wave
as a consequence of interaction.

The validity of the mean-field approach is in the limit of a large number N of particles,
“N → ∞”, while the energy comprised in interaction amongst particles remains small
compared to the kinetic energy. Such a description is already enough to explain many
interference phenomena also known from electronic systems, such as the experimental
observation of coherent back-scattering for matter waves of noninteracting bosons [26],
and Anderson localization [20, 27]. Even more, the possibility to have a weak particle-
particle interaction allows to raise the interesting question how interaction influences
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these well-known effects. Due to the resemblance of an effective single-particle theory,
one can again employ semiclassical techniques in the formal limit “~ → 0” to find and
investigate the solution of the mean-field problem, provided the same assumptions as in
the single-particle case are met. This led, for instance, to the prediction of an inversion
of the peak in the coherent back-scattering probability due to weak particle-particle
interaction [28], while in the transport of cold bosonic atoms through chaotic cavities
the weak localization peak shows an interaction-based reduction [29].

A part of this thesis makes a new addition to this list by studying Al’tshuler-Aronov-
Spivak oscillations in the coherent transport of interacting bosons through a ring with
disorder, penetrated by a synthetic gauge field for bosons. There, numerical studies
by R. Chrétien et al. [30] indicate an inversion of the oscillations when the interaction
strength is increased, and it is one of the aims of this thesis to use semiclassical techniques
in the formal limit “~ → 0” to develop an understanding of this behaviour in terms of
interfering scattering paths.

For larger interaction strength, the nonlinear nature of the mean-field description leads
to instabilities of the solutions of the mean-field equations [29, 31, 32]. The situation
becomes then comparable to single-particle quantum systems in a scenario, where the
quantum dynamical behaviour does not follow effectively a single classical trajectory any
more. One has to take into account contributions arising from other classical trajectories,
or, in the context of bosonic quantum many-body systems, of other solutions of the mean-
field or Gross-Pitaevskii equation. This thinking ultimately led to the development of
a semiclassical theory, here taking the inverse number of particles as effective Planck’s
constant, ~eff = 1/N [33, 34]. Within this theory the mean-field equations emerge as
Hamilton’s equations of motion of a Hamilton function found as the complementary
classical “~eff = 1/N → 0” limit of the bosonic quantum many-body Hamiltonian.
Remarkably, since this semiclassical theory associates the wave solutions of the mean-
field equations with an additional phase accumulated along the solution, we can have
interference phenomena happen both at the mean-field level to produce the distinct
solutions, and at the semiclassical level through the interference of contributions of
multiple mean-field solutions. The truncated Wigner method, which is commonly used to
obtain results beyond the Gross-Pitaevskii description, is re-derived in this semiclassical
theory as diagonal contribution, which is the semiclassical contribution arising from
many-body interference of mean-field solutions with themselves [33, 35, 36].

Thinking of the mean-field equations as classical equations in the limit “1/N → 0”
quite naturally raises the question whether the unstable behaviour seen in the mean-
field dynamics for stronger interactions can be related to what is known from studies
of unstable dynamics in chaotic classical systems. Indeed, once the kinetic energy of
the individual particles becomes comparable to the energy stored in the interaction,
signatures of chaotic dynamics in the mean-field description are seen [37–39]. Quite
generally in the study of interacting many-body systems, not limited to just bosonic
ones, the observation of similar features as those that are known from single-particle
systems with a classical chaotic limit, known as quantum chaos [1], led to an increased
interest into this field in the recent years, and ultimately to the emergence of the field
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“many-body quantum chaos”.

Out-of-time-order correlators as probes of many-body quantum chaos

A particular attention to many-body quantum chaos started with the proposal of Kitaev
[40] and related works [41–43] that addresses the question of what is the mechanism
behind the ”scrambling” of quantum information, the spreading of initially localized
information across the many degrees of freedom of an interacting many-body system. It
is conjectured that chaotic dynamics in a suitable (and in some models yet to understand)
classical limit of the quantum many-body system produces the unstable dynamics which
lead to a fast distribution of information across the system. A central object which
aims at probing this many-body quantum-to-classical correspondence is the so-called
out-of-time-order correlator (OTOC) [43–45]

F (t) = 〈Ψ|V̂ †(t)Ŵ †(0)V̂ (t)Ŵ (0)|Ψ〉 , (1.1)

for which several experimental protocols [46–48] and first experiments [49, 50] are avail-
able. Its name originates from the unusual ordering of the involved operators in time.

An interpretation of the OTOC F (t) is possible by explicitly writing the Heisenberg

picture of the operator V̂ (t) = e(i/~)ĤtV̂ e−(i/~)Ĥt and understanding F (t) as the overlap
of two states [51]: one of the states takes the initial state |Ψ〉 and applies Ŵ , then

evolves the obtained state forward in time with e−(i/~)Ĥt, applies V̂ , and evolves back

in time with e(i/~)Ĥt. The second state applies Ŵ at the end of this sequence instead of
the beginning. Within this description the OTOC bears similarities to the Loschmidt
echo [52], however here with twice the number of forward and backward evolutions in
time. Even if V̂ and Ŵ are taken as local, commuting operators with an initial overlap
F (t = 0) = 1, when time evolves, V̂ (t) becomes a non-local operator, and the growing
complexity of V̂ (t) encodes the unstable dynamics within the quantum system. As a
consequence, Ŵ and V̂ (t) cease to commute, and consequently F (t) decreases in time.
Since the rate of decrease relates to the growing complexity of V̂ (t), this makes F (t) a
quantum probe for chaos in the classical limit.

This last conclusion, the connection to the dynamics in the classical limit of the
quantum system, can even more easily be seen with a closely related object, which is
also dubbed out-of-time-order correlator. It is the expectation value of the squared
commutator [43, 44],

C(t) =

〈[
V̂ (t), Ŵ (0)

]†[
V̂ (t), Ŵ (0)

]〉
, (1.2)

in which F (t) appears as one of the terms when carrying out the products of operators.
Here, we can apply the quantum-to-classical correspondence principle which replaces the
commutator of the two operators by the Poisson bracket of their classical analogues. The
evaluation of the latter then results in an intuition for the dynamical behaviour and the
role of OTOCs as a many-body quantum analogue of classical measures for instability
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Figure 1.1: Dynamical behaviour of the OTOC C(t) = −
〈

[p̂(t), p̂] 2
〉

for the one-

dimensional kicked rotor for different kicking strengths K. The average is
performed over a Gaussian wave packet with initial momentum p0 = 0. (Fig-
ure adapted from Ref. [53])

of chaotic many-body dynamics. For instance, if the operators are the momentum and
the position operator for a single particle, Ŵ = p̂i, V̂ = q̂j , we have [43, 44, 47]

C(t) = 〈[p̂i, q̂j(t)][q̂j(t), p̂i]〉 ≈ −(i~)2
〈
{pi, qj(t)}2

〉
cl

= ~2

〈(
∂q

(f)
j (t)

∂q
(i)
i

)2〉
cl

, (1.3)

where 〈.〉cl denotes a classical phase space average related to the quantum expectation
value in Eq. (1.2). Here, the evaluation of the Poisson bracket directly results in an
element of the so-called stability matrix. The stability matrix describes the variation of
a trajectory’s final point upon changes of its initial condition, and can be used to distin-
guish regular from unstable dynamics. If the motion takes place in an integrable system,
the growth of the elements of the stability matrix is at most polynomial. Contrarily,
in chaotic systems, the motion is hyperbolic and leads to an exponential separation of
trajectories. This is observed in an exponential growth of the elements of the stability
matrix, whose rate defines the classical Lyapunov exponent λ. Consequently, the growth
rate of the OTOC is given by twice of λ,

C(t) ≈ ~2e2λt . (1.4)

Indeed, an exponential growth of the OTOC has been observed in numerical studies of
single particle systems [53], see also figure 1.1 at times t ≤ tE. Hence, the OTOCs C(t)
or F (t) allow, as quantum objects, an immediate access to classical measures of chaos
in the classical limit of the quantum system.

The OTOC is studied both for single particle [53] and many-body systems, for instance
in analytical works for Sachdev-Ye-Kitaev models [54, 55] or through random matrix
theory [56–58] where λ→∞. Attempts to identify the many-body Lyapunov exponent
from Eq. (1.2) by numerical means still remains a challenge [59–61]. This difficulty
can be attributed to quantum mechanical unitarity, which prevents the OTOC C(t)



11

from performing an unbounded classical growth as predicted by Eq. (1.4), but rather
enforces an eventual bound. This is indeed seen in numerical studies of C(t) [53, 59],
where the OTOC is found to saturate, see Fig. 1.1 at times t ≥ tE. Quite interestingly,
the characteristic time scale at which the exponential growth ceases and the saturation
commences is found to be a time scale known as Ehrenfest time tE [62, 63], and is
dubbed scrambling time [43, 64] in the many-body context. The Ehrenfest time tE
is the time needed for details of the order of the quantum mechanical wavelength to
grow under classical dynamics to a typical system size. This time separates the classical
regime, where the initial quantum evolution essentially follows the classical motion, from
the quantum mechanical one, where interference effects have to be taken into account.
Quite generally for quantum chaotic systems, this time scale for the classical-to-quantum
crossover can be formalized by tE ∝ (1/λ) log(1/~eff) involving the classical Lyapunov
exponent λ and the effective Planck’s constant ~eff, whose definition, as we have seen,
can denote complementary classical limits: for a fixed, finite particle number N , we
have ~eff ∼ ~ and λ is the characteristic Lyapunov exponent of the limiting classical
particle dynamics. For many-body systems with a large number N of particles, we
discover the mean-field description as classical limit with “~eff ' 1/N → 0”. Here,
the Lyapunov exponent λ characterizes the instability of the corresponding nonlinear
mean-field solutions.

Due to the appearance of the Ehrenfest time tE, the saturation of OTOCs has been
attributed to the onset of quantum many-body interference [41, 53, 54, 61], without so
far identifying its underlying dynamical interference mechanism.

The Moyal expansion [55, 57] of commutators in powers of ~eff, which is implicitly
used to find Eq. (1.3), is not able to go beyond the Ehrenfest time, and can therefore not
capture the interference-based saturation of OTOCs beyond tE. To adequately describe
the post-Ehrenfest behaviour of OTOCs, other techniques are needed. Such are available
through the semiclassical theory, and have been originally developed for single particle
[65–72], and recently also adapted to many-body systems [34, 73–77].

A major part of this thesis aims at extending these approaches to develop a semiclas-
sical theory for OTOCs and provide a unifying understanding of both the pre-Ehrenfest
exponential growth and the interference mechanism leading to the post-Ehrenfest satu-
ration of OTOCs. Moreover, it explicitly identifies the Lyapunov exponent and explains
its emergence, as well as the role of the Ehrenfest time within this theory. Our focus here
lies on bosonic large-N systems, for which the classical “N →∞” limit can be defined,
and for which the basis for a semiclassical theory, the semiclassical approximation for
the many-body propagator in bosonic Fock space [33, 34], is at hand.

Outline of this thesis

The thesis is structured as follows:
Chapters 2 to 4 are devoted in the detailed presentation of the semiclassical theory to

understand and explain the dynamical behaviour of out-of-time-order correlators. This
derivation is rather generic, and we choose to present it for the many-body scenario of
many interacting bosonic atoms contained in an optical lattice with a finite number of
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sites.

In chapter 2 we provide the basic understanding of unstable classical Hamiltonian
dynamics, as this is both needed for the technical parts deriving the theory, as well as
for the understanding of the dynamical behaviour of OTOCs themselves. Therefore,
we review the relevant concepts from classical Hamiltonian formalism, with a special
emphasize on the description of the stability of trajectories upon changes of their initial
conditions. There we learn about Lyapunov exponents, which encode the rate of ex-
ponential separation of two trajectories starting nearby. Through the directions of the
stable, unstable and neutral manifold, we obtain a possibility to describe the local phase
space in the near vicinity of a given trajectory, which proves essential for the technical
derivation of the semiclassical theory for the OTOC. We end the chapter by a discussion
of the defining properties of classically chaotic systems.

In chapter 3 we turn to the Bose-Hubbard Hamiltonian as a model for bosonic atoms in
an optical lattice. Starting from second quantization, we introduce quadrature operators,
which, in the same spirit as position and momentum operators in single particle systems,
represent the quantum analogue of conjugate variables for the classical “~eff = 1/N → 0”
limit of the many-body system. Based on those operators, we derive the semiclassical
approximation of the propagator in Fock space which is our main tool in the semiclassical
study of OTOCs. Here we see that the mean-field, Gross-Pitaevskii equations emerge
as Hamilton’s equations of motion from the Hamilton function found as the classical
“~eff → 0” limit of the quantum Hamiltonian.

Chapter 4 is devoted to the semiclassical analysis of the dynamical behaviour of
OTOCs. For intuition we derive the short-time limit of the OTOC through a detailed
review of the Moyal-bracket expansion underlying Eq. (1.3). We then start the semiclas-
sical analysis of OTOCs by expressing them through semiclassical propagators in Fock
space. This introduces summations over mean-field solutions, weighted by amplitudes
and phases accumulated along. By considering subtle classical correlations amongst these
solutions we identify and compute the dominant contributions to the OTOC, which prove
responsible for the exponential growth at times smaller than the Ehrenfest time, and for
the saturation after the Ehrenfest time.

Chapters 5 and 6 are devoted to a discussion of the effect of interaction on Al’tshuler-
Aronov-Spivak oscillations in the coherent transport of cold atoms through an Aharonov-
Bohm ring. This work requires the detailed studying of a single mean-field solution rather
than the interference of multiple solutions such as for the OTOC. It is a work done in
collaboration with R. Chrétien, J. Dujardin, C. Petitjean and P. Schlagheck.

Chapter 5 summarizes the work performed by my collaborators. We introduce the
Aharonov-Bohm setup, a ring structure with waveguides attached to it at opposite sites.
The ring is penetrated by a synthetic gauge field and contains a Gaussian correlated
disorder potential within its arms. We show numerical results for the transmission
probability, which is obtained from solving the mean-field equations. These results dis-
play Al’tshuler-Aronov-Spivak oscillations in the noninteracting case. In the presence
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of a weak particle-particle interaction inside the ring, an inversion of the oscillation is
observed, which motivated my study of the mean-field problem in chapter 6. As prepa-
ration for the analytical treatment of the system, we show how to relate the reflection
and transmission probabilities to the Green’s function of the noninteracting mean-field
problem, and derive a semiclassical representation of this Green’s function in the form
of a summation of weighted phases accumulated along scattering paths, which perform
multiple oscillations within the ring.

Chapter 6 marks my contribution to the collaboration and shows how to perform
the summation over scattering paths in the noninteracting case. Interaction is then
incorporated in a perturbative manner, and we present the calculation of the reflection
and transmission probabilities up to linear order in the interaction strength, leading to
interaction-based corrections to the Al’tshuler-Aronov-Spivak oscillations.





2 Classical Hamiltonian dynamics

This chapter reviews classical Hamiltonian dynamics, with special em-
phasize on the stability of trajectories. In order to describe the local
phase space in the vicinity of a given trajectory we introduce the con-
cept of stable, unstable, and neutral manifolds, together with Lyapunov
exponents as quantities encoding the exponential sensitivity of trajec-
tories towards changes in its initial conditions. The chapter ends with
the defining properties of classical chaotic systems.

Throughout this thesis we will consider quantum systems which allow for the notion
of a classical limit. For such systems, the semiclassical theory provides powerful tools
to explain and interpret interference phenomena in the semiclassical limit by exclusively
using information from the classical realm. It is through these methods that we are
able to understand OTOCs and to confirm that these correlators are suitable tools to
quantify and identify chaos in the classical limit of a quantum system.

For the systems considered within this thesis the classical limit of the quantum system
is described by the Hamiltonian formalism. A proper understanding of this formalism
is needed both for the semiclassical theory in general and for understanding the dynam-
ical behavior of OTOCs. This chapter aims to provide the reader with the necessary
mathematical framework of classical Hamiltonian dynamics, with special emphasize on
classical chaotic systems.

Many books containing a general introduction into classical Hamiltonian dynamics
exist, see for instance [78–80]. For the subsequent chapter, we choose to follow the
introductory chapter in the dissertation of Marko Turek [81], together with its main
reference, the first chapter of the book by Gaspard [82], as these references provide
the details in the description of the local phase space structure needed for this thesis.
Additional sources are cited when they appear in the manuscript.

2.1 Hamiltonian systems

Within the Hamiltonian formalism a classical system is fully described by a single func-
tion, the Hamilton function H(q,p, t). The arguments of this function are the “time”
t and vectors q and p of the same dimension d.1 The dimension d is referred to as the

1In a more rigorous mathematical treatment using the language of differential geometry, q is an element
of a d-dimensional manifold Ω, known as configuration space, and p is a vector from the dual space of
its tangent space, see e.g. [83]. However, for readability, we only consider here Hamiltonian systems
whose configuration space is represented by a real vector space. This simplifies the presentation and
representation of the stability matrix M in the subsequent section.
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number of degrees of freedom. Often, one denotes q as “position” and p as “momentum
vector”, but depending on the actual physical system described by H these variables do
not necessarily represent a position in space and the mechanical momentum of physical
particles.2

We can combine the two vectors into a single vector of dimension 2d, the phase space
point

x =

(
q
p

)
, (2.1)

and we call the set of all these vectors phase space X 3. A phase space point holds the
current state of the system, and the dynamics of the system is given by a set of ordinary
differential equations, the Hamilton’s equations of motion,

q̇(t) =

[
∂H
∂p

(q(t),p(t), t)

]ᵀ
, ṗ(t) = −

[
∂H
∂q

(q(t),p(t), t)

]ᵀ
, (2.2)

where the dot denotes a derivative w.r.t. the time t. Any function solving Hamilton’s
equations of motion is referred to as a trajectory (in phase space).

We can combine the above expressions into a single expression for the phase space
point,

ẋ(t) = Σ ·
[
∂H
∂x

(x(t), t)

]ᵀ
, (2.3)

where we used the fundamental matrix of the symplectic structure,

Σ =

(
0 1
−1 0

)
. (2.4)

As Eq. (2.3) is an ordinary first order differential equation, one and only one solution of
these equations can be found for a given initial condition x0 = (q0,p0) at time t0, and
we write x(t; x0, t0) for the function solving (2.3) subject to these initial conditions. An
(infinitesimally) small variation of the initial conditions leads to a smooth variation of
the found solution, rendering the solution a smooth function of the boundary conditions.
Finding the solution to a given initial condition is (in the general context of differential
equations) referred to as an initial value problem.

Contrarily, the property of uniqueness and existence of solutions is lost in the case
of a boundary problem, where one searches for trajectories fulfilling conditions both
at an initial time t0 and a final time t1 > t0. For instance, by fixing the initial and
final position vector, q(t0) = q(i), q(t1) = q(f). For boundary problems, it is possible
to have any number of solutions, with the extreme cases being no solution and an

2Indeed, as we see in section 3.3.3, in the classical limit for Bose-Hubbard models q and p even lack a
direct physical interpretation. However, the squared absolute value of components of the phase space
point, |xi|2 = |qi|2 + |pi|2 is associated to the particle density at the site i, as seen from Eq. (3.22).

3In the context of differential geometry, the phase space is the co-tangent bundle, X = T ∗Ω, with Ω
denoting the configuration space.
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uncountable infinite number of solutions4. Different trajectories found in a boundary
problem are distinguished by Greek letters as subscript, e.g. γ, and we write xγ(t) ≡
xγ(t; q(f),q(i), t1, t0) for the corresponding solution of Hamilton’s equations of motion.
Note that solutions of the initial value problem can be distinguished from those of the
boundary value problem through the presence of the label γ in the notation. Similar to
the initial value problem, an (infinitesimally) small variation of the boundary conditions
leads to a smooth variation of the found solution, rendering the solution a smooth
function of the boundary conditions.

There is an important function associated with a solution of the boundary value prob-
lem. In order to define this function, the action functional R[x(t)] is used, which returns
the integral of the Lagrange function along the path x(t) in phase space. The action is
well-defined for any smooth enough path x(t) in phase space, not necessarily a solution
of Hamilton’s equations of motion. However, evaluating the action of a classical trajec-
tory γ introduces Hamilton’s principal function Rγ(q(f),q(i), t1, t0) = R[xγ(t)], which is
a function associated with the trajectory γ, with the boundary conditions as arguments.
Expressing the Lagrange function in phase space variables through the Hamilton func-
tion, we find

Rγ(q(f),q(i), t1, t0) = R[xγ(t; q(f),q(i), t1, t0)]

=

∫ t1

t0

dt [(pγ(t))ᵀq̇γ(t)−H(qγ(t),pγ(t), t)] .
(2.5)

where in the last line we dropped the dependence on q(f), q(i), t1, t0 from the trajectory-
related function qγ , pγ . The derivatives with respect to initial and final position result
in the conjugate momenta,[

∂Rγ

∂q(f)
(q(f),q(i), t1, t0)

]ᵀ
= p(f)

γ (q(f),q(i), t1, t0) , (2.6)[
∂Rγ

∂q(i)
(q(f),q(i), t1, t0)

]ᵀ
= −p(i)

γ (q(f),q(i), t1, t0) , (2.7)

which formally allows the interpretation of Rγ as a local generating function for the
canonical transformation from initial to final phase space coordinates along γ. Hamil-
ton’s principal function is of central importance within the semiclassical approximation
of the time evolution operator, as we will see in chapter 3.3.

So far, our considerations include Hamilton functions with an explicit time depen-
dence. To simplify the subsequent presentations, we, from now on, limit our considera-
tions to time-independent Hamilton functionsH(q,p). Note that this is not a restriction,
as any time-dependent Hamilton function of spatial dimension d can be transformed into

4As examples consider a single-particle Hamiltonian system in standard form. If the potential energy
separates two areas by a wall of infinite potential, no solution can be found linking the separate
areas. Contrarily, if in an elliptical billiard the boundary conditions are such that initial and final
position are the focal points the other extreme case of an uncountable infinite number of solutions is
produced.
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a time-independent Hamiltonian system of dimension d + 1 by introducing energy and
time as an additional set of conjugate variables [79],

K(Q,P) = H(q,p, t)− E where Q =

(
q
t

)
, P =

(
p
−E

)
. (2.8)

In this picture t becomes a component of the coordinate vector and looses its interpre-
tation as “time” in the dynamical equations governed by the new Hamilton function
K.

For a time-independent Hamilton function, it can be shown that only the difference
t − t0 between initial time t0 and final time t appears in a dynamical quantity. It is
thus justified to take the initial time t0 = 0 as the zero of time and drop it from the
arguments of dynamical quantities.

2.2 Linear stability of Hamiltonian systems

In this section we discuss the stability of trajectories, i.e. the change of the trajectory
due to infinitesimal changes in its initial conditions.

2.2.1 The stability matrix

Let x0 be an arbitrary phase-space point, and δx0 be an infinitesimally small initial
perturbation such that the perturbed trajectory x(t; x0 + δx0) stays infinitesimally close
to the trajectory x(t; x0). A treatment in the linearizable regime is thus justified, and
we obtain by linearization around the initial phase space point

δx(t; x0, δx0) = x(t; x0 + δx0)− x(t; x0)

=
∂x

∂x0
(t; x0) · δx0 = M(t; x0) · δx0 ,

(2.9)

where we introduced the stability matrix

M(t; x0) =
∂x

∂x0
(t; x0) . (2.10)

As the derivative of the phase space point w.r.t. the initial phase space point, the stability
matrix, by definition, encodes the stability of a trajectory towards infinitesimal variations
of its initial conditions. Utilizing Hamilton’s equations of motion, Eq. (2.3), we can derive
equations of motion for the stability matrix. On the one hand, we find

δẋ(t; x0, δx0) = Σ ·
(
∂H
∂x

(x(t; x0 + δx0), t)− ∂H
∂x

(x(t; x0), t)

)ᵀ

= Σ · ∂
2H

∂x∂x
(x(t; x0)) ·M(t; x0) · δx0 .

(2.11)

On the other hand, by a direct differentiation of Eq. (2.9) with respect to time, we get

δẋ(t; x0, δx0) = Ṁ(t; x0) · δx0 . (2.12)
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The above equations hold true for any infinitesimal perturbation δx0. Thus, by compar-
ing Eqs. (2.11) and (2.12), we obtain the equations of motion

Ṁ(t; x0) = Σ · ∂
2H

∂x∂x
(x(t; x0)) ·M(t; x0) , (2.13)

which are formally solved by

M(t; x0) = T exp

(∫ t

0
dsΣ · ∂

2H
∂x∂x

(x(s; x0))

)
(2.14)

=
∞∑
l=0

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sl−1

0
dsl Σ ·

∂2H
∂x∂x

(x(s1; x0)) · · ·Σ · ∂
2H

∂x∂x
(x(sl; x0)) ,

where we introduced and utilized the time-ordered exponential function T exp.

2.2.2 Lyapunov exponents and the decomposition of the stability matrix

An important property of the stability matrix is the so-called multiplicative cocycle, i.e.
M satisfies the relation

M
(
t+ t′; x0

)
= M

(
t; x(t′; x0)

)
·M

(
t′; x0

)
, (2.15)

for any positive time t′. In view of Eq. (2.9), this property contains the observation
that an initial perturbation δx0 can also be translated to the final one δx(t+ t′; x0, δx0)
through the determination of the intermediate perturbation at time t′.

Both Eq. (2.14) and Eq. (2.15) imply that an infinitesimal perturbation δx0 can at
most grow exponentially in time. We can characterize the strength of such an exponential
growth by the Lyapunov exponent associated with a perturbation vector δx0

λ(x0, δx0) = lim
t→∞

1

t
log

[
‖M(t; x0) · δx0‖

‖δx0‖

]
. (2.16)

However, the Lyapunov exponent is not a smooth function of the perturbation vector
δx0, as is concluded from the theorem of Oseledets (see for instance [84]). This the-
orem requires the property of the multiplicative cocycle, and implies that the limit in
Eq. (2.16) takes its values only from a discrete set of exponents. The set of all Lyapunov
exponents {λ1(x0), . . . , λr(x0) } found for a given initial phase space point x0 is called
the spectrum of Lyapunov exponents. Each of these Lyapunov exponents λi(x0) comes
with a multiplicity mi(x0) which add up to the dimension of the phase space,

r∑
1=1

mi(x0) = 2d. (2.17)

Depending on the sign of the Lyapunov exponent, we obtain one of three possible cases:

• Exponential growth of perturbations is equivalent to λi(x0) > 0. The correspond-
ing vectors δx0 leading to these Lyapunov exponent are denoted unstable direc-
tions.
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• Exponential decrease is equivalent to λi(x0) < 0. The corresponding vectors are
called stable directions.

• An at most polynomial growth or decrease results in λi(x0) = 0, and we call the
corresponding vectors neutral directions.

Note that the Lyapunov exponents depend, in general, on the phase space point x0, or
more precisely on the trajectory through x0, as the definition (2.16) is invariant under
translation in time.

A more thorough understanding of the exponential growth is obtained by representing
the stability matrix M(t; x0) by a decomposition of the form

M(t; x0) =
2d∑
i=1

ei[x(t; x0)] · Λi(t; x0) · fᵀi [x0], (2.18)

where the exponential growth in time is now captured by scalar functions, the local
stretching rates Λi(t,x0), with corresponding normalized vector fields ei[x], fi[x]. For
fixed x the tangent vectors obtained from these vector fields fulfill the relations

2d∑
i=1

ei[x] · fᵀi [x] = 1 , fi[x]ᵀej [x] = δij . (2.19)

Geometrically, for a fixed phase space point x, the set of tangent vectors { ei[x] } =
{ ei[x] : i = 1, . . . , 2d } forms a basis of the tangent space Tx(X ) at x. According to the
second relation in Eq. (2.19), the second family of vector fields { fi[x] } is just the dual
basis to { ei[x] }.

Using Eq. (2.19) one immediately confirms that the vector fields evaluated at different
phase space points along a classical trajectory are related to each other according to

M(t; x0) · ei[x] = Λi(t; x0) · ei[x(t; x0)]. (2.20)

Note that, despite its similarity, this relation is not an eigenvalue equation as the basis
vectors ei[x] ∈ Tx0(X ) and ei[x(t; x0)] ∈ Tx(t;x0)(X ) are, in general, elements of different
tangent vectors spaces.

Eq. (2.20) is important for the interpretation of the vector fields { ei[x] }. Along a
trajectory we find a co-traveling basis of the tangent space, which we can use to describe
the local phase space in the vicinity of this trajectory within the linearizable regime.
Moreover, a perturbation of the initial conditions in the direction ei[x0] is growing with
the corresponding stretching factor Λi(t,x0). Through the decomposition Eq. (2.18) of
the stability matrix, we can thus at any initial phase space point x0 associate directions
to the exponential growth and contraction in phase space.

The spectrum of Lyapunov exponents is easily obtained from the stretching rates
Λi(t,x0). Using δx0 = ei[x0] in (2.16) and utilizing (2.20), one finds

λi(x0) = λ(x0, ei[x0]) = lim
t→∞

1

t
log (|Λi(t; x0)|) . (2.21)
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Since through Eq. (2.18) a Lyapunov exponent is accompanied by a vector field we can
also divide the tangent space TxX into the sum of three linear independent subspaces,

TxX = Eu(x0)⊕ Es(x0)⊕ En(x0), (2.22)

where each of the vector spaces on the r.h.s. is spanned by the subset of basis vec-
tors {ei[x0]} corresponding to stable (λi(x0) < 0), unstable (λi(x0) > 0) and neutral
(λi(x0) = 0) directions.

It is very common to also refer to the vectors in Es(x0) and Eu(x0) as vectors pointing
into the direction of the local stable and unstable manifold at the phase space point x0.
In this context, the stable and unstable manifolds are submanifolds of phase space which
contain all phase space points x, whose trajectories defined by x and x0 converge to each
other in the limit t→∞ (stable) or t→ −∞ (unstable), with the distance between the
trajectories’ phase space points at equal times decreasing exponentially with time.

It is important to note that the property of exponential convergence is omitted in
mathematical definitions of the stable and unstable manifold, see e.g. [82]. Only con-
vergence towards the trajectory through x0 is demanded. Consequently, while in these
definitions the tangent space of Ws(x0) (Wu(x0)) at x0 still contains the vector space
Es(x0) (Eu(x0)), we may additionally also find vectors of neutral directions which lead
to an at most polynomial convergence of trajectories.

2.2.3 Pairing rule of the Lyapunov exponents

An important property of the stability matrix for Hamiltonian systems is that it belongs
to the class of symplectic matrices, i.e. it fulfills the matrix relations

Mᵀ(t; x0) ·Σ ·M(t; x0) = Σ . (2.23)

In order to prove this relation we use the equation of motion for M, Eq. (2.13), together
with Σᵀ = −Σ = Σ−1 to show that

d

dt
[Mᵀ(t; x0) ·Σ ·M(t; x0)] = 0 , (2.24)

i.e. the left hand side of Eq. (2.23) is a constant matrix. Since for t = 0 we have
M(0; x0) = 1, this constant matrix is equal to Σ.

By a simple transformation of Eq. (2.23) we find the inverse of the stability matrix,

M−1(t; x0) = Σ ·Mᵀ(t; x0) ·Σᵀ. (2.25)

Using further the decomposition Eq. (2.18) we obtain

M−1(t; x0) =

2n∑
i=1

(Σfi[x0]) · Λi(t; x0) · (Σei[x(t; x0)])ᵀ . (2.26)
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Alternatively, by directly checking M−1(t; x0) ·M(t; x0) = M(t; x0) ·M−1(t; x0) = 1
with the subsequent equation, one also finds

M−1(t; x0) =
2d∑
i=1

ei[x0] · Λ−1
i (t; x0) · fᵀi [x(t; x0)]. (2.27)

The comparison5 with Eq. (2.26) implies the pairing rule that for each direction i we
find a corresponding direction j with

Λ−1
i (t; x0) = Λj(t; x0) . (2.28)

This has an important consequence for the Lyapunov spectrum, as for every positive
Lyapunov λi(x0) there must exist a negative one of equal absolute value. As a conse-
quence, each positive Lyapunov exponent λi(x0) can be associated with two elements of
the set {ei(x0)} – an unstable direction with Lyapunov exponent λi(x0), and a stable
one with exponent −λi(x0). Moreover, again comparing Eqs. (2.26) with Eq. (2.27)
we also find that the dual basis vectors { fi[x0] } are related to { ei[x0] } through the
symplectic structure according to

ei[x0] = ±Σfj [x0] , fi[x0] = ±Σej [x0] , (2.29)

where the signs have to be chosen such that they fulfill

(Σfj [x0]) · (Σej [x(t; x0)])ᵀ = ei[x0] · fᵀi [x(t; x0)] . (2.30)

It is convenient to reorder the set of basis vectors {ei[x0]} in a way that directions
are grouped together when their stretching factors fulfill the pairing rule Λ−1

i (t; x0) =
Λj(t; x0). We then relabel the basis vectors in such a way, that a pair of stable and unsta-
ble directions shares the same integer index (i), while the vectors are now distinguished
through additional subscripts s/u. Neutral directions are indicated by the subscript n.
To be more precise, we assume we have k ≤ d stable and unstable directions. There, the
new notation is

{ ei[x0] } = { e(i)
s (x0), e(i)

u (x0) : i = 1 . . . , k } ∪ { e(i)
n (x0) : i = 1, . . . , 2(d− k) } . (2.31)

The same naming convention can be applied to the dual basis { fi[x0] }.
Finally, to also fix the signs in Eq. (2.29) we can demand that

f (i)
s (x0) = Σe(i)

u (x0) , f (i)
u (x0) = −Σe(i)

s (x0) , (2.32)

which transforms the second relation in Eq. (2.19) into

e(i)
u (x)

ᵀ
Σe(j)

s (x) = δij , e(i)
s (x)

ᵀ
Σe(j)

s (x) = e(i)
u (x)

ᵀ
Σe(j)

u (x) = 0 . (2.33)
5To be precise here, to use the comparison as a proof would require that the decomposition Eq. (2.18)

of the stability matrix is unique up to ordering, the signs in front of the vectors and degeneracies in
the stretching factors. However, a proof of uniqueness is not known to the author, and this chapter
should in this case rather be understood as a motivation for the pairing rule, for which a suitable
decomposition of the stability matrix fulfilling the properties Eqs. (2.28), (2.19) can be found.
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2.2.4 Constants of motion and their relation to neutral directions

In many physical systems the dynamics in phase space is restricted to a submanifold due
to the existence of constants of motion. Let I ⊂ X be a subset of phase space which is
invariant under the Hamiltonian flow. We then call a time-independent, differentiable
function C(x) defined on I a constant of motion, if it fulfills

C(x(t,x0)) = C(x0) , (2.34)

for all initial phase space points x0, i.e. the function remains constant along trajectories.
If I = X we call C(x) a global constant of motion.

By differentiating Eq. (2.34) with respect to time, and using Hamilton’s equation of
motion, Eq. (2.3), we identify an equivalent criterion for a constant of motion,

0 =
∂C
∂x

(x(t; x0)) ·Σ ·
[
∂H
∂x

(x(t; x0))

]ᵀ
= −{H, C}(x(t; x0)), (2.35)

where we introduced the Poisson bracket

{H, C} (x) =
∂H
∂p

(x)

[
∂C
∂q

]ᵀ
− ∂H
∂q

(x)

[
∂C
∂p

]ᵀ
. (2.36)

Thus, a time-independent function C is a constant of motion if and only if the Poisson
bracket between the function C and the Hamilton function H vanishes. Quite obviously,
for systems with a time-independent Hamilton function, H itself is a constant of motion
since {H,H} = 0, i.e. energy is a conserved quantity.

To be able to work, in a reasonable way, with a set of m ≤ d constants of motion
{ C(i) } = { C(i) : i = 1, . . . ,m } the functions are assumed to be chosen such that they
fulfill two further properties [80]:

1. The set of constants of motion { C(i) } is functionally independent in any open
subset of their defining set I, i.e. locally none of the constants of motion can be
expressed as a function of the others and thus, none of the functions can be treated
as obsolete. This property is equivalent to demanding that there is only the trivial
linear combination of the differentials dC(i) to zero, i.e. the problem of finding
αi ∈ R with

0 =
m∑
i=1

αidC(i) (2.37)

has only the trivial solution ∀iαi = 0.

2. The set of constants of motion { C(i) } should be in involution, i.e. we require for
the Poisson brackets

{
C(i), C(j)

}
= 0 for all i, j = 1, . . . ,m. As will become clear

before long, this property is important to find a basis for the subspace En(x) of
neutral directions which complies with the demands in Eq. (2.19) for a basis used
in the decomposition Eq. (2.18) of the stability matrix.
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Each constant of motion can be associated with two neutral directions. To see this,
we first differentiate both sides of Eq. (2.34) with respect to the trajectory’s initial PS
point x0. We then use the definition of the stability matrix M = ∂x/∂x0 , as well as
Eq. (2.25), to transform the equation into

M(t; x0) ·Σ ·
[
∂C(i)

∂x
(x0)

]ᵀ
= Σ ·

[
∂C(i)

∂x
(x(t; x0))

]ᵀ
. (2.38)

By defining

e(i)
n (x0) =

Σ
[
∂C(i)

∂x (x0)
]ᵀ∥∥∥[∂C(i)

∂x (x0)
]ᵀ∥∥∥ , (2.39)

we see that Eq. (2.38) just expresses relation (2.20), with a stretching factor

Λ(i)
n (t,x0) =

∥∥∥[∂C(i)

∂x (x(t; x0))
]ᵀ∥∥∥∥∥∥[∂C(i)

∂x (x0)
]ᵀ∥∥∥ . (2.40)

For systems in which the constant of motion limits the dynamics to a submanifold
of phase space with a finite (and thus compact) volume, this stretching factor has an
upper bound and can thus not grow exponentially in time.6 Consequently, its Lyapunov

exponent is 0, and e
(i)
n (x0) is part of the subspace En(x0). Moreover, as the constants

of motion are functionally independent, the generated vectors { e
(i)
n (x0) : i = 1, . . . ,m }

are linearly independent for almost all x0 ∈ I, and use them within the decomposition
Eq. (2.18) of the stability matrix. In that case, the pairing rule implies for each direction

e
(i)
n (x0) the existence of a second direction, whose dual vector is, with i′ ∈ {m+1, . . . , 2},

given by

f (i′)
n (x) = Σe(i)

n (x) = −

[
∂C(i)

∂x (x0))
]ᵀ∥∥∥[∂C(i)

∂x (x0))
]ᵀ∥∥∥ . (2.41)

A contradiction at this stage is prevented by the involution property of the constants of

motion , as relation (2.19) requires us to have f
(i′)
n (x)

ᵀ
e

(j)
n (x) = 0 for any j ∈ {1, . . . , k},

i′ ∈ {k + 1, . . . , 2k}. This is indeed the case, as up to normalization of the vectors, we
calculate

f (i′)
n (x)

ᵀ
e(j)

n (x) ∝ ∂C(i)

∂x
(x0) ·Σ ·

[
∂C(j)

∂x
(x0)

]ᵀ
=
{
C(i), C(j)

}
(x0) = 0 . (2.42)

The geometrical interpretation of the vector e
(i)
n (x0) ∝ Σ · (∂C(i)

/
∂x)ᵀ is that it corre-

sponds to the direction of the flow generated by Hamilton’s equation of motion, with C(i)

6An example for an unbounded system, where the constant of motion produces an exponential stretching
factor, is the inverted harmonic oscillator, H(q, p) = p2/2m−mω2q2/2, with H as constant of motion.
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used as Hamilton function. e
(i)
n (x0) is thus a tangent vector at x0 of the submanifold

defined by C(i)(x) = C(i)(x0).

Contrarily, the vector f
(i′)
n (x) = ∂C(i)

/
∂x is a normal vector to this submanifold,

demanding that the basis vector e
(i′)
n (x0) has a normal component, too. Perturbations

of initial conditions in the direction of e
(i′)
n (x0) thus lead to a change in the value of the

constant of motion C(i).

2.3 Properties of chaotic Hamiltonian dynamics

Having established the notion of Hamiltonian systems and discussed the stability of
trajectories therein in the last sections, we are now at the position to formalize our
understanding of chaotic systems by stating their main and in a way defining properties.
These are

• Mixing, which implies ergodicity,

• Hyperbolicity, and

• Periodic orbits cover a dense subset of the accessible phase space.

We will discuss in detail the meaning of the first two properties in the following sub-
sections, as those are the ones relevant for the technical part of this thesis. The third
property is stated here for the sake of completeness to arrive at a highly agreed set of
properties which, in a physicists view, define classical chaotic systems. A widely ac-
cepted precise mathematical definition of the notion “chaos” can be found for maps in
the book by Devaney, Ref. [85], with extensions to dynamical flows in Ref. [86]7.

2.3.1 Mixing and ergodicity

Contrarily to a single trajectory, the definition of mixing and of ergodicity is a property
of ensembles of phase space points. For that reason, we require the definition of invariant
measures. These are measures µ defined for phase space with the property to be invariant
under Hamiltonian flow, i.e. for any measurable subset U0 ⊂ X the measure of the set
U(t) = {x(t; x0)|x0 ∈ U0} obtained from time-evolving the phase space points in U0

remains constant in time,
µ (U(t)) = µ(U0) . (2.43)

An obvious example for such a measure is the phase space volume itself, given by the
Lebesgue measure dµ(x) = d2dx. However, since we introduced the complete phase

7There are some discussions and works, for instance Refs. [87, 88], which indicate that, under rather
general conditions towards the dynamical flow in a chaotic system, one does not need the property
of sensitivity to initial conditions in Devaney’s definition, as this property is implied by the other
properties of topological transitivity (i.e. mixing in our case) and the dense set of periodic orbits.
However, since we heavily rely on the properties of hyperbolicity and on mixing, we decided to
explicitly mention these properties here, without claiming that there are no possible redundancies.
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space X as the vector space R2d, the measure µ(X ) = ∞ is infinite. This measure is
thus not normalizable and does not support a probabilistic interpretation. However,
for Hamiltonian systems subject to a number of functionally independent constants of
motions, {C(i), i = 1, . . . ,m} which are in involution, the dynamics of a trajectory is
restricted to a (2d−m)-dimensional submanifold X ′ of phase space defined by fixing the
values for the constants of motion. Depending on the physical system of interest, this
submanifold might be bounded to a finite region in phase space. In this case, a common,
normalizable measure for the complete phase space, which is widely used to describe the
statistical behavior of chaotic submanifolds, is given by

dµ(x) =

[∏m
i=1 δ(C(i)(x)− ci)

]
d2dx∫

X
[∏m

i=1 δ(C(i)(x)− ci)
]

d2dx
. (2.44)

We can interpret that measure as an invariant measure for the submanifold X ′, intro-
duced through the embedding of the submanifold into the complete phase space X . µ(A)
is thus interpreted as the measure of the 2d−m dimensional volume A′ = A∩X ′. Note
that, for a probabilistic interpretation of the invariant measure, we normalized µ to one.

A system with a normalizable measure µ is called mixing if for any two sets A0,B0 ⊂ X
we have in the limit of long times

lim
t→∞

µ(A(t) ∩ B0) = µ(A0)µ(B0) ,

(
⇔ lim

t→∞

µ(A(t) ∩ B0)

µ(B0)
=
µ(A0)

µ(X )
for µ(B0) 6= 0

)
,

(2.45)
where A(t) = {x(t; x0) | x0 ∈ A0 } is the phase space volume obtained from time-
evolving the phase space points in A0. The interpretation of this relation is such, that
in the limit of long times t, the measure of the fraction of the set A(t)∩B0 compares to
the full set B0 like A(t) (whose measure µ(A(t)) = µ(A0) is invariant in time) compares
to the measure of the full phase space µ(X ) = 1.

This property has an important equivalence for functions of the phase space variables.
Since through mixing any initially local phase space volume A0 is distributed over the
whole accessible phase space in the limit of long times, the average of any smooth phase
space function over the set A(t) approaches for long times the average over the accessible
phase space, weighted by the fraction µ(A0). Mathematically,

lim
t→∞

∫
A

dµ(x0)g(x(t; x0)) = µ(A)

∫
X

dµ(x)g(x) . (2.46)

In the extreme case of an almost point like set A0, centered around a phase space point
x0, this justifies the following approximation: for long enough times (where one still
needs to specify the time scale) functions of a trajectory’s phase space point are well
approximated by the phase space average of the function,

f(x(t; x0)) ≈
∫
X

dµ(x)f(x) . (2.47)

For chaotic systems the time scale is given as the time needed to sufficiently feel the
exponential sensitivity to changes in initial conditions. A proper time scale is thus
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obtained through the Lyapunov time tL = 1/|λ|, where λ denotes the largest positive
Lyapunov exponent of the phase space point x0. Moreover, from the arguments leading
to the approximation, the method requires a certain smoothing in the initial condition
x0 to justify the approximation, e.g. f(x(t; x0) is used within another integration. It
certainly does not apply if one is interested in the exact numerical value of f(x(t; x0)
for fixed x0.

