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Abstract 

Background:  Medical datasets, especially medical images, are often imbalanced due 
to the different incidences of various diseases. To address this problem, many meth-
ods have been proposed to synthesize medical images using generative adversarial 
networks (GANs) to enlarge training datasets for facilitating medical image analysis. 
For instance, conventional methods such as image-to-image translation techniques 
are used to synthesize fundus images with their respective vessel trees in the field of 
fundus image.

Methods:  In order to improve the image quality and details of the synthetic images, 
three key aspects of the pipeline are mainly elaborated: the input mask, architecture of 
GANs, and the resolution of paired images. We propose a new preprocessing pipeline 
named multiple-channels-multiple-landmarks (MCML), aiming to synthesize color 
fundus images from a combination of vessel tree, optic disc, and optic cup images. We 
compared both single vessel mask input and MCML mask input on two public fundus 
image datasets (DRIVE and DRISHTI-GS) with different kinds of Pix2pix and Cycle-GAN 
architectures. A new Pix2pix structure with ResU-net generator is also designed, which 
has been compared with the other models.

Results and conclusion:  As shown in the results, the proposed MCML method 
outperforms the single vessel-based methods for each architecture of GANs. Further-
more, we find that our Pix2pix model with ResU-net generator achieves superior PSNR 
and SSIM performance than the other GANs. High-resolution paired images are also 
beneficial for improving the performance of each GAN in this work. Finally, a Pix2pix 
network with ResU-net generator using MCML and high-resolution paired images are 
able to generate good and realistic fundus images in this work, indicating that our 
MCML method has great potential in the field of glaucoma computer-aided diagnosis 
based on fundus image.

Keywords:  Retinal image synthesis, Generative adversarial networks, Multiple 
landmarks
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Background
Computer-aided diagnosis (CAD) systems benefit physicians in reducing workload and 
improving diagnostic accuracy for medical examination. Deep learning methods, espe-
cially convolutional neural networks (CNNs), have achieved great success in many com-
puter vision tasks such as image classification [1], detection [2], and segmentation [3]. 
With regard to medical applications, there are many breakthroughs [4–6] using deep 
learning-based methods. In order to train a successful CAD model for medical image 
analysis, researchers need to collect large amounts of training data. Additionally, imbal-
anced medical image datasets and shortage of good experts annotating data are two 
main problems for improving the performance of the model. In order to address these 
problems, some methods have been proposed to generate artificial medical images 
to improve the performance of CAD systems [7–9]. Synthetic images can be used to 
enlarge the training sets and therefore improve the performance of the segmentation 
and classification tasks.

Generative adversarial networks (GANs) [10] are a family of unsupervised machine 
learning algorithms that have demonstrated their merits through generating synthetic 
images and solving image-to-image translation problems in natural image domain [11]. 
Typically, GANs are implemented by a system of two neural networks competing with 
each other in a two-player zero-sum game: a discriminator network and a generator net-
work. The generator produces candidates mapped from a latent variable to an objective 
data distribution, while the discriminator discriminates between the true data distri-
bution and the candidates. Lots of new GAN structures have been developed, such as 
W-GAN [12], Info-GAN [13], DCGAN [14], CGAN [15], Pix2pix [11], Cycle-GAN [16], 
and most of them have achieved good performance in image-to-image translation tasks.

Recent literature regarding medical image synthesis has presented good results in dif-
ferent medical imaging modalities. Salehinejad et  al. [7] proposed to generate X-rays 
images for chest pathology classification by convolutional generative adversarial net-
work (DCGAN) [14]. They have shown that artificial data can improve the classifica-
tion accuracy better than both imbalanced and balanced real datasets. A method named 
MelanaGANs was proposed by Bissoto et al. [8], which can synthesize high-resolution 
dermoscopic images with melanoma lesions. This method has been further dem-
onstrated that synthetic images can make contributions to solve the problem of class 
imbalance and improve classification accuracy. Hou et al. [17] proposed a GAN-based 
method to synthesize images in various strategies. They found that synthetic images of 
cancer cells improve the segmentation results, and reduce the error of cell nucleus seg-
mentation by 6 to 9%. Hu et al. [18] presented an approach to simulate fetal ultrasound 
images based on conditional GANs, generating realistic ultrasound images at target 3D 
spatial locations. Such approach is valuable in obstetric examination. Shin et al. [9] pro-
posed an algorithm to produce synthetic abnormal brain tumor MRI images from their 
corresponding segmentation masks with GAN. They have demonstrated the improved 
performance on tumor segmentation by leveraging synthetic images.

