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ABSTRACT 

 In 2004, the Rosetta spacecraft was sent to comet 67P/Churyumov-Gerasimenko for the first ever 

long-term investigation of a comet. After its arrival in 2014, the spacecraft spent more than two 

years in immediate proximity to the comet. During these two years, the ROSINA Double Focusing 
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Mass Spectrometer (DFMS) onboard Rosetta discovered a coma with an unexpectedly complex 

chemical composition that included many oxygenated molecules. Determining the exact cometary 

composition is an essential first step to understanding of the organic rich chemistry in star forming 

regions and protoplanetary disks that are ultimately conserved in cometary ices. In this study a 

joint approach of laboratory calibration and space data analysis was used to perform a detailed 

identification and quantification of CHO-compounds in the coma of 67P/Churyumov-

Gerasimenko. The goal was to derive the CHO-compound abundances relative to water for masses 

up to 100 u. For this study, the May 2015 post-equinox period represent the best bulk abundances 

of comet 67P/Churyumov-Gerasimenko. A wide variety of CHO-compounds were discovered and 

their bulk abundances were derived. Finally, these results are compared to abundances of CHO-

bearing molecules in other comets, obtained mostly from ground-based observations and 

modelling. 

Keywords: Jupiter-Family Comets; Rosetta; Organics; Mass Spectrometry, Solar System; Space 

Missions; 

 

 

1. Introduction  

Until the Rosetta mission, space missions targeting comets were generally brief fly-bys through 

the coma or tail. As a consequence, although comets are considered to contain many important 

details about the evolution of our solar system, much of this information was yet to be revealed. 

Most data on the chemical composition of cometary nuclei and comae were obtained using remote 

sensing methods from ground. While ground-based measurement techniques have the advantage 
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of being able to observe many cometary comae, these techniques are usually limited to chemical 

compounds with relatively large dipole moments. For compounds with small dipole moments, 

these techniques result in large uncertainties in the molecular abundances.  

The Rosetta spacecraft, launched in 2004, followed a new approach of long-term encounter and 

close-up investigation of comet 67P/Churyumov-Gerasimenko (hereafter 67P). The spacecraft 

followed the comet throughout most of its orbit around the Sun, thus including observations during 

essential events like the in- and outbound equinoxes and perihelion. With Rosetta, new data about 

comets were collected, with many of the physical and chemical properties revealed for the first 

time.1,2  For example, the complex shape of the nucleus, its very dark surface, and the huge 

variability in the coma were surprising. Further, the richness and complexity of the comet’s organic 

composition were detailed during the two-year encounter. Although a fly-by of the Giotto 

spacecraft already showed the presence of organic molecules up to 100 u/e in comets 3, the 

increased mass resolution and sensitivity of the instruments onboard Rosetta revealed a diversity 

of complex organic molecules far beyond expectations. One year after arrival at the comet, Le Roy 

et al.4 published a chemical inventory of molecules found early in the mission, at a solar distance 

of 3 au, confirming the presence of many organic compounds previously only detected via remote 

ground-based methods. 

The instruments onboard the Rosetta spacecraft included several mass spectrometers. The lander 

Philae had two mass spectrometers, COSAC 5 and Ptolemy 6, which collected information directly 

from the comet surface. Onboard the Rosetta Orbiter, the mass spectrometer COSIMA studied the 

composition of dust grains in the coma, while ROSINA mainly observed the gaseous phase of the 

coma. The ROSINA suite included two mass spectrometers that observed the coma at a wide range 

of distances from the comet surface throughout the two-year encounter. All groups of mass 
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spectrometers performed studies on the chemical composition, and their combined observations 

exhibited both similarities and differences. Altwegg et al.7 provided a detailed summary of these 

studies, including discussion of the presence of CH-, HCN-, and CHO-compounds in the comet. 

