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Abstract: Radio-based locating systems allow for a robust and continuous tracking in industrial
environments and are a key enabler for the digitalization of processes in many areas such as
production, manufacturing, and warehouse management. Time difference of arrival (TDoA) systems
estimate the time-of-flight (ToF) of radio burst signals with a set of synchronized antennas from which
they trilaterate accurate position estimates of mobile tags. However, in industrial environments
where multipath propagation is predominant it is difficult to extract the correct ToF of the signal.
This article shows how deep learning (DL) can be used to estimate the position of mobile objects
directly from the raw channel impulse responses (CIR) extracted at the receivers. Our experiments
show that our DL-based position estimation not only works well under harsh multipath propagation
but also outperforms state-of-the-art approaches in line-of-sight situations.

Keywords: radio-based real-time locating systems; time difference of arrival; channel impulse
response; time of arrival; position estimation; machine learning; deep learning; convolutional neural
networks; distributed CNN

1. Introduction

Radio-based real-time locating systems (RLTSs) are key to drive automation and digitalization in
many applications in warehouse management, production, and manufacturing. In contrast to highly
accurate vision-based tracking systems, which often also raise privacy concerns and are prone to
dirt and weather conditions, they guarantee a robust position tracking traded for a lower accuracy.
As localization is also discussed for standardization in 5G, we can expect to see RF-based tracking
becoming more and more ubiquitous especially in GPS-denied areas such as indoor environments [1].

Under the hood, RF-based positioning systems may be implemented using a multitude of different
technologies, which include angle of arrival (AoA), received signal strength (RSS), time of arrival
(ToA), and time difference of arrival (TDoA). While RSS- and AoA-based localization usually come at
a low cost but also lower accuracy, T(D)oA-based systems require synchronization schemes and have a
more complex system setup, which usually makes them more expensive. Nevertheless, their better
positioning accuracy makes them still attractive for many use-cases, including the tracking of goods in
warehouses or virtual and augmented reality in various applications [2–4].
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However, achieving the application requirements through TDoA-based positioning may also
become difficult in practice. The omnipresence of metallic surfaces, i.e., machinery, pipes, vehicles,
racks etc., in industrial environments leads to effects such as signal reflections (multipath propagation),
scattering, obstruction, shadowing, and attenuation [5]. These make the ToA-estimation non-linearly
distorted, and if the effects are strong it increasingly becomes difficult to estimate the correct ToA from
the radio burst signal. This leads to a erroneous position estimation. In practice, we often use much
more infrastructure nodes than we would actually need for unambiguous position estimation (which
results in an over-determined system) and try to install them at positions where those unwanted effects
are minimal. This, however, requires a measurement campaign to capture the propagation effects on
which we then need to solve a highly non-linear optimization problem.

Approaches that explicitly address multipath propagation include (unscented) Kalman
filters [6,7], channel classification [8], subsample interpolation [9], sub-space approaches [10], or cone
constraints [11,12]. But they only work well if there is still a strong line-of-sight (LoS) signal. Available
methods that make explicitly use of multipath propagation, i.e., by generating scattering models with
statistics [13,14], by simultaneous target and multipath positioning [15], by using training signals to
model a random variable [16] together with a floor plan to enhance the tracking filter [17] or by using
large-scale MIMO [18] do not scale well or do not improve with an increasing number of available
training signals, which may often be acquired easily in practice.

This article builds on recent successes of deep learning (DL) [19] in order to estimate positions
from raw channel impulse response data in a TDoA-based system setup and extends the work from [1].
In deep learning, we do not extract features (e.g., the ToA) from the signal manually. Instead, we allow
DL to derive its own features from the raw data. We use ground truth position data generated by a
robot equipped with an optical reference system to obtain reference labels for CIR samples and use
them to train a deep convolutional neural network (CNN). The deep neural network models both the
linear and multipath signal propagation effects in the environment and (once it has been trained) it
can also be fine-tuned for other environments.

The remainder of this article is organized as follows. Section 2 discusses related work. Section 3
provides information on ToA estimation from channel impulse responses (CIRs) in RF localization
systems and introduces the main concepts behind (convolutional) neural networks. Section 4 presents
our approach to pre-process and normalize the raw channel impulse response data in order to apply
convolutional neural networks on them. Section 5 describes our experimental setup and our datasets
before we evaluate our position estimator on different real world datasets. Next, we present our
experimental results in Section 6. We show that we outperform conventional position estimators
not only in massive multipath environments but that we can also compete in line-of-sight scenarios.
Section 7 concludes the article.

2. Related Work

There is much work that uses the RSS [20–24], the ToA [25–27], or their combinations [28].
Some use machine learning (ML) based schemes such as neural networks with a single hidden
layer [21,26,28], variants of neural networks (i.e., deep belief networks [22,29], deep neural
networks [30,31], fuzzy neural networks [32], artificial synaptic networks [25]), Gaussian
regression [33], support vector machines (SVM) [27], random decision forest [34], or combinations of
them [20]. Iqbal et al. [35] monitor patients using CNNs to correlate RSS measurement in a clinical
environment. Ibrahim et al. [36] use CNNs and Sahar et al. [37] use long short-term memory (LSTM)
recurrent neural networks (RNN) to process a time-series of RSS measurements. Feigl et al. [38]
use LSTMs on ToAs in an TDoA system setup. Some recent work even estimates positions in a
reinforcement learning setting [39]. However, all these methods manually extract features [40] along
the RSS- or ToA-processing (or theirs combinations), which results in poor features for position
estimation in a multipath environment.
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A much richer feature to estimate the location of an object is the channel impulse response
(CIR) [41]. Yu et al. [42] extract energy and delay features from the UWB impulse response and use
these features to train a neural network. Hong et al. [43] model the multipath components (MPC)
amplitudes in a UWB system using a Gaussian Process and lets it predict the CIR at arbitrary positions.
A classification of line-of-sight and non line-of-sight (NLoS) situations using extracted features [44]
has been proposed using SVMs [45] and Gaussian processes [46], while Choi et al. [47] yet use RNNs
for a classification of NLoS over time for highly bandwidth-limited CIRs. There are also approaches
that use deep learning on the CIR to identify NLoS situations [48]. Cui et al. [49] use a neural network
to approximate the relationship between the SNR and statistical information such as skewness and
kurtosis in the CIR. Savic et al. [50] propose a kernel-PCA combined with Gaussian process regression
that projects the channel parameters onto a nonlinear space from which then a subset is used for
ranging. Ergut et al. [51] use a set of anchors to generate multipath profiles, i.e., a number of time
differences between peaks within a single CIR, which are used together with ground truth data to
train a neural network with a single hidden layer. Jin et al. [52] approximate the CIR from subcarrier
amplitudes of OFDM signals and propose a fingerprinting based on Gaussian regression. Also known
as channel state information (CSI) this has extensively been studied lately [53]. However, all of the
above approaches extract hand-crafted features from the CIR. Those only represent a subset of the
available information, which only results in a rough estimation.