Fundus imaging is a basic check-up process in ophthalmology, which provides use-
ful information to facilitate ophthalmologist in diagnosing different ocular diseases at 
early stages [19]. In the task of color fundus image generation, many methods have been 
developed [20–22]. Among them, Costa et al. [20] developed a method that learned to 
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map from vessel tree to retinal image based on Pix2pix model [11], which utilizes similar 
techniques to U-net [23], preserving global structural information during the data gen-
eration process. Zhao et al. [21] synthesized fundus images combined from vessel tree 
ground truth based on Pix2pix framework, and the results showed that synthetic fundus 
images combined with real images outperform only real fundus images input method 
in fundus vessel segmentation tasks. All works proposed end-to-end adversarial retinal 
image synthesis pipelines, generating new vessel trees to synthesize retinal images with 
reasonable performance. However, important landmarks of eye, such as vessel parts, 
optic discs, and optic cups, have not been taken into account while synthesizing reti-
nal images. The regions of optic disc and optic cup in artificial fundus image are blurry 
and unsmooth, resulting in potential issues for further applications. For instance, such as 
in analyzing glaucoma fundus image tasks, the main lesion part is the changes of optic 
disc and optic cup [24]; however, the regions of optic disc and cup in generated fun-
dus image are blurry using the prior synthesis method, giving limited help to computer-
aided diagnosis.

To address these shortcomings of the previous methods, we propose a novel multiple-
channels-multiple-landmarks method as a new preprocess pipeline to synthesize color 
fundus images from a combination of vessel, optic disc, and optic cup through image 
segmentation. The image quality of the proposed MCML method is quantitatively evalu-
ated for comparison studies with the state-of-the-art GANs-based synthetic methods 
such as Pix2pix [11] and Cycle-GAN [16]. Furthermore, the optimization of the above-
mentioned generators (i.e., MCML-GANs, Pix2pix, and Cycle-GAN) has been inves-
tigated to get better synthetic image quality as well. The remainder of this paper is as 
follows: in “Methods” section, we introduce the GANs with different structures and the 
datasets we used in this work; in “Experimental evaluation” section, we elaborate on our 
proposed method in detail, and analyze the experimental results; in “Discussion” section 
we provide further discussion; finally, our conclusion is given in “Conclusions” section.

Methods
Flowchart of our approach

An overview of the architecture is sketched in Fig.  1. As shown in the flowchart, the 
MCML-GANs method uses a combination of three channels: vessel (Iv), optic cup (Ic), 
and optic disc (Id). Prior works [20–22] only use vessel. Our goal is to learn a map-
ping function Ig =  G(Iv, Ic, Id) between multiple landmarks (Ivcd), synthesized from the 
three channels Iv, Ic, and Id, and corresponding real fundus image Ir. The data distribu-
tion of the input samples is denoted as Ivcd ~  Pdata(Ivcd) and paired real fundus images 
Ir  ~  Pdata(Ir), respectively.

Adversarial translation from MCML‑GAN to retinal images

In this work, the multiple-channels-multiple-landmarks (MCML) method is to map 
Ir ~  Pdata(Ir|Ivcd) given by Ivcd. The combination of the three channels facilitates the gen-
erator adjusting the proportion of each structure automatically, avoiding setting weight 
hyperparameters for each structure. Then, a color fundus image is constructed by opti-
mizing the latent parameters θG of a generator neural network G(Ivcd). In the end, an 
independent unit Ivcd is mapped to the color fundus image.



Page 4 of 15Yu et al. BioMed Eng OnLine           (2019) 18:62 

In a zero-sum minimax optimization framework described in GANs [9], the generator 
is optimized through a discriminator neural network D(Ivcd, Ir) with a latent parameters 
θD , which outputs a scalar likelihood classifying the input as true or false, i.e., real or fake 
color fundus image using multiple landmarks Ivcd.

Therefore, the overall objective is to minimize min–max loss function, which is 
defined as

This is achieved by jointly optimizing the cost functions of both the discriminator and 
the generator, L(G) and L(D):

where E is a statistical expectation. Using sample pairs from data distribution (vcd, 
r) ~ Pdata(vcd, r), parameters θG and θD are, respectively, updated in each iteration to 
decrease the values of the L(G) and L(D) cost functions. Conceptually, the optimization 
of L(G) aims to enable G(Ivcd) generating samples that the discriminator classifies as true 
images. Simultaneously, L(D) is optimized, in an adversarial manner, to correctly classify 
the images G(Ivcd) produced by the generator and samples from the training dataset Ir. 
Once a convergence condition was fulfilled, the generator is expected to generate sam-
ples from labels to color fundus images.

