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Abstract

This thesis deals with stochastic models for electricity markets. The focus is on wholesale
prices and renewable power generation. Continuous-time autoregressive (CAR) processes
are frequently used in this context. We define two new types within the class of CAR
processes and show their benefits in application to the electricity market. The first process
extends CAR processes with regime switching mean-reversion rates by including a jump
component. This is necessary because spikes are one of the most pronounced features
of electricity prices. CAR processes with non-constant parameters are also considered in
an innovative model for photovoltaic (PV) power generation. This model provides for
the first time a pure statistical approach to map intraday variation of solar power infeed.
The second newly defined stochastic process allows to include external information in a
flexible way. This makes it possible to take many facets of renewable energy production
into account when determining the electricity price. Since renewable energies have an
increasing impact on electricity prices, models that can handle related information are
becoming more and more important. All results are applied to the German electricity
market. Implementations for the newly defined processes are provided in R and C++.





Zusammenfassung

Inhalt dieser Arbeit sind stochastische Verfahren zur Modellierung von Strommärkten.
Der Schwerpunkt liegt dabei auf der Beschreibung von Großhandelspreisen und erneuer-
barer Stromerzeugung. Zeitstetige autoregressive Prozesse werden in diesem Zusammen-
hang häufig eingesetzt. Wir definieren zwei neue Typen solcher Prozesse und zeigen
welche Vorteile sich durch ihre Anwendung ergeben. Der erste Prozess erweitert au-
toregressive Zeitreihen mit zustandsabhängigen Rückkehrraten durch Hinzufügung einer
Sprungkomponente. Dies ist notwendig, da Preisspitzen eine wesentliche Chrakteristik
von Strompreisen darstellen. Autoregressive Prozesse mit nicht konstanten Parametern
werden auch in einem innovativen Modell zur Beschreibung der Stromerzeugung von
Photovoltaikanlagen berücksichtigt. Dieses Modell ermöglicht erstmals die Abbildung
der untertägigen Variation des produzierten Solarstroms mittels eines rein statistischen
Ansatzes. Der zweite neu definierte stochastische Prozess ermöglicht es, externe Infor-
mationen flexibel einzubinden. Dies wird genutzt um viele Facetten der erneuerbarer
Energiegewinnung bei der Ermittlung des Strompreises zu berücksichtigen. Da erneuer-
bare Energien einen zunehmenden Einfluss auf die Strompreise haben, gewinnen Modelle,
die mit entsprechenden Informationen umgehen können, zunehmend an Bedeutung. Un-
sere Ergebnisse werden in ihrer Anwendung für den deutschen Strommarkt untersucht.
Implementierungen, die die neu definierten Prozesse betreffen, werden in R und C++
bereitgestellt.
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Chapter 1

Introduction

1.1 Context
Electricity is a commodity with specific features that distinguish it from other energy
sources. Electricity is immaterial, homogeneous and at the time of writing has still very
limited storage possibilities (Graeber, 2014). Supply and demand must therefore always
match. The electricity market thus differs substantially from other commodity markets.
This has led to a need for new types of models on which market participants can base their
decisions. Power portfolio managers rely on specific electricity price models to schedule
production or consumption with the aim of maximizing profit. Such models are also es-
sential to value derivatives, which are required to counter price risks. The strong increase
in renewable power generation has made these risks even greater and added significant
volume risks. Accurate modeling of the electricity price as well as the impact of renewable
energy sources has therefore become an important task.

Due to the lack of storability, electricity has unique price dynamics. A strong seasonality
and high volatility are part of its characteristics. Jumps occur frequently but have only
a short impact on the price. Reversion to the mean is a phenomenon that can be ob-
served not only for electricity prices but also for related natural processes. This includes
renewable power generation. Autoregressive processes model such dynamics in a natural
way. Therefore, they are the basis of many electricity price models and also our research
is build on them.

Electricity is generally referred to as the flow of electric charge. To move the charge
against the resistance of the transmission grid, power plants must generate voltage. The
charge flowing through the grid provides electrical power. This power is then used over
a specific period of time. The electricity price is therefore the price of electrical power
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delivered over a certain time interval. It thus makes sense to consider a continuous-time
autoregressive process representing the price for an infinitesimal delivery time (cf. Benth
et al. (2008)). This is in line with financial mathematics in which continuous-time pro-
cesses in general have become increasingly important due to their successful application
in the Black-Scholes model. Since electrical power is continuously provided, it is also
natural to use continuous-time processes to model renewable power generation. This also
has the advantage that it is easy to deal with weather-related power plant downtimes.

Based on the above, in this thesis we consider stochastic models for electricity markets
which rely on continuous-time autoregressive processes. In detail, we build models for
intraday market prices as well as solar power generation. Also a new approach for mod-
eling daily average prices is proposed. The academic contribution of this work is twofold.
First, new stochastic methods for analyzing time series are introduced. These could be
useful in a wide range of applications. Second, the theoretical models are adapted to the
electricity market and their benefits are demonstrated. This is to contribute to energy
economics.

The main results are

• an extension of nonlinear autoregressive processes such that jumps are possible,

• a model for photovoltaic (PV) power generation that takes intraday variations into
account, and

• the introduction of a stochastic process to map information on renewable power
generation to electricity prices in a flexible way.

All methods studied are checked for application to the German electricity market, in-
cluding calibration, validation and comparison to existing approaches. For this, we use
various data and implement the new techniques using the software environment R. We
also use parallelized C++ code for a numerically complex estimation procedure.

The main parts of Chapter 3 will appear in Lingohr and Müller (2019). Contents of
Chapter 2 and Chapter 4 are submitted for publication.

1.2 Structure of the thesis
The remaining part of Chapter 1 is intended to provide a deeper insight into the mo-
tivation behind this thesis. To this end, we give an overview of the German electricity
market and in particular address the importance of renewable energies. We discuss their
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impact on the electricity price and review existing approaches to model the dependence
between price and renewable energy sources. We also summarize some basic results on
continuous-time autoregressive processes.

In Chapter 2 we consider continuous-time threshold autoregressions (CTAR) as intro-
duced by Brockwell and Hyndman (1992). CTAR are nonlinear autoregressive processes
that exhibit a regime switching behavior. So far, only Gaussian CTAR have been de-
fined. This leads to a lack in modeling data with jumps, as frequently observed in the
electricity market and other financial markets as well. We fill this gap by constructing
a CTAR with jumps. Existence of a unique weak solution and weak consistency of an
Euler approximation scheme is proven. As a closed form expression of the likelihood is
not available, we use kernel based particle filtering for estimation. We apply the model
to the physical electricity index (Phelix) at the European Energy Exchange (EEX) and
show its benefits compared to other approaches.

Chapter 3 analyzes the time series of PV power generation. The fact that no solar power
is generated at night makes modeling of this times series for high resolution difficult.
Previous work has therefore been limited to daily variations. In contrast, we propose a
model that is able to take intraday effects into account. To do this, first we filter a cloud
cover component from the infeed data by using physical relationships. This variable in-
corporates the complete stochastics and can be modeled by CTAR as treated in Chapter
2. We fit our model to infeed data in Germany and show its benefits compared to other
approaches. The model enables pricing of derivatives, which is illustrated by a new future
contract. This product allows the volume risk of PV power plants to be hedged.

Chapter 4 is devoted to the question of how the effects of renewable energies on electricity
prices can be modeled. We offer a new approach that makes it possible to represent this
dependency in a flexible way. It will especially be possible to vary price spikes both in
frequency and size according to the generation of wind and solar power. The proposed
concept is based on the construction of a process with conditionally independent incre-
ment (CII). We provide an estimation procedure for this class of processes and offer a
test to verify the dependency on an external variable. Based on the theoretical results,
we fit an electricity price model for the German intraday market and use it to analyze
power cap/floor futures.

The results of this thesis are summarized in Chapter 5. There we also give an outlook on
aspects arising from our work that could serve as an incentive for further research.
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Appendix A contains the essential R and C++ source code of our implementations. This
includes functions for computing a likelihood based on particle filtering as dealt with in
Chapter 2, calculating an object’s solar angle as discussed in Chapter 3 and the nonpara-
metric estimator and the test introduced in Chapter 4.

1.3 The German electricity market
Electricity markets have undergone major changes in recent decades. In addition to
structural and organizational changes brought by liberalization, power generation itself
changed. Renewable energies are playing an increasingly important role. The following is
an overview of the history and present structure of the German electricity market. As a
comprehensive study on this topic which also deals more with technical details, Graeber
(2014) is recommended.

1.3.1 The liberalized market

With the passage of the Gesetz über die Elektrizität- und Gasversorgung (Law on Energy
Management) (EnWG) in April 1998 the basis for the today’s German power market was
set. This law should ensure that the future supply of electricity is as safe, cheap and
environmentally as friendly as possible. To achieve the goals of the EnWG a competitive
electricity market was established. The monopolies of the energy suppliers were ended,
giving end-users the opportunity to freely choose their retailers. Moreover, the electricity
companies were obliged to make their transmission networks available to others as well.
For this to take place under fair conditions, production, transport and distribution had
to be unbundled. This ultimately led to the present form of the German electricity
market, consisting of pure grid operators in charge of transport and distribution as well
as companies responsible for generation, trading and sales.

1.3.2 Supply and demand

With an net electricity consumption of 513 TWh in 2017 (BNetzA (2018)), the German
electricity market is the largest power market in Europe. The industry is by far the
biggest consumer with a share of almost a half. The remaining consumption comes
almost equally from households and trade and commerce. Demand by traffic only plays
a minor role (cf. Table 1.1). Historical demand in terms of the total load in Germany is
shown in Figure 1.1. We observe large variations depending on season and time of day.
In particular, there is lower demand at summer and night. Holiday seasons and weekends
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Table 1.1: Net electricity consumption in 2017 by consumer groups (AGEB (2017)).
Industry Trade and Commerce Households Traffic

47% 26% 25% 2%

also have a reducing effect. This periodicity is mainly the result of different business
activities and climatic conditions. Thus, the electricity load in winter increases due to a
higher need in lighting and heating. Considering the intraday profiles, also a “double peak
structure” is displayed. In the afternoon the general business activity decreases, while
private activities at the end of the working day trigger an additional demand. Because
of longer daytime, this double peak structure is less pronounced in summer.

Figure 1.2 shows how demand is covered in Germany. Lignite, as a cheap fossil fuel,
is used for the most part. The share of electricity from nuclear power plants has been
reduced significantly in recent decades – 13 % in 2017 compared to 31 % in 2002. As
a result of the Fukushima nuclear catastrophe in 2011, it was politically decided to end
nuclear power generation in Germany by 2022. Gas-fired power plants now provide the
largest capacity of all conventional energy sources. As a flexible technology, they are
particularly important as a supplement to variable production from renewable energies.
Hence, they play a major role for the energy transition (Energiewende) in Germany.

1.3.3 Renewable energies

Increasing global demand for energy requires an expansion of power generation. The
finite nature of fossil fuels and the large quantities of carbon dioxide they produce have
pushed the search for alternative energy sources. The need for renewable energies to cover
energy consumption and reduce greenhouse gases is now recognized worldwide. Thus, al-
most all countries of the world support renewable energy development now. At the 2016
United Nations Climate Change Conference, the leaders of 48 developing countries even
committed themselves to working towards a complete supply by renewable energies. This
includes also Germany.

Figure 1.3 shows how energy sources changed between 2000 and 2017. Electricity gener-
ation from conventional power plants was constantly reduced and replaced by renewable
energies. By 2017, 33 % of the total gross electricity generation came from renewable
sources. This is an increase of 26 % compared to 2000. The basis for this development
was the Gesetz für den Ausbau erneuerbarer Energien (Renewable Energy Sources Act)
(EEG) passed in 2000. In interest of climate and environmental protection, it was decided
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Figure 1.1: Total load in Germany from 2011 trough 2017 (upper) and three consecutive
weeks in 2017 (lower) (ENTSO-E (2019)).

to significantly increase the share of renewable energies in the electricity supply. In 2008,
this target was first specified and a minimum of 30% of renewable energies on the total
gross electricity generation was set for 2020. This was already achieved in 2017. The
present targets under the 2014 amendment are shown in Table 1.2.

Table 1.2: Targets for the total gross electricity generation by renewable energy sources
according to EEG (2017).

2025 2035 2050
40% - 45% 55% - 60% min. 80%

In order to support the expansion of renewable energies, three regulations have been
anchored in the EEG from the beginning:

• Grid system operators must connect installations to generate electricity from re-
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Figure 1.2: Installed capacity (left) and generated electricity (right) in Germany for 2017
by technology (BNetzA (2019)).

newable energy sources without delay and as a priority.

• Grid system operators must purchase, transmit and distribute all electricity
from renewable energy sources without delay and as a priority.

• Operators of installations in which only renewable energy sources are used are
entitled to be paid for the electricity fed into the grid according to certain re-
muneration rates.

The type of remuneration claims for electricity from renewable sources has evolved over
the years from a fixed payment to a market-oriented subsidy. While a fixed payment
provides planning security for investors, it does not set an incentive for demand-based
production. To ensure that the future expansion of renewable energy takes place econom-
ically efficiently, in 2012 it was made possible to bring the generated electricity to the
exchange on its own and not to sell directly to the transmission system operators. Since
2016, for newly integrated renewable power plants, this has been mandatory. In order to
reduce the resulting price risks, operators receive now a market premium,

market premium = subsidized value - average market price.
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Figure 1.3: Share of renewable and conventional production on total gross electricity
generation in Germany (AGEB (2018)).

This support scheme encourages targeted production, since additional revenues can be
achieved by adjusting the sales volume to the market price. The objective is to have a
personal average sales price above the average market price. The subsidized value has
been determined by auction since the EEG 2017. In a pay-as-bid process, investors have
the opportunity to secure a share of the tendered promotion volume for the next 20 years.

The support under the EEG has led to a strong increase in renewable power generation
in Germany, where solar and wind power have become the key energy sources. Due
to their strong expansion (cf. Figure 1.4), they now account for a significant share of
the total installed capacity and the generated electricity (cf. Figure 1.2). However, this
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Figure 1.4: Development of installed renewable energy capacity from 1990 to 2015 (Eu-
rostat (2019)).
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Figure 1.5: Time series of total wind (upper) and total solar power generation (lower) in
Germany from 2015 to 2017.

also presents market participants with new challenges. Due to their variable generation,
especially solar and wind power cause fluctuations in the supply of electricity. Figure
1.5 shows the large variations of electricity infeed from these two energy sources over the
year. Strong variations are not only seasonal, but can also occur within short periods
of time (cf. Figure 1.6). Obviously, especially for solar power there is a strong intraday
infeed pattern. The variable supply is of great importance for electricity markets. Since
their committed exchange trading in Germany, they have at least a strong impact on the
price.

1.3.4 The wholesale market

The liberalization of the German electricity market has created the need for a reliable
trading platform. Therefore, in August 2000, the EEX was launched. In addition to
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Figure 1.6: Time series of total wind (upper) and total solar power generation (lower) in
Germany for eleven consecutive days.

bilateral wholesale trading (OTC trading), EEX offers a reliable marketplace for trading
electricity. The most important segments are the spot market, the intraday market and
the derivatives market. Short-term transactions are settled via the European Power Ex-
change (EPEX SPOT), in which EEX holds a major stake.

Spot market The dominant market for short-term electricity trading is the spot market.
The spot market is structured in the form of a power exchange (cf. Weron (2006)[Section
1.2]). In 2017, almost half of the total electricity demand in Germany was traded via
the spot market (cf. Figure 1.7). In a two-sided auction at 12 noon, bids containing the
asked volume and a price per unit can be placed for delivery at a specific hour on the
following day. So the spot market is actually a day-ahead market. Delivery must be
made physical. The bids are used to construct supply and demand curves for each hour.
The intersection of these curves determines the hourly market clearing price (MCP), the
price which balances supply and demand. The MCP is set in an uniform-price auction,
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Figure 1.7: Development of spot and intraday market volumes at the EPEX SPOT
(BNetzA (2018)).

i.e. suppliers with bids not exceeding the clearing price receive the clearing price, while
buyers with bids at least as high as the clearing price pay only this price. Figure 1.8
shows the results of the daily auctions for the years 2016 and 2017.

Figure 1.8: EPEX SPOT hourly day-ahead auction results for the years 2016/2017.

Intraday market Very short-term changes to the electricity portfolio can be carried
out on the intraday market. To make this possible, the price is not determined by a
single auction, in contrast to the spot market. Trading is possible up to 30 minutes
before delivery and starts at 3:00 p.m. for hourly contracts of the following day. From
4:00 p.m. also 15-minute periods are tradable. Delivery is physical. In Figure 1.9 the
ID3-Price of the hourly contracts on the German intraday market is illustrated. The
ID3-Price is an index, which represents the volume-weighted price average of all trans-
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Figure 1.9: ID3-Price of the hourly contracts on the intraday market for the years
2016/2017.

actions of a traded product performed over the last three hours before start of delivery.
The index thus serves as a price indicator for trades that take place shortly before deliv-
ery. Such corrective transactions are particularly necessary in an environment with high
volatile infeed from renewable energies. The expansion of renewable energy sources in
Germany has therefore led to a continuous increase in the importance of the intraday
market (cf. Figure 1.7). In 2017, the volume traded again increased considerably by 15%
compared to 2016. Due to the further growth of renewable energies, it can be assumed
that the intraday market will become even more important.

Derivatives market For mid- and long-term hedging, products on the derivatives mar-
ket are used. The most important product is the Phelix Future. In 2016, a total volume
of 1444 TWh was traded (BNetzA (2018)). There are various delivery periods available
of up to six years in the future. However, contracts with delivery more than two years in
advance are of little importance (only 12 % of the total trading volume in 2017 (BNetzA
(2018))). These derivatives are financially settled contracts with the Phelix as underly-
ing. The Phelix (cf. Figure 1.10) represents the daily arithmetic average of the auction
results on the spot market. Options on Phelix Futures can also be traded for individual
delivery periods. However, there have been no such transactions for the German market
in recent years (BNetzA (2018)).

In response to the challenges for electricity trading arising from the high share of renew-
able production, in 2015, the EEX also introduced the segment of Energiewende products.
This contains new derivatives, specifically designed to cope with the new risks. Currently
two products are available. The German Intraday Cap/Floor Futures can be used to
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Figure 1.10: Physical electricity index from 2010 to 2017 with approximation of long-term
behavior and annual seasonality (red).

hedge against price peaks on the intraday market that frequently occur as a result of
high or low generation of renewable energy. While the derivatives presented so far aim
to hedge against price risks, the second Energiewende product, the Wind Power Futures,
serve to hedge against pure volume risks. For this purpose, the futures have the average
load factor of wind power production in Germany as underlying. Since the operator of a
wind power plant, subsidized under the EEG, receives a fixed premium, he is no longer
exposed to any price risk. This is why futures for renewable energies that only reflect
volume risks are reasonable. Due to the strong expansion of renewable energies, it can be
assumed that the segment of Energiewende products will continue to gain importance.
Therefore, we consider such products in Chapter 3 and Chapter 4.

1.4 Structural price modeling
The replacement of the state electricity price monopoly as a result of liberalization called
for market participants to redesign their decision-making mechanism. Electricity price
models have become an import input here. We will discuss the characteristics of the
pricing process in more detail now and explain their connection to renewable power
generation. Weron (2006) is a good source for a comprehensive statistical analysis of
electricity prices. We also provide an overview of recent models that define the electricity
price as a function of renewable energies. Benth et al. (2008) is the common reference
on electricity price modeling. A good survey of different methodologies can be found in
Weron (2014).
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1.4.1 The merit order

When constructing a price model, it is helpful to understand the underlying market
mechanisms. For liberalized electricity markets, prices are often explained using the
merit order model. The merit order is the arrangement of suppliers according to their
asked prices. These prices should reflect the production costs per generation unit and can
approximately be set equal to the marginal costs. At the same time, in accordance with
the fixed tariffs of households, a price-inelastic demand is assumed. Since the marginal
costs are essentially a matter of the technology used, the merit order can be represented
as in Figure 1.11. According to the merit order model, the MCP is the marginal cost of

Figure 1.11: Determining the MCP according to the merit order model.

the most expensive power plant needed to meet the demand.
In principle, the price on the spot and intraday market can both be explained using

the merit order model. However, due to longer start-up times of some power plants, the
available supply decreases as the delivery approaches. Therefore, in the intraday market,
a steeper merit order curve can be assumed (cf. Graeber (2014)). This can also be seen
by comparing Figure 1.8 and Figure 1.9, where the ID3-Price shows more extreme values
than the day-ahead auction results.

Since electricity from renewable energy sources is produced at vanishing marginal
costs, they shift the supply so that cheaper technologies can be used to meet demand.
This price-reducing effect of renewable energies can also be seen in Figure 1.10. With the
introduction of the market premium model in EEG 2012, average spot market prices fell
until 2017.
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1.4.2 Stylized facts

The merit order model provides an explanation for the basic level of the electricity price.
The real prices, however, are much more complex than this simple model could account
for. For electricity price modeling it is therefore also important to consider the real
features of the price process. These characteristics are called stylized facts as they are
shared by most electricity markets.

Seasonality In Section 1.3 we have already noticed that electricity demand has a strong
cyclical behavior. Since the electricity price according to the merit order model is directly
connected to demand, prices are cyclic as well. Approximating the annual seasonality by
a sinusoid with a period of one year (cf. Figure 1.10), the mirroring of the demand cycle
with high values in winter and lower values in summer is demonstrated. Trigonometric
functions are used in many applications to describe the seasonality of electricity prices.

Figure 1.12 shows that other periodic patterns of demand are also transferred to the
price. Lower prices at night and on weekend can be observed. In addition, the “double

Figure 1.12: Typical cyclic behavior of the electricity price for a period of two weeks
using the ID3-Price as an example.

peak structure” can be detected again. However, this is much more pronounced than
for demand. That is because of the price-reducing effect of solar power, which has the
highest infeed around noon.

Mean reversion Commodity prices are generally known to be mean-reverting due to
the substitution effect. While the return to the mean value can take a long time for
commodity prices, a much higher mean-reversion rate can be found in the electricity
market. In particular, extreme price levels only persist for a very short time. The price
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Figure 1.13: Negative ID3-Price spike on July 30, 2017 at 2:00 pm.

returns to its previous level in a few hours after a jump (cf. Figure 1.13). The fast return
also applies to less pronounced deviations from the average level.

The mean-reversion property of electricity prices can again be traced back to the
market fundamentals. Many determinants of the market itself are cyclical and mean-
reverting. These include, for example, temperature, which has a strong impact on the
level of demand, but also the sun and wind intensity, which determine the infeed from
renewable energies. For the conventional supply stack, the repair/replacement of a failed
power plant can also lead to a normalization of the price.

Jumps and spikes While a strong mean-reversion ensures that a extreme price level
is only of short duration, the origin of such a price, that is a jump, is actually the most
characteristic feature of electricity markets. Price jumps are abrupt and unexpected
extraordinary price changes. Figure 1.13 shows an example, where the ID3-Price drops
almost 95 € within three hours. This is more than the 10-fold of the usual price movement
within such a short time. Jumps not only lead to negative but also positive price escala-
tions. Thus, on 31 January 2017, a ID3-Price of 239 € is temporarily quoted (cf. Figure
1.9), which corresponds to seven times the average price.

Generally, much higher volatility can be observed in electricity markets than for other
commodities (cf. Table 1.3). An explanation for strong electricity price movements is
given by the high nonlinearity of the merit order curve (cf. Figure 1.11). When demand
is very strong, generation at high marginal cost is necessary. Expensive power plants
then set the market price. Similarly, an unexpectedly low infeed of renewable energy
may require the mobilization of capacities with short start-up times but higher produc-
tion costs to cover the supply gap. The opposite applies in the case of low demand or high
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Table 1.3: Annualized volatility of the relative absolute price changes |P ptq�P pt�1q|{P̄ ,
where P̄ is the mean, for different markets.

Gas Oil Phelix Day-ahead auction ID3-Price
11% 26% 330% 1100% 1353%

renewable energy generation, when only producers with very low costs are in use. Thus
the price peak in Figure 1.13 is due to a market situation with a low load on Sunday of
about 50 GW paired with a strong generation of solar and wind energy. At peak times,
there was only a need for 9 GW of conventional electricity.

However, the cost of production alone cannot explain the extreme prices actually
observed. The true reason for these prices is the bidding strategy of the market partici-
pants. Since electricity is an essential commodity for some buyers, they are willing to pay
virtually any price. Especially since they know that extreme price levels are short-lived.
At the same time, producers who cannot flexibly control electricity generation are more
willing to accept low or even negative prices at short term rather than face high opera-
tional cost. Since both sides are aware of these needs, they adapt their bids accordingly
which leads to the observed prices.

1.4.3 Electricity price models

Various attempts have been made to take the stylized facts into account in electricity
price modeling. As many of the features can be attributed to the merit order model,
early attempts were made to explain the electricity price based on supply and demand.

One of the first concepts was given by Barlow (2002). For a supply upt, xq and a
demand dpt, xq at time t and price x, the electricity price Sptq was defined as the solution
of

upt, Sptqq � dpt, Sptqq.

To solve this equation, quite simple forms for u and d were used. First, u was set equal to
the Box-Cox transformation. Then, the inverse of this transformation was applied to an
Ornstein-Uhlenbeck (OU) process independent of the price to reflect the price inelasticity
of demand.

Despite the simple procedure, the model exhibits price spikes, one important char-
acteristic of electricity prices. However, the definition of the price according to Barlow
(2002) is only economically motivated, since the adjustment takes place to pure price
data. Nevertheless, in the same spirit as Barlow (2002), other models have been designed
which define the price of electricity as the result of fundamental drivers. Due to the
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increasing infeed of renewable energies, in recent years there has been special interest
in models that can handle information related to renewable power generation (e.g. solar
radiation, wind speed, temperature).

Residual demand model Wagner (2012) was one of the first, who defined an electricity
price model that includes information on renewable energies. He presented the electricity
spot price Sptq at time t P r0, T s as a deterministic function f of residual demand Rptq,
i.e.

Sptq � fpRptqq,

where the residual demand was defined as

Rptq � pstochasticq total load � pstochasticq infeed from renewables.

Thus the price shift caused by renewable energies was accounted for as a reduction of
demand. The function f could therefore be interpreted as the conventional supply stack.
For f a hyperbolic function with bounds equal to the price boundaries at the spot market
was chosen. This function was fitted based on observed prices and residual demand.

Besides mapping residual demand to the spot price by the function f , Wagner (2012)
provided individual models for load, solar and wind power generation. These were used to
characterize the residual demand and fitted by appropriate data. Within the renewable
energies, only electricity generation from solar and wind power plants was taken into
account as they have the largest installed capacities and uncertain infeed profiles.

To specify the behavior of each stochastic component a deterministic seasonality func-
tion and an OU process (cf. Section 1.5) were utilized. In other words, the behavior of
each fundamental driver abbreviated by driv was determined by

Ĩdrivptq � ηdrivptq � Īdrivptq, (1.1)

where

• ηdrivptq is a deterministic seasonality function, and

• Īdrivptq is an OU process.

For the total load the function ηloadptq was specified as a purely periodic function cali-
brated on the daily average peak demand on business days. Afterwards a deterministic
transformation was chosen to take into account intraday variation, holidays and weekend
effects.
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Due to the strong growth of installed capacities (cf. Figure 1.4), for solar and wind
power generation, besides seasonality, also a trend can be observed. To account for this,
infeed efficiency Edrivptq at time t was modeled instead of the absolute values,

Edrivptq � AIdrivptq
ICdrivptq , (1.2)

where

• ICdrivptq ¡ 0 denotes installed capacity, and

• AIdrivptq P r0, ICdrivptqs is the absolute infeed.

Since Edrivptq P r0, 1s, the logit function, logit : p0, 1q Ñ R, x ÞÑ logp x
1�xq, was applied to

transfer the wind data to the whole real axis,

Ẽdrivptq � logitpEdrivptqq.

Then the logit wind power efficiency Ẽwindptq was modeled according to (1.1).
Since solar infeed is zero at night, transforming the time series to a stationary one is

more difficult than for wind. To overcome this problem, observing that the daily infeed
patterns look quite similar (cf. Figure 1.5), the daily maximum process M̃ solar

i of the
complete data was considered instead,

M̃ solar
i � logit

�
max
t:dptq�i

Esolarptq


, i � 1, 2, . . . , dpT q,

where pdptq � iq � pt is on the i-th observed dayq. For M̃ solar
i again (1.1) was applied.

Subsequently, to finally get an intraday solar infeed, functions δm, m � 1, 2, . . . , 12,
δm : tt : mptq � mu � p0, 1q Ñ r0, 1s have been employed, where mptq accounts for the
month at time t of an observed year in a similar way as dptq accounts for the days. These
functions, called daily pattern transformations, were defined as

δmpt, xq � x
24̧

k�1
cm,k1ttPpk-th hour of the dayqu, (1.3)

with cm,k, k � 1, 2, . . . , 24, set for each month m as the average of

absolute infeed at hour k
daily maximum infeed .

The model of Wagner (2012) makes it easy to consider the impact of renewable energies
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on electricity prices. The characteristic features of the spot price are also properly pro-
duced. However, for the individual stochastic components it was intended to describe
only the most important characteristics. Especially the stochastic behavior may require
a more complex model than an OU process. So for the wind power process it was already
noted that there is significant partial autocorrelation beside the first lag. Also, as already
pointed out by Wagner (2012), all stochastic components are stationary, leaving out long-
term effects such as changed fuel prices. Hence additional factors should be added. We
will address some of these points in Chapter 3 and Chapter 4.

LSS process Using a regime-switching Lévy semistationary (LSS) process, Veraart
(2016) incorporates information on wind power infeed directly into the price process.
This is a substantially different concept to the approach of Wagner (2012) where infor-
mation about renewable energies is mapped to the price through regression.

For Phelix quotations Sptq at time t ¥ 0, Veraart (2016) assumed an arithmetic model,

Sptq � Λptq � Y ptq,

where Λptq is a deterministic trend and seasonality function and Y ptq is a LSS process of
the form

Y ptq �
» t
�8

gpt� sqdMpsq, t ¥ 0.

Here, g : RÑ R is set to the kernel of a CARMA(2,1) process (cf. Section 1.5) and

dMpsq � ρpsqdM p1qpsq � p1� ρpsqqdM p2qpsq,

for independent Lévy processes M p1qptq and M p2qptq. This model allows for two different
behaviors of the price, depending on whether a synthetic wind penetration index is high
or low by altering ρpsq according to

ρpsq �
$&%1, if the wind penetration index at time s is “high”,

0, if the wind penetration index at time s is “low”.

The wind penetration index WP ptq was defined as the ratio between the daily forecast
of wind power generation V ptq and the daily forecast of load Lptq,

WP ptq � V ptq
Lptq P r0, 1s, (1.4)

since it was found out, that rather extreme negative day-ahead prices are associated with



1.4. Structural price modeling 21

a high value of this index. Using forecast information, this index could be calculated. For
fitting the LSS process, first the CARMA parameters have been identified. Afterwards,
the increments of the driving process have been filtered and separated according to the
first quartile of the wind penetration index. An individual generalized hyperbolic (GH)
distribution was then fitted to each set of increments.

The use of an LSS process allows to incorporate information on renewable energies in
a continuous-time stochastic model in a flexible way that goes beyond pure regression.
Obviously, it would be desirable to consider other energy sources, in particular solar
power, in addition to wind power. Furthermore, Veraart (2016) does not develop a
stochastic model for the fundamental drivers, which would be necessary to analyze the
mid- and long-term price level. In addition, the choice of the switching variable seems
relatively arbitrary, especially since it was shown that the behavior of the increments
cannot be strictly divided into two classes. We deal with these points in Chapter 4.

