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Abstract

Background

Various risk factors have been associated with epithelial ovarian cancer risk in observational

epidemiological studies. However, the causal nature of the risk factors reported, and thus

their suitability as effective intervention targets, is unclear given the susceptibility of conven-

tional observational designs to residual confounding and reverse causation. Mendelian

randomization (MR) uses genetic variants as proxies for risk factors to strengthen causal

inference in observational studies. We used MR to evaluate the association of 12 previously

reported risk factors (reproductive, anthropometric, clinical, lifestyle, and molecular factors)

with risk of invasive epithelial ovarian cancer, invasive epithelial ovarian cancer histotypes,

and low malignant potential tumours.

Methods and findings

Genetic instruments to proxy 12 risk factors were constructed by identifying single nucleo-

tide polymorphisms (SNPs) that were robustly (P < 5 × 10−8) and independently associated
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with each respective risk factor in previously reported genome-wide association studies.

These risk factors included genetic liability to 3 factors (endometriosis, polycystic ovary syn-

drome, type 2 diabetes) scaled to reflect a 50% higher odds liability to disease. We obtained

summary statistics for the association of these SNPs with risk of overall and histotype-spe-

cific invasive epithelial ovarian cancer (22,406 cases; 40,941 controls) and low malignant

potential tumours (3,103 cases; 40,941 controls) from the Ovarian Cancer Association Con-

sortium (OCAC). The OCAC dataset comprises 63 genotyping project/case–control sets

with participants of European ancestry recruited from 14 countries (US, Australia, Belarus,

Germany, Belgium, Denmark, Finland, Norway, Canada, Poland, UK, Spain, Netherlands,

and Sweden). SNPs were combined into multi-allelic inverse-variance-weighted fixed or

random effects models to generate effect estimates and 95% confidence intervals (CIs).

Three complementary sensitivity analyses were performed to examine violations of MR

assumptions: MR–Egger regression and weighted median and mode estimators. A Bonfer-

roni-corrected P value threshold was used to establish strong evidence (P < 0.0042) and

suggestive evidence (0.0042 < P < 0.05) for associations. In MR analyses, there was strong

or suggestive evidence that 2 of the 12 risk factors were associated with invasive epithelial

ovarian cancer and 8 of the 12 were associated with 1 or more invasive epithelial ovarian

cancer histotypes. There was strong evidence that genetic liability to endometriosis was

associated with an increased risk of invasive epithelial ovarian cancer (odds ratio [OR] per

50% higher odds liability: 1.10, 95% CI 1.06–1.15; P = 6.94 × 10−7) and suggestive evidence

that lifetime smoking exposure was associated with an increased risk of invasive epithelial

ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04–1.78; P = 0.02).

In analyses examining histotypes and low malignant potential tumours, the strongest associ-

ations found were between height and clear cell carcinoma (OR per SD increase: 1.36, 95%

CI 1.15–1.61; P = 0.0003); age at natural menopause and endometrioid carcinoma (OR per

year later onset: 1.09, 95% CI 1.02–1.16; P = 0.007); and genetic liability to polycystic ovary

syndrome and endometrioid carcinoma (OR per 50% higher odds liability: 0.89, 95% CI

0.82–0.96; P = 0.002). There was little evidence for an association of genetic liability to type

2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding

globulin with ovarian cancer or its subtypes. The primary limitations of this analysis include

the modest statistical power for analyses of risk factors in relation to some less common

ovarian cancer histotypes (low grade serous, mucinous, and clear cell carcinomas), the

inability to directly examine the association of some ovarian cancer risk factors that did not

have robust genetic variants available to serve as proxies (e.g., oral contraceptive use, hor-

mone replacement therapy), and the assumption of linear relationships between risk factors

and ovarian cancer risk.

Conclusions

Our comprehensive examination of possible aetiological drivers of ovarian carcinogenesis

using germline genetic variants to proxy risk factors supports a role for few of these factors

in invasive epithelial ovarian cancer overall and suggests distinct aetiologies across histo-

types. The identification of novel risk factors remains an important priority for the prevention

of epithelial ovarian cancer.
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Author summary

Why was this study done?

• Numerous reproductive, lifestyle, and molecular factors have been linked to risk of epi-

thelial ovarian cancer in observational epidemiological studies. It is unclear whether these

associations represent causal relationships or merely reflect residual confounding, reverse

causation, or other forms of bias inherent to conventional epidemiological designs.

• Mendelian randomization (MR) uses germline genetic variants as proxies for risk fac-

tors to generate more reliable evidence of the causal effect of risk factors on disease-

related outcomes.

What did the researchers do and find?

• We employed MR analysis to systematically evaluate the association of 12 previously

reported risk factors with risk of invasive epithelial ovarian cancer, invasive epithelial

ovarian cancer histotypes, and low malignant potential tumours in up to 25,509 cases

and 40,941 controls in the Ovarian Cancer Association Consortium.

• In MR analysis, only 2 of 12 previously reported risk factors (genetic liability to endome-

triosis and lifetime smoking exposure) were associated with invasive epithelial ovarian

cancer risk.

• When analyses were stratified on invasive epithelial ovarian cancer histotypes and low

malignant potential tumours, 8 risk factors were associated with 1 or more epithelial

ovarian cancer subtypes. The strongest associations identified were positive associations

of height with clear cell carcinoma and age at natural menopause with endometrioid

carcinoma and an inverse association of genetic liability to polycystic ovary syndrome

with endometrioid carcinoma.

What do these findings mean?

• Beyond implicating genetic liability to endometriosis and lifetime smoking exposure

in invasive epithelial ovarian cancer risk, these analyses found little evidence to support

roles for several previously reported risk factors for this malignancy in disease aetiology.

• Our findings support distinct risk profiles across invasive epithelial ovarian cancer his-

totypes, which could have important implications for studies of disease prognosis, but

which complicate the design of effective prevention strategies targeting ovarian cancer

as a whole.