Network architecture

Two types of GANs were implemented in this work for comparison studies. One is the 
Pix2pix [11] model that learns a generator from an image A to an image B. In order 

(1)
Ladv(G, D) = EIvcd, Ir∼Pdata(Ivcd, Ir)[log D(Ivcd, Ir)]+EIv∼Pdata(Iv)[log (1− D(Ivcd, G(Ivcd)))].

(2)L(G) = EIv∼Pdata(Iv)[log (1− D(Ivcd, G(Ivcd)))],

(3)
L(D) = EIvcd, Ir∼Pdata(Ivcd, Ir)[log D(Ivcd, Ir)]+ EIr∼Pdata(Ir)[log (1− D(Ivcd, G(Ivcd)))],

Fig. 1  Overview of our approach. Color fundus image synthesis by multiple landmarks
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to produce more clarity and sharper results, we have referenced the recent improve-
ments from [11, 25] as well, which propose to combine adversarial losses with a global 
L1 loss. The loss function can be optimized as

where λ balances the contribution of the two losses, and λ in this work is set as 0.5. The 
goal of the learning process is to find an equilibrium of Eq. 4. The L1 loss controls low-
frequency information in the images generated by G in order to produce globally con-
sistent results, whereas the adversarial loss promotes sharp results.

The other model is Cycle-GAN [16], which is good at realizing image-to-image 
translation tasks by unpaired datasets. The goal is to learn two generators G1 and G2 
from image A to B and image B to A, respectively. The learning of two discriminators 
is to discriminate whether the picture is real or fake.

The training process is making A′ = G2(G1(A)) ≈ A and B′ = G1(G2(B)) ≈ B. It com-
bines the adversarial loss with a global L1 loss between a cycle fake image B′ and the 
real image B. Thus, the loss function is

where

and

where λ controls the relative importance of the two objectives. Three types of generators 
were implemented for the GANs in this work.

1.	 U-net [23]: the U-net architecture does not have any fully connected layers, which 
are replaced by upsampling operators that are added skip connections between each 
convolutional layer. An overview of this process is shown in Fig. 2a, where the three 
colorful lines (red, green, and blue) represent the multiple landmarks inputs. Each 
blue box corresponds to a multi-channel feature map, and it includes a convolutional 
layer, a batch-normalization layer, and a ReLU activation. The number of channels 
is denoted on top of the box. The x–y size is provided at the lower left edge of the 
box. White boxes represent copied feature maps and green boxes represent residual 
block. Each residual block contains two convolution layers, two batch-normal layers 
and two ReLU activations. The arrows denote the different operations.

2.	 Residual networks (ResNets) [26]: ResNets have demonstrated significant perfor-
mance across many benchmarks in the computer vision field. The deep residual net-
works include a set of residual blocks, where information is propagated through a 
shortcut connection that bypasses the nonlinear layers with an identity mapping. A 

(4)L(G,D) = Ladv(G,D)+ �EIvcd, Ir∼Pdata

(

�Ir − G(Ivcd, Ir)�1
)

,

(5)
L(G1,G2,D1,D2) = LGAN(G1,D2,A,B) + LGAN(G2,D1,B,A)+ �Lcyc(G1,G2),

(6)
LGAN(G1,D2,A,B) = Eb∼Pdata(b)[log D2(b)]+ Ea∼Pdata(a)[log 1− D2(G1(a))],

(7)LGAN(G2,D1,B,A) = Ea∼Pdata(a)[log D1(a)]+ Eb∼Pdata(b)[log 1− D1(G2(b))],

(8)
Lcyc(G1,G2) = Ea∼Pdata(a)[�G2(G1(a))− a�1]+ Eb∼Pdata(b)

[∥

∥G1(G2(b))− b
∥

∥

1

]

,
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typical residual block consists of convolutional layers, rectified Liner Unit (ReLU) 
layers, and batch-normalization layers. Each residual block can be expressed as 

where xl, xl+1, and Wt are the input, output, and the convolutional weights of the lth 
residual block, respectively, and F(·) denotes the residual function corresponding to 
the lth unit. In the ResNets, several residual blocks were embedded into the fully 
convolutional network architecture to solve the bottleneck problem. The architecture 
is shown in Fig. 2b. A 6 block model and 9 block model were implemented in our 
experiment.