Ergodicity is a weaker property than mixing, in the sense that mixing implies ergodic-
ity. Physically speaking, ergodicity means that during its dynamics a typical trajectory
approaches arbitrarily close any phase space point which is accessible on the submanifold
X ′ fixed by the constants of motion. In the limit of long times an average over time of
a function of the trajectory converges to a phase space average of the function,

lim
T→∞

1

T

∫ T

0
dt f(x(t; x0)) =

∫
X

dµ(x) f(x) . (2.48)

2.3.2 Hyperbolicity

The definition presented here is motivated by the one found in Ref. [82], however adjusted
to additionally allow a set of global constants of motion.

Assuming we have m < d global constants of motions {C(i), i = 1, . . . ,m}, we call the
subset Y ′ ⊂ X , which is invariant under the Hamiltonian flow, hyperbolic if for almost
all phase space points x ∈ Y the tangent space can be decomposed into

TxX = Eu(x)⊕ Es(x)⊕ En(x) (2.49)

with nonempty subspaces Eu/s(x) of dimension d − m spanned by the stable/unstable
directions, and a subspace En(x) of dimension 2m of neutral directions completely de-
termined by the constants of motion as described in subsection 2.2.4. Furthermore, we
demand that the three subspaces vary continuously with the phase space point x. To put
in words, any initial perturbation of a trajectory can be decomposed into contributions
along stable and unstable directions, which decrease and increase exponentially in time,
and directions which can be associated to the constants of motion.

A subclass of hyperbolic systems which is very helpful for the analysis of chaotic
classical systems are uniformly hyperbolic systems. In those systems the spectrum of
Lyapunov exponents is independent on the single phase space point in Y

λi(x) = λi , ∀x ∈ Y . (2.50)

Within the semiclassical theory, this assumption of uniform hyperbolicity in the chaotic
classical limit of a quantum system does not only heavily reduce the amount of calcula-
tions, but often even enables them at all.

Furthermore, one approximates the stretching factors in the decomposition Eq. (2.18)
of the stability matrix by their asymptotic behaviour. In case of the factors associated
to the stable and unstable directions, this means

Λi(t; x) ≈ eλit . (2.51)
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Like the approximation presented in Eq. (2.47), this step is justified for times larger than
the Lyapunov time, t > tL.

It is then also repeatedly found that the largest positive Lyapunov exponent dominates
the explanation of the observed phenomena. To improve the presentation of the used
techniques, one thus assumes a more drastic version of uniform hyperbolic dynamics,
where the absolute values of all non-zero Lyapunov-exponents are equal,

|λi| = λ > 0 for all i with λi 6= 0 . (2.52)

Within this thesis, we also rely on this approximation, and discuss in words what happens
when we allow for uniform hyperbolicity with a spectrum of Lyapunov exponents.



3 Semiclassical treatment of bosonic
quantum many-body systems described
by the Bose-Hubbard model

In this chapter we introduce Bose-Hubbard models to describe inter-
acting bosons populating a lattice. Of special interest is the thermo-
dynamic limit of a large number N of particles where we want to un-
derstand the dynamical behavior of out-of-time-order correlators. We
show that the thermodynamic limit can be interpreted as a classical
limit where the inverse number of particles plays the role of an effec-
tive Planck’s constant, ~eff = 1/N and introduce a semiclassical theory
for the Bose-Hubbard model. During the derivation of the main tool,
the semiclassical approximation of the propagator for Bose-Hubbard
systems, we are able to identify the Hamilton function for the classical
“1/N → 0” limit, and we see that Hamilton’s equations of motion co-
incide with the nonlinear wave equations obtained from a mean-field
treatment of the quantum system. This enables us to interpret quan-
tum many-body interference phenomena as to originate from a coher-
ent summation of contributions. Each of these contributions relates to
one of many solutions of the mean-field equations subject to boundary
conditions, and thereby leads to the formalism needed to go beyond
a mean-field treatment of the system such as the truncated Wigner
method, which is based on incoherently summing solutions.

We now turn towards the quantum realm and, in this chapter, introduce Bose-Hubbard
models as the interacting many-body quantum models of choice to study out-of-time-
order correlators. As we plan to work in the thermodynamic limit of a large number N
of particles, our key concept is to interpret this limit as a classical limit, with ~eff = 1/N ,
the inverse number of particles, playing the role of an effective Planck’s constant. To
pave the way in that direction, we not only review in the first section the formalism of
second quantization in the bosonic case, but also introduce bosonic quadrature operators,
from which we later obtain a set of conjugate variables to use in the Hamilton function
of the classical limit of Bose-Hubbard model. In section 2, we briefly discuss the generic
Bose-Hubbard Hamiltonian and the minimal assumptions we have to make to ensure
the existence of a classical limit. Finally, in the last section of this chapter, we review
in detail the derivation of our main tool for the semiclassical theory, the semiclassical
approximation of the propagator (the matrix elements of the time-evolution operator,
with quadrature eigenstates chosen as basis). We start by writing the propagator in its
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Feynman path integral representation, and, following steps pioneered by Gutzwiller [1,
33], identify then in the semiclassical limit and by the means of the stationary phase
approximation the classical paths significantly contributing to the propagator. During
this procedure, we are able to explicitly identify the Hamilton function of the classical
limit.

3.1 Bosonic Fock space and its representations

We start with a brief review of the notion of second quantization, restricting ourselves
to bosonic particles only as this is the class of particle considered within the scope of
this work. This section is not aiming at a complete treatment of the topic of second
quantization, and for more details, as well as the according theory for fermions, we refer
the reader to one of the many introductory book towards many-body quantum theory,
such as [89, 90].

3.1.1 Bosonic Fock states

The defining property of bosonic many-body quantum states is that interchanging the
indistinguishable bosonic particles leaves the wave function unchanged. As a consequence
and contrarily to fermions, many bosonic particles can occupy the same single-particle
state. Rather than focusing on the single particles, it is thus much more convenient to
aim at a description of quantum many-body systems in terms of numbers of occupations
of single-particle states. This is the idea at the heart of second quantization, also coined
the occupation number representation.

In this formalism, the bosonic many-body Hilbert space BN for a fixed number N
of indistinguishable particles is related to single-particle modes by taking as a basis for
BN the symmetrized products of the basis states of the single-particle Hilbert space. If
we denote by { |l〉 : l ∈ I } a complete orthonormal basis1 of the single-particle Hilbert
space, then these symmetrized states are given by

|n〉 =
∣∣(nl)l∈I〉 = S+

[⊗
l∈I

(|l〉 ⊗ . . .⊗ |l〉︸ ︷︷ ︸
nl times

)
]
, (3.1)

where the label n is a vector with non-negative integer components nl ∈ N0 and with the
size of the index set I as dimension. The function S+ on the r.h.s. takes a product state
as an input and returns the normalized, symmetrized permanent. From the definition,
Eq. (3.1), it is easy to interpret the state |n〉 as the bosonic many-body state where for
l ∈ I the single-particle mode |l〉 is populated by nl particles. We will refer to states
defined by Eq. (3.1) as number states or Fock states

It is easy to show that the orthogonality of the single-particle basis states translates
directly into orthogonality of Fock states. Consequently, we can write the many-body

1In view of the Bose-Hubbard model presented in section 3.2 we excluded in our considerations systems
which require including non-normalizable scattering states for a full description of the quantum
system.
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Hilbert space BN as the span of all Fock states with fixed total number N of particles,

BN = span

{
|n〉 :

∑
l∈I

nl = N

}
. (3.2)

By lifting the restriction of fixing the total number of particles we can also allow a
superposition of states with different N . The Hilbert space containing these more general
states is known as Fock space and is defined as the direct sum of the Hilbert spaces BN ,

B =
∞⊕
N=0

BN = span { |n〉 } . (3.3)

Note that the Fock space also contains the Hilbert space of no particles, spanned by
a single, special Fock state, the vacuum state |0〉 where the occupation of any single-
particle state is nl = 0 for all l ∈ I.

We can identify Fock states as the basis states produced by the common eigenstates
of the mutually commuting set of the Hermitian occupation number operators n̂l, l ∈ I,
with occupation numbers of the single-particle modes being the eigenvalues,

n̂l |n〉 = nl |n〉 . (3.4)

Using the occupation number operators, we can define an operator counting the total
number of particles in the system through

N̂ =
∑
i∈I

n̂i . (3.5)

Using this operator, it is easy to prove by contradiction that the overlap of Fock states
differing in the total number of particles is zero. The set of all Fock states thus forms a
complete orthonormal basis of Fock space.

3.1.2 Creation and annihilation operators

We have seen that the construction of Fock states requires the symmetrization of a
product state. This step is formally simplified using creation and annihilation operators,

b̂†l , b̂l , l ∈ I. (3.6)

These operators are a set of operator pairs, where each pair relates to one of the single-
particle basis states in { |l〉 : l ∈ I }. The action of these operators is such that they add
(or “create”), respectively remove (or “annihilate”) from a quantum many-body state a
particle in the single particle state they are labeled with, thereby increasing or decreasing
the number of particles described by the state. Acting on Fock states, we obtain2

b̂l |. . . , nl, . . .〉 =
√
nl |. . . , nl − 1, . . .〉 , (3.7)

2In case of a Fock state with nl = 0, the result of an application of b̂l in Eq. (3.7) formally results in
an unphysical state with nl − 1 = −1. However, this state is multiplied with

√
nl = 0, and we can

define the final result to be the correct value 0. This way, we can continue using Eq. (3.7) without
the need to distinguish the cases nl = 0 from nl > 0.
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b̂†l |. . . , nl, . . .〉 =
√
nl + 1 |. . . , nl + 1, . . .〉 . (3.8)

The normalization is such that we can express the occupation number operator as the
product of a creation and annihilation operator,

n̂l = b̂†l b̂l . (3.9)

Developing the formalism in terms of these operators converts the bosonic symmetry
upon permutation of particles into in a relation of operators, the bosonic commutation
relations [

b̂l, b̂l′
]

=
[
b̂†l , b̂

†
l′

]
= 0 ,

[
b̂l, b̂

†
l′

]
= δll′ , (3.10)

where the last relation indicates that creation and annihilation do not commute with
each other, ultimately as a consequence that the attempt of removing a particle from an
unoccupied state has to result in 0, see Eq. (3.7).

The great advantage of working with creation and annihilation operators lies in the fact
that both the Fock states as well as quantum operators acting on many-body states can
be very elegantly re-expressed in terms of these operators, thus allowing an interpretation
of the many-body scenario in terms of changes in the occupations of single-particle states.
Fock states can be constructed by an appropriate successive application of creation
operators upon the vacuum state,

|n〉 =
∏
l∈I

(
b̂†l

)nl
√
nl!
|0〉 . (3.11)

The action of quantum operators is interpreted such that particles found in single-particle
modes are annihilated, and then created in other modes to transform a Fock state into a
superposition of Fock states. Operators can then be classified by the number of particles
involved, and whether the operator conserves the total number of particles.

3.1.3 Quadrature operators and quadrature states

Of central interest in this thesis are bosonic systems in the thermodynamic limit of a
large number N of particles. The main idea for the concepts to be derived is to interpret
this limit as a classical limit, with ~eff = 1/N , the inverse number of particles, playing
the role of an effective Planck’s constant. However, for describing the classical limit in
terms of a Hamiltonian formalism, it is necessary for us to re-express the Hamiltonian in
second quantization in terms of Hermitian operators which lead to conjugate variables
in the classical limit.

To find such operators, let us note that the way creation and annihilation operators
act upon many-body states reminds with intent of the use of ladder operators â, â†

in the algebraic treatment of the harmonic oscillator. By understanding how one can
arrive at the classical limit of the harmonic oscillator starting from the Hamiltonian
expressed through ladder operators, we not only obtain a procedure which we can lift
to the bosonic many-body scenario, but also can get additional fruitful intuition.
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Expressed through ladder operators, the Hamiltonian and its eigenstates and -energies
of the one-dimensional quantum harmonic oscillator of frequency ω are given by [91, 92]

ĤHO = ~ω
(
â†â+

1

2

)
, En = ~ω

(
n+

1

2

)
, |n〉 =

(
â†
)n

√
n!
|0〉 , n ∈ N0 . (3.12)

In view of bosonic many-body systems, the spectrum and the corresponding eigenstates
of the harmonic oscillator can equivalently be interpreted as adding bosonic quasi-
particles to the ground state. Writing the Hamiltonian for the quantum harmonic
oscillator in terms of ladder operators is thus a way to elegantly solve the quantum
problem. However, the question of the classical limit, in the sense of formally sending
“~ → 0”, is better addressed with the Hamiltonian represented by the Hermitian po-
sition and momentum operators q̂ and p̂. From the abstract point of view of ladder
operators, these operators are related to the Hermitian and anti-Hermitian part of the
lowering operator â. In the common scaling including the particle’s mass m, we have

q̂ =
1√
mω

Q̂ =
1√
mω

√
~
2

(
â† + â

)
, (3.13)

p̂ =
√
mωP̂ = i

√
mω

√
~
2

(
â† − â

)
, (3.14)

or equivalently,

â =
1√
2~

(√
mωx̂+ i

p̂√
mω

)
. (3.15)

While the normalization with
√
mω is due to a (canonical) scaling of the operators

Q̂ and P̂ (with dimension
√

Js) towards position and momentum operators associated
with the dimensions length and momentum, the more interesting scaling is with

√
~/2.

Through this factor, the Hamiltonian of the quantum harmonic oscillator transforms to
an expression not directly depending on the Planck constant ~ any more,

ĤHO =
p̂2

2m
+
mω2q̂2

2
. (3.16)

while Planck’s constant ~ is now included in the commutation relations of the position
and momentum operator

[q̂, p̂] =
[
Q̂, P̂

]
= i~ . (3.17)

This last commutator expression is extremely important in the discussion of the classical
limit, where the commutator is translated into the Poisson bracket3, with the classical
limits of the operators in its argument,

i~ = [q̂, p̂]→ i~{q, p} . (3.18)

3To be more precise, the Wigner-Weyl transformation of the commutator [Â, B̂] is the Moyal bracket of
the Wigner-Weyl transforms of the operators Â, B̂, see our discussion in section 4.1.1. The Poisson
bracket emerges from the Moyal bracket as the lowest order in an expansion in powers of ~.
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Comparing both sides we see that the Poisson bracket of the position and the momentum
variable is unity. The classical limit of the position and momentum operator thus leads
to a pair of conjugate variables and can thus be used to formalize the classical limit.
Indeed, the Hamilton function describing the dynamics in the classical harmonic oscil-
lator in terms of these conjugate variables is obtained from the quantum Hamiltonian
essentially by substituting the operators with their classical correspondents. However,
it should be noted that this simple substitution is a consequence of the structure of the
quantum harmonic oscillator which does not contain products of position and momentum
operators and therefore does not address the question of ordering.

Turning back to quantum bosonic many-body systems now, the above reasoning moti-
vates the use of the Hermitian and anti-Hermitian part of the creation and annihilation
operators. These operators have been well known as quadrature operators in the field of
Quantum Optics [93]. They have also been used in the original works which introduced
the semiclassical approximation for Bose-Hubbard models [33, 34]. The remainder of
this section is indeed motivated from the presentation of quadrature states in the latter
works, however explicitly discussing and including the effective Planck’s constant, thus
improving [33, 34].

As motivated in the beginning, for bosonic many-body systems we are interested in
the classical/thermodynamic limit of a large total number of particles N . To be more
precise here, we treat N as a parameter of the system, assuming that the many-body
states of interest support an average particle number of O(N)4. This way, we can define
the effective Planck’s constant

~eff =
1

N
(3.19)

as the quantity for which “~eff → 0” defines the classical limit and which identifies the
criterion when semiclassical tools are applicable to describe phenomena in the quantum
system.

Using a scaling in accordance to the quantum harmonic oscillator, we define position
and momentum quadrature operators by

q̂i =

√
~eff

2

(
b̂†i + b̂i

)
=

1√
2N

(
b̂†i + b̂i

)
,

p̂i = i

√
~eff

2

(
b̂†i − b̂i

)
=

i√
2N

(
b̂†i − b̂i

)
,

(3.20)

or equivalently

b̂i =

√
N

2
(q̂i + ip̂i) , b̂†i =

√
N

2
(q̂i − ip̂i) . (3.21)

The occupation number operator n̂i uncovers the equivalence to the harmonic oscillator,

1

2

(
q̂2
i + p̂2

i

)
=

1

N

(
n̂i +

1

2

)
. (3.22)

4In single-particle semiclassical physics one employs a similar reasoning by demanding that the de
Broglie wave length λdB (as a parameter) is small compared to the smallest length scales of the
system. The states are then chosen such that their wavelengths are O(λdB).
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In view of Eqs. (3.7) and (3.22), the scaling of quadrature operators with the total
number of particles also gains a physical interpretation. Application of an annihilation
or creation operator on an N -body bosonic state results in an additional prefactor of the
order O(

√
N), containing information about the total number of particles in the system.

By choosing a scaling with the expected total number of particles N , we substitute these
absolute occupations by the fraction of all particles found in the labeled single-particle
state. It is through that step we are able to find a Hamiltonian formalism independent
of N which is meaningful in the classical limit “N →∞”.

It is easy to derive the commutator relations of position and momentum quadrature
operators from the commutator relations of creation and annihilation operators,

[q̂i, q̂j ] = [p̂i, p̂j ] = 0 , [q̂i, p̂j ] = i~effδij =
i

N
δij . (3.23)

Each of the sets of position and momentum quadrature operators, { q̂i | i ∈ I } and
{ p̂i | i ∈ I }, forms a complete set of commuting Hermitian operators. Each of them
thus allow us to find a basis of Fock space consisting of the common eigenstates of the
operators in the set, with the corresponding eigenvalues as their labels. This leads to
sets of so-called position and momentum quadrature states{

|q〉 =
∣∣(qi)i∈I〉 : ∀i∈I qi ∈ R

}
,
{
|p〉 =

∣∣(pi)i∈I〉 : ∀i∈I pi ∈ R
}
, (3.24)

where the states fulfill

q̂i |q〉 = qi |q〉 , p̂i |p〉 = pi |p〉 , i ∈ I . (3.25)

Moreover, identically to the single-particle case and as a consequence from the com-
mutation relations Eq. (3.23), the position quadrature representation of the momentum
quadrature operator (and vice versa) is a differential operator5,

〈q| p̂i =
~eff

i

∂

∂qi
〈q| = 1

iN

∂

∂qi
〈q| ,

〈p| q̂i = −~eff

i

∂

∂pi
〈p| = − 1

iN

∂

∂pi
〈p| .

(3.26)

The basis states are orthonormal in the sense that the overlap of two quadrature states
is proportional to a Dirac-δ distribution〈

q
∣∣q′〉 =

∏
i∈I
N (q)δ(qi − q′i) ,〈

p
∣∣p′〉 =

∏
i∈I
N (p)δ(pi − p′i) ,

(3.27)

5One way to proof this utilizes the translation operators exp[(i/~eff)p̂iy] generated by the momentum
quadrature operator. First one shows, that the operators exp[(i/~eff)p̂iy]q̂i exp[−(i/~eff)p̂iy] and q̂i+y
are identical as solutions of the differential equation dQ̂i / dy (y) = [p̂i, Q̂i(y)] with initial condition
Q̂i(0) = q̂i. From this, one can conclude that 〈q + yêi| = 〈q| exp[(i/~eff)p̂iy], with êi the i-th
standard basis vector, is again a (left) eigenstate of all position quadrature operators. Differentiating
the last equality with respect to y and setting y = 0 leads to the result in the first line Eq. (3.26).
The second identity follows analogously.
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where N (q), N (p) denote arbitrary choices of normalization. This freedom in the choice
of normalization is a consequence of the fact that quadrature states are unphysical states
in the sense that they elude a physical interpretation through probability densities. How-
ever, quadrature states are useful tools for the intermediate steps of a technical treatment
of an actual physical problem. We can therefore take for granted that quadrature states
have been introduced into any calculation through the quadrature state representation
of the unit operator,

1 =

(∏
i∈I

∫ ∞
−∞

dqi

N (q)

)
|q〉〈q| , 1 =

(∏
i∈I

∫ ∞
−∞

dpi

N (p)

)
|p〉〈p| . (3.28)

Within this logic, the arbitrary normalizations N (q), N (p) are then compensated by the
integration measure.

Finally, the normalization factors also appear in the overlap of a position with a
momentum quadrature state. By solving either of the differential equations

〈q|p̂i|p〉 = pi 〈q|p〉 =
~eff

i

∂

∂qi
〈q|p〉

〈p|q̂i|q〉 = qi 〈p|q〉 = −~eff

i

∂

∂pi
〈p|q〉

(3.29)

we find

〈q|p〉 =
∏
i∈I

N (q)N (p)

2π~eff
exp

(
i

~eff
qipi

)
(3.30)

where the additional factors within the overall normalization originate from the con-
straint that position with the momentum quadrature representation of states are related
with each other through a Fourier transformation.

Like the overlap between quadrature states of the same type, Eq. (3.27), the overlap of
quadrature states of different types, Eq. (3.30), should be understood in an distributional
sense. This is most important in the case of an infinite set of indices I, as otherwise,
if naively combined to a single prefactor would result in 0, 1 or infinite, depending on
the choice of normalizations N (q), N (p). Moreover, the scalar product qᵀp in the phase
might also not lead to a finite value. For the construction of a semiclassical theory
for bosonic systems with a countable infinite and and uncountable index set, further
discussions of these issues are needed. However, since the systems of choice to study
OTOCs in this thesis are Bose-Hubbard models with a finite number of sites and thus a
finite index set I, we omit such a discussion here.

From now on we thus assume a finite index set I = {1, . . . , d} of size #I = d. This
turns the labels of quadrature states to vectors in Rd. Furthermore, to keep the notation
identical to the d-dimensional quantum harmonic oscillator, we set the normalizations
N (q) = N (p) = 1. Then, the different overlaps between quadrature states are given by

〈
q
∣∣q′〉 = δd(q− q′) ,

〈
p
∣∣p′〉 = δd(p− p′) , 〈q|p〉 =

exp
(

i
~eff

qᵀp
)

(2π~eff)d
, (3.31)
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while the expansions of the unit operator become

1 =

∫
Rd

ddq |q〉〈q| , 1 =

∫
Rd

ddp |p〉〈p| . (3.32)

Since in the following sections any integration over quadratures is over the integration
volume Rd, we drop the integration volume from our notations.

From its construction Fock states |n〉 and quadrature states |q〉 and |p〉 in quantum
bosonic many-body systems are formally equivalent to the eigenstates |n〉 of the d-
dimensional harmonic oscillator and the position and momentum states |q〉 and |p〉.
This allows us to immediately identify the overlap of a Fock state with a position or
a momentum quadrature state with the position and momentum representation of the
corresponding eigenstate of the d-dimensional quantum harmonic oscillator. We thus
find for the quadrature state representations of Fock states [91, 92]

〈q|n〉 =
d∏
i=1

(
1

π~eff

) 1
4 1√

2nini!
Hni

(
qi√
~eff

)
e
− 1

2

q2i
~eff ,

〈p|n〉 =
d∏
i=1

(
1

π~eff

) 1
4 ini√

2nini!
Hni

(
pi√
~eff

)
e
− 1

2

p2i
~eff ,

(3.33)

where Hn denote the Hermite polynomials defined by

Hn(y) = exp

(
y2

2

)(
y − ∂

∂y

)n
exp

(
−y

2

2

)
. (3.34)

We see that beside being non-normalizable, quadrature states |q〉 and |p〉 have an in
general non-vanishing overlap with Fock states of arbitrary number of particles.

The opposite interpretation is that a Fock state can be considered as delocalized in
the quadrature state representation. To quantify this, we express quadrature operators
through creation and annihilation operators to show that the expectation value of a
quadrature operator in an arbitrary Fock state is 0, while the variance is growing with
the relative number of occupation, ni/N , of the single-particle state i

〈n|q̂i|n〉 = 〈n|p̂i|n〉 = 0 ,〈
n
∣∣q̂2
i

∣∣n〉 =
〈
n
∣∣p̂2
i

∣∣n〉 = ~eff

(
ni +

1

2

)
=
ni
N

+
1

2N
.

(3.35)

For the Fock states of interest, i.e. those with a particle number in the vicinity of N , the
variance is of order 1, indicating delocalization of the Fock states in both the position
and momentum quadratures.

3.1.4 Coherent states

A class of states which are localized in the quadrature variables is found to be given by
coherent states, for which we present a small collection of properties in this subsection.
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The details in the derivation of the following statements can be found in any standard
reference, which discusses coherent states, e.g. [89, 94], but also in the main reference of
the last section [33].

Coherent states are defined as the common eigenstates of the annihilation operators,

b̂i |Φ〉 = Φi |Φ〉 , , i ∈ {1, . . . , d} , Φ ∈ Cd , (3.36)

with, since annihilation operators are non-Hermitian, in general complex eigenvalues Φi.
It is found that for any complex vector Φ ∈ Cd the eigenvalue equation can be solved
and yields the eigenstate

|Φ〉 = exp

(
−1

2
‖Φ‖2 +

d∑
i=1

b̂†iΦi

)
|0〉 . (3.37)

Contrary to quadrature states, coherent states are normalizable, and for Eq. (3.37) the
prefactor has been chosen such that coherent states normalize to unity,

〈Φ|Φ〉 = 1 . (3.38)

The overlap with Fock states is easily calculated using Eq. (3.37)

〈n|Φ〉 = exp

(
−1

2
‖Φ‖2

) d∏
i=1

Φni
i√
ni!

. (3.39)

In principle, the normalization of coherent states would allow a physical interpretation
in terms of a probability density. However, like quadrature states, coherent states in
general have a nonzero overlap with Fock states with an arbitrary number of particles,
and thus are non-physical, experimentally not realizable many-body states. The mean
value and the variance in the relative occupation numbers n̂i/N are controlled by the
modulus of the components Φi of the vector Φ labeling the coherent state,〈

Φ

∣∣∣∣ n̂iN
∣∣∣∣Φ〉 =

|Φi|2

N
,〈

Φ

∣∣∣∣∣
(
n̂i
N

)2
∣∣∣∣∣Φ
〉
−
(〈

Φ

∣∣∣∣ n̂iN
∣∣∣∣Φ〉)2

=
|Φi|2

N2
.

(3.40)

Finally, the position and momentum quadrature representations are found to be

〈q|Φ〉 =

(
1

π~eff

) d
4

exp

[
−1

2
‖Φ‖2 +

1

2
ΦᵀΦ−

(
q√
2~eff

−Φ

)ᵀ( q√
2~eff

−Φ

)]
, (3.41)

〈p|Φ〉 =

(
1

π~eff

) d
4

exp

[
−1

2
‖Φ‖2 − 1

2
ΦᵀΦ−

(
p√
2~eff

+ iΦ

)ᵀ( p√
2~eff

+ iΦ

)]
. (3.42)
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We gain a better understanding of the latter equations by expressing the components of
the complex vector Φ by its real and imaginary part, in a similar way as we did for the
annihilation operator, Eq. (3.21),

Φ =
1√
2~eff

(q0 + ip0) . (3.43)

This coverts Eqs. (3.41), (3.42) into a more intuitive form,

〈q|Φ〉 =

(
1

π~eff

) d
4

exp

[
−(q− q0)ᵀ(q− q0)

2~eff
+

ipᵀ
0(q− q0)

~eff
+

ipᵀ
0q0

2~eff

]
,

〈p|Φ〉 =

(
1

π~eff

) d
4

exp

[
−(p− p0)ᵀ(q− q0)

2~eff
− iqᵀ

0(p− p0)

~eff
− ipᵀ

0q0

2~eff

]
.

(3.44)

These last equations show that indeed the quadrature state representation of coher-
ent states are Gaussian wave packets centered around the point (q0,p0) with a width√

~eff/2. In the classical limit ~eff → 0 these states become highly localized. Similar to
coherent states for single-particle systems, these states can be interpreted as the quan-
tum equivalent of the classical phase space point (q0,p0) with a minimal Heisenberg
uncertainty in the conjugate variables.

3.2 Bose-Hubbard models

The model for quantum many-body systems we want to consider in the context of
OTOCs are Bose-Hubbard models. These are models describing a fixed number of sites,
for instance in an optical lattice, which support interacting bosonic atoms. In its most
generic form the Hamiltonian for these models is given in second quantization by

Ĥ =

d∑
i,j=1

hij b̂
†
i b̂j +

d∑
i,j,k,l=1

Uijklb̂
†
i b̂
†
j b̂k b̂l , (3.45)

where b̂†i and b̂i denote creation and annihilation operators of bosonic particles at site i.
The first term contains hopping between single sites due to single-particle kinetics and
external potentials, while the second one encodes interaction among the particles, both
on- and offsite. In order for Ĥ to be Hermitian the coefficients have to fulfill

hij = h∗ji , Uijkl = U∗lkji . (3.46)

Furthermore due to the commutation relation of the bosonic creation and annihilation
operators, Eq. (3.10) we can additionally choose the interaction matrix elements to fulfill

Uijkl = Ujikl = Uijlk = Ujilk . (3.47)

Dealing with the classical/thermodynamic limit of a large number of particles N , or
equivalently “~eff = 1/N → 0”, requires additional assumptions towards the Bose-
Hubbard Hamiltonian. When acting on a Fock-state of N particles in the system,
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creation and annihilation operators each gain a prefactor of the order O(
√
N). This

implies, that by increasing the number of particles N , the product b̂†i b̂j of a creation
and an annihilation operator in the single-particle term in Eq. (3.45) will scale with N ,

while the product b̂†i b̂
†
j b̂k b̂l related to the interaction energy gains N2 as a prefactor. If

the parameters hij , Uijkl in the interacting model are not themselves functions of the
number of particles N , in the limit “N →∞” the interaction term governs the dynamics
of the system, leading to either a Mott insulating or a clustering state.

To avoid this trivial scenario, we thus require that when the N is increased, the
strength of the interaction Uijkl = Vijkl/N is simultaneously decreased by the inverse
number of particles. Like for the definition of quadrature states, this requires to treat the
number of particles N as a system parameter, with the underlying assumption that the
states of interest in the later treatment of problems support a mean number of particles
in the vicinity of N . The class of Bose-Hubbard models underlying this assumption is
thus described by the Hamiltonian

Ĥ =

d∑
i,j=1

hij b̂
†
i b̂j +

1

N

d∑
i,j,k,l=1

Vijklb̂
†
i b̂
†
j b̂k b̂l , (3.48)

where the parameters hij , Vijkl are assumed to be of equal size in the limit N →∞.

3.3 The semiclassical approximation for the propagator

In this section we derive our main tool, the semiclassical approximation of the propagator
for Bose-Hubbard models. This approximation of the position quadrature representation
of the time-evolution operator enables us to link the dynamics in the quantum regime
with that found to be the system’s classical limit “~eff = 1/N → 0”.

The derivation presented here follows the original derivation in Refs. [33, 34], which
repeats in its techniques the derivation of the Van Vleck-Gutzwiller propagator for single-
particle systems in the semiclassical limit “~→ 0”, see e.g. Refs. [1, 2]. The reason why
it is presented here again in detail is that a precise discussion of the role of ~eff in
the arguments of the derivation of the semiclassical approximation of the propagator in
quadrature state representation is missing in the original work. By including this care-
fully in the subsequent subsections we see that we obtain a different Hamilton function in
the classical limit which does not contain terms due to ordering and which differs in the
interaction term. Furthermore, we find that terms produced from ordering quadrature
operators in the Hamiltonian result in an additional slowly varying phase.

3.3.1 The time-evolution operator

Our derivation starts rather generically by introducing the time evolution operator in
the general sense for a system described by the (possibly time-dependent) Hamiltonian
Ĥ(t). Only when we need details of system in the next subsection we restrict to the
time-independent Bose-Hubbard models.
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The action of the time-evolution operator Û
(
t(f), t(i)

)
is such that, it transforms an

initial state |Ψ(t(i))〉 of the system at initial time t(i) into the state |Ψ(t(f))〉 at later or
final time t(f), ∣∣∣Ψ(t(f))

〉
= Û

(
t(f), t(i)

) ∣∣∣Ψ(t(i))〉 . (3.49)

Using the Schrödinger equation one finds that the time evolution operator solves the
initial value problem

i~
d

dt
Û
(
t, t(i)

)
= Ĥ(t)Û

(
t, t(i)

)
, Û

(
t(i), t(i)

)
= 1̂ , (3.50)

From Eq. (3.50) we can find a formal expression for the time-evolution operator, involving
a time-ordered exponential,

Û(t, t′) = T exp

(
− i

~

∫ t

t′
ds Ĥ(s)

)
=
∞∑
l=0

(
− i

~

)l ∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tl−1

t′
dtl Ĥ(t1) · · · Ĥ(tl) .

(3.51)

This expression simplifies to an ordinary exponential of an operator if the Hamiltonians
at different times commute with each other. In such a case of no explicit time-dependence
of the Hamiltonian, for instance for the Bose-Hubbard models considered within this
work, we can choose t(i) = 0 to be the zero of time and obtain

Û(t) ≡ Û(t, 0) = exp

(
− i

~
Ĥt

)
. (3.52)

The time evolution operator fulfills the property

Û
(
t(f), t′

)
Û
(
t′, t(i)

)
= Û

(
t(f), t(i)

)
, (3.53)

reflecting the physical interpretation that a subsequent evolution in time for time spans
t(f) − t′ and t′ − t(i) is identical to a single one of a time span t(f) − t(i). In case of
a time-independent Hamiltonian the above relation even allows us to interpret the set
of all time-evolution operators mathematically as a semi-group, which coined the name
“semigroup property” for Eq. (3.53).

Finally, from Eq. (3.50) and for an Hermitian Hamiltonian, one can conclude unitarity
of the time evolution operator,

Û †
(
t(f), t(i)

)
Û
(
t(f), t(i)

)
= 1̂. (3.54)

The matrix element of Û(t) in a continuous basis representation is denoted the prop-
agator . For instance, in coordinate space representation q, the propagator of a single-
particle system is defined by

K(q(f), t(f),q(i), t) =
〈
q(f)
∣∣∣Û(t(f), t(i))∣∣∣q(i)

〉
. (3.55)
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The propagator is a scalar function which, in the time evolution of a state given in the
chosen basis representation, plays the role of an integration kernel. Here,

Ψ(q, t) = 〈q|Ψ(t)〉 =

∫
ddq′K

(
q, t,q′, t′

)
Ψ
(
q′, t′

)
. (3.56)

In the context of Bose-Hubbard models, the representation we are interested in is in the
basis of the position quadrature states |q〉.

3.3.2 Feynman path integral representation of the propagator

The semi-group property of the time-evolution operator is extremely useful to rewrite
this operator as the product of infinitely many, infinitesimal small time steps. This
allows for a treatment of the time-ordering inherent in the formal result Eq. (3.51) since
for small enough time steps we can not only treat the propagator as if the Hamiltonian
is static, but also further replace the operator exponential through its Taylor expansion
up to linear order in the time step.

To formalize this procedure we start by writing the time-evolution operator as the limit
of a product of time-evolution operators, while assuming at the individual times a static
Hamiltonian. Using Eq. (3.52), as well as the linearization of the matrix exponential,
we find [95]

Û
(
t(f), t(i)

)
= lim

L→∞

L∏
l=1

exp

[
− iτL

~
Ĥ
(
t(f) − lτL

)]

= lim
L→∞

L∏
l=1

[
1̂− iτL

~
Ĥ
(
t(f) − lτL

)]
,

(3.57)

with time steps τL = (t(f)−t(i))/L→ 0. The product has to be understood as an ordered
matrix product through

L∏
l=1

Âl = Â1Â2 . . . ÂL . (3.58)

For a time-independent Hamiltonian, such as the one presented in Eq. (3.48), this ordered
product reduces to

Û(t) = lim
L→∞

[
1̂− i

~
Ĥ
t

L

]L
. (3.59)

In what follows we now restrict ourselves to Bose-Hubbard models with its propagator
expressed in the basis of position quadrature states |q〉. Furthermore, for reasons to
become clear in a moment, we take the number of time steps to be even, L = 2M , and
thus obtain an even number of factors in the product shown in Eq. (3.59).

Within the propagator in position quadrature representation, we alternatingly insert
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unit operators in position and momentum quadrature representation to obtain

K
(
q(f),q(i), t

)
=
〈
q(f)
∣∣∣Û(t)

∣∣∣q(i)
〉

= lim
M→∞

∫
ddp(M)

∫
ddq(M−1)

∫
ddp(M−1) . . .

∫
ddq(1)

∫
ddp(1)

×
M∏
m=1

〈
q(m)

∣∣∣∣1̂− i

~
Ĥ

t

2M

∣∣∣∣p(m)

〉〈
p(m)

∣∣∣∣1̂− i

~
Ĥ

t

2M

∣∣∣∣q(m−1)

〉 (3.60)

where we used q(M) = q(f) and q(0) = q(i) to simplify the notation. Due to the lin-
earization of the single intermediate operators, the factors in the integrand only require
the evaluation of a matrix element of the Hamiltonian. By using the normal ordered
form, where momentum quadrature operators are found left of the position quadrature
operators, the evaluation of these matrix element becomes trivial, and we present this
calculation in the Appendix A.1. We find〈

p

∣∣∣∣1̂− i

~
Ĥ

t

2M

∣∣∣∣q〉
=

(
1− i

~eff

[
H(q,p) + ~eff

(
H(ord)

R (q,p) + iH(ord)
I (q,p)

)] t

2M

)
〈p|q〉 ,

(3.61)

〈
q

∣∣∣∣1̂− i

~
Ĥ

t

2M

∣∣∣∣p〉 =

(〈
p

∣∣∣∣1̂ +
i

~
Ĥ

t

2M

∣∣∣∣q〉)∗
=

(
1− i

~eff

[
H(q,p) + ~eff

(
H(ord)

R (q,p)− iH(ord)
I (q,p)

)] t

2M

)
〈q|p〉 ,

(3.62)

where we expressed the results in terms of the real-valued functions H(q,p), H(ord)
R (q,p)

and H(ord)
I (q,p)). Using the complex linear superposition Φ = (q + ip)/

√
2 for abbrevi-

ation, these function are given by

H(q,p) =
d∑

i,j=1

hij
~

Φ∗iΦj +
d∑

i,j,k,l=1

Vijkl
~

Φ∗iΦ
∗
jΦkΦl ,

H(ord)
R (q,p) =

d∑
i=1

hii
2~

+
d∑

i,j,l=1

2Vijjl
~

Φ∗iΦl + ~eff

d∑
i,l=1

(
Villi
2~
− Viill

4~

)
,

H(ord)
I (q,p) =

1

2i

d∑
i,j,k,l=1

Vijkl
(
δijΦkΦl − δklΦ∗iΦ∗j

)
.

(3.63)

As we will see in the next subsection, the first function H turns out to represent the
Hamilton function6 of the classical limit of the Bose-Hubbard model, with q,p playing

6In this Hamilton function Planck’s constant ~ appears as a constant parameter and may not be
confused with the effective Planck’s constant ~eff = 1/N , which defines with the classical limit.
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the role of the conjugate variables. The other terms H(ord)
R , H(ord)

I originate from the
ordering process, which brings the products of quadrature operators in the Hamiltonian
in normal order. Since this ordering requires the application of the commutation relations
Eqs. (3.23), these functions are joined by an additional factor ~eff in Eqs. (3.61), (3.62).

Inserting the matrix elements Eqs. (3.61), (3.62) back into Eq. (3.60) results in a
product of the matrix elements. In the limit M → ∞, we can express this product by
an exponential since generally for large M and bounded factors Am we have

M∏
m=1

(
1− Am

M

)
= exp

(
M∑
m=1

log

(
1− Am

M

))
= exp

(
−

M∑
m=1

(
Am
M

+O
(

1

M2

)))

= exp

(
−

M∑
m=1

Am
M

)(
1 +O

(
1

M

))
. (3.64)

Using further Eq. (3.30) for the overlap 〈q|p〉 of a position with a momentum quadrature
state, we get for the propagator

K
(
q(f),q(i), t

)
=
〈
q(f)
∣∣∣Û(t)

∣∣∣q(i)
〉

= lim
M→∞

1
√

2π~eff
2dM

∫
ddp(M)

∫
ddq(M−1)

∫
ddp(M−1) . . .

∫
ddq(1)

∫
ddp(1)

× exp

[
i

~eff

M∑
m=1

(
p(m) ·

(
q(m) − q(m−1)

))]

× exp

[
− i

~eff

M∑
m=1

H
(
q(m),p(m)

)
+H

(
q(m−1),p(m)

)
2

t

M

]

× exp

[
−i

M∑
m=1

H(ord)
R

(
q(m),p(m)

)
+H(ord)

R

(
q(m−1),p(m)

)
2

t

M

]

× exp

[
−

M∑
m=1

H(ord)
I

(
q(m),p(m)

)
−H(ord)

I

(
q(m−1),p(m)

)
2

t

M

]
.

(3.65)

Upon integration, large differences in neighboring (labeled by m and m+ 1,) quadrature
variables of the same type lead to large oscillations in the phase factors and thus to
cancellations. It is therefore reasonable to assume that non-canceling contributions to
the multidimensional integration arises from vectors (q(m),p(m))m=1,...,M each of which
can be understood as the discretization of a sufficiently smooth path q(s), p(s), with
q(s) fulfilling the boundary condition q(0) = q(i), q(t) = q(f). Under this assumption7

it is possible to interpret the arguments of the exponential as the Riemann sums of
integrations of sufficiently smooth functions. Note that within these sums, the effective

7To be precise, the assumption is reasonable in view of constructing a semiclassical approximation of
the propagator. When working directly with the Feynman path integral, this assumption has to be
questioned as different derivations of the path integral may lead to non-equivalent results [96].
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time-step is t/M , the elapsed time between two subsequent position, respective momen-
tum quadrature variables in Eq. (3.60), which is twice the time step used in the slicing
of the time evolution operator. In the limit M →∞, we find

M∑
m=1

p(m) q(m) − q(m−1)

t
M

t

M
−→
M→∞

∫ t

0
dsp(s) · q̇(s) , (3.66)

M∑
m=1

H(q(m),p(m)) +H(q(m−1),p(m))

2

t

M

−→
M→∞

∫ t

0
ds
H(q(s),p(s)) +H(q(s),p(s))

2
=

∫ t

0
dsH(q(s),p(s)) ,

(3.67)

M∑
m=1

H(ord)
R (q(m),p(m)) +H(ord)

R (q(m−1),p(m))

2

t

M

−→
M→∞

∫ t

0
dsH(ord)

R (q(s),p(s)) ,

(3.68)

M∑
m=1

H(ord)
I (q(m),p(m))−H(ord)

I (q(m−1),p(m))

2

t

M

−→
M→∞

∫ t

0
ds
H(ord)

I (q(s),p(s))−H(ord)
I (q(s),p(s))

2
= 0 .

(3.69)

Quite interestingly, we see that in the limit M → ∞, the argument associated with

the function H(ord)
I (q,p), originating from the imaginary part of the overlap

〈
p
∣∣∣Ĥ∣∣∣q〉,

converges to zero and thus does not result in an exponential growth or decay of the
integrand. Within the limit M → ∞, we can therefore safely neglect HI(q,p) and end
up with

K
(
q(f),q(i), t

)
= lim

M→∞

1
√

2π~eff
2dM

∫
ddp(M)

∫
ddq(M−1)

∫
ddp(M−1) . . .

∫
ddq(1)

∫
ddp(1)

× exp

[
i

~eff

M∑
m=1

(
p(m) ·

(
q(m) − q(m−1)

))]

× exp
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− i

~eff
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H
(
q(m),p(m)

)
+H

(
q(m−1),p(m)

)
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M

]

× exp

[
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H(ord)
R

(
q(m),p(m)

)
+H(ord)

R

(
q(m−1),p(m)

)
2

t

M

]
,

(3.70)

In view of our interpretation in terms of smooth paths, we can use an abbreviating
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formal notation

K
(
q(f),q(i), t

)
=

∫
q(t)=q(f)

q(0)=q(i)

D[q(s),p(s)] exp

(
i

~eff
R[q(s),p(s)] + iϕ[q(s),p(s)]

)
,

(3.71)
with the action functional

R[q(s),p(s)] =

∫ t

0
ds [p(s) · q̇(s)−H(q,p)] , (3.72)

and an additional phase due to ordering of operators,

ϕ[q(s),p(s)] =

∫ t

0
dsH(ord)

R (q(s),p(s)) . (3.73)

This final representation, Eq (3.71), is referred to as the path integral representation
of the propagator , formally displayed as an integration over all possible and sufficiently
smooth paths (p(s), q(s)) with the position quadrature component of the path fulfilling
the boundary conditions q(0) = q(i), q(t) = q(f). For the actual calculation of the path
integral, one has of course to understand the path integral in the version with discretized
paths, Eq. (3.70).