Introduction

Ovarian cancer is the second most common gynaecological cancer in the US and Western

Europe and accounts for more deaths than all other gynaecological cancers combined [1,2].

The prognosis for ovarian cancer is generally poor because women typically present with

advanced disease due to the non-specific nature of symptoms and because of the lack of
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established screening tests [3–5]. Given the limited success of secondary prevention strategies

and the sporadic nature of 90% of cases, primary prevention of ovarian cancer may serve as

an important vehicle for disease control [6]. However, few risk factors have consistently been

linked to epithelial ovarian cancer, which accounts for 85%–90% of ovarian cancers, in obser-

vational epidemiological studies, and most previous studies have failed to stratify analyses

across clinically distinct histotypes [7–10]. Stratification is necessary because of the previously

reported heterogeneity in risk factor–histotype associations in epidemiological analyses [8–

10]. Further, the causal nature of the risk factors reported, and thus their suitability as effective

intervention targets, is unclear given the susceptibility of conventional observational designs

to residual confounding and reverse causation.

Mendelian randomization (MR) is an analytical approach that uses germline genetic vari-

ants as instruments (“proxies”) for risk factors, to examine the causal effects of these factors

on disease outcomes in observational settings [11,12]. Since germline genetic variants are ran-

domly assorted at meiosis, MR analyses should be less prone to confounding by lifestyle and

environmental factors than conventional observational studies. Further, since germline genetic

variants are fixed at conception and cannot be influenced by subsequent disease processes, MR

analyses are not subject to reverse causation bias. An additional advantage of MR is that it can

be implemented using summary genetic association data from 2 independent samples repre-

senting (1) the genetic variant–risk factor associations and (2) the genetic variant–outcome

associations (known as the 2-sample MR approach). This approach provides an efficient and

statistically robust method of appraising causal relationships between risk factors and disease

outcomes. To date, MR analyses of ovarian cancer have reported a positive association of body

mass index (BMI) with non–high grade serous carcinoma (HGSC) but a null association with

HGSC [13], a positive association of height with ovarian cancer [14], and an inverse associa-

tion of 25-hydroxyvitamin D with ovarian cancer, including HGSC [15]. However, these anal-

yses were limited by modest sample sizes (10,065–16,395 cases), restricting power for subtype-

stratified analysis.

Given the unclear causal relevance of previously reported observational associations of risk

factors in the aetiology of epithelial ovarian cancer, and limited exploration of their causality

in MR analyses to date, a 2-sample MR analysis was performed to evaluate the association of

12 previously reported factors with risk of invasive epithelial ovarian cancer, invasive epithelial

ovarian cancer histotypes, and low malignant potential tumours.

Methods

Ovarian cancer population

Summary genetic association data were obtained on 25,509 women with epithelial ovarian

cancer and 40,941 controls of European descent. These women had been genotyped using the

Illumina Custom Infinium array (OncoArray) as part of the Ovarian Cancer Association Con-

sortium (OCAC) genome-wide association study (GWAS) [16,17]. This dataset comprises 63

genotyping project/case–control sets representing participants of European ancestry recruited

from 14 countries (US, Australia, Belarus, Germany, Belgium, Denmark, Finland, Norway,

Canada, Poland, UK, Spain, Netherlands, and Sweden), with some studies contributing sam-

ples to more than 1 genotyping project and some case–control sets representing a combination

of multiple individual studies. Genotype data were obtained either by direct genotyping using

an Illumina Custom Infinium array (OncoArray) consisting of approximately 530,000 SNPs

or by imputation with reference to the 1000 Genomes Project Phase 3 dataset [18]. The data

included 22,406 invasive epithelial ovarian cancer cases (40,941 controls) involving the

following invasive epithelial ovarian cancer histotypes: HGSC (n = 13,037), low grade serous
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carcinoma (n = 1,012), mucinous carcinoma (n = 1,417), endometrioid carcinoma (n = 2,810),

and clear cell carcinoma (n = 1,366). Invasive histotypes classified as “other” by OCAC

(n = 2,764 cases) were included in analyses of overall invasive epithelial ovarian cancer but

were not assessed separately. Analyses were also performed for low malignant potential

tumours (n = 3,103), which included 1,954 serous and 1,149 mucinous tumours. Ethical

approval from relevant research ethics committees was obtained for all studies in OCAC, and

written, informed consent was obtained from all participants in these studies. Further details

about the OCAC study and OncoArray analyses are available in S1 Text.

Identification of previously reported risk factors and instrument selection

Previously reported risk factors for epithelial ovarian cancer were identified from a literature

review, using PubMed and Web of Science, of narrative and systematic review articles summa-

rising findings from observational epidemiological studies [19–24] and through consultation

with the Cancer Research UK website (https://www.cancerresearchuk.org/about-cancer/

ovarian-cancer/risks-causes) and the World Cancer Research Fund/American Institute for

Cancer Research (WCRF/AICR) Ovarian Cancer 2014 Report [25]. Genetic instruments were

then identified for these risk factors by consulting the preprint server bioRxiv (http://www.

biorxiv.org/) and 2 catalogues of summary GWAS data: the NHGRI-EBI (National Human

Genome Research Institute–European Bioinformatics Institute) GWAS catalogue and

MR-Base [26,27]. The complete PubMed and Web of Science search strategies and instrument

selection criteria are presented in S1 and S2 Texts, respectively.

In total, 12 risk factors with a suitable genetic instrument were included in the analysis:

3 reproductive factors (age at menarche, age at natural menopause, and parity) [28–31], 2

anthropometric traits (BMI and height) [32,33], 3 clinical factors (genetic liabilities to type 2

diabetes, endometriosis, and polycystic ovary syndrome [PCOS]) [34–36], 1 lifestyle factor

(lifetime smoking exposure) [37,38], and 3 molecular risk factors (circulating 25-hydroxyvita-

min D, C-reactive protein [CRP], and sex hormone binding globulin) [39,40]. Lifetime smok-

ing exposure is a composite score that captures smoking duration, heaviness, and cessation

among both smokers and non-smokers. A step-by-step overview of risk factor inclusion along

with a flow chart of these processes and a list of all risk factors ascertained for inclusion are

presented in Fig 1 and S1 Text.