3.	 ResU-net: In order to take advantage of both U-net and ResNet, we have integrated 
residual blocks with a U-net architecture. The Integrated network we proposed is 
similar to ResU-net in Zhang et al. works [27], which has achieved better segmen-
tation results in remote sensing images. ResU-net, which can better capture finer-
scale details, still consists of a fine-to-coarse down-sampling path and a coarse-to-
fine upsampling path with shortcut connections. For every two convolutional layers 
at the same resolution level in U-net, other network parameters are the same as the 
original U-net. The details of each block are shown in Fig. 2d. Similarly, we have also 
tested the 1, 2, and 3 residual block models for parameter tuning.

The overview of the discriminator network is shown in Fig.  3, where the three red, 
green, and blue lines represent the multiple landmarks inputs, and colorful thick line 
represents the real fundus image. Each blue box corresponds to a multiple landmarks 
map, and it includes a convolutional layer, a batch-normal layer, and a ReLU activation. 
It end up with a sigmoid activation.

(9)xl+1 = xl + F(xt, Wt),

Fig. 2  Generator network. a U-net. b ResNet. c ResU-net. d Details of blocks
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In this work, Single Vessel method and our MCML method are implemented by means 
of two different kinds of GANs:

1.	 Pix2pix: a GAN with different generators. In this work, U-net, ResNet with 6 residual 
blocks (ResNet-6), and ResNet with 9 residual blocks (ResNet-9) are used as the gen-
erators of Pix2pix.

2.	 Cycle-GAN: a GAN uses U-net, ResNet-6, and ResNet-9 as generators.

All the experiments were implemented by means of Python 3.6 and PyTorch on a 
NVIDIA 1080Ti GPU. During the training process, Adam [28] was used with a momen-
tum parameter l = 0.5 and batch normalization. The generators were trained with an 
initial learning rate 0.0002 and a MSE loss function was used to initialize G. Since our 
training dataset is not very large, we trained the generators without using dropout [29]. 
All the experiments were trained using 200 update epochs.

Datasets

In this work, two public datasets that provide fundus images are used for feasibility stud-
ies and comparison studies. DRISHTI-GS [30] is a comprehensive dataset of 101 retinal 
images that include 70 glaucomatous eyes and 31 normal eyes. All the images have the 
manual segmentations of optic disc and optic cup annotated by four experts. Since the 
DRISHTI-GS dataset does not contain manual vessel segmentations, a U-net-based ves-
sel segmentation method [23], which was trained on another public dataset DRIVE [31], 
was used to segment vessel networks from DRISHTI-GS to provide the vessel ground 
truth for the dataset. Forty training images and ten testing images were randomly picked. 
All the images were resized from 286 × 286 resolution to 256 × 256.

The DRIVE dataset has 40 images captured in digital form from a Canon CR5 non-
mydriatic 3CCD camera at 45 field of view. The vessel in the images was manually seg-
mented in the dataset. We implement a similar segmentation method [32] to obtain the 
optic disc in the images. Fifteen training images and five testing images were randomly 
picked. All the images were resized from 565 × 584 resolution to 512 × 512.

Evaluation metrics

In the prior works, Costa et  al. [20] employed Image Structure Clustering (ISC) met-
ric [33], which is a no-reference quality metric to evaluate the synthetic image quality. 
In [21, 22], all evaluate their synthetic fundus images by comparing the segmentation 

Fig. 3  Discriminator network
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accuracy results between real and synthetic images. The accuracy measures the extent to 
which the synthetic image matches with the reality. In the other works, there were not 
uniform evaluation indexes with different vessel segmentation methods. In this work, we 
take optic disc and optic cup into consideration to synthesize more realistic images and 
have achieved better image quality. In order to objectively demonstrate the superiority of 
the proposed method, all the experiments were quantitatively evaluated using the struc-
tural similarity (SSIM) index [34] and the peak signal-to-noise ratio (PSNR). The SSIM 
index measures the similarity of structural information in two images, where 0 indicates 
no similarity and 1 indicates total positive similarity. PSNR measures image distortion 
and noise level between two images, a higher PSNR value indicates a higher image qual-
ity. SSIM are usually used in medical image prediction tasks [35–37] and larger SSIM 
index means that the synthetic fundus image is more close to the real one.