3.3.3 The semiclassical approximation of the propagator

The stationary phase approximation

A direct evaluation of the multidimensional integration is not possible since the com-
ponents of integration vectors q(m), p(m) appear as a fourth order polynomial in the
arguments of the oscillating exponential functions. However, within the semiclassical
limit “~eff = 1/N → 0” we can employ a powerful technique known by the name sta-
tionary phase approximation, see for instance Refs. [95, 97]. Generally speaking, this
method provides a recipe to approximate integrals of the form

F (λ) =

∫ ∞
−∞

dx g(x) exp(iλf(x)) , (3.74)

with real-valued smooth functions f(x), g(x) in the limit λ � 1. In that regime the
argument of the phase factor exp(iλf(x)) is varying rapidly as a function of x, leading
to destructive interference of the phases and thus to a negligible contribution to the
integration. It is only when this variation in the frequency becomes small that we obtain
constructive interference, and consequently a significant contribution to the integral.
To identify areas with a slowly varying phase is formalized to solving the stationarity
condition

df

dx

(
x(s)
)

= 0

(
while

d2f

dx2
(x(s)) 6= 0

)
. (3.75)

We denote the solutions x(s) of this extreme value problem as stationary points, and the
magnitude of contributions to the integration Eq. (3.74) arises from the close vicinity
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of these points.8. We can thus split the integration F (λ) into a sum of integrations,
each around an appropriate vicinity of one of the stationary points. In this vicinity of
stationary point, we can use Taylor expansions to write

g
(
x(s) + y

)
≈ g
(
x(s)
)

f
(
x(s) + y

)
≈ f

(
x(s)
)

+
1

2

d2f

dx2
y2 ,

(3.76)

Finally, we extend the integration over the vicinity of the stationary points to an inte-
gration over the whole real space to obtain a sum of Gaussian integrals, which we can
easily evaluate,

F (λ) ≈
∑

stationary
points x(s)

g
(
x(s)
)

exp
(

iλf
(
x(s)
))∫ ∞

−∞
dy exp

(
i
λ

2

d2f

dx2

(
x(s)
)
y2

)

=
∑

stationary
points x(s)

g
(
x(s)
)√√√√ 2π

λ
∣∣∣d2f

dx2

(
x(s)
)∣∣∣ exp

(
iλf
(
x(s)
)

+ i
π

4
sign

(
d2f

dx2

(
x(s)
)))

(3.77)
As is discussed in Ref. [95], the combined effect of our approximations is to neglect terms
approaching 0 as O(1/λ) in the limit λ→∞. Asymptotically these contributions vanish
faster than the result of the stationary phase approximation which is O(1/

√
λ). This

is also the reason, why the Taylor expansion of g terminates after the zeroth order in
Eq. (3.76).

The method can be easily generalized to multidimensional integrals of the form

F (λ) =

∫
Rd

ddx g(x) exp(iλf(x)), (3.78)

for which the intermediate result is a sum over stationary points x(s) of multidimensional
Gaussian integrals,9

F (λ) ≈
∑

stationary
points xs

g
(
x(s)
)

exp (iλf(xs))

∫
Rd

ddy exp

(
i
λ

2
yᵀ ∂2f

∂x∂x

(
x(s)
)
y

)
. (3.79)

Through a transformation, which diagonalized the Jacobi matrix ∂2f
∂x∂x

(
x(s)
)
, the d-

dimensional Gaussian integral is converted into a product of d one-dimensional Gaussian

8To be more precise, as discussed in Ref. [95], the major contributions stem from a distance of the
order O(1/

√
λ) from stationary points and, as we see in a moment, result in contributions behaving

asymptotically like 1/
√
λ for λ� 1. Contrarily, the contributions from the surroundings of a generic

point x, which is sufficiently far away from a stationary point, behaves asymptotically like 1/λ, which
vanishes faster than 1/

√
λ.

9This results holds, if the stationary points are isolated from each other. In case of a manifold of station-
ary points, one first needs to perform a change of variables including directions within the manifold,
and treat the integration within the set of stationary points exactly. An example is Gutzwiller’s trace
formula, where the set of stationary points is given by periodic orbits [1, 2].



48 Chapter 3. Semiclassical treatment of the Bose-Hubbard model

integrals. The product of eigenvalues, which we find in the denominator, is identified
with the determinant of the Jacobi matrix. We obtain

F (λ) ≈
∑

stationary
points x(s)

g
(
x(s)
)√√√√ (2π)d

λd
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(
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(
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iλf
(
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π

2
ν
(
x(s)
))

,

(3.80)

where β(x) denotes the difference in the number of positive and negative eigenvalues,
and ν(x) the number of negative eigenvalues of the Jacobi matrix. These numbers are
related to each other and the dimension d through the identity

β(x) = d− 2ν(x) . (3.81)

Stationarity condition for the path integral

We now apply the stationary phase approximation to solve the multidimensional integral
over all position and momentum quadratures in Eq. (3.70) in the semiclassical limit of
“~eff = 1/N → 0”, whose inverse will play the role of λ = 1/~eff in the approximation.

While we perform the actual calculation for the discretized integral, Eq. (3.70), to
get an understanding of the physical implication of this approximation, it is useful to
formally examine the stationarity condition at the level of the continuous path integral,
Eq. (3.71). There the set of partial derivatives turns into a set of functional derivatives
or variations. Note that the boundary conditions, which fix the position quadrature
component at initial and final time, q(0) = q(i), q(t) = q(f), has to be considered within
this variation. We obtain

0 =
δ

δpi(s′)
R[q(s),p(s)] = q̇i(s

′)− ∂H
∂pi

(
q(s′),p(s′)

)
,

0 =
δ

δqi(s′)
R[q(s),p(s)] = −ṗi(s′)−

∂H
∂qi

(
q(s′),p(s′)

)
,

(3.82)

for i = 1, . . . , d. Comparing these equations with Eq. (2.2) we can interpret the solutions
of the stationarity condition as trajectories solving Hamilton’s equations of motion with
H as the underlying Hamilton function and with the position and momentum quadra-
tures q, p playing the role of the pair of conjugate variables.

The actual full calculation of the propagator in stationary phase approximation, in-
cluding the calculation of the amplitude weighting the contribution of the single paths,
as well as additional phases, is performed at the level of the discretized version of the
path integral, Eq. (3.70) and is presented in detail in appendix A.2. From this calcula-
tion we obtain the semiclassical approximation for the propagator in position quadrature
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state representation, given by

K(sc)(q(f),q(i), t) =
∑

γ:q(i) t→q(f)

Aγ

(
q(f),q(i), t

)
exp

(
i

~eff
Rγ(q(f),q(i), t)

)
, (3.83)

where the summation runs over all classical trajectories, i.e. solutions of Hamilton’s
equations of motion, Eq. (3.82), with the boundary conditions qγ(0) = q(i), qγ(t) = q(f).
The phase factor contains Hamilton’s principal function Rγ , as defined in Eq. (2.5), and
the (complex) amplitude Aγ is given by

Aγ

(
q(f),q(i), t

)
=

√
1

(2π~eff)d

∣∣∣∣det

(
∂2Rγ

∂q(f)∂q(i)

(
q(f),q(i), t

))∣∣∣∣ exp
[
−i
(π

4
µγ + φγ(q(f),q(i), t)

)]
.

(3.84)

The absolute value of Aγ contains second order derivatives of Rγ with respect to the
boundary conditions. Through that amplitude, the contribution of the trajectory γ
to the coherent sum in Eq. (3.83) is weighted by its stability upon variations of the
boundary conditions. The phase of Aγ contains the Maslov index µγ counting the
number of divergences of the prefactor, which are interpreted as number of conjugate
points along the trajectory, i.e. points, for which a bundle of classical trajectories fulfilling
the boundary problem can be found [1, 2]. The second contribution to the phase is the
function

φγ(q(f),q(i), t) =
1

4

∫ t

0
ds tr

[
∂2H
∂q∂q

(qγ(s),pγ(s)) +
∂2H
∂p∂p

(qγ(s),pγ(s))

]
(3.85)

and originates from the phase space function H(ord)
R (re-expressed here in terms of second

derivatives of the Hamilton function). This phase is thus attributed to the normal
ordering of the Hamiltonian. This phase has been also found in the derivation of a
semiclassical approximation for the propagator in coherent state representation [98, 99],
and is called Solari-Kochetov phase. Within the scope of this work, a detailed knowledge
of the Maslov index and the phase due to ordering is not necessary, and thus, for a
deeper understanding of these quantities, we like to refer the reader towards the existing
literature, for instance Refs. [1, 2, 100]

As a concluding remark, it is possible to view the equations of motion, Eq. (3.82), as
the real and imaginary part of a dynamical equation for the complex function Φ(t) =
(q + ip)/

√
2,

i
∂Φi

∂t
=

∂H
∂Φ∗i

(Φ,Φ∗) =
d∑
j=1

hij
~

Φj + 2
d∑

j,k,l=1

Vijkl
~

Φ∗jΦkΦl , (3.86)

which is the well-known Gross-Pitaevskii equation [24, 25, 101], here in its discrete
form as consequence of the finite number of sites in the Bose-Hubbard model. Within
our reasoning, any solution of the Gross-Pitaevskii equation can thus be interpreted as
the classical wave equation describing the dynamics of the Bose-Hubbard model in the
classical limit.





4 Semiclassical analysis of
out-of-time-order correlators (OTOCs)

In this chapter we study out-of-time-order correlators (OTOCs), which
can be used as sensitive probes for chaos in the classical limit of an
interacting many-body quantum system. To gain intuition, we pro-
vide an explanation for the short-time behaviour of OTOCs based
on the quantum-classical correspondence principle. We see that for
suitably chosen OTOCs the short-time dynamics is able to discrimi-
nate a chaotic classical limit, where OTOCs experience an exponential
growth, from an integrable one with an at most polynomial growth of
OTOCs.
For systems with a chaotic classical limit, it is observed that the growth
saturates after the so-called Ehrenfest time tE, a time which marks the
onset of quantum interference not captured by the quantum-classical
correspondence principle. For N -particle Bose-Hubbard models in the
semiclassical limit of a large number of particles, “~eff = 1/N → 0”, we
develop, based on the semiclassical approximation of the propagator,
a semiclassical theory, which is able to capture both the pre- and the
post-Ehrenfest time behaviour of OTOCs. We show that the initial
exponential growth is related to the Lyapunov exponent of the classical
mean-field dynamics, thus justifying the intuitive picture by Maldacena
et al. [43]. Finally, we identify the underlying interference mechanism
leading to the saturation and the classical quantities involved in the
latter.

Having introduced the necessary concepts in classical dynamics and our main tool
for a semiclassical treatment, the semiclassical approximation for the propagator, we
are now ready to start our discussion of OTOCs. The results presented in this chapter
have been published in Ref. [102], and we follow the presentation in this article to a
large extent. Especially the sections containing the details of the involved calculations
of diagrams show a substantial overlap with the corresponding sections I wrote for the
supplemental material in the above publication.

4.1 The OTOCs and their expected behaviour for short times

A possible definition of an out-of-time-order correlator (OTOC) is given by the average of
the squared commutator of two operators in the Heisenberg picture, where the operators
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are taken at different times [43–45, 103],

C(t) =

〈∣∣∣[V̂ (0), Ŵ (t)
]∣∣∣2〉 ≡ 〈[V̂ (0), Ŵ (t)

]†[
V̂ (0), Ŵ (t)

]〉
. (4.1)

The average can be over an initial state Ψ, or thermal over the canonical ensemble,
〈·〉 = tr(exp(−βĤ) · )/Z(β), with the partition function Z(β) = tr(exp(−βĤ)), and
with β = 1/(kT ) as the inverse temperature T with Boltzmann’s constant k. Especially
for thermal averages, one often finds a second version of the OTOC’s definition [43, 49],

F (t) = 〈V̂ †(0)Ŵ †(t)V̂ (0)Ŵ (t)〉 , (4.2)

which appears as one of the terms when carrying out the products involved in the squared
commutator in Eq. (4.1).

4.1.1 Wigner-Weyl transformations

The importance of OTOCs as sensitive probes for chaos in quantum systems arises from
its dynamical behaviour for short times. To understand this, we can employ arguments
based on the quantum-classical correspondence principle to obtain a first, simple intu-
itive picture. As we formalize this in detail in a moment, this principle replaces the
operators in the averaged squared commutator C(t) in Eq. (4.1) operators by their clas-
sical counterparts and the commutator by the classical Poisson bracket. The evaluation
of the Poisson bracket introduces elements of the stability matrix M, Eq. (2.10), whose
dynamical behaviour is able to discriminate a chaotic from an integrable classical limit
of the quantum system [43].

While quantum-classical correspondence directly yields a first prediction of the dy-
namical behaviour of C(t) as the leading order in a power expansion in ~eff, for the
OTOC F (t) in Eq. (4.2) one needs to include the next to leading order, requiring fur-
ther arguments1. In both cases, the conclusions drawn from the application of OTOCs
on quantum chaotic systems are the same, but require more work for F (t). For the
remainder of this thesis we thus focus directly on OTOCs of the form given in Eq. (4.1).

We want to put the above reasoning into an exact statement which we can later also use
to check the results of the semiclassical treatment of OTOCs. To do so, we first specify
the exact meaning of the quantum-classical correspondence principle by reviewing the
concepts of Wigner-Weyl transformation. An introduction to the formalism of Wigner-
Weyl transformations is found in Refs. [94, 104, 105]. Here, we briefly summarize the
results found in these references.

1For these arguments one takes F (t) as one of the terms appearing in C(t). For C(t) one argues in the
same way as we do here, but on top of that an interpretation of the other terms next to F (t) is required.
The common arguments rely on a regularization of the thermal average [43] to be able to apply the

cycling property of the trace. Furthermore, time-ordered products like
〈
V̂ †(0)V̂ (0)Ŵ †(t)Ŵ (t)

〉
, are

assumed to factorize after the ergodic time tL and thus to contribute a constant. This leads to the
prediction that F (t) ∝ c1 − ~eff

2 exp(2λt) for times t� tE.
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For an operator Â, the Wigner-Weyl transformation in d dimensions is defined as2

A(q,p) ≡
[
Â
]

W
(q,p) =

1
√

2π~eff
d

∫
ddy

〈
q− y

2

∣∣∣Â∣∣∣q +
y

2

〉
exp

(
i

~eff
pᵀy

)
, (4.3)

where ~eff is the effective Planck’s constant controlling the classical limit of the quantum
system. In this formalism the Wigner function appears as the Wigner-Weyl transforma-
tion of the density operator ρ̂,

W (q,p) ≡ [ρ̂]W(q,p) =
1

√
2π~eff

d

∫
ddy

〈
q− y

2

∣∣∣ρ̂∣∣∣q +
y

2

〉
exp

(
i

~eff
pᵀy

)
. (4.4)

The common interpretation of this function is that it represent the density operator as a
classical quasi-distribution in phase space. Here, the name quasi-distribution indicates
that the Wigner function has similar properties like a probability distribution. Indeed,
it is a real function, which is normalized to one, and quantum mechanical averages of
an observable are identical to phase space averages of the Wigner-Weyl transformation
of that operator,

〈Â〉 = Tr
(
ρ̂Â
)

=

∫
ddq

∫
ddpW (q,p)A(q,p) . (4.5)

However, since it may admit negative values, the Wigner function is not a proper proba-
bility distribution. In the Wigner-Weyl formalism, a product of operators transforms to
the so-called star product of the individual transformations of operators. The definition
of this non-commutative product is given by[

ÂB̂
]

W
(q,p) = A(q,p) ? B(q,p)

= A(q,p) exp

(
i~eff

2

d∑
i=1

[←−−
∂

∂qi

−−→
∂

∂pi
−
←−−
∂

∂pi

−−→
∂

∂qi

])
B(q,p) ,

(4.6)

where the exponential has to be understood through its Taylor expansion, and arrows
above the derivatives indicate that it either acts on the function A to the left or B to
the right. In lowest order in an expansion in powers of ~eff, the star product simplifies
to a simple product A(q,p)B(q,p) of the functions.

The star product allows us to immediately identify the Wigner-Weyl transformation
of the commutator. The obtained object is coined Moyal bracket and, for instance, as
transformation of the commutator [Â, B̂] given by

{{A(q,p), B(q,p)}} =
[

[Â, B̂]
]

W
(q,p)

= A(q,p) ? B(q,p)−B(q,p) ? A(q,p)

= i~eff{A(q,p), B(q,p)}+O
(
~eff

2
)
,

(4.7)

2There is also a more abstract definition of the Wigner-Weyl transformation which involves so-called
displacement operators. This allows certain generalizations to other choices of phase space variables,
see Ref. [94]. However, for our application here, the two definitions coincide, and we chose the better
known classic approach.
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where in the last equality we discovered the classical Poisson bracket, {., .}, Eq. (2.36),
as the leading order in the ~eff-expansion of the Moyal bracket.

Finally, let us make an important observation for the Wigner-Weyl transformation
Ã(t; q,p) of an operator Â(t) in the Heisenberg picture. The equation of motion for this
time-dependent function is obtained by performing the Wigner-Weyl transformation on

both sides of the equations of motion for Â(t), dÂ(t)
/

dt = i/~eff[Ĥ, Â(t)] + ∂Â
/
∂t .

In leading order in the ~eff-expansion, this resembles the classical equation of motion for
a phase space function A(t,q(f)(t),p(f)(t)) = A(t,q(f)(t; q,p),p(f)(t; q,p)) transported
along classical trajectories3,

dA

dt
= −

{
H(q(f)(t),p(f)(t)), A(t; q(f)(t),p(f)(t)

}
+
∂A

∂t
. (4.8)

The initial conditions are Ã(0; q,p) = A(0,q,p), and thus we conclude

Ã(t; q,p) = A(t; q(f)(t,q,p),p(f)(t,q,p)) +O(~eff) . (4.9)

This explains the name “quantum-classical correspondence principle”, since in leading
order operators within the Wigner-Weyl formalism are replaced by their classical coun-
terparts.

4.1.2 Expected behavior of OTOCs

We want to apply the Wigner-Weyl formalism to OTOCs and discuss its consequences.
To be more explicit in an example, let us take a single-particle system and choose V̂ = p̂i
and Ŵ = q̂j , the components of the momentum and the position operator of the particle.
The OTOC we want to consider is thus given by

C(t) = 〈[p̂i(0), q̂j(t)][q̂j(t), p̂i(0)]〉 = tr(ρ̂[p̂i(0), q̂j(t)][q̂j(t), p̂i(0)]) . (4.10)

Using the above results from the Wigner-Weyl formalism C(t) can be transformed into

C(t) = ~eff
2

∫
ddq

∫
ddpW (q,p){{pi, q̃j(t; q,p)}} ? {{pi, q̃j(t; q,p)}} , (4.11)

where we used that the Wigner-Weyl transformation of p̂i is pi. At this stage, q̃j(t; q,p)
does not denote the final point of a classical trajectory starting at (q,p), but the trans-
formation of q̂j(t).

3The Hamilton function here is the leading order of the Wigner-Weyl transformation of the Hamiltonian
Ĥ. It is obtained by simply replacing operators by scalars. Ordering of the operators is not required
here, since this only introduces corrections in higher orders of ~eff.
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onset of hyperbolic
dynamics

classical behaviour quantum interference

Figure 4.1: Time scales and their influence on the dynamical behaviour of OTOCs.

The classical counterparts are introduced by evaluating the above average in the lead-
ing order in the expansion in powers of ~eff. We find4

C(t) = ~eff
2

∫
ddq

∫
ddpW (q,p)

({
pi, q

(f)
j (t; q,p)

})2
+O

(
~eff

3
)

= ~eff
2

∫
ddq

∫
ddpW (q,p)

(
∂q

(f)
j

∂q
(i)
i

(t; q,p)

)2

+O
(
~eff

3
)
.

(4.12)

In the integrand we recover the derivative of a trajectories final position component

q
(f)
j w.r.t. its initial position component q

(i)
i . This derivative is identified as one matrix

element of the stability matrix M, Eq. (2.10), and thus, Eq. (4.12) represents a phase
space average of the squared stability matrix element, with the Wigner function used as
weight.

So far we did not make any assumption on the quantum system, as long as it allows
for the notion of a classical limit in which q, p play the role of conjugate variables.
In case of an integrable limit, the above matrix elements are expected to grow at most
polynomially. Contrarily, for a chaotic classical limit, the unstable directions soon govern
the dynamical behaviour of the stability matrix elements. More exactly, this is expected
to happen after the time scale set by the Lyapunov time tL = 1/|λ|, with λ denoting
the largest Lyapunov exponent found for the phase space points involved in the average.
After this time scale, the derivatives grow exponentially in time, with λ as rate of growth,
as a consequence of the hyperbolic nature of chaotic systems. Thus(

∂q
(f)
j

∂q
(i)
i

(t; q,p)

)2

∼
t>tL

exp(2λt) . (4.13)

Thus, we expect that the OTOC behaves as

C(t) ≈

〈(
∂q

(f)
j

∂q
(i)
i

(t; q,p)

)2〉
W

≈
〈
c~eff

2e2λt
〉
W

(4.14)

where 〈.〉W denotes a phase space average using the Wigner function, and c a propor-
tionality constant.

4In order to reduce the danger of confusing phase space variables, we decided here, to differ from the
notation introduced in chapter 2 and add superscripts (f) and (i) to a phase space point and its
components to make explicit that it denotes a trajectory’s final or initial phase space point.
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So far, higher orders in the expansion of the Moyal bracket and the Wigner transforms
of the operators have not been considered, and it is expected that those are causing de-
viations from the behaviour in Eq. (4.14) . This ultimately culminates in the breakdown
of the ~eff expansion of the Moyal bracket at the Ehrenfest time tE ∝ (1/λ) log((1/~eff)),
since then, roughly speaking, the powers in ~eff are compensated by the exponential
growth, ~eff exp(λtE) = 1. For that reason, Eq. (4.14) is only a valid approximation
for the OTOC for times t � tE, thus reflecting the short-time or pre- Ehrenfest time
behaviour of OTOCs.

Physically, the Ehrenfest time marks the time scale at which details of the order of ~eff

have grown to a significant size. At this time, a purely classical treatment of the dynamics
breaks down and interference phenomena have to be included into the considerations.
For the OTOC this means a breakdown of the expected exponential growth. Many
works, for instance Refs. [53, 61, 106, 107], reported a saturation of the OTOC after
the Ehrenfest time as a consequence of quantum interference, without stating the exact
nature of interference mechanism. It is one of the major aims of our semiclassical theory
of OTOCs to clarify this mechanism.

Before we go beyond this classical picture in the semiclassical treatment of OTOCs, it
is worth to specify the proportionality c contained in Eq. (4.14) for a later check of the
short-time limit of our theory. We use again x′ = (q′,p′) [see Eq. (2.1)] to abbreviate
the notation for a phase space point, and we introduce [.]qj and [.]pi to indicate the
corresponding components of a vector of phase space. For instance, for real vectors
u,v ∈ Rd, [(

u
v

)]
qj

= uj ,

[(
u
v

)]
pi

= vi . (4.15)

Analogously we use [.]qj ,qi to indicate an element of matrix operating on phase space

vectors. We reformulate ∂q
(f)
j

/
∂q

(i)
i using the decomposition Eq. (2.18) of the stability

matrix. For times longer than tL, we have

∂q
(f)
j

∂q
(i)
i

(t; x) = [M(t; x)]qj ,qi ≈
t>tL

k∑
i=1

[
e(i)

u

(
x(f)(t; x)

)]
qj

exp
(
λ(i)(x)t

)[
f (i)
u (x)

]
qi

= −
k∑
i=1

[
e(i)

u

(
x(f)(t; x)

)]
qj

exp
(
λ(i)(x)t

)[
e(i)

s (x)
]
pi
,

(4.16)
where k denotes the number of unstable directions. We neglected terms in the de-
composition which relate to stable and neutral directions, since for t > tL those are
exponentially suppressed against the contributions of the unstable directions. For the
last equality, we further used the relations Eq. (2.32) to re-express the dual vector of the

unstable direction, f
(i)
u (x) = −Σe

(i)
s (x) by the corresponding vector towards the stable

direction, as obtained by the pairing rule (see subsection 2.2.3). Ultimately, we also

replaced the stretching rates by their asymptotic form, Λ
(i)
u (t; x) ≈ exp(λi(x)t). This

introduces the spectrum of the Lyapunov exponents λl(x) of the phase space point x. By
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inserting Eq. (4.16) into Eq. (4.12) we obtain an expression representing the short-time
dynamics of OTOCs for times tL < t < tE.

It is quite clear from Eq. (4.16) that the largest Lyapunov exponent soon governs the
exponential growth, while its prefactor in the integrand is given by the sum of products

[e
(i)
u

(
x(f)(t,x)

)
]qj [e

(i)
s (x)]pi of all directions corresponding to this largest Lyapunov ex-

ponent. To simplify the subsequent considerations, we assume a uniformly hyperbolic
system, in which additionally all Lyapunov exponents have the same absolute value. For
that scenario, the expected behaviour boils down to the expression

C(t) ≈
tL<t<tE

~eff
2e2λt

∫
ddp

∫
ddqW (q,p)

(
k∑
i=1

[
e(i)

u

(
x(f)(t,x)

)]
qj

[
e(i)

s (x)
]
pi

)2

.

(4.17)
As a final remark, the above arguments indicate that for the exponential growth of

OTOCs only the property of hyperbolicity is needed. For instance in the work by Geiger
et al. [108] investigating the integrable Lieb-Liniger model, the wave function Ψ involved
in the average is chosen such that the Wigner function favors an area of phase space
which is subject to local hyperbolic dynamics. There, an exponential growth of OTOCs
is also be observed, even though the classical phase space is integrable. However, due to
the absence of the mixing property, the OTOC does not saturate immediately after the
Ehrenfest time, but rather shows an oscillatory behaviour.

4.2 Semiclassical treatment of OTOCs for bosonic many-body
systems

Our aim is to study OTOCs in an interacting many-body scenario. Since we have a well-
controlled semiclassical theory in which we also identify the classical/thermodynamic
limit of a large number N of particles, the system we choose to study OTOCs in is
a generic Bose-Hubbard models whose d sites support a state with an average of N
interacting bosons. The Hamiltonian for such a system is stated in Eq. (3.45). For
convenience,

Ĥ =
d∑

i,j=1

hij b̂
†
i b̂j +

1

N

d∑
ijkl=1

Vijklb̂
†
i b̂
†
j b̂k b̂l , (4.18)

where b̂†i (b̂i) are creation (annihilation) operators at sites i = 1, . . . , d, see section
3.1.2. The parameters hij contain on-site energies and hopping terms, and Vijkl denote
interactions. The expected number of particles N is included as a parameter into the
system to balance the energies in the kinetic, single-particle part of the Hamiltonian
against the interaction energy. This is needed to avoid the trivial behavior in the classical
or thermodynamic limit N →∞.

Taking ~eff = 1/N as the effective Planck’s constant, we identified the Hamiltonian
formalism describing this limit in section 3.3 during the derivation of the semiclassical
approximation for the propagator in quadrature state representation. These latter states
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are the eigenstates of the position and a momentum quadrature operator defined in
Eq. (3.20). For convenience,

q̂i =
1√
2

(
b̂i + b̂†i

)
, p̂i =

1√
2i

(
b̂i − b̂†i

)
, i ∈ { 1, . . . , d } . (4.19)

The classical analogues of these operators are naturally used as phase space variables,
and in Eq. (3.63) we identify the Hamilton function of the classical “~eff = 1/N” limit
to be

H(q,p) =

d∑
i,j=1

hij
~

Φ∗iΦj +

d∑
i,j,k,l=1

Vijkl
~

Φ∗iΦ
∗
jΦkΦl , (4.20)

where the vector Φ = (q + ip)/
√

2 contains as a complex combination of the conjugate
position and momentum quadrature vectors.

To support the intuition developed in the last section we choose for our studies an
OTOC whose commutator contains the position and a momentum quadrature operator
and formally resembles the one in Eq. (4.10). The average is taken over an initial state
|Ψ〉. Explicitly writing the time-evolution operators used for the Heisenberg picture, the
OTOC we are about to study is given by

C(t) =
〈

Ψ
∣∣∣[p̂i, Û †(t)q̂jÛ(t)

][
Û †(t)q̂jÛ(t), p̂i

]∣∣∣Ψ〉 . (4.21)

The arguments of the last section still formally apply and immediately grant us a pre-
diction for the short-time limit of the correlator through Eqs. (4.12) and (4.17). We
can use these predictions to benchmark the semiclassical theory we develop in the next
subsections. OTOCs with more generic operators are discussed in section 4.5.

4.2.1 The trajectory-based semiclassical representation of the OTOC

Our semiclassical theory relies on using the semiclassical approximation for the many-
body propagator for Bose-Hubbard models, Eq. (3.83). In a first step, we thus transform
the time evolution operators into propagators by inserting multiple unit operators, ex-
pressed in the basis of position quadrature states. This results in a multidimensional
integral, whose integrand contains the product of four propagators. Furthermore, the
position and momentum quadrature operator are replaced by their position quadrature
representations, which are an integration variable and a differential operator as seen in
Eqs. (3.25) and (3.26). Thus,

C(t) =
〈

Ψ
∣∣∣1 · [p̂i, Û †(t) · 1 · q̂j · Û(t)

]
· 1 ·

[
Û †(t) · 1 · q̂j · Û(t), p̂i

]
· 1
∣∣∣Ψ〉

=

∫
ddq1

∫
ddq2

∫
ddq3

∫
ddq4

∫
ddq5 Ψ∗(q1)Ψ(q5)

×
[(

~
i

∂

∂q1,i
+

~
i

∂

∂q3,i

)
K∗(q2,q1, t)q2,jK(q2,q3, t)

]
×
[(
−~

i

∂

∂q5,i
− ~

i

∂

∂q3,i

)
K∗(q4,q3, t)q4,jK(q4,q5, t)

]
.

(4.22)
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Next, we replace the propagators involved in this integral representation by their semi-
classical approximation K(sc), Eq. (3.83). The derivatives w.r.t. q1,i, q3,i and q5,i are only
acting on the phase factors containing the classical action Rγ in K, not the amplitude
Aγ , since in the latter case we obtain contributions which are of the same order in ~eff

than the terms we neglected within the stationary phase approximation in section 3.3.3.

Using further the identity ∂Rγ
/
∂q(i) = −p

(i)
γ [see Eq. (2.6)], the integral representation

of the OTOC Eq. (4.21) transforms into

C(t) ≈
∫

ddq1

∫
ddq2

∫
ddq3

∫
ddq4

∫
ddq5 Ψ∗(q1)Ψ(q5) (4.23)

×
∑

α′:q1
t→q2

α:q3→q2

β′:q3→q4
β:q5→q4

A∗α′AαA
∗
β′Aβe

i
~eff

(−Rα′+Rα−Rβ′+Rβ)
(
p

(i)
α′,i − p

(i)
α,i

)
q

(f)
α,j

(
p

(i)
β,i − p

(i)
β′,i

)
q

(f)
β,j .

The four time evolution operators in Eq. (4.21) have been transformed into a fourfold
sum over contributions from trajectories of temporal length t linking different initial and
final position quadratures. The initial and final position quadratures, which define the
boundary conditions for the trajectory, are indicated in the indices of the summation.
Note that in principle, these boundary conditions, as well as the time t, would also appear
as argument of any of the trajectory-labeled quantities, but for the ease of reading we
dropped these arguments in our notations. Finally, to aide our argumentation towards
generalizing the results later in section 4.5, we also re-expressed the integration variables
appearing in the integrand as final position quadrature of trajectories, for instance q2,j =

q
(f)
α,j(q2,q3, t).
Some of the initial and final boundary conditions of the trajectories, represented by the

integration variables q2, q3 and q4, are each shared by two trajectories. Furthermore,
the initial position quadratures q1 and q5 are associated to the variables used within the
wave function. By introducing a schematic representation, in which black and orange
arrows refer to contributions of a trajectory contained in the coherent sum in K(sc) and
K(sc)∗, we can visualize the geometrical arrangement of the trajectories quadruplet with
respect to their boundary conditions,

. (4.24)

The initial state |Ψ〉 is indicated by a gray shaded spot. By taking a state which is
localized in both quadrature states, such as a coherent state (see section 3.1.4) we can
assume that contributions to the OTOC arise from trajectory constellations where q1

and q5 are close to each other .
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As we can see from Eq. (4.23), the effect of using semiclassical techniques is so far
to replace the operators appearing in the OTOC by their classical analogues – here the

initial momentum quadrature p
(i)
γ,i and the final position quadrature q

(f)
γ,j of trajectories

γ ∈ {α, β, α′, β′}. The commutators themselves translate into differences of the initial
momentum quadratures.

To simplify the presentation of the technical details we work with a set of assumptions:

• The initial wave packet |Ψ〉 is localized in both quadratures. Such properties are
found, for instance, for a many-body coherent state, see section 3.1.4.

• The only two constants of motion for the classical (mean-field) dynamics are the
classical energy as the value of the classical Hamilton function,

E = H(q,p) , (4.25)

and the total number of particles in the system, normalized by N . The classical
constant of motion for the latter is given by

N (q,p) =

d∑
i=1

|Φi|2 =
1

2

d∑
i=1

(
q2
i + p2

i

)
. (4.26)

• The (2d−2)-dimensional submanifold of phase space defined by these two constants
of motion is chaotic with uniformly hyperbolic dynamics. Furthermore, all positive
Lyapunov exponents are assumed to be the same at any phase space point, and
we denote it by λ (see subsection 2.3.2).

In section 4.5 we present a discussion of the consequences to expect when the above
assumptions are relaxed in order to comply for more realistic implementations of systems
described by the Bose-Hubbard model.

4.2.2 Identification of the main contributions to the OTOC

In the semiclassical limit the classical action Rγ(q(f),q(i); t) of a typical trajectory γ, is
large compared to ~eff, Rγ(q(f),q(i); t) � ~eff. Thus, the phase factors in Eq. (4.23) are
highly oscillatory when varying the initial or final position quadratures within the inte-
grals. Therefore, an arbitrary choice of trajectories within the quadruplet in Eq. (4.24) in
general results in a negligible contribution after integration. Only a constellation of cor-
related trajectories which gives rise to an action difference Rα−Rα′+Rβ−Rβ′ ' O(~eff)
of the order of ~eff leads to a significant contribution to C(t). Since we assume a classical
chaotic limit for the Bose-Hubbard model, such constellations only arise in a systematic
manner when most of the time trajectories are pairwise almost identical [68, 109]. A
change of partners is possible in so-called encounter regions in phase space in which
all four trajectories stay for a limited time in close vicinity of each other5. As we will

5While we do not need this for the discussion of OTOCs within this thesis, for completeness we like to
note that an encounter region can also contain a time-reversed versions of a trajectory. After such
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Figure 4.2: Constellations of trajectories that represent the dominant contributions to
the OTOC C(t), Eq. (4.23). In (a), the trajectory quadruples are fully
contained within a single encounter (marked by a dashed box), and we de-
note this diagram a “zero-leg” diagram. The subfigures (b) and (c) form a
“two-leg” diagram with an encounter (b) at the beginning or (c) at the end.
Finally, in (d) a “four-leg” diagram with an intermediate encounter of all
trajectories is shown.

see in the next section in detail, forming an encounter heavily relies on the hyperbolic
dynamics of the classical chaotic limit, as trajectories need to exponentially approach
and diverge from each other within these regions.

For OTOCs the relevant constellations of trajectories involve a single encounter and
can be subdivided into four classes, which differ in the role and the position of this
encounter region. We depict the four diagram classes in Fig. 4.2, where boxes indicate
the encounter region. Diagram (a) shows a “zero-leg” diagram6, in which a bundle of
four trajectories is staying in close vicinity to each other, thereby forming an encounter
during the whole time t. This scenario is slightly more realistically visualized in Fig. 4.3.
Panels (b) and (c) display “two-leg” diagrams with an encounter at the beginning or
end, and with uncorrelated dynamics of the two trajectory pairs (“legs”) outside the
encounter. Finally, the “four-leg” diagrams in (d) are characterized by uncorrelated

a region, a trajectory might follow the path of a time-reversed version of trajectory, a mechanism,
which is used to explain, for instance, weak localization [4, 110]. In such scenarios, time-reversal
symmetry of the classical system is required, and thus contributions arising from such constellations
are sensitive to time-reversal symmetry breaking mechanism, such as magnetic fields in electronic
transport scenarios [71, 110], or artificial gauge fields in the Gross-Pitaevskii description of bosonic
transport [29].

6The names of the classes are motivated, but not equal to the notation found in Ref. [110]. For instance,
the authors there might call (d) a 2-leg-loop, since in their picture diagram (d) is obtained by cutting
open a closed loop.
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Figure 4.3: More realistic graphical representation of diagram (a) in Fig. 4.2. For the
whole time t, the four trajectories stay in close vicinity to each other and can
be considered as a single solution of the mean-field Gross-Pitaevskii equation,
Eq. (3.86).

motion before and after the encounter.
Since the time argument in the semiclassical propagators is fixed to t, legs on the

same side of an encounter must have equal times, since otherwise a contradiction arises
for the total times of the individual trajectories. This excludes a potential “one-leg” or
“three-leg” diagram, and explains, why diagrams (a) to (d) in Fig. 4.2 represent all the
configurations containing a single encounter. The contribution of diagram classes which
contain more than a single encounter is discussed in section 4.5.

Inside an encounter, the hyperbolic dynamics essentially follows a common mean-field
solution. For that reason, diagram (a) in Fig. (4.2) represents the case, where the four
trajectories can be interpreted as a single solution of the classical mean-field equations
Eq. (3.86). We thus expect this diagram to reproduce results for the OTOC, which
are based on solving the mean-field problem. This includes our treatment in section
4.1.2, but also the truncated Wigner method, such as in Ref. [111]. Contrarily, diagrams
(b) to (d) are interpreted as two solutions of the Gross-Pitaevskii equation, Eq. (3.86),
which are coupled to each other through a fully developed encounter. Their contribution
within the interfering sum is a many-body interference phenomenon which goes beyond
the above mentioned methods. This mechanism gets quantum mechanically relevant
for times beyond tE since this is the time at which encounter regions with an action
difference at the order O(~eff) start to exist. Indeed, we will see in the next sections that
diagrams (b) to (d) are crucial to explain the saturation of OTOCs and its crossover
from the pre-Ehrenfest exponential growth.

4.2.3 Geometry of encounters in phase space

For our calculations it is necessary to quantify the encounter of trajectories in a phase
space region. This basic understanding has been provided in detailed analyses within
single-particle scenarios, and there is already a broad literature available [69, 72, 81, 109,
110, 112]. For convenience, and also to include the explanation of new OTOC-specific
modifications, we review and summarize the key steps here.

The main idea is that when two trajectories encounter each other in phase space, the
dynamics of their relative motion is well described by linearizing Hamilton’s equations
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of motion around one of the trajectories. In this linearized regime, the relative phase
space difference of nearby trajectories can be expressed in the local coordinate system
spanned by the directions towards the stable and unstable manifolds and the manifolds
given by the two constants of motion, as we have seen in our the discussions in section 2.2.
However, we have to demand that the encountering trajectories have (within a window
of O(~eff)) the same values for their constants of motion, since otherwise a change of
the partner trajectory, which is followed outside the encounter region, is not possible.
Thus, the relative difference vector is expressed solely in terms of the 2(d−2) stable and
unstable directions.

To quantitatively describe trajectories α, α′, β, β′ encountering each other in phase
space, we first choose one of the trajectories as a reference trajectory, say β, and construct
the others from that trajectory. We take a time t′ at which we want a second trajectory
α to be close to β. At the phase space point of β at t′, denoted by xβ(t′), we place the
origin of a 2(d− 2) dimensional coordinate system, which is spanned by the local stable

and unstable directions e
(l)
β,s (t′) ≡ e

(l)
s (xβ(t′)), e

(l)
β,u (t′) ≡ e

(l)
u (xβ(t′)). In this frame, an

encountering trajectory α, which takes the same values of the constants of motion as β,
is uniquely defined by vectors s, u through

xα(t′) = xβ(t′) +
d−2∑
l=1

[
sle

(l)
β,s

(
t′
)

+ ule
(l)
β,u

(
t′
)]
. (4.27)

As long as we are working in the linearizable regime of the relative Hamiltonian dynamics,
i.e. the components of the vectors s, u do not reach a given critical (classical) value ±c,
Eq. (4.27) results in a well-defined phase space point. Since the Hamilton function H
does not explicitly depend on time this phase space point is sufficient to specify the full
trajectory α both for times before and after t′. Since both the stable and the unstable
directions are involved, the constructed trajectory α is exponentially diverging from β
for times smaller and larger than t′, while it stays close to β around the time t′. The
reason why in Eq. (4.27) the phase space points of α and β are taken at the same time
t′ is the very same which excluded a mismatch of times of legs on the same sides of
encounters in Fig. 4.2: Since the partner trajectories α′, β′, which we construct in a
moment, change from β to α or vice versa within the encounter region, their complete
times would differ from t in case of different times in Eq. (4.27). However, since we have
to find these partner trajectories in the corresponding sums over trajectories α′ and β′

in Eq. (4.23) thus leading to a contradiction.
The missing two partner trajectories α′, β′, which follow the original trajectories

outside the encounter region and interchange the partners inside it, are also uniquely
identified by the vectors s, u. Their phase space points at time t′ are given by

xβ′(t
′) = xβ(t′) +

d−2∑
l=1

sle
(l)
β,s

(
t′
)
, xα′(t

′) = xβ(t′) +

d−2∑
l=1

ule
(l)
β,u

(
t′
)
. (4.28)

The trajectory β′ exponentially approaches β for times larger than t′, as the difference
between xβ′(t

′) and xβ(t′) is solely along stable directions. For times smaller than t′,



64 Chapter 4. Semiclassical analysis of OTOCs

Figure 4.4: Visualization of the local relation between the phase space points of the four
trajectories involved in an encounter.

we have to consider time-reversed dynamics, and the stable and unstable manifolds
interchange their roles. Thus, for times smaller than t′, β′ exponentially separates from
β, and exponentially approaches α in the same fashion, since

xα(t′)− xβ′(t
′) =

d−2∑
l=1

ule
(l)
β,u

(
t′
)
. (4.29)

The same reasoning can be applied to α′.
To summarize, a constellation of trajectories with a single encounter is described by

choosing one of the trajectories as a reference trajectory, a time t′ as time of the en-
counter, and vectors s, u to quantify the respective distances towards the other trajecto-
ries. The whole geometric constellation of the trajectory quadruplet we just constructed
is schematically depicted in Fig. 4.4.

So far, we have not yet specified the critical (classical) value c, which controls the
linearizable regime. It is chosen such that c2 has the size of a typical classical action
scale and is large compared to ~eff. Its exact value is not of importance as diagrams
with action differences much larger than ~eff essentially do not contribute to the results
of semiclassical calculations. Nevertheless, our final results depend on it as it manifests
itself through the quantitative definition of the Ehrenfest time,

tE =
1

λ
log

(
c2

~eff

)
, (4.30)

which now admits the physical interpretation of the time scale for which under hyperbolic
dynamics details of the order O(~eff) can grow to a size of the order O(c2) of a typical
classical action.

Note also that varying the time t′ in Eq. (4.27) changes the vectors s and u in the
co-traveling coordinate system according to the Hamiltonian dynamics. For instance
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for t′, t′′ inside the encounter region, the phase space points defined by (t′, s,u) and
(t′′, s exp[−λ(t′′ − t′)],u exp[λ(t′′ − t′)]) are actually describing the very same trajectory
α. This produces an overcounting of contributions when we integrate over t′ and is as-
sociated to the fact, that a constellation of trajectories is more related to the encounter
region rather than to the situation at a single time within the region. Such overcounting
can be compensated by dividing the contributions through the overall time the trajec-
tories spend inside the encounter region. To identify this time, we note that the borders
of the encounter regions are reached when the first components of s and u have grown
to the classical scale ±c at which the linearization breaks down. This introduces two
time scales, the stable and unstable time

ts(s) =
1

λ
log

(
c

maxi=1,...,d−2(|si|)

)
, tu(u) =

1

λ
log

(
c

maxi=1,...,d−2(|ui|)

)
. (4.31)

The encounter time, the time trajectories spend in a fully developed encounter region
as seen in Fig. 4.2 (d), is defined as the sum of these two times,

tenc (s,u) = ts(s) + tu(u) . (4.32)

Note that if the trajectories start and/or end inside the encounter region, as in Fig. 4.2
(a) to (c), the effective time of the trajectory within an encounter has to be reduced
accordingly, since the trajectories terminate before the boundary of the encounter region
is reached.

So far, the above considerations are rather general. Regarding encounter contributions
to OTOCs, there are further important issues to consider, which are specific to OTOCs
and, to the author’s knowledge, have not been emerged and not treated so far in the
existing works in semiclassical physics. These issues prove crucial in the semiclassical
understanding OTOCs and relate to the operators appearing next to the time evolution
operators in the definition Eq. (4.21). By introducing the semiclassical formalism, the
operators translated to classical, trajectory-related quantities. If the initial points of the
trajectories are contained inside the encounter region, we have to treat the corresponding
classical quantities which relate to initial points of trajectories in a correlated way, and
also use the local coordinates s, u to describe them.

