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Abstract. The ensemble Kalman inversion is widely used in practice to estimate

unknown parameters from noisy measurement data. Its low computational costs,

straightforward implementation, and non-intrusive nature makes the method appealing

in various areas of application. We present a complete analysis of the ensemble

Kalman inversion with perturbed observations for a fixed ensemble size when applied

to linear inverse problems. The well-posedness and convergence results are based on

the continuous time scaling limits of the method. The resulting coupled system of

stochastic differential equations allows to derive estimates on the long-time behaviour

and provides insights into the convergence properties of the ensemble Kalman inversion.

We view the method as a derivative free optimization method for the least-squares

misfit functional, which opens up the perspective to use the method in various areas of

applications such as imaging, groundwater flow problems, biological problems as well

as in the context of the training of neural networks.
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1. Introduction

Inverse problems arise in various fields of sciences and engineering. Methods to efficiently

incorporate data into models are needed to reduce the overall uncertainty and to

ensure the reliability of the simulations under real world conditions. The Bayesian

approach to inverse problems provides a rigorous framework for the incorporation and

quantification of uncertainties in measurements, parameters and models. However, in
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computationally intense applications, the approximation of the solution of the Bayesian

inverse problem, the posterior, might be prohibitively expensive. In such settings,

the ensemble Kalman filter (EnKF), originally introduced by Evensen [1] for data

assimilation, has been reported to produce reliable estimates of the unknown parameters

with low computational cost, making the method very appealing for large scale problems.

Areas of applications include, among others, groundwater flow problems [2], climate

models [3], biological problems [4], image reconstruction [5] and building [6] and material

sciences [7]. Most recent directions involve the use of the ensemble Kalman inversion

as a derivative free optimization method, in particular in the context of the training of

neural networks [8]. Despite its documented success, the ensemble Kalman inversion is

underpinned by limited theoretical understanding. The goal of our work is to give useful

insights into properties of the method and provide tools for a systematic development

and improvement.

For linear dynamical systems and Gaussian initial conditions, analysis of the large

ensemble size limit has been done e.g. in [9, 10]. Convergence to the mean-field Kalman

filter for nonlinear systems can be found in [11]. Multilevel extensions are proposed e.g.

in [12, 13]. In [14, 15, 16], the authors present an analysis of the long-time behaviour and

ergodicity of the ensemble Kalman filter with arbitrary ensemble size establishing time

uniform bounds to control the filter divergence with variance inflation techniques and

ensuring in addition the existence of an invariant measure. Accuracy results have been

recently established for a fixed ensemble size in the linear Gaussian setting, see [17, 18]

and for ensemble Kalman-Bucy filters applied to continuous-time filtering problems, see

[19, 20].

For inverse problems, the large ensemble size limit has been investigated in [21].

It has been shown that the ensemble Kalman inversion (EKI) is not consistent with

the Bayesian perspective in the nonlinear setting, but can be interpreted as a point

estimator of the unknown parameters. We will adopt this viewpoint throughout the

paper and analyze the behavior of the EKI as an optimization method of the least-

squares misfit functional. However, to motivate the algorithm, we will shortly introduce

the Bayesian setting and derive the ensemble Kalman filter for inverse problems. In

[22], it was demonstrated that the continuous time limit of the EKI algorithm is an

interacting set of gradient flows, see also [23, 24, 25] for the continuous time limit of

the EnKF in the data assimilation context. In the discrete setting, the connection to

deterministic regularisation techniques is established in [26, 27]. In the following, we

will interpret the EKI method as a numerical discrete approximation of a stochastic

differential equation, cp. [28] and show well-posedness and asymptotic behaviour of the

stochastic differential equation. Our work will extend the results from [22, 29] to the

inversion with perturbed observations. Though both methods, i.e. the limit of the EKI

with perturbed observations and the deterministic limit from [22], can be analysed from

an optimization perspective, the EKI variant with perturbed observation is shown to be

second order accurate, whereas the deterministic limit underestimates the covariance in

the linear, Gaussian setting, see e.g. [1]. In addition, in the nonlinear setting, methods
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that add noise to data are reported to be more robust to assumptions about linearity

and normality, see e.g. [30] and the references therein. We therefore believe that the

EKI with perturbed observations is a good starting point for methods (also of higher

accuracy) in the nonlinear, non-Gaussian setting and that the analysis presented here

provides valuable insights for the development of these methods.

Our contribution consists of providing a complete analysis of the ensemble Kalman

inversion with perturbed observations for linear forward operators. The presented results

hold true for arbitrary prior distributions on the unknown parameters, i.e. no Gaussian

assumption is invoked. We want to stress that we analyze the algorithm in practical

regimes by focusing on results for a fixed ensemble size. We study the continuous

time limit of the ensemble Kalman inversion, which allows to establish well-posedness

and accuracy results by exploiting the underlying structure of the limiting coupled

stochastic differential equations for the particles. In particular, we make the following

main contributions:

• We prove the existence and uniqueness of solutions of the limiting system of

stochastic differential equations, thus well-posedness of the algorithm.

• We quantify the ensemble collapse in the observation as well as in the parameter

space. The ensemble collapse is characterized in terms of moments and almost

sure convergence with given rate.

• In case of exact data, we establish convergence results to the truth using variance

inflation. The convergence is characterized in terms of second moments and

almost sure convergence with given rate. Under additional assumptions on

the forward operator, the results in the data space can be transferred to the

parameter space.

• We provide numerical experiments which illustrate the theoretical results studied

in this paper.

We do not show strong convergence of the discrete EnKF iteration to continuous paths

of the corresponding SDE. This would be interesting and there are preliminary results

[28], but this is still ongoing research.

The remainder of the article is structured as follows. At the end of this section, we

formulate the inverse problem and the Bayesian approach to it. Section 2 is devoted to

the ensemble Kalman inversion with perturbed observations. In section 3 we formulate

the continuous time limit of the algorithm, introduce the assumptions on the forward

problem and prove the well-posedness of the method, i.e. we show the existence and

uniqueness of strong solutions of the limit. Section 4 presents the results on the ensemble

collapse, in the data and parameter space. In section 5, we show convergence to the truth

using variance inflation techniques. Numerical experiments illustrating the theoretical

findings are given in section 6. Finally, in section 7, we conclude with a short summary

of the main results and discussion of future work. In Appendix A auxiliary results are

presented and and Appendix B contains the proof on the higher-order ensemble collapse.
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Let G ∈ C(X ,RK) denote the forward response operator mapping the unknown

parameters u ∈ X to the data space RK , where X is a separable Hilbert space and K ∈ N
denotes the number of observations. We consider the inverse problem of recovering

unknown parameters u ∈ X from noisy observation y ∈ RK given by

y = G(u) + η ,

where η ∼ N (0,Γ) is a Gaussian with mean zero and covariance matrix Γ, which models

the noise in the observations and in the model.

Following the Bayesian approach, for fixed y ∈ RK we introduce the least-squares

functional Φ(·; y) : X → R by

Φ(u; y) =
1

2
|(y − G(u))|2Γ .

with | · |Γ := |Γ− 1
2 · | denoting the weighted Euclidean norm in RK . The unknown

parameter u is modeled as a X -valued random variable with prior distribution µ0.

Thus, the pair (u, y) is a jointly varying random variable on X × RK . We assume

for the observational noise that η ∼ N (0,Γ) is independent of u ∼ µ0.

By Bayes’ Theorem, the solution to the inverse problem is the X -valued random

variable u | y ∼ µ where the law µ is given by

µ(du) =
1

Z
exp(−Φ(u; y))µ0(du)

with the normalization constant Z, where

Z :=

∫
X

exp(−Φ(u; y))µ0(du).

Note that evaluation of the posterior requires evaluation of the forward model via

Φ(u; y).

2. The EnKF for Inverse Problems

The Ensemble Kalman methodology consists of choosing an ensemble of “particles” by

drawing from the prior which are then transformed to a new set of particles via a linear

Gaussian update. A good idea (see [22, 27] for details) is to do this not in one big leap

but in an iteration of steps. This amounts to interpolating the step from prior µ0 to the

posterior µ by choosing an artificial time index n and defining a sequence of measures

µ0, µ1, µ2, . . . , µN where µ0 is the prior and µN = µ is the posterior, i.e.

µn+1(du) =
1

Zn
exp(−hΦ(u; y))µn(du) , n = 0, . . . , N − 1

with h = N−1 and Zn =
∫

exp(−hΦ(u))µn(du).. The iterative form of the Ensemble

Kalman methodology iterates the initial ensemble of particles through this set of

intermediate measures. This is the setting we will constrain ourselves. Note again that

any “time” n or (later) t is entirely artificial (transformation) time and independent of

any physical time which may be present in the data.



Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion 5

From now on, the set {u(j)
0 }j denotes the initial ensemble of particles with each

particle living in parameter space: u
(j)
0 ∈ X . The iteration of particles consists of

the set {u(j)
n }j,n where j is the ensemble index and n the artificial time index. Each

particle again is an element of parameter space: u
(j)
n ∈ X . The measures µn will be

approximated by an equally weighted sum of Dirac measures

µn '
1

J

J∑
j=1

δ(j)
un (1)

via the ensemble of particles. The initial ensemble is constructed based on the prior

distribution and then mapped to the next iteration via a Gaussian approximation, i.e.

given {u(j)
n }j,n, the transformed ensemble {u(j)

n+1}j,n satisfies

ūn+1 = un +Kn(y − G(un)) C(un+1) = C(un)−KnC
pu(un)

with Kn = Cup(un)(Cpp(un)+ 1
h
Γ)−1. The operators Cpp, Cup and Cpu are the empirical

covariances defined on X J by

Cpp(u) =
1

J

J∑
j=1

(G(u(j))− G)⊗ (G(u(j))− G),

Cup(u) =
1

J

J∑
j=1

(u(j) − u)⊗ (G(u(j))− G),

Cpu(u) =
1

J

J∑
j=1

(G(u(j))− G)⊗ (u(j) − u)

where u is short for the multiindex vector (u(j))j ∈ X J and ⊗ denotes the tensor product

(or rank one operator) given by

z1 ⊗ z2 : H2 → H1 with h 7→ z1 ⊗ z2(h) := 〈z2, h〉H2 · z1

for Hilbert spaces (H1, 〈·, ·〉H1), (H2, 〈·, ·〉H2) and z1 ∈ H1, z2 ∈ H2. The empirical means

are given by

u =
1

J

J∑
j=1

u(j), G =
1

J

J∑
j=1

G(u(j)).

The transformation of the ensemble from iteration n to n+1 is not uniquely determined

via the Kalman update formula. For the EKI with perturbed observations, the update

formula is shown to be satisfied in the mean, see e.g. [1].

Although we consider a Gaussian approximation for the measures µn, for our

theoretical results we do not require any assumption on Gaussian prior distributions.

For a given artificial step-size h > 0 and J ≥ 2 particles, the EnKF iteration for

the j-th particle is given by

u
(j)
n+1 = u(j)

n + Cup(un)(Cpp(un) + h−1Γ)−1(y
(j)
n+1 − G(u(j)

n )), j = 1, . . . , J , (2)

where the initial particles u
(j)
0 , j = 1, . . . , J are draws from the prior distribution. In

each step, we consider artificially perturbed data

y
(j)
n+1 = y + ξ

(j)
n+1 ,
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where the perturbations ξ
(j)
n+1, with respect to both j and n, are i.i.d. random variables

distributed according to N (0, h−1Γ). For a derivation of the EnKF for inverse problems,

we refer to [31].

3. Continuous Time Limit

The continuous time limit of the discrete EnKF inversion (2) is formally a time

discretization of the following SDE:

du
(j)
t = Cup(ut)Γ

−1(y − G(u
(j)
t )) dt+ Cup(ut)Γ

−1/2 dW
(j)
t . (3)

Using the definition of the empirical covariance, (3) can be formulated equivalently as

du
(j)
t =

1

J

J∑
k=1

〈
G(u

(k)
t )− Gt, (y − G(u

(j)
t )) dt+

√
Γ dW

(j)
t

〉
Γ

(u
(k)
t − ut) (4)

with 〈·, ·〉Γ = 〈Γ− 1
2 ·,Γ− 1

2 ·〉, where 〈·, ·〉 denotes the standard Euclidean inner-product on

RK . The processes W (j) are independent Brownian motions on RK . We further denote

by Ft = σ(us, s ≤ t) the filtration introduced by the particle dynamics. Most of the time

we will write ut or u(t) to emphasize the dependence on time t. If the time dependence

is clear from the context, we simplify the notation to u.

The formulation (4) reveals that solutions satisfy a generalization of the subspace

property of [31, Theorem 2.1] to continuous time.

Lemma 3.1. Assume that G is locally Lipschitz and let S be the linear span of {u(j)
0 }Jj=1,

then u
(j)
t ∈ S for all (t, j) ∈ [0,∞)× {1, . . . , J} almost surely.

We do not give all the technical details of the proof. First one needs to show that

the initial value problem related to (4) has a unique X -valued solution, which is assured

by a local Lipschitz-property of the drift and diffusion. As the vector field on the right

hand side of (4) maps S in S, we can show by the same argument that there is also

a unique S-valued solution. Thus by the uniqueness in any X both solutions coincide,

and all solution must be S-valued. The subspace property reveals the regularization

effect of the ensemble of particles in the inverse setting. Due to Lemma 3.1, the EKI

estimate lies in the subspace spanned by the initial ensemble, which is usually a much

smaller space than the original parameter X . Thus, the discretization via the ensemble

of particles can be interpreted as a regularization or stabilization of the inverse problem.

3.1. The Linear Problem

For the whole paper, we will assume that the forward response operator is linear, i.e.

G(·) = A· with A ∈ L(X ,RK). Then the continuous time limit (4) reads as

du
(j)
t =

1

J

J∑
k=1

〈
A(u

(k)
t − ut), (y − Au

(j)
t ) dt+

√
Γ dW

(j)
t

〉
Γ

(u
(k)
t − ut). (5)
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We simplify notation by defining the empirical covariance operator

C(u) =
1

J

J∑
k=1

(u(k) − u)⊗ (u(k) − u). (6)

Thus equation (5) can be rewritten in the form

du
(j)
t = C(ut)A

∗Γ−1(y − Au(j)
t ) dt+ C(ut)A

∗Γ−1/2 dW
(j)
t . (7)

3.2. Well-posedness of the EnKF inversion

This section is devoted to proving existence and uniqueness of global solutions of the

set of coupled SDEs (7). Again, the local existence and uniqueness of X -valued local

solutions to (7) is straightforward by the local Lipschitz-property of the drift and

diffusion on the right-hand side. Thus we rely on the subspace property of Lemma

3.1, and first show that we can reduce the X -valued setting without loss of generality

to a finite-dimensional setting.

Lemma 3.2. Without loss of generality we assume that the initial ensemble

(u
(j)
0 )j∈{1,...,J} is linearly independent almost surely and spans a J-dimensional vector

space S.

Then there exists a linear operator Ã : RJ → RK such that equation (7) restricted

to S is equivalent to

dv
(j)
t =

1

J

J∑
k=1

〈
Ãv

(k)
t − Ãvt, (y − Ãv

(j)
t ) dt+ Γ

1
2 dW

(j)
t

〉
Γ

(v
(k)
t − vt) (8)

for v
(j)
t ∈ RJ , vt := 1

J

J∑
k=1

v
(k)
t , in the following sense: For u

(j)
t =

J∑
k=1

(v
(j)
t )k · u(k)

0 one has

that ut is a S-valued solution of (7) if and only if vt is a solution of (8).

Proof. By Lemma 3.1, any S-valued process u(t) can be uniquely expanded as a linear

combination u(j)(t) =
J∑
l=1

v
(j)
l (t) · u(l)(0) for every j ∈ {1, . . . , J}, t ≥ 0 and coordinates

v
(j)
l (t) ∈ R. Let Φ−1 : RJ → S denote the basis isomorphism, i.e. Φ : S → RJ

with u =
J∑
l=1

vlu
(l)(0)

Φ7→ (v1, . . . , vJ)>. Since Φ is a linear isomorphism, (7) can be

equivalently transformed to

dΦ(u(j)(t)) = Φ(du(j)(t))

=
1

J

J∑
k=1

〈A(u(k)(t)− u(t)), (y − Au(j)(t)) dt+ Γ
1
2 dW

(j)
t 〉Γ(Φ(u(k)(t))− Φ(u(t))) .

Thus, with Ã = AΦ−1, we obtain

dΦ(u(j)(t)) =
1

J

J∑
k=1

〈ÃΦ(u(k)(t)− u(t)), (y − ÃΦ(u(j)(t))) dt+ Γ
1
2 dW

(j)
t 〉Γ

· (Φ(u(k)(t))− Φ(u(t)))
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The assertion follows with v(j) := Φ(u(j)).

Remark 3.3. By the previous lemma solving equation (7) is equivalent to solving the

finite dimensional equation (8). Thus, to simplify notation we will assume without loss

of generality that X = RI , I ∈ N, I ≤ J . In the case of linearly independent initial

ensemble we can assume I = J .

For the study of the dynamical behavior of the ensemble, we will sometimes require

the following assumption for results in the parameters space:

The linear operator Ã defined above is one-to-one. (9)

Note that Assumption (9) seems to be a rather strict assumption: It requires that the

forward operator “sees everything” and secondly, this means that (ÃΦ(u
(j)
0 ))j∈{1,...,J} ∈

RK is linearly independent. This implies the restriction on the number of particles

J ≤ K. However, note that this assumption is on the operator Ã, i.e. we do not assume

that A is one-to-one. The discretization of the parameter space via the ensemble of

particles acts as a regularization of the inverse problem in this setting. We will need

assumption (9) only when we want to prove dynamical properties in parameter space.