In contrast to a manual feature extraction, deep learning (DL) aims at finding and extracting the
relevant features from the sensor data directly. This requires more data. Wang et al. [54–57] among
others [58–60] propose several ideas to process the CSI from WiFi OFDM-signals, for instance, using
deep CNNs. They feed the CSI directly into a CNN to estimate a position [54], train with phase
information [55], directly estimate the angle of arrival with a CNN using phase fingerprinting [56],
and also combine these ideas [57]. These ideas are similar to those that heavily make use of
autoencoders for CSI-based fingerprinting [61–63]. However, their difference lies in the nature of
the underlying signals and the system setup. TDoA-based localization requires a synchronized
network of access points, i.e., anchors [1]. Different from ToA the subcarrier amplitudes describe the
signal propagation profile and hence the relationship between access points and mobile devices at
specific positions.

Tiemann et al. [64] use DL to estimate orientation-dependent error induction characteristics
from the CIR. However, they do not consider CIRs from synchronized antennas and do not estimate
the position. Vieira et al. [65] use convolutional neural networks to fingerprint massive MIMO
channels, while others [66,67] use (deep) neural networks to estimate channel coefficients. However,
the processed signals, the available information, and the system setup in massive MIMO channel
fingerprinting are significantly different. Comiter et al. [68] propose a beam estimation for using deep
neural networks that derives the angle of arrival by phase differences. Using different antenna arrays
a structured pair of neural networks is used to estimate the antenna beam. However, although they
use AoA measurements in a time-series manner to train a CNN for position estimation in [69] they do
not estimate the position within a ToA-setup. Xiao et al. [70] propose denoising autoencoders to model
the noise of reference locations. In the localization phase the measurement point is denoised by the
autoencoder and a k-Nearest-Neighbor (KNN) classifier estimates the location. However, they train a
DNN with raw RSSI measurements and then use the latent representation of the reference locations as
fingerprints. Hence, both the setup and the signals significantly differ from our approach as we train
the neural network end to end.

3. Background and Problem Formulation

3.1. Channel Estimation

Channel impulse responses (CIRs) are derived at each of the receiver units by the signals emitted
by the mobile tags. We later use these CIRs for position estimation using a deep convolutional neural
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network (CNN). RTLSs that use time difference of arrival (TDoA) estimation need synchronized
receivers. They are capable of estimating not only the position of the mobile tag but also its
time-of-transmission (ToT). Both of them result from a hyperbolic trilateration of the TDoA values.

We derive the ToA at each antenna through an analysis of the channel impulse response (CIR)
that we obtain by transmitting e.g., pseudo-noise sequences and correlating them with the reference
signal in the receiver. The ToA is then estimated by an evaluation of the correlation peak, see Figure 1.
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Figure 1. Characteristics of the correlation function.

Figure 1a shows the result of processing an ideal signal from the system (for details see Section 5)
with a low frequency offset under LoS conditions. As the sampling frequency is limited, we need
to interpolate the CIR (blue line) to obtain an accurate ToA estimation. The red stars mark the
samples at the sampling frequency. Figure 1b shows the in-phase and quadrature components (I/Q).
The I/Q diagram highlights the phase relationship of the I and Q components together with the
magnitude (radius of correlator output in the complex plane). Without multipath propagation, the
main information given in the I/Q diagram is the phase relationship between the carrier phase of the
transmitted and the received signal.

We can extract the ToA by estimating the peak in the signal of Figure 1a (at this point the
correlation between the measured received signal and the transmitted signal is at its maximum), which
is approximately 19 ns from the start of the correlation window (see the vertical line). The correlation
peak characteristics depend on the pulse shaping filter used for the generation of the bandwidth-limited
signal and the sequence. The pulse shaping filter limits the used bandwidth of the signal. A typical
peak width is in the range of 2 samples approx. at Nyquist sampling rate, i.e., with the sampling
interval 1/B (bandwidth). Hence, although we process an almost undistorted CIR signal, we can only
extract the real ToA with some variance that is introduced by the bandwidth-limited analog signal and
noise within the wireless channel (in the LoS scenario). In order to find the real ToA from the CIRs
an interpolation between sampling points is used together with inflection point ToA estimation [71],
which searches for the point with the maximum gradient of the rising edge of the correlation curve
(more details in Section 4.1). This, as well as averaging multiple ToA measurements (free running local
oscillators) [6] may help to reduce ToA estimation errors to a minimum.