Statistical analyses

The use of genetic instruments for exposures in an MR framework allows for unbiased causal

effects of risk factors on disease outcomes to be estimated if the following assumptions are

met: (1) the genetic instrument (typically, 1 or more independent SNPs) is robustly associated

with the risk factor of interest; (2) the instrument is not associated with any confounding fac-

tor(s) of the association between the risk factor and outcome; and (3) there is no pathway

through which the instrument influences the outcome except through the risk factor (“exclu-

sion restriction criterion”).

After obtaining effect estimates from relevant GWASs, SNPs were pruned for linkage dis-

equilibrium at R2 < 0.001 at a clumping distance of 10,000 kilobases from the lead SNP at

P< 5 × 10−8 with reference to the 1000 Genomes Project (http://www.internationalgenome.

org/). SNP–risk factor association estimates were derived from either sex-combined or

female-specific analyses as presented in Table 1, and methodological considerations for

when instruments were derived from sex-combined versus female-specific analyses are pre-

sented in S2 Text.
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Estimates of the proportion of variance in each risk factor explained by the genetic instru-

ments (R2) and the strength of the association between the genetic instruments and risk factors

(F-statistics) were generated using methods previously described [41]. F-statistics can be used

to examine whether results are likely to be influenced by weak instrument bias, i.e., reduced

statistical power to reject the null hypothesis when an instrument explains a limited proportion

of the variance in a risk factor. We excluded risk factors with an F-statistic of<10 in order to

minimise weak instrument bias.

For risk factors with 2 or 3 SNPs as instruments, inverse-variance-weighted (IVW) fixed

effects models were used to generate effect estimates, and for risk factors with greater than 3

SNPs, IVW multiplicative random effects models (allowing overdispersion in the model)

were used [42]. The combination of multiple SNPs into a multi-allelic instrument increases

the proportion of variance in a risk factor explained by the instrument. Effect estimates from

these models represent a weighted average of individual Wald ratios across SNPs using IVW

meta-analysis. Effect estimates for associations of genetic liability to binary clinical factors

(endometriosis, PCOS, type 2 diabetes) with ovarian cancer outcomes represent the effect of

a 50% higher odds liability to these clinical factors (i.e., equivalent to the effect of a 1.5-fold

increase in the odds liability to disease). These estimates were obtained by scaling the natural

log odds ratio (OR) of ovarian cancer outcome per natural log OR of clinical factor by a fac-

tor of 1.5. As these analyses were not performed in clinical samples (i.e., were not restricted

to individuals diagnosed with the disease states examined), the estimates represent subdiag-

nostic traits or pathophysiological pathways leading to susceptibility to disease, rather than

the disease itself. To account for multiple testing across analyses, a Bonferroni correction

was used to establish P value thresholds for strong evidence (P< 0.0042) (false positive

rate = 0.05/12 risk factors) and suggestive evidence (0.0042 < P< 0.05) for reported

associations.

Fig 1. Flowchart for risk factor inclusion. CRP, C-reactive protein; GWAS, genome-wide association study; MR, Mendelian

randomization; SHBG, sex hormone binding globulin; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002893.g001
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When using genetic instruments, there is potential for horizontal pleiotropy—when a

genetic variant has an effect on 2 or more traits through independent biological pathways, a

violation of the third instrumental variable assumption. This was examined by performing 3

complementary sensitivity analyses, each of which makes different assumptions about the

underlying nature of horizontal pleiotropy: MR–Egger regression (intercept and slope terms)

[43] and weighted median estimation [44], both of which were employed when there were, at

minimum, 3 SNPs in an instrument, and weighted mode estimation [45], which was employed

when there were, at minimum, 5 SNPs in an instrument. Additionally, leave-one-out permuta-

tion analyses were performed to examine whether any results were driven by individual influ-

ential SNPs in IVW models. Lastly, Steiger filtering was employed to orient the direction of

causal relationships between presumed risk factors and outcomes for some analyses [46]. This

method compares the proportion of risk factor and outcome variance explained by SNPs used

as instruments, to help establish whether SNPs associated with both risk factors and outcomes

primarily represent (1) a direct association of a SNP with a risk factor, which then influences

an outcome, or (2) a direct association of a SNP with an outcome, which then influences the

level of a risk factor. Extended descriptions of these sensitivity analyses, along with their

assumptions, are provided in S2 Text.

There was no formal prespecified protocol for this study. All analyses described above were

decided a priori. All statistical analyses were performed using R version 3.3.1.

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist).

Table 1. Catalogue of GWASs used for genetic instruments and estimates of instrument strength for previously reported risk factors.

Reported risk factor GWAS Sex Number of SNPs available1 Number of SNPs used2 R2 F-statistic

Reproductive factors

Age at menarche Day et al. [30] Women 368 329 5.1 55

Age at natural menopause Day et al. [29] Women 42 35 4.2 86

Parity Barban et al. [28] Combined 2 2 0.02 33

Anthropometric traits

Body mass index Locke et al. [32] Combined 77 66 2.2 110

Height Wood et al. [33] Combined 386 345 11.8 98

Clinical factors

Endometriosis Sapkota et al. [36] Women 10 10 0.24 49

Polycystic ovary syndrome Day et al. [34] Women 14 11 0.35 36

Type 2 diabetes Morris et al. [35] Combined 10 10 0.34 24

Lifestyle factors

Lifetime smoking exposure Wootton et al. [38] Combined 124 115 1.2 49

Molecular risk factors

C-reactive protein Dehghan et al. [40] Combined 9 8 3.6 382

SHBG Coviello et al. [39] Combined 9 8 4.3 121

25-hydroxyvitamin D Jiang et al. [37] Combined 6 5 2.6 423

R2 represents the proportion of variance in a risk factor explained by the genetic instrument. F-statistic represents the strength of the association between the genetic

instrument and levels of the risk factor.
1Corresponds to the number of SNPs available after pruning top SNPs reported in corresponding linkage disequilibrium at R2 < 0.001 at a clumping distance of 10,000

kilobases from the lead SNP at P< 5 × 10−8.
2Corresponds to the number of SNPs (or linkage disequilibrium proxies) available in ovarian cancer datasets.