This makes sense as we cannot hope for convergence to the true parameter if the forward

operator is indifferent with respect to some components of this parameter value. Our

convergence results in the observation space hold without assumption (9).

In order to prove the existence and uniqueness of global solutions we rewrite the

set of coupled SDEs (7) as a single SDE of the following form:

dut = F (ut) dt+G(ut) dWt,

with ut = (u
(j)
t )j∈{1,...,J} ∈ RIJ×1,Wt = (W

(j)
t )j∈{1,...,J} ∈ RJ2×1 and

F (x) = (C(x)A∗Γ−1(y − Ax(j)))j∈{1,...,J} ∈ RIJ×1,

G(x) = diag(C(x)A∗Γ−
1
2 )j∈{1,...,J} ∈ RIJ×J2

,

where x = (x(j))j∈{1,...,J} ∈ RIJ×1 and diag(Bj)j∈{1,...,J} is a diagonal block matrix with

matrices (Bj)j∈{1,...,J} on the diagonal. For a given matrix B = (bij)ij ∈ Rn×m, m, n ∈ N,

the Frobenius norm ‖B‖F is defined by ‖B‖2
F = traceB>B =

∑
i,j b

2
ij ≥ ‖B‖2

2.

We will now formulate and prove the main result of this section on the well-

posedness of the EnKF inversion.

Theorem 3.4. Let u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable maps u

(j)
0 : Ω → X which are

linearly independent almost surely. Then for all T ≥ 0 there exists a unique strong

solution (ut)t∈[0,T ] (up to P-indistinguishability) of the set of coupled SDEs (7).

Proof. For the proof we will assume without loss of generality that X = RI for I

sufficiently large, as discussed before. The proof of existence and uniqueness of local

strong solutions for (7) (up to a stopping-time) is standard, due to the local Lipschitz

property of the drift F and the diffusion G. Note that both are polynomials.
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The global existence of a strong solution is based on stochastic Lyapunov theory.

See for example Theorem 4.1 of [32]. We only need to construct a function V ∈
C2(X ;R+) such that for some constant c > 0

LV (x) := ∇V (x) · F (x) +
1

2
trace(GT (x)Hess[V ](x)G(x)) ≤ cV (x) (10)

and

inf
|x|>R

V (x)→∞ as R→∞ (11)

hold true.

We can uniquely decompose y ∈ RK as y = y1 + y2, with y1 ∈ R(Γ−
1
2A) and

y2 ∈ R(Γ−
1
2A)⊥, where R(Γ−

1
2A) denotes the image of Γ−

1
2A. We fix ũ ∈ RJ such that

Γ−
1
2Aũ = y1 and define the Lyapunov function

V (u) := V1(u) + V2(u) =
1

J

J∑
j=1

‖u(j) − u‖2 + ‖u− ũ‖2.

Obviously, (11) is satisfied.

The generator L applied to V is given by LV = LV1 + LV2 with

LV1(u) = − J + 1

J3

J∑
j,l=1

〈u(j) − u, u(l) − u〉〈Γ−
1
2A(u(l) − u),Γ−

1
2A(u(j) − u)〉

LV2(u) = − 2

J

J∑
l=1

〈u− ũ, u(l) − u〉〈Γ−
1
2A(u(l) − u),Γ−

1
2A(u− ũ)〉

+
1

J3

J∑
j,l=1

〈u(j) − u, u(l) − u〉〈Γ−
1
2A(u(l) − u),Γ−

1
2A(u(j) − u)〉,

where we used 〈Γ− 1
2A(u(l)−u), y2〉 = 0 for all l ∈ {1, . . . , J} wich is true by construction.

Thus, as A?Γ−1A is a symmetric non-negative matrix by Lemma Appendix A.2 the

nonnegativity of the generator follows.

LV (u) = − 2

J

J∑
l=1

〈u− ũ, u(l) − u〉〈Γ−
1
2A(u(l) − u),Γ−

1
2A(u− ũ)〉

− 1

J2

J∑
j,l=1

〈u(j) − u, u(l) − u〉〈Γ−
1
2A(u(l) − u),Γ−

1
2A(u(j) − u)〉

≤ 0.

Thus (10) holds true, for all c > 0.

4. Quantification of the Ensemble Collapse

The dynamics of the Ensemble Kalman filter as presented here can be decomposed into

two parts:
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• Ensemble collapse. This means convergence of all ensemble members to their

joint mean (“The estimator becomes more confident”).

• Convergence of the ensemble mean. This means that the ensemble mean will

tend to a parameter value which is consistent with the data.

Those two notions are totally different in concept but also strongly intertwined in the

dynamics of the EnKF (see also the discussion at the beginning of section 5).

We start by quantifying the ensemble collapse. We will present results in the data

(or observation) space as well as in the parameter space.

For the further analysis, we introduce the centered quantities

e(j) = u(j) − u, r(j) = u(j) − u†,

where e(j) denotes difference of each particles to the mean and r(j) denotes the residuals.

Here, the data y is the perturbed image of a truth u† ∈ X under A, i.e. y = Au† + η.

The quantities satisfy the following equations (note that C(u) = C(e) as the mean of

the e(j) vanishes)

de
(j)
t = −C(et)A

∗Γ−1Ae
(j)
t dt+ C(et)A

∗Γ−
1
2 d(W

(j)
t −W t), (12)

dr
(j)
t = du

(j)
t = C(ut)A

∗Γ−1(y − Au(j)
t ) dt+ C(ut)A

∗Γ−1/2 dW
(j)
t , (13)

with W t := 1
J

J∑
j=1

W (j). The dynamical behavior of the empirical mean is given by

dut =
1

J

J∑
k=1

(u
(k)
t − ut)〈A(u

(k)
t − ut), (y − Aut) dt+ Γ

1
2 dW t〉Γ.

To simplify notation, we also introduce the transformed quantities

r(j) := Γ−
1
2Ar(j), e(j) := Γ−

1
2Ae(j) = r(j) − r

denoting the residuals in observation space and the mapped difference of each particle

to the empirical mean.

We will now make a first step towards proving ensemble collapse. As we work with

SDEs, any dynamical property can only hold in some probabilistic sense. The following

lemma shows that we have ensemble collapse in the Lp sense, with the upper bound for

valid parameters p being dependent on the number of particles J .

Lemma 4.1. Let p ∈ [2, J + 3) and u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable maps

u
(j)
0 : Ω→ X such that E[ 1

J

J∑
j=1

|e(j)
0 |p] <∞. Then

t ∈ [0,∞) 7→ ‖et‖Lp(Ω,RK) := E

[
1

J

J∑
j=1

|e(j)
t |p

] 1
p

is monotonically decreasing in t. Furthermore there exists a constant C > 0 such that

for all t ≥ 0 ∫ t

0

E

[
1

J

J∑
j=1

|e(j)
s |p+2

]
ds < C.
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Proof. We will prove the assertion in the case p = 2, in order to give the key ideas. The

case p > 2 is very similar, but much more technical. We postpone all details in that

case to the appendix.

Applying Γ−
1
2A to e(j) implies that the quantity e(j) satisfies (see (12) and (6))

de
(j)
t = −C(et)e

(j)
t dt+ C(et) d(W

(j)
t −W t)

= − 1

J

J∑
k=1

e
(k)
t 〈e

(k)
t , e

(j)
t 〉 dt+

1

J

J∑
k=1

e
(k)
t 〈e

(k)
t , d(W

(j)
t −W t)〉.

Itô’s formula gives

d|e(j)
t |2 = 2〈e(j)

t , de
(j)
t 〉+ 〈de(j)

t , de
(j)
t 〉

= − 2

J

J∑
k=1

〈
e

(j)
t , e

(k)
t

〉2

dt+ 2e
(j)T
t C(et) d(W

(j)
t −W t)

+
1

J2

J∑
k,l=1

〈
e

(k)
t , e

(l)
t

〉〈
e

(k)
t , d(W

(j)
t −W )

〉〈
e

(l)
t , d(W

(j)
t −W )

〉
and with Lemma Appendix A.1 to evaluate the Itô correction we get

d|e(j)
t |2 = − 2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉2 dt+ 2e

(j)T
t C(et) d(W

(j)
t −W t) +

J − 1

J3

J∑
k,l=1

〈e(k)
t , e

(l)
t 〉2 dt .