However, not only a limited sampling frequency introduces errors. Consider the red CIR in
Figure 2b. Due to multipath propagation the signal travels along many paths until it reaches the
antenna. Hence, in real environments, we need to take multipath propagation into account. Usually,
the complex signal that arrives at the antennas is modeled as

r(t) =
Nm

∑
i=1

αi(t)ejφi(t) · s(t− τi(t)) + n(t), (1)
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where s(t) is the transmitted single carrier signal sequence, αi(t)ejφi(t) and τi are the complex
amplitudes and the tapped delay line, respectively, for each multipath component i. Additive white
Gaussian noise n(t) is added on top of the received signal. The received signal is convolved with the
same inverted conjugate complex transmit sequence to obtain the correlation h(t) = r(t) ∗ s∗(τ − t).
The multipath introduces additional superimposed correlation peaks. If the delay is significant,
these peaks can be distinguished from the peak associated to the first arriving signal. This and the
NLoS situation, i.e., the LoS signal is blocked and attenuated such that its strength is lower than the
strength of the multipath signals, make the ToA estimation ambiguous. Figure 2 provides examples
for such impaired correlation peaks. The figures include also the ToA estimated by state-of-the-art ToA
estimators and the correct ToA. In case of multipath propagation, signals arrive with a small delay
overlap, see Figure 2a. Depending on the magnitude and phase of the multipath components (MPC)
different shapes of the first peak result in incorrect ToA estimates. In both Figure 2a,b the phase of the
MPCs may be random.

There are a number of ToA estimators that make use of thresholds, maximum energy, and zero
crossings to determine the correct ToA [49]. However, in multipath situations the true ToA can still
only hardly be detected and cannot be estimated from the CIR alone without further information.
Apparently, such ToA errors cause erroneous biased and noisy TDoAs, which may lead to a large bias
in the position estimate. Thus, we investigate how to improve the precision in the LoS scenario and
develop solutions for improving the accuracy in the heavily impaired NLoS scenario.
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(a) Easy case for ToA estimator.
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Figure 2. Examples for disturbed correlation functions. (a) A part of the signals arrive at a significant
delay but the ToA estimator is still able to find the close-to-optimal ToA estimate. (b) ToA estimation in
dense multipath (higher delay).
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3.2. (Convolutional) Neural Networks

In order to put the position estimation in a formal context, assume that we are given many feature
vectors H(t) = [h0(t), h1(t), · · · hi(t)]

T that hold the channel impulse responses hi(t) of i receivers and
their labels, i.e., their respective ground truth positions, pH(t) = [t, x, y, z]T (time of transmission and
Euclidean coordinates in three dimensions). Hence, we try to find a general function approximator θ

that estimates a position from a previously unknown set of correlations H.
Artificial neural networks consist of many interconnected simple units, i.e., neurons. Classic

feed-forward networks have layers of fully connected neurons, as represented by the two concluding
layers in Figure 3. The layers that we cannot see from the outside, i.e., any layers in between the
input and the output layer, are called hidden layers. With data at the input layer the neurons
propagate activations and provide information at the successive layer. Artificial neural networks are
generalized function approximators and their depth (number of hidden layers) defines the complexity
of the functions they can approximate. Hence, they may provide a suitable solution for the position
approximation/estimation.

Output

fully connected layers
convolutional and pooling layers

input image

7 
7 

2 
2  3 

3 

Figure 3. Principle architecture of a convolutional neural network [1].

Each connection to a neuron has an assigned weight parameter w that controls the influence
of the preceding neuron. A connection of the i-th neuron of layer k with the j-th neuron of layer
k + 1 is defined by a weight wk

ij. In order to propagate the neuron activation throughout the network,

we iteratively calculate the output hk
j (x) of any single neuron j per layer k > 0

hk
j (x) = g(bk

j +
n

∑
i=0

wk
ijx

(k−1)
i ), (2)

where bk
j is a bias parameter, wk

ij is the weight of the neuron connection, x(k−1)
i is the activation from

the previous neuron, and g(·) is a (non-linear) activation function, such as a sigmoid function or the
rectifier linear unit (ReLU). In practice, the weights of each layer are shared in a matrix and the network
is evaluated using matrix multiplications along the layers.

Finding an optimal set of network parameters poses a non-convex optimization problem that
is hard to be solved mathematically, i.e., it is NP-hard. But gradient-based optimization, such as
stochastic gradient descent (SGD), works well in practice. Given a labeled data set (where both the
input and the output labels are known), we can use the data as input, calculate the neuron activations
layer by layer following Equation (2) and read the output of the network. On the output, we then
apply a loss-function L, e.g., the mean-squared error, that defines how good the current network
approximates the labels of the given data samples and that we want minimize:

L(θ, H(t),~pH(t)) =
1
2
(θ(H(t))− ~pH(t))

2. (3)

Next, we back-propagate the prediction error through the network, i.e., we calculate the influence
of each neuron (activation) on the total error and use the gradients at each neuron as an indicator to
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reduce its influence on the error. Finally, we update the weight parameters using a (small) learning
rate such that the loss decreases for future predictions.

After successful termination of the learning process, i.e., after some fixed number of iterations or
by a threshold on the calculated loss, we determine the classification performance by applying test
data to the neural network. If the performance values meet the desired criteria, the process of training
a neural network is completed and it is ready to classify new data.

Convolutional neural networks (CNN) define a special architecture of neural networks. They use
pooling layers and normalization layers interchangeably between consecutive convolutional layers,
see Figure 3. The convolutional layers apply a convolution operation to the input (often the input is an
image) to extract the features that are embedded in the training data. Each convolutional layer is also
followed by a (non-linear) activation function. A convolution is a filter operator that is (conceptually)
slid over the input and that preserves the spatial relationship between the input data points. Usually
we apply several (different) of those convolutional filters on the same data in parallel. For instance,
a 7 × 7 convolution filter next to 3 more run directly on the input image in Figure 3.