Cox processes Doubly stochastic Poisson or Cox processes represent a well-known class
of stochastic processes to handle external information. Deschatre and Veraart (2017)
used a Cox process with intensity as a function of the wind penetration index WP ptq
(cf. Equation (1.4)) to model the occurrence of spot price jumps. They found that the
probability of an extreme negative return increases with the value of the index.

Hence, they decomposed the spot price Sptq at time t P r0, T s in the following way:

Sptq � Γ1ptq �X1ptq � Y �ptq � Y �ptq,

where Γ1ptq is a deterministic trend and seasonality function, X1ptq is a CAR(24) process
(cf. Section 1.5) and Y �ptq satisfy

Y �ptq �
» t

0

»
R
xe�βpt�sqp�pds, dxq.

Here, β ¡ 0 is a common speed of mean reversion and p�pdt, dxq are Poisson mea-
sures with compensators q�pdt, dxq � λ�ptqdt� ν�pdxq for finite measures ν� satisfying
ν�pt0uq � 0 and

³
R x

2ν�pdxq   8. For positive jumps λ�ptq was set to a constant. To
make the intensity λ�ptq of the negative jumps dependent on wind penetration, they
assumed the functional form

λ�ptq � qpWP ptqq,

where q : r0, 1s Ñ p0,8q is a deterministic function found by nonparametric regression.
The distribution of the jump sizes was not specified. Deschatre and Veraart (2017) also
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established a stochastic model for the wind penetration index,

logitpWP ptqq � Γ2ptq �X2ptq,

where again Γ2ptq is a deterministic trend and seasonality function and X2ptq is a
CAR(24) process.

The model of Deschatre and Veraart (2017) maps information on wind power and load
to the spot price in a complete stochastic framework. Of course, also other renewable
energies should be considered. In contrast to the LSS process of Veraart (2016), however,
for the Cox process the distribution is allowed to depend on the wind penetration in a
continuous way. But this only applies to the jump times of the spot price. In general, the
jump sizes cannot be controlled by applying a Cox process. That this is also advisable
will be shown in Chapter 4.

Stochastic time change Schmeck and Borovkova (2017) modeled Phelix quotations
Sptq at time t ¥ 0 with respect to temperatures Cptq in Cologne. Temperature as a fun-
damental driver of the price seems reasonable as there is strong correlation to demand,
e.g. through electric heating.

Since the variations of the electricity price are not similar at each calendar day, the idea
of Schmeck and Borovkova (2017) was to choose a time grid for which the behavior is
more alike. For this purpose, a time change T ptq was defined by

T ptq �
» t

0
τpsq ds, τptq � logp1� gpCptqqq � k,

with g a polynomial that maps temperature to demand and k as a normalization constant.
Then, Schmeck and Borovkova (2017) postulated that the price is given by

Sptq � sptq � Y ptq,

where sptq is a deterministic seasonality function and for Y ptq holds

Y ptq � µ
�
1� e�θT ptq

�� » t
0
e�θpT ptq�T psqqσ

a
τpsqdW psq �

» t
0
e�θpT ptq�T psqqdZpsq,

with W ptq a Brownian motion and dZptq � ³
R xNpdx, dtq for an integer-valued random

measure Npdx, dtq with compensator νpdx, dtq � τptqλdt � fpxqdx. The process Y ptq is
the result of time-changing an OU process Xptq with jumps, i.e. Y ptq � XpT ptqq. Here,
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θ, µ and σ are the OU parameters (cf. Section 1.5) and Xptq is driven by the Brownian
motion W ptq and a compound Poisson process with jump intensity λ ¡ 0 and f the
density of the jump size distribution.

For the temperature Cptq an arithmetic model consisting of the sum of a deterministic
seasonal component and an OU process was proposed. The OU parameters of Y ptq were
fitted by ordinary least squares using the discrete-time representation of the process. The
jumps were filtered prior to that and handled separately.

The time change suggested by Schmeck and Borovkova (2017) leads to a process of
OU type with a speed of mean-reversion, variance and jump intensity depending on
temperature. This enables the modeling of seasonal patterns in electricity price volatility
and spikes. In Germany in winter the general price volatility is higher and price jumps
are more frequent than in summer (cf. Figure 1.8). One drawback using a time-change is
that the jump size distribution cannot be altered. Obviously other fundamental drivers,
especially renewable energies, should be considered to control the time change. Besides
these points, the greatest challenge of this approach lies in the choice of the time change
itself. Since price data is not directly used for its selection, it can be assumed that
the relationship between price and fundamental drivers is not fully described. Hence, in
Chapter 4 we will use a more direct method to map this dependency.

1.5 Continuous-time autoregressions
Originally defined for applications in physics, there is now an interest in continuous-
time autoregressive (CAR) processes in many other areas as well. Since we frequently
use these type of processes in this thesis, we summarize here some of their essential
properties. A more detailed review of continuous-time autoregressive processes is given
by Brockwell (2014). The following sections assume a knowledge of stochastic processes
and stochastic calculus as it can be found in any standard work. For Subsection 1.5.1,
e.g. Karatzas and Shreve (1998) provides sufficient information, while Protter (2005)
and Jacod and Shiryaev (2002) are common references for more general definitions of
stochastic integration.



24 Chapter 1. Introduction

1.5.1 The OU process

The best known member of the class of CAR processes is the OU process. The OU
process is defined by the stochastic differential equation (SDE)

dXµptq � θpµ�Xµptqqdt� σdW ptq,

where θ, µ P R, σ ¡ 0 are constants and W � tW ptqut¥0 is a standard Brownian
motion. Given an initial value Xµp0q (a random variable independent ofW ), the solution
Xµ � tXµptqut¥0 to this SDE is

Xµptq � µ� pXµp0q � µq e�θt � σ

» t
0
e�θpt�uqdW puq, t ¥ 0. (1.5)

Sometimes the parameter µ is eliminated by considering X � Xµ � µ rather than Xµ.
The OU process is a Gaussian Markov process having continuous paths, which was

proposed by Uhlenbeck and Ornstein (1930) to describe the velocity of a particle sus-
pended in a liquid. In finance, the OU process is also known as part of the Vasicek (1977)
model, where it was applied for interest rates modeling.

The main attraction of the OU process in statistical modeling stems from its mean-
reverting property. For θ ¡ 0, the instantaneous drift θpµ �Xµptqq guarantees that the
process is pulled towards µ. The greater θ and the deviation, the stronger the attraction.
Erratic fluctuations around µ with a magnitude set by σ are caused by the Brownian
motion. Therefore, θ is also referred to as mean-reversion speed, µ as mean-reversion
level and σ as instantaneous volatility.

Mean-reversion also induces a stationary distribution of the OU process. From (1.5)
we get

Xpt� hq � e�θhXptq � σ

» t�h
t

e�θpt�h�uqdW puq, t, h ¥ 0, (1.6)

and it is immediately clear (by the independence of the increments of W ) that X is a
Markov process. Using the Itô isometry the stochastic integral is a Gaussian process with
mean 0 and variance σ2

2θ

�
1� e�2θh� for all h ¥ 0. Hence, we can immediately express the

transition distribution of the OU process as

PpXpt� hq ¤ y|Xptq � xq � Φ
�?

2θpy � xe�θhq
σ
?

1� e�2θh



, (1.7)
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where Φ is the standard normal distribution. If θ ¡ 0, the limiting distribution is

lim
hÑ8

PpXpt� hq ¤ y|Xptq � xq � Φ
�?

2θy
σ



.

Hence, if Xp0q � N
�

0, σ2

2θ

	
, then the limiting distribution is the stationary distribution

and holds for all times t ¥ 0,

Xptq � N
�

0, σ
2

2θ



ô Xµptq � N

�
µ,
σ2

2θ



.

The stationary distribution clearly expresses that Xµ fluctuates around the level µ. This
shows again the mean-reverting property of an OU process.

The stationarity of the OU process should not to be confused with the existence of a
stationary distribution. By using (1.6), it is easy to derive that for E pX2p0qq   8,

EpXptqq � e�θtEpXp0qq, t ¥ 0,

and

CovpXptq, Xpsqq � σ2

2θ
�
e�θpt�sq � e�θpt�sq

�� e�θpt�sqV arpXp0qq, 0 ¤ s ¤ t.

If Xp0q has mean 0 and variance σ2

2θ , X has constant mean and a covariance function that
only depends on the time between the observations. Then, the autocovariance function
(ACVF) is

γXphq � CovpXpt� hq, Xptqq � σ2

2θe
�θh, h ¥ 0. (1.8)

Therefore, weak-sense stationarity is achieved. If even Xp0q � N p0, σ2

2θ q applies, X is also
strictly stationary, since the stationary distribution is the Gaussian distribution.

Even if Xp0q does not satisfy the above conditions, by (1.6) the influence of the initial
value exponentially decreases. Hence, stationarity is at least achieved asymptotically for
θ ¡ 0. Also for θ ¤ 0 the process given by (1.5) is well-defined. Of course, for θ   0 the
stochastic integral “explodes” as tÑ 8.

1.5.2 CARMA processes

In physics, the application of the OU process is motivated by Langevin’s equation of
motion. In other fields it is chosen due to its appealing properties, especially the mean-
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reversion. However, two major shortcomings were identified. First, the Brownian motion
seems not always appropriate to explain the variability of the data. Second, by (1.8),
the stationary OU process has an exponentially decreasing ACVF. But such a simple
dependence structure is not always sufficient. Therefore, the more general continuous-
time autoregressive moving average (CARMA) process was defined.

A (Lévy-driven) CARMApp, qq process Y � tY ptqut¥0 of order p, q P N with q   p is
defined (cf. Brockwell (2014)) by the equation

Y ptq � bTXptq, (1.9)

where the Rp-valued process X � tXptqut¥0 is the solution to the SDE

dXptq � AXptqdt� 1pdLptq, (1.10)

driven by a Lévy process L � tLptqut¥0 with

A �

���������

0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
�ap �ap�1 �ap�2 . . . �a1

��������
,1p �

���������

0
0
...

0
1

��������
, and b �

�������
b0

b1
...

bp�1

������,

for real-valued coefficients a1, . . . , ap, b0, . . . , bp�1 satisfying bq � 1 and bj � 0, j ¡ q. For
p � 1 the matrix A is to be understood as A � p�a1q. Given an initial random vector
Xp0q P Rp independent of L,

Xpt� hq � eAhXptq �
» t�h
t

eApt�h�uq1pdLpuq, t, h ¥ 0. (1.11)

A CARMA(p,q) processes of order q � 0 is also called a CAR process and denoted as
CAR(p).

Remark 1.1
The condition bq � 1 ensures the identifiability of the CARMA process and in particular
of the Levy process L. Instead of the q-th component, any other bj, j ¤ q, can also be
fixed. In numerical applications b0 � 1 is often preferred. This also connects CARMA
processes more directly with their discrete-time counterparts, the ARMA processes.
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Comparing (1.6) and (1.11), there is obviously a strong connection between the class
of CARMA processes and the OU process. In fact, for L � σW and p � 1 we get an
OU process with θ � a1 and µ � 0. Accordingly, many features of the OU process can
be assigned to CARMA processes. Of particular interest is again the mean-reversion
property.

Mean-reversion For EpLp1qq � ξ   8, we get by (1.11),

Xpt� hq � �A�1ξ1p � eAh
�
Xptq � A�1ξ1p

�� » t�h
t

eApt�h�uq1pdpLpuq � ξuq. (1.12)

The diagonalization (over C) of A � PΛP�1 gives the matrix exponential eAh � PeΛhP�1.
Now, if the eigenvalues of A have strictly negative real part, i.e.

Repλiq   0, i � 1, . . . , p, (1.13)

where λi are the diagonal elements of Λ, the process X returns to �A�1ξ1p. Of course,
this means that Y � bTX returns to �bTA�1ξ1p and for ξ � 0, Y µ � Y � µ fluctuates
around the level µ. Since for the OU process λ1 � �θ, in this case, condition (1.13) is
equivalent to the requirement of a positive mean-reversion parameter.

Stationarity Stationarity of X resp. Y can also be shown under condition (1.13).
Since the stochastic integral in (1.12) has mean 0, for weak-sense stationarity we need
EpXp0qq � �A�1ξ1p. Furthermore, if V arpLp1qq � σ2   8, using (1.11) and the i.i.d
increments property of L,

CovpXptq,Xpsqq � eAt
�
CovpXp0qq � Cov

�» s
0
e�Au1pdLpuq




eAs �

eApt�sqCov
�
eAsXp0q �

» s
0
eAps�uq1pdLpuq



�

eApt�sqCov
�» 8

s

eAu1pdLpuq �
» s

0
eAu1pdLpuq



� eApt�sqΣ, 0 ¤ s ¤ t,

where CovpXp0qq is assumed to be equal to the covariance matrix Σ of
³8
0 eAu1pdLpuq.

As shown above, this is necessary and sufficient to achieve weak-sense stationarity of X.
Like for the OU process, X is also strictly stationary, if Xp0q is distributed according to
the limiting distribution

³8
0 eAu1pdLpuq. The same holds for Y , where we get

EpY ptqq � �bTA�1ξ1p, t ¥ 0,
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and
γY phq � bT eAhΣb, h ¥ 0.

This ACVF allows for much more representations of dependency structures than possible
for the OU process. It does not even have to be monotone.

Example 1.2
The matrix A with a1 � 1, a2 � π2�1

4 has eigenvalues λ1 � �0.5 � iπ2 , λ2 � �0.5 � iπ2 .
If Xp0q � ³80 eAu1pdLpuq, then, setting b0 � 0 and b1 � 1, leads to the strictly stationary
CARMA(2,1) process Y with ACVF,

γY phq � σ2

2 e
�0.5h

�
cos
�
πh

2



� π

4 sin
�
πh

2


�
,

which exhibits a damped oscillatory behavior.

However, this generalization of the ACVF is paid for with an important property.
While X is a Markov process (cf. Equation (1.11)), this is no longer the case for the
CARMA process Y , which is a linear combination of the components of X. But this
is inevitable, because according to Doob (1942) every (except of a trivial white noise
sequence) strictly stationary, Gaussian, Markovian process is an OU process, i.e. has an
exponentially decreasing ACVF.

The loss of the Markov property not only poses theoretical challenges, but also practi-
cal ones. While for the OU process we could use simple transition distributions (cf. Equa-
tion (1.7)) for simulation and estimation, these are not directly available for CARMA
processes.

Estimation A potential solution for estimating the parameters of a strictly stationary
CARMA process is given by the fact, that the observations Y pt1q, Y pt2q, . . . , Y ptNq at
times 0 ¤ t1   � � �   tN satisfy the equations

Y ptiq � bTXptiq, i � 2, . . . , N,

Xptiq � eApti�ti�1qXpti�1q � Zi,
(1.14)

where Xpt1q �
³8
0 eAu1pdLpuq and tZiui�2,...,N is a set of independent random vectors

with Zi �
³ti
ti�1

eApti�uq1pdLpuq. These equations precisely define a linear state-space
model and the related theory (cf. Durbin and Koopman (2012)) can be applied. Besides
the evaluation of the matrix exponential eAh, h ¥ 0, this requires some knowledge about
the distribution of Zi, @i. For L � σW , it is enough to know the covariance matrices of
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Zi, which can be found from Σ noting that

CovpZiq � Σ� eApti�ti�1qΣeAT pti�ti�1q.

An algorithm for calculating Σ given the matrix A is stated e.g. in Tómasson (2015). In
case L is a non Gaussian Lévy process, of course, it is not sufficient to know Σ. However,
the CARMA parameters aj, j ¤ p ,bj, j ¤ q, can still be estimated as in the Gaussian
case. Schlemm and Stelzer (2012) proved consistency of this quasi-maximum likelihood
estimation.

This leaves the problem of choosing a proper Lévy process. Restating (1.10) allows to
recover the increments of L from the process X,

Lptq � Lpsq � 1Tp
�
Xptq �Xpsq �

» t
s

AXpuqdu


, 0 ¤ s ¤ t. (1.15)

For inference concerning the process L, it is therefore enough to identify X. This is
possible from realizations of Y as indicated by Brockwell and Lindner (2015). Using the
notation X � Xp � pX0 � � � Xp�1qT , from (1.10) and the definition of the matrix A, we
have

dXjptq � Xj�1ptqdt, j � 0, . . . , p� 2. (1.16)

If q � 0, X0 � Y and the remaining p � 1 components are obtained by successive
differentiation. Otherwise, Xq � bqXq � Y � b0X0 � . . . � bq�1Xq�1. Hence, Xq satisfies
the SDE

dXqptq � BXqptqdt� 1qY ptqdt,

or equivalently

Xqptq � eBpt�sqXqpsq �
» t
s

eBpt�uq1qY puqdu, 0 ¤ s ¤ t, (1.17)

with
B �

�
0 Iq�1
�bTq



, and bTq � pb0 � � � bq�1qT ,

where Iq�1 is the pq� 1q� pq� 1q identity matrix. For q � 1, the matrix B boils down to
p�b0q. Assuming a plausible value for Xqp0q, (1.17) gives a method for filtering Xq from
Y . In order that the pathwise integral in (1.17) for large intervals does not explode, it is
necessary that the eigenvalues µi, i � 1, . . . , q, of B have negative real part, i.e.

Repµiq   0, i � 1, . . . , q.



30 Chapter 1. Introduction

Then, according to (1.16), the complete process X is obtained by differentiation of X0 to
find the remaining components Xj, q� 1   j ¤ p� 1. Applying (1.15), the increments of
the Lévy process L can be recovered, where the integrals appearing above are numerically
approximated in application.

Example 1.3
For a strictly stationary CARMA(2,1) process Y with b0 ¡ 0 driven by the Lévy process
L, applying (1.17), the components of the process X are

X0ptq � e�b0tX0p0q �
» t

0
e�b0pt�uqY puqdu, t ¥ 0,

X1ptq � Y ptq � b0X0ptq.

Therefore, by (1.15), the increments of L can be recovered as

Lptq � Lpsq � Y ptq � Y psq � pa1 � b0qpX0ptq �X0psqq � a2

» t
s

X0puqdu.

Simulation By simulation many properties of a stochastic process can be made numer-
ically accessible. This is particularly important if analytic solutions are not available.
In principle, the linear state-space model (1.14) can be used to generate realizations
of a CARMA process. However, this requires the evaluation of the matrix exponential
eAh, h ¥ 0, and a way to simulate the random vectors tZiui�2,...,N . Since especially the
last point can be difficult, a more direct procedure is often used. An approximation
tXpnqpτiqui�0,...,n, 0 � τ0   � � �   τn � T , τi � τi�1 � T

n
, to tXptqu0¤t¤T is given by the

discretization of the SDE (1.10), i.e.

Xpnqpτiq � Xpnqpτi�1q � AXpnqpτi�1qpτi � τi�1q � 1p pLpτiq � Lpτi�1qq .

This procedure is known as the Euler scheme and consistency pnÑ 8q for a Lévy driven
SDE has been proven by Jacod (2004). Using a small value for n, this scheme enables to
generate realizations of tXptqu0¤t¤T given some initial value Xp0q � x, and thus also of
the related CARMA process Y provided on can simulate the Lévy process L.



Chapter 2

Continuous-Time Threshold
Autoregressions with Jumps

In this chapter we study a nonlinear extension of continuous-time autoregressive (CAR)
processes that can exhibit jumps. We start with a short survey of nonlinear autoregressive
processes. Then we define a nonlinear CAR process with jumps and prove its existence in
Section 2.2 using a generalized version of the Girsanov theorem. In Section 2.3 we show
that an Euler scheme can be used for approximating this process. A maximum likelihood
estimator is constructed in Section 2.4 using particle filtering methods. We test its quality
in a simulation study. Finally we apply the process to the Physical Electricity Index in
Section 2.5 and show that the inclusion of a nonlinear autoregressive component provides
a significant advantage over comparable models.

2.1 Nonlinear CAR processes
Continuous-time autoregressive moving average (CARMA) processes represent an import
class in modeling stationary time series. They are used to map a functional relationship
between successive observations. However, for the traditional CARMA process discussed
in Section 1.5 this relationship is limited to a linear behavior. To overcome this, Brockwell
(1994) extended the class of (Gaussian) CARMA processes by allowing the parameters
to be piecewise constant functions depending on the value of the process itself. The re-
sulting processes are called continuous-time threshold autoregressions (CTAR) and allow
to successfully map nonlinear relationships. The construction was motivated by Tong
(1983), who introduced a similar extension for the class of discrete-time autoregressive
processes. While in discrete-time much of the original theory can also be used for the
extended process, this is not the case for CTAR. The reason is that in continuous-time
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any number of parameter changes between two observations is possible.
Allowing the parameters of a CARMA process to be piecewise constant functions

leads to a discontinuous drift coefficient of the multivariate stochastic differential equation
(SDE) (1.10). In standard literature such a case is not dealt with. The well-definedness
of CTAR have been proved by Brockwell (1994) using the Girsanov theorem. Moreover, a
consistent simulation scheme was specified, which forms the basis for a heuristic procedure
to estimate model parameters.

2.2 CTAR with jumps
In addition to the occurrence of nonlinear dependencies, it has been found that data often
has characteristics that do not interfere with normal distribution assumptions. Especially
in financial markets extreme events can often be observed, which suggest the influence
of a jump component. While corresponding extensions have been defined for CARMA
processes (cf. Brockwell (2001b)), to our knowledge this is not the case for CTAR. Hence,
we generalize the model in Brockwell (1994) by incorporating a jump component.

Definition 2.1
A CTARppq with jumps tXptqutPr0,T s, T ¡ 0, of order p P N is defined as the first
component of the p-dimensional process tXptqutPr0,T s with initial x0 P Rp satisfying

dXptq � rApXptqqXptq � 1pβpXptqqs dt� 1p rσdW ptq � dJptqs , (2.1)

Xp0q � x0 a.s., (2.2)

with 1Tp � p0 � � � 0 1q, Apxq �
��0 Ip�1

apxqT

�, and parameter functions

apxqT � p�api � � � � a1iq P Rp, βpxq � βi P R, for x P Ri :� rri�1, riq. (2.3)

The threshold values �8 � r0   r1   � � �   rl � 8 partition the real line. SDE (2.1) is
driven by a Lévy jump-diffusion Lptq :� σW ptq � Jptq, where σ ¡ 0, W ptq is a standard
Brownian motion and Jptq � °Nt

i�1 γi is a compound Poisson process with jumps of size
γi

i.i.d� Fγ independent of the Poisson process Nptq with intensity λ ¡ 0. For p � 1, Apxq
reduces to �a1pxq.

By (2.3) we clearly see that the drift coefficient of the stochastic differential equation (2.1)
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is a discontinuous function. Therefore construction of a (strong) solution by common
theorems fail (see e.g. Protter (2005)[V,3.]). Fortunately, by using Girsanov‘s theorem
for semimartingales, a unique weak solution still can be found. A detailed treatment of
the theory of semimartingales is given by Jacod and Shiryaev (2002). There, also any
unexplained but classical notation used in the following is explained.

Remark 2.2
A weak solution to a SDE driven by a Lévy jump-diffusion σW � J exists, if there is a
solution X on the driving system pΩ,F ,F,P;Zq, where Z � σW̃ � J̃ is a Lévy jump-
diffusion with driving terms W̃ d� W , J̃ d� J (see Jacod and Shiryaev (2002)[III,§2c.]).

For application of the Girsanov formula it is essential that for a suitable measurable
function H : r0, T s �Dpr0, T s,Rq Ñ R, the Doleans-Dade exponential

Zptq :� Zpt,Xq � exp
�» t

0
Hps,XqdW psq � 1

2

» t
0
H2ps,Xqds



, 0 ¤ t ¤ T, (2.4)

is a true martingale. For Xptq � W ptq, Beneš approach (see Karatzas and Shreve
(1998)[3.5.16]) shows that this is true under a growth condition on H. Klebaner and
Lipster (2011) extended this result for more general forms of the stochastic exponential.
In the following Lemma we show that under a second order condition on Lptq their results
can be applied.

Lemma 2.3
Let L̄r0, T s :� tL P Lr0, T s : EpLptqq � 0, EpL2ptqq   8, 0 ¤ t ¤ T u, where Lr0, T s is the
class of Lévy processes on pΩ,F ,F,Pq up to time T . Then for any measurable function
H : r0, T s � L̄r0, T s Ñ R, where Hpt, Lq depends on tLpsqus¤t only and satisfying the
linear growth condition

H2pt, Lq ¤ K

�
1� sup

s¤t
L2psq

�
, t ¤ T, (2.5)

for some K ¡ 0, the Doleans-Dade exponential tZptqutPr0,T s is a martingale.

Proof. First, for the stochastic integral in (2.4) to be well defined, Hps, Lq has almost
sure to be square integrable with respect to ds on r0, T s. Since EpLptqq � 0, by Cont
and Tankov (2004)[3.17], Lptq is a martingale and by Karatzas and Shreve (1998)[1.3.7],
L2ptq is a submartingal. Therefore Doob‘s inequality can be used to show that by (2.5)
and EpL2ptqq   8, Hpt, Lq satisfies the conditions of Klebaner and Lipster (2011) as
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L̄r0, T s � Dpr0, T s,Rq.

The measurability of the function H in Lemma 2.3 has to hold with respect to an ap-
propriate σ-algebra. In the following we will use the canonical σ-algebra on Dpr0, T s,Rq,
i.e. the Borel σ-algebra associated with the Skorokhod topology.

Using Lemma 2.3 we now can prove that there is a weak solution to (2.1)-(2.2) in
sense of Remark 2.2. Furthermore this solution is unique and non-explosive.

Theorem 2.4
For each Lévy jump-diffusion tLptqutPr0,T s satisfying the conditions of Lemma 2.3 and
x0 P Rp, there is a unique (in law), non-explosive weak solution of (2.1)-(2.2).

Proof. First we adopt the idea of Brockwell (1994), attributing a solution of (2.1) to a
solution of a one-dimensional SDE. Therefore fix x0 P Rp and w.l.o.g. assume Lptq �
σW ptq � Jptq has characteristics p0, σ2t, λdt� Fγq. Writing equation (2.1) in coordinate
form, we get

dX1ptq � X2ptqdt,
dX2ptq � X3ptqdt,

...

dXp�1ptq � Xpptqdt,
dXpptq � r�apX1ptq � � � � � a1Xpptq � βsdt� dLptq,

(2.6)

where we have abbreviated ajpX1ptqq and βpX1ptqq to aj and β, respectively. Assuming
Xp0q � x0, we can write Xptq in terms of tXppsq, 0 ¤ s ¤ tu using the relation

Xjptq � x0
j �

» t
0

» sp�1�j

0
� � �
» s2

0
Xpps1qds1 � � � dsp�j, j � 1, 2, . . . , p� 1.

The resulting functional relationship will be denoted by

Xptq � Fpt,Xpq. (2.7)

Substituting (2.7) into the last equation in (2.6), we see that it can be written in the
form

dXpptq � Gpt,Xpqdt� dLptq, (2.8)

where Gpt,Xpq, like Fpt,Xpq, depends on tXppsq, 0 ¤ s ¤ tu.
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Let Ω � Dpr0, T s,Rq be the Skorokhod space, F the canonical σ-algebra and F �
pFtq0¤t¤T the canoncial filtration. Now, G : r0, T s � Dpr0, T s,Rq Ñ R is progressively
measurable (see Karatzas and Shreve (1998)[1.1.13]).

We now want to show by use of the Girsanov formula for semimartingales, that there
is a (weak) solution of Equation (2.8). For this, let P be a probability measure under
which the coordinate mapping process Lptqpωq � ωptq, 0 ¤ t ¤ T , ω P Ω, is a Lévy
process with the given characteristics. For this mapping FL � F . Then we define for all
t ¥ 0,

Zptq :� Zpt, Lq � exp
�» t

0

Gps, Lq
σ

dW psq � 1
2

» t
0

G2ps, Lq
σ2 ds



, (2.9)

It is easy to see that by Lemma 2.3, Zptq is a martingale. Therefore,

P̃pt, Aq :� Ep1AZptqq, A P Ft, 0 ¤ t ¤ T, (2.10)

defines a consistent family of probability measures (Karatzas and Shreve (1998)[p. 191]).
By Girsanov‘s theorem for semimartingales (Jacod and Shiryaev (2002)[3.24, III]) the
characteristics of Lptq relative to P̃ptq are�» t

0
σρpsqds, σ2t, Y � t� λFγ



, (2.11)

where Y is a measurable nonnegative function and ρptq is a predictable process uniquely
determined by the equations

Y �MP
µLp

Z

Z�
|P̃q, (2.12)

[Zc, Lc] �
»
σρpsqZps�qds. (2.13)

In Equation (2.12),MP
µ pX|P̃q is the conditional expectation of X on the probability space

(Ω̃,P̃ ,MP
µ ) (see Jacod and Shiryaev (2002)[3.15, III] for further details) and rX, Y s �

trX, Y sptqutPr0,T s is the quadratic covariation of X, Y (see Protter (2005)[6, II]).
As Zptq is continuous, Zcptq � Zpt�q � Zptq. We conclude Y � 1 directly and

ρpsq � Gps,Lpsqq
σ

since

rZc, Lcsptq � rZ, σW sptq � r1� ³Z G
σ
dW, σW sptq �

σ
³t
0 ZpsqGps,Lqσ

drW,W spsq � ³t0 ZpsqGps, Lqds � ³t0 σρpsqZpsqds.
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Hence by Jacod and Shiryaev (2002)[2.32, II] the process

L̃ptq :� Lptq �
» t

0
Gps, Lqds, 0 ¤ t   T, (2.14)

has characteristics p0, σ2t, λdt � Fγq under P̃. As L̃ptq is a Lévy process (see Jacod and
Shiryaev (2002)[4,19, II]), px0�Lptq, L̃ptqq is a weak solution of (2.8) in sense of Remark
2.2. Furthermore by Klebaner and Lipster (2011)[5.1] this solution does not explode on
any finite time interval r0, T s, that is suptPr0,T s EpXpptq2q   8.

To prove that the solution is unique in law, assume there are two weak solutions pX i, Liq,
pΩi,F i,Piq, i � 1, 2, to (2.8) with the same initial value x0. Now, using the above argu-
ments reversed, the processX iptq is a Lévy jump-diffusion with characteristics p0, σ2t, λdt�
Fγq for the probability measure P̂iptq on F i

t , according to the prescription
dP̂iptq
dPiptq � Ẑpt,X iq,

where
Ẑpt,X iq � exp

�
�
» t

0

Gps,X iq
σ

dW psq � 1
2

» t
0

G2ps,X iq
σ2 ds



.

Therefore, for 0 � t0   t1   . . .   tn ¤ T and Γ P BpRn�1q, we have

P1 rpX1pt0q, . . . , X1ptnqq P Γs � ³Γ 1
Zps,X1qdP̂

1 �

³
Γ

1
Zps,X2qdP̂

2 � P2 rpX2pt0q, . . . , X2ptnqq P Γs ,

concluding that the solution is unique in law.

2.3 Approximation by a discrete-time process
In practical application it is often necessary to simulate trajectories of the considered
stochastic processes. This is because analytic expressions for functional relationships are
hard to derive or even do not exist. Therefore Monte Carlo methods are used instead.
As for CTAR we do not know how the explicit solution looks like so that, for simulation
we have to rely on the defining SDE (2.1) instead. The most common numerical solution
to a SDE is given by the Euler method, a first-order approximation.

