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ABSTRACT: Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica 

MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among 

methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt 

nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were 
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almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. 

Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction 

turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy 

studies and DFT calculations revealed that the alcohol molecules pack horizontally on the metal 

surface in low concentrations and stand up in high concentrations, which affects the dissociation 

of β-hydrogen of the alcohols as the critical step in alcohol oxidations. 

 

1. INTRODUCTION 

The catalytic alcohol oxidation process is crucial step for carbonyl compound production and 

energy conversion in the  past decades, research has been focusing on developing catalyst 

performance, decreasing process cost, creation of new material, and further employing alcohols 

as new energy sources for fuel cells.1–3 Although there are variable ways to carry out the 

oxidation reactions, using transition metal catalyst with molecular oxygen is one of the 

promising systems to achieve productivity and low environmental impact. 4–8  

Alcohol oxidation reaction processes with heterogeneous catalysts occur in the gas-solid and 

liquid-solid interfaces. The reaction rate and product selectivity are significantly affected by the 

phase9 and we have studied alcohol oxidation by using size controlled platinum nanoparticles (Pt 

NPs) and sum-frequency generation (SFG) vibrational spectroscopy techniques.10–14 Here we 

report our investigation of  methanol, ethanol, 2-propanol and 2-butanol oxidation reactions and 

summarize these results, which gives us the general knowledge on how each alcohol molecule 

behaves on the catalyst surface in various conditions.  
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2. EXPERIMENTAL SECTION 

2.1. Size Control of Platinum nanoparticles (Pt NPs) loaded in MCF-17 

Pt NPs were synthesized by PVP-assisted polyol process in ethylene glycol.10–12,14 The average 

sizes for the nanoparticles are 1, 2, 4, 6 and 8 nm respectively with narrow size distributions as 

determined by transmission electron microscopic (TEM) images. In order to study the catalytic 

alcohol oxidation reaction with molecular oxygen in the gas and liquid phases, we chose the 

mesoporous silica MCF-17 as the Pt support.15,16 MCF-17 has wide pore size ranges from 15 to 

50 nm which are adequate to incorporate the sub 10 nm Pt NPs. The amount of Pt loaded into the 

supports was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

The mass loadings of Pt in each catalyst were from 0.4 to 0.7 wt. %. 

2.2. Thin film Pt catalyst for Sum frequency generation analysis 

The samples for 2-propanol oxidation were prepared by depositing Langmuir-Blodgett 

films17,18 of silica embedded 4 nm Pt nanoparticles on sapphire prisms followed by calcination in 

air at 550 °C for 3h. To prepare 4 nm Pt nanoparticles embedded in silica, Pt nanoparticle 

ethanol suspension and tetraethyl orthosilicate were mixed with ethanol, to which ammonium 

hydroxide was added drop-wise within 5 min under stirring. The mixture was then sonicated for 

2 h. The product was precipitated by hexane and collected by centrifugation. 12 

2.3. Catalytic Oxidation Studies 

Various alcohol oxidation reactions were investigated in the gas and liquid phases using Pt 

NPs loaded into MCF-17 with pure anhydrous alcohol; methanol, ethanol, 2-propanol and 2-

butanol from Aldrich. For gas phase catalysis, the reactions were carried out in a gold-coated 
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batch-reactor equipped with a boron nitride substrate heater and a metal bellows circulation 

pump for gas mixing. Each catalyst was dispersed in ethanol and drop-casted on SiO2 chips, and 

then set on a boron nitride substrate heater. The reactor was typically filled with 10 Torr of 

alcohol, 50 Torr of oxygen and 710 Torr of helium at 60 °C. The products were detected by a gas 

chromatography (GC) with a thermal conductivity detector.  

For liquid phase catalysis, the reactions were carried out in a 100 ml stirred Parr reactor 

covered by heating tape. The reactor was typically filled with 10–30 mg of Pt/MCF-17 catalyst 

dispersed in 15 ml of liquid alcohol. The mixture was sealed, purged by pure oxygen, and then 

sealed at 1 bar oxygen atmosphere. Magnetic stirring was set at a certain speed and the mixture 

was kept at 60 °C. For 2-butanol oxidation reaction, typical oxygen pressure was 3 bar, and the 

reaction temperature was 80°C. After 1–3 h of reaction, the reactor was cooled to 45 °C. The gas 

in the reactor was transferred into the evacuated gas-phase reactor connected to the GC to 

analyze the reactants and products in the gas phase. The liquid in the reactor was centrifuged to 

remove the solid catalyst. The supernatant was then injected into the GC to analyze the reactants 

and products in the liquid phase. 