GWAS, genome-wide association study; SHBG, sex hormone binding globulin; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1002893.t001
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Results

Across the 12 risk factors that we examined, F-statistics for their respective genetic instruments

ranged from 24 to 423, suggesting that our analyses were unlikely to suffer from weak instru-

ment bias. For each risk factor, the number of SNPs included in the genetic instrument, along

with R2 and F-statistics for the instrument, are provided in Table 1. Complete primary and

sensitivity analyses are presented in Table 2 for invasive epithelial ovarian cancer and in S1–S5

Tables for invasive epithelial ovarian cancer histotypes and low malignant potential tumours

(subtype-specific analyses). Scatter plots for findings showing strong or suggestive evidence

of association in IVW analyses that were consistent in sensitivity analyses are presented in S1

Plots. Leave-one-out plots are presented in S2 Plots.

Reproductive factors

In IVW models, there was suggestive evidence for an association of earlier age at menarche

with risk of invasive epithelial ovarian cancer (OR per year earlier onset: 1.07, 95% CI 1.00–

1.14; P = 0.046) (Fig 2; Table 2). However, there was some evidence that horizontal pleiotropy

was biasing the IVW estimate. This is because the effect estimate attenuated toward the null

when employing MR–Egger regression (OR 1.00, 95% CI 0.89–1.13) and a weighted median

estimator (OR 1.01, 95% CI 0.92–1.10) and moved in a protective direction when using a

weighted mode estimator (OR 0.98, 95% CI 0.25–3.84). In analyses examining invasive epithe-

lial ovarian cancer histotypes and low malignant potential tumours, there was suggestive evi-

dence for an association of earlier age at menarche with endometrioid carcinoma (OR 1.19,

95% CI 1.05–1.36; P = 0.008), which was robust to MR–Egger, weighted median, weighted

mode, and leave-one-out analyses (S1 Table).

There was little evidence for an association of later age at natural menopause with risk

of invasive epithelial ovarian cancer risk (OR per year later onset: 1.03, 95% CI 1.00–1.06;

P = 0.07) (Fig 2; Table 2). However, in subtype-specific analyses, there was suggestive evidence

for an association of later age at natural menopause with risk of endometrioid carcinoma (OR

1.09, 95% CI 1.02–1.16; P = 0.007), which was consistent in sensitivity analyses examining hor-

izontal pleiotropy. While there was little evidence of an association of age at natural meno-

pause with clear cell carcinoma in IVW models (OR 1.05, 95% CI 0.96–1.14; P = 0.29), the

association strengthened when employing MR–Egger (OR 1.26, 95% CI 1.05–1.52), weighted

median (OR 1.11, 95% CI 0.99–1.25), and weighted mode estimators (OR 1.16, 95% CI 1.02–

1.31), suggesting horizontal pleiotropy in the IVW model (S1 Table).

In parity analyses, effect estimates were in a protective direction for 5 of 7 ovarian cancer

outcomes but were imprecisely estimated, with 95% confidence intervals crossing the null line

(Table 2; S1 Table).

Anthropometric traits

There was strong evidence for an association of BMI with invasive epithelial ovarian cancer

(OR per 1-SD [4.6 kg/m2] increase: 1.23, 95% CI 1.07–1.42; P = 0.003) (Fig 3; Table 2). Though

there was little evidence for horizontal pleiotropy when performing MR–Egger (OR 1.32, 95%

CI 0.88–1.99), inconsistency of effect estimates across weighted median (OR 1.14, 95% CI

0.93–1.40) and weighted mode (OR 1.05, 95% CI 0.75–1.51) approaches suggested potential

violations of instrumental variable assumptions.

In IVW models, there was suggestive evidence for an association of BMI with HGSC

(OR 1.26, 95% CI 1.06–1.50; P = 0.01), endometrioid carcinoma (OR 1.48, 95% CI 1.07–2.06;

P = 0.02), and low malignant potential tumours (OR 1.39, 95% CI 1.04–1.85; P = 0.03) but not

with other subtypes. However, there was evidence that horizontal pleiotropy was likely biasing
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the IVW estimate for HGSC: The effect estimate was attenuated when performing MR–Egger

regression (OR 1.05, 95% CI 0.63–1.75) and was inconsistent when employing weighted

median (OR 1.17, 95% CI 0.91–1.50) and weighted mode (OR 0.95, 95% CI 0.53–1.35) estima-

tors. Likewise, there was some inconsistency of effect estimates across sensitivity analyses for

low malignant potential tumours, with a modest attenuation of the effect estimate observed

when employing a weighted mode estimator (OR 1.17, 95% CI 0.55–2.49). Inconsistencies

across sensitivity analyses for low malignant potential tumours could reflect horizontal pleiot-

ropy or could reflect limited statistical power for analyses of these tumours. In contrast to

HGSC and low malignant potential tumours, the association of BMI with endometrioid

carcinoma was also seen across sensitivity analyses using MR–Egger, weighted median, and

weighted mode estimators, and in leave-one-out analyses (S2 Table).

There was little evidence for an association of height with invasive epithelial ovarian cancer

risk (OR per 1-SD [6.3 cm] increase: 1.02, 95% CI 0.96–1.08; P = 0.47) (Fig 3; Table 2). In

Table 2. IVW and sensitivity analysis estimates for the association of previously reported risk factors with invasive epithelial ovarian cancer risk.