In addition, a detailed study on hydrocarbons across several mission phases was performed by 

Schuhmann et al.8, showing the presence of a range of aliphatic and aromatic compounds in the 

coma. 

In this study, a calibration campaign was performed on several CHO-bearing molecules to obtain 

their fragmentation patterns and the detector sensitivity for ROSINA-DFMS mass spectrometer. 

This campaign forms the basis of a detailed identification and quantification of CHO-bearing 

molecules up to 100 u/e in the coma of comet 67P. Furthermore, by combining the laboratory and 

space data, the bulk abundances of CHO-bearing molecules relative to water are determined.  Data 

presented here were compared to results from other cometary studies, as well as modelling results 

of the interstellar medium. Section 2 describes the instrumentation and the laboratory calibration. 

Section 3 applies this laboratory calibration to the space data. Section 4 discusses the conclusions. 

 

2. Methods and Observations 

The ROSINA instrument suite onboard of the Rosetta spacecraft consists of three different sensors. 

The COmetary Pressure Sensor (COPS), measuring the overall density, the Reflectron-type Time-

Of-Flight Mass Spectrometer (RTOF), and the Double Focusing Mass Spectrometer (DFMS).9 

This work focuses on data obtained with DFMS. Consisting of a Mattauch-Herzog-configuration10, 

DFMS has a high mass resolution (3000 at 1% peak height) and a high sensitivity, which together 

with the instrument’s long operation time onboard of Rosetta provide ideal conditions for detailed 
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analysis of the comet’s organic composition. DFMS makes measurements in high- and low-

resolution mode. However, for this study high-resolution mode data are used exclusively. There 

are two nearly exact copies of DFMS: the flight model onboard of the spacecraft and a laboratory 

model with nearly identical properties and identical settings to the flight model. All calibrations 

discussed below were performed with the laboratory model, while the flight model collected space 

data.  

 

2.1 Laboratory Calibration  

For calibration the University of Bern calibration facility CASYMIR (Calibration System for the 

Mass Spectrometer Instrument ROSINA) was used. This facility was developed for measurements 

under space-equivalent conditions. In particular, it is operated in very low density conditions from 

10-10  to 10-6 mbar.11,12  For calibration of DFMS, a series of measurements were performed at three 

different pressure levels, ranging from 10-9 to 10-7 mbar, to derive the fragmentation behavior of 

the compounds and the sensitivity of the instrument to the compounds. 

 

2.1.1 Calibration of Fragmentation 

DFMS uses electron impact ionization to ionize very low energy cometary molecules. Besides 

charging neutral molecules positively, molecular chains may be fragmented into smaller pieces of 

unsaturated or even saturated species through this electron bombardment. Simulation and pre-

flight testing of the DFMS ion source showed that the best performance was achieved at an 

ionization energy of 45 eV. This energy is lower than the 70 eV ionization energy traditionally 
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used in the laboratory to develop molecular fragmentation databases. Fragmentation patterns of 

molecules are affected by the ionization energy.  The patterns directly obtained in the DFMS 

calibrations were thus the primary source for this study. More traditional databases provided 

fragmentation patterns as a secondary option when DFMS calibration measurements could not be 

performed. There were several reasons why some calibration measurements could not be 

performed: (I) Compounds had vapor pressures that were too low, so that vacuum conditions 

applied would not be sufficient for creating the level of gas phase required for calibration. (II) 

Compounds vapor pressures were too high, in some cases leading to unstable pressure conditions, 

difficult to correct with the thermal valve control elements used, or (III) Compounds were 

corrosive and/or poisonous and therefore too dangerous to study. For compounds not measured in 

the DFMS, the Database of the National Institute for Standards and Technology 13 (further referred 

to as NIST) were used. 

DFMS fragmentation patterns are obtained either relative to the total amount of ions or to the most 

abundant fragment. An example of the fragmentation behaviour of methanol in DFMS is provided 

in Table 1 with the corresponding fragmentation pattern in Figure 1.A list of all fragmentation 

values used for this study is found in the appendix.  