Summing over all particles leads to

d

(
1

J

J∑
j=1

|e(j)
t |2

)
= − J + 1

J3

J∑
j,k=1

〈
e

(j)
t , e

(k)
t

〉2

dt+
2

J

J∑
j=1

e
(j)>
t C(et) d(W

(j)
t −W t)

= − J + 1

J3

J∑
j,k=1

〈
e

(j)
t , e

(k)
t

〉2

dt+
2

J

J∑
j=1

e
(j)>
t C(et) dW

(j)
t .

The last step follows from
∑

j e
(j) = 0. This yields

1

J

J∑
j=1

|e(j)
t |2 −

1

J

J∑
j=1

|e(j)
0 |2

= −J + 1

J3

∫ t

0

J∑
j,k=1

〈e(j)
t , e

(k)
t 〉2 dt+

2

J

∫ t

0

J∑
j=1

e
(j)>
t C(et) dW

(j)
t .

(14)

Now we cannot simply take the expectation, as we do not know that the stochastic

integral is a martingale. We need a localization. Set t, s ≥ 0 and let (τn)n∈N with

τn
n→∞ a.s. be a sequence of deterministically bounded stopping times, such that∫ s+(t∧τn)

s

e(j)T
s C(es) dW (j)

s

is a martingale for every j ∈ {1, · · · , J}. This is possible by definition of local

martingales, with any stochastic integral being one. For example we can take for τn
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the minimum of n and the first exit time of es at radius n. Then, for all n ∈ N, from

(14) (after rebasing the integration interval from [0, t] to [s, s+ t]) we obtain

E

[
1

J

J∑
j=1

|e(j)
s+(t∧τn)|

2

]
− E

[
1

J

J∑
j=1

|e(j)
s |2

]
= −E

[∫ s+(t∧τn)

s

J + 1

J3

J∑
j,k=1

〈e(j)
r , e(k)

r 〉2 dr

]
As τn →∞, applying Fatou’s lemma on the left hand side and applying the monotone

convergence theorem on the right hand side gives

E

[
1

J

J∑
j=1

|e(j)
s+t|2

]
− E

[
1

J

J∑
j=1

|e(j)
s |2

]
≤ −E

[∫ s+t

s

J + 1

J3

J∑
j,k=1

〈e(j)
r , e(k)

r 〉2 dr

]
≤ 0, (15)

which implies that E[ 1
J

J∑
j=1

|e(j)
t |2] is monotonically decreasing in t.

Finally,∫ t

0

E

[
J + 1

J3

J∑
j=1

|e(j)
s |4

]
ds ≤

∫ t

0

E

[
J + 1

J3

J∑
j,k=1

〈e(j)
s , e(k)

s 〉2
]

ds ≤ E

[
1

J

J∑
j=1

|e(j)
0 |2

]
,

where the first inequality is trivial by inserting non-negative terms in the sum and the

second inequality is (15) with s = 0. This proves the second claim.

Let us finally remark that τn → ∞ necessarily holds. If we assume that τn → τ∗

then the previous argument with s = 0 and arbitrary T > 0 gives E[ 1
J

J∑
j=1

|e(j)
t∧τ∗|2] <∞.

Thus t < τ∗ for our choice of stopping time.

The main obstacle in quantifying the ensemble collapse is proving that the

stochastic integral in (14) is actually a true martingale. See Lemma Appendix A.4

for details.

Theorem 4.2. Let u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable random variables u

(j)
0 : Ω→ X

such that C0 := E[ 1
J

J∑
j=1

|e(j)
0 |2] <∞. Then, the ensemble collapse is quantified by

E

[
1

J

J∑
j=1

|e(j)
t |2

]
≤ 1

J+1
J2 t+ 1

C0

. (16)

Proof. By Lemma Appendix A.4 we can directly take expectations in (14) to obtain

E

[
1

J

J∑
j=1

|e(j)
t |2

]
= E

[
1

J

J∑
j=1

|e(j)
0 |2

]
− J + 1

J3

∫ t

0

E

[
J∑

j,k=1

〈e(j)
s , e(k)

s 〉2
]

ds.

Note that by dropping the non-negative mixed terms j 6= k and by using Jensen’s

and Young’s inequality

J + 1

J3
E

[
J∑

j,k=1

〈e(j)
s , e(k)

s 〉2
]
≥ J + 1

J2
E

[
1

J

J∑
j=1

|e(j)
s |2

]2

.
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Thus setting t 7→ h(t) := E[ 1
J

J∑
j=1

|e(j)
t |2] we can write

h(t) = h(0)− J + 1

J2

∫ t

0

h2(s) ds−
∫ t

0

p(s)ds

for a non-negative function p ≥ 0. Hence, we can differentiate to obtain the differential

inequality

h′ ≤ −J + 1

J2
h2 ,

from which by a comparison argument for scalar ODE it follows that

h(t) = E

[
1

J

J∑
j=1

|e(j)
t |2

]
≤ 1

J+1
J2 t+ 1

h(0)

.

Corollary 4.3. Under the same assumptions as in Theorem 4.2 and under Assumption

(9) it holds true that

E

[
1

J

J∑
j=1

|e(j)
t |2

]
≤ 1

σmin

1
J+1
J2 t+ 1

C0

,

where σmin is the smallest eigenvalue of the positive definite operator A∗Γ−1A.

Proof. The assertion follows directly from the inequality

|e(j)|2 = |Γ−
1
2Ae(j)|2 = 〈e(j), A∗Γ−1Ae(j)〉 ≥ σmin|e(j)|2,

since A∗Γ−1A is positive definite.

Remark 4.4. Note that the bound in (16) deteriorates with growing number of particles

J , i.e. the result does not quantify the ensemble collapse in the large ensemble size

limit. However, the presented analysis is tailored for fixed ensemble size and we will

demonstrate in the numerical experiments that the derived bound (16) can be efficiently

used to quantify the collapse in this setting.

4.1. Higher-order ensemble collapse

Here we state the result for higher moments and postpone the proof to the appendix,

as they are very similar to but technically more involved than the case p = 2.

Theorem 4.5. Let p ∈ (2, J+3
2

) and let u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable maps

u
(j)
0 : Ω→ X such that E[ 1

J

J∑
j=1

|e(j)
0 |p] <∞. Then it holds true that

E

[
1

J

J∑
j=1

|e(j)
t |p

]
≤ J

p
22

p
C(p, J)K−

2
pJ1− 2

p t+

(
K

p−1
2 E

[
1
J

J∑
j=1

|e(j)
0 |p

])− 2
p


p
2
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with C(p, J) := p
J2 (1− (p−2+J)·(J−1)

2J2 − p−2
2J2 ).

Proof. The proof based on Itô’s formula and a comparison principle for ODEs is very

similar to the case p = 2. Details can be found in the appendix.

Remark 4.6. Note that a larger ensemble seems to regularize the dynamics. The higher

the ensemble number J , the larger is the highest moment of ensemble collapse we can

bound.

The restriction 2p < J+3 comes from the fact that we need the martingale property

of the stochastic integral, which we obtain from the bounds in Lemma 4.1.

Corollary 4.7. Under the same assumptions as in Theorem 4.5 and under Assumption

(9) it holds true that

E

[
1

J

J∑
j=1

|e(j)
t |p

]
≤ J

p
2σmin · 2

p
C(p, J)K−

2
pJ1− 2

p t+

(
K

p−1
2 E

[
1
J

J∑
j=1

|e(j)
0 |p

])− 2
p


p
2

,

where σmin is the smallest eigenvalue of the positive definite operator A∗Γ−1A and C(p, J)

is defined in Theorem 4.5.

4.2. Almost sure ensemble collapse

We have proven conditions for ensemble collapse in p-th moments, but a stronger

measure of stochastic convergence is almost sure convergence. This is the focus of

this section.

Theorem 4.8. Let u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable maps u

(j)
0 : Ω → X and

γ : R+ → R+ a positive, monotonically increasing and differentiable function such

that
∫∞

0
γ′(s)2

γ(s)
ds <∞. Then the trivial solution of

de
(j)
t = −C(et)e

(j)
t dt+ C(et)d(W

(j)
t −W t) (17)

is almost surely asymptotically stable with rate function ρ(t) = (γ(t))−
1
2 . In particular,

(e
(j)
t )j=1,...,J converges to zero almost surely as t→∞.

For examples of γ see the remark below.

Proof. The idea of this proof is based on Theorem 4.6.2 in [33]. We define the stochastic

Lyapunov function

V (e, t) = γ(t)
1

J

J∑
j=1

|e(j)|2.
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The generator applied to V fulfills

LV (e, t) =
γ′(t)

J

J∑
j=1

|e(j)|2 − γ(t)
J + 1

J3

J∑
j,k=1

〈e(k), e(j)〉2

≤ γ′(t)

J

J∑
j=1

|e(j)|2 − γ(t)
J + 1

J3

J∑
j=1

|e(j)|4.

We can maximize this w.r.t. (|e(1)|2, . . . , |e(J)|2) and get the following bound for LV .