Risk factor IVW analysis MR–Egger regression MR–Egger intercept Weighted median Weighted mode

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

Reproductive traits

Age at menarche 1.07 (1.00–

1.14)

0.05 1.00 (0.89–

1.13)

0.94 1.00 (1.00–

1.01)

0.22 1.01 (0.92–

1.10)

0.88 0.98 (0.25–

3.84)

0.98

Age at natural menopause 1.03 (1.00–

1.06)

0.07 1.07 (1.00–

1.14)

0.06 0.99 (0.98–

1.00)

0.20 1.03 (0.99–

1.07)

0.10 1.04 (1.00–

1.09)

0.06

Parity 0.66 (0.26–

1.69)

0.39 — — — — — — — —

Anthropometric traits

Body mass index 1.23 (1.07–

1.42)

0.003 1.32 (0.88–

1.99)

0.19 1.00 (0.99–

1.01)

0.73 1.14 (0.93–

1.40)

0.21 1.06 (0.75–

1.51)

0.18

Height 1.02 (0.96–

1.08)

0.47 1.10 (0.95–

1.29)

0.21 1.00 (0.99–

1.00)

0.29 1.00 (0.92–

1.10)

0.92 0.99 (0.84–

1.18)

0.92

Clinical factors

Endometriosis 1.10 (1.06–

1.15)

6.9 × 10−7 1.25 (1.02–

1.53)

0.03 0.99 (0.97–

1.01)

0.25 1.06 (1.04–

1.09)

6.9 × 10−6 1.07 (0.56–

2.01)

0.85

Polycystic ovary syndrome 0.99 (0.95–

1.04)

0.64 0.93 (0.74–

1.16)

0.53 0.99 (0.97–

1.01)

0.25 0.97 (0.93–

1.02)

0.19 0.97 (0.91–

1.04)

0.37

Type 2 diabetes 1.00 (0.97–

1.02)

0.81 0.94 (0.81–

1.10)

0.46 1.01 (0.99–

1.03)

0.48 1.01 (0.97–

1.04)

0.72 1.02 (0.96–

1.08)

0.52

Lifestyle factors

Lifetime smoking exposure 1.36 (1.04–

1.78)

0.02 1.83 (0.65–

5.17)

0.26 1.00 (0.99–

1.01)

0.57 1.38 (0.93–

2.06)

0.11 1.40 (0.55–

3.59)

0.48

Molecular risk factors

C-reactive protein 0.97 (0.93–

1.02)

0.19 0.99 (0.93–

1.06)

0.86 0.99 (0.98–

1.01)

0.37 0.98 (0.93–

1.03)

0.42 0.98 (0.93–

1.03)

0.41

Sex hormone binding

globulin

1.09 (0.88–

1.35)

0.45 1.22 (0.79–

1.89)

0.40 0.99 (0.97–

1.01)

0.56 1.14 (0.88–

1.48)

0.33 1.14 (0.87–

1.49)

0.37

25-hydroxyvitamin D 1.02 (0.72–

1.44)

0.93 1.48 (0.82–

2.69)

0.28 0.98 (0.95–

1.01)

0.24 1.15 (0.85–

1.57)

0.36 1.16 (0.84–

1.61)

0.41

Estimates are scaled to represent the association of a 1-year decrease in age at menarche; a 1-year increase in age at natural menopause; a 1-child increase in number of

children ever born; a 1-SD increase in body mass index (kg/m2); a 1-SD increase in height (cm); a 50% higher odds liability to type 2 diabetes, endometriosis, or

polycystic ovary syndrome; a 1-unit increase in lifetime smoking exposure; a 1-unit increase in natural-log-transformed 25-hydroxyvitamin D (ng/ml); a 1-unit increase

in natural-log-transformed C-reactive protein (mg/l); and a 1-unit increase in natural-log-transformed sex hormone binding globulin (nmol/l). IVW, inverse-variance-

weighted; OR, odds ratio.

https://doi.org/10.1371/journal.pmed.1002893.t002
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analyses examining histotypes and low malignant potential tumours, there was strong evidence

for an association of height with clear cell carcinoma (OR 1.36, 95% CI 1.15–1.61; P = 0.0003),

but not with other subtypes. This finding was robust to various sensitivity analyses (S2 Table).

Clinical factors

There was strong evidence for an association of genetic liability to endometriosis with invasive

epithelial ovarian cancer (OR per 50% higher odds liability to endometriosis: 1.10, 95% CI

1.06–1.15; P = 6.94 × 10−7), which was consistent across sensitivity analyses examining hori-

zontal pleiotropy (Fig 4; Table 2). In subtype-specific analyses, there was also strong evidence

for an association with clear cell carcinoma (OR 1.49, 95% CI 1.29–1.73; P = 7.39 × 10−8) and

suggestive evidence for an association with endometrioid carcinoma (OR 1.14, 95% CI 1.04–

1.24; P = 0.004), low malignant potential tumours (OR 1.12, 95% CI 1.04–1.22; P = 0.006), and

HGSC (OR 1.07, 95% CI 1.02–1.12; P = 0.007). Findings for clear cell carcinoma were also

seen in sensitivity analyses examining horizontal pleiotropy, whereas somewhat inconsistent

effect estimates were found for endometrioid carcinoma, low malignant potential tumours,

and HGSC. While these inconsistencies could reflect potential violations of instrumental vari-

able assumptions, divergent effect estimates in endometrioid and low malignant potential

Fig 2. Inverse-variance-weighted estimates for the association of reproductive factors with risk of invasive epithelial ovarian

cancer, invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. IEOC, invasive epithelial ovarian

cancer; OR, odds ratio. Causal estimates are scaled to represent the effect of a 1-year decrease in age at menarche, a 1-year increase in

age at natural menopause, and a 1-child increase in number of children ever born.

https://doi.org/10.1371/journal.pmed.1002893.g002
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tumour analyses could also reflect limited statistical power in these analyses (S3 Table). Analy-

ses employing Steiger filtering provided strong evidence that the causal direction between

genetic liability to endometriosis and invasive epithelial ovarian cancer was from the former to

the latter (P = 10−10), whereas the causal direction could not be clearly established for clear cell

carcinoma analyses (P = 0.10).