High quality fragmentation patterns are essential for identification of molecules in the DFMS space 

data, as fragmentation processes can also lead to formation of molecules present in the volatile 

phase of the comet (e.g. CH2O from CH3OH). This substantially complicates the identification of 

CHO-bearing molecules in the coma. Only molecules showing at least the parent and major 

fragments, as determined from the lab calibration, are classified here as present in the space data. 

In addition, any impact from other compounds sharing fragments of the same mass must be 

subtracted according to the fragmentation pattern. 
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2.1.2 Calibration of DFMS Sensitivity  

The DFMS detector consists of a microchannel plate (MCP) with a position sensitive linear anode 

(Linear Electron Detector Array, LEDA) that has a resolution of 512 pixels. Detailed information 

on the detector is found in Nevejans et al.14 and Balsiger et al.9. The detector together with the 

analyzer show a species (mass)-dependent sensitivity for which a compensation factor, the so-

called sensitivity factor (Appendix A), is derived from calibration measurements. This factor 

(given in cm3) relates the density of the compound in DFMS’s ion source multiplied by the ratio 

of the electron emission current to the ion current on the detector at each pressure level. A detailed 

description of the DFMS sensitivity derivation is found in Le Roy et al.4 

 

Table 1: DFMS fragmentation of methanol 

       Mass (u)           Fragment        Abundance (%)        Error (%) 

13                     CH                        4.05                   1.2 

14                    CH2                     12.60                    3.6 

15                    CH3                   100.00                    0.0 

16                     O                          0.52                    0.2 

17                    OH                        1.23                    0.4 

28                    CO                       14.89                   4.3 

29                   CHO                     50.09                   9.8 

30                  CH2O                      7.22                    2.7 

31                  CH3O                    63.12                  11.9 

32                  CH4O                    39.18                    9.7 

    33                13CH4O                     0.52                    0.2 
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Figure 1: DFMS fragmentation pattern of methanol. Bars represent the degree of 

fragmentation relative to the most abundant fragment (CH3). 

 

All calibration compounds are present in liquid phase at atmospheric pressure and room 

temperature, thus requiring a transformation into gaseous phase for the DFMS measurements. In 

the calibration chamber, samples were exposed to vacuum (< 10-4 mbar) at temperatures of 

< 353.15 K, allowing higher evaporation rates. For this study, calibration of a broad range of CHO-

bearing molecules was performed. However, as the calibration capacity is limited, the main focus 

was on CHO-compounds that were detected in the coma of the comet cf 7 and on compounds 

expected to be present in the coma due to their presence in the interstellar medium or in other 

comets.  

Data obtained from separately performed background measurements were subtracted from the 

calibration output, removing any contribution and contamination from previous calibration runs in 
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CASYMIR or in the instrument. Sensitivity is derived from all ions detected as a function of 

pressure level. Sensitivity calculation for three different pressure levels showed a linear 

correlation. This correlation is approximated using least-square fit in the form of a linear 

regression, with the slope representing the sensitivity factor. 

 

2.2 Space Data Selection 

For this work, DFMS space data from the May 2015 post-equinox period (date: May 21 to June 1, 

2015; mission phase: ESC2–MTP016, STP058 - VSTP111) were selected. This mission phase was 

considered to be the best representation of the organic bulk composition of comet 67P. At a 

heliocentric distance of 1.53 au, the comet was considered close enough to the Sun to enable a 

sufficient outgassing rate, whilst unstable outburst conditions such as those occurring around 

perihelion could be avoided. The distance between the comet and the spacecraft was relatively 

large (~200 km), which is known to have an impact on the DFMS spectra intensities. For the 

derived abundances, the time period from May 21 to June 1 was used, as the spacecraft was located 

over the comet’s southern (summer) hemisphere. Data obtained during spacecraft maneuvers were 

excluded as previous studies indicate that maneuvers lead to the desorption of larger amounts of 

molecules from the spacecraft surface.15 
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2.3 Data Treatment 