LV (e, t) ≤ γ′(t)2

γ(t)

1

4

J2

J + 1
=: η(t)

Since
∫∞

0
η(t) dt < ∞, with Theorem 4.6.2 of [33] the trivial solution of (17) is almost

surely asymptotically stable with rate function ρ(t) = (γ(t))−
1
2 .

Corollary 4.9. Under the same assumptions as in Theorem 4.8 and assumption (9) it

holds true that (e
(j)
t )j=1,...,J converges to zero almost surely as t→∞ with rate function

ρ(t) = (γ(t))−
1
2 .

Remark 4.10. Let us give two examples of admissible γ(t):

• γ(t) = (t + ε)α for α ∈ (0, 1) and ε > 0 sufficiently small to obtain the rate

function ρ(t) = 1

(t+ε)
α
2

.

• γ(t) = (t + ε) log(t + ε)−α for arbitrarily small α > 1
2

and ε > 0 to obtain the

rate function ρ(t) = log(t+ε)
α
2

(t+ε)
1
2

4.3. Ensemble Collapse in the parameter space

The following result holds true without the strong assumption (9). It only shows a

monotone decrease, but not the collapse, where we need (9). See also Corollary 4.7 and

4.9.

Proposition 4.11. Let u0 = (u
(j)
0 )j∈{1,...,J} be F0-measurable maps u

(j)
0 : Ω → X such

that E[ 1
J

J∑
j=1

|e(j)
0 |2] < ∞. Then it holds true that t 7→ E[ 1

J

J∑
j=1

|e(j)
t |2]

1
2 is monotonically

decreasing for t ≥ 0.

Proof. Itô’s formula leads to

d|e(j)
t |2 = 2〈e(j)

t , de
(j)
t 〉+ 〈de(j)

t , de
(j)
t 〉

= − 2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉〈Γ−

1
2Ae

(k)
t ,Γ−

1
2Ae

(j)
t 〉 dt

+
2

J

J∑
k=1

〈e(j)
t , e

(k)
t 〉〈Γ−

1
2Ae

(k)
t , d(W

(j)
t −W t)〉

+
1

J2

J∑
k,l=1

J − 1

J
〈e(k)
t , e

(l)
t 〉〈Γ−

1
2Ae

(k)
t ,Γ−

1
2Ae

(l)
t 〉 dt
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and taking the mean over all particles j ∈ {1, . . . , J} gives

d(
1

J

J∑
j=1

|e(j)
t |2) = −J + 1

J3

J∑
j,k=1

〈e(k)
t , e

(j)
t 〉〈Γ−

1
2Ae

(k)
t ,Γ−

1
2Ae

(j)
t 〉 dt

+
2

J2

J∑
k,j=1

〈e(k)
t , e

(j)
t 〉〈Γ−

1
2Ae

(k)
t , d(W

(j)
t −W t)〉.

Again, we do not know, whether the stochastic integral is a martingale, and we need

again a localization. Consider as in Lemma 4.1 a sequence of stopping times (τn)n∈N
with τn →∞ a.s., such that∫ t∧τn

0

2

J2

J∑
k,j=1

〈e(k)
s , e(j)

s 〉〈Γ−
1
2Ae(k)

s , d(W (j)
s −W s)〉

is a martingale. We obtain for all n ∈ N

E[
1

J

J∑
j=1

|e(j)
t∧τn|

2] = E[
1

J

J∑
j=1

|e(j)
0 |2]− E[

∫ t∧τn

0

J + 1

J3

J∑
j,k=1

〈e(k)
s , e(j)

s 〉〈Γ−
1
2Ae(k)

s ,Γ−
1
2Ae(j)

s 〉 ds]

and hence, as we have the positivity of the integrand by Lemma Appendix A.2, we

obtain that E[ 1
J

J∑
j=1

|e(j)
t∧τn|2] is monotonically decreasing and bounded. Analogously to

the proof of Lemma 4.1, we can pass to the limit n → ∞ by Fatou’s lemma and the

monotone convergence theorem. This implies for t > s ≥ 0

E[
1

J

J∑
j=1

|e(j)
t+s|2] ≤ E[

1

J

J∑
j=1

|e(j)
s |2]− E[

∫ s+t

s

J + 1

J3

J∑
j,k=1

〈e(k)
r , e(j)

r 〉〈Γ−
1
2Ae(k)

r ,Γ−
1
2Ae(j)

r 〉 dr]

In particular, it follows that E[ 1
J

J∑
j=1

|e(j)
t |2] is monotonically decreasing.

5. Convergence to ground truth

Under the assumption that y is the image of a truth u† ∈ X under A, we are interested

now in the analysis of the convergence to the truth. Recall the equation

dr
(j)
t = −C(rt)r

(j)
t dt+ C(rt) dW

(j)
t .

The following properties can be shown for the residuals.

Proposition 5.1. Let y be the image of a truth u† ∈ X under A and u0 = (u
(j)
0 )j∈{1,...,J}

be F0-measurable maps u
(j)
0 : Ω→ X such that E[ 1

J

J∑
j=1

|r(j)
0 |2] <∞. Then E[ 1

J

J∑
j=1

|r(j)
t |2]

1
2

is monotonically decreasing.

Proof. The assertions follow by arguments similar to the proof of Proposition 4.11.
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The main issue in showing convergence of the residuals r(j) to zero is, seemingly

paradoxically, the fact of ensemble collapse. Now obviously, convergence cannot happen

without ensemble collapse (as the particles cannot converge on the same point if their

distance to their joint mean does not vanish) but ensemble collapse itself actually delays

convergence. To see this, consider the following toy model. It is deterministic, but the

same effects can be observed by straightforward extension to an SDE setting.

w′(t) = −w(t)3

z′(t) = −w(t)2 · z(t).

Now this system of ODEs can be solved explicitly by separation of variables and it can

be seen that for any w(0) 6= 0, both w and z will converge to 0 for t → ∞. It makes

sense to try and apply Lyapunov theory with a straightforward Lyapunov functional

V (w, z) = 1
2
(w2 + z2). Then

V̇ (w, z) = 〈w(t) · (−w(t)3) + z(t) · (−w(t)2 · z(t)) = −w(t)2 · V (w(t), z(t))

But V̇ (w, z) is not negatively definite in any neighborhood of (0, 0) (the problem being

the manifold w = 0). This means we cannot prove that 0 is an asymptotically stable

equilibrium. It actually is not asymptotically stable: If w(t) happens to become 0 at

any time t, the whole dynamics will stop there and will not approach (0, 0) any further.

The origin is rather “asymptotically stable if bounded away from w = 0” in a double-

cone-like manner.

In a similar way, the solution of the ODE y′(t) = −t−αy(t) will only converge to 0

if α ≤ 1, i.e. if the rate function does not converge to 0 too fast.

The EnKF dynamics works like this toy model: If the ensemble collapse (played

by w in the first model and the rate function t−α in the second model) happens too

fast, we cannot expect convergence. We suspect that it is possible to prove that the

ensemble collapse can be bounded from below (in contrast to also being bounded from

above by virtue of theorem 4.5) and this is the subject of ongoing work. However, the

numerical experiments suggest that the collapse happens too fast. In order to circumvent

this issue of “too quick ensemble collapse” we use artificial inflation of the covariance

operator by addition of a positively definite operator (but this is gradually reduced

with a certain rate). In addition to solving the problem of counterproductive ensemble

collapse, variance inflation stabilizes the convergence in a very suitable manner and is

used in practice for this reason, see e.g. [1, 34].

5.1. Variance Inflation

In order to correct rank deficiencies of the empirical covariance operator C(r), we will

use variance inflation in the following sense. Let B ∈ L(RK ,RK) be a positive definite

operator (for example the identity) and consider the equation

dr
(j)
t = −

(
C(rt) +

1

tα +R
B

)
r
(j)
t dt+ C(rt) dW

(j)
t , α ∈ (0, 1), R > 0. (18)
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This modification gives convergence of the mapped residuals. For sufficiently small rt,

the new term will dominate, and for α ∈ (0, 1) we then expect convergence to 0 at a rate

faster than any polynomial. The question is now whether and when this asymptotic for

small rt sets in.

Theorem 5.2. Assume that y is the image of a truth u† ∈ X under A and let

r0 = (r
(j)
0 )j∈{1,...,J} be F0-measurable maps r

(j)
0 : Ω → RK such that E[ 1

J

J∑
j=1

|r(j)
0 |2] < ∞,

B ∈ L(RK ,RK) a positive definite operator and (r
(j)
t )t≥0,j=1,...,J the solution of (18).

Then for all β > 0 it holds true that E[ 1
J

J∑
j=1

|r(j)
t |2] ∈ O(t−β) and E[ 1

J

J∑
j=1

|r(j)
t |2] is

monotonically decreasing.

Proof. Let B ∈ L(RK ,RK) be a positive definite operator, α ∈ (0, 1), R > 0 and

assume, that that the smallest eigenvalue of B is λmin = c > 0.