For the gas-phase reaction, the product selectivity and turnover frequency (TOF) were 

typically calculated at alcohol conversions under 30 %. For the liquid-phase reaction, the product 

selectivity and TOF were typically calculated at oxygen conversions between 20–40 % 

(corresponding alcohol conversions between 1–4 %). Number of active sites for each catalyst 

was calculated based on the TEM (particle size) and ICP-AES (Pt loading) data, assuming 

spherical nanoparticles and the same atomic density on the Pt nanoparticle surface as Pt (111).   
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The products of the methanol oxidation reaction were carbon dioxide (CO2), formaldehyde and 

methyl formate as a coupling product. The products of the other alcohol oxidation reactions were 

CO2 and corresponded carbonyl compounds; acetaldehyde (Ethanol), acetone (2-Propanol) and 

2-butanone (2-Butanol). No acid and ester products were detected in our experiments. 

2.4. Sum frequency generation vibrational spectroscopy 

Sum frequency generation (SFG) vibrational spectroscopy is using secondary nonlinear optical 

effect, which is highly selective toward the interfaces. This is one of the effective techniques to 

obtain the molecular orientations on the catalyst surface under reaction conditions. In our 

experiments, the infrared frequency was scanned from 2800 to 3600 cm−1 and its energy was 

∼100 µJ. The nonresonant frequency used was 532 nm (40 µJ). Sum frequency light was 

detected by a photomultiplier connected with a gated integrator. The polarization combination 

used in the experiment was ppp, which refers to perpendicular polarization for all beams relative 

to the sample surface. The data points in the spectra shown in this paper typically are comprised 

of an average of 400−1000 individual measurements. In the 2-propanol SFG analysis, the 

reaction phase effect was examined under reaction condition. For the gas phase analysis, the 

sample was placed in the cell, then pure oxygen was bubbled through 2-propanol and sent 

through the cell at 18°C. For the liquid phase analysis, liquid 2-propanol was passed through the 

cell using a peristatic pump.   

3. RESULTS AND DISCUSSION 

3.1. Reaction Rate Comparison of Catalytic Alcohol Oxidation Reactions in the Gas and 

Liquid Phases 



 6

Each turnover frequency (TOF) values of alcohol oxidation reactions were summarized in 

order to reveal the correlation among the carbon number, reaction phase and reaction turnover 

rate. Figure 1 shows the TOF over 6 nm Pt NPs loaded in MCF-17 in the gas and liquid phases. 

The total TOF sums up the number of the whole reaction product’s TOF. In the gas phase 

reaction, methanol oxidation result shows the highest TOF value; 10 molecules·site-1·s-1 among 

C1-C4 alcohol oxidation reactions, whereas the other TOFs were 3.2 (Ethanol), 1.2 (2-Propanol) 

and 1.3 molecules·site-1·s-1 (2-Butanol) respectively. In the liquid phase, the TOF values of 

alcohol oxidation reaction were 0.9 (Methanol), 2.1 (Ethanol), 0.2 (2-Propanol) and 1.5 

molecules·site-1
·s-1 (2-Butanol: 3 bar O2, 80°C) respectively.  

The molecular amount ratios of alcohol to oxygen were 1 to 5 in the gas phase (0.8 mmol of 

alcohol vs 4.1 mmol of O2), however those ratios in the liquid phase were higher than those in 

the gas phase due to the much higher alcohol density (Methanol Ox.: 591 mmol of methanol vs 

0.2 mmol O2, Ethanol Ox.: 413 mmol of ethanol vs 0.2 mmol O2, 2-Propanol Ox.: 320 mmol of 

2-propanol vs 0.2 mmol O2, 2-Butanol Ox.: 250 mmol of 2-butanol vs 0.6 mmol of O2). In order 

to mitigate the contrast, the alcohol was diluted with heptane to 1:1000 ratios in the liquid phase; 