The DFMS raw spectra consist of 512 abscissa points (representing the LEDA pixels) with the 

number of detector counts at each pixel. DFMS data analysis requires a use of a mass scale (m/z) 

and a calculation of the number of ions from the detector counts. The number of ions is generally 

calculated over 20s, referring to the default 20s integration time. Also, an individual pixel gain is 

applied, compensating for local variation in the sensitivity of the LEDA pixels. In addition, a 

general gain and a mass dependent detector yield value are applied. The number of ions per species 

is derived from integration of the peak over each pixel. However, in this study a single-Gaussian 

fitting routine was used to fit the peak shapes (fig.2) as this represents the core of the peak very 

well and is a simpler and preferable procedure to separate overlapping peaks in spectra when 

compared to summing the number of ions over each pixel around the peak. 

 

Figure 2: CH4O peak in DFMS high-resolution spectra. For analysis of the CHO-bearing 

molecules a single-Gaussian fitting routine was applied in the spectra. 
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The relative abundances of molecules were calculated using both the DFMS laboratory and space 

data. Therefore, fragmentation and sensitivity, as obtained in calibration, and the number of ions 

per species, as obtained from the space data, are taken into account. The procedure for computing 

the abundance ratios is described in detail for DFMS by Gasc et al.16 

 

 

3. Application to Space Data  

3.1 Presence of CHO-species lighter than 75 u/e  

Analysis of the DFMS space data from May 2015 inbound post-equinox reveals the presence of 

several CHO-bearing compounds. High amounts of CH2O and CH4O are found in the DFMS data 

at 30 u/e (fig.3.a) and 32 u/e (fig.3.b) and can be identified as methanol (CH3OH) and 

formaldehyde (H2CO). Formaldehyde is also a fragmentation product of methanol; however, as 

shown in Figure 1, the level of fragmentation of methanol into formaldehyde is not high enough 

to explain the large amounts present. At 44 u/e, smaller amounts of C2H4O can be found (fig.3.c) 

and identified as acetaldehyde (CH3CHO), while CH2O2 and C2H6O are present at 46 u/e (fig.3.d), 

representing formic acid (HCOOH) and ethanol (C2H5OH). In terms of fragmentation, 

acetaldehyde and ethanol show a pattern similar to methanol and formaldehyde, that is, a loss of 

two single-bonded H-atoms under electron impact causes formation of C2H4O from C2H6O. But 

again, this process is not sufficient to explain the presence of all C2H4O and the high levels of 

C2H4O essentially confirm that acetaldehyde is present in the coma in May 2015.  The peak at 42 

u/e is identified as C2H2O. However, in this case, a fragmentation contribution from almost all 

CHO-bearing molecules of higher mass present is possible. Therefore C2H2O is categorized here 

as a fragmentation product. For the selected measurement period, the presence of propanol and 
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butanol is considered to be likely, as data from other periods shows propanol and butanol in the 

coma of the comet 67P. Le Roy et al.4 and Altwegg et al.7 confirmed the presence of propanol. 

However, neither propanol nor butanol were detected in this study from only the May 2015 data. 

The failure to detect butanol here is considered to be due to low abundances of both molecules and 

the large distance between the comet and the spacecraft, resulting in lower intensities. Both species 

are thus expected to be present, but they are considered hidden in the background and are excluded 

from the calculation of the relative abundances. At mass 58 u/e, C3H6O is present (fig.3.e). For 

this peak, identification based on structural features is difficult as several isomers could be present. 