In the following an Euler representation for the CTAR with jumps is given and we
show that this approximation is consistent. This is not trivial as for proving consistency
of the Euler approximation one usually requires smoothness of the associated coefficient
functions (see e.g. Jacod et al. (2005)).

Let pΩ,F ,Pq be a probability space on which a solution tXptqutPr0,T s to the SDE (2.1) with



2.3. Approximation by a discrete-time process 37

Xp0q � x0 exists. Then an approximation tXnpτkqu0�τ0 ��� τn�T , τk�1 � τk �: δ � T {n,
to tXptqutPr0,T s is given by

Xnpτk�1q � Xnpτkq � rApXnpτkqqXnpτkq � 1pβpXnpτkqqs δ�
� 1p

�
σνk�1

?
δ � γk�1qk�1

�
, k � 0, . . . , n� 1,

(2.15)

Xnpτ0q � x0, (2.16)

where tνku iid� N p0, 1q approximates the increments of a standard Brownian motion,
tγku iid� Fγ is a sequence of stochastic jump amplitudes with zero mean independent of
the jump times tqku iid� berpλδq. Thereby berppq denotes the Bernoulli distribution with
parameter p.

This type of approximation of the process jump dynamic is also used in the Bernoulli
diffusion model, a discretized version of the Merton model (see Honoré (1998)). If we
extend the discrete time process Xn to the unit interval by defining Xnptq :� Xnpt tn

n
uq,

then tXnptqutPr0,T s is called the discretized Euler scheme.

In the following we prove that (2.15) is a valid approximation of the SDE (2.1) as the
distribution of Xn converges to the distribution of X. The construction of this proof
is based on the ideas of Yan (2002), who derived weak consistency of a Euler method
with discontinuous coefficients on Cpr0, T s,Rpq using the occupation time formula. In the
multidimensional case this requires the existence of at least one projection of the set of
discontinuities onto a coordinate axis with non-degenerate diffusion coefficient such that
the projected set has Lebesgue measure 0. Unfortunately, this is not possible in our case.
Therefore, beside extending the proof of Yan (2002) to Dpr0, T s,Rpq, we adopt an idea
of Brockwell and Williams (1997) to show that the local time technique can still be used.

For this note that bpXq :� ApX1qX satisfies a linear growth condition similar to (2.5),

‖bpXnptqq‖2 ¤ Kr1� ‖Xnptq‖2s, 0 ¤ t ¤ 1, n P N,

for some K ¡ 0, where ‖�‖ stands for the Euclidean norm in the appropriate space. In
the following w.l.o.g. we assume that T � 1, β � 0, x0 � 0.

Lemma 2.5
If mγ,k :� EFγ pγk1 q   8 for k � 4, then Ep‖Xnptq‖4q   8 for all n P N and t P r0, 1s.

Proof. As Xnptq � Xnpτkq, τk ¤ t   τk�1, we only have to prove Ep‖Xnpτkq‖4q   8 for
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k � 0, 1, . . . , n. Let n P N be arbitrary but fixed. By

Xnpτk�1q � Xn
p pτkq �

1
n
bpXnpτkqq � σνk�1?

n
1p � γk�1qk�11p,

we find

Ep‖Xnpτk�1q‖4q ¤ 43
�
Ep‖Xnpτkq‖4q � 2K2

n2

�
1� Ep‖Xnpτkq‖4q�� 3σ4

n2 � λ

n
mγ,4

�
,

where we used p°m
i�1 aiq4 ¤ m3p°m

i�1 a
2
i q for any real numbers ai by the Cauchy-Schwarz

inequality. Since x0 P R, the statement follows now by induction on k.

Lemma 2.6
If the condition of Lemma 2.5 is satisfied, then supn¥1 Ep‖Xnptq‖4q   8 for all t P r0, 1s.

Proof. First note that by equation (2.15),

Xnptq � x0 � 1
n

ttnu̧

i�1
bpXnpτi�1qq �

ttnu̧

i�1

σνi?
n
1p �

ttnu̧

i�1
γiqi1p,

and so by the Cauchy-Schwarz inequality

‖Xnptq‖2 ¤ 43

��∥∥∥x0
∥∥∥4 �

∥∥∥∥∥∥ 1
n

ttnu̧

i�0
bpXnpτi�1qq

∥∥∥∥∥∥
4

�
�

ttnu̧

i�1

σνi?
n

�4

�
�

ttnu̧

i�1
γiqi

�4�� .
By the fact that

°ttnu
i�0 bpXnpτi�1qq is constant for ttnu

n
¤ t   ttpn�1qu

n
, Hölder‘s inequality,

the at most linear growth of ‖bpXq‖ and the Cauchy-Schwarz inequality

‖Xnptq‖2 ¤43

� ∥∥∥x0
∥∥∥4 � t3

» t
0

‖bpXnpsqq‖4 ds�
�

ttnu̧

i�1

σνi?
n

�4

�
�

ttnu̧

i�1
γiqi

�4 �

¤43

� ∥∥∥x0
∥∥∥4 � t3K

�
t�

» t
0

‖Xnpsq‖4 ds



�
�

ttnu̧

i�1

σνi?
n

�4

�

�
�

ttnu̧

i�1
γiqi

�4 �
.

Therefore there exist two positive constants c1 and c2 independent of n such that

E
�
‖Xnptq‖4� ¤ c1 � c2

�» t
0
E
�
‖Xnpsq‖4� ds� ,
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where the equality holds by Tonelli‘s theorem and Lemma 2.5. Let fnt :� Ep‖Xnpsq‖4q,
then fnt ¤ c1 � c2

³t
0 f

n
s ds. Now by Gronwall‘s lemma, fnt ¤ c1 exppc2tq ¤ c1 exppc2q. This

concludes the Lemma, as c1 and c2 are independent of n.

Proposition 2.7
If the condition of Lemma 2.5 is satisfied, then the Euler scheme tXn : n ¥ 1u is tight in
Dpr0, 1s,Rpq.

Proof. To prove the tightness of the sequence tXn : n ¥ 1u, we use Ethier and Kurtz
(1986)[Theorem 9.8.6]. By applying Markov‘s inequality and Lemma 2.6, we get first
that for all t in r0, 1s,

lim sup
n¥1

Pp}Xnptq} ¥ aq ¤ lim sup
n¥1

Ep‖Xnptq‖4q
a4 ¤ C

a4 Ñ
aÑ8 0.

This shows, that conditions paq in Ethier and Kurtz (1986)[Theorem 7.2] holds. To use
Ethier and Kurtz (1986)[Theorem 9.8.6], by Ethier and Kurtz (1986)[Theorem 9.8.8], it
remains to prove that

E p‖Xnpt� hq �Xnptq‖ ‖Xnptq �Xnpt� hq‖q ¤ Ch, t P r0, 1s, 0 ¤ h ¤ t, (2.17)

for some C ¡ 0. Note that for h ¥ 1
n
,

Ep‖Xnpt� hq �Xnptq‖4q � E

��∥∥∥∥∥∥
tpt�hqnu¸
i�ttnu�1

1
n
bpXnpτi�1qq � σνi?

n
1p � γiqi1p

∥∥∥∥∥∥
4�¤

33E

��∥∥∥∥∥∥ 1
n

tpt�hqnu¸
i�ttnu�1

bpXnpτi�1qq
∥∥∥∥∥∥

4

�
�

tpt�hqnu¸
i�ttnu�1

σνi?
n

�4

�
�

tpt�hqnu¸
i�ttnu�1

γiqi

�4�¤
33h

�
1
n

tpt�hqnu¸
i�ttnu�1

Ep‖bpXnpτi�1qq‖4q � 3σ2

n
� λmγ,4

�
¤ Ch,

where C ¡ 0 is independent of n and we used the Cauchy-Schwarz inequality, the at most
linear growth of ‖bpXq‖ and Lemma 2.5. Since

pXnpt� hq �Xnptqq ^ pXnptq �Xnpt� hqq � 0, h   1
n
,

condition (2.17) holds. Therefore tXn : n ¥ 1u is tight in Dr0, 1s.
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Since tXn : n ¥ 1u is tight in Dpr0, 1s,Rpq, which is a separable and complete space under
a metric d0, topologically equivalent to the Skorokhod metric d, by Prohorov‘s theorem
(see Billingsley (1999))[Theorem 5.1], tXn : n ¥ 1u is relatively compact in Dr0, 1s.
Therefore each sequence tXni : i ¥ 1u contains some subsequence tXnipmq : m ¥ 1u
converging weakly to some X.

By Skorokhod‘s representation theorem (see Billingsley (1999)[Theorem 6.7]), there
exist random elements Ym and Y taking values in Dpr0, 1s,Rpq, defined on a common
probability space pΩ̄, F̄ , P̄q, such that LpYmq � LpXnipmqq, @m, LpYq � LpXq and
Ym Ñ

mÑ8 Y almost surely in Dpr0, 1s,Rpq. In addition, by Van der Vaart and Well-
ner (1996)[Addendum 1.10.5], Ym and Y can be chosen according to

Ymp�, ω̄q � Xnipmqp�, φmpω̄qq, Yp�, ω̄q � Xp�, φpω̄qq, (2.18)

with measurable maps φm : Ω̄ Ñ Ω and P � P̄ � φm, for m � 1, 2, . . ..
If we define ν̄mk :� νk � φm, γ̄mk :� γk � φm and q̄mk :� qmk � φm, m � 1, 2, . . ., the

distribution of the random variables is not changed under P̄. Therefore for every m ¥ 1,
Ym satisfies

Ymptq � Ympτkq � 1
nipmq

ApY m
1 pτkqqYmpτkq � 1p

�
σν̄mk�1?
nipmq

� γ̄mk�1q̄
m
k�1

�
, τk ¤ t   τk�1.

(2.19)

By this representation of Ym, Yan (2002) proved, that Y is a weak solution of the
approximated SDE. Hence tXnipmq : m ¥ 1u converges weakly to the unique weak solution,
which implies weak convergence of the Euler scheme. By the local time technique of
Yan (2002), we now show that the occupation time of Y1 in the set of discontinuities
Da :� tx P R : x � ri, i � 1, . . . , lu of the drift function b is of Lebesgue measure 0 almost
surely. Let C2

b pRq denote the space of continuous functions f on R with continuous first
two derivatives bounded by a constant b ¡ 0.

Lemma 2.8
If the condition of Lemma 2.5 is satisfied, then for t P r0, 1s,

rYpsptq :� rYp, Ypsptq � tpσ2 �mJ,2λq, a.s..

Furthermore, for any f P C2
b pRq,

rfpYiq, Ypsptq � 0, i � p, a.s..
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Proof. We first prove, that

rY m
p sptq L

1pΩqÑ
mÑ8

» t
0
pσ2 �mJ,2λqds. (2.20)

Note, by the almost sure representation (2.19),

Y m
p p�q � y0

p �
1

nipmq

t�nipmqu¸
k�1

bpYmpτk�1qq1p �
t�nipmqu¸
k�1

σν̄mk?
nipmq

�
t�nipmqu¸
k�1

γ̄mk q̄
m
k .

Y m
p pt, ω̄q is a cadlag function in t and therefore bounded on r0, 1s for each ω̄ P Ω̄. As
Y m
p pt, ω̄q is constant in t everywhere except of its nipmq jump points, it is of finite variation

almost sure. Therefore Y m
p ptq is a pure jump semimartingale with respect to its natural

filtration F̄m
t � σpY m

p ptq : 0 ¤ t ¤ 1q.
Thus, by Jacod and Shiryaev (2002)[I.4.52],

rY m
p sptq �

ttnipmqu¸
k�0

p∆Y m
p pτkqq2 �

ttnipmqu¸
k�1

�
1

nipmq
bpYmpτk�1qq1p � σν̄mk?

nipmq
� γ̄mk q̄

m
k

�2

�

ttnipmqu¸
k�1

�
1

n2
ipmq

bpYmpτk�1qq21p � σ2pν̄mk q2
nipmq

� pγ̄mk q2pq̄mk q2�

� 2σν̄mk
n

3{2
ipmq

bpYmpτk�1qq1p � 2γ̄mk q̄mk
nipmq

bpYmpτk�1qq1p � 2σν̄mk?
nipmq

γ̄mk q̄
m
k

�
.

and so

ErY m
p sptq �

ttnipmqu¸
k�1

�
1

n2
ipmq

E
�
bpYmpτk�1qq21p

�� σ2

nipmq
� mγ,2λ

nipmq

�
,

where ∆Xptq � Xptq � Xpt�q. As ‖bpXq‖ has at most linear growth and Lemma 2.5,
statement (2.20) follows. At the same time, by Kurtz and Protter (1991)[Theorem 2.2],
rY m
p sptq pÑ

mÑ8 rYpsptq, as rXs � X2 � 2
³
X�dX and Ym Ñ

mÑ8 Y a.s..
From Lemma 2.5 it can be seen in the same way as above that ErY m

p s2ptq is uniformly
bounded for all t and m. Therefore rY m

p s is uniformly integrable, from which L1 conver-
gence follows. This proves the first statement of the Lemma.

For the proof of the second statement w.l.o.g. assume p � 2. Note that fpY m
p q is still a

semimartingale as f is twice continuously differentiable. Hence, by the Lipschitz conti-
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nuity of f and the Cauchy-Schwartz inequality, we get

ErfpY m
1 q, Y m

2 s2ptq � E

��ttnipmqu¸
k�1

∆fpY m
1 pτkqq∆Y m

2 pτkq
�2

¤

ttnipmquE

��ttnipmqu¸
k�1

p∆fpY m
1 pτkqqq2p∆Y m

2 pτkqq2
�¤

ttnipmqub2E

��ttnipmqu¸
k�1

p∆pY m
1 pτkqqq2p∆Y m

2 pτkqq2
�¤

tb2

nipmq

ttnipmqu¸
k�1

�
EpY m

2 pτk�1q4q
� 1

2
�
Ep∆Y m

2 pτkqq4
� 1

2 ¤ Cb2

nipmq
Ñ

mÑ8 0,

where for the last inequality we used Lemma 2.5 and
°ttnipmqu

k�1 pEp∆Y m
2 pτkqq4q

1
2 ¤ C, for

some C ¡ 0 independent of nipmq. This can be proved in the same way as in the proof of
Proposition 2.7.

By Kurtz and Protter (1991)[Theorem 2.2], we know in addition that rfpY m
1 q, Y m

2 sptq pÑ
mÑ8

rfpY1q, Y2sptq, as rX, Y s � XY � ³X�dY � ³ Y�dX, if pfpY m
1 q, Y m

2 q pÑ
mÑ8 pfpY1q, Y2qq in

the Skorokhod topology on Dpr0, 1s,R2q. But this is obvious, as Ym a.s.Ñ
mÑ8 Y and the con-

tinuous mapping theorem. Therefore, by the same argument as above, rfpY1q, Y2sptq � 0,
@t, a.s..

Lemma 2.9
If the condition of Lemma 2.5 is satisfied, then» 1

0
1pY1psq P Daqds � 0, a.s..

Proof. We first consider the case p � 1. In this setting the conditions in Yan (2002)
are satisfied and so we simply can use the occupation time formula for semimartingales
(see Protter (2005)[Ch. IV, Corollary 1]). This is valid, since by Kurtz and Protter
(1991)[Theorem 2.2], Y1 is a semimartingale. Let Lx be the local time of Y1 at x and Y c

the continuous part of Y1. Then by Lemma 2.8,» 1

0
1pY c

1 psq P Daqpσ2 �mJ,2λqds �
» 1

0
1pY c

1 psq P DbqdrY c
1 spsq �

»
xPDb

Lx1dx � 0,

where we used rY1sptq � rY1scptq by Lemma 2.8 and rY1scptq � rY c
1 sptq (see Protter
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(2005)[p. 63]). The last equation holds as λpDbq � 0 and Lxptq   8 a.s.. As each
cadlag function has at most countable many discontinuities (Billingsley (1999)[p. 124]),
we conclude the Lemma by σ2 �mJ,2λ ¡ 0.

To prove the Lemma in case of p ¥ 2 we adopt an argument of Brockwell and Williams
(1997), to show that even for a degenerate diffusion coefficient the amount of time that Y1

spends in a neighborhood of r1 is small with respect to the Lebesgue measure. W.l.o.g. we
only consider p � 2, l � 2 and r1 � 0.

For K ¡ 0 define νK :� inftt P r0, 1s : ‖Yptq‖ ¥ Ku and fix ε such that K ¡ 1 ¡ 2ε ¡
0. Then we choose a function g P C3

b pRq, where g is such that gpyq � ³y
0

³w
0 g

2puqdudw
and g2 is an even function, g2pyq � 1 for 0 ¤ y ¤ ε, g2pyq � 0 for 2ε ¤ y ¤ K and g2pyq
is non-increasing for ε ¤ y ¤ 2ε. In particular for |y| ¤ K, |g1pyq| ¤ 2ε and |gpyq| ¤ 2εK.
Thus, we may assume g2 is defined for |y| ¡ K such that |gpyq| ¤ 4εK and |g1pyq| ¤ 2ε
for all y.

Brockwell and Williams (1997) used a martingale property of Y2 � g1pY1q to show
λpt|Y1| ¤ εuq Ñ

εÑ0
0. Instead, we utilize a more direct approach based on the integration

by parts formula for semimartingales (see Protter (2005)[II.2]) to derive

E
�» t^νK

0
g2pY1psqqY 2

2 psqds


� E pY2pt^ νKqg1pY1pt^ νKqqq�

E
�» t^νK

0
g1pY1psqqdY2psq



� rg1pY1q, Y2spt^ νKq ¤ CKtε, a.s.,

by Lemma 2.6, Lemma 2.8 and the boundedness of g1, where C ¡ 0. Thus, on letting ε
tend to zero, tÑ 1, and then K Ñ 8,

E
�» 1

0
Y 2

2 psq1p0 � Y1psqqds


� 0.

As
³1
0 1p0 � Y2psqqds � 0, a.s. (see case p � 1), it follows

³1
0 1p0 � Y1psqqds � 0, a.s.. This

completes the proof.

Lemma 2.10
If the conditions of Lemma 2.5 are satisfied, then

1
nipmq

ttnipmqu¸
k�1

ApY m
1 pτk�1qqYmpτk�1q L

1pΩqÑ
mÑ8

» t
0
ApY1psqqYpsqds.

Proof. As the first p � 1 components of ApX1qX are continuous functions of X by
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Ym a.s.Ñ
mÑ8 Y, Lemma 2.6 and the dominated convergence theorem, the statement can

be proved directly for all components unequal to p. For the last component we have to
use Lemma 2.9 in addition.

By Skorokhod‘s representation theorem,

dpYm,Yq Ñ
mÑ8 0, a.s..

As Skorokohod convergence implies that Ymptq Ñ
mÑ8 Yptq for all continuity points t of Y

(Billingsley (1999)[p. 124]), we have

bppYmptqq Ñ
mÑ8 bppYptqq, @t P DY XDapY1q, a.s.,

where DY is the set of jump times of Y and DapY1q :� tt P r0, 1s : Y1 P Dau. As
LpY mq � LpXnipmqq, by the at most linear growth of ‖bpXq‖ and the proof of Lemma 2.6,
supm¥1 E ‖bpYmptqq‖4 is dominated by some constant on r0, 1s. Therefore
tbppYmptqq1ttPDYXDapY1quum¥1 is uniformly integrable. By Vitali‘s convergence theorem,

bppYmptqq1ttPDYXDapY1qu
L1pΩqÑ
mÑ8 bppYptqq1ttPDYXDapY1qu, @t P r0, 1s. (2.21)

Hence, we get

E

����� 1
nipmq

ttnipmqu¸
k�1

bppYmpτk�1qq �
» t

0
bppYpsqqds

����� ¤
E

������ 1
nipmq

ttnipmqu¸
k�1

bppYmpτk�1qq �
» t

0
bppYmpsqqds

������� E
����» t

0
bppYmpsqqds�

» t
0
bppYpsqqds

���� ¤
E|bppYm

τttnipmqu�1
q||t� τttnipmqu�1| �

» t
0
E|bppYmpsqq � bppYpsqq|ds Ñ

mÑ8 0,

since |t� τttnipmqu�1| ¤ 1
nipmq

, λ
�
DY YDapY1q

� � 0 by Lemma 2.9, equation (2.21) and the
dominated convergence theorem.

Theorem 2.11
If EFγ pγ4

1q   8, then the Euler scheme defined in (2.15) weakly converges to the unique
weak solution of SDE (2.1) as nÑ 8.
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Proof. We define

Zmptq :� Ymptq � 1
nipmq

ttnipmqu¸
k�1

ApY m
1 pτk�1qqYmpτk�1q

� 1p

��ttnipmqu¸
k�1

σν̄k
m

?
nipmq

�
ttnipmqu¸
K�1

γ̄k
mq̄k

m

�� ,
Zptq :� Yptq �

» t
0
ApY m

1 psqqYmpsqds.

As Ym Ñ
mÑ8 Y a.s. and Lemma 2.10, Zm converges to Z in probability. Therefore, we

only have to prove

Zm
p ptq dÑ

mÑ8 σW ptq �
Nptq̧

i�1
γi �: Z�ptq. (2.22)

Then, Ypptq d� ³t
0 bppYpsqqds � σW ptq �°Nptq

i�1 γi, that is, Y is the unique weak solution
of SDE (2.1). Since Xnipmq converges weakly to Y and LpYq � LpXq, the Euler scheme
converges weakly to the unique weak solution of SDE (2.1).

To prove (2.22), we use Billingsley (1999)[Theorem 13.5]. First, for any ε ¡ 0,

Pp|Z�p1q � Z�p1�q| ¡ εq � Pp|γNp1qpNp1q �Np1� δqq| ¡ εq � 0,

by the continuity in probability of Nptq. Next, denote by TN � r0, 1s the set of disconti-
nuities of Nptq. W.l.o.g. let t1   t2, t1, t2 P TN . Then

Eeips1Zmpt1q�s2Zmpt2qq � Eeips1�s2qZmpt1q�is2pZmpt2q�Zmpt1qq �

Ee
ips1�s2q

tt1nipmqu°

k�1

σν̄m
k?

nipmq
�is2

tt2nipmqu°

k�tt1nipmqu�1

σν̄m
k?

nipmq�

Ee
ips1�s2q

tt1nipmqu°

k�1
γmk q

m
k �is2

tt2nipmqu°

k�tt1nipmqu�1
γmk q

m
k

.

By Donsker‘s theorem (see Billingsley (1999)[Theorem 14.1]), the first factor converges
to Eeips1W pt1q�s2W pt2qq. To prove that the second factor tends to Eeips1

°Npt1q
i�1 γi�s2

°Npt2q
i�1 γiq,

we show
°ttnu
i�1 γ̄

m
i q̄

m
i

dÑ
nÑ8

°Nptq
i�1 γi. This is true, because by the law of total probability

Pp
ttnu̧

i�1
γ̄mi q̄

m
i ¤ xq �

8̧

k�1
Fγ1�...�γkpxqbinpttnu,

λ

n
qpkq,
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where binpttnu, λ
n
q Ñ
nÑ8 poispλtq, since ttnu

n
λ Ñ

nÑ8 λt. Now, to conclude the proof of
(2.22), it is sufficient that Zm fulfills a certain tightness condition, namely for s ¤ u ¤ t,
s, u, t P r0, 1s, and m ¥ 1,

E|Zmpuq � Zmpsq|2β|Zmptq � Zmpuq|2β ¤ cpt� sq2α,

where β ¥ 0, α ¡ 1{2 and c ¡ 0. This is true, as

E|Zmpuq � Zmpsq|2|Zmptq � Zmpuq|2 � E|Zmpuq � Zmpsq|2E|Zmptq � Zmpuq|2 ¤

¤
��E

������
tunipmqu¸

k�tsnipmqu�1

σν̄mk?
n

������
2

� E

������
tunipmqu¸

k�tsnipmqu�1
γ̄mp̄mk

������
2��

��E

������
ttnipmqu¸

k�tunipmqu�1

σν̄mk?
n

������
2

� E

������
ttnipmqu¸

k�tunipmqu�1
γ̄mp̄mk

������
2�¤

¤ ptunipmqu� tsnipmquqpttnipmqu� tunipmquq
�
σ2

n
�mJ,2

λ

n
p1� λ

n
q

2

¤

¤
$&%cpu� s� 1

n
qpt� u� 1

n
q ¤ 4cpt� sq2, t� s ¥ 1

n
, s   u   t,

0 else.

2.4 Statistical inference
In this section the problem of fitting a CTAR with jumps to a finite set of possibly
irregularly spaced data is considered. For (linear) CAR the explicit solution to the SDE
(2.1) allows to calculate the Gaussian likelihood of the observations with help of the
discrete-time Kalman recursions (cf. Section 1.5). For CTAR an explicit solution is not
found and so this approach cannot be used.

If the data additionally is uniformly spaced, an alternative procedure for estimation
of CAR processes is given by their discrete-time representation. A sampled CAR process
satisfies a standard ARMA equation. By this fact fitting of a CAR process can be traced
back to fitting of an ARMA process (see Brockwell (2014) and references therein). Indeed,
such a relationship does not hold for CTAR as noted by Hyndman (1992).

Nonetheless, Gaussian CTAR models have been fitted to a variety of data sets. If the
data is observed frequently one can use the stochastic exponential (2.4) to get estimators
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of the autoregressive parameters (see Brockwell et al. (2007)). This approach is also
possible for the CTAR with jumps but since high-frequency data is rarely available in
practice, we do not want to go into detail here. Instead, we want to introduce an approach
that can be used in a very general setup. This approach is based on particle filtering
methods.

Let Yn :� typt1q, ypt2q, . . . , yptnqu, t1   t2   . . .   tn, be a set of observations, where
w.l.o.g. we assume that ti� ti�1 � δ @i as the introduced procedures extend in an obvious
way for irregularly spaced data. For fitting of a CTAR process we are interested in
evaluation of the likelihood Lpθ;Ynq, being given by

Lpθ;Ynq � πθpypt1qq
n¹
i�2

πθpyptiq|Yi�1q, (2.23)

where πθ denotes a density specified by the vector of all model parameters θ.

A problem arising in representation (2.23) is that the densities πθpyptiq|Yi�1q for the
CTAR process are unknown. This makes a direct implementation of a maximum likeli-
hood approach impossible. A possible way out is to estimate the parameters based on an
estimator of the likelihood itself. A method to find a suitable estimate pLpθ;Ynq is given
via particle filters also known as sequential monte carlo methods (see Pitt (2002)).

Particle filters are Monte Carlo type algorithms that represent the posterior density of
a stochastic process by sampling a set of particles. They are designed for hidden Markov
models, where the observations tyt|Xtu, conditional on a preliminary assumed to be un-
known state Xt, being independent and tXtu is assumed to be Markovian. Obviously for
our observations yptiq and the state vector Xptiq of (2.1) these assumptions are satisfied.
Pitt (2002) used the representation

πθpyptiq|Yi�1q �
»
gθpyptiq|XptiqqfθpXptiq|Yi�1qdXptiq, (2.24)

to estimate the densities with help of Monte Carlo integration. Here gθ is called the
observation density and fθ the transition density. As for the CTAR process

gθpyptq|Xptqq � δX1ptqpyptqq, (2.25)

direct application of (2.24) is infeasible. Instead we restrict to the unknown state vector
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X̄ :� pX2, . . . , Xpq, and use

πθpyptiq|Yi�1q �
»
gθpyptiq|X̄pti�1q, ypti�1qqfθpX̄pti�1q|Yi�1qdX̄pti�1q. (2.26)

instead. Now the integrand is not longer known explicitly, but can be approximated by

gθpyptiq|X̄kpti�1q,Yi�1q �»
fθpyptiq, X̄ptiq|X̄kpti�1q, ypti�1qqdX̄ptiq �» 1

L

Ļ

j�1
Khpyptiq � ykjptiqqKhpX̄ptiq � X̄kjptiqqdX̄ptiq �

1
L

Ļ

j�1
Khpyptiq � ykjptiqq, (2.27)

where Kh is a kernel with bandwidth h and tpy, X̄qkjptiqu1¤j¤L are random variables from
fθpXptiq|X̄kpti�1q, ypti�1qq, where X̄kpti�1q � πθpX̄pti�1q|Yi�1q. πθ is also known as the
filtering density. Now, by Monte Carlo integration of (2.26), we get

π̂θpyptiq|Yi�1q � 1
NL

Ņ

k�1

Ļ

j�1
Khpyptiq � ykjptiqq. (2.28)

By the properties of kernel density estimators, convergence of
π̂θpyptiq|Yi�1q to πθpyptiq|Yi�1q is ensured. But this approximation requiresN�L random
number generations.

A more efficient approximation scheme is given by the convolution particle filter
of Rossi and Vila (2006). Rossi and Vila (2006) proposed to sample from the joint
density πpyptiq, X̄ptiq|Yi�1qq by first simulating Xkptiq � fθpXptiq|X̄kpti�1q, ypti�1qq fol-
lowed by generation of an observation according to gθpyptiq|Xkptiqq. Then the density of
pyptiq,Xptiqq is approximated by pykptiq,Xkptiqq with help of kernel density estimation.
For CTAR by (2.25) we only have to simulate from fθpXptiq|X̄kpti�1q, ypti�1qq which can
be done directly with the Euler scheme presented in Section 2.3. Then

πθpX̄ptiq|Yiq � πθpX̄ptiq, yptiq|Yi�1q
πθpyptiq|Yi�1q �

1
N

°N
k�1Khpyptiq � ykptiqqKhpX̄ptiq � X̄kptiqq

1
N

°N
k�1Khpyptiq � ykptiqq

. (2.29)
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This approximation allows to generate samples according to πθpyptiq|Yi�1q. For that,
starting with a guess of the initial states, we recursively resample from the set tX̄kptiquk
with weights proportional to (2.29) followed by a Euler step. Thus, an estimator for the
likelihood of the CTAR with jumps is

pLpθ,Ynq � π̂θpypt1qq
n¹
i�2

π̂θpyptiq|Yi�1q, (2.30)

where L � 1 in (2.28).

Remark 2.12
Brockwell (1994) replaced the transition densities in (2.26) by Gaussian densities with
fitted first and second order moments and used Riemann sums to approximate the inte-
grals. Beside the lack of theoretical backing, for the highly nonlinear CTAR with jumps
model this method can be very inaccurate. Moreover, for large p and n, this approach
suffers from the complicated approximation of higher-dimensional integrals.

We now try to find the maximum likelihood estimator

θ̂ � argmax
θ

Lpθ,Ynq,

by replacing the true likelihood Lpθ,Ynq by its approximation pLpθ,Ynq. Sampling with
respect to the the true transition density, Vila (2012) proved that (2.29) and (2.30) con-
verge almost surely to the true filtering density resp. likelihood by convergence properties
of kernel density estimators. A similar result is still true if we use the Euler approximation
at the evolving step.

Therefore we assume K to be a bounded, positive, symmetrical function from Rp Ñ
R, such that

³
Kdλ � 1, where λ is the Lebesgue measure. If we further assume

lim||x||Ñ8 ||x||Kpxq � 0, Kh is called Parzen-Rosenblatt kernel.

Lemma 2.13
Let KhN pxq :� 1

hpN
Kp x

hN
q, where K is a Parzen-Rosenblatt kernel and hN the bandwidth

parameter with 0   hN × 0 and NhpN Ñ 8 as N Ñ 8. Furthermore we assume the
transition density fθ is a positive function satisfying fθ P CbpRpq. Then

lim
NÑ8

lim
δsimÑ0

EppLpθ,Ynqq � Lpθ,Ynq,

where the expectation is build with respect to all simulated variables and δsim is the step
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size of the Euler method in Section 2.3.