The pooling layers down-sample the data. Popular pooling operations are max- and
average-pooling. The intuition behind them is that once the convolution layer has learned the features
from the underlying data the pooling kernels (in Figure 3 with size of 3) run over the feature maps and
keep the activations according to the pooling policy. This maintains the information while it reduces
the spatial dimension and computation time.

Usually the first layers of a CNN model low level features such as edges and curves. As we
stack more convolutional layers on top, the extracted features become more sophisticated. The fully
connected layers at the end are used for classification (i.e., if we want to predict classes) or for regression
(i.e., if we want to predict (real) numbers).

4. Data Preparation

4.1. Calibration of the CIR-s

Machine learning (ML) methods take training data to build up a model that can later be used to
predict the value of a previously unseen data point. However in TDoA-based systems, the transmitter
is not time-synchronized with the mutually synchronized receivers, i.e., the time-of-transmission
tToT is unknown. Hence, we also do not know at which point of time ti

CIR of a perceived channel
impulse response at an antenna i actually starts. Often, a simple triggering method, e.g., a threshold
method, is used to set the window of the estimated channel impulse response. However, this poses
two challenges. Firstly, a single CIR only contains timing information relative to the window start time
tCIR (delay of the LoS path relative to tCIR in Figure 4). Second, tCIR may not have a common timing
across the receiving antenna channels i, due to varying analog signal processing delays, different
lengths of antenna cables, and timing drift and jitter of internal clocks. Some of them are also affected
by temperature changes. Hence, a set of CIRs originating from the same mobile tag position generally
differs over time.

However, a simple calibration of timing offsets that normalizes ti
CIR helps to compensate for that.

In order to do this, we derive a relative calibration offset ∆ti per antenna unit i (with one antenna
arbitrarily being set to 0) using reference transmitters at known locations (see the green time offset
in Figure 4). We assume that we can install reference transmitters at positions with low multicast
profiles, having LoS to the receiver antennas with low energy in multipath components. Then we
derive the offsets by determining the ToA in reverse manner. As we know the positions of our reference
transmitters and the receiver antennas, we know the correct ToA for the CIRs (of reference transmitters)
and can derive the offsets for our receiver antennas. We use the calibration offsets to pre-process ti

CIR
of the receivers such that all the CIRs together are approximately free of relative timing-offsets and
hence stable over time. However, although this also adds a little bias to the position (as there is an
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error for the ToA estimates for the reference transmitters) it works fine in practice. This enables a
TDoA-based estimation using the differences to a single antenna.
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Figure 4. Data pre-processing: CIR calibration and padding.

Now consider the CIR to be a time-discrete series of values that have been sampled with a specific
sampling rate f , see the green lines in the middle of Figure 4. In radio-based locating systems the
sampling rate is chosen to match the limitations of signal processing that inherit from the available
bandwidth signal of the system. This also limits the accuracy of the resulting positions by design.
For instance, the system we use for our experiments uses a sampling frequency of f = 101.875 MHz,
which approximately results in a distance of c/ f = c/101.875 MHz ≈ 2.94 m (with c the vacuum
speed of light) between two sampling points. However, an over-determined system (increasing the
number of antennas) and interpolation between samples results in a reduced position estimation error.

As the resolution of the timing offsets ∆ti is often more fine-grained than integral multiples of
1/ f (see the green lines that represent the sampling points among the CIR windows in the middle of
Figure 4), we have to re-adjust the discrete CIRs into the same timing units. We resample the CIR by a
factor of n = 100 (resulting in a distance of 2.94 cm between two samples) and use an anti-aliasing FIR
low-pass filter with kaiser window that also compensates for the filter delay. Hence, we (1) interpolate
the signal with a resampling factor n (see the red lines in Figure 4), (2) shift it sample-wise by the
integral timing offsets ∆ti/ f · n and (3) down-sample the signals by its resampling factor n again.

We further zero-pad the CIRs inside an N ×M matrix with N antennas and M samples, that each
CIR has the correct relative timing to each other and the median of all center of columns m is M/2.
The median will compensate a small number of wrong detections of CIR, which can be caused by
falsely detecting the CIR window start position. Samples not occupied by CIR values are padded with
zeros. Now we have the CIRs calibrated and sampled at common timing units (such that the beginning
of each window is aligned). We further interpret the matrix N ×M× C as an image with its real and
imaginary parts as different channels C as denoted on the right hand-side of Figure 4.

4.2. Normalization of Data

Usually, ML (and DL in particular) requires a normalization of the dataset. In the training of an
ML model statistical properties (such as the mean and the standard deviation) are only computed from
the training data, not from the validation or test data. Even if statistical properties are not explicitly
computed the model converges in respect to the statistical properties of the underlying training data
set. Hence, we must standardize the statistics for the validation and test data with the ones computed
from the training data.

In deep learning we often center the data and hence remove statistical dependencies between
training and test data. Normalization techniques are highly application- and data-dependent. In image
classification we usually subtract the mean image of the training data from the test samples. We then
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see if the model captures statistical dependencies of the underlying data. Often we can think of it as a
way to normalize the dataset such that it has a zero mean and standard deviation of 1.

Initial trials showed poor results for conventional normalization methods. The main reason is
that the correlation signals are highly affected by non-linear effects. Hence, we do not subtract a
mean correlation from the data but we normalize each input on its own. In previous experiments we
investigated on several different scaling/normalization schemes, i.e., scaling per receiving antenna,
scaling over the whole available data set, scaling over the preprocessed correlation image etc. It turns
out that we obtain the best results if we consider the signals from n antennas units as a single set.
We use a width of m = 60 to describe a correlation over time in its real and imaginary part, resulting in
an n × 60 × 2 matrix. For each set we take the minimum and subtract that from each value, which
represents the noise floor level of the CIR signal. We next divide by the maximum value to effectively
scale the values to [0; 1]. We apply this to real and imaginary signals separately.