In Fig. 4.2 (a) and (b), the beginning of the trajectories is inside the encounter region.
This requires to treat the difference of initial momenta in Eq. (4.23) through

p
(i)
α′,i − p

(i)
α,i = −

d−2∑
l=1

sle
λt′
[
e

(l)
β,s (0)

]
pi
, p

(i)
β,i − p

(i)
β′,i = −

d−2∑
l=1

sle
λt′
[
e

(l)
β,s (0)

]
pi
. (4.33)

Similarly, if the final points enter the encounter region, as in Fig. 4.2 (a) and (c), we use

q
(f)
α,jq

(f)
β,j =

1

2

(
q

(f)
α,j

2
+ q

(f)
β,j

2
)
− 1

2

(
q

(f)
α,j − q

(f)
β,j

)2
≈ q(f)

α,j

2
− 1

2

(
d−2∑
l=1

ule
λ(t−t′)

[
e

(l)
β,u (t)

]
qj

)2

,

(4.34)



66 Chapter 4. Semiclassical analysis of OTOCs

where we again used [.]pi and [.]qj to denote components of the momentum and the
position quadrature sector of the phase space vectors, see Eq. (4.15). As we later ap-
proximate the square of the final points in Eq. (4.34) by its phase space average due to

mixing, we already approximate them here by q
(f)
α,j

2
to simplify expressions.

4.2.4 Density, amplitudes and action difference of diagrams with encounters

To obtain all possible contributions to Eq. (4.23) from trajectory constellations under-
going a single encounter, we first introduce integrations over the relative differences s,
u and time t′ at which these differences are employed. The integration volumes are
such that the linearizable regime, as limited by the critical values ±c is covered, and the
encounter region around t′ is placed according to the diagrammatic class in Fig. 4.2.

Since the partner trajectories α′ and β′ are uniquely given by the Eqs. (4.28), the
four-fold sum over trajectories can be reduced to a two-fold sum. Furthermore, we can
correlate the remaining sums over α and β by introducing the density distribution

ρα,β
(
s,u, t′

)
=

(2π~eff)2

tenc(s,u)
δ2d
[
xα(t′)− x̃

(
xβ(t′), s,u

)]
, (4.35)

It utilizes a multidimensional Dirac-δ function to implement Eq. (4.27), since for the
argument we defined

x̃(x, s,u) = x +
d−2∑
l=1

[
sle

(l)
s (x) + ule

(l)
u (x)

]
. (4.36)

Note that Eq. (4.35) the encounter time tenc(s,u) needs to be adjusted in case of trajec-
tories ending inside the encounter.

The normalization (2π~eff)2 in Eq. (4.35) is independently determined by performing
similar calculations for the identity 1 = 〈Ψ|Û †(t)Û(t)Û †(t)Û(t)|Ψ〉. It reflects that the
paired trajectories should all stay in a window of size ~eff near the submanifold defined
by the reference trajectory’s values for the constants of motion H and N .

It can be shown [81] that for the diagrammatic constellations in Fig. 4.2 the product
of amplitudes associated with the four trajectories reduces to the product of the squared
modulus of the amplitudes of the two trajectories α and β,

AαAα′AβAβ′ → |Aα|2|Aβ|2 , (4.37)

where we also implicitly used that, as one can also show [81], the Maslov indices and the
sum of phases due to ordering sum up to zero.

Finally, the action difference of this system of four trajectories, as derived in appendix
A.3, see also [69, 109] is found to be

Rα −Rα′ +Rβ −Rβ′ ≈ s · u + p(i)
α · (q1 − q5) . (4.38)

The term related to the initial momentum and the relative distance y = q1 − q5 is
introduced as we substitute the trajectories α, α′, starting at q1 and q5, by nearby
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trajectories starting at q = 1
2(q1 +q5). This is required by the pairing of the trajectories

α, α′ before the encounter. It can, on the one hand, be justified by our demand of a
localized state Ψ, which also contains the above variables q1, q5, see Eq. (4.23). On the
other hand, we can consistently assume that a large distance of this vectors produces
an action difference much larger than ~eff and thus a vanishing contribution in the
semiclassical limit. The latter argument allows, also to consider the final result of our
subsequent calculations for physically realistic many-body states, such as Fock states.

4.3 Calculation of diagrammatic contributions

4.3.1 Contributions of four-leg diagrams

We now turn towards the actual calculations of the contributions of the single diagram
classes depicted in Fig. 4.2. For pedagogical reasons we start with the contributions of
the four-leg-encounters displayed in subfigure (d). The contribution of this diagram is
found by evaluating the integral

C(4le)(t) =

∫
ddq

∫
ddy

∫
ddq2

∫
ddq3

∫
ddq4 Ψ∗

(
q +

y

2

)
Ψ
(
q− y

2

)
×
∑

α:q3
t→q2

β:q→q4

|Aα|2|Aβ|2
(
p

(i)
β,i − p

(i)
α,i

)2
q

(f)
α,jq

(f)
β,je

i
~eff

p
(i)
α ·y

(4.39)

×
∫ c

−c
dd−2s

∫ c

−c
dd−2u

∫ t−tu(u)

ts(s)
dt′ e

i
~eff

su
Θ[t− tenc(s,u)]ρα,β

(
s,u, t′

)
,

where we used the short-hand notation∫ c

−c
dd−2s

∫ c

−c
dd−2u =

∫ c

−c
ds1

∫ c

−c
du1 · · ·

∫ c

−c
dsd−2

∫ c

−c
dud−2 (4.40)

to abbreviate the 2(d− 2) integrations of the stable and unstable coordinates.
Most of the ingredients of Eq. (4.39) have already been discussed in detail in the

previous section. The special features of Fig. 4.2 (d) are represented by the boundaries
of the integration over t′, which require that the encounter region does neither contain
the beginning nor the end of the trajectories. Additionally, the Heaviside step function
Θ ensures that encounter regions longer than the available time t are excluded. Finally,
following the arguments after Eq. (4.38), and paving the way for later introducing the
Wigner function, Eq. (4.4), we already performed the variable transformation

(q1,q5)→ (q,y) =

(
q1 + q5

2
,q1 − q5

)
, (4.41)

to replace the coordinates q1 and q5 in the arguments of the wave function by their
center of mass and the relative coordinates.
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We begin the evaluation of Eq. (4.39) by noting that by using Eq. (2.7) in Eq. (3.84) the
squared amplitudes |Aα| 2 can be interpreted as Jacobian for a variable transformation
from final coordinates to initial momenta along a classical trajectory,

|Aα| 2 =
1

(2π~eff)d

∣∣∣∣∣∂p
(i)
α

∂q(f)

∣∣∣∣∣ . (4.42)

In combination with the sum over trajectories α, this allows us to transform the inte-

grations over q2 = q
(f)
α into an integration over initial momenta p3. Trajectory-related

quantities labeled by α become then functions of trajectories with initial conditions
x3 = (q3,p3). For instance (

p(i)
α ,q

(f)
α

)
→
(
p3,q

(f)(x3; t)
)
. (4.43)

In the same spirit we use the sum over β with |Aβ| 2 to transform the integration over
q4 to p, and β-labeled quantities become functions of x = (q,p).

The δ-function in the density of encounters, Eq. (4.35) can be interpreted as classical
probability density for a trajectory starting at x3 to be at time t′ at a certain phase space
point which depends on q, p, s, u and t′. Within the integration, we can approximate
this probability density by a smoothed function. As the initial points x3 are not located
within the encounter region, it is then justified to utilize the mixing property of the
chaotic system, Eq. (2.47) to approximate ρα,β by

ρα,β →
(2π~eff)2

tenc (s,u)

δ2

(
H(x3)−H(x)
N (x3)−N (x)

)
Σ(x)

, (4.44)

where Σ(x) is the volume of the chaotic phase space submanifold,

Σ(x) =

∫
d2dx′ δ2

(
H(x′)−H(x)
N (x′)−N (x)

)
. (4.45)

The interpretation of Eq. (4.44) is that every phase space point which shares the same
values of the constants of motions H(x) and N (x) is equally likely to be reached by the
classical dynamics of a typical trajectory in the chaotic region.

Together with the integration over initial phase space points x3, Eq. (4.44) introduces
an average over the accessible submanifold defined by the constants of motion. This
leads to the following substitution of initial momenta and final position:

(p3,i − pi)2q
(f)
j (x3; t)→ 〈

(
p′i − pi

)2
q

(f)
j

(
x′; t

)
〉x , (4.46)

where the phase space average is defined as

〈f(x′)〉x =

∫
d2dx′ δ2

(
H(x′)−H(x)
N (x′)−N (x)

)
f(x′)

Σ(x)
. (4.47)
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Note that the phase space point x, which is also used as label, defines the values of the
constants of motion H(x) and N (x) in this average. To be able to distinguish this phase
space average from the phase space average involving the Wigner function introduced
later, we denote Eq. (4.47) an ergodic phase space average.

For times larger than the Lyapunov time tL = 1/|λ| the final position of a trajectory
is independent of its starting point. This allows us to factorizes the average Eq. (4.46)

〈
(
p′i − pi

)2
q

(f)
j

(
x′; t

)
〉x = 〈

(
p′i − pi

)2〉x 〈q′j〉x . (4.48)

Again using the mixing property, we also approximate the remaining factor q
(f)
j (x; t) by

the phase space average 〈q′j〉x.
Combining all the above considerations, and also introducing the Wigner function

according to Eq. (4.4) for the pure state ρ̂ = |Ψ〉〈Ψ|,

W (q,p) =
1

(2π~eff)d

∫
ddyΨ∗

(
q +

y

2

)
Ψ
(
q− y

2

)
e

i
~eff

p·y
, (4.49)

we see that the contribution of four-leg encounters can be written in terms of a phase
space average weighted with the Wigner function,

C(4le)(t) =

∫
ddq

∫
ddpW (q,p)I(4le)(q,p; t) , (4.50)

where the phase space function to be averaged is given by

I(4le)(q,p; t) = 〈
(
p′i − pi

)2〉x 〈q′j〉2x F (4le)(t) , (4.51)

and contains the ergodic phase space averages as discussed above, and the encounter
integral

F (4le)(t) =
1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u t− tenc(s,u)

tenc(s,u)
Θ[t− tenc(s,u)] . (4.52)

The calculation of this integral is performed in appendix A.4.2. We find, as exact result

F (4le)(t) =

(
2

π

)d−2

λt(d− 2) Sid−3
(

eλtE
)

sin
(

eλtE
)

−
(

2

π

)d−2[
Sid−2

(
eλtE

)
− Sid−2

(
eλ(tE−t)

)]
,

(4.53)

where Si denotes the sine-integral [113]

Si(z) =

∫ z

0
dz′

sin(z′)

z′
. (4.54)

The result further contains the Ehrenfest time tE from Eq. (4.30) as an indicator that
trajectory constellations with an action difference of the order of ~eff or smaller contribute
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the most in the diagram class (d) in Fig. 4.2. As we explained in detail in section 4.2.3
such constellations need times larger than the Ehrenfest time to form a close enough
encounter of trajectories to produce an action difference equal or smaller than ~eff.
Indeed, as the further analysis of Eq. (4.53) in appendix A.4.2 shows, in the semiclassical
limit ~eff � c2, which implies λtE = log(c2/~eff)� 1, we can well approximate the above
function by the Heaviside step-function Θ,

F (4le)(t) ≈
{

0 if t < tE
−1 if t > tE

}
≈ −Θ(t− tE) . (4.55)

The physical implication is now obvious, as diagrams depicted in Fig. (4.2) (d) contribute
to the OTOC a constant value after the Ehrenfest time.

4.3.2 Contributions of two-leg diagrams

We now turn towards the two-leg diagrams depicted in Fig. 4.2 (b) and (c). These are
characterized by an encounter region that contains either the starting or the end points
of the quadruplet of trajectories.

Encounter at the beginning

We start with diagram (b). Its contribution C(2le,(b)) is calculated from a similar expres-
sion as C(4le), Eq. (4.39), however with three major differences:

• Since the encounter region is at the beginning, the integration over t′ is over the
interval [0, ts(s)].

• The effective time in the encounter is t
(eff)
enc (t′,u) = t′+ tu(u) and thus smaller than

the encounter time in Eq. (4.32).

• The difference of initial momenta is expressed through Eq. (4.33) and adds addi-
tional terms depend on s and t′ to the integrand.

Apart from a different treatment of the density ρα,β, which here can be directly used to
cancel the integration over x3, we apply the same steps which led to Eq. (4.50) for the
four-leg encounter. Thus, formally we arrive at the same phase space average, however,
in this case the phase space function being averaged is given by

I(2le,(b))(q,p; t) =
〈
q′j
〉2

x

d−2∑
l,l′=1

[
e(l)

s (x)
]
pi

[
e(l′)

s (x)
]
pi
F

(2le,(b))
ll′ (t) (4.56)

where the encounter integral reads

F
(2le,(b))
ll′ (t) =

1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u
slsl′

×
∫ ts(s)

0
dt′

Θ
[
t− t(eff)

enc (t′,u)
]

t
(eff)
enc (t′,u)

e2λt′ .

(4.57)
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The details of the calculation of this integral are found in appendix A.4.3, and we refer
there for the exact analytical result. We further show there that in both the temporal
regimes t > tE and t < tE the contribution of this diagram is exponentially suppressed
compared to contributions of other diagrams. Consequently, diagram (b) in Fig. 4.2
neither contributes to the pre- nor the post-Ehrenfest dynamics of the OTOC.

Non-negligible contributions of this diagram arise in the vicinity of the Ehrenfest-time
tE. We therefore conjecture that this diagram, amongst others, is responsible for the
smooth crossover between the early-time exponential growth and the late-time saturation
of OTOCs. However, it is not possible to describe this crossover quantitatively within
this semiclassical framework, as for times t ≈ tE, our results become sensitive to the
classical value c we chose as a sharp cutoff for the treatment of encounters.

Encounter at the end

The two-leg diagram class of Fig. 4.2 (c) is similar to the previous one. Here, it is the
final points of the quadruplet of trajectories that are contained inside the encounter. In
this case, the following modifications to Eq. (4.39) are required:

• The integration interval for t′ is [t− tu(u), t].

• The effective encounter time is t
(eff)
enc (t′, s) = ts(s) + (t− t′).

• The product of final positions is expressed through Eq. (4.34). In one part of the
subsequent calculation, this leads to correlated final points 〈q′j

2〉x in the ergodic
average. In the other part the integrand admits additional terms which depend on
u and t′.

The contributions are given by

I(2le,(c))(q,p; t) = 〈(p′i − pi)2〉x

(
〈q′j

2〉x F
(2le,(c))(t)

− 1

2

d−2∑
l,l′=1

[
e(l)

u

(
x(f)(x; t)

)]
qj

[
e(l′)

u

(
x(f)(x; t)

)]
qj
F

(2le,(c))
ll′ (t)

)
,

(4.58)
where the phase space integrals read

F (2le,(c))(t) =
1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u

×
∫ t

t−tu(u)
dt′

Θ
[
t− t(eff)

enc (t′, s)
]

t
(eff)
enc (t′, s)

,

(4.59)
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F
(2le,(c))
ll′ (t) =

1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u
ulul′

×
∫ t

t−tu(u)
dt′

Θ
[
t− t(eff)

enc (t′, s)
]

t
(eff)
enc (t′, s)

e2λ(t−t′) .

(4.60)

The details of the calculation of these integrals are found in appendix A.4.4. As is argued

there, a simple change of variables transforms F
(2le,(c))
ll′ (t) into the very same form as

Eq. (4.57), the phase space integral we solved for the two-leg diagram with the encounter
at the beginning. It is therefore obvious to conclude that this term is only contributing
to the crossover at time t ≈ tE.

The contribution for F (2le,(c))(t) is found to be

F (2le,(c))(t) =

(
2

π

)d−2[
Sid−2

(
eλtE

)
− Sid−2

(
eλ(tE−t)

)]
. (4.61)

The analysis of the latter result uses the same arguments as for the contribution for
four-leg-encounters, and we find that F (2le,(c))(t) only contributes for times larger than
the Ehrenfest time tE. It can, like F (2le,(d))(t) be well approximated by the Heaviside
step function θ,

F (2le,(c))(t) ≈ θ(t− tE) , (4.62)

and thus also contributes to the saturation value of the OTOC.
The difference between the contributions of diagrams (c) and (d) is whether or not the

final position quadratures have to be treated correlated. Consequently, the combination
of diagrams (c) and (d) results in the variance of position quadrature variable, 〈q2

j 〉x −
〈qj〉2x, in the phase space accessible by the trajectory starting at x.

4.3.3 Contributions of zero-leg diagrams

In this final section we calculate the contribution C(0le)(t) shown in Fig. 4.2 (a), where
the quadruplet of trajectories is fully contained within the single encounter, i.e. the
trajectories stay close to each other for the whole time.

The starting point for the calculation of C(0le)(t) differs from the one of the four-leg-
encounter C(4le), Eq. (4.39), in the following items (see also Refs. [114, 115])

• As the encounter stretches over the full time t, the integration interval for t′ is [0, t]

and the effective encounter time is t
(eff)
enc = t. There is no Heaviside step function

Θ in time any more.

• As the encounter time is fixed, the integration interval for the components of s
is reduced to [−c exp(−λt′), c exp(−λt′)] to ensure none of the stable components
grows larger than the maximal value c in the available time t′. With the same
reasoning, the integration intervals for the components of u have to be taken as
[−c exp[−λ(t− t′)], c exp[−λ(t− t′)]].
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• Both, the initial momentum difference and the product of final positions, have to
be interpreted in view of Eqs. (4.33), (4.34) and be respected in the integrations
over s, u and when using arguments leading to the ergodic averages.

• The δ-function in the density ρα,β of partner trajectories can again be directly used
to cancel the integration over x3.

After the initial transformations towards a phase space average of the form Eq. (4.50),
we find that the phase space function with the contribution of the zero-leg diagram has
the form

I(0le)(q,p; t) =

d−2∑
l,l′=1

[
e(l)

s (x)
]
pi

[
e(l′)

s (x)
]
pi

[
〈q′j

2〉x F
(0le,1)
ll′ (t) (4.63)

− 1

2
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[
e(m)

u

(
x(f)(x; t)

)]
qj

[
e(m′)

u

(
x(f)(x; t)

)]
qj
F

(0le,2)
ll′mm′(t)

]
,

with encounter integrals

F
(0le,1)
ll′ (t) =

1

(2π~eff)d−2

∫ t

0
dt′ e2λt′

∫ ce−λt
′

−ce−λt′
dd−2s

∫ ce−λ(t−t′)

−ce−λ(t−t′)
dd−2u

e
i

~eff
s·u

t
slsl′ ,

(4.64)

F
(0le,2)
ll′mm′(t) =

1

(2π~eff)d−2

∫ t

0
dt′ e2λt

∫ ce−λt
′

−ce−λt′
dd−2s

∫ ce−λ(t−t′)

−ce−λ(t−t′)
dd−2u

e
i

~eff
s·u

t
slsl′umum′ .

(4.65)

The details of the calculation of these integrals are found in appendix A.4.5, including
the discussion of their behaviour in the regime t < tE and t > tE. We find that Eq. (4.64)
is exponentially suppressed again for t < tE and t > tE, but contributes to the crossover
regime at t ≈ tE. Also the second contribution, Eq. (4.65) is strongly suppressed for
times larger than the Ehrenfest time.

For t < tE the leading contributions are obtained for index sets with pairwise equal
indices {l, l′} = {m,m′}. For l 6= l′, their contribution is found to be

F
(0le,2)
ll′mm′(t) = −

(
2

π

)d−2

c4 Sid−4(eλ(tE−t))e2λ(t−tE)
[
Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)]2
.

(4.66)
while for l = l′, the result is multiplied by 2 and contains additional terms only con-
tributing for t ≈ tE. In the limit t < tE, the above result is well approximated by

F
(0le,2)
ll′mm′(t) ≈= −~eff

2e2λtΘ(tE − t) , (4.67)

which inserted in Eq. (4.63) reproduces the expected short-time behaviour of OTOCs
stated in Eq. (4.17).
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4.4 Summary

In the previous section 4.3 we found that each contribution of the diagrams (a) to (d)
in Fig. 4.2 to the OTOC takes the form of a phase space average,

C(t) '
∫

ddq

∫
ddpW (q,p)I(q,p; t) , (4.68)

where W (q,p), defined in Eq. (4.49), denotes the Wigner function of the initial state
and I(q,p; t) comprises all encounter diagrams.

4.4.1 Pre-Ehrenfest behaviour

We found that the dynamics of the OTOCs for t < tE is fully described by diagram (a) in
Fig. 4.2, via Eq. (4.63) together with Eq. (4.66). This diagram represents a quadruplet of
trajectories which effectively follow a single, central solution of the mean-field equation.
It reproduces the result also obtained from a classical treatment of OTOCs.

To be more precise, the effective phase space function I<(q,p; t) corresponding to this
diagram is found to be

I<(q,p; t) ≈

(
d−2∑
l=1

[
e(l)

s (x)
]
pi

[
e(l)

u

(
x(f)(x; t)

)]
qj

)2

F<(t) , (4.69)

where the early-time exponential growth of OTOCs is contained in the function

F<(t) =

(
2

π

)d−2

c4e2λ(t−tE) Sid−4
(

eλ(tE−t)
)[

Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)]2

≈ ~eff
2e2λtΘ(tE − t) .

(4.70)

The approximation involving the Heaviside step function θ arises from the detailed anal-
ysis of the semiclassical limit ~eff � c2, which implies λtE = log(c2/~eff)� 1.

The last line in Eq. (4.70) indicates that F<(t) is strongly suppressed for t > tE, which
reflects, as a consequence of the unstable mean-field behavior of the classical limit, the
vanishing phase space volume of the quadruplet of trajectories remaining close to each
other over longer times. Additionally, it explicitly uncovers the expected short-time,
classical exponential growth exp[2λ(t− tE)] of the OTOC for t < tE. This reproduces
the expected behavior for short times obtained from expanding the Moyal bracket and
the decomposition of the stability matrix, leading to Eq. (4.17). Our result additionally
contains the missing cutoff at the Ehrenfest time through θ(tE− t) which terminates the
exponential growth at the Ehrenfest time.

4.4.2 Post-Ehrenfest behaviour

For t > tE, the only non-negligible contributions to OTOCs are found in the sum of
results from diagrams (c) and (d). As seen from Eqs. (4.51), (4.58), with their tem-
poral behavior given in Eqs. (4.53), (A.108), their combined contribution is given by
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Figure 4.5: Universal contributions to the time evolution of the OTOC C(t) for classically
chaotic many-body quantum systems before [F<(t), Eq. (4.70)] and after
[F>(t), Eq. (4.72)] the Ehrenfest time tE = (1/λ) log(N) marked by the
vertical dashed line. The insets show diagrams (a), (d), and (c) from Fig. 4.2,
representing interfering mean-field solutions. Not shown is the crossover
regime at t ≈ tE to which all diagrams from Fig. 4.2 contribute.

(neglecting terms not relevant for t > tE)

I>(q,p; t) = 〈
(
p′i − pi

)2〉x ( 〈q′j2〉x − 〈q
′
j〉

2
x

)
F>(t) , (4.71)

where

F>(t) =

(
2

π

)d−2[
Sid−2

(
eλtE

)
− Sid−2

(
eλ(tE−t)

)]
≈ Θ(t− tE) . (4.72)

From the last line we see that the diagrams (c) and (d) are responsible for the saturation
after the Ehrenfest time, while their contribution is suppressed for t < tE. Its description
requires to consider the interference of multiple many-body mean-field solutions and thus
cannot be described using mean-field approaches [116]. Physically, the diagrammatic
situation depicted in diagrams (c) and (d) corresponds to swapping forth and back along
distinctly different encounter-coupled mean-field solutions, thereby creating quantum
correlations and entanglement.

The saturation value of the OTOC is associated to classical quantities. The first is the
ergodic variance of the j-th position quadrature (∆q′j)

2 = 〈q′j
2〉x− 〈q′j〉

2
x. The second is

〈(pi − p′i)2〉x = ( 〈p′i
2〉x − 〈p′i〉

2
x) + (pi − 〈p′i〉x)2, which is summing the ergodic variance

of the i-th momentum quadrature and the squared distance of the quadrature pi, as
provided by the Wigner function, to the ergodic average 〈p′i〉. It is possible to evaluate
the ergodic averages by assuming that no site i of the Bose-Hubbard model is special
and therefore taking 〈p′i

2〉x ≈ 〈q′i
2〉x ≈ 〈p′j

2〉x ≈ 〈q′j
2〉x to be equal. Further exploiting

the connection between p′i
2 and q′j

2 with the particle density, Eq. (4.26),

1 ≈ 〈N (x′)〉x =
1

2

d∑
i=1

(
〈p′i

2〉x + 〈q′i
2〉x
)
, (4.73)
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we find 〈p′i
2〉x ≈ 〈q′i

2〉x ≈ 1/d. Further assuming vanishing expectation values, 〈p′i〉x ≈
〈q′i〉x ≈ 0, this yields

I>(x; t) ≈ θ(t− tE)

(
p2
i +

1

d

)
1

d
. (4.74)

For an initial state |Ψ〉 whose Wigner function is sharply localized in phase space at
x0 = (q0,p0), with N (x0) ≈ 1, we thus find for t > tE

C(t) =

∫
ddq

∫
ddpW (q,p)I>(x; t) ≈

(
p2

0,i +
1

d

)
1

d
≈ 2

d2
(4.75)

where we used the same arguments as after Eq. (4.73) to estimate p2
0,i ≈ 1/d. Corrections

of O(~eff) can arise due to the finite width of the wave packet.
Interestingly, the same result, Eq. (4.75), holds if |Ψ〉 is an extended chaotic many-

body state with fixed energy and particle density, since then, the average over the
Wigner function equals an ergodic average. This allows again to use the argument
after Eq. (4.73).

4.5 Further remarks and implications

4.5.1 Generalization of the methods to OTOCs with more generic operators

The key ingredient to understand OTOCs is to use semiclassical techniques which trans-
late the quantum operators p̂i and q̂j to their corresponding classical partners while
keeping the quantum mechanical phase information. In the classical phase space, we
used the local linearization of Hamilton’s equations of motion to connect these classical
functions to the hyperbolic property of the chaotic system. Furthermore, the mixing
property produced variances of these phase space functions.

In view of these points, generalizing the methods for OTOCs of the form〈
Ψ

∣∣∣∣[B̂(t), Â
]†[

B̂(t), Â
]∣∣∣∣Ψ〉 , (4.76)

with generic operators Â and B̂ appears to be straightforward if the following assump-
tions are fulfilled:

• The operators Â, B̂ are smooth functions of the operators q̂i, p̂i, i = 1, . . . , d, in
the sense that we can write Â, B̂ as a sum of products of powers of position and
momentum quadrature operators.

• To avoid additional contributions to the overall action difference in the phase
factor in Eq. (4.23), which have to be considered within the semiclassical analysis,
the operators Â, B̂ are not allowed to depend on ~eff

−1. Hence, for instance,
displacement operators such as exp(−(i/~eff)yp̂i) would require a refined treatment.
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Within the scope of these assumptions, we expect our methods to apply. The classical
functions corresponding to the quantum operators are constructed by replacing opera-
tors q̂i, p̂i in the expansion by the corresponding trajectory-based equivalents, i.e. initial
position and momentum quadratures in Â, and final ones in B̂. Any dependence on
powers of ~eff of single terms in these expansion can be dropped as we are working in
the leading order semiclassical limit ~eff � c2. We expect these terms to arise from
different ordering of the quantum operators q̂i, p̂i. They can be avoided from the be-
ginning by using operators and classical functions which are linked to each other by the
classical-quantum correspondence principle as provided by Weyl-symbols and Wigner
transformations [117].

Denoting the classical functions by A(q,p) = A(x) and B(x) it is straightforward to
see that in the integrand of Eq. (4.23) we substitute(

p
(i)
α′,i − p

(i)
α,i

)
q

(f)
α,j

(
p

(i)
β,i − p

(i)
β′,i

)
q

(f)
β,j (4.77)

by [
A
(
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(i)
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)
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(
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)]
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(
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α

)[
A
(
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(i)
β

)
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(
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)]
B
(
x

(f)
β

)
. (4.78)

For diagrams (b), (c) and (d) of Fig. 4.2 the beginning and/or the ends of the trajectories
are not contained inside an encounter region, and we approximate parts of the above
expression by their ergodic averages. Note that as α′, β start at phase space points which

are associated with the Wigner function in Eq. (4.68), A(x
(i)
α′ ), A(x

(i)
β ) turn into A(x).

Like pi in Eq. (4.71) they are treated as constants in the ergodic average Eq. (4.48), but
are later averaged in the phase space average, Eq. (4.68), involving the Wigner function.

For diagrams (a), (b) and (c) in Fig. 4.2, the initial and/or final points of the trajec-
tories are contained within an encounter, and thus we have to express the corresponding
functions through the local hyperbolic variables. Equations (4.33, 4.34) are thus modified
to
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)
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(
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)
≈ −
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·
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sl e
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·
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β,u (t)

)2

(4.81)

This changes the phase space function I(q,p; t) in Eqs. (4.51, 4.56, 4.58, 4.63), since
it now uses different ergodic averages and adjusts the terms involving the stable and
unstable directions. However, the encounter integrals F (t) in Eqs. (4.52, 4.57, 4.59,
4.60, 4.64, 4.65) remain the same. Therefore, the result of the OTOC for operators
fulfilling the above assumptions is thus obtained by adjusting the classical information
in the phase space functions I< and I> in Eqs. (4.69, 4.71).
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It is straightforward to see, that this reproduces for times t < tE shorter than the
Ehrenfest time

C(t) ≈
∫

ddq

∫
ddpW (q,p)

({
B(x(f)(t; x)), A(x)

})2
, (4.82)

while for times larger than the Ehrenfest time, t > tE the saturation value is determined
by

C(t) ≈
∫

ddq

∫
ddpW (q,p)

〈(
A(x)−A(x′)

)2〉
x

(〈
B(x′)2

〉
x
−
〈
B(x′)

〉2

x

)
. (4.83)

4.5.2 Generalization towards a Lyapunov spectrum and general hyperbolicity

The assumption of uniformly hyperbolic dynamics, with moreover taking all Lyapunov
exponents to be equal, is a very common approximation for the analysis of chaotic
classical systems, and is used, for instance, in Ref. [33]. For a physically realistic many-
body system, this seems to be rather restrictive, but, as we argue in the subsequent
lines, this assumption is only needed to heavily reduce the amount of calculations and to
simplify the technical aspects of our work, such that a pedagogical presentation of them
is possible. The essential physical interpretations of OTOCs remain valid when lifting
this assumption, as our main results for the OTOC in the limits of times much smaller
and much larger than the Ehrenfest time still hold true for generic hyperbolic dynamics.

As we discussed in section 2.3.2, within generic hyperbolic dynamics each phase space
point x admits a set {Λ1(t; x), . . . ,Λd−2(t; x) } of exponentially growing stretching fac-
tors, representing unstable hyperbolic dynamics, while their inverses represent stable
dynamics, see the decomposition of the stability matrix, Eq. (2.18) and the pairing rule,
Eq. (2.28). Within our studies of the OTOC and for times larger than the Lyapunov
time tL (the minimal time required to experience hyperbolic dynamics) we introduced
the Lyapunov exponents by approximating the stretching factors by their asymptotic
behaviour,7

Λi(t; x) ≈ eλi(x)t . (4.84)

For the main contributions to OTOCs depicted in Fig. 4.2, multiple trajectories are
coupled to each other within an encounter region. In such regions phase space points
of the trajectories are in close vicinity of each other, and by assuming continuity of the
stretching factors of nearby trajectories we can conclude that each of the trajectories

7Since we do not take the limit t → ∞ within our considerations of the OTOC, the set of Lyapunov
exponents obtained from this approximation might be different from the one obtained from their
mathematical definition in Eq. (2.16). A difference might happen if two uniformly hyperbolic classical
chaotic systems with different Lyapunov spectra are weakly coupled to each other. For a limited time,
a trajectory launched in one of the subsystems is subject to that subsystems hyperbolic dynamics,
and the stretching factors report exponential growth with the Lyapunov exponents of the subsystem.
For long times, after multiples of the dwell times τd, the mean time a typical trajectory stays in the
single subsystems, the stretching factors accumulate exponential growth subject to the Lyapunov
exponents of both subsystems. In the limit of infinite time this results in a spectrum of Lyapunov
exponents which can be interpreted as a weighted average of the spectra of the subsystems.
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involved in the encounter admits the same spectrum of Lyapunov exponents. The phase
space point x fixing this spectrum can be taken as one of the starting points of the
trajectories. By choosing here the initial conditions of the reference trajectory β, we
associate this point to the ones provided by the final phase space average involving
the Wigner function, Eq. (4.68). For the analysis of the diagram classes in Fig. (4.2),
which lead to the phase space functions I(x; t), we can thus assume a fixed spectrum
of Lyapunov exponents, as its dependence on a phase space point only needs to be
considered in this final phase space average.

Let us thus assume x to be fixed and we take uniform hyperbolic dynamics with a
spectrum {λ1(x), . . . , λd−2(x) } of positive Lyapunov exponents. For the subsequent
arguments, we drop the dependence on x. Pairs of stable and unstable directions are
are associated through their indices with their corresponding Lyapunov exponent λi.
Finally, the Ehrenfest time is defined as in Eq. (4.30), where λ is taken to be the largest
positive Lyapunov exponent of the spectrum.

The consequences of considering a spectrum of Lyapunov exponents in the semiclas-
sical treatment of the OTOC is reflected in two modifications. First, we need to adjust
our treatment of the initial momentum quadrature difference and the product of final
position quadratures in case of correlated initial or final conditions of the trajectories,
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(4.85)

Second, the times ts (tu) the first stable (unstable) component needs to grow to the
critical value c in Eq. (4.31) are altered to

ts(s) = min
i

(
1

λi
log

(
c

|si|

))
, tu(u) = min

i

(
1

λi
log

(
c

|si|

))
. (4.86)

While these modifications do not affects the arguments leading to ergodic phase space
averages and the generic structure of the contributions, Eq. (4.68), it does change the
encounter integrals. Their calculation requires much more work and further,(so far
unknown) techniques to resolve the minima in Eq. (4.86) to be able to calculate the
encounter integrals. However, we do not expect that this further complication in the
semiclassical treatment of OTOCs results in further information going beyond the phys-
ical interpretation we have drawn so far from our semiclassical analysis of OTOCs. To
understand this, one can investigate the implications of a spectrum of Lyapunov expo-
nents in the case of the zero-leg diagram, where due to the absence of a dependence on
ts(s) and tu(s) the evaluation of integrals is still possible.
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For instance, we found within our studies that contributions originating from F
(0le,2)
ll′mm′(t)

for { l, l′ } = {m,m′ } contained the short-time exponential growth of OTOCs. For the
generic hyperbolic case, also taking m = l,m′ = l′, l 6= l′, this encounter integral is
modified to

F
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ll′ll′ (t) =

1

(2π~eff)d−2t

∫ t

0
dt′

d−2∏
i=1
l 6=i 6=l′

(∫ ce−λit
′

−ce−λit′
dsi

∫ ce−λi(t−t
′)

−ce−λi(t−t′)
dui e

i
~eff

siui

)

×

(∫ ce−λlt
′

−ce−λlt′
dsl

∫ ce−λl(t−t
′)

−ce−λl(t−t′)
dul e

i
~eff

slulslule
λlt

)

×

∫ ce−λl′ t
′

−ce−λl′ t
′
dsl′

∫ ce−λl′ (t−t
′)

−ce−λl′ (t−t
′)

dul′ e
i

~eff
sl′ul′sl′ul′e

λl′ t

 .

(4.87)

Note that the exponentially growing factor in the integrand contain the Lyapunov expo-
nents labeled by the same indices l, l′ as of the encounter integral Fll′ll′ . They originate
from a correlated consideration of the initial and final points according to Eq. (4.85).

Using Eqs. (A.71) and (A.73), the evaluation of the integral is straightforward and
yields
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(4.88)

where we observe that the multiple Lyapunov exponents different from λl and λl′ only
appear in the arguments of the Sine-functions Si(x). As we discuss in detail in the
appendix A.4, we either approximate this function by a linear Taylor expansion to explain
the strong suppression after the Ehrenfest time, or we use the asymptotic value Si(z) ≈
π/2 for z → ∞ to obtain a simplified analytic expression for t < tE. In both cases an
explicit dependence of the result on these additional Lyapunov exponents is suppressed.
Indeed, following the same argumentation as in appendix A.4.5 we can approximate

F
(0le,2)
ll′ll′ (t) ≈ −~eff

2e(λl+λl′ )tθ(tE − t) , (4.89)

which, used within Eq. (4.63) reproduces the expected short-time behaviour of OTOCs
as stated by Eq. (4.17), however now explicitly including the spectrum of Lyapunov
exponents to reproduce the derivative in Eq. (4.16).

Based on this observation, for the other diagrammatic contributions explaining the
saturation value of OTOCs, we thus conjecture also a masking of the Lyapunov exponents
through functions which are insensitive to their precise values.
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4.5.3 Non-ergodic many-body dynamics

For our studies, and more exactly when we introduced ergodic averages in Eq. (4.47),
we assumed that the submanifold in phase space defined by the constants of motion
H and N , see Eqs. (4.25) and (4.26), fulfills the mixing property (see section 2.3.1 for
an exact definition). However, the nonlinear mean-field dynamics associated with the
classical limit of the many-body Fock space is much less understood [77, 118, 119] than
the classical dynamics within single-particle systems, and most likely it admits more
complex behaviour such as mixed regular-chaotic dynamics, where regular islands due
to local constants of motion emerge within the chaotic sea in the classical phase space,
or diffusive behaviour. The propagator Eq. (3.83) is not restricted to chaotic dynamics,
but also allows investigating these scenarios.

For times shorter than the Ehrenfest time the result obtained from the expansion
of Moyal brackets in section 4.1.2 should still be reproduced. Since this is based on
the stability of a single solution of the mean-field equations we expect our semiclassical
analysis to produce, for any system, the same interference mechanism as depicted in
Fig. 4.2 (a), i.e. the dynamics of the involved trajectories in the semiclassical treatment
essentially follow a single, central trajectory.

For times larger than the Ehrenfest time one needs, in case of regular motion, the
knowledge of all trajectories to investigate the interference mechanism, rendering C(t)
strongly system-dependent. Post-Ehrenfest behaviour of the OTOC has thus to be
studied individually for each system.

Mixed regular-chaotic or diffusive systems may be treated by a modification of the
ergodic phase space average to account for a restricted exploration of the accessible
phase space. Ultimately, this can also lead to a time-dependence of the OTOC after the
Ehrenfest time in case of a growing accessibility of phase space regions in time, such as,
for instance, for Lorentz gases, as we see in our discussion in section 4.5.5.

4.5.4 Time-reversal invariance and higher-order quantum corrections

The diagrams in Fig. 4.2 do not contain trajectory loops, where a trajectory partially
follows the time-reversed version of another trajectory, see, for instance, Fig. 4.6 (a). This
implies that our results hold for systems both with and without time-reversal symmetry.

Diagrams involving more than one trajectory encounter generally yield further contri-
butions that can be susceptible to time-reversal symmetry breaking. However, note that
an encounter region is accompanied by a partner density similar to Eq. (4.35), which
is proportional to the inverse volume of the chaotic phase space submanifold, Σ(x)−1,
see Eq. (4.45). This proportionality is a consequence of limiting the free exploration
of the individual trajectories in order to produce their encounter in phase space, and
ultimately suppresses diagrammatic contributions with n encounters by a factor pro-
portional Σ(x)−n+1 compared to the contributions of the leading diagrams in Fig. 4.2.
Furthermore, since the formation of an encounter with a small enough action difference
requires a minimal time, corrections due to multi-encounter diagrams are expected to
contribute to the OTOC after times which are multiples of the encounter time tE.
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Figure 4.6: Examples for diagrammatic contributions to the OTOC with more than one
encounter involved. In (a), one of the legs of Fig. 4.2 (d) is decorated with
a loop. During the loop α′ follows the time-reversal of α, rendering the
contribution of this diagram sensitive to mechanisms breaking time-reversal
symmetry.
In (b), in each of the encounters all four trajectories participate and inter-
change their partners. In order to fulfill the boundary conditions of the
trajectories, an odd number of such encounters is required.

As a final remark, for the diagrams with a single encounter depicted in Fig. 4.2, the
factor Σ(x)−1 is compensated by two of the five integrations in the integral representa-
tion of the OTOC, Eq. (4.23). This is the reason why at the Ehrenfest time tE their
contributions are of the same order than the results from a classical, mean-field treatment
of OTOCs.

Examples for higher order diagrams are shown in Fig. (4.6) and are similar to the
diagrams which have been investigated in the context of shot noise in electronic transport
through chaotic cavities [110]. Their evaluation for OTOCs requires further research and
is beyond the scope of this thesis.

4.5.5 Small-~~~ limit and single-particle systems

To perform our semiclassical calculations for OTOCs we only needed to exploit the
formal structure of the semiclassical approximation of the propagator for Bose-Hubbard
models, Eq. (3.83), i.e. its appearance as coherent sum over mean-field solutions γ, where
the phase factor contains Hamilton’s principal function Rγ and the amplitude encodes
the stability of the solution as a derivative of Rγ w.r.t. the boundary conditions of the
trajectory. This structure is not exclusive to the propagator for Bose-Hubbard model,
but is also found for the original Van Vleck-Gutzwiller approximation of propagator
[1, 2] in the semiclassical limit of small ~. Our semiclassical calculation of OTOCs in
the large-N limit can therefore be generalized to systems of N particles in f spatial
dimensions, including the quantum chaotic single-particle case N = 1, treated in the
complementary semiclassical “~ → 0” limit. For such systems, the effective Planck’s
constant is ~eff = ~/S ∼ λdB/L, where λdB is the de Broglie wavelength and S and L are
typical actions and length scales of the chaotic classical limit. By using the Van Vleck-
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Gutzwiller propagator [1] in d = f · N dimensions in the integral representation of the
OTOC, Eq. (4.23), we can immediately conclude from our results that the exponential
increase of the OTOC CN (t) is determined by the leading Lyapunov exponent λN of the
corresponding classical N -particle system (see, for instance Refs. [53, 120] for N = 1).
Furthermore, the corresponding Ehrenfest time, at which the OTOC displays the onset
of saturation, is identified to be tE

(N) ∼ (1/λN ) log(~eff
−1) ∼ (1/λN ) log(L/λdB).

The saturation value of CN (t) for t > tE
(N) involves ergodic averages, which we can

attempt to evaluate using similar techniques as those used to arrive at Eq. (4.75). For
instance, if we consider CN (t) = 〈|[p̂i, q̂j(t)]|2〉 for chaotic billiards, where here p̂i and q̂j
indeed represent momentum and position operator of particles, then the saturation value
is again formally determined by the phase space function in Eq. (4.71). To estimate the
ergodic averages involving the momenta, we use the classical Hamilton function of the
system,

H(q,p) =
‖p‖2

2m
+ V (q) , V (q) =

{
0, if q ∈ Ω

∞, else
, (4.90)

where Ω denotes the set of points within the bounds of the billiard, and for simplicity,
we assume equal masses in case of more than a single particle, N > 1. Trivially, since
we do not have the system moving as a whole, the momentum averaged over the chaotic
energy shell has to be 0, 〈p′i〉x = 0. Furthermore, due to energy conservation

‖p‖2

2m
= H(q,p) = 〈H(q,p)〉x =

d∑
i=1

〈
p′2i
〉
x

2m
. (4.91)

Under the assumption that no component of the momentum vector is preferred in the
system, we thus arrive at

〈
p′2i
〉
x

=
∥∥p2

∥∥/d, and therefore

〈
(pi − p′i)2

〉
x

= p2
i +
‖p‖2

d
. (4.92)

The ergodic variance in position equals the variance in position of the geometry of the
billiard, and we can estimate

∆(q′j)
2 = 〈q′j

2〉x −
〈
q′j
〉2

x
∝ (L)2 = L2 , (4.93)

where L denotes the typical diameter of the system, such that Lf yields the volume of
the billiard in configuration space. Moreover, L sets the typical length scale L of the
system, since this length also estimates the distance the particle travels between two
bounces of the boundary.

At last, within the final average involving the Wigner function we can re-express ‖p‖2
through the de Broglie wavelength,∫

ddq

∫
ddpW (q,p)‖p‖2 =

(2π~)2

λ2
dB

. (4.94)
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This also indicates that the phase space average of p2
i is of the order of (2π~)2/(dλ2

dB),
which we can use as a rough estimate.

Combining the above considerations we arrive at the following estimate for the satu-
ration value of CN (t) for t > tE

(N)

CN (t) ≈ 2((2π~)2L2

dλ2
dB

∝ S2

d
. (4.95)

Note that here we have a different scaling with the dimension d compared to Eq. (4.75),
ultimately due to the different role played by q within the classical Hamilton functions
of the billiard and Bose-Hubbard models. Furthermore, the typical action S = ~/~eff

appears in the final result. This can be attributed to the fact that the operators p̂i, q̂j are
scaled such that their commutator, [q̂j , p̂i] = iδij~ , is related to ~ rather than ~eff = ~/S.