Proof. Given Xkpti�1q � πθpXpti�1q|Yi�1q, 1 ¤ k ¤ N , and samples Xk
δsimptiq generated

by the Euler method of Section 2.3 with step size δsim conditional on Xkpti�1q, using a
kernel density estimator to achieve the approximation π̂θpXptiq|Yi�1q, we get

Ef pπ̂θpXptiq|Yi�1qq � Ef

�
1
N

Ņ

k�1
KhN pXptiq �Xk

δsimptiqq
�

Ñ
δsimÑ0

1
N

Ņ

k�1
Ef pKhN pXptiq �Xkptiqqq Ñ

NÑ8
fθpXptiq|Yi�1q,

where the expectation is taken with respect to fθpXptiq|Yi�1q. The first limit is true
because Kh P CbpRpq and the weak convergence of Xkj

δsimptiq, whereas the last equation
holds by the asymptotic unbiasedness of kernel density estimators in continuity points of
fθ. By this it is easy to see that the approximated resampling weights (2.29) converge to
the true resampling weights. Obviously this is also true for the likelihood approximation
(2.28).

Now the statement follows by induction using an iterated expectations arguement as
the particle filter estimator of the likelihood function is an unbiased estimator regardless
of the number of particles N (see Pitt et al. (2012) for a direct proof).

Theorem 2.14
If the conditions in Lemma 2.13 are satisfied and

³
K2dλ   8, then

pLpθ,Ynq pÑ
NÑ8,δsimÑ0

Lpθ,Ynq.

Proof. Using Markov’s inequality

Pp|pLpθ,Ynq � Lpθ,Ynq| ¥ εq ¤
E
�pLpθ,Ynq � Lpθ,Ynq

	2

ε2
.

Hence, in view of Lemma 2.13 and by the Cauchy-Schwarz inequality it is sufficient to
show

E
�pLpθ,Ynq � EppLpθ,Ynqq

	2
Ñ 0, as N Ñ 8, δsim Ñ 0.

However, since @ti,

V ar

�
1
N

Ņ

k�1
KhN pXptiq �Xk

δsimptiqq
�

Ñ
δsimÑ0

1
NhpN

»
K2pyqfθpx� yh|Yi�1qdy Ñ

NÑ8
0,
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the statement follows by an iterated expectations argument as in the proof of Lemma
2.13.

Remark 2.15
The direct application of Lemma 2.13 and Theorem 2.14 to CTAR is generally not possible
because we do not expect that the associated transition density is a continuous function.
This assumption is corroborated by the fact that for the Gaussian CTAR(1) the density
of the stationary distribution is discontinuous (Brockwell (2001a)). Since the disconti-
nuities form almost surely a (Lebesgue) null set (see Lemma 2.9), there is hope that the
asymptotic of likelihood is still valid. This, however, requires further investigation.

Chopin (2004) (see also Malik and Pitt (2011)) showed that for the particle filter based
estimator of the likelihood function

?
NppLpθ,Ynq � Lpθ,Ynqq dÑ

NÑ8
N p0, σ2

pf q, (2.31)

where σ2
pf is the particle filter variance and conditions under which σ2

pf   8 are given.
This central limit theorem gives an idea about the error of likelihood approximation which
can be interesting for model comparison as we will show in Section 2.5.

Remark 2.16
In numerical application one usually uses the logarithmic likelihood, i.e. logpLq, instead
of L. Then the estimator logppLq is no longer asymptotically unbiased. Nevertheless by
Chopin (2004), a result similar to (2.31) is still valid for logppLq, where a bias of magnitude
�σ2

pf

2N has to be considered.

Theorem 2.14 serves as a basis for the assumption that θ̂ � argmax
θ

pLpθ,Ynq is a mean-
ingful estimator for our process. This is also supported by the results of Gourieroux and
Monfort (1996), which could show that given explicit densities

?
npθ̂ � θ0q dÑ N p0, I�1pθ0qq,

for n,N Ñ 8 and
?
n{N Ñ 0, where Ipθ0q is the expected information matrix at the

true parameter value θ0. However, even if pLpθ,Ynq is a consistent estimator of a smooth
likelihood function and θ̂ is consistent, for a finite number of particles, it is hard to
optimize (2.30) by usual numerical procedures, as approximation of the likelihood by
particle filtering leads to a non-smooth behavior in θ. This is because resampling particles,
in fact, is sampling from a discrete distribution. Thus, by each change of θ, resampling
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weights will change, and so possibly some particles are exchanged. As the replaced
particles in general are not alike, π̂θpyptiq|Yi�1q will shift excessively.

Maximizing the resulting rough surface can be extremely problematic. Note that
this also is not overcome by using common random numbers. Therefore, Campillo and
Rossi (2009) include the unknown parameters θ as an additional state variable. Even
if an individual noise is added to that state variable, parameter estimates in extended
state space models suffer from a strong dependence on recent observations. In order to
obtain an estimator that takes all observations equally into account, we prefer a classic
maximum likelihood approach.

Lee (2008) proposed a tree-based resampling scheme to smooth a likelihood obtained
by particle filtering with resampling by inducing significant correlation among the selected
particles of consecutive runs. Figure 2.1 shows the effect of Algorithm 6 of Lee (2008)
for (linear) Gaussian CAR(2) in the first dimension of the parameter space. To test

Figure 2.1: Estimated log-likelihood for a Gaussian CAR(2) model as a function of a1
using the smoothing procedure of Lee (2008) (blue) and the vanilla particle filter (red).
The true log-likelihood is shown in black. For the smoothed log-likelihood we show the
estimate for two sets of common random numbers.

the general quality of the likelihood approximation for continuous-time autoregressive
models, beside the smoothed estimator log pLpθ,Ynq, we also drew the true log-likelihood
logLpθ,Ynq of the Gaussian CAR(2) calculated by the Kalman filter (cf. Section 1.5).
We conclude that the smoothed particle filter results in a likelihood estimate similar
to the true density of the process. This gives hope to find reasonable estimates of the
parameters by numerically maximizing log pLpθ,Ynq.

In selecting an optimization procedure to determine θ̂ two features of the utility functionpLpθ,Ynq should be considered. First, calculation of pLpθ,Ynq can be computationally
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intensive, which is a general drawback of many particle filter methods. The bottleneck
of our method is given by the smooth resampling procedure of Lee (2008) which requires
construction of a binary tree. Construction of such a tree can be done in OpNL� logNLq
(see Lee (2008)). Note that (2.29) is a mixture distribution which is easy to sample from
as long as K is selected appropriately. Therefore, efficient ways of optimizing in the
multidimensional search space are preferred. Second, the smoothing algorithm of Lee
(2008) only provides correlated likelihood estimates, but does not guarantee continuity.

A technique that can handle both is simultaneous perturbation stochastic approxima-
tion (SPSA) (see Spall (2003)[Chapter 7]). SPSA is a steepest ascent algorithm,

θ̂k�1 � θ̂k � ak∇̂θ̂k
Lpθ̂k,Ynq, k � 1, . . . , Imax,

where ∇̂θ̂k
Lpθ̂k,Ynq is a finite difference estimate of the gradient calculated by randomly

perturbing all elements of θ̂k to obtain two measurements of Lp�,Ynq. In context of
particle filtering with intractable observation density gθpyptq|Xptqq, SPSA was already
used successfully by Ehrlich et al. (2015).

Table 2.1 reports the results of a simulation study for estimating the parameters of
a CTAR(2) process driven by a jump diffusion, where the SPSA algorithm with the
smoothed particle filter likelihood as utility function was applied. The overall results
are very satisfactory. Already with 500 observations meaningful estimation results are
obtained. An increase in the number of observations will also increase the precision of
the estimate. Since jumps are rare events, reliable estimates for the parameters of the
associated distribution can only be made with an even greater number of observations.

Table 2.1: Estimated coefficients based on 40 replicates on r0, T s of a CTAR(2) with
jumps. The jumps are �Unifpaγ, bγq distributed. For simulating the processes we used
a bandwidth of δsim � 0.01 whereas observations are taken according to the stepsize
δobs � 1. For estimating the likelihood we used N � 2048 particles.

a11 a12 a21 a22 σ λ aγ bγ r1

true 1.5 0.5 3 1 1 0.2 0.7 2.1 0.2
T=500 mean 1.27 0.40 2.97 0.87 0.94 0.42 0.57 1.77 0.28

bias -0.23 -0.10 -0.03 -0.13 -0.06 0.22 -0.13 -0.33 0.08
std. dev. 0.31 0.10 0.61 0.22 0.21 0.45 0.32 0.95 0.18

T=1500 mean 1.22 0.41 2.93 0.83 0.96 0.30 0.64 1.77 0.24
bias -0.28 -0.09 -0.07 -0.17 -0.04 0.10 -0.06 -0.33 0.04

std. dev. 0.20 0.05 0.39 0.22 0.11 0.18 0.38 0.56 0.10
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2.5 Application to the spot market
In Section 1.4 we discussed the characteristics of electricity prices in liberalized markets
in detail. These consists of a pronounced seasonal pattern, mean reversion, and a high
volatility including jumps. The temporary persistence of deviations from the average level
is usually modeled by autoregressive processes. To incorporate spikes, jump-diffusions are
routinely used as driving noise. However, as spikes are very short-lived they have a mean
reversion rate much higher than observed for regular price levels. In estimation of a
standard autoregressive process as considered in Section 1.5, this leads to an erroneous
specification of the mean reversion parameters.

The common approach to overcome this is using multi-factor models (see e.g. Benth
et al. (2008)). These have the drawback that separating the effect of the different compo-
nents can be difficult. Instead of combining different processes Borovkova and Permana
(2006) allowed the mean-reversion parameter to be a continuous function depending on
the value the price. While this approach seems intuitively appealing, there is no direct
approach to transfer this to a multivariate model including higher autoregressive orders.
As CTAR allows for a linear interpolation of arbitrary accuracy of the mean-reversion
function, the CTAR with jumps can be seen as a multivariate extension to the model of
Borovkova and Permana (2006).

In Figure 2.2 the physical electricity index (Phelix) of the years 2014 to 2015 is shown.
The Phelix is a stock market index representing the daily average of the day-ahead auc-

Figure 2.2: Phelix from 2014 trough 2015.

tion results (see Section 1.3 for more details). As the most important underlying on the
derivatives market, accurate modeling is of great importance.
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Table 2.2: Estimated parameters of the seasonality function Λp�q.
m0 a1 b1 a2 b2 a3 b3

32.23 5.04 3.21 -1.58 1.22 -2.68 -2.30

The CTAR with jumps is applied to the deseasonalized time-series, i.e.

Y ptq � Sptq � Λptq, t ¥ 0,

where Sptq is the price process and Λptq is a deterministic seasonality function. Moti-
vated by the seasonality function used in Benth et al. (2014), we assume Λ is a sum of
trigonometric functions

Λptq � m0 �
q̧

k�1
ak cos

�
2πt
sk



� bk sin

�
2πt
sk



,

where we take q � 3 and the periods sk are the dominant periods found by spectral
analysis. The first three significant periods are s1 � 7, s2 � 365 and s3 � 3.5. To
estimate the parameters we used least-squares.

After subtracting Λptq from the price process, we want to test if there are really
nonlinear effects in Y ptq, which would reinforce the use of a threshold model. Therefore
we use an idea of Borovkova and Permana (2006). For the Gaussian CTAR(1) as noted
in Brockwell (2001a), the stationary distribution has the density

πpxq � k

σ2 exp
�
apxqx2

σ2



, (2.32)

where k is a normalization constant. Thus, if we replace π by an estimate of the obser-
vations marginal density (e.g. a kernel estimator), then

� logpπ̂pxqq � apxq
σ2 x2 � logpσ2q � logpkq.

By this,
� logpπ̂pxqq1 9 apxqx,

which should be a linear function if there is no nonlinear effect, i.e. apxq � a1. As (2.32)
is only valid for the Gaussian process, we first filter the spikes in the data by considering
those price movements as jumps which are outside of an �2σ̂ interval. The appropriately
scaled derivative of the negative logarithmic density estimator is shown in Figure 2.3.
Figure 2.3 indicates that the mean-reversion is a nonlinear function with a high value for
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Figure 2.3: Estimated mean-reversion (drift) function.

Table 2.3: (Linear) CAR vs. CTAR for Phelix (2015)
Phelix CAR(2) w.j. CTAR(2) CTAR(2) w.j.

mean -0.01 0.01 -0.66 -0.03
st.dev 7.08 7.21 7.97 7.86

skewness -0.54 0.00 -0.76 -0.33
kurtosis 3.84 3.02 4.12 3.91
logpLq å -1145.54 -1139.94 -1125.20
AIC å 2303.08 2291.88 2268.4

extreme prices and a low value for normal price levels. This is exactly what we expect
for electricity prices and indicates the use of a nonlinear model.

To test if there is really a benefit in using a nonlinear autoregressive model we finally fit
a Gaussian CTAR(2), a (linear) CAR(2) driven by a jump-diffusion and a CTAR(2) with
jumps to Y ptq, using the observations in 2015. By Figure 2.3 the use of three regimes
seems reasonable. As the upper regime would include only very less observations, to get
clear estimates, we restrict to one threshold instead. This is also consistent with the fact
that the negative jumps are dominant for our observations. For the autoregressive order
we assumed the same value as in Benth et al. (2014).

Table 2.3 compares the fitted models by means of the deviation of empirical moments,
their likelihood values and the AIC. First we see that a linear CAR is not able to model
the skewness in the data. This is obvious as this process is symmetric by definition
as long as we use a driving process with unskewed distribution. Furthermore for the
Gaussian CTAR there is a large bias in the mean. This can be explained by the dominant
negative jumps in the data (see Figure 2.2), which cannot be adequately represented by
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Table 2.4: Empirical standard deviation of logppLq based on M � 200 simulations.
CTAR(2) CAR(2) w.j. CTAR(2) w.j.

σ̂pf 4.29 2.70 2.61

a continuous process. In order to generate such extreme values, however, the parameters
were estimated in such a way that the process is more frequently in the negative region,
which leads to a downward biased mean.

For the CTAR with jumps the empirical moments suit best to our data. This is further
supported by its likelihood value which outperforms the values of the other models. A
more sophisticated measure to compare different models is given by the AIC. We see that
the CTAR with jumps minimizes this criterion, from which we conclude that its use could
be beneficial. For calculation of the likelihood in Table 2.3 we used N � 8192 particles
and an Euler stepsize δ � 1

50 . The standard deviation of the likelihood estimate was
approximated numerically based on M � 200 simulations and can be found in Table 2.4.
By these standard deviations and (2.31), the approximated log likelihood logppLq seems to
be sufficiently close to the true log likelihood logppLq. Hence, the results are well founded.
Note that the bias introduced by using the logarithmic likelihood is negligible by Remark
2.16).





Chapter 3

Stochastic Modeling of Intraday PV
Power Generation

This chapter is dedicated to a model for photovoltaic (PV) power generation that is able
to capture intraday variation. A statistical model which makes this possible is not yet
known. In Section 3.1 we explain the importance of solar power as renewable energy
source and discuss the difficulties of modeling it. After an introduction to the data we
consider, we discuss the need for a model that takes intraday variation of PV power
generation into account. Then we define and fit such a model in Section 3.4. There we
also show the benefits of the model by comparing it with an approach using only daily
data. Finally we apply our model to a novel future product in Section 3.5 that allows for
hedging of pure volume risk from PV power plants.

The main results of this chapter will appear in Lingohr and Müller (2019).

3.1 PV power generation
In the search for alternative energies to replace finite fossil fuels and reduce greenhouse
gases, solar power plays an important role. In 2016, more additional capacity was built
up by PV systems than by any other power generating technology. As a result, their share
on global renewable power capacity – without hydro – has already reached 33 percent
(cf. Ren21 (2017)). Since price reductions for modules have turned PV systems to be
cost-competitive in the electricity market, it can be assumed that this positive trend will
continue.

However, the increasing contribution of solar power to electricity generation also has
disadvantages. Fluctuations in infeed due to weather conditions complicate security of
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energy supplies and have significant impact on price volatility (Rintamäki et al. (2017)).
In order to correctly reflect the effect of fluctuating solar infeed, we need an accurate
model. Since the amount of solar power generated depends essentially on solar radiation
and cloud cover, a natural approach is to use information about atmospheric conditions
for modeling. This is done in the Solis clear sky model (cf. Mueller et al. (2004)), where
radiative transfer calculations are used for forecasting. Beside the fact that this approach
is complex and time consuming especially for larger geographical scale, it is not suited for
financial application as it only makes statements about the short-term behavior of solar
power.

Approaches to statistical modeling of solar power infeed can be found in Wagner (2012),
Veraart and Zdanowicz (2016) and Benth and Ibrahim (2017), which all use methods
of time series analysis. As the time series of solar infeed shows strong seasonality, the
data has to be transformed first. However, this is difficult using the standard procedures,
since solar power stays zero at night. This is probably the reason why the aforementioned
papers are limited to daily data. Obviously, this leads to a lack in modeling.

3.2 Data description
In the following we consider the total solar power generation in Germany from Jan 1,
2015 to Dec 31, 2017. Data on the amount of electricity in gigawatt (GW) generated by
solar power plants is published by the European Energy Exchange (EEX) for every hour
of the day with a resolution of 15 minutes.

Figure 1.5 shows the complete time series of solar power generation for our observation
period. A slight increase in the total amount of electricity generated can be confirmed
over the different years. This can be attributed to the increase of installed PV capacity
as already seen for the years 1990 to 2015 in Subsection 1.3.3. Figure 3.1 shows that
capacity has also grow for the years 2015 to 2017, taking into account the installation of
a new power plant on a daily basis. This data can also be obtained via the EEX.

Both Benth and Ibrahim (2017) and Veraart and Zdanowicz (2016) used a linear
polynomial to filter the positive trend. In contrast, Wagner (2012) interpolates the final
value of installed capacity of each year and used the resulting function as a normalization
constant. This approach leads to a solar efficiency process. We do the same, but use
the daily capacity levels as quotients. This removes the trend inherent in the data with
maximum precision.

In Figure 1.5 we also see a strong seasonality of PV power generation on an annual basis



3.3. Intraday variation 61

Figure 3.1: Increase in installed capacity of PV systems for 2015 trough 2017 starting
with a total installed capacity at Jan 1, 2015 of 37.6 GW.

with high infeed in summer and lower infeed in winter. In addition, the yearly fluctua-
tion is covered by a strong intraday pattern (cf. Figure 1.6). Under optimal conditions,
production is maximum at noon, while it decreases towards dusk and dawn and finally
falls to zero at night. Note that as solar power drops to zero overnight, it is not possible
to use standard methods such as differencing or truncated Fourier series to deal with the
seasonality and achieve stationarity of the process.

3.3 Intraday variation
All previous work on modeling solar power generation was limited to daily data. Of
course, as we see in Figure 3.2, there is also remarkable intraday variation of the solar
power infeed.

After finding a suitable model for the daily maximum infeed, Veraart and Zdanow-
icz (2016) recommend approximating the intraday pattern using a triangle, where the
height of the top of the triangle being determined by the daily maximum and its position
exactly between the times of sunrise and sunset. The daily pattern transformation of
Wagner (2012) uses mean values of the ratio between the actual infeed and the daily
maximum infeed for each hour of day and each month to describe the intraday pattern
(cf. Subsection 1.4.3).

In Figure 3.3 we see that both methods represent only a rough approximation of
the actually possible intraday pattern. Figure 3.4 also shows that although a graphical
analysis of the intraday pattern could lead to the conclusion that it only varies in height
(see Figure 3.2), this is not really the case. Naturally, aggregated data for a large region
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Figure 3.2: Intraday pattern of solar power generation (dotted line) and clear sky infeed
(solid line) for a selected period.

Figure 3.3: Scaled intraday patterns in comparison with true infeed on March 20, 2015.

show less extreme fluctuations at individual observation times, but if weather conditions
change over the day, the daily maximum infeed can deviate from the actual point at
which the sun reaches its maximum. This leads to skewed infeed curve. Accordingly,
the intraday curves of Wagner (2012) and Veraart and Zdanowicz (2016) calculated on
the basis of the daily maximum show a significant error especially before and after noon.
For this reason we present a novel approach for solar infeed modeling in the next section,
taking intraday events into account.
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Figure 3.4: Mean and mean plus standard deviation of the absolute error between scaled
intraday patterns and the actual infeed for each hour.

3.4 Clear sky model
As electricity generated from solar energy has to stay zero at night, a multiplicative
relationship between the deterministic seasonality and any random variation is indicated.
Obviously the same relationship holds for the installed capacity and the aforementioned
process components. Therefore, we use the following representation of solar infeed, where
time t is measured in days.

Definition 3.1
We describe solar power infeed by a continuous-time process tSptq, t ¥ 0u with

Sptq � ICptq � Λptq � Iptq,

where

ICptq ¥ Sptq ¥ 0 denotes installed capacity,

Λptq ¥ 0 denotes seasonal variations, and

Iptq ¥ 0 denotes any irregular influence.

The detrended process
Eptq � Sptq{ICptq, t ¡ 0, (3.1)

is called efficiency (also load factor or utilization rate), where Eptq P r0, 1smust hold. The
procedure described in Section 3.2 can be used to determine ICptq in case of a historical
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data analysis. If Definition 3.1 is used to describe future infeed, as, for example, in fore-
casting or pricing of derivatives, information on the grid connection of power plants under
construction can be utilized. These data can also be found on the transparency platform
of the EEX. Alternatively, a simple linear model based on the historical development of
solar power plants can be fitted.

If one is interested in a long term prediction, one should bear in mind that growth
in installed capacity is mainly driven by political support. Therefore future solar infeed
depends heavily on the expectations on government decisions. In an long term analysis
of solar infeed different scenarios for ICptq should be taken into account. In such a case
ICptq could be assumed to be a stochastic component. However, as we are not intending
a long term prediction, we assume ICptq to be deterministic.

3.4.1 Clear sky infeed

In the search for a suitable model for Eptq, which takes into account intraday variation, it
must be noted that for a large number of times, Eptq � 0. Therefore, it is not appropriate
to convert Eptq � Λptq� Iptq into an additive model by logarithmizing the data. For this
reason, we describe the multiplicative relationship directly.

As solar infeed is restricted to zero at night a classical fourier form for the seasonal
component Λptq can not be used (see also Section 3.2). A smooth estimate pΛptq that
additionally accounts for outliers is described by Bacher et al. (2009). Bacher et al.
(2009) used weighted quantile regression to normalize solar power. Using a high quantile
level q, pΛptq approximates infeed efficiency in clear (non-overcast) sky. Hence solar models
that use such an estimator for Λptq are referred to as clear sky models, a term we will
also use for the model given by Definition 3.1.

Clear sky models are usually used for decomposing global irradiance into a deterministic
clear sky and a stochastic component describing transmissivity of clouds. As random
fluctuations of solar infeed are generally caused by changing cloudiness, clear sky models
enable a physical interpretation of Iptq as cloud cover component. Bacher et al. (2009)
determined the weights of the quantile regression by a two-dimensional smoothing kernel
with a day of year and a time of day dimension consisting of Gaussian kernels φ as factors.
Since our model should not be restricted to data of one year only we extend the kernel
such that different years are incorporated.

Thus, solar radiation at time s is taken into account for time t with a weight according
to

Πpt, sq � 1
ny

� φ

�
dpt, sq
σy



� φ

�
mpt, sq
σd



, t, s ¡ 0, (3.2)
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where

ny ¡ 0 is the number of years covering the data,

dpt, sq, mpt, sq ¥ 0 is the number of days resp. minutes between t and s, each
identified with their position in a standard year resp. standard day, and

σd, σy ¡ 0 is the bandwidth in the minute of day resp. day of year dimension.

The smoothing kernel (3.2) accounts for each year of the observation period with equal
weight. As we do not expect a change neither in the seasonality of clear sky radiation nor
in the general efficiency of solar panels (at least in the medium term) this assumption is
reasonable.

Bacher et al. (2009) found that a quantile level of q � 0.85 gives a good match on days
with clear sky all day. We follow this assessment. The choice of the bandwith σy and σd is
based on visual inspection of the resulting fit. The clear sky estimator pΛptq resulting from
the associated weighted quantile regression is shown in Figure 3.5 and Figure 3.2. Note
that it is possible that the estimated clear sky efficiency is exceeded, i.e. pΛptq   Eptq.
Physically this can be explained by reflection of solar radiation and different levels of
water vapour in the atmosphere (Bacher et al. (2009)). As already noted before, we do
not expect a change in clear sky radiation. Therefore, Λptq is assumed to be deterministic

time of day da
y 

of
 y

ea
r

efficiency

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.5: Clear sky estimator pΛptq found by weighted quantile regression with quantile
level q � 0.85.
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Figure 3.6: Cloud cover component Iptq.

and extrapolation is simply done by taking the fitted value at the same day of year and
time of day.

After decomposing the solar infeed Sptq into a deterministic and a stochastic part, we
can now look for a suitable model of the residual component Iptq. This is done in the
next section.

Remark 3.2
Although Benth and Ibrahim (2017) do not explicitly address the modeling of intraday
data, they use the maximum sun intensity on a solar panel to display the annual sea-
sonality of the daily maximum. The sun intensity is determined by means of physical
formulas depending on place and date and can also easily be calculated for different times
of day. In contrast to their physical considerations, however, a purely empirically based
transformation of solar radiation is chosen to adapt the seasonality function to the data.
Therefore, we see no benefit over a completely empirical approach. In addition, it is
neither localized nor limited to bright hours.

3.4.2 Cloud cover component

The residual component Iptq is found by dividing the solar efficiency by its clear sky
estimator, i.e. Iptq � Eptq{pΛptq. The process Iptq therefore describes reduced infeed due
to deviations from clear sky. Since such shortfalls are mainly caused by absorption of
radiation by clouds, Iptq is also referred to as cloud cover component.

Before we can start with the analysis of Iptq, it must be taken into account that for
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small values of Λptq, Iptq tends to infinity. In addition, after sunset, i.e. for Λptq=0, the
cloud cover can no longer be determined using only infeed data. Therefore, we restrict
to reliable values of Iptq by removing all observations at times t, such that

pΛptq   0.35�max
uPdt

pΛpuq (3.3)

where max
uPdt

pΛpuq is the maximum clear sky infeed of the day associated with time t. Hence,
we only take into account the times of day in which the clear sky efficiency corresponds
to at least 35 % of the expected maximum daily efficiency.

In summer this is satisfied by all times between 07:00 a.m. and 5:15 p.m., while in
winter only observations from 09:45 a.m. to 03:00 p.m. can be used. A similar approach is
used by Bacher et al. (2009). Figure 3.6 shows the resulting process. Note that regardless
of the limitation to values satisfying (3.3), by reflection of solar radiation it is still possible
that the estimated clear sky efficiency is exceeded, i.e. Iptq ¡ 1.

We now want to start with an analysis of the cloud cover component Iptq. First of all,
we do not expect the general cloud cover to change within a few years. This speaks
against the existence of a trend component, which can also be shown by statistical tests.
In contrast, when looking at Figure 3.6, a cyclical pattern for Iptq with high values in
summer and low values in winter is noticeable. This is not surprising, as pΛptq has so
far only taken seasonality into account due to the different positions of the sun. The
additional shortfall in winter can, however, be caused by snow-covered solar panels, for
example. If we examine Iptq for a shorter period of time (see Figure 3.7), we also notice
a parabolic evolution for most days.

Figure 3.7: Parabolic shape of Iptq on consecutive days in summer 2015.
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This contradicts the assumption of a stationary process, as it can be found in many
works using a clear sky model for short-term predictions (see e.g. Bacher et al. (2009) and
Pedro and Coimbra (2012)). Especially in winter the daily cloud cover curves show lower
values towards dawn and dusk (see Figure 3.8). By Bacher et al. (2009) non-stationarity

Figure 3.8: Mean value of the logged cloud cover component for each hour separated by
month and colored for different seasons - before normalization (left) and after normaliza-
tion (right).

during winter can be traced back to a bad estimation of Λptq caused by the sparse number
of clear sky observation. Comparing pΛptq and the actual infeed efficiency Sptq{xICptq we
find the estimation of the clear sky component looks quite reasonable (as far as we can
say by visual inspection). Moreover even in summer the daily path of Iptq does not look
stationary (see Figure 3.7).

A explanation for the frequently occurring parabolic shape of Iptq is given by theory of
absorption. The way electromagnetic radiation is taken up by material can be described
by the Beer-Lambert law. The Beer-Lambert law states, that for N attenuating species
in a material sample of size l, the transmittance T is

T � exp
�
�

Ņ

i�1

» l
0
µipzqd

�
,

where µipzq, i � 1, . . . , N , are attenuation coefficients. In case of uniform attenuation,
this relations simplifies to

T � expp�l
Ņ

i�1
µiq, (3.4)

where τ :� °N
i�1 µi is called optical depth of the material sample.
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Beer-Lambert law can be used to describe attenuation of solar radiation as it travels
trough the atmosphere (Mueller et al. (2004)). In this case the optical depth depends on
the object’s solar angle (the angle between the observation object and the sun). For a
slant path it is

τ
1ptq � secpθlocptqqτ, (3.5)

where θlocptq is the object’s solar angle for time t and a specific location loc. As in a clear
sky setup, Iptq describes transmissivity of clouds, a similar form of the Beer-Lambert
law has to be in effect. As θlocptq has its maximum at solar noon and falls towards dusk
and dawn, Equation (3.5) explains the parabolic shape of Iptq. Note that, as θlocptq is
deterministic, explaining the parabolic shape in a stochastic way leads to misspecification.

The Beer-Lambert law is stated for a pure deterministic setup. To apply it on Iptq
we have we have to allow for random variation over time, i.e. using stochastic processes
µiptq as attenuation coefficients. Thus we get for some N P N,

Iptq � exp
�
� secpθlocptqq

Ņ

i�1
µiptq

�
, (3.6)

where we set l � 1 as this is only a scaling factor. Relation (3.6) turns the search for a
model for Iptq into a search for suitable absorption coefficients. To get an idea of these,
we must first filter the effect of secpθlocptqq. Therefore we have to determine the solar
angle θlocptq.

As we are considering data for complete Germany, the solar angle is based on the
corresponding geographical center (see Table 3.1). In Germany the solar angle in summer
is between 60� and 65�. To achieve an optimal efficiency of a PV plant it has to be inclined
to � 32.5�. We will assume that most of the solar power systems are fixed and use that
tilt for calculation of θloct . Approximative formulas for calculation of the solar angle with
location coordinates as unique input parameters can be found on the website of the Earth
System Research Laboratory, Boulder (CO).

Table 3.1: Geographical center of Germany and assumed PV tilt.
Latitude Longitude Tilt

51.22�N 9.39�E 30�

After the calculation of θlocptq, the effect of the attenuation coefficients is obtained
according to

�
Ņ

i�1
µiptq � logpIptqq

secpθlocptqq �: Īptq. (3.7)
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Interestingly, Equation (3.7) provides a physical explanation for the use of an arithmetic
model of the logged data as it is often found in statistics (see e.g. Benth and Ibrahim
(2017)). In contrast to standard approaches, however, the impact of θlocptq is explicitly
taken into account here. By Figure 3.8 we see that normalization of logpIptqq by means
of secpθlocptqq contributes substantially to the removal of the parabolic daily pattern in
winter and fall.