Afterwards we combine the real and imaginary signals with their corresponding correlations
values into a 2-channel correlation image of shape 12 × 120 × 2 (our system uses 12 receivers) that
also considers recalibration and padding, see Figure 4 (right). These data samples are then free of any
absolute time information. We need to keep an absolute time stamp for the correlation image (i.e.,
that of the statically chosen offset receiver) next to its reference position. Any other (relative) timing
information is (implicitly) encoded in the matrix/image.

5. Experimental Setup

In order to validate our DL approach for position estimation, we record several measurement data
sets using different setups. We describe our measurement infrastructure in Section 5.1, our datasets in
Section 5.2, and our deep learning setup and model configuration in Section 5.3.

5.1. Measurement Infrastructure

The core of deep learning methods is a large dataset that is used to train, validate and test the
model. In addition to the CIR data, for the training and the evaluation of our model we also need
precise ground truth reference position data to label our training and test data sets. We obtain such
labels with a Nikon iGPS system, i.e., an optical laser-based tracking system with a mean average error
both vertically and horizontally below 1 mm and an update rate of 30 Hz.

For our experiments we also need a radio-based locating system that delivers a stream of channel
impulse responses. We generated CIR data with a custom radio-based locating system that runs in the
globally license-free ISM (industrial, scientific, and medical) band of 2.4 GHz and that uses around
80 MHz signal bandwidth [72]. Miniaturized transmitters use the available bandwidth to generate
short broadband signal bursts together with identification sequences on which we correlate on the
antenna units. Figure 5 illustrates the signal processing chain. The system distinguishes fixed reference
transmitters for calibration purposes from i moving transmitters. All transmitters emit tracking burst
signals, which are received by N receiving antennas. Our installation uses 12 antennas that receive
signals from up to 144 different moving transmitters. Mobile tags emit up to 2000 tracking bursts per
second (we use 200 bursts per second). The locating system allows to receive 50,000 of those signal
bursts per second (per antenna). For each of the 12 receiver lines FPGAs correlate the burst sequences
to obtain the correlation function that approximates the CIR. We ignore the ToA analysis and work
directly on the CIR streams i.e., the output of the correlator. As the receivers are synchronized all the
CIRs share a common time base.
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Figure 5. RedFIR’s signal processing chain.

We recorded the data in the Fraunhofer IIS L.I.N.K. (localization, identification, navigation,
communication) test center in Nürnberg that provides a unique test ground on 1400 m2. We use the
following platforms to collect our training data in order to capture different properties of tracking.

Positioning System. We use a crane-like apparatus that approaches any 3D position in the
area with repeating accuracy of <2 mm at a maximum speed of 3 m/s. Figure 6a shows the crane
as it passes through a construction of absorber walls. We use the positioning system to capture a
homogeneously distributed dataset that covers a larger area at a fixed height. The positioning system
returns 25 positions per second, which however, are not as accurate as the iGPS position. Hence,
we mounted not only the RF-tags but also the iGPS transmitters to the positioning system. As the
system runs slowly we simply interpolate the reference positions (as the update rate of iGPS is lower
than that of RLTS).

Mobile Robot. We use a Segway RMP-210, see Figure 6b, with a maximum speed of 30 km/h and
an acceleration of 2 m/s2 to capture highly dynamic tracking data. As a reference we take the iGPS
position and interpolate intermediate reference positions by interpolation and odometry information.

Human. We also use a body-mounted apparatus, see Figure 6c, that captures movements of
persons. In general it allows to capture high velocity speeds, but usually the speed is below 10 km/h.
We use several iGPS transmitters to determine the position of a mobile RF-tag that is located near the
person’s neck [73].

(a) (b) (c)

Figure 6. Platforms training data generation. (a) Positioning system [1]. (b) Segway. (c) Human.

5.2. Datasets

Figure 7 shows the measurement trajectories of our datasets. The platforms follow the trajectory
and we record 200 correlation signals per antenna and second. As the iGPS system only delivers 30 Hz
ground truth positions we interpolate both the ground truth positions and timestamps, see Section 5.1.
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Figure 7. Datasets we use for our experiments [1]: Meander recorded with the positioning system;
Zig-Zag recorded using the Segway RMP-210; Human Walk recorded using a human that builds up a
construction in the test center; Displaced Rectangles recorded with the positioning system, see also
Figure 6.

Table 1 specifies our datasets. From the total number of recorded training samples, we only
select mostly complete sets (whenever we receive correlations from 11 of the 12 antennas). In a few
cases correlations are corrupted, or low signal-to-noise ratios have been detected. We then discard
such measurements. However, due to the heavy multipath in the displaced rectangles dataset (the
rectangles used the path from Figure 6a) the system is only able to successfully correlate on 92,724 out
of 218,752 burst signals to decode the CIRs. While we record 3D positions in any cases, we fixed the
z-coordinate where possible as we only evaluate the 2D position accuracy as the sub-optimal geometry
of the RF-antennas would a bias to our evaluation. As we could not fix the height of the transmitters
for the random human walk we have varying heights embedded there.

Table 1. Description of datasets [1].

Dataset # Samples Covered Area (w × h) Height Platform

Meander 200,390 (211,416) 13 m × 20 m 2.5 m Positioning System
Zig-Zag 304,120 (349,025) 22 m × 19 m 0.29 m Segway

Human Walk 404,687 (691,680) 45 m × 30 m 0.96 m–2.1 m Human
Displaced Rectangles 92,724 (218,752) 5 m × 14 m 2.8 m Positioning System

5.3. Deep Learning Setup, Model Configuration and Data Processing

We ran all our experiments on a desktop machine equipped with an Intel Xeon E5-1620v4
CPU@3.5GHz (4 cores, 8 threads, 10 MB cache), 16 GB of main memory, and an NVIDIA GeForce
GTX1080 GPU with 32 GB memory. We have implemented all our algorithms in C++14 on Ubuntu
16.04 LTS and use the caffe deep learning framework [74].