There was little evidence that genetic liability to PCOS influenced invasive epithelial ovarian

cancer risk (OR per 50% higher odds liability to PCOS: 0.99, 95% CI 0.95–1.04; P = 0.64) (Fig

4; Table 2). In subtype-specific analyses, there was strong evidence for an inverse association

of genetic liability to PCOS with endometrioid carcinoma (OR 0.89, 95% CI 0.82–0.96;

P = 0.002), which was robust to sensitivity analyses. In contrast, suggestive evidence for an

association of PCOS with low grade serous carcinoma (OR 1.13, 95% CI 1.00–1.25; P = 0.04)

in IVW models was not seen across all sensitivity analyses, suggesting presence of horizontal

pleiotropy or potentially reflecting limited statistical power in these analyses. There was little

evidence of an association of genetic liability to type 2 diabetes with invasive epithelial ovarian

cancer (OR per 50% higher odds liability to type 2 diabetes: 1.00, 95% CI 0.97–1.02; P = 0.81)

or subtype-specific ovarian cancer (S3 Table).

Lifestyle factors

There was suggestive evidence for an association of lifetime smoking exposure with invasive

epithelial ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04–1.78;

P = 0.02) (Fig 5; Table 2). A unit increase in smoking score is approximately equivalent to an

individual smoking 10 cigarettes per day for 39 years and stopping 16 years ago or an individ-

ual smoking 30 cigarettes per day for 14 years and stopping 9 years ago. In subtype-specific

analyses, there was also suggestive evidence for an association of smoking with HGSC (OR

Fig 3. Inverse-variance-weighted estimates for the association of anthropometric traits with risk of invasive epithelial ovarian

cancer, invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. IEOC, invasive epithelial ovarian

cancer; OR, odds ratio. Causal estimates are scaled to represent the effect of a 1-SD increase in body mass index (kg/m2) and a 1-SD

increase in height (cm).

https://doi.org/10.1371/journal.pmed.1002893.g003
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Fig 4. Inverse-variance-weighted estimates for the association of clinical factors with risk of invasive epithelial ovarian cancer,

invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. IEOC, invasive epithelial ovarian cancer; OR,

odds ratio; PCOS, polycystic ovary syndrome. Causal estimates are scaled to represent the effect of a 50% higher odds liability to

endometriosis, PCOS, or type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1002893.g004

Fig 5. Inverse-variance-weighted estimates for the association of lifestyle factors with risk of invasive epithelial ovarian cancer,

invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. IEOC, invasive epithelial ovarian cancer; OR,

odds ratio. Causal estimates are scaled to represent the effect of a 1-unit increase in lifetime smoking exposure.

https://doi.org/10.1371/journal.pmed.1002893.g005
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1.44, 95% CI 1.05–1.98; P = 0.02) but little association with other subtypes. The smoking find-

ings for invasive epithelial ovarian cancer and HGSC were robust to horizontal pleiotropy sen-

sitivity analyses (Tables 2 and S4).

Molecular risk factors

There was little evidence that CRP influenced invasive epithelial ovarian cancer risk (OR per

unit increase in natural log CRP (mg/l): 0.97, 95% CI 0.93–1.02; P = 0.19) (Fig 6; Table 2). In

analyses examining histotypes and low malignant potential tumours, there was suggestive evi-

dence for an inverse association of CRP with endometrioid carcinoma (OR 0.90, 95% CI 0.82–

1.00; P = 0.049) (S5 Table). This association was robust to sensitivity analyses using MR–

Egger, weighted median, and weighted mode methods in addition to using a restricted CRP

instrument (exclusively using 4 SNPs in CRP: OR 0.72, 95% CI 0.42–1.22; P = 0.14). CRP was

not clearly associated with other histotypes or with low malignant potential tumours. There

was no strong or suggestive evidence for an association of sex hormone binding globulin (OR

per unit increase in natural-log-transformed sex hormone binding globulin [nmol/l]: 1.09,

95% CI 0.88–1.35; P = 0.45) or circulating 25-hydroxyvitamin D (OR per unit increase in

Fig 6. Inverse-variance-weighted estimates for the association of molecular risk factors with risk of invasive epithelial ovarian

cancer, invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. IEOC, invasive epithelial ovarian

cancer; OR, odds ratio. Causal estimates are scaled to represent the effect of a 1-unit increase in natural-log-transformed C-reactive

protein (mg/l), a 1-unit increase in natural-log-transformed sex hormone binding globulin (nmol/l), and a 1-unit increase in

natural-log-transformed 25-hydroxyvitamin D (ng/ml).

https://doi.org/10.1371/journal.pmed.1002893.g006
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natural-log-transformed 25-hydroxyvitamin D [ng/ml]: OR 1.02, 95% CI 0.72–1.44; P = 0.93)

with invasive epithelial ovarian cancer risk (Fig 6; Table 2) or with subtype-specific ovarian

cancer (S5 Table).

Discussion

This MR analysis of up to 66,450 women supports associations of genetic liability to endome-

triosis and lifetime smoking exposure with invasive epithelial ovarian cancer risk but found

little clear evidence to support roles of 10 other previously reported risk factors in ovarian car-

cinogenesis. In analyses examining invasive epithelial ovarian cancer histotypes and low malig-

nant potential tumours, there was strong or suggestive evidence for associations of ages at

menarche and natural menopause, BMI, height, lifetime smoking exposure, CRP, and genetic

liabilities to endometriosis and PCOS with ovarian cancer risk. There was little evidence

to support associations of genetic liability to type 2 diabetes, parity, or circulating levels of

25-hydroxyvitamin D or sex hormone binding globulin with the various ovarian cancer out-

comes assessed.

