
Poster: DejaVu – A Complex Event Processing System
for Pattern Matching over Live and Historical Data Streams

Nihal Dindar, Peter M. Fischer, Nesime Tatbul
Systems Group, ETH Zurich, Switzerland

{dindarn, peter.fischer, tatbul}@inf.ethz.ch

ABSTRACT
This short paper provides an overview of the DejaVu complex event
processing (CEP) system, with an emphasis on its novel archi-
tecture and query optimization techniques for correlating patterns
across live and historical data streams.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query Processing

General Terms
Performance, Languages, Theory

1. INTRODUCTION
CEP has proven to be an important technology for analyzing

complex relationships over high volumes of data in many applica-
tion domains. High-performance pattern matching over live event
streams has been a central focus in CEP research to date. Though a
less explored research direction, archiving streams and integrating
them into the live stream processing pipeline offers many new key
capabilities for CEP systems. In particular, longer-term data anal-
ysis, such as making predictions about future event occurrences or
identifying causal relationships among complex events across mul-
tiple time scales is beyond the scope of existing CEP systems.

In this paper, we provide an overview of the DejaVu system de-
veloped at ETH Zurich, which provides declarative pattern match-
ing capability over live and archived streams of events. DejaVu pro-
poses a novel integrated CEP architecture and focuses on scalable
data management techniques for processing various forms of pat-
tern matching queries over event streams. We summarize the fun-
damental concepts behind DejaVu’s architectural design, as well as
its approach to optimized processing of a useful class of hybrid pat-
tern matching queries, namely pattern correlation queries (PCQ).

2. DEJAVU SYSTEM OVERVIEW
DejaVu is a CEP system that integrates declarative pattern match-

ing over live and archived streams of events [4]. We have built
DejaVu on top of the MySQL relational database system [1]. As
such, we follow the basic architecture of MySQL, while making
new extensions for supporting pattern matching queries. Figure 1
illustrates a high-level architecture of DejaVu. One of the key ar-
chitectural features of MySQL that we exploit in our design is its
pluggable storage engine API, introducing two new types of stores:

Copyright is held by the author/owner(s).
DEBS’11, July 11–15, 2011, New York, New York, USA.
ACM 978-1-4503-0423-8/11/07.

Figure 1: Architectural overview of the DejaVu CEP system

• Live Stream Store (DStream) is an in-memory store that ac-
cepts push-based inputs. It essentially acts like a tuple queue,
providing live events into the Query Processor (QP) as they ar-
rive. It supports both pull and push access by the QP.

• Archived Stream Store (DArchive) is a persistent stream store
to materialize live events for long-term access. Given the pre-
defined order of the events, it only support append updates.

Recent Buffer, an in-memory cache, mediates between the DStream,
the DArchive, and the QP to provide efficient access to recent input
tuples as well as handling bulk inserts into the DArchive.

Furthermore, we have extended the QP of MySQL with a finite
state machine (FSM) implementation for pattern evaluation. More
specifically, patterns are expressed with regular expressions and are
represented with FSM operators, which are then integrated into the
relevant parts of the MySQL query plan. New join algorithms are
also implemented for handling pattern correlation queries. As a re-
lational database system, MySQL is designed to work on one-time
queries only. Thus, we have added query life-cycle management
and continuous result reporting into the MySQL QP.

The last key component in our architecture is the Query Result
Cache. Like materialized views in databases, it provides novel data
structures to store previous pattern matches that can be reused later.

DejaVu follows a data model where streams are totally ordered
sequences of relational tuples with start and end timestamps. En-
suring the total order for all streams provides DejaVu queries to
be fully composable. As for the query model, in DejaVu, com-
plex event patterns are expressed through an SQL-like declarative
language that is based on a standard proposal for pattern match-
ing over row sequences [5]. This proposal extends the FROM part
of SQL with a new MATCH_RECOGNIZE clause that enables pat-
tern specifications over the listed data sources. As an addition to
the original proposal, we also allow streaming sources in the FROM
part along with regular tables (see [3] or [4] for query examples). In

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/227730188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

recency region

tick-shaped pattern
(archive matches)

fall pattern
(live match)

Time

Pr
ic

e

PCQ: Whenever a price fall is detected on live,
find all “tick-shaped” patterns on recent archive.