Alcohol vs O2 ratios were 1:0.9 (Methanol), 1:1.3 (Ethanol) and 1:1.7 (2-Propanol). Heptane is 

used as a neutral solvent which has small effect on reaction rate, size dependence, and activation 

energy in these reactions.11,12 The TOFs in the liquid phase after heptane dilution were 0.001 

(Methanol), 0.04 (Ethanol) and 0.004 molecules·site−1·s−1 (2-Propanol) respectively, which 

exhibits 80~10000 times lower activity compared to the gas phase reaction under comparable 

concentration conditions. Although the reactant contents ratios are not same between in the gas 

phase and in the liquid phase (diluted), these results suggests that the alcohol molecular density 

has great impact on the alcohol oxidation reaction kinetics.  
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Figure 1. The total TOFs of alcohol oxidation reactions over 6 nm Pt/MCF-17. Gas phase: 10 

Torr alcohol, 50 Torr O2, He as balance, in total 770 Torr, 60 °C, Liquid phase: 15 ml pure 

alcohol, C1-C3 alcohol:  dissolved oxygen under 1 bar, 60 °C, 2-BuOH: dissolved oxygen under 

3 bar, 80 °C, Liquid phase (diluted): 15ml heptane, 15µl alcohol and dissolved oxygen under 1 

bar, 60 °C 

3.2. Activation Energy Comparison of Catalytic Alcohol Oxidation Reactions in the Gas and 

Liquid Phases 

The activation energies of alcohol oxidation reactions over 4nm Pt/MCF-17 catalyst were 

summarized in Figure 2. In the gas phase, the activation energies were found to be 190 

(Methanol), 200 (Ethanol), 147 (2-Propanol) and 120 kJ/mol (2-Butanol) respectively. 

Interestingly, these values became 2∼6 times lower in the liquid phase; 30 (Methanol), 39 

(Ethanol), 62 (2-Propanol) and 64 kJ/mol (2-Butanol) respectively. These different activation 

energies correlated with the reaction phase suggest different reaction mechanisms in the 

gas−solid and liquid−solid interface, which is discussed in detail as below; SFG Analysis and 

DFT calculation sections. However there are still unreasonable phenomena in the correlation 

between TOF value and activation energy; the big TOF gives the big activation energy, it seems 

to be due to the low collision frequency of oxygen on the catalyst surface. In the gas phase, any 
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reactant molecule can reach to the catalyst surface. However the catalyst is covered by large 

amount of solvent; alcohol and/or heptane in the liquid phase, the oxygen has difficulty in 

attaching to the reaction active site. Besides the gas pressure, temperature/heat transfer, and also 

the another pre-exponential factor may affect the apparent reaction rates.  

 

Figure 2. Activation energies of carbonyl compounds; formaldehyde (Methanol), acetaldehyde 

(Ethanol), acetone (2-Propanol) and 2-butanone (2-Butanol) in the gas and liquid phase alcohol 

oxidation reactions over 4 nm Pt/MCF-17 

 3.3. Influence of Pt Nanoparticle Size on Reaction Rate and Product Selectivity 

In this section, we summarized the Pt NPs size dependence on the TOF and product selectivity 

of catalytic alcohol oxidation reactions. The relative TOF value, which helps visually to identify 

the trends, bases on the smallest NPs sized TOF value in each different sized alcohol oxidation 

reactions.  
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Figure 3. Size dependence of total TOFs in the gas phase (10 Torr alcohol, 50 Torr O2, He as 

balance, in total 770 Torr, 60 °C)  

 

Figure 4. Size dependence of total TOFs in the liquid phase (15 ml pure alcohol, C1-C3 

alcohol:  dissolved oxygen under 1 bar, 60 °C, 2-BuOH: dissolved oxygen under 3 bar, 80 °C) 

In the gas phase, the relative TOFs became 3~4 times larger as the particle size increases in 

C2-C4 alcohol cases, while it remained as similar in the methanol oxidation reaction. In the 

liquid phase, the relative TOFs of all alcohol oxidation reactions became big brought as the size 

of the Pt NPs increase (Figure 3 and Figure 4).  