Though historically considered a homogeneous disease with a single cellular origin, epithe-

lial ovarian cancer is now recognised as heterogeneous, consisting of multiple histological

subtypes, each with its own distinct origins, morphological characteristics, and molecular

alterations [22,47–50]. The largely histotype-specific findings in this analysis using genetic var-

iants as proxies to minimise confounding and avoid reverse causation bias thus help to extend

these insights further by supporting distinct causal pathways across invasive epithelial ovarian

cancer histotypes.

Some of the histotype-specific findings are consistent with previous studies. For example,

in agreement with previous observational and MR analyses [7–10,13,51,52], most risk factors

did not show clear evidence of association with HGSC. Consistent with some studies, age at

natural menopause was most strongly associated with endometrioid carcinoma [8], and height

was most strongly associated with clear cell carcinoma [14,53]. While our finding of little evi-

dence of an association of BMI with HGSC is consistent with previous observational and MR

analyses, we were unable to examine—using the summarised genetic association data available

to us—whether the previously reported 29% (95% CI 3%–61%) increased odds of non-HGSC

(per 5-unit increase in genetically proxied BMI) was replicated in our sample [13,54].

Some findings in this MR analysis were not consistent with those observed in previous

conventional observational and MR analyses. Most notably, previously reported associations

between smoking and mucinous carcinoma [9,55–57] were not corroborated in MR analyses

of lifetime smoking exposure. Though estimates from primary and sensitivity analyses all

included the null line, inconsistencies in effect estimates across these analyses support pleiotro-

pic biases distorting the causal effect estimate, though we cannot rule out that divergent effect

estimates could also reflect the unit change in lifetime smoking exposure that our analyses are

scaled to. Hypothetically, analyses scaled to a smaller unit change in lifetime smoking exposure

would be expected to show greater convergence of effect estimates around the null, providing

less appearance of “inconsistency” across effect estimates. Though parity has been consistently

inversely associated with risk of ovarian cancer in conventional analyses [10,58–62], MR effect

estimates suggesting a protective association of giving birth to more children were imprecise,

and 95% confidence intervals spanned the null line. Given the few SNPs available to proxy for

parity (2 independent variants in this analysis), these results likely reflect limited statistical

power. Though genetically proxied height has previously been associated with increased risk of

both invasive epithelial ovarian cancer (OR per 5-cm increase in height: 1.06, 95% CI 1.01–

1.11) and low malignant potential tumours (OR 1.15, 95% CI 1.02–1.29), we found little
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consistent evidence for associations with height across our primary and sensitivity analyses,

though 95% confidence intervals overlapped across both studies [14]. While this previous indi-

vidual-data MR analysis was smaller than ours (16,395 versus 22,406 cases), the authors con-

structed genetic instruments from individual-level data for height using 609 SNPs (versus

345 SNPs in our analysis), which may have afforded this previously reported analysis greater

instrument strength and, thus, greater statistical power to detect effects reported. We restricted

our analysis to 345 independent variants in order to allow us to employ various summary-level

data sensitivity analyses that require independent variants in the instrument. Likewise, consis-

tent with a previous MR analysis of 25-hydroxyvitamin D and multiple-site cancer risk

(including ovarian cancer) [63], we were unable to replicate previously reported inverse associ-

ations of genetically proxied 25-hydroxyvitamin D with epithelial ovarian cancer (OR per

20-nmol/l increase in 25-hydroxyvitamin D: 0.79, 95% CI 0.66–0.94) or HGSC (OR 0.65, 95%

CI 0.50–0.84) [15]. When we employed the same 3 variants used to proxy 25-hydroxyvitamin

D in this other study, along with the same SNP–exposure estimates within our analysis, we

likewise found little evidence of association with invasive epithelial ovarian cancer (OR per

20-nmol/l increase: 0.91, 95% CI 0.81–1.04) or HGSC (OR 0.90, 95% CI 0.77–1.04).

Our MR analyses found some evidence for an unexpected inverse association of CRP,

a marker of systemic inflammation, with endometrioid carcinoma. Given recent evidence

suggesting a role of infectious agents in ovarian cancer [64,65], a possible protective effect of

CRP on endometrioid carcinoma could speculatively reflect the involvement of CRP in acute

immune response (i.e., protection against active bacterial and viral infections).

Overall, few previously reported risk factors showed clear evidence of a role in invasive epi-

thelial ovarian cancer or HGSC, the most common (approximately 70% of cases) and lethal

histotype, suggesting that some previously reported associations may have been driven by

residual confounding, misclassification biases, or reverse causation [66]. A notable exception

was suggestive evidence that smoking increased the odds of HGSC, consistent with some

[67,68], but not all [9,55,64,65], observational analyses. An association of genetic liability to

endometriosis with invasive epithelial ovarian cancer corroborates findings from conventional

analyses that women with this condition are at elevated risk of subsequent disease [9,69].

This finding also suggests that subclinical manifestations of or pathways leading to endometri-

osis may influence oncogenesis, indicating important avenues for future mechanistic work.

While observational and MR estimates examining associations between measures of endome-

triosis and risk of invasive epithelial ovarian cancer are qualitatively similar (i.e., in the same

direction), it is important to emphasise that observational effect estimates for disease states

examined in this analysis (i.e., endometriosis, PCOS, type 2 diabetes) cannot be compared

quantitatively (i.e., in direction and magnitude) to the MR estimates presented in this analysis

as the latter are examining the association of genetic liability to disease (i.e., subclinical mani-

festations of or pathways leading to the disease), rather than presence of disease per se.