In pre-tests we have evaluated several different and well-known deep learning architectures such
as AlexNet, VGG-16, VGG-19, and GoogLeNet [75]. It turned out that the GoogLeNet not only offers
the best trade-off between depth of the network and number of parameters (and hence the training
time), but also benefits from its inception modules. An inception module has a 1× 1 convolution that
reduces the dimensionality of a feature map. These are applied prior to computationally intense 5× 5
and 3× 3 convolutions, essentially giving multiple opinions of the same input data. The GoogLeNet is
22 layers deep, uses 9 inception modules, and has 2 intermediate classifiers. We made the following
changes to the GoogLeNet architecture in order to facilitate the size of our correlation input:

• We replace each of the 3 softmax classifiers by affine regressors (Euclidean distance).
• We replace the fully connected (FC) layer that has 1000 output units (before the classifier) by an

FC layer of 2 units outputting a vector of positions (x, y).
• We modify the max-pooling layer after the 2nd inception module to have a kernel size of 2 instead

of 3, the avg-pooling layer at the first and second classifier to a kernel size of 3 instead of 5,
and the max-pooling layer before final inception modules to a kernel size of 2 instead of 3.
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For training we apply stochastic gradient descent (SGD) with a starting learning rate of 10−5 and
an inverse decay, and applied a batch size of 50 for training and 10 for testing.

Activation functions play an import role in deep neural networks as they introduce nonlinearity
to the mapping of the inputs to the outputs. The most commonly used activation functions include
the sigmoid function ( f (x) = 1

1+eβx ), tanh ( f (x) = 1− 2
1+e−2x ), and ReLU ( f (x) = max(0, x)). Sigmoid

and tanh both squish the activation to a value within [0; 1] and [−1; 1]. For deep neural networks
this causes the vanishing gradient problem [76], i.e., the gradient is close to zero at many points except
around the middle, which makes training converge only slowly. In recent years the rectified linear
units (ReLU) has become very popular. The function returns 0 whenever it receives negative input and
with positive values it acts linearly and returns the value.

Considering that channel impulse responses may contain both positive and negative values,
we might think that both tanh and sigmoid are suitable activation functions (as ReLU would just
zero out negative correlation values). While initial experiments show that tanh yields slightly better
results (however being very time-consuming in training) we obtained the best results if we only
process positive correlations, i.e., we turn any negative number to a positive number. Using the ReLU
activation function on negative input (either direct or indirect using negative weights) immediately
causes the output of the neuron to become zero, which results in dead neurons. The gradient stays
at zero and never changes again. Hence, we omit the DC-offset from the correlation and use ReLU.
This yields a 28% better accuracy compared to a processing of both negative and positive correlations
and a 20% better accuracy over tanh.

6. Results

In order to get a baseline positioning performance of the RF-system we extract the ToAs under LoS
conditions using the inflection point method [71] and run a Levenberg-Marquardt (LM) optimizer to
obtain the positions. For each set of ToAs we run the optimization 12 times with the ToA of each receiver
being once set to zero for one run of the LM and select the iteration with the lowest error term (best fit
of TDoAs to position). On the Zig-Zag dataset we obtain an MAE of 0.50 m, a CEP of 0.33 m, and a
CE95 of 1.47 m if we remove extreme outliers (>10 m) (we did not apply advanced outlier removal
techniques such as Huber weighting [77], Chauvenet’s criterion [78] or Peirce’s criterion [79] but only
a simple test of the resulting positioning error). Figure 8 shows the error distribution. In practice phase
analysis or motion models improve accuracy.
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Figure 8. Distribution of error values after removal of outliers.
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6.1. General Performance Evaluation of the ML Approach.

For a simple performance experiment, we divide the datasets into training (80%) and testing (20%)
set. We uniformly sample among the data points. Later we evaluate the model by the whole set and
employ the Euclidean distance as a quality measure for the accuracy of the model.

Table 2 shows the results for our datasets employing DL. We achieve the best accuracy w.r.t.
all metrics on the Displaced Rectangles (Figure 7d) and Meander (Figure 7a) datasets. However,
the horizontal distance between the rectangles in Displaced Rectangle is only 0.2 m. We assume that
the multipath components enrich the CIR information such that the model manages to estimate the
position exceptionally good. The ZigZag (Figure 7b) hints that the speed of the Segway system has an
effect on the CIR measurements. The accuracy is worst for the Human Walk Figure 7c dataset because
the height of the mobile tag varies. The model has not obtained any information of the z-axis and hence
cannot generalize the measurement on the xy-plane. As the CEP is smaller than the MAE, this means
that we can easily filter out the outliers in a post-processing step. But on all our datasets (even on
the Zig-Zag with high velocity and the LoS datasets) our DL-approach considerably outperforms the
Levenberg-Marquardt optimization on the extracted ToAs.

Table 2. Results for general performance [1].

Dataset CEP CE95 MAE

Meander 0.16 m 0.36 m 0.17 m
Zig-Zag 024 m 0.67 m 0.29 m

Human Walk 0.30 m 0.87 m 0.36 m
Displaced Rectangles 0.10 m 0.24 m 0.12 m

6.2. Slicing Evaluation

Randomly sampling training and testing data does not elaborate whether the model generalized
over the dataset or overfit to the training data. In order to check for generalization we construct
two additional scenarios on the Meander dataset. (1) Short-Slice (SS) uses the correlations from the
red slices in Figure 7a to test the model, while we use the rest to train the model. The test slices are
approximately 1 m long. In this setup we evaluate small-scale generalization [80]. (2) Long-Slice (LS)
uses the correlations from the green lines in Figure 7a to test the model while the rest is used for
training. This evaluates large-scale generalization which helps us to see better how the model manages
to approximate the position of the missing data points.