3.4.3 Attenuation processes

In Figure 3.9 we see the combined effect of all N attenuation processes Īptq. There is still
a seasonal effect, which is not surprising, as we have already noticed this for Iptq (see
Section 3.4.2).

Figure 3.9: Combined attenuation processes Īptq (black) and seasonal attenuation com-
ponent µ1ptq (green).

Therefore, we suppose Īptq to be a composition of N � 2 components, a deterministic
seasonal function

µ1ptq � a0 � b0 cos
�

2πt
365 � c0



, (3.8)

and a stochastic component µ2ptq. This is the same model structure as used by Benth
and Ibrahim (2017) to describe the logged daily maximum infeed. The parameters for
µ1ptq are found by least squares (cf. Table 3.2).

Table 3.2: Estimated parameters for the seasonal attenuation process µ1.
a0 b0 c0

0.39 0.16 0.06
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The determination of a suitable model for µ2ptq turns out to be a difficult task. First and
foremost, the large number of missing observations plays a major role. Since we have no
observations of the cloud cover component at night and do not receive reliable values in
the morning or evening either, approximately 65 % of the observations are missing.

Continuous-time models are particularly suitable for the description of such a data
set. In these, recorded data are seen as observations at possibly irregularly spaced times
of an underlying stochastic process. In contrast to traditional time series, here we do not
need any extra theory to handle missing data. In addition, the use of continuous-time
processes is very common in finance.

To get a clue which type of stochastic process could be appropriate for our data we plot the
sample autocorrelation function (ACF) of the deseasonalized Īptq, i.e. µ2ptq � Īptq�pµ1ptq,
in Figure 3.10. Since the minimum length of consecutive observations is 6 hours, we limit
ourselves to the calculation for the first 24 lags as we have one observation for each 15
min. Note that it is permissible to ignore missing data in this calculations.

Figure 3.10: ACF of µ2. The lags are measured in hours. The PACF has a value of 0.999
at the first lag.

We see that there is a strong dependence between the observations. The sample partial
autocorrelation function (PACF) has a value of 0.999 at the first lag. This indicates the
possible existence of a unit root. On the other hand, the path of Īptq (see Figure 3.9)
does not correspond to what we would expect if µ2ptq is a standard integrated process.
The process looks mean reverting and in particular seems to be bounded downwards by
a threshold near 0. In the positive range, the process seems less limited.

This characteristic of Īptq resp. µ2ptq is comprehensible, since we do not assume that
the clouds will change abruptly, but at the same time infeed efficiency is not unlimited
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(note that a low attenuation value leads to a high infeed by (3.6)). In fact, the clear sky
efficiency Λptq is rarely and only slightly exceeded. Accordingly, Iptq �" 1 resp. Īptq �" 0.
Since we work with logarithmic data Īptq, the condition Iptq ¡ 0 is certainly fulfilled.

A reasonable model for µ2ptq should therefore generate a process that is

mean reverting, (C1)

nearly integrated, and (C2)

asymmetric with an lower bound. (C3)

Before starting to look for a suitable stochastic process, we want to draw attention to
another characteristic of µ2ptq. In the study of weather-related data

seasonal volatility (C4)

was often observed (see Benth and Saltyte Benth (2011) for temperature and wind speed
data and Benth and Ibrahim (2017) resp. Veraart and Zdanowicz (2016) for daily maxi-
mum solar infeed data).

To test whether such behavior also exists for intraday observations and under trans-
formation (3.7), we calculate an estimator for the variation σptq of the data by forming
the sums of the squared differences for each day, i.e.

σ̂2ptq �
¸
iPDt

�
Īpti�1q � Īptiq

�2
, (3.9)

where Dt contains the indices of the observations of the day belonging to time t. The
estimator σ̂2ptq given by (3.9) is the quadratic variation estimator as used in Barndorff-
Nielsen and Shepard (2001).

Figure 3.11 shows clear signs of seasonal behavior with lower variation in summer
than in winter. This is the same structure as mentioned in Benth and Ibrahim (2017).
We follow their approach and suggest to use a deterministic truncated Fourier series to
describe this cyclical dynamics,

σ2ptq � a1 � b1 cos
�

2πt
365 � c1



. (3.10)

Since especially in winter Īptq can still show some unreasonable behavior towards dusk and
dawn (see also Figure 3.8), we restrict Dt in (3.9) to the indices ranging from 09:15 a.m. to
03:03 p.m..
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Figure 3.11: Quadratic variation estimator σ̂2ptq (black) and fitted Fourier series (green).

Table 3.3: Least squares estimates for the seasonal variance σ2ptq.
a1 b1 c1

8e-3 4.2e-3 -1.4e-1

After summarizing the essential properties of µ2ptq in (C1)-(C4), we now want to present
a suitable stochastic process. First we remove the seasonal variation of µ2ptq directly
using

µ̃2ptq � µ2ptq
σptq , (3.11)

where σptq is as in (3.10). The corresponding parameters where found by least squares
(see Table 3.3).

A class of stochastic processes with corresponding remaining characteristics is given
by continuous-time threshold autoregressions (CTAR). CTAR have been introduced by
Brockwell and Hyndman (1992) as a nonlinear extension to the class of continuous-time
autoregressive moving average (CARMA) processes. An extension which allows for jumps
was investigated in Chapter 2. However, since we assumed that µ2ptq is a nearly integrated
process, we consider here the case of the original Gaussian CTAR, i.e. the process given
by Definition 2.1 with J � 0.

A (Gaussian) CTAR(2) process tXptqut¥0 with single threshold variable r1 P R satis-
fies

Xptq �
» t

0
X1ptqdt, (3.12)
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where the process tX1ptqut¥0 is the solution to the stochastic differential equation (SDE)

dX1ptq � r�a21Xptq � a11X1ptqs1tXptq r1u�
r�a22Xptq � a12X1ptqs1tXptq¥r1u � σdW ptq, (3.13)

with aij P R, i, j P t1, 2u. Formally, a CTAR(2) process is defined by the solution
pX,X1qptq of a 2-dim. SDE (cf. Definition 2.1).

Therefore, Xptq is a kind of integrated process. In addition, by separting into two
regimes, an asymmetric behavior of Xptq is generated. Furthermore, Stramer et al. (1996)
proved that Xptq is transient as long as all eigenvalues of Apxq have negative real parts
for each x. Therefore characteristics (C1)-(C3) are met. Obviously, a CTAR has constant
variance. This is the reason why we have removed the seasonal variance in advance using
(3.11). Hence, Xptq is considered as a model for µ̃2ptq. To take property (C4) into
account, one could also replace σ in (2.1) by σptq as defined in (3.10). However, σptq is
then unobserved and cannot be estimated directly by (3.9).

Fitting of CTAR can be done with help of particle filtering as described Chapter 2.
Here, the analytically not accessible transition densities of CTAR are approximated by
kernel density estimation. Since estimating the CTAR parameters can be computational
intensive, we must limit ourselves in this estimation to observations from Jan 01, 2017
to Dec 31, 2017, which still includes over 12000 data points. Estimates based on earlier
years led to similar parameters. We therefore use the estimated parameters of a CTAR(2)
with single threshold listed in Table 3.4 for the complete data set.

If we look at the estimation results in Table 3.4, we first notice the low values for a21

and a22. If a2i � 0, then X1ptq is independent of Xptq for the i-th regime. According to
(3.12), Xptq is then actually a simple integrated process and thus (C2) is met. Despite
the low estimates, an order p ¡ 1 appears necessary. Besides the fact that we do not have
a formal method for checking insignificance for CTAR parameters, according to Stramer
et al. (1996), Xptq is recurrent if @i, j aij ¡ 0 and thus (C1) is met. Furthermore, Xptq
does not take excessive low values as described in (C3). This is because of the high
mean-reversion parameter pa11, X1ptq tends to zero fast if Xptq is in the lower regime and
so further negative growth of Xptq is stopped.
A comparison of moments (see Table 3.5) indicates that a CTAR(2) seems to be a good
choice to describe essential properties of µ̃2ptq. Only the standard deviation seems slightly
too low. This is due to some positive peaks of µ̃2ptq (see Figure 3.9) that are not ade-
quately reproduced by the CTAR(2) process. However, these peaks do not play a sig-
nificant role for the actual cloud cover component Iptq after using the retransformation
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Table 3.4: Estimated parameters of a CTAR(2) with seasonal volatility and single thresh-
old.

a11 a21 a12 a22 σ r1

1.95 0.009 1.04 0.007 0.39 -1.78

(3.4). Note that all eigenvalues of Apxq for the estimated parameters have negative real
part. Therefore, by Stramer et al. (1996), stationary moments of the related CTAR(2)
can be found by simulating a long time series and using ergodicity.

Table 3.5: Empirical moments of µ̃2ptq vs. moments of fitted CTAR(2).
mean st.dev skewness kurtosis

µ̃2ptq 0.11 3.66 0.57 3.08
CTAR(2) 0.19 2.87 0.42 2.85

3.4.4 Model testing

Figure 3.12 shows a simulation of the fitted cloud cover component Iptq for two different
resolutions. First we see that changes in cloud cover take place slowly over a period of
a few days. This is in line with our expectations for the change in weather conditions
(see also Figure 3.7). Furthermore, a comparison with Figure 3.6 indicates that essential
properties of Iptq are meet. By defining a meaningful statistical model for Iptq we are now
able for the first time to reproduce not only variation of the solar power infeed between
days but also within a day. For this we transform the simulated cloud cover component
Iptq back to solar power infeed Sptq according to Definition 3.1. For the installed capacity
ICptq, we are using a value of 41.95 GW, which corresponds to the level as of December
31, 2017. If the model is to be used for long-term predictions, of course, this value
should be replaced by a reasonable prediction of the of solar capacity expansion. Figure
3.13 illustrates that the seasonality of solar power infeed at both a yearly and a daily
level is well mapped by our model. This confirms the quality of the estimator pΛptq. In
addition, Iptq generates fluctuations in the amount of electricity fed into the grid that
corresponds to the observations. In particular, deviations from the clear sky infeed are
not only realized by simple scaling, but also individual behavior within a day is taken
into account. This leads, for example, to a shift of the day’s maximum value from the
time of solar noon (cf. Section 3.2).

To measure the effect of such shifts, we consider the absolute difference between the
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Figure 3.12: Simulated cloud cover component Iptq for a period of three years (upper)
and 15 consecutive days (lower). Time is stated in days.

actual infeed and the scaled clear sky infeed for each time t, i.e.�����Sptq � 41.95� pΛptq � max
uPdt

Spuq
max
uPdt

pΛpuq
�����.

Here, the clear sky infeed is be scaled to the same level as the true infeed, otherwise
deviations due to cloudiness will cover deviations due to a shift of the daily pattern.

Figure 3.14 shows the effect of such shifts for the observed and simulated data in
average for each hour. For a shifted day, the days maximum is not at solar noon. The
biggest differences are therefore in the morning or in the afternoon. We see that the clear
sky model realistically replicates such variations.

To emphasize the importance of defining a model for solar power infeed that respects
intraday effect, we also want to draw a comparison to the model of Wagner (2012), which
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Figure 3.13: Simulated solar power infeed Sptq for a period of three years (upper) and
15 consecutive days (lower, dotted line) together with clear sky infeed (lower, solid line).
Time is stated in days.

is up to our knowledge the most accurate statistical model for describing solar power
infeed not only on a daily scale. Therefore, we fitted the daily maximum process as
defined in Wagner (2012) and used the daily pattern transformation (see Section 3.2) to
get intraday infeed curves. Since the main motivation for defining a solar infeed model
that allows for individual daily structures laid in the observed deviations of the infeed
from the regular pattern, we also calculated the effect of a shift for the model of Wagner
(2012) (see Figure 3.14).

As to be expected, such effects are insufficiently reflected by this model. Interestingly,
the simulation based on Wagner (2012) takes some values which result in unreasonably
high infeed (see Table 3.6). This could be due to the fact that the time series of daily
maxima is described by a symmetrical process. In our approach, skewness in the data is
taken into account by using a threshold process.
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Figure 3.14: Deviations of the daily infeed patterns from the scaled clear sky infeed
patterns.

Table 3.6: Empirical upper tail quantile of Eptq restricted to daily values at 12 p.m..
99% 99.9% 99.95%

Data 0.658 0.677 0.679
Clear Sky 0.616 0.701 0.736

Wagner (2012) 0.699 0.780 0.794

An excessively highly valued solar power infeed can be problematic, especially as a
component in an electricity price model. This is because high solar power infeed can lead
to extreme prices (cf. Chapter 4).

3.5 PV power futures
Increased infeed from renewable energy sources necessitates the introduction of new prod-
ucts for electricity markets. Since 2015 the EEX lists the class of Energiewende products,
which are derivatives for hedging against weather related uncertainties. As part of the
Energiewende products, EEX has introduced a future on the average load factor of wind
production (see Benth and Pircalabu (2018) for a analysis of wind power future prices).
The wind power future provides the opportunity to hedge pure volume risk in wind power
generation.

Under the Gesetz für den Ausbau erneuerbarer Energien (Renewable Energy Sources
Act) (EEG), renewable energies can be subsidized by receiving a market premium addi-
tional to the exchange price (cf. Section 1.3). The operator of a subsidized power plant is
therefore no longer exposed to any price risk. This is why futures for renewable energies
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that only reflect volume risks are reasonable. Since solar power has the second largest
installed capacity in Germany, such a product also seems necessary to hedge volume risk
of PV power plants.

Thus, we define a new type of contract which we call PV power future with future price
FPV pt, τ1, τ2q at time t and payoff

100
τ2 � τ1

τ2̧

u�τ1
Epuq, (3.14)

for a measurement period rτ1, τ2s, τ1 ¤ τ2. The future contracts are settled in Euro at the
end of the measurement period. As for wind power futures, the holder of the PV power
future receives the average load of solar power stations across Germany.

In line with the practice for electricity markets (see Benth et al. (2008)), we assume
that the future is valuated on the basis of rational expectations, i.e.

FPV pt, τ1, τ2q � EP

�
100

τ2 � τ1

τ2̧

u�τ1
Epuq

�����Ft

�
�RP pt, τ1, τ2q, (3.15)

were EP is the expectation with respect to the objective probability P and RP pt, τ1, τ2q
is a risk premium.

In accordance with the theory of mathematical finance, the risk premium is usually
expressed in terms of a risk-neutral measure Q, i.e. an equivalent martingale measure.
Due to the successful application of stochastic differential equations in the pricing of
derivatives, continuous-time processes and first and foremost the Brownian motion have
become popular to model problems in finance. Therefore, a common choice of Q (see
e.g. Benth et al. (2007)) is given via the Girsanov transform

dQ
dP
|Ft � exp

�» t
0

θpsq
σpsqdW psq � 1

2

» t
0

θ2psq
σ2psqds



, (3.16)

where θptq is a real-valued, bounded and piecewise continuous function on r0, T s called
the market price of risk and expressing the risk premium (see Benth et al. (2008)[1.5.2]
for details).

We now want the use the proposed model of Section 3.4 to analyze the PV power future
price FPV . First, note that the SDE (2.1) can represented as one-dimensional SDE
(Brockwell (1994)) and so the class of risk-neutral probabilities given by (3.16) simply
adds a drift of size θptqdt to dX1ptq which is easy to handle. In a concrete application
θptq could be calibrated to observed future prices. Since such futures are not available at
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the moment, for the following studies we set θ � 0, i.e. Q � P.

Proposition 3.3
The future price FPV pt, τ1, τ2q of a PV power future is

FPV pt, τ1, τ2q � 100
τ2 � τ1

τ2̧

u�τ1
Λpuqe�secpθlocpuqqµ1puqEQ

�
e�secpθlocpuqqσptqXpuq|pX,X1qptq

	
.

Proof. The representation of FPV pt, τ1, τ2q follows directly from (3.15) inserting Eptq as
defined in Section 3.4 and the fact that pX,X1qptq is a Markov process (see Stramer et al.
(1996)).

By Proposition 3.3, the use of the clear sky model in future pricing requires the
existence of exponential moments of a CTAR(2) process. Since Xptq is unbounded for
both regime, we have to proof this condition separately.

Theorem 3.4
For any t ¥ 0, it holds that EQpecXptqq   8 for any c P R, where Xptq is a (Gaus-
sian) CTAR(2) process.

Proof. As we do not have an analytic expression of the solution to the SDE (3.13), to
calculate the exponential moment of a CTAR process we use an idea of Brockwell (1994).
Given the stochastic basis pΩ,F , tFtut¥0,Pq, we know that the Gaussian process

dX1ptq � σdW ptq,

is a weak solution to the SDE (3.13) under the measure

Q �
»
A

Mpt,X1qdP, @A P Ft,

where
Mpt,X1q � exp

�» t
0

Hps,X1q
σ

dW psq � 1
2

» t
0

H2ps,X1q
σ2 ds



, (3.17)

with Hpt,X1q � Gpt,X1q � θptq and Gpt,X1q is as in Theorem 2.4. Therefore

EQpecXptqq � EPpecXptqMpt,X1qq.
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Using Hölder’s inequality we find

EQpecXptqq ¤
�
EP
�
e3cXptq�EP

�
e3

³t
0
Hps,X1q

σ
dW psq

	
EP

�
e�

3
2
³t
0
H2ps,X1q

σ2 ds


� 1
3

. (3.18)

W.l.o.g. we assume pX,X1qp0q � 0 almost surely in the following. As σ is bounded and
deterministic

Xptq �
» t

0
X1puqdu �

» t
0

» u
0
σdW psqdsdu �

» t
0
σW puqdu,

is a Gaussian process under P with mean

EPpXptqq � 0,

and variance
V arP pXptqq �

» t
0

» t
0
EP
�
σ2W pu1qW pu2q

�
du1du2 �

�
» t

0

» t
0
σ2 min pu1, u2q du1du2 � σ2

�
1
6t

3 � 1
2t

2


.

Hence, we get

EPpe3cXptqq � exp
�

3cEPpXptqq � 9c2

2 V arPpXptqq


  8.

Since the third factor on the right hand side of (3.18) is trivially bounded by 1, it stays
to proof

EP

�
e3

³t
0
Hps,X1q

σ
dW psq

	
  8. (3.19)

For this first note that

EP

�
e3

³t
0
Hps,X1q

σ
dW psq� 1

2
³t
0

36H2ps,X1q
2σ2 ds� 1

2
³t
0

36H2ps,X1q
2σ2 ds



¤
�
EP

�
e

1
2
³t
0

36H2ps,X1q
σ2 ds


� 1
2

,

by Hölder’s inequality and the fact that e6
³t
0
Hps,X1q
σpsq

dW psq� 1
2
³t
0

36H2ps,X1q
σ2psq

ds is a martingale.
This is because �

6Hps,X1q
σ


2

¤ Kt

�
1� max

sPr0,ts
X2

1 psq


, s ¤ t, (3.20)

for some Kt ¡ 0 as aij, i, j P t1, 2u, σ and θptq are bounded. This means that 6Hps,X1q
σ

satisfies the linear growth condition of Lemma 2.3. By Hölder’s inequality, (3.20) and
Doob’s martingale inequality for a sequence 0 � t0   t1   � � �   tn � t with |ti�ti�1| � ∆
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we conclude

EP

�
e

1
2
³t
0

36H2ps,X1q
σ2 ds



¤

n¹
i�1

�
EP

�
e
³ti
ti�1

36H2ps,X1q
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which is finite provided that ∆   �2Kt

?
tσ
��1 as X1 is Gaussian under P.

Sample paths of a CTAR(2) process can be simulated consistently by an Euler approxi-
mation (cf. Chapter 2). We use this for computing the conditional moment in Proposition
3.3 numerically.

Figure 3.15 shows the distribution of possible payoffs of the PV power future using
different month as measurement period. Each distribution is approximated based on
50,000 simulated path of Xptq, which are started two month before τ1 such that the
influence of the initial pX,X1qp0q � 0 is negligible (cf. Figure 3.16).

Figure 3.15: Simulated distribution of the payoff of a PV power future for four example
month.

We see that in winter there is much less variation in the payoff than in summer. This
indicates that hedging the volume risk for month with high clear sky infeed generally
contribute more to reducing the risk exposure of a PV power plant. This is due to the
fact that, in absolute terms, in summer even small variations can have a great effect. The
relatively high clear sky infeed combined with larger variations lead to the highest spread
in spring.

Note that by the ergodicity of pX,X1qptq the mean value of each distribution in Figure
3.15 is equal to FPV pt, τ1, τ2q for τ1 � t large enough. This implies a clear seasonality in
the future price, which is a common feature in commodity markets.
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Another feature of future prices in commodity markets found by Samuelson (1965) is that
"the variations of distant maturity futures are lower than nearby futures prices". This
known as the Samuelson effect. As our cloud cover component is mean-reverting we also
expect that FPV pt, τ1, τ2q exhibits a volatility that is decreasing with time to delivery.
Figure 3.16 shows that this expectation is meet. The volatility of the future price was
estimated based on 1000 simulations. As expected, a shorter measurement period is

Figure 3.16: Visualization of the Samuelson effect with time measured in days prior to
τ1, July 1st for measurement periods of different length.

also associated with a higher volatility of the future. This is because extreme weather
conditions do not remain long-term and therefore there is greater uncertainty regarding
the average efficiency achieved for short periods of time. Using Figure 3.16 we also see
that pX,X1qptq has an influence on FPV pt, τ1, τ2q only a few days prior to τ1. This is in
line with the fact that the weather can only be accurately predicted for a few days in
advance.





Chapter 4

CII Processes for Modeling
Electricity Prices with regard to
Renewable Power Generation

The impact of renewable power generation on the electricity price has caused statisti-
cians to seek for approaches to incorporate associated information into their price models
(cf. Section 1.4). In this chapter we demonstrate that this is possible by directly varying
the parameters of the distribution of a process increments. This is a very flexible method
and also seems an obvious approach from a statistical perspective.

In Section 4.1 we will show how such a process is constructed, prove the consistency
of nonparametric moment estimates and present a test to check if there is really a de-
pendency on external data. The quality of a parameter estimation procedure and the
aforementioned test is numerically verified. Afterwards, in Section 4.2, we define an
electricity price model based on the new process that incorporates information on renew-
able power generation explicitly. We fit the model to the German intraday market and
check its quality. Finally, the model is used in Section 4.4 to analyze German Intraday
Cap/Floor Futures prices.

4.1 CII processes
To make the behavior of a stochastic process dependent on an external variable, we take
up an idea in Cont and Tankov (2004)[Chapter 14]. They showed how a stochastic process
whose behavior should change as time evolves can be defined using the theory of additive
processes (cf. Sato (1999)). Additive processes, also known as processes with independent
increments, represent a useful class in application, since they preserve almost all the
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tractability of Lévy processes, but allow for a flexible choice of the increment distribution
depending on time.

To construct an additive process, Cont and Tankov (2004) used a triplet
pΓptq, Aptq, νptqqt¥0, where

Γptq :� ³t0 γpsqds,
Aptq :� ³t0 σ2psqds,
νpt, Bq :� ³t0 µps, Bqds, B P BpRq

,//.//- , (4.1)

for functions γ : R� Ñ R, σ : R� Ñ R, and a family of Lévy measures tµptqut¥0. Under
rather weak conditions (see Sato (1999)[Theorem 9.8]), this triplet is the generating triplet
of an infinitely divisible distribution, which represents the distribution of an additive
process X. Here, the behavior of the process X is specified by the local characteristics
pγptq, σ2ptq, µptqqt¥0 which are assumed to be deterministic.

We extend the approach of Cont and Tankov (2004) by allowing the local characteris-
tics to be stochastic. This allows the distribution of X to depend on an external random
variable. Since for additive processes the change of the distribution must done in a deter-
ministic way, however, this leads to another class of processes for X called conditionally
independent increment (CII) processes.

CII processes were introduced previously (see Jacod and Shiryaev (2002)[II.6]) to inves-
tigate convergence of random variables. In Äit Sahalia and Jacod (2014) they appear
in this context for estimating the variance in a stochastic volatility model. Theoretical
properties of CII processes have also been investigated much earlier (Grigelionis (1975)).
However, although they promise a very flexible modeling approach, to our knowledge
direct use of such processes for practical application has not yet been investigated.

4.1.1 Existence

We want to enable the behavior of X to be controlled by an external process I. Therefore,
on a probability space pΩI ,F I ,PIq, we assume that

• γ � tγptqut¥0 and σ � tσptqut¥0 will be real-valued stochastic processes, and

• µ � tµptqut¥0 a family of random measures on R.

These characteristics express the information given by a real-valued stochastic process
I � tIptqut¥0, called external information, by being adapted to it, i.e.
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• γ, σ and µpBq, B P BpRq, will be adapted to the natural filtration FI � tF I
t ut¥0,

where F I
t � σtIpsq : s ¤ tu � F I � σpIpsq : s ¥ 0q.

Such a triplet pγ, σ2, µq is briefly referred to as I-adapted triplet in the following.

Since for an additive process the generating triplet has to be non-stochastic, existence
in the stochastic case is not covered by the previous results. However, since for each
path Ipωq an additive process can be defined, X can be constructed by specifying the
distribution X|I, i.e. the distribution of X under F I .

Theorem 4.1
There exists a stochastic process X � tXptqu¥0 on a filtered probability space pΩ,F ,F,Pq
such that P-a.s. X|Ipωq d� ZpIpωqq, where ZpIpωqq is an additive process with local charac-
teristics pγptqpωq, σ2ptqpωq, µptqpωqqt¥0, if

i) γ, σ2 and µpAq, A � F , are progressively measurable,

ii)
³t
0 |γpsq|ds   8,

³t
0 σ

2psqds   8, P-a.s. @t ¥ 0, and

iii)
³t
0

³
R px2 ^ 1q µps, dxqds   8, P-a.s. @t ¥ 0,

for pγ, σ2, µq being an I-adapted triplet. The process X is then called an I-conditionally
independent increment (I-CII) process.

Proof. Let Ω� � DpR�,Rq be the Skorokhod space and F� the canonical σ-algebra. X�

is defined as the canonical process X�ptqpω�q � ω�ptq. We consider the product space
pΩ,Fq � pΩI � Ω�,F I b F�q equipped with a suitable filtration F, where all considered
processes are extended in the usual way to Ω, for example XpωI � ω�q � X�pω�q.

Under the above conditions we know by Sato (1999)[Theorem 9.8], that for ωI P ΩI

a probability measure P�ωI pdω�q � QpωI , dω�q on pΩ�,F�q exists (a.s.), such that X� is
additive with local characteristics pγptqpωq, σ2ptqpωq, µptqpωqqt¥0.

Now, if Q : ΩI � F� Ñ r0, 1s is a stochastic kernel, then

PpdωI , dω�q � PIpdωIqQpωI , dω�q,

is a probability measure on pΩ,Fq (Klenke (2008)[Korollar 14.23]). Obviously,
PpX P B|IpωI � ω�qq � P�ωI pB�q, B � BI � B� � F , then holds, i.e. X is a I-CII
process.

It remains to prove that Q is a stochastic kernel. First, @ωI P ΩI B� ÞÑ QpωI , B�q,
B� P F�, is a probability measure on pΩ�,F�q by construction. To show that ωI ÞÑ
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QpωI , B�q is F I-measurable @B� P F�, we use

QpωI , fq �
J¹
j�1

exp
�» tj

tj�1

�
ujγpsqpωIq �

u2
jσ

2psqpωIq
2 �

»
R

�
eiujx � 1� iujx1|x|¤1

�
µps, dxqpωIq



ds

�
, f P G�,

where G� � tf : f � ±J
j�1 e

iujpX�ptjq�X�ptj�1qq, uj P R, 0 � t0   . . .   tJ   8, J P Nu.
Since γ, σ2 and µ are progressively measurable, ωI ÞÑ QpωI , fq is F I-measurable for
all f P G�. As G� generates F�, ωI ÞÑ QpωI , B�q is F I-measurable @B� P F� (Klenke
(2008)[Bemerkung 8.25]).

Theorem 4.1 shows that we can construct a process X from stochastic local charac-
teristics. However, without conditioning on a path Ipωq, we do not know which class of
processes X is assigned to. In the following we will show that X is a semimartingale.

Semimartingales (see Jacod and Shiryaev (2002) for any unexplained but classical nota-
tion) represent an important class of stochastic processes. Since they frequently occur
as solutions to stochastic differential equations, they can be found indirectly in many
applications, especially in finance. In contrast to Lévy processes, however, general semi-
martingales are rarely in the focus of statistical analysis. This is due to the fact that
they are analytically more difficult to handle, which can make estimation and simulation
difficult or even impossible. Fortunately, in our case the situation is different as we will
see later.

Theorem 4.2
Assume X is an I-CII process on pΩ,F ,F,Pq as in Theorem 4.1. Then, using the filtration
F � tF I

t b FX
t ut¥0, where FX

t � σpXpsq : s ¤ tq, X is a semimartingale. Furthermore,
if for some constant C ¡ 0,

��E pXptiq �Xpti�1q|Iq
��   C, 0 ¤ ti�1   ti   8,

then X is an Itô-semimartingale with spot characteristics pγ, σ2, µq.
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Proof. Define

Nptq �Xptq �
¸
s¤t

∆Xpsq1|∆Xpsq|¡1 �
» t

0
γpsqds,

N gptq �
¸
s¤t

gp∆Xpsqq �
» t

0

»
R
gpxqµps, dxqds, and

N�ptq �N2ptq �
» t

0
σ2psqds�

» t
0

»
R
x21|x|¤1µps, dxqds,

where g is a bounded function with gpxq � 0, |x|   ε, ε ¡ 0. If Nptq is a local martingale,
we see immediately, that X is a semimartingale.

Let us denote its characteristics by pB,C, qq, then B � ³t
0 γpsqds. If also N gptq is a

local martingale, qpds, dxq � µps, dxqdx, by Jacod and Shiryaev (2002)[Theorem II.1.8].
To find the characteristic C � xXc, Xcy, we use that for each locally square-integrable
martingale N , xN,Ny is the unique predictable process such that N2 � xN,Ny is a
local martingale. Since xN,Ny is the compensator of rN,N s � xN c, N cy �°sp∆Npsqq2
(Jacod and Shiryaev (2002)[Proposition I.4.50 and Theorem I.4.52]), if N�ptq is a local
martingale, Cptq � ³t0 σ2ds. It is obvious that X is then also an Itô-semimartingale with
spot characteristic pγ, σ2, µq.

It remains to be shown that N , N g and N� are locale martingales. Since X has
I-conditionally independent increments, this is true under the conditional probability
measure PpX P �|F Iqpωq for each ω P Ω. For now, consider the filtration F� � tF I b
FX
t ut¥0. Then, we can use the fact that for each stochastic process Y , it holds

@ω P Ω : Y is a martingale with respect to F� and Pp�|F Iqpωq
ñ

Y is a martingale with respect to F� and P,

which is easy to show. By a simple localization this shows that N , N g and N� are local
martingales with respect to F� and P. Hence, X is a semimartingale for the filtration F�.

However, since X is also F-adapted, it is a F semimartingale (Protter (2005)[Theorem
II.4]). Furthermore, if the F I-conditional expectation of the increments of X is bounded,
by Föllmer and Protter (2011)[Corollary 3.1], the processes N , N g and N� remain local
martingales with respect to F. This finishes the proof.

The property that X is a semimartingal allows us to define stochastic integrals with
respect to X. This way we can construct more complex stochastic models in which the
stochastic behavior is determined by a CII process (see Section 4.2). Also a procedure
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for simulation of semimartingales is given by Jacod and Protter (2012)[Section 5.6.3].