We derive an equation for 1
J

J∑
j=1

|r(j)
t |2 by using Itô’s formula:

d|r(j)
t |2 = −2

〈
r
(j)
t ,

(
C(rt) +

1

tα +R
B

)
r
(j)
t

〉
dt+ 2〈r(j)

t , C(rt)dW
(j)
t 〉

+
1

J

J∑
j=1

〈
r
(k)
t − rt, C(rt)(r

(k)
t − rt)

〉
dt.

Taking the empirical mean over all particles yields

d
1

J

J∑
j=1

|r(j)
t |2 = − 2

J

J∑
j=1

〈
r
(j)
t ,

(
C(rt) +

1

tα +R
B

)
r
(j)
t

〉
dt+

2

J

J∑
j=1

〈r(j)
t , C(rt)dW

(j)〉

+
1

J

J∑
k=1

〈r(k)
t − rt, C(rt)(r

(k)
t − rt)〉 dt .

Thus, for all t, s ≥ 0, it follows similarly to the proof of Lemma 4.1 that

E

[
1

J

J∑
j=1

|r(j)
t+s|2

]
≤ E

[
1

J

J∑
j=1

|r(j)
s |2

]
− 2

J

∫ s+t

s

E

[
J∑
j=1

〈r(j)
r , C(rr)r

(j)
r 〉

]
dr

− 2

J

∫ s+t

s

1

rα +R
E

[
J∑
j=1

〈r(j)
r , Br(j)

r 〉

]
dr

+
1

J

∫ s+t

s

E

[
J∑
j=1

〈r(j)
r − rr, C(rr)(r

(j)
r − rr)〉

]
dr

≤ E

[
1

J

J∑
j=1

|r(j)
s |2

]
− 1

J

∫ s+t

s

E

[
J∑
j=1

〈r(j)
r ,

(
C(rr) +

1

rα +R
B

)
r(j)
r 〉

]
dr ,

where we used Lemma Appendix A.2 and the non-negativity of B. This yields the

monotonicity, as both the covariance C(rr) as well as B are non-negative matrices.
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Now we will improve the estimate to obtain the asymptotic rate. Consider

S(t) = 1
J

J∑
j=1

|r(j)
t |2, then

d(tβS(t)) = βtβ−1S(t)dt+ tβdS(t) .

Now we can use all the previous estimates for the terms in dS together with the non-

negativity of the covariance matrix C(rt) and B ≥ λmin > 0 to obtain

tβES(t) ≤ β

∫ t

0

τβ−1ES(τ)dτ − 2

J

∫ t

0

τβ
λmin
τα +R

ES(τ)dτ

≤
∫ t

0

τβ−1
[
β −

2λmin
J

τ

τα +R

]
ES(τ)dτ .

There is a time T > 0 such that the integrand in the equation above is negative for all

t > T and thus using the monotonicity of ES(τ) we obtain for all t > T

tβES(t) ≤
∫ T

0

τβ−1
[
β −

2λmin
J

τ

τα +R

]
dτES(0),

which yields the asymptotic rate t−β for ES(t).

Remark 5.3. In case of a positive semidefinite matrix B, the convergence of the

residuals will then take place in the image space of the matrix B. The proof can

be straightforwardly generalized to this setting by projections of the quantities to the

corresponding subspace.

We can also verify almost sure convergence faster than any polynomial rate.

Theorem 5.4. Assume that y is the image of a truth u† ∈ X under A and let

r0 = (r
(j)
0 )j∈{1,...,J} be F0-measurable maps r

(j)
0 : Ω→ RK and B ∈ L(RK ,RK) a positive

definite operator. Then the solution of (18) is almost surely asymptotically stable with

rate function ρ(t) = t−
β
2 for all β > 0. In particular, (r

(j)
t )j=1,...,J converges to zero

almost surely as t→∞.

Proof. We define the Lyapunov function

V (r, t) = tβ
1

J

J∑
j=1

|r(j)|2

and obtain

LV (r, t) ≤ βtβ−1

J

J∑
j=1

|r(j)|2 − tβ 1

J

J∑
j=1

〈r(j),

(
C(r) +

1

tα +R
B

)
r(j)〉.

Thus,

LV (r, t) ≤ 1

J

J∑
j=1

|r(j)|2
(
β − λmint

tα +R

)
tβ−1.
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There is a T > 0 such that the bracket above is non-positive for all t ≥ T . We

obtain
∫∞

0
LV (r, t) dt ≤

∫ T
0
LV (r, t) dt. Moreover, by neglecting the negative term in

the bracket for t ≤ T we obtain

E[

∫ T

0

LV (rt, t) dt] ≤ E[

∫ T

0

βsβ−1 1

J

J∑
j=1

|r(j)
s |2 ds] ≤ T β

J
E[

J∑
j=1

|r(j)
0 |2] <∞,

by using the monotonicity of the sum. Hence,
∫∞

0
LV (rt, t) dt<∞ and thus rt is almost

surely asymptotically stable with rate function ρ(t) = t−
β
2 .

Remark 5.5. Note that the convergence rate is faster than any polynomial rate.

However, the proof reveals that the constant in the convergence result will grow w.r.t.

the rate β and α ∈ (0, 1), which is consistent with the numerical experiments presented

in section 6.

Our aim is to use variance inflation in the parameter space, such that we can apply

Theorem 5.2. We will use variance inflation in the finite dimensional system of SDEs of

the coordinates in the parameter space.

Let y ∈ AS where AS is the linear span of {Au(1)
0 , . . . , Au(J)} and consider the

equation

du
(j)
t = (C(ut) +

1

tα +R
B)A∗Γ−1(y − Au(j)

t ) dt+ C(ut)A
∗Γ−

1
2 dW

(j)
t , (19)

j = 1, . . . , J , for B positive definite, R > 0 and α ∈ (0, 1). Since y ∈ AS, the subspace

property still holds, i.e. u
(j)
t ∈ S for all (t, j) ∈ [0,∞)×{1, . . . , J}. The following result

transfers the results of Theorem 5.2 to the parameter space:

Corollary 5.6. Let y ∈ AS and assume that y is the image of a truth u† ∈ X under

A, A∗ is assumed to be one-to-one and let (u
(j)
t )t≥0,j=1,...,J be the solution of (19). Then

(i) lim
t→∞

E[ 1
J

J∑
j=1

|e(j)
t |2] = 0.

(ii) lim
t→∞

E[ 1
J

J∑
j=1

|r(j)
t |2] = 0.

(iii) (r
(j)
t )t≥0 converges almost surely to zero with rate function ρ(t) = t−

β
2 for all

β> 0.

Proof. Let R > 0 and α ∈ (0, 1) and observe

dr
(j)
t = −(C(rt) +

1

tα +R
Γ−

1
2AB(Γ−

1
2A)∗)r

(j)
t dt+ C(rt) dW

(j)
t .

Since Γ−
1
2AB(Γ−

1
2A)∗ is positive definite the second and third assertion follow directly

from Theorem 5.2 and 5.4. The proof of the first assertion is similar to the proof of

Theorem 4.2.
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6. Numerical Results

We consider the problem of recovering the unknown data u† from noise-free observations

y† = A(u†),

where p = A−1(u) is the solution of the one dimensional elliptic equation

−d2p

dx2
+ p = u in D := (0, π),

p = 0 on ∂D.

(20)

The forward response operator is defined by

A = O ◦ A−1 with A = − d2

dx2
+ id on D(A) = H2 ∩H1

0

and with operator O observing the dynamical system at K = 24 − 1 equispaced

observation points xk = k
24

, k = 1, . . . , K. We approximate the forward-problem (20)

numerically on a uniform mesh with meshwidth h = 2−8 by a finite element method

with continuous, piecewise linear ansatz functions.

We choose the initial ensemble of particles based on the eigenvalue and

eigenfunctions {λj, zj}j∈N of the covariance operator C0, defined by C0 = β(A − id)−1

for β = 10.

From the Bayesian perspective we may interpret this as prior distributed by

µ0 = N (0, C0). We set our jth initial particle to u(j)(0) =
√
λjζjzj with ζj ∼ N (0, 1),

i.e. we use the Karhunen-Loève expansion to generate draws from µ0.

The EnKF continuous time limit

du
(j)
t = C(ut)A

∗Γ−1(y − Au(j)
t ) dt+ C(ut)A

∗Γ−
1
2 dW

(j)
t ,

is discretized by equation (2) for the following simulations.

Ensemble collapse In the following we illustrate the results from section 4, in particular

the bounds on the ensemble collapse derived in Theorem 4.2 and in Theorem 4.5.