Figure 9 shows color-coded error plots for SS (left) and LS (right). SS has an MAE of 0.27 m,
a CEP of 0.24 m and CE95 of 0.57 m, while LS has an MAE of 0.34 m, a CEP of 0.27 m and a CE95
of 0.77 m. The precision of both tests degrade w.r.t. to the results that we achieve using the naive
sampling approach (which however, did not check for generalization). But both results also show that
our model generalizes over the training data set. Hence, without having seen a CIR data point in the
direct neighborhood of the test data sample the model produces viable position estimates that are
more accurate than the baseline optimization using the Levenberg-Marquardt algorithm.
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Figure 9. Evaluation of the model generalization [1].

6.3. Architecture Evaluation

In order to determine the suitability of popular DL architectures, we modify AlexNet,
GoogleLeNet, VGG-16 and VGG-19 according to Section 5.3 and train them with our correlation
data. We further modified the GoogleNet, see Table 3. The -Re modification preserves the CIRs
further down the network (we modified the initial convolutional and pooling layers). The Re-NoP
preserves the size of correlation image (by removing the pooling layer between the first convolutional
and normalization layer). We also defined SmallNet, see Figure 10, as a cut-off from the GoogLeNet
architecture (we removed the inception layers between the root and the first intermediate output).

Table 3. Results and parameters of different architectures [1].

Model # Params Avg. FP (ms) MAE (m) CEP (m) CE95 (m)

GoogLeNet 6,894,976 66.30 0.36 0.31 0.83
G-Re 7,422,336 130.68 0.33 0.28 0.76

G-Re-NoP 8,778,112 411.68 0.29 0.26 0.65
AlexNet 34,535,104 24.46 0.79 0.71 1.68
SmallNet 2,113,664 10.83 0.36 0.32 0.77

SmallNet-Re 11,938,944 37.70 0.34 0.30 0.75
VGG-16 39,883,904 158.24 0.36 0.32 0.80
VGG-19 45,192,320 197.18 0.38 0.33 0.85

Distributed CNN 1,975,136 120.19 0.36 0.30 0.84
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Figure 10. SmallNet architecture.

Figure 11 shows the CDFs of the network architecture trained and tested according to the LS
scheme of Section 6.2. The graph also shows the CDF of the Meander dataset according to Section 6.1
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with uniform sampling denoted as gray dotted line with the GoogLeNet and its modification G-Re-NoP
as baseline for comparison. Table 3 specifies the evaluated architecture parameters together with the
inference time per 1000 samples, MAE and CEP. GoogLeNet and VGG-19 are on par especially on the
CE95-level. Surprisingly, VGG-16 outperforms VGG-19 with its modifications. AlexNet has the worst
overall performance compared to the other network architectures (as it is comparably shallow but
mostly fully connected throughout the network).
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Figure 11. Cumulative Probability over the Meander dataset [1].

The G-Re-Nop provides the best shaped CDF and MAE but however, its inference time is
considerably higher than that of others and also not feasible for practical applications of RLTS.
Comparing GoogLeNet and SmallNet, we can see that they are on par w.r.t. MAE and CEP.
While SmallNet has nearly 4 times less parameters and a 6 times faster inference time. The modified
SmallNet-Re has slightly better CDF as the SmallNet at the cost of a larger number of parameters
(approx. 2 million vs. 11 million), which also results in higher inference times.

6.4. Data Preprocessing and Zero Padding

In Section 4.1 we have argued for our calibration and zero padding strategy that aligns the
correlations within the input image and that implicitly encodes relative timing information. However,
there is a reason to suspect that the neural network extracts most of the necessary information from
the zeroes that are embedded in each line and that (especially) small values around the correlation
peak and the peak itself do not contribute much to the position estimation at all.

In order to investigate the effectiveness of our preprocessing scheme we run two experiments,
both using the LS scheme and dataset that we used in Section 6.2. (1) We generated a zero-padded
correlation image of size 12 × 120 × 2 (Figure 12a) and replace the entries of the channel impulse
response with ones. This results in the image depicted in Figure 12b. By that we get an impression
how good the neural networks estimates positions from the rough timing information provided by the
receiver synchronization (and in turn how much information it actually extracts from the CIRs when
we compare the results). (2) We give up our zero-padding and directly stack the CIRs. This gives the
smaller image of size 12 × 60 × 2 depicted in Figure 12c.

On the image from Figure 12a (the CIRs are both padded and present) the GoogLeNet achieves
an MAE of 0.34 m, a CEP of 0.27 m and a CE95 of 0.77 m (see Section 6.2). Removing the CIRs from
the correlation image (Figure 12b) lets it perform considerably worse, resulting in an MAE of 0.96 m,
a CEP of 0.91 m and a CE95 of 1.89 m. If we only stack raw CIRs together (Figure 12c) we yield an
MAE of 1.09 m, a CEP of 1.02 m and a CE95 of 2.18 m.
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These results let us draw a number of conclusions. First, the CNN achieves a significantly worse
performance if we process the CIRs according to Figure 12b. This is expected as the relative timing
information that we used to align the CIRs within the correlation image only serves as a rough estimate
of the transmitter’s position. In turn this means that the CNN heavily makes use of available CIR data
that is embedded in the correlation image of Figure 12a. Second, the combination of the CIRs without
padding from Figure 12c also performs significantly worse. But this effect is not as bad as we would
have expected. Depending on the position of the mobile transmitter in the environment there might be
a significant offset ∆ti between the CIRs arriving at the receiving antennas and this has a big effect
on position estimation. However, using the image of Figure 12c essentially turns out to be similar to
CSI-based fingerprinting (where WiFi access points emit OFDM signals) [55]. The amplitude and the
characteristics of signals emitted from mobile transmitters at a certain location help a lot to estimate
(surprisingly accurate) positions.