Employing this line of reasoning, it is further possible to view the results in Ref. [53]
as a quantitative numerical confirmation of our semiclassical findings.

Interestingly, while for billiards we have L = L, for many systems we can have L� L.
An example for such a system is the famous Lorentz gas [82], where a point-like particle
scatters of randomly positioned disks or spheres for d = 2 or 3, where the diameter of the
scatterers sets the scale L8. In such systems the dynamics is hyperbolic only up to the
Ehrenfest time tE

(1). After this time it becomes diffusive, implying in Eq. (4.71 a linear
growth in time of the variance (∆q′j)

2 ∼ Dt with the diffusion constant D. This directly

affects our result Eq. (4.71) for the OTOC, as beyond the Ehrenfest time τ
(1)
E we expect

C1(t) to further increase linearly in time before it finally saturates at the Thouless time
L2/D.

8Ehrenfest time effects in Lorentz gases were studied, e.g. , in Refs. [66, 121, 122].



5 Al’tshuler-Aronov-Spivak oscillations for
interacting bosonic atoms

While in the last chapter many-body interference of multiple, different
solutions of the bosonic mean-field equations was needed to explain the
saturation of OTOCs, we here turn to a scenario whose explanation
requires an explicit study of the mean-field equations themselves: the
influence of interaction on Al’tshuler-Aronov-Spivak (AAS) oscillations
in the coherent transport of cold atoms through an Aharonov-Bohm
(AB) setup. This setup consists of two semi-infinite waveguides at-
tached to a ring structure penetrated by a synthetic gauge field with
tunable flux Φ. Within the ring, the atoms are subject to both a weak
disorder potential and a weak atom-atom interaction.
In this chapter we present the Bose-Hubbard Hamiltonian we use as
model for the discretized AB setup and derive its dynamical mean-field
equation, the Gross-Pitaevskii equation, for the coherent transport of
cold atoms through the ring. For weak interaction, we show that a scat-
tering approach involving the Green’s function of the interaction-free
system formally solves the stationary scattering problem. We discuss
that for weak disorder the Green’s function admits a semiclassical ap-
proximation as a sum of scattering paths through the ring, in which
disorder is reflected as an additional contribution to the phases accu-
mulated along the paths.
Based on this semiclassical representation we qualitatively explain for
the noninteracting case the AAS oscillations observable in the flux-
dependent transmission through the ring. To motivate the theoreti-
cal study of the system including interaction in chapter 6, we further
present results obtained from a numerical treatment by R. Chrétien et
al., which show the influence of interaction on these oscillations.

In the last part, we have seen that many-body interference of distinct, but correlated
mean-field solutions is the mechanism explaining the saturation of OTOCs. The mean-
field problems itself, which is not required to be solved explicitly, appears in the OTOC
in the form of classical quantities such as the Lyapunov exponent and phase space
averages. However, there are also scenarios where interesting phenomena can already be
attributed to wave interference at the level of the mean-field wave equations themselves.
In this part, we turn to such a case with the study of Al’tshuler-Aronov-Spivak (AAS)
oscillations seen in the flux-dependent reflection and transmission of matter waves of
interacting bosonic particles in the Aharonov-Bohm (AB) setup.
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A system to study AB and AAS oscillations is an AB setup, where two semi-infinite
waveguides are attached at opposite sites to a waveguide ring structure. In the trans-
port of waves through such a structure, a gauge field (e.g. a magnetic field for electric
waves) encircled by the ring results in additional phases the waves accumulate. These
are proportional to the enclosed flux Φ, remarkably, even without the gauge field pro-
ducing a classical force field in the waveguides. This is known as Aharonov-Bohm effect ,
which is here observable in oscillations in the transmission as a function of the enclosed
flux and is attributed to the interference of waves following the two arms of the ring.
When introducing an additional disorder potential within the ring, the disorder-averaged
transmission reveals Al’tshuler-Aronov-Spivak oscillations with double the frequency of
the AB oscillations.

In the next two chapters we study AAS oscillations for interacting bosonic matter
waves, as here interaction amongst the particles leads to an inversion of AAS oscillations.
This work has been done in collaboration with R. Chrétien, J. Dujardin, C. Petitjean
and P. Schlagheck and has been published in Ref. [30]. The contents of this chapter
are the presentation of the system we study, of the basic theoretical concepts, as well
as of the numerical findings, and have been provided to me by my collaborators. My
contribution, a semiclassical diagrammatic treatment of the problem, perturbative in
the interaction strength, aims at an understanding of the numerical findings and is the
subject of chapter 6. It builds on the theoretical framework derived in this chapter.

In order to provide a basic understanding of the underlying interference mechanism
leading to AAS oscillations as an effect in general, we want to utilize the theoretical tools
we provide for the bosonic matter wave in the limit of vanishing atom-atom interaction.
We therefore shift the explanation of AAS oscillations to the second section of this
chapter, and first introduce the system with the basic theoretical framework.

5.1 The Aharonov-Bohm ring with cold atoms

5.1.1 Bose-Hubbard Hamiltonian

The bosonic quantum many-body system in which we want to study AAS oscillations is
schematically depicted in Fig. (5.1) (a). It is an interferometer setup built by two semi-
infinite waveguides for guiding matter waves of cold bosonic atoms, which are attached
to a central ring structure encircling an artificial gauge field. Interparticle interaction of
the atoms is assumed to be limited to the ring structure, where additionally we assume
a weak disorder potential. To generate a steady current of atoms into the waveguides
and towards the ring structure, the left waveguide is weakly coupled to a Bose-Einstein
condensate (BEC) with initially N → ∞ particles at temperature T = 0 and chemical
potential µ. By an adiabatic ramping of the coupling, this results, in the limit of long
times, in a well-defined stationary scattering state of the system.

Within the numerical work of R. Chrétien et al., this system is modeled by a Bose-
Hubbard Hamiltonian arising from a discretization scheme of the continuous system of
the AB setup in Fig. 5.1 (a) as described in Refs. [35, 36]. The semiclassical treatment
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source:
BEC

Aharonov-Bohm

ring

waveguide

disorder potential

gauge field

Figure 5.1: (a) Sketch of the investigated AB ring structure. A Bose-Einstein condensed
cloud of cold bosonic atoms is coupled to the waveguide left to the ring and
acts as a reservoir. Through an outcoupling mechanisms a current of atoms
towards the ring structure is produced. Within the ring, the atoms experi-
ence a weak disorder potential, a gauge field Φ and a weak particle-particle
interaction. (Figure adapted from Ref. [30])
(b) Discretization of the system as preparation for the numerical study by
R. Chrétien et al. The system is subdivided into four regions, the two waveg-
uides (LR, LL), the ring structure (R) and the BEC as the source (S) of
atoms.(Figure taken from Ref. [30])

of AAS oscillations in chapter 6 is based on this Bose-Hubbard Hamiltonian and the
parameters contained in that. We therefore use the Bose-Hubbard model as a starting
point to derive the theoretical concepts necessary for our study.

The discretized version of the AB setup is schematically depicted in Fig. 5.1 (b). To
write the Bose-Hubbard Hamiltonian, we split the system into four parts, the left and
right waveguides LL, LR, the ring geometry R and the source S. The Hamiltonian of
the system is then given by

Ĥ = ĤLL
+ ĤR + ĤLR

+ ĤS + ĤSLL
+ ĤLR , (5.1)

where the Hamiltonians of the separate subregions are

ĤLL
=

−1∑
α=−∞

[
Eδ b̂

†
αb̂α −

Eδ
2

(
b̂†αb̂α−1 + b̂†α−1b̂α

)]
,

ĤLR
=

∞∑
α=NR

[
Eδ b̂

†
αb̂α −

Eδ
2

(
b̂†αb̂α+1 + b̂†α+1b̂α

)]
,
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ĤS = µb̂†S b̂S , (5.2)

ĤR =

NR−1∑
α=0

[
(Eδ + Vα)b̂†αb̂α +

g

2
b̂†αb̂
†
αb̂αb̂α

]
−
NR−2∑
α=0

[
Eδ
2

(
b̂†α+1b̂αeiθ + b̂†αb̂α+1e−iθ

)]
− Eδ

2

(
b̂†0b̂NR−1eiθ + b̂†NR−1b̂0e−iθ

)
,

and the terms coupling the different regions are

ĤSLL
= κ(t)b̂†αS b̂S + κ∗(t)b̂†S b̂αS

ĤLR = −Eδ
2

(
b̂†−1b̂0 + b̂†0b̂−1 + b̂†NR b̂NR

2

+ b̂†NR
2

b̂NR

)
.

(5.3)

Here, b̂†α and b̂α denote bosonic creation and annihilation operators for particles at site
α within the waveguides and the ring structure. The creation and annihilation operators
for particles in the reservoir BEC S are denoted by b̂†S and b̂S .

Within the waveguide structure we choose the indexing such that negative indices
denote the sites in the left semi-infinite waveguide, and α ≥ NR the ones in the right.
The missing indices in the range 0, . . . ,NR − 1 label the sites in the ring in clockwise
direction, with NR being the total number of sites within the ring. We choose NR to be
an even number, and the sites labeled by α = 0,NR/2 couple to the left, respective right
waveguide. Finally, the site in the left waveguide to which the reservoir S is coupled is
also referred to as αS .

The onsite energies Eδ and the hopping terms −Eδ/2 are expressed in terms of the
energy scale Eδ = ~2/(mδ2). Assuming a one-dimensional free motion along the waveg-
uides, this scale arises from discretizing the continuous system by a chain of sites at dis-
tance δ, which transforms the kinetic term according to the finite difference discretization
scheme

− ~2

2m

∂2f(x)

∂x2
≈ − ~2

2m

f(x+ δ) + f(x− δ)− 2f(x)

δ2

= Eδf(x)− Eδ
2

(f(x+ δ) + f(x− δ)) .
(5.4)

Within the ring, the atoms are subject to a gauge field [21, 22] which acts in an equivalent
way as a magnetic field for charged particles. In the Bose-Hubbard Hamiltonian, it
appears through an additional phase factor exp(±iθ) containing Peierl’s phase [123],
which is multiplied to the hopping parameters. The signs are chosen such that its
contribution to the overall phase obtained from hopping along the complete ring in
clockwise direction is given by the flux enclosed by the ring, NRθ = Φ.

The source is assumed to be a BEC at temperature T = 0 with initially N(t = 0)→∞
particles at a chemical potential µ. The condensate weakly couples to a single site, la-
beled by αS . For the numerical work performed by R. Chrétien, the coupling mechanism
is controlled through the function κ(t) = O(Eδ/

√
N(0)), which is adiabatically increased

from zero to a finite maximum value in infinite time,

κ = lim
t→∞

κ(t) (5.5)
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such that N(t)|κ(t)|2 remains constant. As we will argue in subsection 5.1.3, this pro-
duces a steady current of particles into the waveguide and towards the Aharonov-Bohm
ring and establishes a well-defined scattering state with energy µ and with a well-defined
current towards the ring structure after a long enough propagation time [124]. Within
the waveguide, we will see that in the mean-field treatment this scattering state is a
superposition of plane waves, whose wave number k is related to the chemical potential
µ through the dispersion relation of the discretized system

Eδ(1− cos(kδ)) = µ ⇔ k =
1

δ
arccos

(
1− µ

Eδ

)
. (5.6)

This also allows us to associate a wavelength λ = (2π)/k to the atomic wave.
Within the ring we allow particles to interact with each other through on-site in-

teraction whose strength is controlled by the parameter g. As a physical quantity, this
strength is proportional to the s-wave scattering length as from the particle-particle scat-
tering problem in 3 dimensions and can be tuned by the means of Feshbach resonances
[11]. Further dependencies of this parameter are provided by the confining potential
forcing the particles to the one-dimensional motion, see for instance Ref. [31].

Additionally, the ring is subject to a potential describing weak correlated disorder.
Numerically, it is produced by

Vα = V̄0

NR
2∑

β=−NR
2

+1

√
δ

σ
√
π

exp

(
− δ2

2σ2
β2

)
ηα+β , (5.7)

where here, and only here, for convenience, the index α+β appearing in the summation
has to be understood modulo NR to again produce a site within the ring. The param-
eters ηα are independent Gaussian random variables with zero mean and unit variance,
such that 〈ηαηα′〉 = δαα′ . The sum correlates these random values over a correlation
length σ � δ while the amplitude V̄0 controls the disorder strength. This produces a
disorder potential which varies slowly over the distance of the correlation length σ. In
the ensemble of realizations of disorder, the mean of Vα is 0 and the standard deviation
is V̄0.

It is worth to specify already here the relation of the different length scales introduced
by the disorder. In order to be able to treat the disorder potential semiclassically,
we need to demand that the disorder strength is weak compared to µ and that the
correlation length σ is large compared to the wavelength λ. Furthermore, to observe
AAS oscillations, the length L = δNR/2 of one arm of the ring has to support multiple
variations σ of the disorder. Finally, we want to avoid localization effects requiring that
L is much smaller than the localization length lloc. For Gaussian correlated disorder,
this length is given by [125]

lloc =
~4k2

2m2V̄0
2
σ
√
π

exp(4k2σ2) . (5.8)
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Combining these restrictions and including δ as the smallest length scale of the system,
we arrive at

δ � λ� σ � L� lloc . (5.9)

In order to simplify our notation for the next sections, we combine the parameters in
such a way that the Hamiltonian takes the compact form

Ĥ =
∑
α

[
hαb̂
†
αb̂α +

gα
2
b̂†αb̂
†
αb̂αb̂α

]
+
∑
αα′

Jαα′ b̂
†
αb̂α′ + µb̂†S b̂S + κ(t)b̂†αS b̂S + κ∗(t)b̂†S b̂αS ,

(5.10)
where hα contains the onsite-energies Eδ and disorder Vα, and Jαα′ denotes the hop-
ping between sites, including those towards and from the ring, as well as Peierl’s phase
exp(±iθ). Finally, we set gα = 0 within the waveguides, and gα = g within the ring.

5.1.2 Mean-field equations

The mean-field equations of the system are given by the Hamilton’s equations of motion,
Eq. (3.86), we found in the classical “N →∞” limit of the Bose-Hubbard model. In an
alternative view, they can also be derived from the Heisenberg equations of motion for
the annihilation operators of the system,

i~
db̂α(t)

dt
= −

[
Ĥ, b̂α(t)

]
= hαb̂α(t) +

∑
α′

Jαα′ b̂α′(t) + gαb̂
†
α(t)b̂α(t)b̂α(t) + δααSκ(t)b̂S(t) ,

i~
db̂S(t)

dt
= −

[
Ĥ, b̂S(t)

]
= µb̂S(t) + κ∗(t)b̂αS (t) .

(5.11)

Here, the mean-field equations arise when substituting the creation and annihilation
operators by complex scalar fields, b̂α(t) → Ψ̃α(t) = 〈b̂α(t)〉 and b̂S(t) → Ψ̃S(t) =
〈b̂S(t)〉, representing their mean value. Apart from a rescaling Ψ̃α(t) = Φα(t)

√
N ,

this results in the very same set of equations as in Eq. (3.86). For the study of AAS
oscillations, we use the set of equations for Ψ̃α.

Often, especially in the continuous case, one refers to the dynamical mean-field equa-
tions, obtained from approximating the bosonic field operators by complex variables, as
Gross-Pitaevskii equation [24, 25].

It is possible to eliminate the explicit treatment of the source from the dynamical equa-
tions. To do so, we make the ansatz Ψα(t) = Ψ̃α(t)e−(i/~)µt and ΨS(t) = Ψ̃S(t)e−(i/~)µt.
This transforms the mean-field equations into

i~
dΨα(t)

dt
= (hα − µ)Ψα(t) +

∑
α′

Jαα′Ψα′(t) + gαΨ∗α(t)Ψα(t)Ψα(t) + δααSκ(t)ΨS(t) ,

i~
dΨS(t)

dt
= κ∗(t)ΨαS (t) . (5.12)
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As we argued in the last section, we assume that the coupling κ(t) = O(Eδ/
√
N(t)) to

the source is weak and adiabatically ramped such that N(t)|κ(t)| 2 becomes a constant
in time. Since we assume that initially the number of particles in the source |ΨS(0)| 2 =
N(0) is much larger than the occupations at the sites in the ring structure, we can
conclude from the Eq. (5.12) that ΨS(t) ≈

√
N(0) T exp(−~−2

∫ t
0 ds |κ(s)|2) [124]. Since

the coupling is assumed to be small, we can therefore approximate ΨS(t) ≈
√
N(t) as a

real value and assume that the phase of κ(t) does not depend on time, such that we can
also consider the product

√
N(t)κ(t) as a constant in time. This allows us to neglect

the second equation in Eq. (5.12) and we arrive at

i~
dΨα(t)

dt
= (hα − µ)Ψα(t) +

∑
α′

Jαα′Ψα′(t) + gαΨ∗α(t)Ψα(t)Ψα(t) + δααS κ(t)
√
N(t)︸ ︷︷ ︸

indep. on t

.

(5.13)
As we will see in detail in the next section, the role of the source is to produce a steady
current of particles into the system at well-defined energy µ. This current has its source
at site αS , leaving the site in both directions of the waveguide. One part of this steady
current scatters through the ring structure, producing back-reflection and transmission
of waves. For long enough times, the dynamics are expected to become stationary and
the state of the system in the mean-field treatment is then described by a well-defined
scattering state solving the nonlinear equation

0 = (hα − µ)Ψα +
∑
α′

Jαα′Ψα′ + gαΨ∗αΨαΨα + δααSκ(t)
√
N(t) . (5.14)

Our theoretical concepts derived in the subsequent sections are based on this equation
for the stationary scattering state.

5.1.3 Reflection and Transmission

Within the waveguides and for α 6= αS , Eq. (5.14) takes the form

0 = (Eδ − µ)Ψα −
Eδ
2

(Ψα+1 + Ψα−1) , (5.15)

whose solution is given by a superposition of plane waves at energy µ. Since we use
the source to produce the only plane wave traveling towards the AB ring, the scattering
state describing the stationary solution of Eq. (5.14) admits the following form in the
waveguides:

Ψα = A
{

eiαkδ +R(Φ)e−iαkδ)

T (Φ)ei(α−NR+1)kδ

}
=

{
ΨLL
α,+ + ΨLL

α,− for αS < α < 0 ,

ΨLR
α,+ for α ≥ NR ,

(5.16)

where the wave number k is defined as a function of µ through Eq. (5.6). With ΨLX
α,± we

denote the contributions of the plane wave associated to a wave number ±k in the left
(X=L) or right (X=R) waveguide,

ΨLL
α,+ = Aeiαkδ , ΨLL

α,− = AR(Φ)e−iαkδ , ΨLR
α,+ = AT (Φ)ei(α−NR+1)kδ . (5.17)



92 Chapter 5. AAS oscillations for interacting bosonic atoms

We will later obtain the overall amplitude A in Eq. (5.16) from a detailed consideration
of the source. The complex amplitudes R(Φ) and T (Φ), the reflection and transmission
amplitude, comprise the interference phenomena taking place within the scattering re-
gion, converting the incident wave into two outgoing waves, either back-reflected into the
incident waveguide, or transmitted to the opposite one. They explicitly depend on the
parameters of the scattering region and on the enclosed flux Φ. Their squared modulus
|R(Φ)|2 and |T (Φ)|2 are referred to as reflection and transmission probabilities and they
describe the coherent transport of the atomic matter waves through the ring. They are
the central objects of interest in observing the AAS oscillations.

To understand the interpretation as probabilities, let us introduce the particle current
density . Its definition for the continuous one-dimensional system is given by [92]

j(x, t) =
~

2mi

(
Ψ∗(x, t)

∂Ψ(x, t)

∂x
−Ψ(x, t)

∂Ψ∗(x, t)

∂x

)
, (5.18)

from which its version for the Bose-Hubbard model is obtained by discretizing the deriva-
tive operator

∂f(x)

∂x
≈ f(x+ δ) + f(x)

δ
. (5.19)

This yields that the current density through site α in the waveguide is calculated by

jα =
Eδ
2i~
[
Ψ∗αΨα+1 −Ψ∗α+1Ψα

]
. (5.20)

Inserting Eq. (5.16) into Eq. (5.20), we obtain

jα =
Eδ|A|2

~

{
sin(kδ)− |R(Φ)|2 sin(kδ)

|T (Φ)|2 sin(kδ)

}
=

{
jLL
α,+ + jLL

α,− for αS + 1 < α < −1 ,

jLR
α,+ for α > NR ,

(5.21)
where jLX

α,± for X=L, R are the currents calculated by Eq. (5.20) using the individual

plane waves ΨLX
α,±, Eq. (5.17).

Within the waveguides, the currents in Eq. (5.21) do not dependent on the choice
of site α within the ranges specified. Moreover, we are able to interpret reflection and
transmission probabilities as the fraction of the incident current which is reflected or
transmitted into the outgoing current. Mathematically, we find for αS + 1 < α < 0 and
α′ > NR,

|R(Φ)|2 =
−jLL

α,−

jLL
α,+

=
−
(
jα − jLL

α,+

)
jLL
α,+

, |T (Φ)|2 =
jLR
α′,+

jLL
α,+

. (5.22)

Finally, the conservation of particles translates into conservation of currents, jLL
α′,+ =

jLR
α,+ − j

LL
α,+, from which we conclude immediately |R(Φ)|2 + |T (Φ)|2 = 1.

Either Eq. (5.16) or Eq. (5.22) can be used to calculate reflection and transmission
probabilities. Indeed for the numerical treatment, Eq. (5.22) is used, while the theoretical
study in the next chapter focuses on finding an analytical expression for ΨLL

α,− and ΨLR
α,+.
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However, both approaches require the identification of the amplitude A of the incident
wave generated by the source term.

Let us focus on the left waveguide alone and extend it to an infinite waveguide. The
mean-field equation including the source reads

0 = (Eδ − µ)Ψα −
Eδ
2

(Ψα+1 + Ψα−1) + δααSκ(t)
√
N(t) , (5.23)

where the product κ(t)
√
N(t) is understood to be constant in time. The solution to this

equation is found to be

Ψα =
κ(t)

√
N(t)

µ− Eδ(1− eikδ)
eikδ|α−αS | . (5.24)

Comparing this solution for α > αS to ΨLL
α,+ in Eq. (5.17) allows us to immediately

identify the amplitude A as

A =
κ(t)

√
N(t)

µ− Eδ(1− eikδ)
e−ikδαS =

κ(t)
√
N(t)

i
√
µ(2Eδ − µ)

ei|αS |kδ =
κ(t)

√
N(t)

iEδ sin(kδ)
ei|αS |kδ , (5.25)

where we used Eq. (5.6) as well as

Eδ sin(kδ) =
√
µ(2Eδ − µ) (5.26)

to rewrite the solutions. The squared modulus |A| 2 can be interpreted such that the
source generates a mean constant particle density in the clean infinite waveguide,

ρ∅δ = |Ψα|2 =
N(t)|κ(t)|2

µ(2Eδ − µ)
. (5.27)

Using this density, the reflection and transmission probabilities are obtained as

|R(Φ)|2 =

∣∣∣ΨLL
α,−

∣∣∣2
ρ∅δ

, |T (Φ)|2 =

∣∣∣ΨLR
α,+

∣∣∣2
ρ∅δ

. (5.28)

Finally, the current generated by the source is found to be

j∅ ≡ jLL
α,+ =

Eδ
~
|A|2 sin(kδ) =

1

~
N(t)|κ(t)|2√
µ(2Eδ − µ)

. (5.29)

5.1.4 Green’s function approach and the role of disorder

For a weak enough interaction together with adiabatic ramping of the source, we can
treat the stationary scattering problem in Eq. (5.14) as an effectively linear scattering
problem. The problem is then formally solved by the ansatz

Ψα =
∑
α′

Gαα′(µ)Qα′ , (5.30)
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which involves the (retarded) Green’s function for the system without interaction,

Gαα′(µ) =
〈
α
∣∣∣Ĝ(µ)

∣∣∣α′〉 = lim
ε→0+

〈
α

∣∣∣∣(µ− Ĥ0 + iε
)−1

∣∣∣∣α′〉 (5.31)

where |α〉 = b̂†α |0〉 and

Ĥ0 =
∑
α

hα |α〉〈α|+
∑
αα′

Jαα′
∣∣α〉〈α′∣∣ . (5.32)

The source as well as the nonlinear interaction term are combined into

Qα = gα|Ψα|2Ψα + δααS
√
N (t)κ(t) . (5.33)

This transforms the stationary mean-field equation, Eq. (5.14), for Ψα into a self-
consistent equation,

Ψα =
√
N(t)κ(t)GααS (µ) +

∑
α′

Gαα′(µ)gα′ |Ψα′ |2Ψα′ , (5.34)

similar to Dyson’s equation [90], but with a nonlinear reappearance of Ψα on the right
hand side. This equation marks the starting point for a perturbation theory in the small
interaction parameter g.

In order to start this perturbation theory and to shed light on the involved interference
mechanism leading to AAS oscillations, we aim at a suitable semiclassical representation
of the Green’s function, Eq. (5.31), in terms of interfering classical paths. To do so, let
us first consider the infinite discrete waveguide. Its Green’s function can either be found
by solving the defining equation (µ − Ĥ0)Ĝ(µ) = 1, or by comparing Eq. (5.24) with
Eq. (5.34) for gα = 0. We get

Gfree(α, α′, µ) =
1

iEδ sin(kδ)
eikδ|α−α′| =

1

iEδ sin(kδ)
e

i
~S(α,α′,µ) . (5.35)

This Green’s function describes plane waves emitted from site α′, since the sign in front
of the wave number is specified by sign(α − α′), i.e. the relative position of α w.r.t.
α′. The argument of the phase factor can also be interpreted as the discrete version of
the reduced action S =

∫ α
α′ p dq, which integrates the momentum along the direct path

linking α′ with α at energy µ. Its discrete version is calculated by (taking α > α′)

1

~
S(α, α′, µ) =

α∑
α′′=α′

arccos

(
1− µ

Eδ

)
δ =

α∑
α′′=α′

kδ = kδ(α− α′) . (5.36)

This can be generalized to the Green’s function of the Aharonov-Bohm ring. We can
interpret the junction sites α = 0,NR/2, at which the waveguides are attached to the
ring, as single-site scattering centers. Without disorder, we have free motion along the
branches of the ring, thus yielding a multiple scattering problem of the junctions. It can
be shown [126] that its solution has the form of a summation over all possible scattering
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paths γ, i.e. paths linking the sites α′ and α with multiple intermediate scattering events
at the junctions and plane wave motion between those,

Gαα′(µ) =
1

iEδ sin(kδ)

∑
γ:α′→

µ
α

Aγe
i
~Sγ . (5.37)

Here, Sγ/~ = kδnγ denotes the accumulated reduced action, with nγ the number of
sites passed by the scattering path, thereby counting multiple visits. The amplitude
Aγ = rnγ,r tnγ,t weights the paths contribution by the product of powers of the reflection
and transmission matrix elements r, t according to the numbers nγ,r and nγ,t of scattering
events at each of the junction sites α = 0,NR/2. The numerical values for the parameters
r and t are obtained from an analysis of the scattering problem at a single Y-junction.
This analysis is found in appendix A.5. Note that continuity and current conservation
leads to the relations

1 + r = t , |r|2 + 2|t|2 = 1 . (5.38)

We now turn the AB ring including the disorder potential. Remember that we assumed
that the strength of disorder is weak compared to the chemical potential, V̄0 � µ, and
that it is slowly varying on the length scale of the wavelength λ, since the correlation
length σ � λ is long compared to the wave length. This allows us to neglect back-
reflection within the branches of the AB ring, and the scattering paths in the summation
for the Green’s function, Eq. (5.37), are left unchanged. Disorder is, however, accounted
for in a modification of the accumulated phase. For instance, the action Su accumulated
from a single exploration of the upper (“u”) branch is found to be

1

~
Su

(
NR
2
− 1, 0, µ

)
=

NR
2
−1∑

α=0

arccos

(
1− µ− Vα

Eδ

)

≈

NR
2∑

α=0

[
arccos

(
1− µ

Eδ

)
− 1√

µ(2Eδ − µ)
Vα

]

=
NR
2
kδ − 1

Eδ sin kδ

NR
2
−1∑

α=0

Vα ,

(5.39)

and similarly for the action Sd accumulated from a single exploration of the lower (“d”)
branch.

We can also understand this approximation as to arise from a semiclassical treat-
ment of disorder, where the weak and smooth disorder potential is incorporated into the
Green’s function by means of semiclassical perturbation theory. This leads to a summa-
tion over paths of the unperturbed system, while an additional phase accumulates the
disorder potential along the path [95].

For the investigation of AAS oscillations, an average over an ensemble of disorder
configurations is required. For our analytical predictions, this can be used for a further
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simplification. Within the disorder average, using the statistical properties of Vα, the
mean value of the the accumulated phase due to disorder is found to vanish,〈

1

Eδ sin(kδ)

NR
2∑

α=0

Vα

〉
dis

=
1

Eδ sin(kδ)

NR
2∑

α=0

〈Vα〉dis = 0 . (5.40)

However, by choosing the length L of the branches long enough (where long enough
depends on the strength V̄0), we can achieve that the variance of the accumulated phase
fulfills 〈 1

Eδ sin(kδ)

NR
2∑

α=0

Vα


2〉

dis

� π2 . (5.41)

In this case, we can safely assume that e
i
~Su , e

i
~Sd can be considered as independent

random complex numbers, uniformly distributed along the complex unit circle. Finally
also including the flux Φ = NRθ through the center of the AB ring, this allows us to
replace

e
i
~Su = ei(Φu±Φ

2 ) , e
i
~Sd = ei(Φd∓Φ

2 ) (5.42)

where Φu, Φd are uniformly distributed random phases taken from the interval [0, 2π).
These phases represent the addition to the overall accumulated phase, which is obtained
each time when a scattering path uses the upper, respective lower branch of the ring
to travel between junctions. A non-vanishing flux contributes an additional phase Φ/2,
where the sign distinguishes between clockwise (+) and anticlockwise (−) direction.

With the above assumptions, we see that details of the individual disorder configu-
rations are comprised in the two parameters Φu,Φd. Moreover, with the substitution
Eq. (5.42) the average over an ensemble of disorder configurations transforms into aver-
aging the phases Φu, Φd over [0, 2π). For instance, the disorder averaged transmission
probability is obtained by〈

|T (Φu,Φd,Φ)|2
〉

=
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd |T (Φu,Φd,Φ)|2 , (5.43)

where T (Φu,Φd,Φ) is the transmission amplitude of an individual disorder configuration
giving rise to phases Φu, Φd. This reformulation of the disorder average is an important
step, as for non-negative integer nu, n

′
u, nd, n

′
d ∈ N0, we have the identity

1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd ei(nu−n′u)Φu+i(nd−n′d)Φd = δnu,n′uδnd,n

′
d
. (5.44)

Its relevance becomes clear, when we assume that the phase of the integrand in Eq. (5.44)
arises as an action difference of scattering paths, as, for instance, in the squared modulus
of the Green’s function,∣∣Gα,α′(µ)

∣∣2 =
1

(Eδ sin(kδ))2

∑
γ,γ′:α′→

µ
α

AγAγ′e
i
~(Sγ−Sγ′) . (5.45)
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source

Aharonov-Bohm

ring

waveguide

Figure 5.2: The left side shows the AB setup with a BEC as a reservoir coupled to the left
waveguide. For weak enough disorder, back-scattering within the ring can
be neglected and we can replace the setup by the quantum graph shown on
the right. It consists of two semi-infinite bonds representing the waveguides,
two vertices representing the junctions between the ring and the waveguides,
and two finite bonds for the upper and the lower arm of the ring.

Here, nu, nd and n′u, n
′
d from Eq. (5.44) can be understood as to count the number of

explorations of the upper and the lower branch of the ring for paths γ and γ′, while
complex conjugation of one of the Green’s function is responsible for a negative sign in
front of n′u, n

′
d. The relevance of Eq. (5.44) is now obvious: Only those pairs of scattering

paths survive the disorder average which share an equal number of explorations of the
upper, respective lower branch of the ring. This introduces correlations amongst the
scattering paths, which allow us to obtain a physical interpretation of AAS oscillations.

At this stage, it is useful to introduce also a graphical, diagrammatic representation to
visualize the individual scattering paths γ in Eq. (5.37). For that reason we understand
the AB ring as a quantum graph consisting of two semi-infinite waveguides, which are
on opposite sides attached to a ring structure via two junctions, see Fig. 5.2. In this
quantum graph, a scattering path γ in the coherent summation Eq. (5.37) appears as
a sequence of single, full explorations of the branches, with intermediate reflective or
transmittive scattering at the junctions. This motivates the definition of the following
diagrammatic representations for scattering at the junctions, and the intermediate full
explorations of branches in the ring,

= r , = = t ,

= ei(Φu+ Φ
2 ) , = ei(Φu−Φ

2 ) ,

= ei(Φd−Φ
2 ) , = ei(Φd+ Φ

2 ) .

(5.46)

For completeness, note that the beginning and the end of a path lead to additional phases
which result either from direct propagation of the initial site to the first contact with one
of the junctions, or from the last scattering event at the junctions to the final site. In the
diagrammatic representation, we also visualize their contribution by an directed arrow
which starts or terminates at a site. To obtain the associated phase factors, we either
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use a plane wave in the waveguides, or in the ring we truncate the sum in Eq. (5.39) and
add the appropriate phase due to the accumulated flux. Taking for instance α′ = αS
and α as a site in the upper part of the ring, the Green’s function takes the form

GααS (µ) =
1

iEδ sin(kδ)

 + + + + . . .


=

ei|αS |kδ

iEδ sin(kδ)

(
eiS(α,0,µ)+iαθ + ei(Φu+ Φ

2 )e
iS
(
α,
NR

2
,µ
)
−i

(
NR

2
−α

)
θ

(5.47)

+ ei(Φd−Φ
2 )e

iS
(
α,
NR

2
,µ
)
−i

(
NR

2
−α

)
θ

+ ei(Φu+Φd)eiS(α,0,µ)+iαθ + . . .
)
.

As we will see in a moment, a detailed consideration of these additional phases is not
necessary since for the calculation of reflection and transmission probabilities we find
that these phases appear only in pairs canceling each other.

5.2 Numerical predictions for Al’tshuler-Aronov-Spivak (AAS)
oscillations

5.2.1 The noninteracting case

We are now at a stage to show and qualitatively explain the AB and AAS oscillations
for the noninteracting case. Both phenomena are displayed in Fig. 5.3, which show the
transmission probability |T (Φ)|2 as a function of Φ and for different disorder strengths.
The data were obtained by R. Chrétien et al. from numerical simulations of the mean-field
equation Eq. (5.13) with g = 0 and, in case of non-vanishing disorder, were averaged over
an ensemble of realizations of disorder. The transmission probability is then calculated
through the fraction of currents, Eq. (5.22).

In the case of vanishing disorder in the ring (black line in Fig. 5.3), the transmission
probability as a function of the enclosed flux Φ displays oscillations with a periodicity of
2π. Here, the perfect suppression of transmission at Φ = π is attributed to the horizontal
axial symmetry of the ring. To understand this, let us first express the transmission
probability using Eqs. (5.28) and (5.30) through the Green’s function and express the
latter by the scattering path representation of the Green’s function, Eq. (5.37). For α
in the right waveguide, this leads to

|T (Φ)|2 = E2
δ sin2(kδ)|GααS (µ)|2 =

∑
γ,γ′:αS→α

AγA
∗
γ′e

i
~(Sγ−Sγ′) . (5.48)

Outside the ring, each path displays plane wave motion, and their contributions to the
overall action cancel each other within the action difference in Eq. (5.48). Within the
ring each of the paths performs an odd number of explorations of the single branches to
finally reach the junction coupling to the right waveguide. The phase factor attributed to
encircling the flux is thus of the form exp(i(2m+ 1)(Φ/2)), where m ∈ Z. If we mirror a
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Figure 5.3: Noninteracting simulation of the transmission through the AB ring, Fig. 5.1
(b), as a function of the enclosed dimensionless flux Φ = NRθ for different
strengths V̄0 of disorder. The curves are obtained from numerically solving
Eq. (5.13) with g/Eδ = 0, µ/Eδ = 0.2 and NR = 200. In case of V̄0 6= 0, the
data have been averaged over 20000 realizations of the Gaussian correlated
disorder with correlation length σ = 20δ. In the absence of the disorder po-
tential in the ring, AB oscillations (solid black) with a period 2π appear and
show a perfect suppression of the transmission for Φ = π. When increasing
the disorder strength and averaging over many disorder realizations, the AB
oscillations smoothly turn into AAS oscillations of half periodicity π. (Figure
adapted from Ref. [30])

path γ along the horizontal axis, we obtain another unique scattering path γ̃, for which
the amplitude Aγ = Aγ̃ and the flux-independent part of accumulated action remain
the same, but since clockwise motion converts into anti-clockwise, the accumulated flux
phase of γ̃ bears the opposite sign. The phase difference between γ and γ̃ is then of the
form exp(i(2m + 1)Φ), which for Φ = π becomes −1. Upon summation this leads to
destructive interference of the contributions of the two paths, and ultimately, since each
path has such a unique partner, to a vanishing of the Green’s function for Φ = π.

By including disorder and increasing its strength, we begin to approach a regime,
where our assumptions of the random phases Φu,Φd in Eq. (5.42) become valid, while
the inequalities in Eq. (5.9) still hold true. This is seen in Fig. 5.3 as the smooth
conversion of AB oscillations into AAS oscillations with half the period. This doubling
of the frequency is ultimately attributed to the disorder average.

As we argued in section 5.1.4, only those pairs of scattering paths γ, γ′ in Eq. (5.48)
survive the disorder average, which share the same number of explorations of the indi-
vidual branches. The doubling of the frequency is now best explained at the level of the
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reflection probability. Choosing α = αS , we find, using Eqs. (5.28), (5.16), (5.17) and
(5.34),

|R(Φu,Φd,Φ)|2 = E2
δ sin2(kδ)

∣∣∣GαSαS (µ)−ΨLL
αS ,+

∣∣∣2
=

∑
γ,γ′:αS→α

AγA
∗
γ′e

i
~(Sγ−Sγ′)

(
= 1− |T (Φu,Φd,Φ)|2

)
,

(5.49)

where we subtracted ΨLL
αS ,+

from the Green’s function since this constitutes to the direct
path of zero length between αS and itself. The remaining paths γ, γ′ undergo at least
one scattering at the left junction to contribute to the reflected wave ΨLL

αS ,−.
Each of the paths in Eq. (5.49) has to perform an even number of explorations of

branches to be able to return to the incident waveguide. The scattering path therefore
collects an even number of flux-dependent phases Φ/2, making the overall flux accu-
mulated in the phase of a path a multiple of Φ. To survive the disorder average, a
scattering path γ needs to be paired with a partner γ′ which shares the same amount of
visits both of the upper and the lower branch. An obvious partner is found by setting
γ′ = γ, producing a flux-independent contribution. Other partners might also exist,
which transverse the branches in different order and different directions compared to
γ. Since half of the explorations of branches have to be towards the left and the other
half towards the right junction in order to return to the incident waveguide, the overall
encircled flux of the individual paths can only differ by a multiple of 2Φ. This explains
the doubling of the frequency of AAS oscillations compared to AB oscillations.

To illustrate the above arguments, we perform the calculation of the reflection prob-
ability by just using the shortest scattering paths with at most three scattering events
at the junctions. Using the diagrammatic representation from Eq. (5.46), we find

|R(Φu,Φd,Φ)|2 =

∣∣∣∣∣ + + + + +O
(
(r, t)5

)∣∣∣∣∣
2

. (5.50)

Within the disorder average, this leads to〈
|R(Φu,Φd,Φ)|2

〉
dis

=
∣∣∣ ∣∣∣2 +

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣ +

∣∣∣∣∣
2

+O
(
(r, t)10

)
= |r|2 + 2|r|2|t|4 + 2|t|6(1 + cos(2Φ)) +O

(
(r, t)10

)
.

(5.51)

While the first three diagrammatic terms display interference with themselves, the last
term containing time-reversed partners results in the flux-dependent contribution to
〈|R(Φu,Φd,Φ)|2〉dis. This also reveals the connection of AAS oscillations to weak lo-
calization [127, 128], where the interference of a scattering path with its time-reversed
partner leads to an enhancement of the reflection probability, which is sensitive to a
time-reversal symmetry affecting mechanism, such as the synthetic gauge field encircled
by the ring.
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Figure 5.4: Mean-field simulations of the transmission through the disordered AB ring,
Fig. 5.1 (b), as a function of the enclosed flux Φ = NRθ for different strengths
of the interaction. The curves are obtained from a Gross-Pitaveskii simula-
tion with µ/Eδ = 0.2, NR = 200, |κ(t)|

√
N(t)/Eδ = 1, V̄0/Eδ = 0.0238. The

data have been averaged over 20000 realizations of the Gaussian correlated
disorder with correlation length σ = 20δ. Increasing the interaction strength
preserves the π-periodicity of AAS oscillations, but flattens the amplitude
for very weak interaction strengths g/Eδ ≤ 0.0002. For larger interaction
strengths, g/Eδ ≥ 0.0002, the curve is reversed, since former maxima at
Φ = π/2, 3π/2 become minima, thereby transforming the minima at Φ = 0, π
into maxima. (Figure adapted from Ref. [30])

5.2.2 Inversion of peaks of the AAS oscillations for interacting cold atoms

We now turn to the interacting case and get a first intuition on the influence of particle-
particle interaction on AAS oscillation in the transmission. Fig. 5.4 shows the trans-
mission through the AB setup as a function of the flux Φ. As for the noninteracting
scenario, the data have been obtained by R. Chrétien et al. by numerically solving the
mean-field problem Eq. (5.13). The disorder strength is taken sufficiently strong such
that in the noninteracting case AAS-oscillations are observable, see the green line in
Fig. 5.3.

The observations we make from the numerical data are the following: when increas-
ing the interaction strength g and averaging over many disorder realizations, the AAS
oscillations keep their π-periodicity, but get flattened for a weak interaction strength,
g/Eδ ≤ 0.0002. This indicates that the corrections to the non-interacting AAS oscil-
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lations also bear themselves a dependence on the flux Φ, with a maximal amplitude
at Φ = π/2, 3π/2, and minimum at Φ = 0, π. When further increasing the interac-
tion strength g/Eδ ≥ 0.0002, this ultimately leads to an inversion of the peaks, since
the maxima at Φ ≈ π/2, 3π/2 turn into minima, thereby transforming the minimum at
Φ = π into a maximum. This is similar to what has been observed in the back-reflection
probability in the coherent transport of cold atoms through a two-dimensional disorder
potential [28].

We aim at a diagrammatic treatment of the observed AAS oscillation for interacting
cold atoms in chapter 6 of this thesis.

5.2.3 Truncated Wigner approximation and its relation to the mean-field
approach

Before we start our analytical investigation of AAS oscillations, we like to further moti-
vate our focus on an individual solution of the stationary mean-field equation, Eq. (5.14),
by also discussing the truncated Wigner method and its numerical predictions regard-
ing AAS oscillations. A detailed derivation of the truncated Wigner method is found
in Ref. [129, 130], see also Ref. [124] for details of its application towards the Bose-
Hubbard model. To put the method into context with the semiclassical approximation
of the propagator for the Bose-Hubbard Hamiltonian, Eq. (3.83), there are works [33,
35, 36] showing that the truncated Wigner method is equivalent to the so-called diagonal
approximation in the semiclassical limit “N →∞”. This approximation is applied when
dealing with a double summation of mean-field solutions, as it appears in the product of
the propagator with its complex conjugate version. For the diagonal approximation, the
double sum is reduced to a single sum by choosing pairs of identical mean-field solutions.
As was the case for the zero-leg-loops in the discussion of OTOCs, see Fig. 4.3, the re-
lated quantum phenomena is then described through the dynamics of single mean-field
solutions, averaged over their initial conditions.

The truncated Wigner method aims at a description of the dynamics in quantum
bosonic many-body systems with a large number of particles. To be more precise, it
is used to calculate the time evolution of the quantum average of an observable by
expressing it as the phase space average, similar to Eq. (4.5), involving the Wigner
function of the time-evolved density operator,

〈Â(t)〉 = Tr
(
ρ̂(t)Â

)
=

∫
d2dΨW (Ψ,Ψ∗, t)A(Ψ,Ψ∗) , (5.52)

where
∫

d2dΨ =
∫

dd Re(Ψ)
∫

dd Im(Ψ)1. Here, a more general definition of the Wigner
function is used,

W (Ψ,Ψ∗, t) =
1

π2d

∫
d2dβ exp

[
d∑
i=1

(β∗i Ψi − βiΨ∗i )

]
tr

[
ρ̂(t) exp

(
d∑
i=1

(
βib̂
†
i − β

∗
i b̂i

))]
.