Experimental evaluation
Experimental results 

Subjective visual quality evaluation

Figure  4 shows the results of applying Single Vessel and MCML with GANs on 
DRISHTI-GS dataset. The MCML method has achieved better human visual perception 
than Single Vessel across each kind of GANs. As shown in Fig. 4, the optic cup parts of 
the synthetic images using Single Vessel are blurry and irregular, resulting in difficulty 
in observing the boundary of the optic cup. Compared to the single vessel results, the 
regions of the optic disc and optic cup generated by MCML are brighter and smoother. 

Fig. 4  Exemplar synthetic images generated by our MCML-GAN method and only vessel input method. 
Pix2pix and Cycle-GAN with different architectures of generators were applied with these two input methods
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We can observe that the fundus images generated by our MCML method preserve not 
only the vessel vascular shape, but also the shape of the optic disc and optic cup. It is 
worth mentioning that, the details of shape, color, and texture in the region of the optic 
cup and optic disc are more similar to the original retinal images.

In order to further prove the superiority of the proposed method, we quantitatively 
validated our method using single-structure and MCML with different generative net-
works. As a result, it showed that our method is significantly better than the results of 
single vessel input method on all of generative networks, and the generated color fundus 
images show extraordinary results.

Quantitative evaluation

Table  1 presents the performance on average SSIM and PSNR across each method. It 
can be seen that the MCML method demonstrates superior performance in most cases 
compared to Single Vessel, indicating that MCML works better along with the GANs in 
this work. It is observed that Pix2pix has better performance than Cycle-GAN under the 
same generators, in which Pix2pix with ResNet-9 has achieved the best PSNR, and Pix-
2pix with U-net has achieved the best SSIM.

Figure  5 demonstrates comparison studies using some selected test images for this 
task. It can be seen that U-net presents better quantitative performance and human vis-
ual perception than ResNet-9. The outline of the fundus image using ResNet-9 is not 
smooth and close to the circle. The unsmooth boundary of the images is marked by red 
rows. Given ResNet-9 presents better PSNR performance (Table 1), we have investigated 
MCML with different GANs on low-quality test images, which is presented in Fig.  6. 
As shown in the figures, since the quality of the test images is not good enough due to 
some dash area and uneven illumination, ResNet-9 has provided superior performance 
both PSNR and SSIM index better than U-net; however, U-net achieved better visual 
effect. This also explains sometimes why Single Vessel performs better than MCML, 

Table 1  Comparison of SSIM and PSNR on DRISHTI-GS dataset with different GAN models

Italic values are the best results

Methods SSIM PSNR

Pix2pix

 ResNet-6 vessel 0.8983 23.8254

 ResNet-6 MCML 0.8968 24.0820

 ResNet-9 vessel 0.8914 23.5531

 ResNet-9 MCML 0.9079 25.3665

 U-net vessel 0.8956 23.4331

 U-net MCML 0.9117 24.5544

Cycle-GAN

 ResNet-6 vessel 0.8770 22.4830

 ResNet-6 MCML 0.9019 23.8092

 ResNet-9 vessel 0.8774 21.9402

 ResNet-9 MCML 0.8907 23.1031

 U-net vessel 0.8984 22.7353

 U-net MCML 0.8877 23.0110
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Cycle-GAN outperforms Pix2pix due to bad image quality at some cases. Nevertheless, 
we can conclude that U-net outperforms the ResNet-9 as the generator of the GANs in 
this work from the comprehensive comparison results.

Residual block analysis

Quantitative results for replacing different number of residual blocks are presented in 
Table 2. U-net with one-residual block has better performance than two or three blocks. 
The result shows that one-residual block combined with U-net can better solve the prob-
lem of useful information loss during convolution process, and more residual blocks 
stacking will produce another overfitting problem. Both the PSNR and SSIM of the one-
residual-block U-net are better than the basic U-net in Table  1. Generally, optimized 

Fig. 5  Comparison with different generator architectures based on MCML method

Fig. 6  Special cases of synthetic results with ResNet-9 and U-net generator based on MCML method
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ResU-net is the best-performing network structure, which can be used as the generator 
of Pix2pix framework.

Resolution analysis

In Costa et  al. [20, 22], synthesized images were with a resolution of 256 × 256. They 
discussed the limitation of resolution that sometimes the synthetic fundus image with 
the same resolution is hard to distinguish veins from arteries. Therefore, we optimize 
the performance using an upsampling technique for further investigations. The images 
from DRISHTI-GS were upsampled to 512 × 512 as preprocessing, but afterwards cor-
responding synthetic results are downsampled to 256 × 256 by bicubic interpolation for 
quantitative evaluation. As shown in Fig.  7, both U-net generator and ResU-net gen-
erator achieved good visual effect. As presented in Table 3, the comparison of average 
SSIM and PSNR is listed. ResU-net generator achieved best PSNR and SSIM value with 
512 × 512 images training.