Figure 1. Ê( 1
J

J∑
j=1

|e(j)(t)|2) with w.r. of time. Q = 1000 paths with J = 5 (left) and

J = 15 (right) particles has been simulated.
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Figure 1 shows that the Monte Carlo approximation of the expected value

Ê[ 1
J

J∑
j=1

|e(j)
t |2] is bounded from above by (J+1

J2 t + C)−1 with C = (Ê[ 1
J

J∑
j=1

|e(j)
0 |2])−1,

as derived in Theorem 4.2.

Figure 2. Ê( 1
J

J∑
j=1

|e(j)(t)|p)−
1
p , p = bJ+3

2 c − 1, w.r. of time. Q = 1000 paths with

J = 5 (left) and J = 15 (right) particles has been simulated.

Similarly Figure 2 demonstrates that the approximated higher moments

Ê[ 1
J

J∑
j=1

|e(j)
t |p]

− 1
p are bounded by J

1
2 (2

p
C(p, J)J1− 2

pK−
2
p t + C)−

1
2 with C =

(K
p−1
2 Ê[ 1

J

J∑
j=1

|e(j)
0 |p])

2
p , compare Theorem 4.5.

In order to verify the almost sure ensemble collapse numerically, we have simulated

Q = 10 paths.

Figure 3. Paths of |e(t)|2 w.r. of time. Q=10 paths with J = 5 (left) and J = 15

(right) particles has been simulated.

From Theorem 4.8 we know, that e(t) converges almost surely to zero with rate

function ρ(t) = t−
α
2 for every α ∈ (0, 1). Figure 3 illustrates this behavior, the expected

convergence rates can be observed in this example.

Convergence to ground truth We compare simulations of the ensemble Kalman

inversion without variance inflation with simulations of the ensemble Kalman inversion
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with variance inflation. The variance inflation is used in the following setting: We set

α ∈ {1
2
, 3

4
} and R = 1 in equation (19). The number of particles is J = 15, i.e. the

forward response operator is bijective as a mapping from the subspace spanned by the

initial ensemble to the data space.

Figure 4. EnKF estimation without VI vs. EnKF estimation with VI. J=15 particles

and Q=1000 paths has been simulated.

Figure 4 shows the differences of the EnKF estimation in the parameter space as

well as in the observation space. We observe that the simulations with variance inflation

giving a better estimation in the observation space as well as in the parameter space.

If we reduce the variance inflation in time faster, i.e. we increase the parameter α from
1
2

to 3
4
, the effect of the variance inflation decreases. The following figures demonstrate

the effect on the ensemble collapse and the residuals.

Figure 5. Comparison of the spread of the ensemble w.r. to time with VI and without

VI.

The idea of the variance inflation was to slow down the convergence of the particles

to the ensemble mean, i.e. to control the rate of the ensemble collapse, in order to ensure

the convergence of the residuals in the observation space. Figure 5 illustrates that we

can ensure a higher spread of the ensemble in the simulations with variance inflation in

comparison to the simulations without variance inflation in the observation space.

Figure 6 points out that we end up with convergence of the residuals in the

observation and parameter space in case of variance inflation. Without variance inflation

the simulations show a slight increase of the residuals in the parameter space, suggesting

that the convergence of the residuals will slow down in the observation space as well.
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Figure 6. Comparison of the residuals w.r. to time with VI and without VI.

To emphasize this result, we reduce the dimension of the example and we set h = 24

with K = 3 equispaced observation points. Furthermore, we set again R = 1 and α = 1
2

and we use J = 3 particles, such that the forward response operator is again bijective

as mapping from the subspace spanned by the initial ensemble to the observation space.

Figure 7. EnKF estimation without VI vs. EnKF estimation with VI. J=3 particles

and Q=10000 paths has been simulated.

Figure 7 shows again the difference of the EnKF estimation with and without

variance inflation

Figure 8. Comparison of the residuals w.r. to time with VI and without VI.

Figure 8 points out the effect of the variance inflation. While the residuals in

the observation space without variance inflation diverge, we obtain convergence of the
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Figure 9. Comparison of the ensemble spread w.r. to time with VI and without VI.

residuals in the observation space using variance inflation. In addition, in Figure 9 we

can see that the ensemble of particles still collapse in the parameter space as well as in

the observation space.

7. Conclusions

Our analysis of the ensemble Kalman inversion shows the well-posedness and accuracy

of the method in the case of linear forward operators. The results are based on the

continuous time limit of the algorithm consisting of a coupled system of stochastic

differential equations. Due to the subspace property of the ensemble Kalman inversion,

the theory of finite-dimensional stochastic differential equations could be applied to

establish existence and uniqueness of solutions, i.e. to show the well-posedness of the

method. The ensemble collapse has been quantified in terms of moments as well as

almost sure convergence of the particles to the empirical mean. Furthermore, we suggest

a time-adaptive variance inflation to stabilize the convergence of the empirical mean to

the truth in the noise free case. The inflation can be interpreted as model error delaying

the ensemble collapse. The presented numerical experiments confirm the theoretical

results and indicate that the ensemble collapse can be bounded from below for the

original iteration scheme without variance inflation. However, the rate seems to be too

small to achieve convergence. This will be subject to future work. In addition, the next

steps include the generalization of the presented results to case of noisy observations in

the inverse problem and the development of appropriate stopping criteria in the noisy

case. Even though the presented analysis relies on the linearity of the forward operator,

the statements hold true for non-Gaussian priors and can guide the analysis of the

nonlinear setting.
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Appendix A. Auxiliary results

In order to use Itô’s formula we have to calculate the following quadratic covariation in

many cases:

Lemma Appendix A.1. Let (W (j))j=1,...,J be independent Brownian motions in RK,

u, v ∈ RK and let l 6= j ∈ {1, . . . , J}. Then with W̄ = 1
J

∑J
k=1W

(k),

〈u, d(W (j) −W )〉〈v, d(W (j) −W )〉 =
J − 1

J
〈u, v〉 dt,

〈u, d(W (j) −W )〉〈v, d(W (l) −W )〉 = − 1

J
〈u, v〉 dt.

Proof. Observe

W (j) −W = − 1

J

J∑
k=1,k 6=j

W (k) +
J − 1

J
W (j)

Since W (k) are independent Brownian motions it follows

〈u, d(W (j) −W )〉〈v, d(W (j) −W )〉 =
1

J2

J∑
k=1,k 6=j

〈u, dW (k)〉〈v, dW (k)〉

+
(J − 1)2

J2
〈u, dW (j)〉〈v, dW (j)〉

=
J − 1

J
〈u, v〉 dt

Similarly,

〈u, d(W (j) −W )〉〈v, d(W (l) −W )〉 = − 1

J

J∑
k=1

(〈u, dW (j)〉〈v, dW (k)〉+ 〈u, dW (k)〉〈v, dW (l)〉)

+
1

J2

J∑
i,k=1

〈u, dW (i)〉〈v, dW (k)〉

= − 1

J
〈u, v〉 dt

Lemma Appendix A.2. Let M be a symmetric and nonnegative d × d-matrix, then

for all choices of vectors (z(k))k=1,...,J in Rn we have

J∑
k,l=1

〈z(k), z(l)〉〈z(k),Mz(l)〉 ≥ 0.
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Proof. Let (v(m))m=1,...,d be an orthonormal basis of eigenvectors such that Mv(m) =

λmv
(m) with λm ≥ 0. Then z(l) =

d∑
m=1

z
(l)
m v(m) and thus

J∑
k,l=1

〈z(k), z(l)〉〈z(k),Mz(l)〉 =
J∑

k,l=1

d∑
m,n=1

zn(k)z(l)
n z

(k)
m z(l)

m λm =
d∑

n,m=1

λm(
J∑
k=1

z(k)
n z(k)

m )2 ≥ 0.

Lemma Appendix A.3. Let (x(j))j=1,...,J be vectors in Rn and let C(x) denote the

sample covariance matrix

C(x) =
1

J

J∑
k=1

(x(k) − x)⊗ (x(k) − x), x =
1

J

J∑
j=1

x(j).

Then it holds true that
J∑
j=1

〈x(j) − x,C(x)(x(j) − x)〉 ≤
J∑
j=1

〈x(j), C(x)x(j)〉

Proof. By expanding the non-centered quadratic form we obtain

J∑
j=1

〈x(j) − x,C(x)(x(j) − x)〉 =
J∑
j=1

〈x(j), C(x)x(j)〉 − J〈x,C(x)x〉 ,

which yields the claim by the non-negativity of the covariance matrix.

Lemma Appendix A.4. For all j ∈ {1, . . . , J} the process

(M(t))t≥0 :=
(∫ t

0

e(j)T
s C(es) dW (j)

s

)
t≥0

is a (global) martingale.