4.1.2 Nonparametric estimation

Estimation for general semimartingales can be difficult or even impossible. Fortunately,
in the case of an I-CII process, using the independence of the increments under Pp�|F Iq,
the situation is different. We will use this property to show that for a set of observations
tpXptiq, Iptiqqui�0,1,...,n, 0 � t0   t1   . . .   tn � n∆ � T , where |ti � ti�1| � ∆ ¡ 0, a
consistent (T Ñ 8) estimator of the moments E

�p∆iXqk|Ipti�1q � xq�, ∆iX :� Xptiq �
Xpti�1q, exists. For this we need the following assumption to be fulfilled.

Assumption 4.3
Each component of the I-adapted triplet pγ, σ2, µq is a piecewise constant function of I,
i.e. for t P rti, ti�1s,

γptq � γptiq, σ2ptq � σ2ptiq, µpt, Bq � µpti, Bq, B P BpRq,

and depends on a deterministic functions γ̄, σ̄2 resp. a family of measures tµ̄xuxPR, such
that

γptiq � γ̄pIptiqq, σ2ptiq � σ̄2pIptiqq, µpti, Bq � µ̄IptiqpBq, B P BpRq.

If Assumption 4.3 is satisfied a family of infinitely divisible distributions tHxuxPR,
connected to the I-CII process X by the following remark, can be defined, where each
distribution Hx has a generating triplet pγ̄pxq, σ̄2pxq, µ̄xq.

Remark 4.4
If Assumption 4.3 is satisfied, then, the increments ∆iX|Ipti�1q � x � ∆iL, where
tLptqut¥0 is a Lévy process with Lp1q � Hx. Since Hx is usually chosen such that sta-
tistical properties are easy to handle, this allows us to study the properties of ∆iX in a
simple way.

If Hx is furthermore a parametric distribution, i.e. there exists a parameter function
θ : RÑ Θ with parameter space Θ such that pγ̄pxq, σ̄2pxq, µ̄xq � fpθpxqq for a function f ,
and allows the use of the method of moments, we can determine θpxq from the estimates
of

mkpxq :� E
�p∆iXqk|Ipti�1q � xq� , k P N. (4.2)

This gives us a nonparametric estimator of θ.
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Since Hx is the distribution of the increments ∆iX for Ipti�1q � x, estimation at x
based on the increments of X only makes sense if I spends enough time around x.
This was also report for nonparametric estimation of the diffusion coefficient for an one-
dimensional diffusion process by Jacod (2000). Equal to the process used there, to allow
easy measurement of this time, we assume that tIptqut¥0 is a continuous adapted process
of the form

Iptq � I0 �
» t

0
bIpsqds�

» t
0
σIpIptqqdW Ipsq, (4.3)

where tW Iptqut¥0 is a standard Brownian motion, bI P C2
b pRq and σI P C3

b pRq and
nonvanishing. Then, as we will see later, the time I spends around x goes to infinity as
T goes to infinity.

Remark 4.5
Note that unlike Florens-Zmirou (1993) and Jacod (2000), we consider the process X for
fixed ∆ and T Ñ 8. So we are not in a high-frequency setting, i.e. we do not consider
infill asymptotics ∆ Ñ 0. The estimate of mkpxq is therefore not limited to x for which
we have enough observations Iptiq � x.

To estimate the conditional expectationmkpxq as defined in (4.2), inspired by the Nadaraya-
Watson estimator, we use

pmk,npxq :�
°n
i�1KεnpIptiq � xq p∆iXqk°n

i�1KεnpIptiq � xq , (4.4)

where Khpxq � Kpx
h
q, h ¡ 0, for a bounded, positive, symmetrical function K : RÑ R�

such that
³
Kpxqdx � 1. The denominator of pmk,npxq is also referred to as Nnpxq.

Theorem 4.6
For k, x P R assume mjpyq P C1 pBεpxqq, j P tk, 2ku, Bεpxq :� ty : |x � y| ¤ εu, ε ¡ 0,
the 4kth moment of Hy is bounded and m2kpyq �m2

kpyq is non-vanishing for y P Bεpxq.
Let A � F with PpAq ¡ 0 such that Nnpxq Ñ 8 and Nnpxqε2n Ñ 0 on A. Then,

a
Nnpxq ppmk,npxq �mkpxqq L|AÝÑ

nÑ8 N
�
0,m2kpxq �m2

kpxq
�
,

where for each random variable Y the notation L|ApY q � LpY |Aq stands for the law of
Y under the conditional probability P|A � Pp�|Aq.

Proof. W.l.o.g. we only consider the case Kεpy�xq � 1tyPBεpxqu. To prove the statement,
we first consider the estimator pmk,npxq conditionally on a path of I such that the above
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conditions are satisfied. Then the increments ∆iX, i � 1, . . . , n, are independent. This
allows to apply a central limit theorem, which requires to normalize first:

Nnpxqa°n
i�1 skpIptiqq1tIptiqPBεn pxqu

pmk,npxq �

°n
i�1

�
p∆iXqk �mkpIptiqq

	
1tIptiqPBεn pxqua°n

i�1 skpIptiqq1tIptiqPBεn pxqu
�
°n
i�1mkpIptiqq1tIptiqPBεn pxqua°n
i�1 skpIptiqq1tIptiqPBεn pxqu

, (4.5)

where skpyq :� m2kpyq �m2
kpyq ¡ 0 for y P Bεnpxq, εn   ε.

By the boundedness of the 4kth moment of Hy for y P Bεnpxq and Nnpxq Ñ 8
for the given path of I, Lyapunov’s CLT can be applied to the first summand in (4.5).
Considering the second summand, we have

ņ

i�1
pmkpIptiqq �mkpxqq1tIptiqPBεn pxqu P O pεnNnpxqq , (4.6)

as mkpyq � mkpxq �Opεnq, y P Bεnpxq. Hence,

a
Nnpxq ppmk,npxq �mkpxqq �

d°n
i�1 skpIptiqq1tIptiqPBεpxqu

Nnpxq Z �O
�
εn
a
Nnpxq

	
,

for Z � N p0, 1q. By the same argument as in (4.6),°n
i�1 skpIptiqq1tIptiqPBεpxqu

Nnpxq � skpxq �Opεnq.

Since εn Ñ 0 and εn
a
Nnpxq Ñ 0, applying Slutsky’s theorem,

a
Nnpxq ppmk,npxq �mkpxqq L|IÝÑ

nÑ8 N
�
0,m2kpxq �m2

kpxq
�
,

where this limit is valid given a specific appropriate path I. However, since the limiting
law does not depend on I, we have the same under P.

Theorem 4.6 ensures that for each suitable sequence of bandwidths εn we asymptotically
get a proper estimator of mkpxq at each x. However, for real application an appropriate
choice of ε � εn plays an important role. Since we usually want to get a smooth estimator
of mk, we would like to have a bandwidth ε� such that

ε� � argmin
ε¡0

»
R
pmkpxq � pmε

kpxqq2 dx,
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where pmε
k corresponds to pmk,n based on a bandwidth of ε.

In approximation to the upper integral, we choose the bandwidth ε according to

min
ε¡0

ņ

i�1

�
p∆iXqk � pmε

k,�ipIptiqq
	2
, (4.7)

where pmε
k,�jpxq is the estimator of mkpxq based on the observations tpXptiq, Iptiqqui�j.

This approach is similar to the least squares cross-validation for estimation of the smooth-
ing parameter in nonparametric regression (cf. Li and Racine (2007)[2.2.2]).

4.1.3 Testing

To check, whether a model with variable parameters is really necessary, we need to test
against the alternative of a stochastic process with constant characteristics, i.e. a Lévy
process. Therefore we consider the moments mkpxq, k P N, and test,

H0 : @x mkpxq � mk against H1 : Dx mkpxq � mk,

for some unknown constant mk. An intuitive test statistic would be given through

1sm2k � sm2
k

»
R
Nnpxq ppmkpxq � smkq2 dx,

where smk :� 1
n

°n
i�1p∆iXqk. Here, Nnpxq serves as a weighting function and also simplifies

the asymptotic analysis, since it is the proper scaling component by Theorem 4.6.
For this test, however, the asymptotic distribution is difficult to derive because the

estimators pmkpxq for different x are generally not independent of each other. We therefore
use a discretized version of the upper integral, namely,

Sn :� 1sm2k � sm2
k

J̧

i�1
Nnpxjq ppmkpxjq � smkq2 , (4.8)

for x1, x2, . . . , xJ P R, J P N, with |xi � xj| ¡ cεn,@i, j, c ¡ 2. Here, using a kernel K
with support r�1, 1s, the estimators pmkpxjq are based on non-overlapping intervals and
therefore are independent given I.

Theorem 4.7
Assume K has support r�1, 1s. If the assumptions of Theorem 4.6 are satisfied, then

Sn
L|AÝÑ
nÑ8 χ

2
J ,
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where for each random variable Y the notation L|ApY q � LpY |Aq stands for the law of
Y under the conditional probability P|A � Pp�|Aq.

Proof. As pmkpxjq, j � 1, 2, . . . , J , are independent, w.l.o.g. it is enough to consider the
case J � 1. By

nsmk � Nnpxqpmkpxq �N c
npxqpmc

kpxq,

where N c
npxq :� °n

i�1 1tIptiqPBcεn pxqu, pmc
kpxq :� 1

Nc
npxq

°n
i�1 p∆iXqk 1tIptiqPBcεn pxqu for

Bc
εnpxq � ty : |y � x| ¡ εnu, we get

a
Nnpxq ppmkpxq � smkq �

�
1� Nnpxq

n


a
Nnpxqpmkpxq � N c

npxq
n

a
Nnpxqa
N c
npxq

a
N c
npxqpmc

kpxq.

First, by Theorem 4.6, we have under H0,

Zn :�
a
Nnpxqppmkpxq �mkq L|AÝÑ Z and Zc

n :�
a
N c
npxqppmc

kpxq �mkq L|AÝÑ Zc,

for two independent random variables Z,Zc with Z,Zc � N p0,m2k � m2
kq. Moreover,

under H0, using the law of large numbers, for an appropriate path of I, smk

P|IÝÑ mk,
where mk does not depend on I. Hence,

Vn :� 1asm2k � sm2
k

P|AÝÑ 1a
m2k �m2

k

�: V.

Now, using Slutsky’s theorem, we get

VnZn
L|AÑ V Z � N p0, 1q and VnZc

n

L|AÑ V Zc � N p0, 1q.

To determine the limit of Nnpxq, we use the occupation time formula for semimartingales
(see Protter (2005)[Chapter IV.5, Corollary 1]), which yields» n∆

0
1tIpsqPBεn pxquσ

2psqds �
»
Bεn pxq

Lapsqda P Opn∆εnq,

by Lapsq ¤ n∆ a.s.. So, by the boundedness of σ and εn Ñ 0, we obtain Nnpxq
n

a.s.Ñ 0.
Since Nnpxq�Nc

npxq
n

� 1, we also have Nc
npxq
n

a.s.Ñ 1 and Nnpxq
Nc
npxq

a.s.Ñ 0. Now, we can use Slutsky’s
theorem again to finish the proof.

When applying the test in Theorem 4.7, the question arises how many evaluation points
xi, i P J , should be chosen. For a high explanatory power of the test a large number of
evaluation points seems reasonable, where the condition |xi�xj| ¡ cεn, @i, j, c ¡ 2, results
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in an upper limit given a bandwidth εn. However, using a bandwidth that smoothes the
estimator as in (4.7) is not appropriate under the null.

Instead, the bandwidth εn can be considered as a tuning parameter that is chosen in
such a way that the test has a high quality, i.e. that the empirical rejections rates match
the theoretical ones. The empirical rejection rates for different bandwidths can be found
in simulation studies.

4.1.4 Numerical results

To verify the quality of the estimator introduced in Subsection 4.1.2 and the test in-
troduced in Subsection 4.1.3, we perform a simulation study. In accordance with our
application in Section 4.2, we assume that the distribution of the increments of the I-
CII process X corresponds to a NIG distribution. As external process I, we use the
residual demand process R presented there. Therefore, our simulation study is based on
n � 17544 observations.

First, we want to evaluate the performance of our estimation procedure. The method
consists of applying the method of moments based on the nonparametric estimators m̂k,n

(cf. Subsection 4.1.2). To this end we assume that the true parameter functions α, β, µ
and δ are the same as in our application (see Figure 4.8) and look at the error

eg � E

�³
U
ppgpxq � gpxqq2 dx³

U
g2pxqdx

�����F I

�
, U � R,

for the function g to be estimated. For this conditional expectation, we only consider the
case, where I is the observed residual demand process, since we do not want to let errors,
which result from an inaccurate modeling of the external process, distort our results. The
interval U is chosen so that there are enough observations Iptiq � x for each x P U . In
the following we use the same interval as for the estimation of the parameter functions in
Section 4.2, i.e. U � r14.7, 66.3s. Then the error is approximated by 10000 simulations at
a sample variance of not larger than 0.5, where the integrals are evaluated on a sufficiently
fine grid. Since for |χ| � ξ � 1 the problem of choosing α and β is ill-conditioned (see
Remark 4.9), we removed 478 simulations, where |χ| ¡ 0.95.

The error based on the remaining simulations for each parameter function and the
related skewness χ and steepness ξ are given in Table 4.1. We see that the estimation
procedure provides satisfactory results.

Next, we want to assess the quality of testing for a CII process as proposed in Theorem 4.7.
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Table 4.1: Performance of the nonparametric parameter estimators.
g α β µ δ χ ξpeg 0.25 0.4 0.41 0.24 0.19 0.002

To this end, we first use the 10000 paths of X for which the parameter estimation was
performed above, and assess the rejection rates under the alternative, i.e. assuming that
X depends on I. Hence, we check our test procedure under the same circumstances as
in our empirical application.

In particular, we assume again that the increments are NIG distributed with possibly
changing parameters. Since the parameters of a NIG distribution can be determined by
its first four moments, we apply the test to mk, k � 1, 2, 3, 4, for each simulation. We use
a uniform kernel K with bandwidth ε selected as described at the end of Subsection 4.1.3.
Figure 4.1 shows the empirical rejection rates. In this case, the null is rejected with high
probability, in particular for the first and second moment.

Figure 4.1: Empirical rejection curves for the test from Theorem 4.7 and used bandwidth
ε.

Second, we simulate 10000 paths of a process X� under the null, i.e. under the hy-
pothesis that X� is actually a Lévy process. Again, the parameters of X� are chosen
according to our empirical application, but with the assumption of constant parameters,
by fitting an NIG distribution to the increments shown in Figure 4.5. The corresponding
method of moments estimates are listed in Table 4.2. Especially for the usual significance
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Table 4.2: Results for fitting a NIG-Lévy process to the process X of Subsection 4.2.3.
α β µ δ χ ξ

0.014 0 0.04 0.56 0.99 -0.02

levels of up to 10% they are quite close to their theoretical values.

We conclude that the test is very reliable, at least in the circumstances of our application
(and at usual significance levels).

4.2 Application to the intraday market
In the following we show how electricity price variations can properly described by a
CII process using information on demand and renewable power generation. We use the
EPEX SPOT Intraday index (ID3-Price) of the hourly contracts on the intraday market
as price reference (cf. Subsection 1.3.4). To quantify the effect of renewable energies on
the ID3-Price, we follow Wagner (2012) (cf. Subsection 1.4.3) and use residual demand as
external factor. Residual demand is defined as total load minus infeed from renewables.
Renewable power is produced at vanishing marginal costs. Hence, they can be assumed
to reduce demand according to their production level.

Among the renewable energies we focus on solar and wind power, since they have the
largest installed capacities in Germany and are responsible for most of the variability in
the electricity supply. Our study is based on hourly data for the period Jan 01, 2016 to
Dec 31, 2017. All data are provided by the European Energy Exchange (EEX).

4.2.1 A structural price model

Models that explain the electricity price as a function of physical or economic factors are
called structural models (cf. Section 1.4). In the following we will use a structural model
similar to the one defined by Burger et al. (2004).

Assumption 4.8
The electricity price process S � tSptqut¥0 is given by

Sptq � fpRptqq � Y ptq � Zptq, t ¥ 0,

where f is a deterministic supply function whose input are the realizations of the real-
valued stochastic process R � tRptqut¥0. Y � tY ptqut¥0 and Z � tZptqut¥0 are real-valued
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Figure 4.2: ID3-Price S in dependence to residual demand R with fitted supply-function
f based on nonparametric regression (red) and the dual exponential model (green).

stochastic processes with Y p0q � 0 while Z has zero mean. For the factors R, Y and Z,
we have R KK Y and Y KK Z, where KK denotes independence of random variables.

In Assumption 4.8, R models the residual demand and so f refers to the price charged
by conventional producers. Therefore, f is called the supply function. Y accounts for the
non-stationary long-term variation of the electricity price. Such variations can be caused,
for example, by changed fuel prices. In contrast, Z accounts for stationary short-term
variation, which can be not explained by f . An appropriate dynamic and functional form
of each model component is given in the following.

While it is also possible to use an availability-adjusted residual demand in Assumption
4.8, we found that this does not improve the model, a result which is in line with Wagner
(2012).

4.2.2 The supply function

Figure 4.2 shows the electricity price in dependence on residual demand. As expected,
the price of electricity will rise as demand increases. The link seems strictly nonlinear. A
parametric form of f is given by the dual exponential model of Yang et al. (2013), which
used

fpxq � a� exp
�
x�b
c

�� exp
��x�d

e

�
2 ,

as the supply function for the EEX market. The estimated parameters using the least-
squares method are shown in Table 4.3. The fitted supply function seems reasonable also
compared with the result of a nonparametric regression (see Figure 4.2). Nevertheless,
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we can see that especially extreme prices are not sufficiently described by the supply
function (see also Figure 4.3). The remaining variation will therefore be explained by Y
and Z.

Table 4.3: Least-squares estimators of the dual exponential supply function.
a b c d e

37.61 39.49 6.02 74.85 13.27

Figure 4.3: Residual price S � fpRq (black) and moving average (green) resp. Kalman
filter (brown) of Y .

4.2.3 The short-term variation

We start with the definition of the short-term variation Z. Beside some possible non-
stationary behavior, which is to be modeled by Y , Figure 4.3 show that there is a volatile
component of the residual price S � fpRq, that returns to the mean-level very fast. This
short-term price variation can be caused e.g. by unexpected weather phenomena, which
impact the infeed from renewable energies.

To make jumps and mean-reversion possible, we assume that Z follows the stochastic
differential equation

dZptq � �λpZptqqZptqdt� dXptq, t ¥ 0, Z0 � 0, (4.9)

where λ P C1
b pR�q, X � tXptqut¥0 is a zero mean semimartingale. Note, that Equation

(4.9) admits a unique strong solution with zero mean without any restriction on X (see
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e.g. Protter (2005) [Chapter V.3]). The process Z belongs to the class of generalized
Ornstein-Uhlenbeck processes, cf. Maller et al. (2009). Since the variation of Z should
depend on R (see Figure 4.2), X will be modeled as a R-CII process. The reason to use a
mean-reversion function λ : RÑ R� instead of a constant is, that after a jump Z should
be allowed to return to the mean level much faster than usual. Such a behavior of the
price process is often observed in electricity markets (cf. Chapter 2).

For calibration of Z, we are faced with the problem, that the observations Sptiq�fpRptiqq,
0 � t0   t1   � � �   tn � n∆ � T , where |ti � ti�1| � ∆, depend on Zptiq and on
Y ptiq. However, since Z has a mean level of zero and Y models the low-frequency price
dynamics, we can use a moving average filter to get a first approximation pY of the long-
term variation. The filter with window size of two weeks is shown in Figure 4.3. Now,
we use the values Zptiq � Sptiq � fpRptiqq � pY ptiq for calibration of Z.

An approximate model for Z is given by the Euler scheme

∆iZ � �λpZpti�1qqZpti�1q∆� εZi , (4.10)

where εZi � ∆iX. Since X is assumed to be a zero mean R-CII process, given the
observations Rptiq, tεZi ui�1,...,n � WN , where εZi has mean 0 and variance depending on
Rpti�1q for all i. For small ∆, this approximation is sufficiently accurate (see Jacod and
Protter (2012) [Section 5.6.3]).

Now, to get an estimator for λ, we distinguish between two price regimes. First, a mean-
reversion rate λbase for regular price levels is found by the method of least-squares, i.e.

λbase � min
λ¡0

¸
iPTbase

p∆iZ � λZpti�1q∆q2 , (4.11)

where Tbase � t2 ¤ i ¤ n : |Zpti�1q| ¤ 3 � σZ , |Zptiq| ¤ 3 � σZu for σZ being the empirical
standard deviation of tZptiqui�0,...,n.

Next, to get a mean-reversion rate λspike for extreme price data, we calculate the least-
squares estimator as in (4.11), but for the observations Tspike � t2 ¤ i ¤ n : |∆iZ| ¡
3 � σ∆Z ,∆iZ∆i�1Z   0u, where σ∆Z is the empirical standard deviation of t∆iZui�1,...,n.
For small ∆, λspike can be seen as the instantaneous slope of tÑ Zptq right after a jump.
Here, the supplementary condition ∆i�1Z∆iZ   0 is used to correctly identify a jump
and not to mistake it by a large increments caused by a strong mean-reversion. A similar
estimator for a mean-reverting compound Poisson process was used by Deschatre (2017).
The results are shown in Table 4.4, where we used ∆ � 1 as in the following.
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With this we define λ as the function which takes the value λbase for |x| ¤ 3 � σZ � δ,
λspike for |x| ¥ 3 � σZ � δ and is appropriately interpolated in between for some small
δ ¡ 0.

Table 4.4: Parameters of the mean-reversion function of Z.
σZ λbase λspike

10 0.13 0.28

Filtering the CII process Now, to specify Z, it remains to calibrate the R-CII process
X. To do so, we write (4.9) as» ti

ti�1

dXptq �
» ti
ti�1

dZptq �
» ti
ti�1

λpZptqqZptqdt,

from which we get

∆iX � ∆iZ � λpZptiqqZptiq � λpZpti�1qqZpti�1q
∆{2 . (4.12)

Figure 4.4 shows t∆iXui�1,...,n in dependence on residual demand. We see that price
jumps are increasing both in frequency and in magnitude towards the boundaries. This
justifies the modeling of X as R-CII process. What is surprising at first glance is that

Figure 4.4: Increments of X (black) and removed jumps (red).

the sign of the jumps is not connected to the side of the boundary. This contradicts
our expectations (see Figure 4.2). The reason is that actually the mean-reversion rate
is quite individual and so some increments ∆iX derived by (4.12) contain a significant
mean-reversion part, especially in the case of a previous large price jump. We use a
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Figure 4.5: Preprocessed increments of X.

statistical approach to overcome this.

Data preprocessing for the CII process To remove the part depending on Z con-
tained in the increments t∆iXui�1,...,n, we first identify the jumps of X. We classify a
price movement as a jump if it exceeds the bound �Θ � σX , where Θ ¡ 0 and σX is the
empirical standard deviation of t∆iXui�1,...,n. This is performed iteratively, where in each
step the jumps are removed and σX is calculated based on the remaining increments. The
algorithm stops if no further jump is detected. The threshold level Θ is usually chosen
between 2 and 3 (cf. Weron (2006)).

Next, we remove all jumps from the data that were preceded by a jump of opposite
sign within a time of Tnojump ¡ 0. For the choice of Tnojump we suggest to use some data
driven criterion. Using a threshold level Θ � 3, we set Tnojump � 5 since the fact that
a jump is no longer visible after about 5 hours seems to be consistent to the intraday
behavior of electricity prices (see also Figure 4.6).

The removed increments are highlighted in the Figure 4.4. Now X behaves as we
would expect it to. We almost exclusively observe negative jumps in case of low residual
demand, whereas positive jumps occur more frequently for high residual demand.

Figure 4.6 shows another issue in calibrating X based on the filtered increments
t∆iXui�1,...,n. Extreme prices are often not the result of a single big jump but of a
series of smaller movements. Although the dependence of the jump intensity of X on R
allows clustering of jumps, this is not as strong as the data suggests. Hence, to generate
prices of appropriate size by our model, we add up jumps of same sign that occur within
3 hours and interpret them as a single value. The associated residual demand is chosen
as the price-weighted average (see Figure 4.5).
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Figure 4.6: Example of detected jumps (blue) and removed jump (red) of the process X
(black).

Table 4.5: Testing the null hypothesis that X is a Lévy process.
m1 m2 m3 m4

p-value 10�16 10�11 2� 10�5 1� 10�5

Calibration of the CII process Before we calibrate a R-CII process to the increments
t∆iXui�1,...,n, we want to verify the dependence of X on R. Therefore we apply the test
introduced in Subsection 4.1.3 and analyzed in Subsection 4.1.4. The results are stated in
Table 4.5. They overwhelmingly point out that a Lévy process is inadequate for modeling
X.

To fit the R-CII process X we use the method introduced in Subsection 4.1.2. This re-
quires the specification of an infinitely divisible distribution Hx such that ∆iX

d� Lp∆q,
where tLptqut¥0 is Lévy process with Lp1q � Hx for Rpti�1q � x (see Remark 4.4). As-
suming that Hx � Hy (measured in some proper way) for x � y, we compare different
distributions for the increments t∆iXuiPJU , where JU � t2 ¤ i ¤ n : Rpti�1q P Uu
for some interval U . The length of the interval U is selected in such a way, that the
corresponding increments look identically distributed.

Table 4.6 shows the result of Kolmogorow-Smirnow (KS) tests for three common
distributions and three intervals, which are chosen according to Figure 4.5. We conclude
that the normal-inverse Gaussian (NIG) distribution (see Barndorff-Nielsen (1997)) has
enough flexibility to describe the statistical properties of X depending on R. The fact
that the NIG distribution fits extraordinarily well on U � r20, 50s confirms that the
dependency of X on R is particularly pronounced in case of high or low residual demand.
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The NIG distribution allows for tail heaviness and skewness and, therefore, seems to be
suitable for modeling a dependence as seen in Figure 4.5. The NIG distribution has
parameters α, β, µ and δ, satisfying 0   |β|   α, δ ¡ 0 and µ P R. The parameters µ and
δ determine location and scale, respectively, while α and β are influencing tail heaviness
and skewness. In particular, the heaviness of the tails is determined by

ξ �
�

1� δ
a
α2 � β2

	� 1
2
.

The closer ξ is to 1, the heavier are the tails. The parameter

χ � βξ{α,

determines the skewness of the distribution. For χ   0, the left tail is heavier than the
right, for χ � 0, the distribution is symmetric, and for χ ¡ 0, the right tail is heavier.
Due to the restrictions on the parameters, we always have 0 ¤ |χ|   ξ   1.

Remark 4.9
In a statistical setting with heavy tails and large skewness, i.e. |χ| � ξ � 1, the problem
of choosing the parameters α and β is ill-conditioned since such a behavior of the density
can be obtained for each α � β.

To get estimators for the parameters of the NIG distribution depending on R, we apply
the procedure mentioned in Subsection 4.1.2. This requires estimating the first four
conditional moments mkpxq, k � 1, 2, 3, 4. We use the estimators pmk,npxq as defined in
(4.4) with Gaussian kernel, where each bandwidth εn is chosen according to (4.7). The
moments mkpxq are estimated on the grid 14.7 � x1   x2   . . .   xK � 66.3 with
|xi�xi�1| � 0.1, 2 ¤ i ¤ K, where x1 resp. xK correspond to the 1%- resp. 99%-quantile
of tRptiqui�0,...,n.

Figure 4.7 shows the estimated moments along with approximate, asymptotic 95%-
confidence intervals (see Theorem 4.6). For positive moments, only those confidence
intervals are shown whose lower boundaries are also positive. Especially for the first

Table 4.6: p-value of the KS test.
Student t NIG Normal

U � r5, 20s 2� 10�16 0.13 2� 10�16

U � r20, 50s 2� 10�16 0.83 2� 10�16

U � r50, 70s 2� 10�16 0.02 2� 10�16
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moment we see that a constant function does not seem to be suitable for describe m1pxq.
This also supports our assumption that X depends on R.

Since the method of moments can be used for fitting of the NIG distribution (see
Eriksson et al. (2009)), we transform the estimated moment functions pmk,npxq, k �
1, 2, 3, 4, into estimates for the parameter functions αpxq, βpxq, µpxq and δpxq. To get
parameter functions for all real numbers we linearly interpolate on the grid txiu1¤i¤K
and extrapolate by the closest estimator. These nonparametric functions are illustrated
in Figure 4.8. The resulting skewness function χpxq and tail heaviness function ξpxq are
also shown there.

Remark 4.10
The method of moments for X � NIG is restricted to the case 3pK ¡ 5 pS2 ¡ 0, where pS
and pK are the sample skewness resp. sample excess kurtosis (see Eriksson et al. (2009)).
Estimating the moments mkpxq on the grid txiu1¤i¤K, this condition was satisfied for
each xi.

We see that the NIG distribution has heavier tails for low and high residual demand,
where the sign of the skewness changes form negative to positive. This is exactly the
behavior we already expected by looking at the data (see Figure 4.5).

4.2.4 The long-term variation

The long-term variation Y reflects longer-term changes in the price level, e.g. due to
altered commodity prices. Such a change in the price level occurs, for example, between
February 2016 and May 2016 where prices increase steadily (see Figure 4.3).

For modeling of Y we follow Burger et al. (2004) and use a Brownian motion with drift,
i.e.

dY ptq � νptqdt� σY dW
Y ptq, t ¥ 0, Y p0q � 0, (4.13)

where ν : R� Ñ R is a (possibly stochastic) drift function and σY ¡ 0 is the volatility
of the standard Brownian motion W Y � tW Y ptqut¥0. The components are such that
R KK Y . Of course, a shift in average residual demand will also change the long-term
price level. However, such a change in the level of residual demand is generally seen only
in longer periods than those we are considering.

As for Z, we cannot observe Y directly. Of course, for calibration, we could use the
moving average filter of Subsection 4.2.3. However, there is also a more sophisticated
way of estimating Y . Since S̃ � S � fpRq is a linear function of Y and Z, we can apply
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Figure 4.7: Estimated conditional moments mkpxq, k � 1, 2, 3, 4, (solid) and 95% confi-
dence intervals (dashed). The chosen bandwidth ε is noted in each image.
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Figure 4.8: (Left) Estimated parameter functions. (Right) Skewness and tail heaviness
parameter.

the Kalman filter (see Durbin and Koopman (2012)), to identify Y . This was also done
by Burger et al. (2004).

To apply the Kalman filter, we must make an assumption about the drift function ν in
(4.13). Since Y represents the long-term price variations, ν should be a smooth function.
A simple and easy to handle choice is

dνptq � σνdW
νptq, t ¥ 0, ν0 � ν̄, (4.14)

where ν̄ P R, σν ¡ 0 and W ν � tW νptqut¥0 is a standard Brownian Motion independent
of W Y and X. With this Y changes linearly in time and the growth rate may also evolve.
Such a dynamic is called a local linear trend and is often used in time series analysis. In
contrast, Burger et al. (2004) used future contracts with distant maturity to estimate ν.
However, such futures are not available for the intraday market.