The most feasible candidate is probably acetone, in agreement with Altwegg et al.7, who identified 

acetone as well.  Furthermore, the presence of acetone in the interstellar medium and on comets is 

very well documented, and therefore in contrast to other isomers like propanal that could be 

present. Differentiation of both compounds via fragmentation pattern should be possible. Propanal 

produces high quantities of fragmentation products around 29 u/e, while acetone shows only very 

little fragmentation around this mass/charge ratio. Instead, for acetone, high quantities of 

fragmentation products occur at 43 u/e. Comparing DFMS spectra at 29 u/e and 43 u/e from May 

2015,  the CHO-peak at 29 u/e appears to be higher than the peak at 43 u/e by roughly a factor 10.  

Hence, the fragmentation values and the sensitivity of propanal were used for calculation of the 

relative abundance. However, the peak at 29u/e has contributions from fragmentation from all 

major CHO-bearing compounds present, hence doesn´t allow unequivocal isomer identification. 

Most likely there is a mixture of both (or more) isomers and the exact ratio must remain 

undetermined.  

A peak at 60 u/e refers to another CHO-bearing compound (fig.3.f). It confirms the presence of 

acetic acid, which proves together with above discussed formic acid, the existence of carboxylic 
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acids in the coma of the comet 67P. At 62 u/e, low amounts of C2H6O2 are present (fig.3.g), 

potentially belonging to ethylene glycol.  

Another peak at 72 u/e (fig.3.h) is identified as C4H8O. For this peak, the fragmentation pattern 

and sensitivity of butanal were used in the analysis. Again, one of several isomers, or a 

combination of them, can be responsible for the peak. In addition to butanal, there is the possible 

presence of its isomers butanaone and propanal, 2-methyl- (isobutanal). The NIST fragmentation 

pattern of butanal and isobutanal are similar. Besides the rather small differences in the fragmental 

abundances, the only major difference is the lack of a fragmentation product at 44 u/e in the 

isobutanal-pattern. Hence, differentiation between these isomers is not possible under the present 

circumstances.  

Another peak at 74 u/e (fig.3.i) is identified as C3H6O2, which would be a known fragmentation 

product of propylene glycol. However, propylene glycol could not be identified in this study (see 

following section),  instead there may be the presence of methyl acetate or an isomer such as 

methyl formate at 74 u/e. Methyl formate is a good candidate because of its presence in the ISM. 

However, the NIST fragmentation pattern of methyl formate shows a different picture, as no 

observable parent peak or peaks of close-by fragments are present in the fragmentation pattern. In 

contrast, the NIST fragmentation pattern of methyl acetate clearly indicates the presence of a 

parent peak. As this is in agreement with the DFMS space data, the fragmentation pattern and 

sensitivity of methyl acetate were used for this study.  
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3.2 Presence of CHO-Species Higher than 75 u/e 

Species of higher masses are difficult to investigate as fluxes from the comet decrease with 

increasing masses and the instrument sensitivities decline. Besides that, the larger distances 

between the comet and the spacecraft in May 2015 result in rather lower intensities compared to 

other mission phases. Nevertheless, the identification campaign was performed up to 100 u/e. The 

conditions for detection of glycolic acid and propylene glycol were considered to be especially 

favorable in May 2015 compared to other periods when strong contributions of C2H4OS and C6H4 

prevented their detection. However, their presence could not be confirmed for the May 2015 period 

and both compounds were considered to be absent or below the estimated detection limit. Further 

investigations were made regarding the presence of glycerol at 92 u/e. Several investigations of 

glycerol in the comet 67P have been performed previously. Altwegg et al.7 suggested the presence 

of toluene instead of glycerol. In fact, the mass/charge ratio of toluene and glycerol are comparable, 

even the measurements in the DFMS high-resolution mode were not sufficient for clear separation 

of both peaks. The calibration of glycerol preformed in this study; however, revealed that 

fragmentation behavior of glycerol is not consistent with the data from May 2015, as major 

fragments are missing. This confirms the findings of Altwegg et al.7, suggesting the peak at 92 u/e 

is due to toluene instead. Table 2 provides a list with all CHO-bearing molecules detected in May 

2015.  