Proof. The local martingale given by the stochastic integral is a true martingale by

Itô-isometry if we show that following second moment is finite (cp.[35, Theorem 2.4])

‖e(j)T
· C(e·)‖Λ2;T := E[

∫ T

0

‖e(j)T
s C(es)‖2

F ds] =

∫ T

0

E[‖e(j)T
s C(es)‖2

F ] ds <∞

for all T ≥ 0. For this, we first estimate the Frobenius norm by

‖e(j)T
s C(es)‖2

F := trace e(j)TC(e)(e(j)TC(e))T =
1

J2

J∑
k,l=1

〈e(l), e(k)〉〈e(j), e(k)〉〈e(l), e(j)〉

≤ 1

J2

J∑
k,l=1

|e(l)|2|e(j)|2|e(k)|2

Thus, it holds true that

1

J

J∑
j=1

‖e(j)T
s C(es)‖2

F ≤
1

J3

J∑
j,k,l=1

|e(l)|2|e(j)|2|e(k)|2 = (
1

J

J∑
j=1

|e(j)|2)3 ≤ 1

J

J∑
j=1

|e(j)|6
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and with Lemma 4.1 it follows

1

J

J∑
j=1

‖e(j)T
· C(e·)‖Λ2;T ≤

∫ T

0

E[
1

J

J∑
j=1

|e(j)|6] ds ≤ C,

since p+ 2 := 6 ≤ J + 4.

Lemma Appendix A.5. For all k ∈ {1, . . . , J} and p ∈ (2, J+3
2

) the process

(M(t))t≥0 :=

(∫ t

0

p

J2

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m )e(l)>dW (k)

)
is a (global) martingale.

Proof. Similarly to the proof of Lemma Appendix A.4 we estimate the Frobenius norm

of the integrand by

‖
K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m )e(l)>‖2
F ≤ C1(J)

K∑
m=1

(
J∑
k=1

|e(k)
m |2)p−2

J∑
j,l=1

(e(l)
m )2(e(j)

m )2|e(l)|2

≤ C2(J,K)
J∑
k=1

|e(k)|2(p−2)

J∑
j,l=1

|e(l)|4|e(j)|2

≤ C3(J,K)
J∑
l=1

|e(l)|2p+2,

where we have used Jensen’s inequality and the fact |e(j)
m |2 ≤

K∑
n=1

|e(j)
n |2 = |e(j)|2. The

assertion follows by the bound (B.2) in the proof of Theorem 4.5, which we obtained by

localization and Fatou’s Lemma without martingale property.

Appendix B. Higher-order ensemble collapse: Proof of Theorem 4.5

We will use the following auxiliary result in order to prove Theorem 4.5. It is a well

known statement of the equivalence of norms, but we need the precise constants.

Lemma Appendix B.1. For am,j ∈ R, m = 1, . . . , d, j = 1, . . . , J and p ∈ N,

J∑
j=1

(
d∑

m=1

|am,j|2)
p
2 ≤ d(p−1)/2 ·

d∑
m=1

J∑
j=1

|am,j|p

and
d∑

m=1

J∑
j=1

|am,j|p ≤ Jp/2 ·
d∑

m=1

(
J∑
j=1

|am,j|2)
p
2 .

By symmetry we also have

d∑
m=1

(
J∑
j=1

|am,j|2)
p
2 ≤ Jp/2 ·

d∑
m=1

J∑
j=1

|am,j|p and
d∑

m=1

J∑
j=1

|am,j|p ≤ d(p−1)/2 ·
J∑
j=1

(
d∑

m=1

|am,j|2)
p
2 .
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Proof. We start with the first claim and write

J∑
j=1

(
d∑

m=1

|am,j|2)
p
2 =

J∑
j=1

Tj

with T 2
j = (

∑d
m=1 |am,j|2)p. We continue by expressing T 2

j using the multinomial

theorem and Young’s inequality

T 2
j =

∑
k1+···+kd=p

( p

k1, . . . , kd

)
·

d∏
m=1

|am,j|2·km

=
∑

k1+···+kd=p

( p

k1, . . . , kd

)
·

d∏
m=1,km 6=0

|am,j|2·km

≤
d∑

m=1

|am,j|2p ·
∑

l1+···+ld=p−1

( p− 1

l1, . . . , ld
) =

d∑
m=1

|am,j|2p · dp−1.

This means that

J∑
j=1

(
d∑

m=1

|am,j|2)
p
2 ≤ d

p−1
2 ·

J∑
j=1

√√√√ d∑
m=1

|am,j|2p ≤ d
p−1
2 ·

J∑
j=1

d∑
m=1

|am,j|p,

which proves the first statement. For the second claim we can write by concavity of the

square root

d∑
m=1

(
J∑
j=1

|am,j|2)
p
2 =

d∑
m=1

(
√
J ·

√√√√ J∑
j=1

|am,j|2
J

)p ≥ J−
p
2

d∑
m=1

J∑
j=1

|am,j|p,

i.e.
d∑

m=1

J∑
j=1

|am,j|p ≤ J
p
2 ·

d∑
m=1

(
J∑
j=1

|am,j|2)
p
2

Proof of Theorem 4.5. Recall the equation of e(j)

de(j) = − 1

J

J∑
l=1

e(l)〈e(l), e(j)〉dt+
1

J

J∑
l=1

e(l)〈e(l), d(W (j) −W )〉.

And (recall that e(j) ∈ RK) componentwise

de(j)
m = − 1

J

J∑
l=1

e(l)
m 〈e(l), e(j)〉dt+

1

J

J∑
l=1

e(l)
m 〈e(l), d(W (j) −W )〉.

We define the Lyapunov function (for equivalent notions of “p-norms” of the

ensemble, see lemma Appendix B.1)

Vp(e) =
1

J

K∑
m=1

(
J∑
j=1

|e(j)
m |2)

p
2
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and according to Ito’s lemma it holds that

dVp(e) =
K∑
m=1

J∑
j=1

∂Vp

∂e
(j)
m

de(j)
m +

1

2

K∑
m,m′=1

J∑
j,j′=1

de(j)
m

∂2Vp

∂e
(j)
m ∂e

(j′)
m′

de
(j′)
m′

Analogously to the proof of Theorem 4.2 the expectation is given by

E[Vp(es+t)] = E[Vp(es)]

− C(p, J)E[

∫ s+t

s

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2]] dr]

+ E[

∫ t

0

p

J2

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m 〈e(l), d(W (j) − 1

J

J∑
r=1

W (r))〉)]

(B.1)

by defining C(p, J) := p
J2 (1− (p−2+J)·(J−1)

2J2 − p−2
2J2 ).

Thus, similarly to Lemma 4.1 we obtain by setting s = 0 and using Fatou’s Lemma

E[Vp(e0)] ≥ C(p, J)E[

∫ t

0

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2]] ds].

Note that

E[

∫ t

0

K∑
m=1

[{(
J∑
k=1

|e(k)
m |2)

p
2
−1}[

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2]] ds] < C

Now we bound the integrand by below by:

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1)(

K∑
n=1

(
J∑
l=1

e(l)
m e(l)

n )2) ≥
K∑
m=1

(
J∑
k=1

|e(k)
m |2)

p
2

+1 = JVp+2(e),

Thus, we also have

E[

∫ t

0

Vp+2(es) ds] < C (B.2)

for all p < J + 3.

Note, that with (B.2) one can prove similar to Lemma Appendix A.4, that the

stochastic integral∫ t

0

p

J2

K∑
m=1

((
J∑
k=1

|e(k)
m |2)

p
2
−1

J∑
j,l=1

e(l)
m e(j)

m 〈e(l), d(W (j) − 1

J

J∑
r=1

W (r))〉)

is a martingale for all p ∈ (2, J+3
2

). For details see Lemma Appendix A.5.

By (B.1) we get that E[Vp(et)] is monotonically decreasing and it follows

E[Vp(et)] ≤ E[Vp(e0)]− C(p, J)J

∫ t

0

E[Vp+2(es)] ds.

By Jensen’s inequality it follows

Vp+2(e) =
1

J

K∑
m=1

(
J∑
j=1

|e(j)
m |2)

p
2
p+2
p ≥ K−

2
pJ−

2
p (Vp(e))

p+2
p
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and we obtain

E[Vp(et)] ≤ E[Vp(e0)]− C(p, J)J1− 2
pK−

2
p

∫ t

0

E[Vp(es)]
p+2
p ds.

Similarly to the proof of Theorem 4.2 we get

h′ ≤ −C(p, J)J1− 2
pK−

2
ph

p+2
p ,

by defining h(t) := E[Vp(et)], from which it follows that

h(t) ≤ (
2

p
C(p, J)K−

2
pJ1− 2

p t+ (h(0))−
2
p )−

p
2 .

Finally, we conclude with

E[
1

J

J∑
j=1

|e(j)
t |p] ≤ J

p
2 (

2

p
C(p, J)K−

2
pJ1− 2

p t+ (K
p−1
2 E[

1

J

J∑
j=1

|e(j)
0 |p])

− 2
p )−

p
2

by using Lemma Appendix B.1.
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