(5.53)

1If we, in analogy to Eq. (3.21), interpret Ψ =
√

1/2~eff(q+ip), we arrive at the formalism as presented
in section 4.1.1 for quadrature states.
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Accordingly, replacing ρ̂(t) by an arbitrary operator Â in the above formula yields the
Wigner-Weyl transformation A(Ψ,Ψ∗) of this operator. Within this formalism, the von
Neumann equation of the density operator, i~ dρ̂(t)/dt = [Ĥ, ρ̂] (t), translates into a
partial differential equation for the Wigner function. This equation involves third order
derivatives of the Wigner function with respect to q and p, which solely originate from
the interaction terms in the Hamiltonian. By neglecting these higher order derivatives,
i.e. “truncating” the equations of motion, one obtains a so-called Fokker-Planck equa-
tion, which can be mapped to a set of ordinary differential equations, interpretable as
equations of motion of a Hamilton formalism. Along the trajectories which solve these
equations of motion, the Wigner function remains constant. Using the conservation of
phase space volume, one finally performs a variable transformation in Eq. (5.52) along
the classical trajectories to express the Wigner function by its initial value, while the
phase space function is now evaluated at the phase space points of the trajectories at
time t,

〈Â(t)〉 ≈
∫

d2dΨ
′
W
(
Ψ′,Ψ

′∗, 0
)
A
[
Ψ(t; Ψ′,Ψ

′∗),Ψ∗(t; Ψ′,Ψ
′∗)
]

=
〈
A
[
Ψ(t; Ψ′,Ψ

′∗),Ψ∗(t; Ψ′,Ψ
′∗)
]〉

W
,

(5.54)

where 〈.〉W denotes the average of the initial conditions with the Wigner function, as
shown in Eq. (5.54). This explains the importance of the truncated Wigner method:
instead of solving a computationally demanding or even impossible, high-dimensional
partial differential problem to obtain the Wigner function at later times, one instead
solves ordinary differential equations, whose initial conditions are sampled by the initial
Wigner function at time t = 0.

To numerically treat AAS oscillations for the disordered AB ring with interacting
bosonic particles within the truncated Wigner method, the dynamics described by the
Bose-Hubbard Hamiltonian in Eq. (5.10) needs to be limited to a finite number d of sites.
This is done by cutting the waveguides after a finite number of sites and introducing
absorbing ends to prevent back-reflection. The dynamical equations of motion found
within the truncated Wigner method are given by

i~
dΨα(t)

dt
= hαΨα(t) +

∑
α′

Jαα′Ψα′(t) + gα

(
|Ψα(t)|2 − 1

)
Ψα(t) + δα,αSκ(t)ΨS(t) ,

i~
dΨS(t)

dt
= µΨS(t) + κ∗(t)ΨαS (t) ,

(5.55)
where the parameters hα now also contain the absorbing potential within the waveguides.
Compared to the mean-field approach leading to Eq. (5.12), we see that the term related
to interaction is treated slightly different. However, in the limit of a large number of
particles N → ∞, the equations coincide, as we can expect a large occupation |Ψα(t)|2
of site α, allowing us to neglect the additional term.

Initially, the sites in the waveguides and the ring are unoccupied, while the source
contains a Bose-Einstein condensate with a large number N of particles. The latter can
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be well approximated by a coherent state with label ΦS =
√
N , as described in section

3.1.4. Since the vacuum state is itself a coherent state, the initial many-body state for
the full system is a coherent state |Φ〉, where Φα = 0 for sites α in the waveguides and
the ring, and ΦS =

√
N .

The Wigner function for a coherent state is a Gaussian density distribution, which
can be factorized into Wigner functions of the single sites. It is given by

WΦ((Ψα)α,ΨS , (Ψ
∗
α)α,Ψ

∗
S) =

(
2

π

)
exp

(
−2
∣∣∣ΨS −√N ∣∣∣2)︸ ︷︷ ︸

=Wsource(ΨS ,ΨS)

∏
α

(
2

π

)
exp
(
−2|Ψα|2

)
︸ ︷︷ ︸

Wsystem((Ψα)α,(Ψ∗α)α)

.

(5.56)
Here, we can understand this Wigner function as a probability density for complex
Gaussian random variables. Therefore the average in Eq. (5.54) is obtained by sampling
the initial conditions of the dynamical Eqs. (5.55) according to a Gaussian distribution.

To further simplify the problem, it is possible to eliminate the source from the numer-
ical treatment. From Eq. (3.40) we see that the relative uncertainty of the occupation
nS/N for ΦS =

√
N is given by 1/

√
N and decreases with the number of particles.

This allows to neglect the fluctuations in ΦS and treat the source purely classically,
Wsource(ΨS ,ΨS) ≈ δ2(ΨS −

√
N). Moreover, by taking an appropriate ramping of the

coupling κ(t), such that κ(t)
√
N(t) becomes a constant, one can completely remove the

source from the dynamical equations (5.55) and focus on the sites in the waveguide and
the ring,

i~
dΨα(t)

dt
= (hα − µ)Ψα(t) +

∑
α′

Jαα′Ψα′(t) + gα(|Ψα(t)|2 − 1)Ψα(t) + δα,αSκ(t)
√
N(t) ,

(5.57)
whose initial conditions are sampled by Wsystem((Ψα)α, (Ψ

∗
α)α) alone.

To obtain the transmission probability, Eq. (5.22) is used, which requires the calcula-
tion of the current, Eq. (5.20). Within the truncated Wigner method, this leads to the
calculation of

〈jα(t)〉W =
Eδ
2i~

〈
Ψ∗α(t)Ψα+1(t)−Ψ∗α+1(t)Ψα(t)

〉
W
. (5.58)

The transmission probability is found by first propagating the system long enough to
establish a stationary state, and normalizing the obtained current to the incident current,
Eq. (5.29) generated by the source,

|T (Φ)|2 = lim
t→∞

〈jα(t)〉W
j∅

. (5.59)

To investigate AAS oscillations, the above transmission has to be calculated for and
averaged over an ensemble of disorder configurations.

Within the truncated Wigner approach, we can moreover first average the fields Ψα

themselves within the Wigner average Eq. (5.54). This contribution is expected to behave
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Figure 5.5: The transmission through the AB ring as a function of the enclosed flux Φ =
NRθ, shown for different interaction strengths g, while keeping constant the
product (g/Eδ)ρ

∅δ = 0.0055 of interaction strength with the mean particle
density generated by the source. Shown are both the results from a truncated
Wigner simulation and the numerical solution of Eq. (5.13), with µ/Eδ = 0.2,
NR = 200, V̄0/Eδ = 0.0238. Each data point results from an average over
20000 realizations of the Gaussian correlated disorder with correlation length
σ = 20δ, each with 100 samples of the initial conditions. The particle density
ρ∅δ generated by the source is related to the coupling strength N(t)|κ(t)|2
via Eq. (5.27). For this set of parameters, the inversion of AAS oscillations as
a result of interaction has fully developed. By tuning g and ρ∅δ we leave the
regime where the system is described by a single solution of the mean-field
equation, Eq. (5.14), (black line in the figures), and a treatment based on
the truncated Wigner method is required. Within this method, the average
in Eq. (5.54) over multiple distinct solutions of the mean-field equation leads
to a flattening of AAS oscillations. (Figure adapted from Ref. [30])
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according to a single solution of the mean-field Eqs. (5.13), whose initial conditions are
given by the center of the Gaussian distribution Wsystem. Quantities calculated from
these averaged fields are then labeled coherent. For instance, the coherent part of the
current and the transmission probability is given

jcoh
α (t) =

iEδ
2~
[〈

Ψ∗α+1(t)
〉
W
〈Ψα(t)〉W − 〈Ψ

∗
α(t)〉W 〈Ψα+1(t)〉W

]
,∣∣∣T coh(Φ)

∣∣∣2 = lim
t→∞

jcoh
α (t)

j∅
.

(5.60)

The incoherent parts are finally defined by the difference of the quantities, as obtained
from the truncated Wigner method, to their coherent parts,

jincoh
α (t) = 〈jα(t)〉W − j

coh
α (t) ,

∣∣∣T incoh(Φ)
∣∣∣2 = |T (Φ)|2 −

∣∣∣T coh(Φ)
∣∣∣2 (5.61)

The numerical results obtained with the truncated Wigner method confirm this expec-
tation, as is seen in Fig. 5.5. There the transmission probability (red lines) as a function
of the enclosed flux is plotted, as well as its coherent (blue dashed lines) and incoherent
part (blue dotted lines), for different values of the interaction strength g/Eδ and the
mean particle density ρ∅δ, Eq. (5.27), while keeping the product ρ∅δg/Eδ fixed. As
we will understand in the next chapter, the latter product arises from the perturbation
theory motivated by Eq. (5.34), and the above manipulations leave the solution of the
stationary mean-field equations, Eq. (5.14) unchanged. Indeed, we see in Fig. 5.5 that
the shape of the coherent part of the transmission (dashed blue lines) essentially follows
the predictions of the mean-field solution (black lines).

For a large mean particle density ρ∅δ and weak interaction strength g, Fig. 5.5 (a)
to (d), we are in the regime of validity of the mean-field approach, i.e. the system is
well described by a single solution of the mean-field equation Eq. (5.14). The truncated
Wigner method essentially follows this solution. When we decrease the mean particle
density ρ∅δ and simultaneously increase the interaction strength g, we see from the the
growing influence of incoherent part (dotted blue lines) that additional solutions of the
mean-field equations start to play a role in the average Eq. (5.54), ultimately leading to
a complete flattening of AAS oscillations in Fig. 5.5 (e) and (f).

Since the numerical predictions in Fig. 5.5 indicate that the main influence of interac-
tion on AAS oscillations can be understood at the level of a single, central solution of the
mean-field equation, this motivates our theoretical investigation in the next chapter.



6 Diagrammatic approach towards
Al’tshuler-Aronov-Spivak oscillations

In this chapter we want to present a semiclassical, diagrammatic ap-
proach to obtain analytical expressions to explain the role of interaction
in Al’tshuler-Aronov-Spivak oscillations in the transport of a bosonic
gas through a disordered Aharonov-Bohm ring. The theory is based
on the mean-field treatment of the problem and relies on resumming
contributions of scattering paths found for the noninteracting system.

In this chapter we present an analytical treatment of AAS oscillations in the coherent
transport of cold bosonic atoms through an AB ring with disorder. This treatment
aims at solving the stationary mean-field equation by a scattering ansatz, utilizing the
Green’s function for the noninteracting mean-field Hamiltonian and taking the particle-
particle interaction as a weak perturbation, see Eq. (5.34). For an appropriately chosen
weak disorder strength, we have seen that the Green’s function admits a semiclassical
approximation in the form of a summation of all scattering paths linking an initial
with a final site, Eq. (5.37). The disorder average itself translates into an average of
the flux-independent part of the phases Φu, Φd accumulated by a path from a single
exploration of the upper, respective lower branch of the ring. The main idea for the
theory presented here is to perform exact resummations of the intermediate sequential
part of the scattering paths, which describes the motion alternating inside the ring
between the two junctions to the waveguides. For theses resummations we discriminate
between the various boundary conditions, i.e. the initial and final junction site of the
sequence, as well as from which direction a scattering path is allowed to enter and
leave the sequence. These considerations allow us to write the Green’s function of the
noninteracting system and find analytical expressions for the reflection and transmission
probability as functions of the flux Φ and disorder phases Φu, Φd. Furthermore, we
are able to tackle the perturbation series for the interacting problem, and can also
identify an analytical expression, which, upon average over the disorder phases, yields
the corrections for the transmission and reflection probabilities.

The results presented in this chapter mark my contribution to the work studying AAS
oscillation in the transport of an interacting bosonic gas through a disordered Aharonov-
Bohm ring, and are published in Ref. [30].
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6.1 The noninteracting case

We base our theoretical efforts in this chapter on performing the coherent summation
over all scattering paths for the noninteracting Green function, Eq. (5.37). It relies
on the important observation that for a scattering path both the exploration of the
branches and the scattering of the junctions contributes a multiplicative factor to the
scattering paths contribution to the sum in Eq. (5.37), leading us to the definition of the
diagrammatic rules in Eq. (5.46). This allows us to separate the direct paths between
the initial/final site and the junction, and we can focus on the intermediate sequential
part oscillating between the two junctions. For instance, for the diagrams depicted in
Eq. (5.47)

+ = ×

[
+

]
× (6.1)

+ = ×

[
+

]
× ,

where the expressions within the brackets are built only by the elements depicted in
Eq. (5.46). They represent the intermediate behaviour of a scattering path, oscillating
multiple times in the between between the two junctions.

To sum up these intermediate sequences, we first group the paths depending on which
junction they start and end, and how a scattering path may enter and leave the sequence.
As we see in the next sections, it is possible to sum up these groups of paths, sharing
the same limiting conditions. This leads to new effective diagrams where we encodes
the common boundary conditions in the shape of the diagram and use the color red to
indicate a resummation.

6.1.1 Basic resummation of diagrams

One of these resummed diagrams is given by , which can be interpreted as a resummed

transmission diagram. Following our description above, it comprises the contribution of
the sum of all trajectories which approach the left junction from the lower branch, have
an arbitrary number of explorations of upper and lower branches of the AB ring, before
they finally leave to the upper branch of the ring. Explicitly writing the sum in terms
of diagram, this yields

= + + + + + . . . (6.2)

In the same way we can define the diagrams , as the resummation of paths

traversing a junction, while both the beginning and the end of the trajectories remain
within the ring. Scattering paths which start and end at the same junction, whose
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beginning and end are extendable into the same branch of the ring are represented by
, , and . We can interpret these latter diagrams as resummed reflection diagrams.

Quite obviously, after two subsequent visits of any of the branches of the ring, one
arrives back at the junction one started. It is therefore easy to see that any of the scat-
tering paths contained in the set of a resummed diagram is constructed by successively
extending it through the exploration of two branches, forth to and back from the oppo-
site junction. This is the main idea, leading to self-consistent equations which couple a
resummed reflection and transmission diagrams. For instance, we find

= + + + + ,

= + + + + .

(6.3)

The right hand sides of these equations are linear in the resummed red diagrams. To
make this point even more clear, we can rewrite the above expressions in a diagrammatic
version of a matrix-vector product,

  =

 +


+ +

+ +


︸ ︷︷ ︸

=A(Φu,Φd,Φ)

  .
(6.4)

To obtain analytic expressions for the resummed diagrams, we have to solve this equa-
tion. This is done by a simple matrix inversion,  = (I−A(Φu,Φd,Φ))︸ ︷︷ ︸

=X(Φu,Φd,Φ)

−1

  = X(Φu,Φd,Φ)−1

(
t
r

)
. (6.5)

Using the representations from equation (5.46), the matrix X(Φu,Φd,Φ) is found to be

X(Φu,Φd,Φ) =


1− − − −

− − 1− −


=

(
1− r2e2iΦu − t2ei(Φu+Φd+Φ) −rtei(Φu+Φd−Φ) − rte2iΦd

−rte2iΦu − rtei(Φu+Φd+Φ) 1− t2ei(Φu+Φd−Φ) − r2e2iΦd

)
. (6.6)
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Provided that the determinant D(Φu,Φd,Φ) = det[X(Φu,Φd,Φ)] does not vanish, the
inverse of this 2× 2 matrix exists,

X(Φu,Φd,Φ)−1

=
1

D(Φu,Φd,Φ)

(
1− r2e2iΦd − t2ei(Φu+Φd−Φ) rt

(
e2iΦd + ei(Φu+Φd−Φ)

)
rt(e2iΦu + ei(Φu+Φd+Φ)) 1− r2e2iΦu − t2ei(Φu+Φd+Φ)

)
,

(6.7)

where

D(Φu,Φd,Φ) = det(X(Φu,Φd,Φ)) (6.8)

= 1− r2
(
e2iΦu + e2iΦd

)
− 2t2ei(Φu+Φd) cos(Φ) +

(
r2 − t2

)2
e2i(Φu+Φd) .

In order to obtain expressions for the resummed diagrams and , we have to insert

(6.7) into (6.5). This leads to the matrix-vector product(
1− r2e2iΦd − t2ei(Φu+Φd−Φ) rt

(
e2iΦd + ei(Φu+Φd−Φ)

)
rt
(
e2iΦu + ei(Φu+Φd+Φ)

)
1− r2e2iΦu − t2ei(Φu+Φd+Φ)

)(
t
r

)
=

(
t
(
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

)
r
(
1−

(
r2 − t2

)
e2iΦu

) )
.

(6.9)

Thus, the resummed diagrams are found to be

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
, = r

1−
(
r2 − t2

)
e2iΦu

D(Φu,Φd,Φ)
. (6.10)

6.1.2 Symmetry arguments to derive other resummed diagrams

The other diagrams, related to transmission through and reflection of a junction, , ,

, , and could in principle be calculated in a similar fashion as in the previous

paragraph. However, we can also easily obtain them from Eq. (6.10) by making the
following observations associated to symmetries of the AB ring:

• Inverting the direction of a resummed diagram is done by inverting each scattering
path contained in its sum. For the scattering paths, this inversion does not change
the visited branches, but clockwise exploration is converted into anticlockwise,
leading to a sign change of the phase Φ. For instance, can be obtained from

using this rule.

• Mirroring a resummed diagram along the horizontal axis leads to an interchange of
the upper with the lower branch of the ring, and thus to an interchange Φu ↔ Φd

of the associated dynamical phases. Furthermore clockwise exploration of the
branches turns into anticlockwise and vice versa, we also have to change the sign
of Φ again. Using this rule, e.g. is obtained from .
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• Mirroring a diagram along the vertical symmetry axis of the bare ring does not
change the explored branches, but interchanges clockwise and anticlockwise mo-
tion, which yet again flips the sign in front of Φ. With this rule, we can, for
instance obtain from .

Note that the denominator D(Φu,Φd,Φ) is invariant under any of the above mentioned
transformations. Applying the above rules allows us to immediately derive further di-
agrams without their explicit calculation as solution of linear equation. For instance

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
= . (6.11)

The complete list of diagrams derived from Eq. (6.10) is found in appendix A.6.

6.1.3 Further resummed diagrams

The diagrams calculated in the last section described the resummed transmission and
the reflection at a single junction. With their help, we can now also calculate diagrams
which link the two junctions at the opposite side of the ring. These diagrams differ in
which junction is used as the starting point, and in which branches the scattering paths
start and end.

The diagram, which approaches the left junction from the lower branch and, in the
end, leaves the right junction again to the lower branch, is diagrammatically calculated
by

= + . (6.12)

To put the above equation in words: to travel from the left junction, which we enter
from below, to the right junction, which we exit to the lower branch, we can either in
an arbitrary way enter the upper or the lower branch at the left junction and then go
directly to the right junction, and both scenarios are summed. (Our in the previous
subsection calculated resummed diagrams support us with the word “arbitrary”.)

Inserting the analytical expressions for the diagrams, we find

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )t+ r
1−

(
r2 − t2

)
ei2Φu

D(Φu,Φd,Φ)
ei(Φd−Φ

2 )r

= e−i(Φd+ Φ
2 ) r

2e2iΦd + t2ei(Φu+Φd+Φ) −
(
r2 − t2

)2
e2i(Φu+Φd)

D(Φu,Φd,Φ)
(6.13)

= e−i(Φd+ Φ
2 )

(
1− r2e2iΦu − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)
. (6.14)

Note that in the last line of Eq. (6.14), we already excluded the inverse of the phase factor
associated to a clockwise exploration of the lower branch. We also used the denominator
(6.8) to slightly rewrite the result in an alternative form.
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In an analogous way, we can calculate the diagram which approaches the left junction
from the lower branch, but now leaves the right junction to the upper branch.

= +

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )r + r
1−

(
r2 − t2

)
ei2Φu

D(Φu,Φd,Φ)
ei(Φd−Φ

2 )t

= e−i(Φu−Φ
2 ) rt

(
e2iΦu + ei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

. (6.15)

From equations (6.14), (6.15) and using the symmetry rules presented in subsection 6.1.2
it is easy to derive the remaining resummed diagrams for switching junctions. The list
of these diagrams is found in appendix A.6.

So far, both ends of the paths summed over in the previous diagrams terminated
within the ring structure. However, for the calculation of the reflection and transmis-
sion probabilities |R(Φu,Φd,Φ)|2 and |T (Φu,Φd,Φ)|2, Eq. (5.48) and (5.49), we need
resummed sequences of paths which connect to the waveguides attached to the ring.
Such a resummed diagram is , which contains all scattering paths starting in the

left waveguide and, in the end, leave the left junction towards the upper branch. Its
contribution is calculated by

= + + (6.16)

= t+ t

(
1− r2ei2Φd − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)
+ t

rt
(
e2iΦd + ei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

= t
1− (r − t)

(
rei2Φd − tei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

.

It is also advantageous to have diagrams, which start in a waveguide and end at the
junction opposite to that. For instance, the diagram which starts in the left waveguide
and, in an arbitrary way, travels to the right junction where it leaves to the upper branch,
is calculated by

= +

= t
1− (r − t)

(
rei2Φd − tei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

ei(Φu+ Φ
2 )r

+ t
1− (r − t)

(
rei2Φu − tei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

ei(Φd−Φ
2 )t
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= e−i(Φu−Φ
2 )t

rei2Φu + tei(Φu+Φd−Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
. (6.17)

Again, we complete the list of all diagrams, starting or ending in one of the waveguides
using the symmetry rules from 6.1.2 and show their results in appendix A.6.

6.1.4 Full reflection and transmission amplitude in the noninteracting case

With the collection of resummed diagrams derived in the last subsections, we are now
ready to state a diagrammatic version of the noninteracting Green’s function Gαα′(µ) for
any choice of initial and final sites α, α′. For instance, if the sites α and α′ are located
in the upper branch of the ring, we get

G(α, α′, E) =
1

iEδ sin(kδ)


θ(α− α′) +


+

θ(α− α′) +

+ +


(6.18)

where the Heaviside function θ discriminates whether α is left (α < α′) or right of α′

(α > α′). In principle, since these representations include a possible partial exploration
of branches at the beginning or the end to reach the initial and final sites α, one would
need details of the disorder potential in the single branches to obtain the correct quan-
titative value of the phase. However, as we already argued after Eq. (5.47), due to
phase cancellation in the calculation of reflection and transmission probabilities, we can
limit our considerations to paths which terminate at the junctions or within one of the
waveguides.

By comparing Eq. (5.16) with Eq. (5.30) for the noninteracting case, gα = 0, we see
that through the knowledge of the Green’s function we can also directly gain access to
the reflection and transmission amplitudes. Utilizing the resummed diagrams, we obtain
for the reflection amplitude R(0)(Φu,Φd,Φ) of the full, noninteracting system

= R(0)(Φu,Φd,Φ) = [iEδ sin(kδ)GαSαS (µ)− 1]e−2i|αS |kδ (6.19)

= + +

= r + t2
rei2Φu + tei(Φu+Φd−Φ) − (r − t)

(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)

+ t2
rei2Φd + tei(Φu+Φd+Φ) − (r − t)

(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)

(6.20)

= r + t2
r
(
ei2Φu + ei2Φd

)
+ 2tei(Φu+Φd) cos(Φ)− 2(r − t)

(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
.
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Note that the term subtracted from the Green’s function in the first line attributes to
the incoming wave ΨLL

αS ,+
= [
√
N(t)κ(t)]/[iEδ sin(kδ)], while e−2i|αS |kδ compensates the

phase accumulated from any scattering path when covering the distance between sites
αS and 0 before and after entering the ring structure.

The transmission amplitude T (0)(Φu,Φd,Φ) is calculated as

= T (0)(Φu,Φd,Φ) = iEδ sin(kδ)GNRαS (µ)e−i(|αS |+1)kδ (6.21)

= +

= t
1− (r − t)

(
rei2Φd − tei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

ei(Φu+ Φ
2 )t

+ t
1− (r − t)

(
rei2Φu − tei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

ei(Φd−Φ
2 )t (6.22)

= t2
ei(Φu+ Φ

2 ) + ei(Φd−Φ
2 ) − (r − t)2ei(Φu+Φd)

(
ei(Φu−Φ

2 ) + ei(Φd+ Φ
2 )
)

D(Φu,Φd,Φ)
.

Again, the phase factor e−i(|αS |+1)kδ compensates the phase accumulated from the scat-
tering paths within the waveguides when covering the distance between sites αS and 0
and the single jump from site NR/2 to NR.

The noninteracting reflection and transmission probability for a certain disorder con-
figuration is now found by taking the squared modulus square of R(0)(Φu,Φd,Φ) and
T (0)(Φu,Φd,Φ). Averaging these probabilities over all possible phases Φu, Φd then is
expected to display the AAS oscillations.

Since the phases are uniformly distributed between 0 and 2π, this average is an inte-
gration,

〈
∣∣∣R(0)

∣∣∣2〉dis (Φ) =
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd

∣∣∣R(0)(Φu,Φd,Φ)
∣∣∣2

〈
∣∣∣T (0)

∣∣∣2〉dis (Φ) =
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd

∣∣∣T (0)(Φu,Φd,Φ)
∣∣∣2 (6.23)

Unfortunately, due to the complexity of the expressions in the integrand, we were not
able to perform the final integration with analytical means. However, a cheap numerical
integration based on Monte-Carlo-methods is reasonable and also allows us to check our
model against the full quantum simulation. The pseudo-code for this integration is found
in appendix A.7, where we present its result in Fig. 6.1. Its discussion will take place in
combination with the interacting theory at the end of the next section.
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6.2 The interacting case

6.2.1 Perturbative treatment of interaction

For the diagrammatic representation of the solution Ψα of the interacting problem we
would like to introduce a similar diagrammatic approach as for the noninteracting case.
Our aim is thus to distinguish sets of “interacting scattering paths” according to whether
their final point α in the index of Ψα is in the upper or lower branch of the Aharonov-
Bohm ring, and whether α is approached from its left or right side. This view is moti-
vated from the selfconsistent equation for Ψα, Eq. (5.34), where a noninteracting Green’s
function, and therefore the scattering paths discussed in the last section, are the objects
which terminate at α. Therefore, we write the wave function Ψα again as sum of dia-
grams, which carry a similar interpretation as those discussed in the previous section.
For instance, for α in the upper part of the ring, this representation is given by

Ψα =

√
Nκ(t)

iEδ sin(kδ)
eikδ|αS |

(
+

)
, (6.24)

while mirroring horizontally yields the “interacting diagrams” for the lower branch of the
ring. The prefactor in Eq. (6.24) is chosen in accordance to the noninteracting solution
as obtained by Eq. (5.34) for g = 0.

To enable the calculation of the green-colored diagrams, let us introduce further dia-
grammatic elements to represent the self-consistent Eq. (5.34). Following Ref. [29, 131]
we represent the intermediate site α′, at which the mean-field wave interacts with its
density |Ψα′ |2, by a box,

, (6.25)

and the complex conjugate, resummed diagrams by dashed lines,

Ψ∗α = −
√
Nκ(t)

iEδ sin(kδ)
e−ikδ|αS |

(
+

)
. (6.26)

With these building blocks, the self-consistent equation, Eq. (5.34), translates into a set
of four coupled diagrammatic equations. One of them is given by

= − igeff

∑
α′

upper
branch

(
+

)2(
+

)

×

(
θ(α− α′) + +

)
(6.27)

− igeff

∑
α′

lower
branch

(
+

)2(
+

)(
+

)
,
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where

geff = g
N(t) |κ(t)|2

[Eδ sin(kδ)]3
=

g

Eδ

ρ∅δ

sin(kδ)
(6.28)

denotes the effective interaction strength and which plays the role of the small parameter
for the perturbation series. Apart from the strength g of the interaction it is controlled
by the mean density ρ∅ of particles generated in the ring by the source. This reflects
the intuitive picture that interaction effects become more prominent for a higher density
of particles. Even more, the dependence on

√
µ(2− µ/Eδ) = sin(kδ) ≈ kδ indicates a

more prominent contribution for smaller wave numbers.
By subsequently inserting the set of four diagrammatic equations, such as Eq. (6.27),

into each other we obtain a series in powers of the small effective interaction strength
geff, which allows for a perturbative calculation of the interacting wave function.

To obtain the full reflection and transmission amplitudes Rcoh and T coh for the inter-
acting case we first take the site α in Eq. (6.24) either to be the left or the right junction
site. By multiplying a final transmission amplitude t the involved paths leave the ring
through the junction to the waveguide where they can travel to the final site within the
respective waveguide. Diagrammatically, this is expressed by

Rcoh(Φu,Φd,Φ) = = + + ,

T coh(Φu,Φd,Φ) = = + .

(6.29)

The exact calculation of these expressions in first and higher orders of the effective inter-
action strength geff would, in principle, lead to the reflection and transmission probabil-
ities for the interacting case and for a fixed disorder configuration. However, to perform
this calculation, we would need exact knowledge of the noninteracting Green’s function
terminating at sites within the ring, see Eq. (5.34). Their calculation requires the specific
disorder potential Vα at the single sites as input to identify the accumulated phase from
a partial exploration of one of the branches. For example, we get already in linear order
of the perturbation theory, truncating the summation in Eq. (5.39),

= × exp

(
i

~

α∑
α′=0

(
kδ − Vα′

Eδ sin(kδ)
+ θ

))
. (6.30)

Luckily, we can avoid the calculation of these phases as our focus lies on an disorder
average of the reflection and transmission probability. As we have argued in section
5.1.4, a consequence of the identity Eq. (5.44) is that only those contributions survive
the disorder average which show perfect cancellation of the dynamical phases separately
accumulated in each of the two branches. Consequently, since a partial exploration of a
branch originates from the presence of an interaction event, we either need to annihilate
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this by another, equally sized partial exploration of the same branch, or we extend the
partial to a full exploration of the branch with the help of one or many other partial
contributions. Quite naturally we find that in the expansion of Eq. (6.27) a structure of
the form

, , , (6.31)

as well as their mirrored and/or complex conjugated versions, produces a non-vanishing
phase due to a partial exploration of a branch. To compensate those, we would need a
second interaction event which co-moves together with the first and which gives rise to a
partial exploration of equal length. However, since each interaction event is accompanied
by a summation along the sites of a branch, this scenario reduces two summations to a
single one, suppressing these contributions by an order O

(
N−1
R
)

of the inverse number
of sites in the ring.

Contrarily, structures similar to the form

, , (6.32)

do not have this drawback. In those structures, two arrows are paired, , canceling
each other the site-dependent dynamical phase. The remaining two arrows appearing at
the nonlinearity continue each other, , and their dynamical phases add up, thus
also removing the explicit position dependence on the intermediate summation variable
α′.

It is favorable to only consider diagrammatic constellations which do not contain
the structures depicted in (6.31). This is achieved by a redefinition of the interacting
diagrams, which equivalently introduces an effective interacting wave function, which
only supports constellations of scattering paths only incorporating interaction events
with the allowed structures in Eq. (6.32). The redefinition of the diagrams is done by
modifying Eq. (6.27) to

= +
∑
α′

upper
branch

(
θ(α− α′) + + 2

)

+
∑
α′

upper
branch

(
2θ(α− α′) + 2 +

)
(6.33)

+
∑
α′

lower
branch

(
+ 2

)
+
∑
α′

lower
branch

(
2 +

)
.

The factor 2 appearing in the brackets within the sums is a combinatorical factor, which
results from the squared factor in Eq. (6.27) and reflects the two possibilities the corre-
sponding diagram can be constructed from picking an element in the factors. We can
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write the above equation in a slightly more compact way through the use of vectors with
diagrammatic entries and a matrix with the combinatorial weights,

= +
∑
α′

upper
branch

(
,

)(
1 2
2 1

)
θ(α− α′) +



+
∑
α′

lower
branch

(
,

)(
1 2
2 1

)
 . (6.34)

In an equivalent way, one can find similar equations for the remaining interacting dia-
grams. Together with Eq. (6.34) this forms a selfconsistent set of four coupled algebraic
equations. The missing three are given by

=

+
∑
α′

upper
branch

(
,

)(
1 2
2 1

)θ(x′ − x) +

 (6.35)

+
∑
α′

lower
branch

(
,

)(
1 2
2 1

)
 ,

= +
∑
α′

upper
branch

(
,

)(
1 2
2 1

)
 (6.36)

+
∑
α′

lower
branch

(
,

)(
1 2
2 1

)
θ(α− α′) +

 ,
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= +
∑
α′

upper
branch

(
+

)(
1 2
2 1

)
 (6.37)

+
∑
α′

lower
branch

(
,

)(
1 2
2 1

)θ(α′ − α) +

 .

We now return to the calculation of the reflection and transmission amplitudes as
described by Eq. (6.29) and insert the above obtained self-consistent equations for the
effective interaction diagrams. To simplify the results for the reflection amplitude, we
use the diagrammatic identities

= + + , = + ,

= + + , = + .

(6.38)

With these, the equation for the (effective) full interacting reflection amplitude reads

R(coh, eff)(Φu,Φd,Φ) = + + (6.39)

= + + − igeff

∑
α′

upper
branch

(
,

)(
1 2
2 1

)


− igeff

∑
α′

lower
branch

(
,

)(
1 2
2 1

)
 .

For the effective transmission amplitude we use the following identities to transform our
result,

= + + , = + + ,

= + , = + .

(6.40)
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Then, the integral equation for the resummed transmission amplitude transforms to

T (coh, eff)(Φu,Φd,Φ) = + (6.41)

= + − igeff

∑
α′

upper
branch

(
,

)(
1 2
2 1

)


− igeff

∑
α′

lower
branch

(
,

)(
1 2
2 1

)
 .

We like to again emphasize here that contrarily to the noninteracting case the modulus
square of the effective reflection and transmission amplitude does not yield the actual
reflection probability for a fixed disorder configuration within the ring, since we have
neglected contributions to arrive at the above results. It is only after a disorder average
that we obtain the correct physical reflection probability.

6.2.2 Effective reflection and transmission amplitudes in linear order in the
interaction strength

From Eqs. (6.39) and (6.41) we immediately see, that the correction to the reflection and
transmission amplitudes due to first order perturbation theory is found by expressing
each resummed interacting diagram by its zeroth order, noninteracting contribution,

, , , ,→ , , , . (6.42)

Within this order the terms in the summation become independent on the summation
index α′ since the partial explorations of the branches cancel each other, as expected.
The summation is then trivially performed and introduces the number of sites NR/2 in
one of the branches of the ring as an additional parameter. The first order correction to
the effective reflection amplitude is thus diagrammatically given by

∆R(1)(Φu,Φd,Φ) = R(coh, eff,1)(Φu,Φd,Φ)−R(0)(Φu,Φd,Φ)

= −igeff
NR
2


(

,

)(
1 2
2 1

)


+

(
,

)(
1 2
2 1

)

 .

(6.43)
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The diagrammatic representation allows for an illustrative interpretation of the result.
Corrections to the averaged reflection probability arise from scattering paths, which
enter the upper or lower branch of the ring in an arbitrary way and coming from an
arbitrary junction. Then, somewhere within that branch, we have the interaction with
the particle density ρ, which is represented by the paired diagrams. At this stage, com-
binatorial multiplicities have to be considered. After that the scattering path continues
its exploration of the branch until it arrives at the opposite junction, from where it
leaves to the incident waveguide in an arbitrary way. The advantage of our approach is
that all combinatorical multiplicities of trajectories are accounted for correctly by using
resummed diagrams and the multiplicities matrix. Moreover, the word “arbitrary” is
mathematically defined through resummed diagrams found for the noninteracting case,
which contain any scattering path fulfilling the wished boundary conditions.

The first order correction for the effective transmission amplitude is found to be

∆T (1)(Φu,Φd,Φ) = T (coh, eff,1)(Φu,Φd,Φ)− T (0)(Φu,Φd,Φ)

= −igeff
NR
2


(

,

)(
1 2
2 1

)


+

(
,

)(
1 2
2 1

)

 .

(6.44)

Again, a similar interpretation of this diagrammatic expression is possible as in the case
of the reflection amplitude.

When we insert into the above formulas the analytical expressions for the resummed
noninteracting diagrams found in section 6.1, the results we obtain for the first order
corrections are rather lengthy and unhandy formulas. We did not find a possible way
to simplify the results to a short analytical expression like in the noninteracting case.
For that reason we refrain from an explicit writing of the analytic formulas for the
corrections.

6.2.3 Disorder averaged reflection and transmission probabilities in linear
order in the interaction strength

In order to obtain reflection and transmission probabilities, we have to take the modulus
square of the full interacting reflection and transmission amplitudes. These are then
averaged over the disorder phases Φu, Φd. The result then displays AAS oscillations for
including the influence of interaction.

The disorder-averaged reflection probability for the interacting system is, according
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to Eq. (5.43), calculated by〈
|R(coh)(Φu,Φd,Φ)|2

〉
dis

=
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd

∣∣∣R(coh)(Φu,Φd,Φ)
∣∣∣2

=
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd

∣∣∣R(0)(Φu,Φd,Φ) + ∆R(1)(Φu,Φd,Φ) +O
(
|g|2
)∣∣∣2

= |R(0)(Φ)|2 + ∆|R(1)(Φ)|2 +O
(
|g|2
)
, (6.45)

where

|R(0)(Φ)|2 =
1

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd

∣∣∣R(0)(Φu,Φd,Φ)
∣∣∣2 (6.46)

denotes the reflection probability of the noninteracting scenario, and its first order cor-
rection in the interaction strength g is given by

∆|R(1)(Φ)|2 =
2

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd Re

{
R(0)∗(Φu,Φd,Φ)δR(1)(Φu,Φd,Φ)

}
. (6.47)

We insert the diagrammatic expressions (6.20) and (6.43) into this equation and further
assume that the interaction strength g is real. This leads then to

δR(1)(Φ) =
geffNR
(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd Im


 + +



×


(

,

)(
1 2
2 1

)


+

(
,

)(
1 2
2 1

)


 .

(6.48)

Using the symmetry operations explained in section 6.1.2, we can further modify the
above integral. Mirroring a diagram along the horizontal axis and then reversing its
direction simply interchanges Φu with Φd in the expressions. Thus, if we also formally
exchange Φu and Φd as integration variables, we find

∫ 2π

0
dΦu

∫ 2π

0
dΦd

(
+ +

)(
,

)(
1 2
2 1

)
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=

∫ 2π
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(
+ +

)(
,

)(
1 2
2 1

)


=

∫ 2π

0
dΦd

∫ 2π
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(
+ +

)(
,

)(
1 2
2 1

)
 .

(6.49)

This allows us to write the result a little bit more compact,

∆
∣∣∣R(1)(Φ)

∣∣∣2 =
geffNR

4π2

∫ 2π

0
dΦu

∫ 2π

0
dΦd Im


 + +



×

(
+ , +

)(
1 2
2 1

)

 .

(6.50)

In an analogous way we can find he correction to the transmission probability to be

∆
∣∣∣T (1)(Φ)

∣∣∣2 =
2

(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd Re

[
T (0)∗(Φu,Φd,Φ)δT (1)(Φu,Φd,Φ)

]
, (6.51)

which in the diagrammatic representation reads

∆
∣∣∣T (1)(Φ)

∣∣∣2 =
geffNR
(2π)2

∫ 2π

0
dΦu

∫ 2π

0
dΦd Im
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(

,

)(
1 2
2 1

)


+

(
,

)(
1 2
2 1

)


 .

(6.52)

Like for the noninteracting case, the analytic expressions obtained as integrand for the
disorder averages show a complexity which so far avoided a further analytical evaluation
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of the disorder average. Also here we used a numerical integration based on Monte-
Carlo-methods to check the model against the numerical predictions from a solution of
the mean-field equations. The pseudo-code for the numerical integration of Eqs. (6.50)
and (6.52) is found in appendix A.7.

6.2.4 Discussion of the results

In Fig. 6.1 (a) we show again the results seen in Fig. 5.4, which are obtained from
numerically solving the mean-field problem, Eq. (5.13), and compare them to the results
obtained from the diagrammatic approach presented in this chapter. We see that for
g = 0 the Monte-Carlo method produced an average of Eq. (6.23) which is in qualitative
and quantitative agreement with the numerical findings for the AAS oscillations, thereby
confirming the diagrammatic approach for g = 0. For the interacting case, g 6= 0, for
an enclosed flux in the vicinity of Φ = 0 and Φ = π, the Monte-Carlo method produced
numerical divergences in the result. We could attribute those to the vanishing of the
determinant in Eq. (6.8) for cases when Φu ≈ Φd, which are not sufficiently compensated
by a vanishing of the numerator. These divergences have been excluded from the plots
in Fig. 6.1 (a). Away from Φ = 0, π, the Monte-Carlo method converges and we can
observe a good qualitative and quantitative agreement for weak interaction strengths,
g/Eδ ≤ 0.0002. For larger interaction strengths, the agreement remains qualitatively
good near Φ ≈ π/2 and Φ ≈ 3π/2, but otherwise deviates from the numerical findings.
Here, including higher order contributions from the perturbative diagrammatic series
might improve the match between theory and numerics.

To further investigate the quality of the diagrammatic approach, we plot the trans-
mission probability for Φ = π/2 against the interaction strength g in Fig. 6.1 (b). We
see that the numerical data indeed show a linear decrease of the AAS amplitude, while
its slope is slightly less steep than predicted by the diagrammatic theory. This indicates
an overestimation of the influence of interaction by the diagrammatic approach. One
possible explanation of this discrepancy might be that in the numerical treatment the
on-site energies of the junction sites are also subject to the disorder potential. There-
fore, the reflection and transmission amplitudes r and t at the junction sites obtain a
dependence on the disorder realization, which the diagrammatic theory is not able to
capture. Their consideration might not only resolve the remaining mismatch for weak
interaction strengths in Fig. 6.1 (b), but also explain the small but visible discrepancy
of the results for g = 0 in Fig. 6.1 (a).

While the presented diagrammatic approach is a purely mathematical treatment,
its purpose should be seen as to aid in identifying the main mechanism leading to
interaction-based corrections of AAS oscillations and to provide a testing ground for
a possible future development of a more efficient resummation procedure, which aims at
directly summing significant contributions surviving the disorder average, in a similar
fashion like ladder and crossed contributions in Refs. [29, 131, 132]. What we find for
the ring structure is that the situation is very intriguing, since due to the linear struc-
ture of the interaction events in Eq. (6.32), any crossed contribution can here also be
understood as a ladder contribution.
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Figure 6.1: (a) Shown is Fig. 5.4 together with the results obtained from the diagram-
matic approach (dashed lines). For g 6= 0, the predictions of the diagram-
matic theory near Φ = 0 and Φ = π have been excluded, as the numerical
Monte-Carlo averaging produced singularities in the results. (b) Transmis-
sion probability for Φ = π/2 as a function of the interaction strength g.
Shown are the predictions from the first-order diagrammatic theory as well
as the results of numerical Gross-Pitaevskii and truncated Wigner simula-
tions, where for the latter the numerical parameters are chosen identically
to Fig. 5.4 (µ/Eδ = 0.2, NR = 200, averaged over 20000 realisations of
correlated disorder with V0/Eδ = 0.0238 with correlation length σ = 20δ).
(Preliminary figures, to be published in an update of Ref. [30])
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In a similar way to Eq. (5.51), which qualitatively explains the underlying mecha-
nism leading to AAS oscillations in the noninteracting reflection probability, we can

take a look at the contribution to ∆
∣∣R(1)(Φ)

∣∣2 in leading order in the powers of (r, t) to
obtain a physical understanding of the involved interference mechanism leading to the
interaction-based corrections to AAS oscillations. To find this representation, we ex-
pand the resummed non-interacting diagrams in Eq. (6.48) in terms of the shortest path
contained in them. In leading order in powers of the amplitudes r, t, we find that the di-
agrammatic contributions surviving the disorder average are given by the diagrammatic
product

∆
∣∣R(1)(Φ)

∣∣2
geffNR
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×
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)
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+
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×
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2 +

)

+ × ×

(
2 +

)]}
= Im

[
r∗t
(
t∗3e−iΦ + t∗2r∗eiΦ

)(
t3eiΦ + 2t3e−iΦ

)
+ r∗t

(
t∗2r∗

)
3t3

+ r∗t
(
t∗3eiΦ + t∗2r∗e−iΦ

)(
2t3eiΦ + t3e−iΦ

)
+ r∗t

(
t∗2r∗

)
3t3
]

+O
(
(r, p)10

)
. (6.53)

Quite interestingly, the contribution from the left brackets in Eq. (6.48), which contains
the diagrams corresponding to R(0)∗(Φu,Φd,Φ), contributes only the constant factor

= r∗. This is further understood when translating the remaining diagrams back into

an interacting diagram, which then yield self-averaging contributions such as

, (6.54)

which does not show any net-dependence on the phases Φu,Φd due to disorder. Such a
self-dressing of a diagram was not observed in previous studies [29, 131, 132].

Inserting the numerical values Eq. (A.126) of r, t into Eq. (6.53), we find

∆
∣∣∣R(1)(Φ)

∣∣∣2 = geffNR(0.00210805− 0.0252966 cos(2Φ)) +O
(
(r, p)10

)
, (6.55)

which would indeed indicate an increase of the reflection probability for Φ = π/2, and
consequently, the decrease of the transmission probability. Note also that Eq. (6.53)
would not yield any contribution in the case of real r, t.