(a) Pattern correlation query

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

P

lazy, live first, w/o result cache
lazy, live first, w result cache

lazy, archive first, w/o result cache
lazy, archive first, w result cache

(b) Results with the NYSE TAQ dataset [2]

Figure 2: Financial use case

this case, the MATCH_RECOGNIZE clause in effect defines a “se-
mantic window” over the live stream. This way, DejaVu’s extended
language can express a wider range of queries including hybrid pat-
tern matching queries, such as pattern correlation queries.

3. PATTERN CORRELATION QUERIES
Correlating live and historical complex events for identifying

causal dependencies between them or for predicting the reoccur-
rence of similar past events is a critical capability needed in many
application domains such as medical diagnosis, algorithmic trad-
ing, travel time estimation for route planning. In DejaVu, we pro-
vide this capability via Pattern Correlation Queries (PCQs) [3].

Figure 2(a) illustrates a typical use case for PCQs from the al-
gorithmic trading domain, where a trader would like to predict the
stocks that could bring profits in the near future based on a query
posed over market data events which does the following: Upon de-
tecting a fall in the current price of stock X on the live data stream,
look for a tick-shaped pattern for X within recent archive, where
a fall in price was followed by a rise in price that went higher up
than the beginning price of the fall. This use case requires evalu-
ating complex events over live (falling) and archived streams (tick-
shaped), and correlating them based on a recency criteria. The
high-rate live stream and the high-volume archived stream, as well
as the need for low-latency results for catching momentary trading
opportunities render this use case a highly challenging one.

In current CEP systems, the only way to correlate two streams
is using a join operator with time- or tuple-based windows. While
PCQs can be implemented using such windows (forming all pos-
sible recency windows on live and archived streams, joining them,
performing pattern processing on each joined result, and then join-
ing the matched patterns), this approach would obviously be very
costly. A better alternative would be to first apply pattern matching
on both sources and then join the matched patterns using the re-
cency window using a regular join. This eager pattern processing
approach would be significantly cheaper, however, would still lead
to processing some redundant patterns that will never contribute to
the final result. In DejaVu, we instead propose a lazy pattern pro-
cessing approach, where a pattern on one source (live or archive) is
only computed if a corresponding pattern that falls in the recency
window is found on the other one (archive or live). Moreover, on
top of this lazy approach, we introduce three further optimizations:

• Recent input buffering enables the caching of the most recent
stream tuples in memory for efficient access for both live and
historical pattern matching.

• Query result caching avoids the redundant recomputation of
patterns on one source that are correlated with multiple patterns
on the other one.

• Join source ordering ensures that the source with the more
selective pattern is used as the outer source to the hybrid nested
loops join algorithm that implements our lazy approach, thus
further reducing the total number of pattern computations.

We have implemented all the algorithms and optimization tech-
niques summarized above in the DejaVu system and studied their
performance through detailed experiments. Here, we provide a
selected result for the financial PCQ illustrated above, run over a
real stock market dataset from NYSE [2]. Figure 2(b) shows how
throughput (i.e., input events consumed per second) changes with
increasing recency window size (P). There are two important ob-
servations to make: (i) Since the historical pattern is more selec-
tive on this dataset, archive-first outperforms live-first (thus, also
showing that join source ordering can yield significant performance
gains); (ii) For both live-first and archive-first, using a query result
cache leads an improve by more than order of magnitude.

A detailed description and evaluation of DejaVu’s PCQ process-
ing and optimization techniques is provided in a recent paper [3].

4. FUTURE DIRECTIONS
DejaVu presents a rich platform for exploring further research

problems. Short-term directions include studying other forms of
PCQs with correlation criteria based on, e.g., context similarity
or other spatio-temporal relationships across complex event pat-
terns, as well as providing suitable storage management techniques
for efficient archive access (e.g., indexing). In the longer term,
we would like to explore query rewrite-based optimizations for
MATCH_RECOGNIZE.

5. REFERENCES
[1] MySQL. http://www.mysql.com/.

[2] NYSE Data Solutions. http://www.nyxdata.com/nysedata.

[3] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul. Efficiently
Correlating Complex Events over Live and Archived Data Streams. In
ACM DEBS Conference, New York, NY, July 2011.

[4] N. Dindar, B. Güç, P. Lau, A. Özal, M. Soner, and N. Tatbul. DejaVu:
Declarative Pattern Matching over Live and Archived Streams of
Events (Demo). In ACM SIGMOD Conference, Providence, RI, June
2009.

[5] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby. Pattern
Matching in Sequences of Rows. Technical Report ANSI Standard
Proposal, July 2007.