In order to demonstrate the superiority of the MCML preprocessing pipeline, we have 
compared the best GAN model in this work with three different kinds of input methods 

Table 2  Comparison of SSIM and PSNR with different number of residual blocks on U-net 
generator

Italic values are the best results

SSIM PSNR

Residual-1 0.9196 25.006

Residual-2 0.9126 24.392

Residual-3 0.8941 23.375

Fig. 7  Synthetic result with U-net and ResU-net generator

Table 3  Comparison of SSIM and PSNR with different resolution image input and different 
improvement of generators

Italic values are the best results

Generator SSIM PSNR

ResNet (256 × 256) 0.9079 25.3665

U-net (256 × 256) 0.9117 24.5543

U-net (512 × 512) 0.9208 25.0929

ResU-net (512 × 512) 0.9361 25.7638
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on DRIVE dataset, which was used by all the prior works: (1) single vessel mask as input, 
(2) we combined optic disc with vessel as an image input, and (3) we use optic disc and 
vessel as two different channel inputs. As shown in Fig. 8, it can be seen that, the gener-
ated images based on MCML have achieved better visual perception than the other two 
methods.

We can observe that images generated from single vessel segmentation show ves-
sel trees that are inconsistent and produce dark spots on the generated images, which 
are marked by the red circle in Fig. 8a. In addition to that, the optic disc and optic cup 
regions of generated images from single vessel input method are not clear. In Fig.  8b, 
since vessel tree, optic disc, and optic cup share an overlap area, if optic disc and ves-
sel fusion are used as one channel, vessel and optic cup details are lost in the optic disc 
region. Finally, in Fig. 8c, the MCML method retains all the details of the different land-
marks, generating better color and texture consistent results. From Table 4, we can see 
that the average PSNR and SSIM values of generated fundus image with MCML method 
outperform other methods.

Fig. 8  Synthetic results with different input methods. a Single vessel mask. b Optic disc and vessel fusion as 
one channel. c Optic disc and vessel fusion as multiple channels

Table 4  Comparison results of  SSIM and  PSNR with  different landmarks input methods 
on DRIVE dataset

Italic values are the best results

SSIM PSNR

Single vessel 0.9417 23.469

Fusion with one channel 0.9449 22.069

Fusion with multi-channel 0.9498 23.722
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Discussion
In this paper, a multiple-channels-multiple-landmarks (MCML) GAN-based fundus 
image generation method was proposed. As discussed above, we can draw a conclusion 
that, the architecture of generator and the resolution of paired images, which are two 
essential properties of GANs, play key roles in generating high-quality image of syn-
thetic fundus images.

Optic disc (OD) and optic cup (OC) are two important landmarks of the retina. The 
boundaries of the optic disc and the optic cup are essential for calculating the cup-
to-disc ratio (CDR), which is an important indicator in detecting glaucoma [24]. As 
many glaucoma CAD tasks lack sufficient data, we think the MCML method can help 
researchers generate a large number of glaucoma images to improve their computer-
aided diagnosis system. In prior fundus synthesis works, the generated images cannot 
achieve good results in optic disc region, whereas our MCML method can effectively 
solve this problem. According to our results, high-resolution images are suggested to use 
and then can leverage their own data to train again based on our pipeline. The advantage 
of the MCML method is that, the different sizes of optic disc and optic cup can be edited 
and revised, respectively, in the input mask, generating different kinds of realistic glau-
coma fundus image with any CDR as required.

In addition, the MCML has potentials in the field of medical imaging field, such as 
pathology image, endoscope image, dermoscopy image, and other 2D medical images. 
Researchers can combine primary landmarks of these modality into multiple channels to 
generate better realistic medical images.

Conclusions
In this work, we propose a multiple-channels-multiple-landmarks (MCML) method 
based on GANs to synthesize color fundus image from a combination of vessel, optic 
disc, and optic cup. The results demonstrate that our proposed method has superior 
performance compared to the fundus image generated from only vessel tree input. The 
synthesized images using the proposed method are realistic in look and contain more 
details, demonstrating better image quality. The MCML has many potentials in the med-
ical imaging field, and can be applied into various lesions of fundus images generation 
and other medical image generation tasks as well. We will further investigate the rela-
tionship between the image quality of generated fundus image and the performance of 
computer-aided diagnosis system in future.
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