It is important to note that while the risk factors included in this analysis have all been iden-

tified in systematic or narrative reviews and cancer prevention guidelines as being potentially

implicated in ovarian cancer development, there are varying degrees of evidence from the

observational literature supporting their role in cancer risk. For example, while both the

WCRF/AICR 2014 report and Cancer Research UK (https://www.cancerresearchuk.org/

about-cancer/ovarian-cancer/risks-causes; accessed on 4 September 2019) state that excess

body fatness is linked to ovarian cancer, only the WCRF/AICR 2014 report finds “convincing

evidence” that adult attained height increases risk of this disease. Nulliparity and endometri-

osis have been consistently associated with elevated ovarian cancer risk in observational stud-

ies [8–10,69], whereas there is weaker evidence linking earlier age at menarche to cancer risk

[8–10]. Though current cigarette smoking has been strongly linked to mucinous ovarian

Appraisal of reported risk factors in epithelial ovarian cancer

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002893 August 7, 2019 15 / 22

https://www.cancerresearchuk.org/about-cancer/ovarian-cancer/risks-causes
https://www.cancerresearchuk.org/about-cancer/ovarian-cancer/risks-causes
https://doi.org/10.1371/journal.pmed.1002893


cancer in large pooled analyses, associations with other subtypes have been less consistent

[64,65]. Given that few well-powered studies to date have stratified analyses across common

ovarian cancer subtypes, it is a challenge to develop a consensus on the current strength of evi-

dence linking previously reported risk factors to these subtypes.

Strengths of this analysis include the use of a systematic approach to collate previously

reported risk factors for epithelial ovarian cancer, the appraisal of the role of these risk factors

in disease aetiology using a MR framework to reduce confounding and avoid reverse causation

bias, the employment of complementary sensitivity analyses to rigorously assess for violations

of MR assumptions, and the restriction of datasets utilised to women of primarily or exclu-

sively European descent to minimise confounding through population stratification.

There are several limitations to these analyses. First, though F-statistics generated for most

risk factors suggested that results were unlikely to suffer from weak instrument bias, statistical

power for some analyses of less common ovarian cancer subtypes (low grade serous, mucin-

ous, and clear cell carcinomas) was likely modest, meaning that the possibility that some

results may reflect “false negative” findings cannot be ruled out. This limited statistical power

may account for instances where risk factors showed strong or suggestive evidence of associa-

tion for a single subtype but for which there was little apparent evidence of heterogeneity in

effect estimates across all subtypes assessed (e.g., for age at menarche and age at natural meno-

pause analyses). As such, it is important to emphasise that for some risk factors, subtype-spe-

cific findings are more likely to reflect differences in statistical power across subtypes than

genuine differences in the aetiological role of that risk factor in disease onset. Further, given

the low statistical power of sensitivity analyses employed to examine horizontal pleiotropy

(MR–Egger, weighted median, and weighted mode estimators), particularly for analyses of less

common ovarian cancer subtypes, we were unable to robustly discriminate whether divergent

effect estimates across sensitivity analyses in these subtypes reflected evidence of horizontal

pleiotropy or limited statistical power. Since analyses were performed using summarised

genetic association data in aggregate, it was not possible to restrict age at natural menopause

analyses exclusively to participants who had undergone menopause. However, given that most

ovarian cancer cases occur after menopause and that age-matched controls were used, the

inclusion of some pre- or perimenopausal women in these analyses would likely have biased

results toward the null (i.e., providing a conservative effect estimate). A genetic instrument for

lifetime smoking exposure was constructed from genome-wide association analyses reported

in a preprint [38]. As with all analyses that have not been formally peer-reviewed, findings

from preprints may be subject to change prior to publication. Though a multiple-testing cor-

rection was applied to findings from analyses to account for the 12 risk factors examined, false

positive findings arising from the number of analyses performed across ovarian cancer out-

comes cannot be ruled out, especially as statistical power was limited in analyses of histotypes.

Additionally, all models employed assumed no interaction (e.g., gene–environment, gene–

gene) or effect modification, and linear relationships between risk factors and ovarian cancer.

Lastly, the use of a MR framework precluded directly examining the role of some ovarian can-

cer risk factors that do not have robust genetic variants available to serve as proxies (e.g., use of

oral contraceptives, hormone replacement therapy).

Though the largely null findings for invasive epithelial ovarian cancer in this analysis can

assist in de-prioritising certain intervention targets for ovarian cancer prevention, they also

underscore the challenges in establishing effective primary prevention strategies for this

malignancy. To date, beyond risk-reducing surgical interventions, only regular use of oral

contraceptive pills has shown compelling evidence of reducing the risk of subsequent dis-

ease [61,70,71]. The continued identification of robust genetic variants to proxy other life-

style and molecular factors previously reported to influence ovarian cancer (e.g., additional
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sex hormones, gonadotropins, inflammatory markers) will allow for a more refined assess-

ment of the influence of these factors in ovarian carcinogenesis [51,72]. Additionally, fur-

ther work to understand the possible mechanisms through which factors that appear to

influence ovarian cancer in these analyses promote oncogenesis (e.g., genetic liability to

endometriosis, low CRP levels) could help to increase the scope for prevention opportuni-

ties across the life course. Lastly, for the vast majority of women who develop ovarian cancer

with no previous history of smoking and who do not have endometriosis [9,55,73], there is a

need to identify novel modifiable risk factors for this condition, as has been advocated else-

where [74,75].

Conclusions

Of 12 previously reported risk factors examined for association with invasive epithelial ovarian

cancer, only genetic liability to endometriosis and lifetime smoking exposure showed evidence

of association with disease risk. When stratified on histotype and low malignant potential

tumours, most risk factors were associated with 1 or more subtypes, underscoring the hetero-

geneous nature of this disease. While this aetiological heterogeneity could have implications

for understanding mechanisms of tumour pathology and for studies examining histotype-spe-

cific prognosis, given the low incidence of epithelial ovarian cancer in the general population,

prevention strategies targeting factors causally implicated in overall epithelial ovarian cancer

risk are most likely to confer important population-level reductions in disease incidence.

Along with effective clinical management of endometriosis and policies to prevent the initia-

tion of tobacco use and encourage smoking cessation, established prevention strategies like the

use of oral contraceptives continue to be an important mechanism for reducing ovarian cancer

risk. The identification of novel modifiable risk factors remains an important priority for the

control of epithelial ovarian cancer.
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