Discretizing (4.9), (4.13) and (4.14), we employ a state space model

S̃ptiq � Y ptiq � Zptiq, i � 1, . . . , n,

�����
Y ptiq
νptiq
Zptiq

���� �

�����
1 ∆ 0

0 1 0

0 0 1� λpZpti�1qq∆

����
�����
Y pti�1q
νpti�1q
Zpti�1q

�����
�����
εYi

ενi

εZi

����,
(4.15)
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where εYi � N p0, σ2
Y ∆q, ενi � N p0, σ2

ν∆q and εZi as in (4.10). All these disturbances
are mutually independent. Note that due to its minimal variance property (cf. Durbin
and Koopman (2012)[Section 4.2]), the Kalman filter is valid as long as the disturbances
are white noise. Hence, the Kalman filter can be applied to derive expected realizations
tY ptiqui�1,...,n based on the observations tS̃ptiqui�1,...,n.

Of course, this requires specification of the unknown model parameters. Since λ and
Var

�
εZi
��Rpti�1q

�
are already known by the previous calibrations, we need estimates for σY

and σν . These are found by maximum likelihood estimation (see Durbin and Koopman
(2012)[Section 7]) and are shown in Table 4.7. The filtered values of Y are shown in
Figure 4.3.

Table 4.7: Parameters of the long-term variation Y .
σY σν

0.11 1.1� 10�6

4.2.5 Model analysis

In order to check the statistical quality of our model, we compare model prices with
observed prices for the period Jan 01, 2017 to Dec 31, 2017. We restrict the comparison
to this year in accordance with our application in Section 4.4. As the main innovation
of the model is the inclusion of a CII process to map the short-term price variation
accurately, the comparison is made in relation to S � Y . In addition, our simulations
are based on historical data on residual demand R. This allows to investigate the actual
effects of including the CII process driven component Z without distortions caused by
an incorrect modeling of R. However, since for application we require realizations of
the residual demand, an appropriate model will be given in Section 4.3. The following
simulation study is based on 10000 simulated price paths.

Figure 4.9 shows an example of a price path based on the previous calibration. We see that
the variability of the ID3-Price is well-described (cf. Figure 1.9). This is also confirmed
by a comparison of summary statistics (Table 4.8). We also noted the moments for the
case Z � 0. Then, the price depends only on the supply function f , which basically is
the model proposed by Wagner (2012). The low value of the standard deviation for the
model based on f only shows again, that an additional component is necessary to explain
extreme prices.

That especially extreme prices are well described by adding a component driven by a CII
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Figure 4.9: Sample path of the price process S � Y .

Table 4.8: Summary statistics of S � Y .
mean st. dev skewness kurtosis

Data 31.3 18.9 1 15.8
f � Z 31.2 19.8 0.83 10.9
f 31.2 15.0 1.13 9.8

process can also be pointed out by a comparison of the quantiles of the price processes.
For this purpose, Table 4.9 opposes empirical upper tail and lower tail quantiles to model
quantiles of S � Y .

Table 4.9: Comparison of upper tail and lower tail quantiles of S � Y .
0.01% 0.1% 1% 99% 99.9% 99.99%

Data -119 -84 -11 90 167 216
f � Z -123 -62 -21 98 154 218
f -52 -38 -10 86 138 150

Figure 4.10 shows the distribution of the simulated prices for the individual hours of Jan
31, 2017. An unusually low production of solar and wind energy led to a price peak of 232
€/MWh on this day. We can see that such an extreme price profile is within the allowable
range of our model. Note that, despite the high residual demand, the occurrence of a price
peak is by no means predictable. The median of the simulated prices including the short-
term variation Z differs insignificantly from the prices found using f only. This reflects
the fact that price peaks are unpredictable events, whereas the regular price behavior is
completely captured by f .
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Figure 4.10 also shows that in addition to the intraday seasonality with low prices at
night and higher prices during the day, the variance of the price also changes accordingly.
Hence, by modeling Z driven by a R-CII process, a time-varying volatility is described,
which must be modeled separately for more classical stochastic processes.

Figure 4.10: Boxplot of the simulated price S � Y for the day of Jan 31, 2017.

4.3 A residual demand model
So far we have not discussed a model for the residual demand R, although this is obviously
essential for the calculation of the electricity price S in our model. To characterize R we
need a model for electricity demand and infeed from renewables. Since we focused on
solar and wind power, it is enough to consider these two renewable energy sources, i.e.

Rptq � Dptq � Sptq �W ptq, t ¥ 0, (4.16)

where D � tDptqut¥0 denotes total load, S � tSptqut¥0 denotes solar power infeed and
W � tW ptqut¥0 denotes wind power infeed. Figure 4.11 shows historical residual demand
in Germany for the years 2016/2017.

Total load Electricity demand has a pronounced seasonality on different time scales
(cf. Section 1.3). For D we therefore assume an arithmetic model consisting of a deter-
ministic trend and seasonality function ΛD and a noise process XD � tXDptqut¥0,

Dptq � ΛDptq �XDptq, t ¥ 0. (4.17)
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Figure 4.11: Residual demand as total demand reduced by infeed from solar and wind
power for the years 2016/2017.

First, to depict trend and yearly seasonality of D, we use a linear term and a sum of
trigonometric functions

yptq � c0 � d0t�
Ķ

k�1
ck cos

�
k2πt

365� 24 � dk



, (4.18)

where 1 ¤ K ¤ 182 is the number of harmonics and time t is measured in hours. We
fit this function for different K to the average demand on business days and found that
only the first three sinusoidal waves are significant. Figure 4.12 shows that K � 3 gives
a parsimonious representation of the yearly seasonality. The parameter estimates of this
function are shown in Table 4.10.

Table 4.10: Least squares estimates of the parameters of the trend and seasonality func-
tion ΛD.

c0 d0 c1 d1 c2 d2 c3 d3 w1 w2

58 2� 10�4 3.9 -0.2 1.2 0.2 -0.8 0.2 14 9

To map the remaining seasonality we follow an approach similar to that of Wagner
(2012). Lower demand on weekend and holiday is accounted for by constant factors w1

and w2,
ψptq � �1� w11tw1PB1u � w21tw2PB2u

�
yptq,

where B1 is the set of all public holidays and Sundays and and B2 is the set of all
partial holidays and Saturdays. w1 and w2 are calculated as the mean deviation of D
from y (see Table 4.10). Finally, the intraday seasonality is reflected by daily pattern
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Figure 4.12: (Upper) Average demand on business days and fitted trend and yearly
seasonality function y. (Lower) Demand and fitted trend and seasonality function ΛD.

transformations δm,m � 1, 2, . . . , 12, similar to those in (1.3), where we set the coefficients
cm,k, k � 1, 2, . . . , 24, as the mean of the ratio between the actual load and the daily
average load.

Therefore, electricity demand has a trend and seasonality function of the form

ΛDptq �
12̧

m�1
δmpt, ψptqq1ttPpm-th month of the yearqu.

Figure 4.12 illustrates that this function mirrors the seasonality of electricity demand on
different time scales quite well.

By subtracting the estimated trend and seasonality function, we obtain the noise pro-
cess XD. Since electricity demand is strongly connected to mean-reverting factors like
temperature, we expect that XD also has the mean-reverting property. This assump-
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Figure 4.13: Empirical ACF of the noise process XD (bar) and ACF of a fitted
CARMA(5,4) process (solid).

tion is supported by an investigation of the empirical autocorrelation function (ACF)
(cf. Figure 4.13).

We also observe that the empirical ACF is not a monotone function. In addition
to a strong decay at the beginning, there seems to be a significant dependency between
two realizations with a lag of about one day. This could be attributed to fluctuations in
demand due to actual weather conditions. Since for many weather-related phenomena
a daily seasonality can be observed, this translates to the autoregressive structure of
demand. We also see that the third peak of the empirical ACF is not exactly at twice
the lag of the second peak. This also indicates that the observed dependence is not
part of a daily deterministic seasonality. To model such complex dependency structures,
continuous-time autoregressive moving average (CARMA) processes are well suited.

In Section 1.5 we discussed the CARMApp, qq process of order p, q P N, q   p, in detail
and also dealt with its estimation and simulation. What we have not addressed so far
is the choice of an appropriate model order, i.e. the selection of p and q. Tómasson
(2015) recommends to only consider CARMApp, p � 1q processes for different values of
p. This has the advantage, that nested models are produced and usual model selection
criteria can be used. Following this advice, Table 4.11 states the maximized Gaussian
log-likelihood of different CARMApp, p� 1q processes for XD.

We conclude that a CARMAp5, 4q process is appropriate, applying e.g. the Bayesian
information criterion (BIC). After identifying the CARMA parameters by quasi maxi-
mum likelihood estimation, we recovered the increments of the driving process (cf. Sub-
section 1.5.2). There were some significant autocorrelation for this increments especially
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Table 4.11: Maximized Gaussian log-likelihood of CARMApp, p� 1q models.
p � 1 p � 2 p � 3 p � 4 p � 5 p � 6 p � 7

XD -23852 -20407 -20305 -20175 -20156 -20154 -20151
XW 10306 18148 18263 18265 18266 18266 18267

for a lag of one day. However, we will assume that the driving process has independent
increments. Following the result of a KS test (see Table 4.12), we conclude that we have
a Lévy process LD of NIG type.

Table 4.12: p-value of the KS test for recovered increments of the driving Lévy processes.
Student t NIG Normal

LD 2� 10�16 0.79 2� 10�16

LW 2� 10�16 0.72 2� 10�16

The parameter estimates are given in Table 4.13. As it is common in numerical
application, we fixed b0 to the value of 1 (cf. Remark 1.1). The parameters of the NIG
process LD (normalized to time 1) are noted as αD, βD, δD and µD. The associated NIG
distribution has a tail heaviness of ξD � 0.69 and a skewness of χD � �0.02 indicating
slightly heavier tails than for a normal distribution and symmetry.

Table 4.13: Parameters of the NIG CARMAp5, 4q process XD.
a1 a2 a3 a4 a5 b1 b2 b3 b4 αD βD δD µD

23.8 50.8 44.4 12.1 0.2 20.3 9.4 1.9 0.5 0.35 -0.01 3.14 0.1

In Figure 4.13 we have drawn the ACF of the fitted CARMA process. Obviously, different
mean-reversion rates are considered, but the daily seasonality is not clearly expressed.
However, here it must be taken into account that parameter estimates are found by the
maximum likelihood method and not by fitting simply the ACF.

Figure 4.14 shows a sample path of D as the sum of the trend and seasonality function
ΛD and the fitted noise process XD. The behavior of D (cf. Figure 1.1 and Figure 4.12)
seems to be properly reproduced.
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Figure 4.14: Simulation of the total load D for three consecutive weeks covering the
period Oct. 30, 2017 to Nov. 19, 2017.

Table 4.14: Least squares estimates of the parameters of the seasonality function ΛW .
c0 c1 d1 c2 d2 c3 d3

-1.6 0.5 -19 0.1 1 -0.1 5.5

Wind power infeed Stochastic models for wind power have already been briefly men-
tioned for structural electricity pricing in Section 1.4. Both in the residual demand model
of Wagner (2012) and for the Cox process utilized by Deschatre and Veraart (2017) an
arithmetic model was applied to a logit-transformed wind power variable. For the noise
term, Gaussian continuous-time autoregressive (CAR) processes were used. In contrast,
Benth and Pircalabu (2018) used an Ornstein-Uhlenbeck (OU) process driven by a sub-
ordinator to ensure that an lower bound is never exceeded. They considered the negative
logarithmized time series of wind power efficiency (cf. Equation 1.2), which is bounded
by 0.

We will follow the direct approach and fit an arithmetic model as in (4.17) for the logit-
transformed wind power efficiency. Wind power has a strong annual pattern (cf. Fig-
ure 1.5). Since no change of the efficiency of wind power plants is to be expected in the
medium term, we use a sum of trigonometric functions as in (4.18) with a drift of zero as
seasonality function ΛW . A number of K � 3 sinusoidal waves was found to be appropri-
ate. Figure 4.15 shows the fitted function. Their parameters are stated in Table 4.14.
For the noise process XW , the same procedure as for electricity demand is applied. First,
a CARMA(3,2) process is identified as proper model by comparing the log-likelihood
values (cf. Table 4.11). The estimated parameters are shown in Table 4.15, where the
recovered increments again indicate an NIG Lévy process as driving noise (cf. Table 4.12).
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Figure 4.15: Logit-transformed wind power efficiency and fitted seasonality function ΛW .

It is not surprising that the distribution of the NIG Lévy process LW has heavier tails
(ξW � 0.79) than we got for the driving noise of the demand process. The skewness is
again negligible (χW � 0.07).

Table 4.15: Parameters of the NIG CARMAp3, 2q process XW .
a1 a2 a3 b1 b2 αW βW δW µW

4.2 2.3 0.08 0.22 0.09 1.28 0.11 0.49 -0.04

Figure 4.16 shows that by a CARMA(3,2) process the autoregressive structure of XW is
nicely reproduced. A sample path of W is given in Figure 4.17 which appears to capture
the characteristics of wind power infeed (cf. Figure 1.6).

Residual demand To fully characterize the residual demand R, it remains to define a
model for the solar power infeed S. Such a model has already been discussed in detail in
Chapter 3. If we combine this with the previously defined models for the total load D

and the wind power infeed W , by (4.16), we get the desired process R.

In Figure 4.18 a sample path of the compound residual demand process for the years
2016/2017 is illustrated. The simulated values are in agreement with the true process
(cf. Figure 4.11). Note that there are two days with an oversupply of renewable energy.
Although we did not observe this for our data, such a situation cannot be ruled out in
general. The surplus of electricity would be transported to other European countries in
that case.

A comparison of summary statistics (cf. Table 4.16) also indicates that our residual
demand model is in line with the data, where a simulation study based on 125 simulated
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Figure 4.16: Empirical ACF of the noise process XW (bar) and ACF of a fitted
CARMA(3,2) process (solid).

Figure 4.17: Sample path of wind power infeed W for three consecutive weeks covering
the period Apr. 30, 2017 to May 20, 2017.
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Figure 4.18: Sample path of the compound residual demand R � D � S �W for the
years 2016/2017.

Table 4.16: Summary statistics of the residual demand R.
mean st. dev skewness kurtosis

Data 41.28 11.32 -0.09 2.77
Model 41.34 11.41 -0.31 3.19

path for the years 2016/2017 is applied to approximate the moments of the residual
demand model. The empirical standard deviation is about 20% for the skewness and less
than 5% for the other statistics.

The proposed residual demand model allows a simple simulation of the process R. This is
helpful for application of our electricity price model defined in Section 4.2. Here it must
be noted, that the residual demand model of this section is not of the form we proposed
for the external factor of a CII process (cf. Equation 4.3). However, this form was only
required to ensure that the external factor spends enough time at the points we want
to estimate the conditional moments of ∆iX. But, by the mean reversion and strong
seasonality of R, we have no doubt that this also applies here.

4.4 Valuation of power cap and floor
High or low infeed of renewable energies can lead to extreme market prices. Therefore, by
the expansion of renewable sources, all operators of power plants are exposed to new type
of price risks. In order to provide an opportunity to hedge against these risks, the EEX
recently introduced products based on the ID3-Price called German Intraday Cap/Floor
Futures.
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Based on the models of Section 4.2 and Section 4.3, we now want to analyze prices of
these derivatives. We use data for the period Oct 03, 2016 to Jan 28, 2018 provided by
the EEX. Data are only available for the floor from Mar 15, 2017. The published prices
are the daily settlement values for Monday to Friday.

Table 4.17: Contract specification of the German Intraday Cap/Floor Futures.
Underlying EPEX SPOT Intraday index (ID3-Price)
Strike 40 € per MWh (Cap) and 10 € per MWh (Floor)
Contract size 168 MWh
Maturities Week contracts (current week + 4 weeks ahead)
Market area Germany
Fulfillment Cash Settlement

A cap is a derivative where by buying at time s a payoff of the difference between the
market price Sptq and the strike price K over the delivery period t P rτ1, τ2s is received,
i.e. a buyer receives

τ2̧

t�τ1
max pSptq �K, 0q � pτ2 � τ1 � 1qF cap

τ1,τ2psq, (4.19)

where F cap
sτ1,τ2 is the cap price at time s. The payoff from being long a floor is calculated

accordingly as
τ2̧

t�τ1
max pK � Sptq, 0q � pτ2 � τ1 � 1qF floor

τ1,τ2psq. (4.20)

The specifications for the cap and floor traded at the EEX are shown in Table 4.17. The
chosen strikes correspond to the 85% quantile resp. 5% quantile of the ID3-Price from
2015. Hence, the German Intraday Cap/Floor Futures allow to hedge the risk of high or
low prices on the intraday market.

In contrast to classical mathematical finance, in which derivatives are priced based on
risk-neutral arguments, since buy-and-hold stategies are not applicable, in the electricity
market valuation is usually based on rational expectations (Benth et al. (2008)[Chapter
1.5.2]). This means that traders base their bids on the expected price. Hence, for a cap
with payment as in (4.19), we have

E

�
τ2̧

t�τ1
max pSptq �K, 0q

�����Fs

�
� pτ2 � τ1 � 1q �F cap

τ1,τ2psq �RPτ1,τ2psq
� � 0,
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where tFsus¥0 is the filtration of all market information up to time s and RPτ1,τ2 is a risk
premium. This leads to a cap price

F cap
τ1,τ2psq �

1
τ2 � τ1 � 1E

�
τ2̧

t�τ1
max pSptq �K, 0q

�����Fs

�
�RPτ1,τ2psq.

The price of the floor is found accordingly using (4.20).

Figure 4.19 shows the seasonal behavior of the German Intraday Cap/Floor Future prices.
Since we assume that no relevant information about the occurrence of price peaks will be

Figure 4.19: Observed (upper) resp. simulated (lower) German Intraday Cap / Floor
Future prices with five weeks to maturity.

available already four weeks in advance, we can use the first quoted price of each product
to determine the annual pattern of the price. For the cap, we see that positive price peaks
are more likely to be expected in winter. This can be explained by the higher demand
in Germany during the cold season (see Figure 1.1). An exception is the weeks around
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Christmas, which represent a main holiday season. We notice that here the expected
payoffs are dropping to a very low level. For the floor, the situation is mirrored, with
prices being on average only about one tenth of the cap’s prices. This is not surprising,
as the chosen strikes lead to more positive payments of the caps than of the floors. This
is further enhanced by the fact that in 2017 there is generally a higher price level than
before (see Figure 4.3).

Using the residual demand process of Section 4.3, we simulated 10000 realizations of
the model as proposed in Section 4.2 for each week of the observation period starting five
weeks before settlement. We used this for a Monte Carlo approximation of the expected
derivative payments (see Figure 4.19). The sample standard deviation was not larger
than 6. The model prices show a similar seasonal behavior as the observed prices. Also
the strong change of the prices around Christmas is to be recognized.

However, there are two differences. First, the observed cap prices until February 2017
show a bimodal behavior in contrast to the simulated prices. This can be traced back to
an unusual non-stationary variation of the ID3-Price that is not attributable to residual
demand and is not captured by the long term variation (see Figure 4.3). Second, we can
see that the expected payments are greater than the derivative prices.

Figure 4.20: Price of the cap and expected payment for the delivery period May 29, 2017
to Jun 04, 2017 depending on the time until maturity.

The fact that the expected payments are larger than the future prices indicates a negative
risk premium. In order to examine the risk premium more closely, we use a Monte Carlo
study as before. We calculate the expected payment for each week of delivery depending
on the time to maturity. Because of the unusual behavior of the ID3-Price before March
2017, we use the products from Mar 05, 2017 for our study.
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As an example, Figure 4.20 shows the price evolution of the cap with delivery period
as the 22 calendar week 2017. By averaging across all differences between the derivative
prices and the expected payoffs, we get an idea how the risk premium behaves.

The results are shown in Table 4.18. Our previous hypothesis of a negative risk

Table 4.18: Mean risk premium RPτ1,τ2 by weeks to maturity.
Five Four Three Two One

Cap -0.91 -0.75 -0.66 -0.75 -0.21
Floor -1.56 -1.56 -1.56 -1.42 -0.89

premium is generally confirmed, implying that the market is in backwardation. The fact
that a discount is given on the expected payoff for both the hedge against high and low
prices is surprising at first. A possible explanation could be that conventional producers,
such as gas-fired power plants, adjust their production to prices on the intraday market.
In the case of high prices they increase production to generate additional income, while
in the case of low prices they reduce production and fulfill their obligations by using
electricity bought on the market. To hedge their revenues they sell caps and floors.

On the other hand, renewable power generators face the risk of over- or
under-production compared to day-ahead market commitments. Since it can be assumed
that a substantial overproduction often correlates with a high overall production of re-
newable energies and this leads to low prices and vice versa, renewable power generators
must buy caps and floors for hedging purposes. However, as commitments for the sale of
renewable energy are made only for short periods in advance, the purchase of the deriva-
tives takes place closer to maturity. This corresponds to the increasing risk premia as we
approach maturity.

To find the seasonality of the derivative prices, market information does not play an im-
portant role. However, for times close to the delivery period, market participants have
access to information about the occurrence of extreme prices. Forecasts on wind and solar
power generation seem particularly important here. This assumption is also supported
by the unexpected change of the cap price in Figure 4.20 one week ahead the delivery
period.

The incorporation of such information in our model is straightforward. Instead of
simulating the price based on the realization of the residual demand model, we simulate
using the realization of a forecast distribution. The simulated derivative prices, using such
an information, seem to better correspond to the observed prices (see Figure 4.20). Here,
we let depend the residual demand on hourly predictions of the total amount of wind
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and solar power generated in Germany for the first six days from the time of simulation,
after which we again use the residual demand model of Section 4.3. The forecast data
was provided to us by EuroWind GmbH, an accredited provider of prediction data that
also cooperates with EEX.

However, if such information is used by market participants this means that the
perviously calculated risk premia are not reliable for days close to maturity. The need
to include forecast information was also addressed in Benth and Pircalabu (2018) for the
computation of the risk premium for wind power futures.

Table 4.19: Mean risk premium RPτ1,τ2 by weeks to maturity using forecast information.
Five Four Three Two One

Cap -0.91 -0.75 -0.67 -0.71 -0.07
Floor -1.49 -1.49 -1.48 -1.19 -0.40

Thus, in Table 4.19 the risk premia using the given predictions are shown. We can
see that the previous statements on the risk premium still apply. However, the increase
as it approaches maturity is now more pronounced. This supports the earlier thesis that
for these times more producers of renewable energies will appear as buyers in order to
hedge their obligations from recent commitments.





Chapter 5

Summary and Conclusion

The intention of this thesis was to develop accurate stochastic models for electricity mar-
kets. Our focus was on continuous time autoregressive processes that have been applied
successfully many times in this field. Even though our motivation was data driven and
modeling was the final goal, the methods introduced were always subject to a solid math-
ematical analysis.

The mean-reversion within short periods of time is probably the most distinctive char-
acteristic of electricity prices. In particular, jumps only have a very short impact on the
price. We have therefore started our research with a more detailed investigation of this
property. It is generally known that the mean-reversion rate of electricity prices depends
on the price level. Hence, in Benth et al. (2008) an arithmetic price model consisting of
two factors with different mean-reversion rates is proposed. The main difficulty here is
to separate the price dynamic into a normal and a jump part. As attractive alternative
Garcia et al. (2011) identified continuous-time autoregressive moving average (CARMA)
processes. Benth et al. (2014) stated that by using a higher order of the autoregressive
part, different mean-reversion speeds can be included here. However, since the price level
has no direct impact on the mean-reversion rates, we concluded that there is still some
potential for improvement.

To get mean-reversion rates depending on the price level, it appears to be natural to
consider parameter functions instead of constants. For CARMA process such an idea leads
to the class of continuous-time threshold autoregressions (CTAR). Since Brockwell (1994)
only considered Gaussian CTAR, in Chapter 2 we extended this concept by adding a jump
component. This is necessary since jumps are frequently observed for electricity prices.
In addition to proving the existence of the newly defined process, we have introduced a
consistent Euler method which can be used for simulation. While these points represent
extensions of the ideas used by Brockwell (1994), we have also analyzed an estimation
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procedure that has not yet been considered for CTAR. The method utilizes particle
filtering in case of analytically intractable densities. By a simulation study we verified
the quality of the estimation procedure. Finally, we have shown that CTAR with jumps
can offer a significant advantage over comparable models in describing electricity spot
prices.

Since CTAR are purely autoregressive, it would certainly be interesting to add also a
moving average part. However, as shown by Brockwell (1994), this leads to a multivariate
stochastic differential equation (SDE) with degenerate diffusion matrix. This case is much
more complicated than for CTAR and results cannot simply be extended. Also the general
statistical properties of CTAR could be investigated further, especially for a CTAR with
jumps. This includes not at least a convergence analysis of the likelihood estimate for
discontinuous transition densities (cf. Remark 2.15).

CTAR are not only suitable for describing electricity prices, but have also proved useful in
modeling photovoltaic (PV) power generation. Solar power is one of the most important
renewable energy sources and is recognized as a key technology to fight climate change.
However, due to its variable generation profile, it also presents the electricity market
with new challenges. Exact models for solar power infeed are essential to cope with
them. Since the amount of generated solar power depends heavily on the time of day, for
classical statistical modeling its time series has to be stationarized first. This is difficult
because infeed is zero at night. Therefore previous models have been limited to daily
data (cf. Wagner (2012), Veraart and Zdanowicz (2016) and Benth and Ibrahim (2017)).

In Chapter 3 we proposed a statistical model for PV power generation, where, for the
first time, intraday variation is taken into account. This was possible, because instead of
considering the time series directly, we identified the cloud cover as essential component.
We first removed seasonality by estimating the clear sky infeed. Then, the remaining
variation can be interpreted as a cloud cover component, a very natural view of the
stochasticity of solar power generation. The filtered cloud cover showed to be still non-
stationary and highly asymmetric. To achieve stationarity, we first transformed the time
series by using physical relationships. To model the asymmetry, CTAR were identified as
appropriate class of processes. Using a continuous time model has the additional benefit
here, that missing values can be easily handled. This is necessary because it is not possible
to get information on the cloud cover at night by infeed data only. We fitted the process
with the procedure presented in Chapter 2. The model subsequently turned out to be
superior to an existing concept. The purely statistical approach makes it easy to use,
e.g. for financial application. To illustrate this, we introduced a new future contract that
can be used to hedge volume risks from PV power plants.
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Although there is no direct price risk for power plants subsidized under the Gesetz für
den Ausbau erneuerbarer Energien (Renewable Energy Sources Act) (EEG), additional
revenues can be generated through efficient commercialization. A very efficient variant
is the storage of generated electricity in low price periods and the sale at high prices. To
control such a strategy, the costs of the storage must be compared to the potential yields.
Intraday generation of the power plant plays an import role here. Hence, it would also
be interesting to use the proposed model for the valuation of a battery storage.

Precise models for renewable power generation are not only important for operators of
associated power plants, but for many other market participants as well. The production
of electricity from renewable energy sources has vanishing marginal cost. In a liberalized
market, they therefore replace conventional power plants and have a strong impact on
the price. Recent price models (cf. Section 1.4) attempt to take this impact into account.
The main focus here is on applying existing stochastic techniques, which, however, usually
only allow to map certain aspects of the dependency between the price and renewable
power generation.

Conditionally independent increment (CII) processes provide a flexible way to rep-
resent many parts of this dependency. While this class of processes has generally been
known for a long time (cf. Jacod and Shiryaev (2002)[II.6]), it has not yet been investi-
gated for modeling of time series. This is discussed in Chapter 4. Besides dealing with
the construction of a CII process, we also provide an estimation procedure. In addition,
we built a test to check if a simpler Lévy process might not be already sufficient. The
estimates and the test showed a good performance in a simulation study.

Based on the new theoretical results about the statistical application of CII processes,
we defined an arithmetic electricity price model for the German intraday market. We
first mapped residual demand to the price by a deterministic function. With this much
of the seasonality and regular variation of the price is already reflected. To take into
account changes in the long-term price level, a Brownian motion with stochastic drift
as additional factor is proposed. Filtering and estimation of this factor follows from the
theory of linear state-space model. By the components of the model we mentioned so
far, especially price peaks are not sufficiently represented. However, these are of crucial
importance for the assessment of price risks. Since jumps only have a short effect on
the price, a generalized Ornstein-Uhlenbeck (OU) process is suggested for the variations
not covered so far. For the increments of this process we found that not only the sign
but also the magnitude can be explained in terms of residual demand. This was to be
expected as price jumps often are the result of an extraordinarily high or low renewable
power generation. By applying a CII process such a dependency can be depicted. After
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some data preprocessing, a normal-inverse Gaussian (NIG) distribution with parameters
depending on residual demand was fitted using the previously established nonparametric
estimator. A simulation study illustrated that by the inclusion of a CII process more
reasonable prices are achieved, especially if one is interested in extreme values, compared
to other models.

By our approach, electricity prices are connected to load as well as solar and wind
power generation. Hence, for a complete electricity price model these components must
also be specified. Modeling of solar power generation was already treated in detail in
Chapter 3. For electricity demand and wind power generation arithmetic models based
on Lévy driven CARMA processes were applied (cf. Section 4.3).

The EEX recently offers the German Intraday Cap/Floor Futures for hedging against
positive and negative spikes on the intraday market. The fact that our proposed elec-
tricity price model seems to replicate such spikes quite well, gave reason to analyze the
prices of this derivatives in more detail. We have found signs of a negative risk premium
with a decreasing magnitude if maturity is closer. An explanation could be that conven-
tional power plants in particular are hedging their revenues on the intraday market. For
calculation of the risk premia we also took forecast information on wind and solar power
generation into account, which is rather easy in our model.

The intention of Chapter 4 was to demonstrate the general benefits of CII processes
in the statistical modeling of electricity prices. The exact design of the components of
the final price model, however, could be subject to a further statistical analysis. For
example, it would be interesting to consider a CII process as the driving component of
a more general CARMA process. Regardless of the exact design of the model, the pre-
dicted derivative prices should be treated with care. The reason for this is that market
participants have access to a variety of different sources for forecasting residual demand.
In contrast we only had access to data supported by one provider.

In Chapter 2 and Chapter 4 we have presented different types of electricity price models.
In contrast to classical financial mathematics, in which a small number of models domi-
nate, there is no standard methodology for describing electricity prices. This makes model
comparisons even more important. Hence, we also compared our models with other ap-
proaches to illustrate the benefits. However, this raises the question of the basis on which
such an comparison should take place. If accurate predictions are desired, it is logical to
use the forecast error as criterion (cf. Weron (2014)). If the focus is on the valuation of
derivatives instead, this alone is not always sufficient. Here it can be important to map
the characteristics of the data precisely. Often a comparison of moments is used to check
this. A finite number of moments, however, provides only limited information. Since the
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data is completely characterized by its distribution, the use of information criteria that
take into account the density is more reasonable. This includes the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), for example. A compari-
son of early electricity price models based on such criteria was performed by Bierbrauer
et al. (2007). For recent models, such a comparison is more difficult because analytic
expressions of the densities are often not available. This is especially true for models that
are composed of different processes as it is the case if one accounts for renewable power
generation. Here, a numerical approximation of the likelihood as presented in Chapter 2
could be a solution. It would be interesting to investigate this approximation for different
electricity price models and to use it as a basis for a profound model comparison.





Appendix A

Source Code

A.1 Implementations for Chapter 2
This section contains the C++ and R code for computing the likelihood pL of CTAR(2)
with uniform jumps by particle filtering (cf. Chapter 2). The C++ code is placed in two
separate files. In "UnweightedBinaryTree.cpp" the unweighted binary tree of Lee (2008)
is implemented. The functions in file "CTAR2.cpp" allow to perform parallelized Euler
approximations. C++ is connected to R through the package "Rcpp". The individual
files are parsed in R by the command sourceCpp. The provided C++ functions allow
a fast execution of the log likelihood approxLL. We also give an example of how to call
this function. To get parameter estimates, approxLL can be maximized by a numerical
optimizer. We used the simultaneous perturbation stochastic approximation (SPSA)
algorithm of Spall (2003), which is easy to implement given the objective function.