The selectivity toward carbonyl compound products were summarized in Figure 5.  In the gas 

phase, it showed 21-37% for formaldehyde (Methanol), 97% for acetaldehyde (Ethanol), 100% 

for acetone (2-propanol) and 100% for 2-butanone (2-butanol) in the 1-8 nm range alcohol 
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oxidation reactions. As a result, the Pt particle size didn’t affect the reaction selectivity. Most of 

the alcohols were converted towards corresponding carbonyl compounds. The significantly 

lower selectivity of methanol oxidation is due to the high activity of formaldehyde which can 

convert to methyl formate and CO2.
10,19,20 

 

Figure 5. Size dependence of product selectivity in the gas phase (10 Torr alcohol, 50 Torr O2, 

He as balance, totally 770 Torr, 60 °C) Carbonyl compound: formaldehyde (Methanol), 

acetaldehyde (Ethanol), acetone (2-Propanol) and 2-butanone (2-Butanol) 

3.4. Water Coadsorption Effect on Reaction Rate and Product Selectivity 

Water is one of the by-products of alcohol oxidation reactions; it may influence the reaction 

turnover rates and its coadsorption effect on the reaction progress. Therefore we studied the 

water addition effect on the alcohol oxidation reaction in the gas and liquid phases, which 

revealed unique characteristics. For the gas phase, 1−10 Torr water vapor was introduced with 10 

Torr of alcohol and 50 Torr of oxygen over 4 nm Pt NPs loaded in MCF-17, dramatic loss of 

catalytic activity was observed in C1-C3 alcohol oxidation reactions. Especially 1 Torr of added 

water vapor (Xwater ratio= 0.1) resulted in as low as 36 (Methanol) and 27% (2-Propanol) of the 

water-free reaction activity (Figure 6A). In C1-C3 alcohol oxidation reaction, the relative TOFs 

decreased to 0 when the water ratio is equal to each alcohol quantity, which means catalyst 
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active sites were fully covered by the water. No alcohol could reach the Pt surface. When using 6 

nm Pt NPs loaded in MCF-17, different tendency was shown in the 2-butanol oxidation reaction 

in the gas phase. The water didn’t poison the reaction, the relative TOF still remained 84% of the 

water-free reaction activity at Xwater ratio= 1. In the liquid phase alcohol oxidation reaction, water 

coadsorption effect on the TOF showed different tendency in each case (Figure 6B). In the 

methanol and ethanol oxidation reactions, the relative TOFs were gradually decreased to 0 when 

the water ratio was equal to each alcohol quantity. In the 2-propanol oxidation reaction, the 

relative TOFs were increased 4 times higher compared to pure liquid alcohol by added water 

(Xwater ratio= 0.8). Further increment in the water concentration resulted in the decline of activity. 

In the 2-butanol oxidation reaction, only 1 ml water affected the relative TOF decrease to 12% of 

the water-free reaction activity.  

 

Figure 6. Water coadsorption effect on TOF of alcohol oxidation reactions (A) gas (10 Torr 

alcohol, 1-10 Torr water vapor, 50 Torr O2, He as balance, in total 770 Torr, 60 °C, over 4 nm 
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(C1-C3 alcohol) and 6 nm (2-butanol) Pt/MCF-17) and (B) liquid phase (7.5-15 ml pure alcohol, 

0-7.5 ml distilled water, in total 15 ml volume, C1-C3 alcohol:  dissolved oxygen under 1 bar, 60 

°C over 4 nm Pt/MCF-17, 2-BuOH: dissolved oxygen under 3 bar, 80 °C over 6 nm Pt/MCF-17) 

The hydrophilicity of alcohol seems to be correlated with these phenomena. Methanol, ethanol 

and 2-propanol are miscible in water, while 2-butanol can be soluble by 12.5 g in 100 ml water 

due to the hydrophobic alkyl chain.21 Pt NPs are covered by PVP capping agent which has 

amphiphilicity.  In the gas phase where alcohol and water vapor can move freely, C1-C3 alcohol 

allows water to cover the Pt active site leading to poison the reaction progress. On the other hand, 

once 2-butanol attaches to the metal surface, it does not allow water to coadsorb on the catalyst. 

In the liquid phase where high concentrated alcohol exists around the catalyst, specific amount of 

water prompted the reaction turnover in 2-propanol oxidations. Meanwhile, water preferably 

gather around the catalyst due to the hydrophobicity of 2-butanol, poison the 2-butanol 

oxidations significantly in the liquid phase.  