7 Summary and outlook

In this final chapter we want to summarize the topics discussed within this thesis and
also grant a further outlook into future research perspectives.

The main focus of this thesis was the study of interacting bosonic quantum many-
body systems in the thermodynamic limit of a large number of particles N , and to apply
semiclassical techniques in their theoretical treatment to provide an understanding of
the interference mechanisms involved in different phenomena. In the limit “N →∞” an
effective description of the quantum many-body system is found in form of the mean-field
wave equations, where interaction, if present, accounts for a term nonlinear in the mean-
field matter wave. At the level of these mean-field equations, semiclassical techniques
for the conventional semiclassical limit “~→ 0” can be used to find a solution, even if a
weak particle-particle interaction is assumed. For stronger interactions, individual mean-
field solutions show unstable behaviour upon variations of their initial conditions, and
semiclassical techniques derived in Ref. [33], interpreting “~eff = 1/N → 0” as a semi-
classical limit, allow to explain phenomena as a consequence of many-body interference
of contributions related to different mean-field paths.

Within this thesis, we studied two different topics, each of which required one of the
above interference mechanisms for its explanation.

In the first topic we dealt with the so-called out-of-time-order correlator (OTOC),

C(t) =

〈
Ψ

∣∣∣∣[V̂ (t), Ŵ (0)
]†[

V̂ (t), Ŵ (0)
]∣∣∣∣Ψ〉 , (7.1)

the expectation value of the squared commutator of two local operators at different
times. The OTOC provides a direct probe of chaos in the classical limit of a quantum
many-body system. Indeed, for short times, the OTOC allows direct access to the
stability of the dynamical solutions of the mean-field equations, while for longer times,
it saturates. What we have found is that, to provide a thorough understanding of both
the implications of the OTOC as well as for the technical aspects in its semiclassical
treatment, we required a detailed review of chaos in classical Hamiltonian systems.

The aim of chapter 2 was to provide the reader with this review of classical Hamil-
tonian dynamics, with special emphasize put on classically chaotic systems. Calling
the solutions of Hamilton’s equations of motion trajectories, we quickly turned to the
analysis of their stability upon variations of the initial conditions, which introduced the
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stability matrix as the derivative of a trajectory’s final point in phase space w.r.t. its
initial point. The careful analysis of this matrix led to the introduction of the set of
Lyapunov exponents to quantify the growth rate for the at most exponential separa-
tion of nearby trajectories. Moreover, associated to each positive Lyapunov exponent
λi there is a stable and an unstable direction, along which the difference in phase space
of two nearby trajectories is exponentially decreasing, respectively growing in time with
a rate given by λi. For a given trajectory, these directions define a co-traveling basis
which spans phase space in the vicinity of this trajectory. This allowed us later in the
technical part of the semiclassical treatment of the OTOC to treat the correlations of
nearby solutions of the mean-field equations. The end of the chapter marked the precise
statement of the defining properties for chaotic classical systems. These properties, mix-
ing and exponential sensitivity to changes in the initial conditions, were later identified
to explain the dynamical behaviour of the OTOC.

Chapter 3 was devoted to an introduction of bosonic quantum many-body systems.
We reviewed the notion of the bosonic Fock space and introduced quadrature operators,
which were needed to define conjugate variables for the later Hamiltonian formalism
found as the classical “~eff = 1/N → 0” limit of the quantum system. We then pre-
sented the Bose-Hubbard Hamiltonian as the model describing N interacting bosons
in a lattice. For this specific choice of Hamiltonian, a recently developed semiclassical
theory [33] for the semiclassical limit “~eff = 1/N → 0” is at hand. This theory is based
on the semiclassical approximation of the many-body propagator in bosonic Fock space,
the matrix elements of the time-evolution operator in quadrature state representation.
There, the mean-field wave equations re-emerge as dynamical equations of the Hamilto-
nian formalism found in the classical “~eff → 0” limit of the quantum system, and the
propagator is expressed as a summation over amplitudes with phases accumulated along
distinct mean-field solutions. This was our mean to relate the dynamics in the quantum
many-body problem to the one found in its mean-field description, and enabled us to
investigate the connection between OTOCs and unstable mean-field dynamics. Since
an explicit discussion of the role of “~eff = 1/N” is lacking in the original derivation
in Ref. [33], we decided here to review in detail the steps leading to the semiclassical
approximation of the propagator, thereby improving the original theory.

Chapter 4 contains the semiclassical treatment of the OTOC and marks the main
research contribution of this thesis. To gain intuition, we started this chapter with
the derivation of the expected behaviour of the OTOC for short times, using Wigner-
Weyl transformations and the expansion of the Moyal bracket to precisely formalize
the quantum-classical correspondence principle. Here we could attribute the early-time
exponential growth of OTOCs to the appearance of squared elements of the stability
matrix, the central quantity we discussed in chapter 2. We further indicated a failure of
this expansion at the Ehrenfest time tE, the time at which details of the order of ~eff,
such as a minimal wave packet, have spread to a classical size under the unstable chaotic
dynamics. We then turned towards the semiclassical analysis of OTOCs, whose starting
point was to use the semiclassical approximation of the propagator to express the time-
evolution operators inherent in the Heisenberg picture of the operators in Eq. (7.1).
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Within this semiclassical treatment, we found that the relevant contributions to the
OTOC can be attributed to quadruplets of mean-field solutions which pairwise follow
each other during the whole time, while a change of partners takes place during a close
encounter of all four trajectories. The constellations with a dominant contribution to
the OTOC are schematically depicted in Fig. 4.2 on page 61, and their contribution to
the pre- and post-Ehrenfest dynamical behaviour of the OTOC is summarized in Fig. 4.5
on page 75. For times smaller than tE, we found that the dynamical behaviour of the
OTOC is solely attributed to a bundle in which the quadruplet of mean-field solutions
effectively follows a single mean-field solution. Through the operators in the OTOC, the
correlated motion of the four participants translated into the exponential growth with
the Lyapunov exponent of the mean-field dynamics, as expected from the expansion of
the Moyal bracket. After the Ehrenfest time, the unstable dynamics of the individual
mean-field solutions in the quadruplet exponentially suppresses the contribution of the
bundle, while quadruplets undergoing only a temporary encounter prove responsible for
the saturation of OTOCs at tE. Here, uncorrelated and correlated behaviour of the
mean-field solutions at initial and final times translated into constant variances in phase
space of the classical pendants of the operators of the OTOC, thus giving meaning to
the OTOC’s saturation value. The Ehrenfest time tE emerged from this treatment as
the minimal time to form a complete and close enough encounter of mean-field solutions
to produce a contribution to the OTOC which is non-vanishing in the semiclassical limit
“~eff → 0”.

Several implications, which can be drawn from our study of OTOCs, have been al-
ready discussed at the end of chapter 4, highlighting also the generality of the involved
semiclassical arguments. For future studies, it is promising to extend the formalism pre-
sented here to fermionic many-body systems, for which also a semiclassical theory based
on the semiclassical propagator in fermionic Fock space [133, 134] is at hand. Another
extension of the theory is possible towards quantum many-body systems, whose classi-
cal limit displays mixed-regular chaotic motion, and which might be able to shed light
on phenomena such as the light-cone spreading of the OTOC, observed for instance in
Ref. [59]. An open question so far is also how to appropriately include the notion of
temperature into the semiclassical treatment of OTOCs, where first attempts are avail-
able [120] for times smaller than tE. This would allow to address the question of the
mechanism underlying the thermal bound of the exponential growth rate predicted in
Ref. [43]. One can also aim at introducing further time scales next to the Ehrenfest
time and the Lyapunov time, the minimal time for a classical trajectory to experience
chaotic dynamics, and study their interplay. An intriguing case is found, for instance,
when the quantum system is weakly opened through holes where particles are able to
leave the system. A single-particle scenario would be, for instance, a mesoscopic chaotic
billiard with attached leads, where the width of the leads is much smaller than the cir-
cumference of the billiard. In such systems, the semiclassical contributions arising from
classical trajectories are additionally weighted with a factor exponentially decaying with
a rate 1/τD in time, where the dwell time τD denotes the mean time a classical trajec-
tory stays inside, see for instance Ref. [72]. This leads to an interplay of exponential
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growth and loss of the OTOC for times before tE, while exponential decay instead of
saturation is expected after tE. Moreover, the rate of decay of the OTOC due to open-
ing the system is expected to change at the Ehrenfest time, since the correlated motion
of the quadruplet as an effective single trajectory is replaced by a pair of two effective
trajectories with intermediate temporary correlated motion. Finally, generalizations of
OTOCs containing a higher power of commutators [135],

C̃(t) =
〈

Ψ
∣∣∣[V̂ (t), Ŵ (0)

]r∣∣∣Ψ〉 , (7.2)

with r = 3, 4, . . ., naturally leads to the introduction of up to r − 2 encounters in
its semiclassical description. Since each formation of an encounter of four or more
solutions requires the Ehrenfest time as a minimal time to significantly contribute to the
semiclassical result, this introduces a cascade of interference effects at multiples of the
Ehrenfest time.

After our study of OTOCs, we turned in chapters 5 and 6 to a different topic and
considered the coherent transport of cold bosonic atoms through an Aharonov-Bohm
ring structure. This setup consists of two semi-infinite waveguides attached on opposite
sides to a ring structure. The ring is penetrated by a synthetic gauge field with tunable
flux Φ, playing the same role for the uncharged atoms like a magnetic field for electrons.
Within the ring, the atoms are further subject to both a weak disorder potential and
a weak particle-particle interaction. In the non-interacting case, the disorder-averaged
transmission probability as a function of the encircled flux displays so-called Al’tshuler-
Aronov-Spivak (AAS) oscillations, with double the frequency of the Aharonov-Bohm
oscillations – an effect well-known from studies of the electronic pendant of the sys-
tem. It was our main motivation to study the influence of a weak particle-particle
interaction on AAS oscillations. This work has been performed in collaboration with
R. Chrétien, J. Dujardin, C. Petitjean and P. Schlagheck, whose numerical results pre-
dicted an interaction-based inversion of these oscillations at the level of the mean-field
treatment of the system. My contribution to this work was motivated by their results
and is presented in chapter 6, where we tried to find and understand the solution of the
mean-field equations with the help of semiclassical techniques in the semiclassical limit
“~→ 0”.

In chapter 5 we introduced the system and the basic theoretical framework, as well as
summarized the results obtained by my collaborators. We presented the Bose-Hubbard
Hamiltonian which models the Aharonov-Bohm ring structure and we discussed in detail
its parameters, as well as the length scales introduced by this model in order to justify the
later use of semiclassical methods in the limit “~→ 0”. We further derived the dynamical
mean-field equations for this system, where interaction appears as a term nonlinear in
the mean-field matter wave. We showed how to understand the interacting problem as an
effective scattering problem, treating the nonlinear interaction term as a perturbation.
This allowed us to reformulate the mean-field equation into a self-consistent algebraic
equation for the mean-field matter wave involving the Green’s function for the non-
interacting mean-field problem. This non-interacting Green’s function was approximated
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semiclassically as a sum over contributions of scattering paths, which enter the ring and in
there perform multiple oscillations between the junctions to the attached waveguides. In
this approximation, both the enclosed gauge field and the disorder potential attributed to
the phase accumulated along the scattering path. Here we argued that the contribution
of multiple scattering paths survive the disorder average only if the phases accumulated
due to disorder exactly cancel each other. This requires pairs of scattering paths to have
a matching number of explorations of the upper, respective lower branch of the ring.
With this we were able to arrive at the well-known explanation of AAS oscillations in
the noninteracting case: the interference of contributions of scattering paths with time-
reversed segments – a similar interference mechanism as in the case of weak localization.
When including and increasing particle-particle interaction, numerical results obtained
by R. Chrétien et al. from a mean-field treatment of the system were shown in Fig. 5.4
on page 101. The results displayed an initial flattening of the oscillations with growing
interaction strength, and eventually their inversion, since former maxima are converted
into minima, and vice versa.

In chapter 6 we presented a diagrammatic approach to explain the observed influence
of interaction to AAS oscillations. Our method was based on exact resummations of
intermediate segments within scattering paths. In each of the resummations the seg-
ments fulfilled common boundary conditions, including fixing the way the segment is
entered and left by the scattering path. This allowed us to derive, for a fixed disorder
configuration, analytical expressions for the noninteracting Green’s function. Moreover,
with their help we could tackle the perturbative series in the weak interaction strength.
We calculated their predictions up to linear order in the interaction strength, using the
numerical Monte-Carlo method to perform the final average over disorder phases. Here,
for weak interaction strengths we could qualitatively and quantitatively reproduce the
influence of interaction as observed in the numerical results. Moreover, a hint for the
involved interference mechanism leading to the inversion of AAS oscillation could be
obtained from a diagrammatic expansion of the interaction-based correction to the re-
flection probability. There we saw that the constellation of scattering paths with the
least number of scattering events at the junctions, but still contributing to the disorder-
averaged reflection probability, is given by self-averaging diagrams. In those diagrams,
the phase accumulated by one of the scattering paths ending at the interaction event
cancels all the phases of the other scattering paths involved in the diagram.





Appendices

A.1 Evaluation of matrix elements of the Bose-Hubbard
Hamiltonian

The derivation of a path integral representation of the time evolution operator requires
us to evaluate the matrix element 〈p|Ĥ|q〉 . To do so, we first re-express the creation and
annihilation operators in the Bose-Hubbard Hamiltonian, Eq. (3.48), by the Hermitian
quadrature operators, Eq. (3.21). We obtain

Ĥ =
N

2

d∑
i,j=1

hij(q̂i − ip̂i)(q̂j + ip̂j)

+
N

4

d∑
i,j,k,l=1

Vijkl(q̂i − ip̂i)(q̂j − ip̂j)(q̂k + ip̂k)(q̂l + ip̂l)

(A.1)

In a second step, we bring the above Hamiltonian into the so-called normal ordered form
in which the products of quadrature operators are such that the momentum quadrature
operators are found left of the position quadrature operators. In that form, the evaluation
of the matrix element becomes trivial, as it simply result in a substitution of quadrature
operators by the corresponding scalar components of the labels of the quadrature states
|p〉 , |q〉.

In principle we can perform the ordering by first carrying out the products in the repre-
sentation Eq. (A.1) and then repeatedly applying the commutation relations, Eq. (3.23).
However, this is a rather tedious task due to the sheer number of terms to consider, with
additional work needed to afterwards simplify the matrix elements again. An alterna-
tive approach is thus desirable and indeed found through the application of a variant of
Wick’s theorem [136].

Let Â be an operator expressed as the sum of products of quadrature operators q̂i and
p̂i, i ∈ {1, . . . , d}. We denote by {Â}pq the normal ordering in the quadrature operators.
For instance

{q̂ip̂j p̂k + q̂lp̂mq̂np̂o}pq = p̂j p̂kq̂i + p̂mp̂oq̂lq̂n . (A.2)

The statement of Wick’s theorem involves the application of so-called contractions. The
contraction of two arbitrary quadrature operators X̂, Ŷ ∈ { q̂i, p̂i | i ∈ {1, . . . , d} }, is de-
fined as the difference between the unordered and the ordered product of these operators,
and indicated by an above line linking the operators,

X̂Ŷ = X̂Ŷ −
{
X̂Ŷ

}
pq
. (A.3)
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Explicitly, we obtain from this definition

q̂ip̂j = [q̂i, p̂j ] =
i

N
δij , q̂iq̂j = p̂iq̂j = p̂ip̂j = 0 . (A.4)

The definition of a contraction can be extended to linear combinations of quadrature
operators. For two operators Aα1 , Aα2 with Aαl =

∑d
i=1(aαl,iq̂i + bαl,ip̂i), l = 1, 2, with

complex coefficients aαl,i, bαl,i ∈ C, we calculate

Aα1Aα2 = Aα1Aα2 − {Aα1Aα2}pq (A.5)

=
d∑

i,j=1

[(aα1,iaα2,j q̂iq̂j + aα1,ibα2,j q̂ip̂j + bα1,iaα2,j p̂iq̂j + bα1,ibα2,j p̂ip̂j)

− (aα1,iaα2,j q̂iq̂j + aα1,ibα2,j p̂j q̂i + bα1,iaα2,j p̂iq̂j + bα1,ibα2,j p̂ip̂j)]

=
d∑

i,j=1

aα1,ibα2,j [q̂i, p̂j ]︸ ︷︷ ︸
= i
N
δij

=
i

N

d∑
i=1

aα1,ibα2,i (A.6)

It is important to note that the above contractions produce a scalar value, since in the
proof of Wick’s theorem, this is the essential prerequisite for its applicability.

We are now able to formulate the statement of Wick’s theorem: given a set of

operators
{
Âα, Âβ, Âγ

}
, each of them a linear combination of quadrature operators,

Âα =
∑d

i=1(aα,iq̂i + bα,ip̂i), the product of these operators can be rewritten as the
following sum of normal ordered terms,

Âα1Âα2 . . . Âαr =
{
Âα1Âα2 . . . Âαr

}
pq

+
{
Âα1Âα2 . . . Âαr

}
pq

+
{
Âα1Âα2Âα3 . . . Âαr

}
pq

+ . . .︸ ︷︷ ︸
single contractions

+
{
Âα1Âα2Âα3Âα4 . . . Âαr

}
pq

+
{
Âα1Âα2Âα3Âα4 . . . Âαr

}
pq

+ . . .︸ ︷︷ ︸
double contractions

+ . . .
(A.7)

where we used, since the contractions are scalars, the common simplifying notation in
which the operators involved in a contraction are still placed at their original position
within the product of other operators. For instance, we interpret1

Âα1Âα2Âα3Âα4Âα5Âα6 ≡ Âα2Âα4 · Âα3Âα5 · Âα1Âα6 (A.8)

1The calculation here assumes bosonic operators. In case of fermions, which are not considered here,
commuting operators would additionally produce sign changes in the result.



A.1. Evaluation of matrix elements of the Bose-Hubbard Hamiltonian 135

The proof of the theorem is done by induction and is found in the original work of Wick
[136] and also in various books covering quantum field theory, e.g. Ref. [137]. While
these proofs aim at normal ordering of an operator product obtained through time-
ordering, it is interesting to note, that an alternative proof exists [138] which indicates
a generalization of Wick’s theorem allowing its application also to find representations
in other ordered products, such as symmetric ordering.

To apply the theorem to the Bose-Hubbard Hamiltonian, we need to calculate the
contraction of quadrature operators first. We find

b̂ib̂j = i
N

2
[q̂i, p̂j ] = −δij

2
, (A.9)

b̂†i b̂j = i
N

2
[q̂i, p̂j ] = −δij

2
, (A.10)

b̂ib̂
†
j = −i

N

2
[q̂i, p̂j ] =

δij
2
, (A.11)

b̂†i b̂
†
j = −i

N

2
[q̂i, p̂j ] =

δij
2
. (A.12)

Finally applying the theorem for the Bose-Hubbard Hamiltonian we obtain

Ĥ =

d∑
i,j=1

hij

({
b̂†i b̂j

}
pq

+
{
b̂†i b̂j

}
pq

)

+

d∑
i,j,k,l=1

Vijkl
N

({
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

+
{
b̂†i b̂
†
j b̂k b̂l

}
pq

)
=

d∑
i,j=1

hij

({
b̂†i b̂j

}
pq
− 1

2
δij

)

+
d∑

i,j,k,l=1

Vijkl
N

({
b̂†i b̂
†
j b̂k b̂l

}
pq

+
δij
2

{
b̂k b̂l

}
pq
− δik

2

{
b̂†j b̂l

}
pq
− δil

2

{
b̂†j b̂k

}
pq

−
δjk
2

{
b̂†i b̂l

}
pq
−
δjl
2

{
b̂†i b̂k

}
pq
− δkl

2

{
b̂†i b̂
†
j

}
pq

− δijδkl
4

+
δikδjl

4
+
δilδjk

4

)
(A.13)

The normal ordered form of the Bose-Hubbard Hamiltonian leads to a trivial evaluation
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of the matrix elements 〈p|Ĥ|q〉, effectively substituting operators by scalars,〈
p

∣∣∣∣{. . . b̂†i . . . b̂j . . .}pq
∣∣∣∣q〉 =

(
. . .

√
N

2
(qi − ipi) . . .

√
N

2
(qi + ipi) . . .

)
〈p|q〉

=
(
. . .
√
NΦ∗i . . .

√
NΦi . . .

)
〈p|q〉

(A.14)

where we combined the position and the momentum quadrature into a complex variable,

Φ =
1√
2

(q + ip) . (A.15)

With this notation, we obtain〈
p
∣∣∣Ĥ∣∣∣q〉
〈p|q〉

=

d∑
i,j=1

hij

(
NΦ∗iΦj −

δij
2

)

+

d∑
i,j,k,l=1

Vijkl
N

(
N2Φ∗iΦ

∗
jΦkΦl +

δij
2
NΦkΦl −

δik
2
NΦ∗jΦl −

δil
2
NΦ∗jΦk

−
δjk
2
NΦ∗iΦl −

δjl
2
NΦ∗iΦk −

δkl
2
NΦ∗iΦ

∗
j

− δijδkl
4

+
δikδjl

4
+
δilδjk

4

)
=

~
~eff

[
H(q,p) + ~effH(ord)(q,p)

]
(A.16)

where in the last line we used the effective Planck constant ~eff = 1/N and ordered
the result in powers of ~eff. In this expansion, H is a function independent on ~eff

which admits real values, since hij = h∗ji and Vijkl = V ∗lkji due to Hermiticity of Ĥ.
We later identify H as the Hamilton function of the classical limit of the Bose-Hubbard
Hamiltonian in quadrature state representation. The remaining terms are higher powers
in ~eff originating from our choice of ordering operators q̂i, p̂i. Those terms are collected
in the complex-valued function H(ord). By denoting the real and imaginary part of H(ord)

by H(ord)
R and H(ord)

I , and using the additional assumption Vijkl = Vjikl = Vijlk = Vjilk,
we find

H(q,p) =
d∑

i,j=1

hij
~

Φ∗iΦj +

d∑
i,j,k,l=1

Vijkl
~

Φ∗iΦ
∗
jΦkΦl , (A.17)

H(ord)
R (q,p) =

d∑
i=1

hii
2~

+

d∑
i,j,k=1

2Vijki
~

Φ∗jΦk + ~eff

d∑
i,l=1

(
Villi
2~
− Viill

4~

)
, (A.18)

H(ord)
I (q,p) =

1

2i

d∑
i,j,k,l=1

Vijkl
(
δijΦkΦl − δklΦ∗iΦ∗j

)
. (A.19)
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A.2 Stationary phase approximation applied to the Feynman
path integral

In this appendix we want to present the calculation of the semiclassical approximation
for the propagator for Bose-Hubbard models. We do this by considering λ = 1/~eff

as a large parameter and applying the stationary phase approximation, presented in
section 3.3.3, to evaluate the multidimensional integration in the Feynman path integral,
Eq. (3.65). The subsequent calculations follow, but are not identical to the original ones
for Bose-Hubbard models found in Ref. [33].

For fixed M , the object to evaluate is thus

K(M)
(
q(f),q(i), t

)
=

1
√

2π~eff
2dM

∫
ddp(M)

∫
ddq(M−1)

∫
ddp(M−1) . . .

∫
ddq(1)

∫
ddp(1)

× exp

[
i

~eff
R(M)(q,p, t)− iϕ(M)(q,p, t)

]
, (A.20)

where we combined the integration variables and the arguments of the propagator into
the vectors q =

(
q(0) = q(i),q(1) . . . ,q(M−1),q(M) = q(f)

)
and p =

(
p(1), . . . ,p(M)

)
. The

argument of the phase factor in the integrand, which is multiplied by the large parameter
1/~eff, is the action and given by

R(M)(q,p, t) (A.21)

=

M∑
m=1

[
p(m) ·

(
q(m) − q(m−1)

)
−
H
(
q(m),p(m)

)
+H

(
q(m−1),p(m)

)
2

t

M

]
.

The phase of the other oscillatory term in the integrand Eq. (A.20) is given by

ϕ(M)(q,p, t) =
M∑
m=1

H(ord)
R

(
q(m),p(m)

)
+H(ord)

R

(
q(m−1),p(m)

)
2

t

M
. (A.22)

This phase is not multiplied by 1/~eff and thus considered to be part of the smooth
function (g in Eq. (3.74)). The result of the stationary phase approximation has to
be evaluated in the limit M → ∞ to arrive at the semiclassical approximation for the
propagator.

We differentiate the action, Eq. (A.21), with respect to p
(m)
i , m ∈ {1, . . . ,M}, and

q
(m)
i , m ∈ {1, . . . ,M − 1}, for i ∈ {1, . . . , d}, and set those derivatives to zero to obtain

the stationarity conditions,

0 =
∂R(M)

∂p
(m)
i

(q,p, t)

= q
(m)
i − q(m−1)

i −

(
∂H
∂p

(m)
i

(
q(m),p(m)

)
+

∂H
∂p

(m)
i

(
q(m−1),p(m)

)) t

2M
,

(A.23)
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0 =
∂R(M)

∂q
(m)
i

(q,p, t)

= p
(m)
i − p(m+1)

i −

(
∂H
∂q

(m)
i

(
q(m),p(m)

)
+

∂H
∂q

(m)
i

(
q(m),p(m+1)

)) t

2M
.

(A.24)

Note that after division of t/M the above equations turn in the limit M → ∞ into
the Hamilton’s equations of motion presented in Eq. (3.82). Furthermore, this problem
is subject to boundary conditions, q(M) = q(f), q(0) = q(i), which in the limiting case
become q(t) = q(f) and q(0) = q(i). Contrary to an initial value problem, we thus
expect to find multiple solutions to Eqs. (A.23), (A.24) subject to the above boundary
conditions.

Let us denote a solution of the stationarity conditions Eqs. (A.23), (A.24) by qγ =

(q
(0)
γ , . . . ,q

(M)
γ ), pγ = (p

(1)
γ , . . . ,p

(M)
γ ), and distinguish different solutions by Greek sub-

scripts. Similar to before, we include the boundary conditions into the solution vector

by setting q
(0)
γ = q(i) and q

(M)
γ = q(f).

In principle, we could now directly apply Eq. (3.80) to obtain the stationary phase
approximation for K(M)(q(f),q(i), t). However, for taking the limit M → ∞ we would
need to evaluate the determinant through a Laplace expansion. Already for d = 1,
this is a rather tedious task, see for instance Ref. [100] where this is done to derive
a semiclassical approximation for the propagator in coherent state representation. An
alternative route to the result is found by evaluating the multidimensional integration
step by step rather than at once.

Following the method description for the stationary phase approximation we express
the action through its second order Taylor expansion around the stationary points. This
leads to the following integration over the fluctuations around the stationary solutions,

K(M)
(
q(f),q(i), t

)
=

1
√

2π~eff
2dM

∑
γ

exp

(
i

~eff
R(M)(qγ ,pγ , t)− iϕ(M)(qγ ,pγ , t)

)
×
∫

ddδp(M)

∫
ddδq(M−1)

∫
ddδp(M−1) . . .

∫
ddδq(1)

∫
ddδp(1)

× exp

[
i

2~eff

M−1∑
m=1

(
δp(m)

δq(m)

)ᵀ(
Rγ,p(m)p(m) Rγ,p(m)q(m)

Rγ,q(m)p(m) Rγ,q(m)q(m)

)(
δp(m)

δq(m)

)]

× exp

[
i

~eff

M−1∑
m=1

δp(m+1)ᵀRγ,p(m+1)q(m)δq(m)

]

× exp

[
i

2~eff
δp(M)ᵀRγ,p(M)p(M)δp(M)

]
, (A.25)

where we used an abbreviating notation for the second order derivatives of the action,

Rγ,v(m)w(m′) =
∂2R(M)

∂v(m)∂w(m′)
(qγ ,pγ , t) , v,w ∈ {p,q} . (A.26)
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These matrices have dimension d × d and contain second derivatives of the Hamilton
function H, which we abbreviate by

H(m,m′)
γ,vw =

∂2H
∂v∂w

(
q(m)
γ ,p(m′)

γ

)
, v,w ∈ {p,q} . (A.27)

In Eq. (A.25) we only wrote the non-vanishing submatrices of the second derivatives of
the action. In our abbreviated notation, those are given by

Rγ,p(m)p(m) = −H
(m,m)
γ,pp +H(m−1,m)

γ,pp

2

t

M
, (A.28)

Rγ,p(m)q(m) = 1− H
(m,m)
γ,pq

2

t

M
=

(
1− H

(m,m)
γ,qp

2

t

M

)ᵀ

= Rᵀ
γ,q(m)p(m) , (A.29)

Rγ,q(m)q(m) = −H
(m,m)
γ,qq +H(m,m+1)

γ,qq

2

t

M
, (A.30)

Rγ,p(m+1)q(m) = −1− H
(m,m+1)
γ,pq

2

t

M

=

(
−1− H

(m,m+1)
γ,qp

2

t

M

)ᵀ

= Rᵀ
γ,q(m)p(m+1) . (A.31)

To obtain an analytic expression for Eq. (A.25) we use the following result for multi-
dimensional Gaussian integrals with a quadratic and a linear term in the phase factor
[113]: Let B be a real symmetric, invertible matrix, c a real vector and α a positive real
number. Then∫

ddx exp

[
i

2α
(xᵀBx + 2cᵀx)

]
=

√
(2πα)d

|det(B)|
exp

(
i
π

4
β(B)− i

2α
cᵀB−1c

)
, (A.32)

where β(B) is the difference in the number of positive and negative eigenvalues of the
matrix B. Note that the result on the r.h.s. has an exponent quadratic in the vector c.
Since in the iterated integrations in Eq. (A.25) the vector c contains fluctuation vectors
of a subsequent integration, this will lead to modifications of the quadratic forms involved
in the Gaussian integrals.

To illustrate, starting from m = 1, we perform a d-dimensional integrations over δp(m)

and then δq(m) using Eq. (A.32). Setting X(1) = Rγ,p(1)p(1) we find∫
ddδq(m)

∫
ddδp(m)exp

[
i

2~eff
δq(m)ᵀRγ,q(m)q(m)δq(m)+

i

~eff
δp(m+1)ᵀRγ,p(m+1)q(m)δq(m)

]
× exp

[
i

2~eff
δp(m)ᵀX(m)δp(m) +

i

~eff
δq(m)ᵀRγ,q(m)p(m)δp(m)

]
=

(2π~eff)d√∣∣det
(
X(m)

)
det
(
Y(m)

)∣∣ exp
[
i
π

4

(
β(X(m)) + β(Y(m))

)]
× exp

[
− i

2~eff
δp(m+1)ᵀ

(
Rγ,p(m+1)q(m)Y(m)−1

Rγ,q(m)p(m+1)

)
δp(m+1)

] (A.33)
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where Y(m) denotes the effective quadratic matrix for the integration over δq(m). It is
given by

Y(m) = Rγ,q(m)q(m) −Rγ,q(m)p(m)X(m)−1
Rγ,p(m)q(m) (A.34)

= −H
(m,m)
γ,qq +H(m,m+1)

γ,qq

2

t

M
−

(
1− H

(m,m)
γ,qp

2

t

M

)
X(m)−1

(
1− H

(m,m)
γ,pq

2

t

M

)
.

From the result in Eq. (A.33) we not only obtain prefactors, but can also see, that the
matrix X(m+1) in the following integration is modified according to

X(m+1) = Rγ,p(m+1)p(m+1) −Rγ,p(m+1)q(m)Y(m)−1
Rγ,q(m)p(m+1) (A.35)

= −H
(m+1,m+1)
γ,pp +H(m,m+1)

γ,pp

2

t

M

−

(
−1− H

(m,m+1)
γ,pq

2

t

M

)
Y(m)−1

(
−1− H

(m,m+1)
γ,qp

2

t

M

)
.

Including the final integration over δp(m), we obtain for the propagator

K(M)(q(f),p(i), t) =
∑
γ

exp

(
i

~eff
R(M)(qγ ,pγ , t)− iϕ(M)(qγ ,pγ , t)

)

×
exp
[
iπ4

[
β(X(M)) +

∑M−1
m=1

(
β(Y(m)) + β(X(m))

)]]√
(2π~eff)d

∣∣∣det
(
X(M)

)∏M−1
m=1 det

(
Y(m)

)
det
(
X(m)

)∣∣∣ .
(A.36)

Taking the limit M →∞ requires further work, as we have to find analytical expressions
for the involved matrices X(m), Y(m).

For large M , we can express the involved quantities through their Taylor expan-
sion in the small parameter 1/M . Note that according to the stationarity conditions,

Eqs. (A.23), (A.24), we have (q
(m+1)
γ ,p

(m+1)
γ ) = (q

(m)
γ ,p

(m)
γ ) + O(M−1), reflecting the

interpretation of the solutions as discretizations of continuous paths. Inserted into the

second derivatives of the Hamilton function, we thus find, for instance, H(m,m+1)
γ,qq =

H(m,m)
γ,qq +O(M−1). Within the second derivatives of the action, Eqs. (A.28) to (A.31),

the second derivatives of the Hamilton function come along with M−1. Thus, for a
Taylor expansion of the coupled recursive matrix equations, Eqs. (A.34), (A.35), up to
linear order in 1/M , we can simplify the result by evaluating the second derivatives of
the Hamilton functions at the phase space point (q(m),p(m)) associated with the current
t(m) = mt/M . We find for Y(m)

Y(m) = −X(m)−1

+

(
−H(m,m)

γ,qq +
H(m,m)
γ,qp

2
X(m)−1

+ X(m)−1H(m,m)
γ,pq

2

)
t

M
+O

(
1

M2

)
,

(A.37)
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and for X(m)

X(m+1) = −Y(m)−1

−

(
H(m,m)
γ,pp +

H(m,m)
γ,pq

2
Y(m)−1

+ Y(m)−1H(m,m)
γ,qp

2

)
t

M
+O

(
1

M2

)
,

(A.38)

To proceed, we use the geometric series for matrices (1− εA)−1 = 1 + εA+O(ε2) for a
matrix A and ε > 0 small enough, we can find a relation for the inverse of Y(m),

Y(m)−1
= −X(m) (A.39)

−

(
−X(m)H(m,m)

γ,qq X(m) + X(m)H
(m,m)
γ,qp

2
+
H(m,m)
γ,pq

2
X(m)

)
t

M
+O

(
1

M2

)
.

Inserting the latter into Eq. (A.38) we obtain a recursive relation for X(m),

X(m+1) = X(m) −
(
H(m,m)
γ,pp + X(m)H(m,m)

γ,qq X(m)
) t

M

+
(
X(m)H(m,m)

γ,qp +H(m,m)
γ,pq X(m)

) t

M
+O

(
1

M2

)
.

(A.40)

By subtracting X(m) from both sides and then dividing by t/M we recover on the l.h.s. a
difference quotient. In the limit M →∞ this results in an ordinary differential equation
for the matrix X(s),

Ẋ(s) = −Hγ,pp(s)−X(s)Hγ,qq(s)X(s) +X(s)Hγ,qp(s) +Hγ,pq(s)X(s) , (A.41)

subject to the initial condition X(0) = 0 (= limM→∞X(1)), and the second derivatives
of the Hamilton function now evaluated at the phase space point of the (now continuous)
trajectory γ,

Hγ,vw(s) =
∂2H
∂v∂w

(qγ(s),pγ(s)) , v,w ∈ {q,p} . (A.42)

The solution to Eq. (A.41) is found to be (see Ref. [33])

X(s) = − ∂q

∂p0
(s; qγ(0),pγ(0)) ·

[
∂p

∂p0
(s; qγ(0),pγ(0))

]−1

, (A.43)

where ∂q/∂p0 , ∂q/∂p0 are submatrices of the stability matrix M(s; qγ(0),pγ(0)),
Eq. (2.10), for the trajectory γ.2

2Be reminded that within the usage of the stability matrix, which encodes a trajectory’s sensitivity
towards variations in the initial phase space coordinates, the trajectory γ has to treated as if it was
defined by an initial value problem rather than a boundary problem. For that reason, if one wants
to check that Eq. (A.43) fulfills the differential equation, Eq. (A.41), one has to use Eq. (2.13) to
calculate the temporal derivative Ẋ.
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Before we can now use the above result, Eq. (A.43), for X(s), we have to prepare
the product of denominators in Eq. (A.36). Using the linearized expression for Y(m),
Eq. (A.37), we calculate∣∣∣∣∣
M−1∏
m=1

det
(
Y (m)

)
det
(
X(m)

)∣∣∣∣∣ (A.44)

=

∣∣∣∣∣
M−1∏
m=1

det

(
1 +

(
H(m,m)
γ,qq X(m) − H

(m,m)
γ,qp

2
−X(m)−1H(m,m)

γ,pq

2
X(m)

)
t

M
+O

(
1

M2

))∣∣∣∣∣
=

∣∣∣∣∣det

[
exp

[
M−1∑
m=1

(
H(m,m)
γ,qq X(m) − H

(m,m)
γ,qp

2
−X(m)−1H(m,m)

γ,pq

2
X(m)

)
t

M
+O

(
1

M

)]]∣∣∣∣∣ .
We now use that det(exp(A)) = exp(tr(A)) and eliminate X(m)−1

by exploiting the
cycling property of the trace. We find

lim
M→∞

1√∣∣∣∏M−1
m=1 det

(
Y (m)

)
det
(
X(m)

)∣∣∣ (A.45)

= lim
M→∞

∣∣∣∣∣exp

[
−1

2

M−1∑
m=1

(
tr
{
H(m,m)
γ,qq X(m)

}
− tr

{
H(m,m)
γ,qp

}) t

M
+O

(
1

M

)]∣∣∣∣∣
=

∣∣∣∣exp

(
−1

2

∫ t

0
ds tr[Hγ,qq(s)X(s)−Hγ,qp(s)]

)∣∣∣∣ .
The argument of the trace can be simplified using the equation of motion of the stability
matrix, Eq. (2.13). We calculate (omitting all arguments of the functions except time
for readability)∫ t

0
ds tr[Hγ,qq(s)X(s)−Hγ,qp(s)]

= tr

[∫ t

0
ds

[
− ∂2H
∂q∂q

(s)
∂q

∂p0
(s)

(
∂p

∂p0
(s)

)−1

− ∂2H
∂q∂p

(s)
∂p

∂p0
(s)

(
∂p

∂p0
(s)

)−1
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= tr

[∫ t

0
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(
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ds′
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s

∂p

∂p0
(s′)

)(
∂p

∂p0
(s)

)−1
]

= tr

[
ln

(
∂p

∂p0
(t)

)]
. (A.46)

We thus obtain

lim
M→∞

1√∣∣∣∏M−1
m=1 det

(
Y (m)

)
det
(
X(m)

)∣∣∣ =
1√∣∣∣det
(
∂p
∂p0

(t)
)∣∣∣ . (A.47)



A.2. Stationary phase approximation applied to the Feynman path integral 143

Together with X(M) → X(t), we thus obtain for the complete propagator

K(q(f),p(i), t) = lim
M→∞

K(M)(q(f),p(i), t)

=
∑
γ

exp

(
i

~eff
Rγ(q(f),q(i), t)−−iϕγ(q(f),q(i), t)

)
exp
[
−iπ4µγ

]√
(2π~eff)d

∣∣∣det
(
∂q
∂p0

(t)
)∣∣∣ .

(A.48)

where we collected the additional phases from the Gaussian integrations into a single
variable, the Maslov index µγ . It has been shown that this index allows also for a
geometrical interpretation. It counts the number of divergencies of the prefactor, which
are interpreted as number of conjugate points along γ, i.e. points, where a bundle of
classical trajectories fulfilling the boundary problem can be found [1, 2].

Furthermore, in the limit M → ∞ the discretized action R(M) is replaced by Hamil-
ton’s principal function Rγ(q(f),q(i), t) = R[qγ(s),pγ(s)], which is labeled with the index
γ of the trajectory, and which depends on the boundary conditions of the trajectory.
We also introduced

ϕγ(q(f),q(i), t) = ϕ[qγ(s),pγ(s)]

=

∫ t

0
ds

 d∑
i=1

hii
2~

+

d∑
i,j,k=1

2Vijki
~

Φ∗γ,j(s)Φγ,k(s)

 (A.49)

where the integrand is simply the phase space function H(ord)(q(s),p), Eq. (A.18) with
terms proportional to ~eff neglected. It can easily be checked, that we can express this
phase through derivatives of the classical Hamilton function H (compare also Ref. [100])

ϕγ(q(f),q(i), t) =
1

2

∫ t

0
ds tr

[
∂2H

∂Φ∂Φ∗
(qγ(s),pγ(s))

]
=

1

4

∫ t

0
ds tr

[
∂2H
∂q∂q

(qγ(s),pγ(s)) +
∂2H
∂p∂p

(qγ(s),pγ(s))

]
.

(A.50)

To arrive at the final form of the propagator we use the second derivatives of the
principal function to re-express the determinant in the denominator

1∣∣∣det
(
∂q
∂p0

)∣∣∣ =

∣∣∣∣∣det

(
∂p(i)

∂q(f)

)∣∣∣∣∣ =

∣∣∣∣det

(
∂2Rγ

∂q(i)∂q(f)

)∣∣∣∣ . (A.51)

We end up with the following representation of the propagator

K(sc)(q(f),p(i), t) =
∑

γ:q(i) t→q(f)

Aγ(q(f),q(i), t) exp

(
i

~eff
Rγ(qγ ,pγ , t)

)
, (A.52)
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Figure A.1: On the left: Trajectories from the integral representation Eq. (4.23) of the
OTOC. By choosing a time t′ within the encounter, we divide the trajectories
involved in the diagram into a left (L) and a right (R), representing the
trajectories before and after the time t′.
On the right: At t′ We use stable and unstable directions of the phase space
point xβ(t′) of the trajectory β at t′ to quantify the distance of xβ(t′) to the
phase space points of the other trajectories α, α′, β′ at the same time.

with the complex amplitude

Aγ(q(f),q(i), t)

=

√
1

(2π~eff)d

∣∣∣∣det

(
∂2Rγ

∂q(i)∂q(f)

(
q(f),q(i), t

))∣∣∣∣ exp
[
−i
(π

4
µγ + ϕγ(q(f),q(i), t)

)]
,

(A.53)

which is considered slowly varying upon variations of the arguments (q(f),q(i), t). In
its final representation the semiclassical approximation Eq. (A.52) resembles the well
known structure of the semiclassical Van Vleck-Gutzwiller propagator known from single-
particle systems in the semiclassical limit “~→ 0” [1, 2].

A.3 Calculation of the action difference

In this section we want to review the action difference due to an encounter of many
trajectories in phase space. In its methods, it is almost identical to the derivation found
in Refs. [81, 109], with the only difference that it explicitly discusses the question of
an additional linearization due to a slight mismatch in the initial coordinates of two
trajectories. An alternative calculation of the action difference based on geometrical
considerations in phase space is found in Refs. [33, 69, 139]. For simplicity of the ex-
pressions, we restrict ourselves to a single pair of a stable and unstable directions, es(x)
and eu(x). The generalization to the multidimensional case is straightforward.
The situation is depicted in figure A.1. As we describe in detail in section 4.2.3, before
and after the encounter trajectories closely follow each other as pairs. Within the en-
counter region, the trajectories interchange their partners. To describe this scenario, we
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choose one trajectory as the reference trajectory, here β : q5 → q4, as well as a time t′

within the encounter, and use the stable and unstable direction es(xβ(t′)) and eu(xβ(t′))
to quantify the relative distance of the phase space points xβ′(t

′), xα(t′), xα′(t
′) of the

other trajectories. The precise distance is illustrated in Fig. A.1. We want to calculate
the difference in the actions associated to the above depicted situation. For that reason,
we note that the time t′ divides the diagram in a left and a right part, containing the
dynamics of the trajectories before and after t′. Quantities associated with the left part
will be indexed by L, and accordingly R for the right part. The classical actions of the
single trajectories can be divided in two parts, since they integrate the classical Lagrange
function over time, see Eq. (2.5),

Rγ

(
q(f),q(i), t

)
= RLγ

(
qγ
(
t′
)
,q(i), t′

)
+RRγ

(
q(f),qγ

(
t′
)
, t− t′

)
, (A.54)

where γ ∈ {α, α′, β, β′ }, and q(i), q(f) represent the corresponding initial and final posi-
tion quadrature variable of the trajectory. qγ(t′) = qγ(t′; q(f),q(i), t) denotes the position
quadrature of the trajectory γ at the intermediate time t′. By relating this intermediate
position quadrature with the reference trajectory we can bring the stable and unstable
directions of the reference trajectory into play Using a Taylor expansion, this allows us
to express the action difference in terms of the stable and unstable coordinates s and u.