(a) Zero padded. (b) Padded with ones. (c) Raw.

Figure 12. Overview: From raw data to zero padded to padded with ones.

6.5. Distributed CNN

In the previous experiments we focused on neural networks that process the CIRs in a central
unit that provides enough computational resources. However, it not only takes high data rate
communication links to transmit the CIRs. The central unit may easily become a bottleneck as it
collects and preprocesses all the CIRs before it evaluates them with the neural network.

Hence, we designed a CNN architecture according to Figure 13. The signals are preprocessed and
a small CNN located near the receiver compresses the CIR by extracting a latent feature representation
that only uses 8 neurons. For the preprocessing (1) we do not pad the signals but we recalibrate them
according to their ∆ti, (2) we do not shift and resample the signals due to their CIR offset ti

CIR but
we piggy-back ti

CIR to its latent feature representation, and (3) we do not scale the signals w.r.t. the
values of the correlation image (as it is not available to a single receiver) but we normalize each CIR on
its own given its mean and variance. Conceptually, we then transmit the activation of the 8 neurons
and ti

CIR to the central computation unit. There the neuron activations and ti
CIR of all receivers are

concatenated and processed in a fully connected layer that outputs the position. As before we train the
model in an end-to-end way, i.e., we design the whole model for training. The individual parts can
later be cut out from the whole network and deployed at the receiver units separately.

We trained and tested our model according to Section 6.2 and use the LS scheme to evaluate
its performance. The distributed CNN architecture and preprocessing achieved an MAE of 0.36 m,
a CEP of 0.30 m and CE95 of 0.82 m, see also Figure 11. This is remarkable also in comparison to the
other (centralized) architectures. The distributed CNN manages to reach similar position performance
although it processes information concurrently, only resolving inter-correlation information at a later
point of processing, i.e., in the FC layer. It compresses the correlation signals at the receiver unit from
size of 60 × 2 to 8 + 1 and hence achieves ∼13× compression, i.e., bandwidth requirement reduction,
while it still maintains a high positioning accuracy.
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Figure 13. Distributed CNN.

6.6. Multipath Scenario

In reality there are many situations where the signal is attenuated, blocked or deteriorated. Real
world environments often include scattering objects and obstacles that cause multipath propagation
and blockage of the LoS signal. In order to see if our approach also manages to mitigate the effect of
multipath we recorded the Displaced Rectangles dataset.

The rectangles in Figure 7d illustrate the trajectory. We use two of the three (red/left, green/right)
rectangles for training and the middle one (yellow) for testing. Figure 6 shows how we placed absorber
walls on the right side of the dataset. The perpendicular part on the rectangles’ right side heavily
suffers from multipath propagation and obstructions. We ended up with a dataset of 92,724 CIR inputs
and divided them such that the training set consisted of 62,724 and testing set of 30,000 correlations.

Figure 14 on the left shows the color-coded result of state-of-the-art (SoTA) extended Kalman filter
using a constant acceleration motion model that uses ToAs and phase information as input. Figure 14
on the right shows the results of our method. We use the yellow/middle trajectory for testing and a
median filter for post-processing. We observe that classic ToA estimation and Kalman post-processing
heavily suffers from NLoS situations. While ToA estimation together with the transition matrices
of the filter perform very well on the left side (an MAE of 0.15 m, a CEP of 0.14 m, CE95 0.27 m in
gray rectangle left) the highly non-linear effects on the right side cannot be resolved (MAE 2.11 m,
CEP 1.45 m, CE95 5.29 m in gray rectangle right). Our approach is slightly worse in the LoS area with
an MAE of 0.15 m, a CEP of 0.15 m and a CE95 of 0.28 m in the left rectangle due to the absence of a
motion model. But most impressive is the NLoS performance: with a CEP of 0.23 m (MAE: 0.29 m,
CE95: 0.68 m) our approach computes accurate positions even under heavy multipath (overall MAE:
0.17 m, CEP: 0.14 m, CE95: 0.45 m). We can hypothesize that the MPCs in the signals of the NLoS
scenario can be viewed as virtual anchors or stations, which could be used for more precise position
estimation [81–83]. This experiment shows that our approach efficiently handles the NLoS scenario.
However, one limitation is that our approach (as any fingerprinting-based localization techniques) is
sensitive to dynamic objects in the environment (as these change the multicast profile). In the future,
it is worth to consider scenarios with moving objects to see how they affect the position estimation
accuracy and long-term stability of our model.
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Figure 14. Results with multipath scenario [1].

7. Conclusions

This article presents a position estimation based on deep learning methods that directly operates
on the channel impulse responses of TDoA-based locating systems. We provide details of our signal and
data preprocessing and show the efficiency of our approach in different real world setups. While our
approach keeps up with conventional signal processing approaches under line-of-sight conditions it
outperforms previous approaches under heavy multipath propagation. The integration of a movement
model may provide a boost in performance for the DL-based solution. We also introduced a concept
that distributes the CNN so that it can be implemented in RTLS architectures.

The result of our research also lets us rethink how we currently estimate ToAs and that they
may also be estimated by ML or DL approaches. This together with a consideration of historical
measurements in a time-series may help to improve ToA estimation significantly. Next to this we plan
to investigate the usage of simulation data for CNN pre-training so that we only require a little amount
of actual training data in the target environment. Furthermore, in this work we did not yet consider
the orientation of the transmitting explicitly although this also has an effect on the resulting CIR.
We also did not discuss the effects to our calibration if our reference transmitters suffer from multipath
propagation as well. However, as the estimates of those signals are only used for recalibrating the
CIRs their influence to the final position accuracy of mobile tags is much lower (small error in the
reference transmitter ToA-estimation level out over all the receiver units). However, in future work we
investigate a combined processing of the mobile transmitter’s CIR together with the CIRs from the
reference transmitters.
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