A.1.1 Content of file "UnweightedBinaryTree.cpp"

// [ [ Rcpp : : p l u g i n s ( cpp11 ) ] ]
#include <Rcpp . h>
using namespace Rcpp ;

//Node c l a s s
struct l e a fC l a s s {
double weight ;
int l e v e l ;
int index ;
l e a fC l a s s ∗ l e f t ;
l e a fC l a s s ∗ r i g h t ;
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} ;

//Binary t r e e c l a s s
class bt ree {
public :

b t r e e ( ) ;
int search (NumericVector u , rootClass ∗ root ) ;
void dest royTreePubl i c ( rootClass ∗ root ) ;
rootClass ∗ cons t ruc t ( int dimTree , NumericMatrix pa r t i c l e s ,

ãÑ NumericVector weights ) ;
private :

void destroyLeaves ( leafClass ∗ l e a f ) ;
void destroyTree ( rootClass ∗ root ) ;
void ass ignToLeaves ( int l e v e l , rootClass ∗ root ) ;
int search (NumericVector u , leafClass ∗ l e a f , rootClass ∗ root ) ;
void cons t ruc t ( leafClass ∗ l e a f , rootClass ∗ root ) ;
rootClass ∗ root ;

} ;

// I n i t i a l i z e b inary t r e e c l a s s
bt ree : : b t r ee ( ) {

root=NULL;
} ;

//Destroy l e a v e s p r i v a t e
void bt ree : : destroyLeaves ( leafClass ∗ l e a f ) {

i f ( l e a f !=NULL){
destroyLeaves ( l e a f�>l e f t ) ;
destroyLeaves ( l e a f�>r i gh t ) ;
delete ( l e a f ) ;

}
} ;

//Destroy t r e e p r i v a t e
void bt ree : : destroyTree ( rootClass ∗ root ) {

i f ( root !=NULL){
destroyLeaves ( root�>rootLea f ) ;
delete ( root ) ;
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}
} ;

//Destroy t r e e p u b l i c
void bt ree : : des t royTreePubl i c ( rootClass ∗ root ) {

destroyTree ( root ) ;
} ;

//Assign data to l e a v e s by median s p l i t t i n g po in t
void bt ree : : ass ignToLeaves ( int l e v e l , rootClass ∗ root ) {

// Ca l cu l a t e median
NumericVector s p l i t t i n gDa ta (pow(2 , l e v e l ) ) ;
int i S p l i t = 0 ;
for ( int i=root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l ) ∗pow(2 ,

ãÑ l e v e l ) ; i <(root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l )+1)
ãÑ ∗pow(2 , l e v e l ) ; i++){
sp l i t t i n gDa ta ( i S p l i t ) = root�>pa r t i c l e s ( root�>r , root�>

ãÑ p a r t i c l e s I n d i c e s ( i ) ) ;
i S p l i t += 1 ;

}
double m = median( s p l i t t i n gDa ta ) ;
// Sort data to l e a v e s
NumericVector s p l i t t i n g I n d i c e s (pow(2 , l e v e l ) ) ;
int i L e f t = 0 ;
int iR ight = pow(2 , l e v e l �1) ;
for ( int i=root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l ) ∗pow(2 ,

ãÑ l e v e l ) ; i <(root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l )+1)
ãÑ ∗pow(2 , l e v e l ) ; i++){
i f ( root�>pa r t i c l e s ( root�>r , root�>pa r t i c l e s I n d i c e s ( i ) )<=m){

s p l i t t i n g I n d i c e s ( i L e f t ) = root�>pa r t i c l e s I n d i c e s ( i ) ;
i L e f t += 1 ;

} else {
s p l i t t i n g I n d i c e s ( iR ight ) = root�>pa r t i c l e s I n d i c e s ( i ) ;
iR ight += 1 ;

}
}
//Assign s p l i t t e d p a r t i c l e s
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int iAs s i gn = 0 ;
for ( int i=root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l ) ∗pow(2 ,

ãÑ l e v e l ) ; i <(root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l )+1)
ãÑ ∗pow(2 , l e v e l ) ; i++){
root�>pa r t i c l e s I n d i c e s ( i ) = s p l i t t i n g I n d i c e s ( iAs s i gn ) ;
iAs s i gn += 1 ;

}
//Notice new s p l i t index
root�>sp l i tL ev e l I nd ex ( root�>dimTree�l e v e l ) += 1 ;

} ;

//Construct t r e e p r i v a t e
void bt ree : : construct ( leafClass ∗ l e a f , rootClass ∗ root ) {

// Set s p l i t t i n g dimension
root�>r = ( root�>dimTree�l e a f�>l e v e l )%root�>pa r t i c l e s .nrow ( ) ;
// S p l i t p a r t i c l e s by median
ass ignToLeaves ( l e a f�>l ev e l , root ) ;
//Create l e f t l e a f
l e a f�>l e f t = new leafClass ( ) ;
l e a f�>l e f t �>l e v e l = l e a f�>l ev e l �1;
l e a f�>l e f t �>weight = 0 ;
for ( int i=root�>lev e l I nd ex ( root�>dimTree�l e a f�>l e f t �>l e v e l ) ∗

ãÑ pow(2 , l e a f�>l e f t �>l e v e l ) ; i <(root�>lev e l I nd ex ( root�>
ãÑ dimTree�l e a f�>l e f t �>l e v e l )+1)∗pow(2 , l e a f�>l e f t �>l e v e l ) ;
ãÑ i++){
l e a f�>l e f t �>weight += root�>weights ( root�>pa r t i c l e s I n d i c e s ( i

ãÑ ) ) ;
}
l e a f�>l e f t �>l e f t=NULL;
l e a f�>l e f t �>r i gh t=NULL;
i f ( l e a f�>l e f t �>l e v e l==0){

l e a f�>l e f t �>index = root�>pa r t i c l e s I n d i c e s ( root�>lev e l I nd ex (
ãÑ root�>dimTree�l e a f�>l e f t �>l e v e l ) ) ;

}
root�>lev e l I nd ex ( root�>dimTree�l e a f�>l e f t �>l e v e l ) += 1 ;
//Create r i g h t l e a f
l e a f�>r i gh t=new leafClass ( ) ;
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l e a f�>right�>l e v e l= l e a f�>l ev e l �1;
l e a f�>right�>weight = 0 ;
for ( int i=root�>lev e l I nd ex ( root�>dimTree�l e a f�>right�>l e v e l ) ∗

ãÑ pow(2 , l e a f�>right�>l e v e l ) ; i <(root�>lev e l I nd ex ( root�>
ãÑ dimTree�l e a f�>right�>l e v e l )+1)∗pow(2 , l e a f�>right�>l e v e l )
ãÑ ; i++){
l e a f�>right�>weight += root�>weights ( root�>pa r t i c l e s I n d i c e s (

ãÑ i ) ) ;
}
l e a f�>right�>l e f t=NULL;
l e a f�>right�>r i gh t=NULL;
i f ( l e a f�>right�>l e v e l==0){

l e a f�>right�>index = root�>pa r t i c l e s I n d i c e s ( root�>lev e l I nd ex
ãÑ ( root�>dimTree�l e a f�>l e f t �>l e v e l ) ) ;

}
root�>lev e l I nd ex ( root�>dimTree�l e a f�>right�>l e v e l ) += 1 ;
//Normalize we i gh t s
l e a f�>l e f t �>weight = l e a f�>l e f t �>weight /( l e a f�>l e f t �>weight+

ãÑ l e a f�>right�>weight ) ;
l e a f�>right�>weight = l e a f�>right�>weight /( l e a f�>l e f t �>weight+

ãÑ l e a f�>right�>weight ) ;
//Construct next l e v e l o f l e a v e s
i f ( l e a f�>l e f t �>l e v e l >0){
construct ( l e a f�>l e f t , root ) ;
construct ( l e a f�>right , root ) ;

}
} ;

//Construct t r e e p u b l i c
rootClass ∗ bt ree : : construct ( int dimTree , NumericMatrix pa r t i c l e s

ãÑ , NumericVector weights ) {
// I n i t i a l i z e roo t
rootClass ∗ root = new rootClass ( ) ;
root�>pa r t i c l e s = NumericMatrix( p a r t i c l e s .nrow ( ) , p a r t i c l e s .

ãÑ ncol ( ) ) ;
root�>pa r t i c l e s = p a r t i c l e s ;
root�>weights = NumericVector( dimTree ) ;
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root�>weights = weights ;
root�>pa r t i c l e s I n d i c e s = seq (0 , p a r t i c l e s . ncol ( )�1) ;
root�>lev e l I nd ex = NumericVector( dimTree+1) ;
root�>sp l i tL ev e l I nd ex = NumericVector( dimTree+1) ;
root�>dimTree = dimTree ;
root�>rootLea f=NULL;
// I n i t i a l i z e roo t as l e a f
l e a fC l a s s ∗ rootLea f = new l e a fC l a s s ( ) ;
rootLeaf�>l e v e l = dimTree ;
rootLeaf�>weight = sum( root�>weights ) ;
rootLeaf�>l e f t=NULL;
rootLeaf�>r i gh t=NULL;
//Assign roo t l e a f to roo t c l a s s
root�>rootLea f = rootLea f ;
//Construct l e a v e s
construct ( rootLeaf , root ) ;
//Return root
return ( root ) ;

} ;

//Search f o r node p r i v a t e
int bt ree : : s earch (NumericVector u , leafClass ∗ l e a f , rootClass ∗

ãÑ root ) {
//Return l e a f index
i f ( l e a f�>l e v e l==0){
return ( l e a f�>index ) ;

}
// Set search dimension
int j = ( root�>dimTree�l e a f�>l e v e l )%root�>pa r t i c l e s .nrow ( ) ;
//Search f o r l e a f
i f (u( j )<l e a f�>l e f t �>weight ) {

u( j ) = u( j ) / l e a f�>l e f t �>weight ;
return ( search (u , l e a f�>l e f t , root ) ) ;

} else {
u( j ) = (u( j )� l e a f�>l e f t �>weight ) /(1� l e a f�>l e f t �>weight ) ;
return ( search (u , l e a f�>right , root ) ) ;

}
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} ;

//Search f o r node pu b l i c
int bt ree : : s earch (NumericVector u , rootClass ∗ root ) {

return ( search (u , root�>rootLeaf , root ) ) ;
} ;

//R i n t e r f a c e f o r b inary t r e e s
// [ [ Rcpp : : expor t ] ]
NumericVector searchConstructTree ( int dimTree , NumericMatrix

ãÑ pa r t i c l e s , NumericVector weights , NumericMatrix u) {
//Construct b inary t r e e
class btree Tree ;
r oo tC la s s ∗ r = Tree . construct ( dimTree , p a r t i c l e s , we ights ) ;
// S e l e c t i n g p a r t i c l e s
NumericMatrix uSearch = NumericMatrix(u .nrow ( ) , u . ncol ( ) ) ;
uSearch = u ;
NumericVector i n d i c e s S e l e c t (u .nrow ( ) ) ;
for ( int i =0; i<u .nrow ( ) ; i++){

i n d i c e s S e l e c t ( i ) = Tree . search ( uSearch ( i ,_) , r ) ;
}
//Free memory
Tree . destroyTreePublic ( r ) ;
return ( i n d i c e s S e l e c t ) ;

} ;

A.1.2 Content of file "CTAR2.cpp"

// [ [ Rcpp : : depends ( RcppPara l l e l ) ] ]
#include <RcppPara l l e l . h>
#include <Rcpp . h>
#include <math . h>
#include <numeric>
using namespace Rcpp ;

//Data s t r u c t u r e f o r p a r a l l e l Euler approximation o f the s t a t e
ãÑ vec t o r o f CTAR(2) wi th uniform jumps

struct S t a t e sP a r a l l e l : public RcppPara l l e l : : Worker{
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// Input parameters
const int index ; // Simulat ion index
const double de l t a ;
const double nEuler ;
const int nSim ;
const NumericMatrix & par ;
const NumericMatrix & d i f f ;
const NumericMatrix & jumpHeights ;
const NumericMatrix & jumpTimes ;
//Output s imu la t i on s
RcppPara l l e l : :RMatrix<double> output ;
// I n i t i a l i z e wi th source and d e s t i n a t i o n
S t a t e sP a r a l l e l ( const int index , const double de l ta , const int

ãÑ nSim , const double nEuler , const NumericMatrix &par ,
ãÑ const NumericMatrix &d i f f , const NumericMatrix &
ãÑ jumpHeights , const NumericMatrix &jumpTimes ,
ãÑ NumericMatrix output )
: index ( index ) , d e l t a ( de l t a ) , nSim(nSim) , nEuler ( nEuler ) , par

ãÑ ( par ) , d i f f ( d i f f ) , jumpHeights ( jumpHeights ) , jumpTimes
ãÑ ( jumpTimes ) , output ( output ) {}

// Ca l l f unc t i on
void operator ( ) ( std : : s i z e_t begin , std : : s i z e_t end ) {

for ( int i = begin ; i < end ; i++) {
// I n i t i a l i z e Euler
double auxVar = output . column( i ) . operator [ ] ( 0 ) ; //Aux .

ãÑ v a r i a b l e
double a1 ; //AR parameter v e c t o r s
double a2 ;
double sigma = par (4 , i ) ;
double minJump = par (6 , i ) ;
double magnJump = par (7 , i ) ;
double lambda = par (5 , i ) ;
double th = par (8 , i ) ;
double maxJump = minJump+magnJump ;
double pJump = lambda∗ de l t a ∗nEuler ;
for ( int j = 0 ; j<nEuler ; j++){
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i f ( output (0 , i )<th ) {
a1 = par (1 , i ) ;
a2 = par (0 , i ) ;

} else {
a1 = par (3 , i ) ;
a2 = par (2 , i ) ;

}
// Simulat ion
output . column( i ) . operator [ ] ( 0 ) = output . column( i ) .

ãÑ operator [ ] ( 0 )+de l t a ∗output . column( i ) . operator [ ] ( 1 )
ãÑ ;

i f ( jumpTimes ( ( index�1)∗nSim+i , j )<=pJump){
i f ( jumpHeights ( ( index�1)∗nSim+i , j )>=0){

output . column( i ) . operator [ ] ( 1 ) = output . column( i ) .
ãÑ operator [ ] ( 1 )+de l t a ∗(�a2∗auxVar�a1∗output .
ãÑ column( i ) . operator [ ] ( 1 ) )+sigma∗sqrt ( d e l t a ) ∗
ãÑ d i f f ( ( index�1)∗nSim+i , j )+(jumpHeights ( ( index
ãÑ �1)∗nSim+i , j ) ∗(maxJump�minJump)+minJump) ;

} else {
output . column( i ) . operator [ ] ( 1 ) = output . column( i ) .

ãÑ operator [ ] ( 1 )+de l t a ∗(�a2∗auxVar�a1∗output .
ãÑ column( i ) . operator [ ] ( 1 ) )+sigma∗sqrt ( d e l t a ) ∗
ãÑ d i f f ( ( index�1)∗nSim+i , j )+(jumpHeights ( ( index
ãÑ �1)∗nSim+i , j ) ∗(maxJump�minJump)�minJump) ;

}
} else {

output . column( i ) . operator [ ] ( 1 ) = output . column( i ) .
ãÑ operator [ ] ( 1 )+de l t a ∗(�a2∗auxVar�a1∗output . column
ãÑ ( i ) . operator [ ] ( 1 ) )+sigma∗sqrt ( d e l t a ) ∗ d i f f ( (
ãÑ index�1)∗nSim+i , j ) ;

}
auxVar = output . column( i ) . operator [ ] ( 0 ) ;

}
}

}
} ;
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//R i n t e r f a c e f o r p a r a l l e l Euler approximation o f the s t a t e
ãÑ vec t o r o f CTAR(2) wi th uniform jumps

// [ [ Rcpp : : expor t ] ]
NumericMatrix s t a t e sEu l e rP a r a l l e l ( int index , int nSim , double

ãÑ nEuler , double de l ta , NumericMatrix &par , NumericMatrix &
ãÑ i n i t S t a t e s , NumericMatrix &d i f f , NumericMatrix &
ãÑ jumpHeights , NumericMatrix &jumpTimes ) { ;
// I n i t i a l i z e output matrix
NumericMatrix output ( i n i t S t a t e s .nrow ( ) , i n i t S t a t e s . ncol ( ) ) ;
for ( int l =0; l<i n i t S t a t e s .nrow ( ) ; l++){

for ( int j =0; j<nSim ; j++){
output ( l , j ) = i n i t S t a t e s ( l , j ) ;

}
}
// I n i t i a l i z e s t r u c t u r e f o r p a r a l l e l Euler
struct StatesParallel s t a t e s P a r a l l e l ( index , de l ta , nSim ,

ãÑ nEuler , par , d i f f , jumpHeights , jumpTimes , output ) ;
//Run p a r a l l e l Euler
parallelFor (0 , nSim , s t a t e s P a r a l l e l ) ;
//Return
return ( output ) ;

} ;

A.1.3 R code for approximate likelihood

l ibrary (Rcpp)
l ibrary ( RcppPara l l e l )
sourceCpp ( " . . . /UnweightedBinaryTree . cpp " )
sourceCpp ( " . . . /CTAR2. cpp " )

### Approximate likelihood function of CTAR(2)
### with uniform jumps (cf. Equation (2.30))

approxLL <� function ( par , Y, nSim , nEuler , de l ta , d i f f u s i o n ,
ãÑ jumpHeights , jumpTimes , crnTree ) {

###I n i t i a l i z e p a r t i c l e f i l t e r
s t a t e s F i l t e r <� matrix (0 , 2 , nSim)
s t a t e s F i l t e r [ 1 , ] <� Y[ 1 ]
bwResampling <� rep (0 , 2)
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p a r t i c l e s <� matrix (0 , 2 , nSim)
l l <� 0
s t a t e s F i l t e r <� matrix (0 , nrow=p , nco l=nSim)
###I n i t i a l i z e p a r a l l e l Euler
parMatrix <� matrix ( par , length ( par ) , nSim)
i n i t S t a t e s <� matrix (0 , 2 , nSim)
###Par t i c l e F i l t e r
for ( i in 1 : ( length (Y)�1) ) {
###Pa r a l l e l Euler
i n i t S t a t e s <� s t a t e s F i l t e r
s imStates <� statesEulerParallel ( i , nSim , nEuler , de l ta ,

ãÑ parMatrix , i n i t S t a t e s , d i f f u s i o n , jumpHeights ,
ãÑ jumpTimes )

###Ca l cu l a t e l i k e l i h o o d
bw <� 1 .06∗sd ( s imStates [ 1 , ] ) / (nSim^(1/5) )
dens <� 1/nSim∗sum(dnorm(Y[ i +1] , s imStates [ 1 , ] , bw) )
l l <� l l+log ( dens )
###Resampling p a r t i c l e s
p a r t i c l e s [ 1 , ] <� Y[ i +1]
p a r t i c l e s [ 2 , ] <� s imStates [ 2 , ]
###Resampling we i gh t s
for ( l in 1 : 2 ) {

bwResampling [ l ] <� 1 .06∗sd ( s imStates [ l , ] ) / (nSim^(1/5) )
}
resamplingWeights <� dnorm( s imStates [ 1 , ] , Y[ i +1] ,

ãÑ bwResampling [ 1 ] )
###Binary t r e e resampl ing
normWeights <� resamplingWeights/sum( resamplingWeights )
dimTree <� log (nSim , 2 )
uVec <� crnTree [ seq ( ( i �1)∗nSim+1, i ∗nSim) , ]
r e s amp l ing Ind i c e s <� searchConstructTree ( dimTree , p a r t i c l e s ,

ãÑ normWeights , uVec )+1
s t a t e s F i l t e r [ 1 , ] <� Y[ i +1]
s t a t e s F i l t e r [ 2 , ] <� p a r t i c l e s [ 2 , r e s amp l ing Ind i c e s ]

}
return ( l l )
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}

###
# Example of a function call of approxLL
###

###Observa t ions
Y <� rnorm(100)
nData <� length (Y)

###Simulat ion parameters
nSim <� 2^11 #Number o f s imu la ted p a r t i c l e s
nEuler <� 100 #Number o f Euler s t e p s
de l t a <� 1/100 #Euler s t e p s i z e

###CTAR(2) wi th uniform jumps parameters
sigma <� 0 .6 #Di f f u s i on standard d e v i a t i on
lambda <� 0 .05 #Jump i n t e n s i t y
minJump <� 0 .25 #Minimal jump s i z e
magJump <� 0 .77 #Jump magnitude
th <� 2 .2 #Threshold
a11 <� 1 #AR parameters
a12 <� 0 .2
a21 <� 2
a22 <� 0 .6
par <� c ( a12 , a11 , a22 , a21 , sigma , lambda , minJump , magJump , th

ãÑ )

###Simulate s t o c h a s t i c components
d i f f u s i o n <� matrix (0 , nData∗nSim , nEuler ) #Increments Brownian

ãÑ motion
jumpHeights <� matrix (0 , nData∗nSim , nEuler ) #Jump s i z e s
jumpTimes <� matrix (0 , nData∗nSim , nEuler ) #Jump times
crnTree <� matrix (0 , 2∗nData∗nSim , 2) #Random number b inary t r e e

ãÑ i n d i c e s
for ( c o l in 1 : nEuler ) {

d i f f u s i o n [ , c o l ] <� rnorm( nData∗nSim)
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jumpsSign <� c (1 ,�1)
jumpHeights [ , c o l ] <� runif ( nData∗nSim)∗sample ( jumpsSign , nData

ãÑ ∗nSim , TRUE)
}
jumpTimes <� matrix ( runif ( nData∗nSim∗nEuler ) , nData∗nSim , nEuler )
for ( c o l in 1 : 2 ) {

crnTree [ , c o l ] <� runif (2∗nData∗nSim)
}

###Cal l l i k e l i h o o d func t i on
approxLL ( par , Y, nSim , nEuler , de l ta , d i f f u s i o n , jumpHeights ,

ãÑ jumpTimes , crnTree )

A.2 Implementations for Chapter 3
Here we give R functions to calculate the solar angle θloc of an object depending on date,
position and tilt. This is used in Chapter 3 to determine the attenuation coefficients µi,
i � 1, . . . , N (cf. Equation (3.7)).

### Solar angle in radians for a given date and position

so la rAng l e <� function (month , day , hour , min , l a t , long ) {
K <� pi/180
dayNumber <� (month�1)∗30.3+day
d e c l i n <� �23.45∗cos (K∗360∗ (dayNumber+10)/365)
timeEquation <� 60∗(�0.171∗sin (0 .0337∗dayNumber + 0 .465 )

ãÑ � 0 .1299∗sin (0 .01787∗dayNumber � 0 .168 ) )
hourAngle <� 15∗ ( hour + min/60 � (15.0� long )/15 .0 � 12 +

ãÑ timeEquation/60)
a l t <� sin (K∗ l a t )∗sin (K∗de c l i n )+cos (K∗ l a t )∗cos (K∗de c l i n )

ãÑ ∗cos (K∗hourAngle )
ang le <� asin ( a l t )/K
return ( ang le )

}

### Object’s solar angle in radians for a given tilt, date and position

objAngle <� function ( t i l t , month , day , hour , min , l a t , long ) {
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zeni thAngle <� solarAngle (month , day , hour , min , l a t ,
ãÑ long )�90

zeni thAngle [ zenithAngle <=0] <� NA
zenithAngle [ zenithAngle >0] <� zen i thAngle [ zenithAngle

ãÑ >0]+ t i l t
return ( zen i thAngle )

}

A.3 Implementations for Chapter 4
In the following we provide an R implementation of the nonparametric moment estimatorpmk,n and the test statistic Sn introduced in Chapter 4. In addition, the objective functions
for specifying the bandwidth parameter εn are given. To find an optimal bandwidth,
these can be put into a suitable numerical optimizer. We used the Nelder–Mead method
implemented in the R function optim.

### Kernel function

ke rne l <� function (x , mean , bw, type ) {
i f ( type==" epanechnikov " ) {

ke rne l <� 3/4∗(1�((x�mean)/bw) ^2)∗ (abs ( ( x�mean)/bw)<=1)
}
i f ( type==" normal " ) {

ke rne l <� dnorm(x , mean=mean , sd=bw)
}
i f ( type==" un i f " ) {

ke rne l <� (abs ( ( x�mean)/bw)<=1)
}
return ( k e rne l )

}

### Nonparametric moment estimator (cf. Equation (4.4))

npMoment <� function (x , k , I , DeltaX , eps , ktype=" normal " ) {
i n v a l i d <� i s .na( DeltaX )
e s t <� sum(kernel ( I [ ! i n v a l i d ] , x , eps , ktype )∗DeltaX [ ! i n v a l i d

ãÑ ]^ k )/sum(kernel ( I [ ! i n v a l i d ] , x , eps , ktype ) )
return ( e s t )
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}

### Objective function for LSCV bandwidth selection (cf. Equation (4.7))

l scvObj <� function ( eps , k , I , DeltaX , ktype=" normal " ) {
n <� length ( I )
i n v a l i d <� i s .na( DeltaX )
seqVal id <� seq (1 , n ) [ ! i n v a l i d ]
momEst <� rep (0 , length ( seqVal id ) )
j <� 1
for ( i in seqVal id ) {

momEst [ j ] <� npMoment( I [ i ] , k , I [� i ] , DeltaX[� i ] , eps , ktype
ãÑ )

j <� j+1
}
l s <� sum( ( DeltaX [ ! i n v a l i d ]^k�momEst) ^2)
return ( l s )

}

### Statistic for testing the null hypotheses of constant moments (cf. Equation (4.8))

t e s t S t a t i s t i c <� function ( eva lPo ints , k , I , DeltaX , eps , ktype="
ãÑ un i f " ) {
i n v a l i d <� i s .na( DeltaX )
mkConst <� mean( DeltaX [ ! i n v a l i d ]^ k )
m2kConst <� mean( DeltaX [ ! i n v a l i d ]^ (2∗k ) )
mk <� apply ( t ( eva lPo in t s ) , 2 , npMoment, k , I , DeltaX , eps ,

ãÑ ktype )
Nx <� colSums (apply ( t ( eva lPo in t s ) , 2 , kernel , I [ ! i n v a l i d ] , eps

ãÑ , ktype ) )
Sn <� 1/ (m2kConst�mkConst^2)∗sum(N_x∗ (mk�mkConst ) ^2)
return (Sn )

}

### Objective function for selecting test bandwidth parameter

tuningTestObj <� function ( eps , eva lPo ints , k , I , DeltaLevyMatrix
ãÑ , ktype=" un i f " ) {
nTests <� dim( DeltaLevyMatrix ) [ 1 ]
Sn <� rep (0 , nTest )
for ( iTes t in 1 : nTest ) {
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S_n [ iTes t ] <� testStat i st ic ( eva lPo ints , k , I ,
ãÑ DeltaLevyMatrix [ iTest , ] , eps , ktype )

}
alpha <� seq ( 0 , 1 , 0 . 0 1 )
r e j e c t i onRa t e <� rep (0 , length ( alpha ) )
for ( iAlpha in 1 : length ( alpha ) ) {

cValue <� qchisq(1�alpha [ iAlpha ] , d f=length ( eva lPo in t s ) )
r e j e c t i onRa t e [ iAlpha ] <� sum(Sn>=cValue )/length (Sn )

}
e r r o r <� sum( ( r e j e c t i onRate�alpha ) ^2)
return ( e r r o r )

}



Abbreviations

a.s. almost surely
ACF autocorrelation function
ACVF autocovariance function
AGEB Arbeitsgemeinschaft Energiebilanzen e. V.
AIC Akaike information criterion

BIC Bayesian information criterion
BNetzA Bundesnetzagentur

CAR continuous-time autoregressive
CARMA continuous-time autoregressive moving aver-

age
CII conditionally independent increment
CTAR continuous-time threshold autoregressions

EEG Gesetz für den Ausbau erneuerbarer Energien
(Renewable Energy Sources Act)

EEX European Energy Exchange
ENTSO-E European Network of Transmission System

Operators
EnWG Gesetz über die Elektrizität- und Gasver-

sorgung (Law on Energy Management)
EPEX SPOT European Power Exchange
Eurostat European Statistical Office

GH generalized hyperbolic
GW gigawatt



148 Abbreviations

i.i.d. independent and identically distributed

KS Kolmogorow-Smirnow

LSS regime-switching Lévy semistationary

MCP market clearing price
MW megawatt
MWh megawatt hour

NIG normal-inverse Gaussian

OU Ornstein-Uhlenbeck

PACF partial autocorrelation function
Phelix physical electricity index
PV photovoltaic

SDE stochastic differential equation
SPSA simultaneous perturbation stochastic approx-

imation

TWh terawatt hour



List of Symbols

� approximately
dÝÑ, LÝÑ convergence in distribution
LnpΩqÝÝÝÑ convergence in the n-th mean
pÝÑ, PÝÑ convergence in probability
a.s.ÝÝÑ almost sure convergence
i.i.d� independent and identically distributed as
� is distributed as
d� equally distributed
KK independent
9 directly proportional

berppq Bernoulli distribution with parameter p
binpn, pq binomial distribution with parameters n and

p
φp�q density of a standard normal distribution
Φp�q standard normal cumulative distribution func-

tion
N pµ, σ2q normal distribution with mean µ and variance

σ2

poispλq Poisson distribution with parameter n λ
WN independent with mean zero and finite vari-

ance (white noise)

argmax argument of the maximum
� function composition
cosp�q cosines function
p�q1 derivative
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‖�‖ Euclidean norm
expp�q exponential function
t�u floor function
1X ,1pXq indicator function for a set X
inf infimum
lim sup limes superior
logitp�q logit function
logp�q logarithmic function
max maximum
X ^ Y minimum of X and Y
Rep�q real part
secp�q secant function
sinp�q sinus function
sup supremum
p�qT transposition

Ep�|Xq,Ep�|Fq conditional expectation with respect to a ran-
dom variable X resp. a σ-algebra F

γXp�q autocovariance function of a random variable
X

Covp�q covariance matrix
Covp�, �q covariance function
EPp�q expectation with respect to P
Ep�q expectation
r�, �s covariation
r�s quadratic variation
V arp�q variance

E,Ec complement of a set E
Xc continuous part of X
€ Euro
In n� n identity matrix
I�1 inverse of a matrix I
Σ covariance matrix
1n n-th canonical unit vector
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Ω sample space
F σ-algebra
Pp�|Fq,P|Ap�q,Pp�|Aq conditional probability measure on the σ-

algebra F resp. the event A
L|ApXq,LpX|Aq law of X under the event A
LpXq law of X
F filtration
FX sigma-algebra generated by X
ω probability event
Pp�q probability measure

Brpxq closed 1-ball of radius r and center x
BpEq Borel algebra on E
C set of all complex numbers
Cn
b pEq set of continuous functions on E with bounded

continuous first n derivatives
CpEq, CpE,Mq set of real- resp. M -valued continuous func-

tions on E
Opfq set of functions with the same asymptotic be-

havior as f
N set of all natural numbers
CnpEq set of continuous functions on E with contin-

uous first n derivatives
R� set of all positive real numbers
R set of all real numbers
DpE,Mq set of all càdlàg functions from E to M
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