For the subsequent calculations we abbreviate

e(β)
s (t′) ≡ es

(
xβ
(
t′; q4,q, t

))
, e(β)

u (t′) ≡ eu

(
xβ
(
t′; q4,q, t

))
. (A.55)

The position and the momentum quadrature sector, see Eq. (4.15) is abbreviated as

e
(β)
s,q (t′) =

[
e(β)

s (t′)
]
q
, e

(β)
s,p(t′) =

[
e(β)

s (t′)
]
p

(A.56)

and accordingly for e
(β)
u,q(t′), e

(β)
u,p(t′). Using Eq. (A.54) we can divide the action difference

into a left and a right part,

∆R = −Rα′(q2,q1, t) +Rα(q2,q3, t)−Rβ′(q4,q3, t) +Rβ(q4,q5, t)

= ∆RL + ∆RR ,
(A.57)

where the partial action differences, already using stable and unstable coordinates, are
found to be

∆RL= RLβ
[
qβ(t′),q5, t

′]−RLα′[qβ(t′) + ue
(β)
u,q(t′),q1, t

′
]

(A.58)

+RLα

[
qβ(t′) + se

(β)
s,q (t′) + ue

(β)
u,q(t′),q3, t

′
]
−RLβ′

[
qβ(t′) + se

(β)
s,q (t′),q3, t

′
]

∆RR= RRβ
[
q4,qβ(t′), t− t′

]
−RRβ′

[
q4,qβ(t′) + se

(β)
s,q (t′), t− t′

]
+RRα

[
q2,qβ(t′) + se(β)

s (t′) + ue(β)
u (t′), t− t′

]
−RRα′

[
q2,qβ(t′) + ue(β)

u (t′), t− t′
]

We want to expand terms involved in the action differences ∆RL, ∆RR, around small
differences in their initial and final condition. One of the two expansion points is qβ(t′).
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Furthermore, we want to replace q1 and q5 by q = (q1 + q5)/2. This is justified as we
assume that q1 is close to q5 since otherwise a large action difference can not be avoided,
leading to a canceling contribution to the integration Eq. (4.23).

To increase readability in the subsequent Taylor expansion, we from now on omit the
arguments of trajectory-related quantities. If any quantity has only a trajectory index
α, α′, β, β′, its arguments are the defining arguments of the trajectories, for instance
(q4,q5, t) in case of the the trajectory β. If additionally to the trajectory index there
is an indicator for the left or right part, L or R, we mean the part of the trajectory,
which ends or starts at the time t′. Accordingly, the arguments are those containing the
intermediate position quadrature, as indicated by the terms in equations (A.58).

The zeroth order contribution vanishes as this assumes sequentially equal trajectories
and thus pairwise vanishing actions in the above difference. In linear order we obtain
for the left part, remembering the properties Eqs. (2.6), (2.7) of the classical action,

∆RL,(1) = p
(i)
β · (q1 − q5)− p

(f)
β

L
· ue

(β)
u,q + p(f)

α

L · ue
(β)
u,q

= p
(i)
β · (q1 − q5) +

(
p(f)
α

L − p
(f)
β

L
)
· ue

(β)
u,q.

(A.59)

The difference of the momentum quadratures taken at t′ and therefore can be also
expressed through stable and unstable directions,

p(f)
α

L − p
(f)
β

L
= se

(β)
s,p + ue

(β)
u,p . (A.60)

Therefore
∆RL,(1) = p(i)

α · (q1 − q5) +
[
se

(β)
s,p + ue

(β)
u,p

]
· ue

(β)
u,q . (A.61)

The action difference for the right part is calculated accordingly

∆RR,(1) = p
(i)
β

R
· se(β)

s,q − p(i)
α

R · se(β)
s,q = −

[
se

(β)
s,p + ue

(β)
u,p

]
· se(β)

s,q . (A.62)

Together, we obtain

∆R(1) = p
(i)
β · (q1 − q5)−

[
se

(β)
s,p + ue

(β)
u,p

]
·
[
se

(β)
s,q − ue

(β)
u,q

]
(A.63)

= p
(i)
β · (q1 − q5)− s2e

(β)
s,p · e(β)

s,q + u2e
(β)
u,p · e(β)

u,q + su

=1︷ ︸︸ ︷[
e

(β)
u,q · e(β)

u,p − e
(β)
u,pe

(β)
s,q

]
,

where the last line uses the normalization Eq. (2.33) of the directions e
(α)
s , e

(α)
u .

Remarkably, due to our use of the classical relations in Eq. (A.60) we find that the
linear order Taylor expansion result in an expression which contain quadratic orders in
s an u. To be consistent, this requires also the consideration of terms found in second
order in the Taylor expansion, which produce quadratic corrections in s and u. For that
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reason, in the calculation of the left part we do not require further derivatives w.r.t. the
initial conditions. We find

∆RL(2) = −1

2
ue

(β)ᵀ
u,q

∂p
(f)
β

L

∂q(f)
ue

(β)
u,q −

1

2
ue

(β)ᵀ
u,q

∂p
(f)
α

L

∂q(f)
ue

(β)
u,q . (A.64)

The derivatives involving final position and momentum quadratures can be used to

change the sector e
(α)
u,q into e

(α)
u,p, since

∂p
(f)
β

L

∂q(f)
ue

(β)
u,q +

∂p
(f)
α

L

∂q(f)
ue

(β)
u,q = p

(f)
α′
L
− p

(f)
β

L
− p

(f)
β′
L

+ p(f)
α

L
= 2ue

(β)
u,p . (A.65)

Thus
∆RL(2) = −u2e

(β)ᵀ
u,q e

(β)
u,p . (A.66)

For the right side, we get, also using a similar argument as shown in Eq. (A.65),

∆RR,(2) =
1

2
se

(β)ᵀ
s,q

∂p
(i)
β

R

∂q(i)
se

(β)
s,q +

1

2
se

(β)ᵀ
s,q

∂p
(i)
α

R

∂q(i)
se

(β)
s,q = s2e

(β)ᵀ
s,q e

(β)
s,p . (A.67)

Combining ∆RL,(2) and ∆RR,(2) we thus find for the second order contribution

∆R(2) = s2e
(β)ᵀ
s,q e

(β)
s,p − u2e

(β)ᵀ
s,q e

(β)
s,p . (A.68)

The action difference due to an encounter of trajectories is thus given by

∆R ≈ ∆R(1) + ∆R(2) = p
(i)
β · (q1 − q5) + su . (A.69)

A.4 Calculation of encounter-related integrals

In this appendix we present the technical details for the various integrations associated
with the encounter regions in the diagram classes (a) to (d) in Fig. 4.2.

A.4.1 Frequently used integrals in the calculations of encounters

Let a, b be positive and dimensionless real parameters. The sine integral is defined
by[113]

Si(z) =

∫ z

0
dz′

sin(z′)

z′
. (A.70)

During the subsequent calculations of encounter diagrams we frequently face the subse-
quent integrals. Their evaluation involves the sine integral and its derivatives.

•
∫ a

−a
ds

∫ b

−b
du e

i
~eff

su
= 4~eff Si

(
ab

~eff

)
, (A.71)



148 Appendices

•
∫ a

−a
ds

∫ b

−b
du s2e

i
~eff

su
= −4~effa

2 Si′′
(
ab

~eff

)
= 4~eff

3 1

b2
sin

(
ab

~eff

)
− 4~eff

2a

b
cos

(
ab

~eff

)
, (A.72)

•
∫ a

−a
ds

∫ b

−b
du sue

i
~eff

su
= −4~eff

2i

(
y2 d

dy

Si(y)

y

∣∣∣∣
y= ab

~eff

= 4~eff
2i

[
Si

(
ab

~eff

)
− sin

(
ab

~eff

)]
, (A.73)

•
∫ a

−a
ds

∫ b

−b
du s2u2e

i
~eff

su
= −4~eff

3

(
y3 d2

dy2

Si(y)

y

∣∣∣∣
y=ab

h

= −4~eff
3

[
ab

~eff
cos

(
ab

~eff

)
− 3 sin

(
ab

~eff

)
+ 2 Si

(
ab

~eff

)]
. (A.74)

A.4.2 Encounter integral of the four-leg diagram

In this section we perform the evaluation of the encounter integral, Eq. (4.52), for the
4-leg encounters. This multidimensional integral is given by

F (4le)(t) =
1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u t− tenc(s,u)

tenc(s,u)
Θ[t− tenc(s,u)] .

(A.75)
In order to resolve the max-function in the definition Eq. (4.32) of tenc(s,u), we split
the integrations over s, u, leading to the summation

F (4le)(t) =

d−2∑
i,j=1

F
(4le)
ij (t) , (A.76)

where

F
(4le)
ij (t) =

1

(2π~eff)d−2

∫ c

−c
dsi

∫ c

−c
duj

t− tenc(siuj)

tenc(siuj)
Θ[t− tenc(siuj)]

×

 d−2∏
k,k′=1
k 6=i, k′ 6=j

∫ |si|
−|si|

dsk

∫ |uj |
−|uj |

duk′

e
i

~eff
s·u

.

(A.77)

Within the integrand, si and uj are the first components of the stable and unstable
vectors s, u to reach the critical value c when being involved in time, and thus, they
determine the encounter time tenc(siuj) = (1/λ) log

(
c2/|siuj |

)
within the integrand.

For the evaluation of Eq. (A.77), one has to distinguish the cases i 6= j from i = j
in order to correctly interpret the product over k, k′. The integrations over sk and uk′
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are easily performed, either by a simple integration of an exponential for k = j, k′ = i,
i 6= j, or by sorting the products such that k = k′ and then using Eq. (A.71). For
the final integration over si, uj , one first transforms for both variables the integration
over the subinterval [−c, 0] to [0, c] by inverting the sign of the integration variables.
The resulting integrations are then over positive si, uj , for which we use the variable
transformation [70]

(si, uj)→ (S, σ) =

(
siuj
c2

,
c

uj

)
, with

∣∣∣∣∂(si, uj)

∂(S, σ)

∣∣∣∣ =
c2

σ
,

and 0 < S < 1 , 1 < σ <
1

S
.

(A.78)

The integration over σ leads to the cancellation of tenc(siuj) in the denominator. The ar-
gument of the Heaviside step function Θ demands t > (1/λ) log

(
S−1

)
, which is equivalent

to S > exp(−λt), thus raising the lower integration limit for S. We get as intermediate
result for i = j

F
(4le)
ii (t) =

(
2

π

)d−2 ∫ 1

e−λt
dS

(
λt− log

(
1

S

))
Sid−3

(
c2S

~eff

)
cos

(
c2S

~eff

)
c2

~eff
, (A.79)

and for i 6= j

F
(4le)
ij (t) =

(
2

π

)d−2 ∫ 1

e−λt
dS

(
λt− log

(
1

S

))
Sid−4

(
c2S

~eff

)sin2
(
c2S
~eff

)
S

. (A.80)

We now perform the summation over indices i, j to obtain an integral expression for
F (4le). Within that, we combine

(d− 2)(d− 3) Sid−4

(
c2S

~eff

)sin2
(
c2S
~eff

)
S

+ (d− 2) Sid−3

(
c2S

~eff

)
cos

(
c2S

~eff

)
c2

~eff

=
d

dS
S

d

dS
Sid−2

(
c2S

~eff

)
, (A.81)

and arrive at

F (4le)(t) =

(
2

π

)d−2 ∫ 1

e−λt
dS

(
λt− log

(
1

S

))
d

dS
S

d

dS
Sid−2

(
c2S

~eff

)
. (A.82)

By a partial integration, we shift the outer derivative to the first factor in the integrand.
As d(t− log(S−1))

/
dS = 1/S cancels the factor S, the remaining integration is easily

performed. To obtain more physical insight at this stage, it is worth to utilize the identity
c2/~eff = exp(λtE) to introduce the Ehrenfest time, Eq. (A.77), into our results. Using
this, the final result reads

F (4le)(t) =

(
2

π

)d−2

λt(d− 2) Sid−3
(

eλtE
)

sin
(

eλtE
)

−
(

2

π

)d−2[
Sid−2

(
eλtE

)
− Sid−2

(
eλ(tE−t)

)]
.

(A.83)
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In the semiclassical limit ~eff � c2, tE in Eq. (4.30) is large compared to the Lyapunov
time tL = λ−1, implying a separation of time scales for the OTOC. Thus, exp(λtE)� 1,
and this has several consequences:

• sin[exp(λtE)] is highly oscillatory and can be neglected in the phase space average
(4.50).

• Si[exp(λtE)] is well approximated by the asymptotic limit of the sine integral for
large, positive arguments, Si[exp(λtE)]≈ π

2 [113].

• For t < tE Taylor-expansion around t/tE =0 yields

Sid−2
(

eλtE
)
− Sid−2

(
eλ(tE−t)

)
≈ (d− 2) Sid−3

(
eλtE

)
sin
(

eλtE
)
λt , (A.84)

where the term linear in t is the same highly oscillatory term as in the first item
and can be neglected. (Alternatively, if not neglected, it would exactly cancel the
oscillatory term for small t.)

• For t > tE we have exp[λ(tE − t)]� 1, and thus, by Taylor-expanding Si(y) around
y = 0, we get

Sid−2
(

eλ(tE−t)
)
≈ e(d−2)λ(tE−t) , (A.85)

which is exponentially fast decaying for t > tE and thus can be neglected against
the terms originating from the second item.

Combining the above considerations, we can well approximate

F (4le)(t) ≈
{

0 if t < tE
−1 if t > tE

}
≈ −Θ(t− tE) . (A.86)

Hence the diagram class of the 4-leg-encounters only contributes after a certain minimal
time, the Ehrenfest time tE. It is after this time that a description solely based on classi-
cal dynamics breaks down, as interference contributions due to trajectory constellations
with encounter regions with an action difference of the order O(~eff) start to exist.

A.4.3 Encounter integral of the two-leg diagram with the encounter at the
beginning

The relevant encounter integral we have to solve for diagram (b) in Fig. 4.2 is given by
Eq. (4.57) and reads

F
(2le,(b))
ll′ (t) =

1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2ue

i
~eff

s·u
slsl′

×
∫ ts(s)

0
dt′

Θ
[
t− t(eff)

enc (t′,u)
]

t
(eff)
enc (t′,u)

e2λt′ ,

(A.87)
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with the effective encounter time t
(eff)
enc (t′,u) = t′ + tu(u). The stable and unstable time

ts(s) and tu(u) are functions of the moduli of the components of s, u, see Eq. (4.31).

For l 6= l′ we can immediately conclude F
(2le,(b))
ll′ (t) = 0, as the variable transformation

(sl, ul)→ −(sl, ul) results in F
(2le,(b))
ll′ (t) = −F (2le,(b))

ll′ (t).
Thus only the case l = l′ needs to be considered. Like before in the calculation of

the encounter integral F (4le) of the four-leg diagram, we have to resolve the maximum
functions used in the definition of ts(s) and tu(u), Eq. (4.31). We therefore split

F
(2le,(b))
ll (t) =

d−2∑
i,j=1

F
(2le,(b))
l,ij (t) , (A.88)

where

F
(2le,(b))
l,ij (t) =

1

(2π~eff)d−2

∫ c

−c
dsi

∫ c

−c
duj

∫ ts(si)

0
dt′

Θ
[
t− t(eff)

enc (t′, uj)
]

t
(eff)
enc (t′, uj)

×

 d−2∏
k,k′=1
k 6=i, k′ 6=j

∫ |si|
−|si|

dsk

∫ |uj |
−|uj |

duk′

s2
l e

i
~eff

s·u
e2λt′ .

(A.89)

Within the integrand, si and uj determine the stable time ts(si) = (1/λ) log(c/|si|)
and the encounter time t

(eff)
enc (t′, uj) = t′ + (1/λ) log(c/|uj |). For correctly treating the

product of integrations in the last line of Eq. (A.89), we must distinguish the cases i = j
from i 6= j, and moreover the cases when l happens to be one of the indices i or j.
Using Eqs. (A.71) and (A.72), the integrations over sk, uk′ for k 6= i, k′ 6= j are readily
performed. For the last integrals over si, uj and t′, we again, through a sign-changing
transformation, convert the integration over the subinterval [−c, 0] into one over [0, c].
Then we use the transformation[70, 72]

(si, uj , t
′)→ (T, S, σ) =

(
t′ + tu(uj),

siuj
c2

,
c

uj

)
, with

∣∣∣∣∂(si, uj , t
′)

∂(T, S, σ)

∣∣∣∣ =
c2

σ

and 0 ≤ T <∞ , 0 ≤ S ≤ e−λT , 1 ≤ σ ≤ eλT .

(A.90)

The integration over σ leads to a cancellation of the effective encounter time T in the
denominator. The Heaviside step function transforms to Θ(t− T ), which introduces an
upper bound in the integration over T .

We find that the results have the common structure

F
(2le,(b))
l,ij (t) =

(
2

π

)d−2

c2λ

∫ t

0
dT e2λT

∫ e−λT

0
dS fl,ij(S) , (A.91)

and we have to distinguish the following five cases:
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• for i = j = l:

fl,ll(S) = Sid−3

(
c2S

~eff

)
cos

(
c2S

~eff

)
S2 c

2

~eff
, (A.92)

• for i = j with i, j 6= l:

fl,ii(S) = Sid−4

(
c2S

~eff

)
cos

(
c2S

~eff

)[
~eff

c2
sin

(
c2S

~eff

)
− S cos

(
c2S

~eff

)]
, (A.93)

• for i 6= j with i, j 6= l:

fl,ij(S) = Sid−5

(
c2S

~eff

) sin2
(
c2S
~eff

)
S

~eff

c2

[
~eff

c2
sin

(
c2S

~eff

)
− S cos

(
c2S

~eff

)]
, (A.94)

• for i 6= j with i = l:

fl,lj(S) = Sid−4

(
c2S

~eff

)
S sin2

(
c2S

~eff

)
, (A.95)

• for i 6= j with j = l:

fl,il(S) = Sid−4

(
c2S

~eff

)sin
(
c2S
~eff

)
S

×

[
2
~eff

c2
S cos

(
c2S

~eff

)
+

(
S2 − 2

(
~eff

c2

)2
)

sin

(
c2S

~eff

)]
.

(A.96)

The sum in Eq. (A.88) over all indices to obtain F
(2le,(b))
ll (t) directly translates into a

summation of fl,ij(x) via Eq. (A.91). The latter sum can be conveniently rewritten as

d−2∑
i,j=1

fl,ij(S) = − d

dS
S3 d

dS
Sid−3

(
c2S

~eff

)
Si′′
(
c2S

~eff

)
. (A.97)

This identity allows one to easily perform the remaining integrals over S and T . We
obtain

F
(2le,(b))
ll (t) = −

(
2

π

)d−2

c2
[
Sid−3

(
eλtE

)
Si′′
(

eλtE
)
− Sid−3

(
eλ(tE−t)

)
Si′′(eλ(tE−t))

]
.

(A.98)

The result contains the second derivative Si′′(z) = cos(z)/z − sin(z)/z2 of the sine inte-
gral, which are oscillatory functions. We consider again the limiting cases:

• For t� tE we get exp[λ(tE−t)] ≈ exp(λtE), and Si′′[exp(λtE)] only contains highly
oscillatory factors, which we can neglect in the semiclassical limit ~eff � c2.
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• For t� tE we expand around exp[λ(tE − t)] ≈ 0

Sid−3(eλ(tE−t)) Si′′
(

eλ(tE−t)
)
≈ Si′′′(0)e(d−2)λ(tE−t), (A.99)

where Si′′′(0) = −5/3. As for the 4-leg encounter, this contribution is exponentially
small compared to the contribution of the four-leg diagram.

For times t� tE and t� tE the diagrams in Fig. 4.2 (b) are negligible in the semiclas-
sical limit. Only for t ≈ tE, the above terms can, in principle, produce non-negligible
contributions. However, for these times the results depend on the (sharp) cutoff value
c of the encounter integrations, indicating that the quantitative result of the encounter
integration is not very meaningful. However, qualitatively, our results indicate that the
interference mechanism behind diagram (b) accounts, together with other diagrams, for
the smooth crossover between the pre- and post-Ehrenfest time behavior of OTOCs.

A.4.4 Encounter integral of the two-leg diagram with the encounter at the
end

The relevant encounter integrals we have to solve for diagram (c) in Fig. 4.2 are given
in Eq. (4.59) and (4.60) and read

F (2le,(c))(t) =
1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u

×
∫ t

t−tu(u)
dt′

Θ
[
t− t(eff)

enc (t′, s)
]

t
(eff)
enc (t′, s)

,

(A.100)

F
(2le,(c))
ll′ (t) =

1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u
ulul′

×
∫ t

t−tu(u)
dt′

Θ
[
t− t(eff)

enc (t′, s)
]

t
(eff)
enc (t′, s)

e2λ(t−t′) ,

(A.101)

where the effective encounter time is taken as t
(eff)
enc (t′, s) = (t − t′) + ts(s). The stable

and unstable times ts(s), tu(u) are defined in Eq. (4.31).
In a first step, we interchange the variable names for stable and unstable coordinates,

s↔ u, which formally interchanges ts(s)↔ tu(u). Then we perform a variable transfor-
mation t′ → t− t′, which inverts the arrow of time. These steps convert the calculations
for an encounter at the end to those for an encounter at the beginning of the trajecto-

ries, and we immediately obtain F
(2le,(c))
ll′ (t) = F

(2le,(b))
ll′ (t). It thus remains to calculate

F (2le,(c))(t), which in its transformed version reads

F (2le,(c))(t) =
1

(2π~eff)d−2

∫ c

−c
dd−2s

∫ c

−c
dd−2u e

i
~eff

s·u
∫ ts(s)

0
dt′

Θ
[
t− t(eff)

enc (t′,u)
]

t
(eff)
enc (t′,u)

.

(A.102)
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In the very same spirit as for four-leg diagrams in section A.4.2, we split

F (2le,(c))(t) =
d−2∑
i,j=1

F
(2le,(c))
ij (t) (A.103)

to resolve the max-functions inherent in ts(s) and tu(u) in Eqs. (4.31). Within F
(2le,(c))
ij (t)

all integrations except for the ones over (si, uj , t
′) are as easily performed as in section

A.4.2. For these remaining integrals we use the variable transformation in Eq. (A.90).
We obtain

F
(2le,(c))
ij (t) =

1

(2π~eff)d−2
λ

∫ t

0
dT

∫ e−λT

0
dS f

(2le,(c))
ij (S) , (A.104)

where

• for i = j:

f
(2le,(c))
ii (S) = Sid−3

(
c2S

~eff

)
cos

(
c2S

~eff

)
c2

~eff
, (A.105)

• for i 6= j:

f
(2le,(c))
ij (t) = Sid−4

(
c2S

~eff

)sin2
(
c2S
~eff

)
S

. (A.106)

Summing over indices, we find

d−2∑
i,j=1

f
(2le,(c))
ij (S) =

d

dS
S

d

dS
Sid−2

(
c2S

~eff

)
, (A.107)

which allows us to easily evaluate the final integrations over S and T . We eventually
obtain

F (2le,(c))(t) =

(
2

π

)d−2[
Sid−2

(
eλtE

)
− Sid−2

(
eλ(tE−t

)]
. (A.108)

Following the same arguments as in the section about the four-leg diagram, this term is
only contributing for times larger than the Ehrenfest time tE and can be approximated
by F (2le,(c))(t) ≈ Θ(t − tE) in the semiclassical limit. Both, the diagram (c) and (d) in
Fig. 4.2 contribute a constant term to the OTOC for t > tE.

A.4.5 Encounter integral of the zero-leg diagram

The relevant encounter integrals we have to solve for diagram (a) in Fig. 4.2 are given
by Eq. (4.64) and (4.65). They read

F
(0le,1)
ll′ (t) =

1

(2π~eff)d−2

∫ t

0
dt′ e2λt′

∫ ce−λt
′

−ce−λt′
dd−2s

∫ ce−λ(t−t′)

−ce−λ(t−t′)
dd−2u

e
i

~eff
s·u

t
slsl′ ,

(A.109)
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F
(0le,2)
ll′mm′(t) =

1

(2π~eff)d−2

∫ t

0
dt′ e2λt

∫ ce−λt
′

−ce−λt′
dd−2s

∫ ce−λ(t−t′)

−ce−λ(t−t′)
dd−2u

e
i

~eff
s·u

t
slsl′umum′ .

(A.110)

Using the same reasoning as before for two-leg diagrams, based on the variable trans-

formation (sl, ul)→ −(sl, ul) we can immediately conclude that F
(0le,1)
ll′ (t) = 0 for l 6= l′.

Using further Eqs. (A.71, A.72) we find

F
(0le,1)
ll (t) = −

(
2

π

)d−2

c2 Sid−3
(

eλ(tE−t)
)

Si′′
(

eλ(tE−t)
)
. (A.111)

As has been argued after Eq. (A.98), this term can be neglected in the cases t � tE
and t � tE, but qualitatively, the underlying interference mechanism is involved in the
crossover regime at t ≈ tE.

For F
(0le,2)
ll′mm′ four indices are involved, and we find three classes of non-vanishing inte-

grals, which are treated using all the Eqs. (A.71) – (A.74).

(a) For l = l′, m = m′ with l 6= m we get

F
(0le,2)
llmm (t) =

(
2

π

)d−2

c4 Sid−4
(

eλ(tE−t)
)[

Si′′
(

eλ(tE−t)
)]2

. (A.112)

(b) If the set of indices {l, l′} = {m,m′} are equal without being all the same, i.e.
l 6= l′, we get

F
(0le,2)
ll′mm′(t) = −

(
2

π

)d−2

c4 Sid−4
(

eλ(tE−t)
)

e2λ(t−tE)
[
Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)]2
.

(A.113)

(c) If all indices are the same, we get

F
(0le,2)
llll (t) = −

(
2

π

)d−2

c4 Sid−4
(

eλ(tE−t)
)

e2λ(t−tE) (A.114)

×

[
2
[
Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)]2
+ sin

(
eλ(tE−t)

)
Si
(

eλ(tE−t)
)

− 2 sin2
(

eλ(tE−t)
)

+ cos
(

eλ(tE−t)
)

Si
(

eλ(tE−t)
)

eλ(tE−t)

]
.

In case (a) the result contains the factor Si′′[exp[λ(tE− t)]] and thus, like F
(0le,1)
ll (t), can

be neglected for both t� tE and t� tE. For case (b) we have for t� tE:

Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)
≈ Si

(
eλtE

)
≈ π

2
, (A.115)



156 Appendices

i.e. the highly oscillatory term sin[exp[λ(tE− t)] is neglected and we use the asymptotic
value for Si. For t� tE, we obtain from a Taylor expansion around exp[λ(tE − t)] ≈ 0

Si
(

eλ(tE−t)
)
− sin

(
eλ(tE−t)

)
≈ 1

9
e3λ(tE−t) . (A.116)

Therefore, as Si[exp[λ(tE − t)]] ≈ exp[λ(tE − t)], we find

F
(0le,2)
ll′mm′(t) ≈ −

1

81

(
2

π

)d−2

c4edλ(tE−t) . (A.117)

i.e. the contribution becomes exponentially suppressed after the Ehrenfest time. We can
thus approximate

F
(0le,2)
ll′mm′(t) ≈ −c

4e2λ(t−tE)Θ(tE − t) = −~eff
2e2λtΘ(tE − t) . (A.118)

Note that since we have {l, l′} = {m,m′} we get an additional combinatorial factor 2
when reducing the fourfold sum over l, l′, m, m′ in Eq. (4.63) to a twofold one over l, l′

with l 6= l′. The case of equal indices l = l′ is still excluded from this summation, but
using case (c), which also contains the same contribution as case (b) (explicitly including
the prefactor 2), we can complete the summation. It remains to discuss the additional
terms in the last lines of Eq. (A.114). Those can be neglected for t � tE as they all
contain highly oscillatory factors. For t� tE we find

sin
(

eλ(tE−t)
)

Si
(

eλ(tE−t)
)
− 2 sin2

(
eλ(tE−t)

)
+ cos

(
eλ(tE−t)

)
Si
(

eλ(tE−t)
)

eλ(tE−t) ≈ −1

9
e4λ(tE−t) .

(A.119)

This leads to a suppression of F
(0le,2)
llll (t) for t� tE, which is less strong than the one for

F
(0le,2)
ll′mm′(t) in Eq. (A.117), but still exponential. Thus, the overall exponential suppression

reads

F
(0le,2)
llll (t) ≈ 1

9
e(d−2)λ(tE−t) . (A.120)

A.5 Scattering matrix elements for a discretized Y-junction

In this appendix, we derive the scattering matrix elements for scattering at a discretized
Y-junction. The situation is depicted in Fig. A.2. Three semi-infinite, identical leads
with on-site energies Eδ and hopping −Eδ/2 are attached to a symmetric Y-junction,
which is modeled by a single site α = 0 with on-site energy EY and hopping −Eδ/2 to
any of the waveguides. The Hamiltonian of the system can be split into five parts,

Ĥ = ĤLin + ĤLout + ĤLout′ + ĤY + ĤLY . (A.121)

The three waveguides and the junction are modeled by

ĤLX
=
∑
α

[
Eδ |α〉〈α| −

Eδ
2

(|α〉〈α+ 1|+ |α〉〈α+ 1|)
]
, ĤY = EY |0〉〈0| (A.122)
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Figure A.2: Three semi-infinite, identical leads with on-site energies Eδ and hopping
−Eδ/2 are attached to a symmetric Y-junction formed by a single site α = 0
with on-site energy EY and hopping −Eδ/2 to any of the waveguides. An
incoming plane wave eikδα in one of the waveguides transmits and reflects
into the outgoing waves reikδα and teikδα.

with α = −1, . . . ,−∞ for X=in, and α = 1, 2, . . . , or α = 1′, 2′ for X∈ { out, out′ }. In
order to simplify notation, the Hamiltonians of the waveguides already partially couple
to the junction site. The missing hopping terms are contained in ĤLY .

Within the waveguides, any scattering state, as a solution of the stationary Schrödinger
equation µ |ψ〉 = Ĥ |ψ〉, is found to be a superposition of the plane waves e±kδα, with
cos(kδ) = 1−µ/Eδ, either traveling towards or away from the scattering center ĤY . The
incoming waves are linked to the outgoing ones through the elements of the scattering
matrix. For the symmetric Y-junction, these elements take only one of two possible
values r and t, describing either reflection or transmission through the junction. To
obtain their values, we focus on a scattering state with a single incoming contribution,
say, in the left waveguide in Fig. A.2. The ansatz for this scattering state is thus, already
using continuity for α = 0, and setting the amplitude of the incoming wave to 1,

ψα =


eikδα + re−ikδα , for α = −1,−2, . . . ,

1 + r = t , for α = 0 ,

teikδα , for α = 1, 2, . . . , or α = 1′, 2′, . . . .

(A.123)

The values of r and t are obtained from considering the stationary Schrödinger equation
at site α = 0,

µψ0 = EY ψ0 −
Eδ
2

(ψ−1 + ψ1 + ψ1′) . (A.124)

Inserting the ansatz Eq. (A.123) and using the continuity condition 1 + r = t, we can
solve this equation for r and t. We find

r = −
1− EY

Eδ
+ 1

2eikδ

1− EY
Eδ

+ eikδ − 1
2e−ikδ

, t =
i sin(kδ)

1− EY
Eδ

+ eikδ − 1
2e−ikδ

. (A.125)
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Within the numerical simulations, the parameters µ = 0.2Eδ and EY = Eδ have been
chosen. This leads to

r = −43

97
+ i

24

97
, t =

54

97
+ i

24

97
, (A.126)

which we use as input to compare analytical with the numerical results.

A.6 List of resummed diagrams

Here we list all resummed diagrams we find in section 6.1 as well as the diagrams we
obtain from them through the application of the arguments listed in 6.1.2.

The diagrams representing the resummation of all paths which in the end either trans-
verse or reflect of one of the junctions, are related to Eq. (6.10) and are found to be

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
= , = r

1−
(
r2 − t2

)
ei2Φu

D(Φu,Φd,Φ)
= , (A.127)

= t
1 +

(
r2 − t2

)
ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
= , = r

1−
(
r2 − t2

)
ei2Φd

D(Φu,Φd,Φ)
= . (A.128)

The next classes of diagrams describe resummations of contributions of paths start-
ing and ending within the ring, but at opposite junctions. These are obtained from
Eqs. (6.14), (6.15), and found to be

= e−i(Φd−Φ
2 )

(
1− r2ei2Φu − t2ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
− 1

)
, (A.129)

= e−i(Φu−Φ
2 )

(
1− r2ei2Φd − t2ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
− 1

)
, (A.130)

= e−i(Φu+ Φ
2 )

(
1− r2ei2Φd − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)
, (A.131)

= e−i(Φu−Φ
2 ) rt

(
e2iΦu + ei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

(A.132)

= e−i(Φd+ Φ
2 ) rt

(
e2iΦd + ei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

= , (A.133)

= e−i(Φu+ Φ
2 ) rt

(
e2iΦu + ei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

(A.134)

= e−i(Φd−Φ
2 ) rt

(
e2iΦd + ei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

= . (A.135)
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The equivalence of the expressions for and , as well as for and is an

interesting application of the system’s symmetries. On the other hand, the diagrams can
be obtained from each other by a single reflection along the horizontal symmetry axis,
which results in equations (A.133) and (A.135). On the other hand, these expressions
should coincide with equations (A.132) and (A.134), since the diagrams also result from
each other by a reflection along the vertical symmetry axis and a subsequent time-
reversal, which together flips the sign in front of the gauge field phase Φ twice, leaving
the overall result invariant under this combined operation. Indeed, the equivalence of
(A.133) with (A.132, as well as (A.135) with (A.134) holds, as one can easily check.

Starting from Eq. (6.16), we find

= t
1− (r − t)

(
rei2Φd − tei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

= , (A.136)

= t
1− (r − t)

(
rei2Φu − tei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

= , (A.137)

= t
1− (r − t)

(
rei2Φd − tei(Φu+Φd+Φ)

)
D(Φu,Φd,Φ)

, (A.138)

= t
1− (r − t)

(
rei2Φu − tei(Φu+Φd−Φ)

)
D(Φu,Φd,Φ)

. (A.139)

The other remaining resummed diagrams of the same type are:

= e−i(Φu−Φ
2 )t

rei2Φu + tei(Φu+Φd−Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
=

(A.140)

= e−i(Φd+ Φ
2 )t

rei2Φd + tei(Φu+Φd+Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
=

(A.141)

= e−i(Φu+ Φ
2 )t

rei2Φu + tei(Φu+Φd+Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
(A.142)

= e−i(Φd−Φ
2 )t

rei2Φd + tei(Φu+Φd−Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
. (A.143)

A.7 Numerical averaging of reflection and transmission
probabilities

The main idea for numerically calculating the averaged reflection and transmission prob-
ability is to calculate the integrals in (6.50) and (6.52) using, e.g., a Monte-Carlo simu-



160 Appendices

lation. The most expensive part of this calculation is the evaluation of the exponentials
eiΦu , eiΦd , eiΦ, since these are nonlinear functions. Our aim is thus to express the in-
tegrand in equations (6.50) and (6.52) through functions of the exponentials eiΦu , eiΦd ,

ei Φ
2 instead of the phases Φu, Φd, Φ. As a consequence, in every cycle of the calculation,

the phase factors have only to be calculated once.

Basic functions

When looking at the basic resummed diagrams in equations (6.50) and (6.52), we see,
that we need to implement the following ones:

= , = , ,

= , = , .
(A.144)

Thus, a review of our calculations in section 6.1 motivates the definition of the following
functions

w(zu, zd, z) = 1− r2
(
zu

2 + zd
2
)
− t2zuzd(z + z∗) +

(
r2 − t2

)2
zu

2zd
2

= 1− r2
(
zu

2 + zd
2
)
− t2zuzd(z + z∗) + (r + t)2zu

2zd
2 ,

f1(zu, zd, z) = t
(
1− (r − t)

(
rzd

2 − tzuzdz
∗))

= t
(
1 + rzd

2 − tzuzdz
∗) ,

f2(zu, zd, z) = t
(
rzu

2 + tzuzdz
∗ − (r − t)(r2 − t2)zu

2zd
2
)

= t
(
rzu

2 + tzuzdz
∗ − (r + t)zu

2zd
2
)
.

(A.145)

We used here that, due to continuity of the wave functions at the junctions, we have

1 + r = t↔ r − t = −1. (A.146)

Then, the common denominator and the basic diagrams are given by

D(Φu,Φd,Φ) = w
(
eiΦu , eiΦd , eiΦ

)
(A.147)

= =
f1

(
eiΦu , eiΦd , eiΦ

)
w(eiΦu , eiΦd , eiΦ)

, = =
1

ei(Φu−Φ
2 )

f2

(
eiΦu , eiΦd , eiΦ

)
w(eiΦu , eiΦd , eiΦ)

,

= =
f1

(
eiΦd , eiΦu , e−iΦ

)
w(eiΦu , eiΦd , eiΦ)

, = =
1

ei(Φd+ Φ
2 )

f2

(
eiΦd , eiΦu , e−iΦ

)
w(eiΦu , eiΦd , eiΦ)

,

=
f1

(
eiΦu , eiΦd , e−iΦ

)
w(eiΦu , eiΦd , eiΦ)

, =
1

ei(Φu+ Φ
2 )

f2

(
eiΦu , eiΦd , e−iΦ

)
w(eiΦu , eiΦd , eiΦ)

.

In the expressions in the second column, we could, in principle, add the additional phase
factor in front of the fraction to the definition of f2. However, we deliberately excluded
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it, first, to avoid an additional dependence on ei Φ
2 and second since this factor usually

gets canceled by a subsequent free Green’s function in the diagrammatic equations or
vanishes due to calculating the modulus square. E.g. we have

=
f2

(
eiΦu , eiΦd , eiΦ

)
w(eiΦu , eiΦu , eiΦ)

.

Pseudo-code for numerical calculation of the averaged probabilities

The following scheme performs the numerical averaging

1. Define the functions w, f1, f2 as above. To save computation time, it might
be worth to first calculate and store the repeatedly appearing, constant factors r2,
t2, (r + t), (r + t)2.

2. Create a vector containing the phases eiΦ: Choose a suitable large number

N1 ∈ N to divide the interval [0, 2π] and set v = (vl)l=1,...,N1
with vl = ei l

N
2π. We

interpret vl = eiΦ with Φ = l
N1

2π. (Since the result is expected to be symmetric
with respect to Φ↔ −Φ, it would be enough to discretize the smaller interval [0, π),
which speeds up the calculation. However, one can use the additional information
as a check for the numerical procedure.)

3. Initialize two empty vectors ∆R(k) = 0, ∆T (k) = 0, which will be used for
summing reflection and transmission probabilities at fixed gauge field in first order.
(Do not confuse the subscript here, which indicates the iteration number, with the
subscripts of the main text, which indicates the order in the perturbation theory).

4. Loop over disorder configurations: Choose a second large number N2 of dis-
order configurations for the average. For each k ∈ {1, . . . , N2}, do

a) Draw Φu,Φd from a uniform distribution in [0, 2π) and calculate zu = eiΦu ,
zd = eiΦd .

b) Loop over gauge field strengths: For l ∈ {1, . . . , N1}, do

i. Calculate the common denominator

d = w(zu, zd, vl) . (A.148)

ii. Calculate the numerator functions

f11 = f1(zu, zd, vl) , f21 = f2(zu, zd, vl) ,

f12 = f1(zd, zu, v
∗
l ) , f22 = f2(zd, zu, v

∗
l ) ,

f13 = f1(zu, zd, v
∗
l ) , f23 = f2(zu, zd, v

∗
l ) .

(A.149)
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iii. Calculate their modulus squared

α11 = |d|2 · = f11f
∗
11 , α21 = |d|2 · = f21f

∗
21 ,

α12 = |d|2 · = f12f
∗
12 , α22 = |d|2 · = f22f

∗
22 ,

α13 = |d|2 · = f13f
∗
13 , α23 = |d|2 · = f23f

∗
23 .

(A.150)

iv. Update ∆R(k), ∆T (k) according to equations (6.50) and (6.52)

∆R(k)
l = ∆R(k−1)

l + Im

{(
r + t

f21 + f22

d

)∗
× 1

d3d∗
(
α11 + α23, α13 + α21

)(1 2
2 1

)(
f11 · f23

f21 · f13

)}

∆T (k)
l = ∆T (k−1)

l + Im

{[
t

d

(
f11zu

√
z + f21zd

√
z
∗)]∗

×

[
1

d3d∗
(
α11, α21

)(1 2
2 1

)(
f2

11zu
√
z

f2
21

1
zu
√
z
∗

)

+
1

d3d∗
(
α12, α22

)(1 2
2 1

)(
f2

12zd
√
z
∗

f2
22

1
zd
√
z

)]}

= ∆T (k−1)
l + Im

{[
t

d
(f11zuz + f21zd)

]∗
× 1

d3d∗

[(
α11, α21

)(1 2
2 1

)(
f2

11zuz
f2

21zu
∗z

)
+
(
α12, α22

)(1 2
2 1

)(
f2

12zd

f2
22zd

∗

)]}

(A.151)

where for the transmission we interpret the complex square root as
√
z =

ei Φ
2 and

√
z
∗

= e−i Φ
2 . In the second line of the transmission we got rid of

these roots by extracting
√
z from the first, complex conjugate factor,(

f11zu

√
z + f21zd

√
z
∗)∗

=
√
z(f11zuz + f21zd)∗, (A.152)

and multiplying the remaining part of the expression with it.

5. Multiply the vectors ∆R(N2) and ∆T (N2) with NRgρ∅/(N2 sin(kδ))

〈∆R〉 =
gNRρ

N2 sin(kδ)
∆R(N2), 〈∆T〉 =

gNRρ
N2 sin(kδ)

∆T (N2) (A.153)

After the integration has converged, the theoretically expected correction to the reflection
and transmission probabilities is, as a function of the gauge field, represented by the
vectors 〈∆R〉 and 〈∆T〉.
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Notation

In this section we present our notation of frequently used mathematical expressions

• N = {1, 2, 3 . . .} is the set of positive integers. 0 is included in N0 = N ∪ {0}.

• Variables in boldface, e.g. n, x, Φ, are understood as vectors. Components in a
basis are labeled with an index, e.g. ni. If we denote the set of indices as I the
following representations are equivalent:

x = (xi)i∈I = (xi)i .

• Vectors are understood as column vectors. They are transformed to row vectors by
transposing, xᵀ. If additionally, the vector’s components are complex conjugated,
we call the vector Hermitian conjugate and write x† = (xᵀ)∗, where the complex
conjugation of a variable or the components of a vector or matrix is indicated by
the superscript ∗.

• Since vectors and matrices often appear as functions, e.g. M(x; t) we use the dot ·
in order to highlight a matrix product. Occasionally, we also use the same symbol
for the real scalar product of two vectors, whenever this simplifies the notation,
i.e. we have the identity xᵀx′ = x · x′.

• The norm of a vector is calculated as

‖x‖ =

√∑
i∈I
|xi|2 =

√
x†x

• A scalar function differentiated by a vector is understood as gradient,

∂f

∂q
=

(
∂f

∂qi

)ᵀ

i

The second derivative results in a matrix,(
∂2f

∂q∂p

)
ij

=
∂2f

∂qi∂pi
.

In this notation, the Taylor expansion of a function is up to second order written
as

f(q + y) = f(q) +
∂f

∂q
y +

1

2
yᵀ ∂2f

∂q∂q
· y +O

(
‖y‖3

)
.
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• A vector-valued function f = (fl)
ᵀ
l differentiated by a scalar is a vector

df

ds
=

(
dfi
ds

)ᵀ

i

.

The differentiation by a vector is interpreted as a matrix(
∂f

∂q

)
ij

=
∂fi
∂qj

.

Again, this notation is motivated from the Taylor expansion

f(q + y) = f(q) +
∂f

∂q
· y +O

(
‖y‖2

)
.

• A differentiation with respect to the time variable is indicated by a dot,

q̇(t) =
dq

dt
(t)

• In integrations we omit the integration volume if it is Rd. The dimension of the
vector space is indicated by the integration measure,∫

ddq =

∫
Rd

ddq

• If the integration volume is the product [a, b]d of a one-dimensional interval [a, b],
we use the shorthand notation∫ b

a
ddq =

∫
[a,b]d

ddq =

∫ b

a
dq1 ·

∫ b

a
dqd (7.154)
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[56] E. J. Torres-Herrera, A. M. Garćıa-Garćıa, and L. F. Santos, “Generic dynamical
features of quenched interacting quantum systems: Survival probability, density
imbalance, and out-of-time-ordered correlator”, Phys. Rev. B 97, 1 (2018).

[57] J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, “Chaos, complexity, and
random matrices”, J. High Energy Phys. 2017, 48 (2017).

[58] A. Del Campo, J. Molina-Vilaplana, and J. Sonner, “Scrambling the spectral form
factor: Unitarity constraints and exact results”, Phys. Rev. D 95, 1 (2017).

[59] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, “Scrambling and thermaliza-
tion in a diffusive quantum many-body system”, New J. Phys. 19, 063001 (2017).

[60] H. Shen, P. Zhang, R. Fan, and H. Zhai, “Out-of-time-order correlation at a
quantum phase transition”, Phys. Rev. B 96, 054503 (2017).

[61] K. Hashimoto, K. Murata, and R. Yoshii, “Out-of-time-order correlators in quan-
tum mechanics”, J. High Energy Phys. 2017, 138 (2017).

[62] P. Ehrenfest, “Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik
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