 

Figure 7. Water coadsorption effect on product selectivity of alcohol oxidation reactions in the 

gas phase (10 Torr alcohol, 1-10 Torr water vapor, 50 Torr O2, He as balance, in total 770 Torr, 

60 °C, over 4 nm (C1-C3 alcohol) and 6 nm (2-butanol) Pt/MCF-17) 
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Figure 7 shows the water coadsorption effect on the product selectivity in the gas phase. In the 

water-free methanol oxidation reaction, the selectivity was 37% of formaldehyde, and then went 

down gradually to 29% at the methanol to water ratio of 2:1. In C2-C4 alcohol oxidation 

reactions in the gas phase, the selectivity remained steady regardless of the water quantity. These 

results suggest that the water coadsoption does not affect the product selectivity under our 

conditions. 

3.5. Sum frequency generation analysis 

In order to clarify the reaction mechanism under different phase condition, we have examined 

SFG analysis about various alcohol species. Here 2-propanol oxidation SFG results was shown 

as below. 

Figure 8 shows the correlation between reaction phase and 2-propanol molecular orientation on 

the catalyst surface. In the gas phase reaction condition, three vibrational peaks at ~2875 cm-1 

(symmetric CH3 stretch), ~2940 cm-1 (Fermi resonance), and ~2970 cm-1 (asymmetric CH3 

stretch) were detected. While in the liquid phase, the asymmetric stretch peak was increased and 

the symmetric stretch peak was decreased, which indicates the 2-propanol molecular orientation 

dependency on the reaction phase.  
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Figure 8. SFG spectra of gas (a) and liquid phase (b) 2-propanol on 4 nm Pt NPs under 

reaction conditions with O2 and 60°C 

3.6. DFT calculation 

In order to reveal the alcohol molecular orientation possibility and how it affects to the 

reaction mechanism, DFT calculation was studied on 2-propanol oxidation reaction. Figure 9 

shows that the minimum energy configurations of 2-propanol molecules on Pt (111) surface for 

the gas phase (a) and liquid phase (b) conditions. In the gas phase, the 2-propanol molecules 

preferably orient as “lying down” on the surface while “standing up” in the liquid phase. This 

conformation difference can be explained by molecular steric effect; molecules have to stand up 

for packing in high density liquid phase. Furthermore this phenomenon induces the different 

distance between β-hydrogen (β-H) of the 2-propanol and Pt surface. In the previous study on 

alcohol oxidation reaction, the rate-limiting step is believed to be the dissociation of methylene 

C-H in the alkoxide assisted by oxygen.22,23 In the table 1, the β-H-Pt distance was 4.451Å for 
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the low concentrated condition, while 2.572Å for the high concentrated condition. It appears to 

be easier for the β-hydrogen to dissociate from the alkoxide species in the higher alcohol 

concentrated condition, which decreases the reaction activation energy in the liquid phase 

compared with that in the gas phase. 

  

Figure 9. DFT calculation for the minimum energy configurations of 2-propanol molecules on 

Pt (111) surface for the gas phase (a) and liquid phase (b) conditions (Pt-gray, C-brown, O-red, 

H-blue) 

Table 1. 2-propanol molecular orientations as angles of C-C bonds relative to surface normal, 

adsorption energy, nearest surface-molecule distances, and nearest β-H-Pt distances for different 

concentrations of 2-propanol molecules on Pt (111) surface 

  

4. CONCLUSIONS 
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A wide variety of alcohol oxidation reactions with molecular oxygen over size-controlled Pt 

catalyst were discussed among methanol, ethanol, 2-propanol and 2-butanol. Generally, the 

turnover frequency increased with the catalyst particle size. The activation energies were similar 

with changes of the particle size and alcohol species but higher in the gas phases rather than 

those in the liquid phases. Water poisoned the catalyst surface and inhibited the oxidation 

reaction progress in the gas phases, while promoted the reaction in the liquid phases. The SFG 

and DFT analysis revealed that the alcohol molecule tends to pack horizontally on the metal 

surface in low concentration conditions, while it preferably stands up in high concentration 

conditions. The different molecular orientation of alcohol on the reaction active site affects the 

dissociation of the β-hydrogen of the alcohol and reaction activation energy. Further study on 

another alcohol oxidations catalyzed by Pt/MCF-17 is in progress and will be published soon.  
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