 

 

 

 

 



 15 

Table 2: CHO-bearing molecules present in May 2015 

Integer mass (u)      compound          Interpretation 

29                           COH                   Fragment 

    30                          CH2O              Formaldehyde 

31                          CH3O                  Fragment 

32                          CH4O                  Methanol 

33                          CH5O                  Fragment 

41                          C2HO                  Fragment 

42                         C2H2O                 Fragment 

43                         C2H3O                 Fragment 

   44                         C2H4O              Acetaldehyde 

      45                         C2H5O                 Fragment 

 46                         CH2O2               Formic Acid 

                                      46                          C2H6O                  Ethanol 

                                      57                          C3H5O                 Fragment 

                                      58                         C3H6O          Propanal or Acetone* 

                                      60                         C2H4O2               Acetic Acid 

   62                         C2H6O2           Ethylene Glycol 

                                      70                          C4H6O                 Fragment 

                                      71                         C4H7O                  Fragment 

                                      72                         C4H8O                  Butanal* 

    74                       C3H6O2            Methyl Acetate* 

*  Molecular identification is based on mass/charge ratios, hence the definition of the exact 

structural group is difficult as several stable or semi-stable modifications with the same set of 

elements might appear. Isomerism may occur but cannot be considered here. Therefore, the names 

of the species identified here may not be unique unless identified in earlier studies; see also 4,7. 
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Figure 3.a-i: DFMS spectra of CHO-bearing molecules detected in May 2015 post-equinox-period 

up to mass 100 u. 3.a: Formaldehyde; 3.b: Methanol; 3.c: Acetaldehyde; 3.d: Formic Acid, 

Ethanol; 3.e: Propanal or Acetone; 3.f: Acetic Acid; 3.g: Ethylene Glycol; 3.h: Butanal; 3.i: Methyl 

Acetate; 

 

3.2 Bulk Abundances of CHO-bearing Molecules 

Studies of the abundances of CHO-bearing compounds using ground-observations can be found 

for most types of comets. Also, Le Roy et al.4 calculated abundances relative to water for the comet 



 18 

67P at larger heliocentric distance in 2014, shortly after the spacecraft’s arrival. Table 3 lists the 

abundances relative to water for all CHO-molecules detected up to 100 u/e in the May 2015 post-

equinox period. Formaldehyde and methanol show the highest abundances. Their abundances of 

0.32% and 0.21%, respectively are within 2σ of each other. Other CHO-molecules appear to be 

lower by approximately a factor of 10 compared to methanol and formaldehyde. They cover a 

relatively small range from 0.01% to 0.05% relative to water. In this second group, ethanol and 

acetaldehyde show relatively high abundances of close to 0.05%. Methyl acetate, propanal (or 

acetone), acetic acid and butanal show much lower abundances of less than 0.01% relative to water.  

                          Table 3: Abundances of CHO-bearing molecules (rel. to H2O) 

                       Integer Mass (u)        CHO-molecule               Abundance 

30                   Formaldehyde             (3.2 ± 1.0)∙10-3 

32                   Methanol                     (2.1 ± 0.6)∙10-3 

44                   Acetaldehyde               (4.7 ± 1.7)∙10-4 

46                   Formic acid                  (1.3 ± 0.8)∙10-4 

46                   Ethanol                         (3.9 ± 2.3)∙10-4 

58                   Propanal (Acetone)      (4.7 ± 2.4)∙10-5 

60                   Acetic acid                   (3.4 ± 2.0)∙10-5 

62                   Ethylene glycol           (1.1 ± 0.7)∙10-4 

72                   Butanal                         (9.9 ± 3.2)∙10-5 

74                   Methyl acetate             (2.1 ± 0.7)∙10-5 

                                  18                    Water                           1.00 
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3.3 Comparison to Other Comets and the ISM 

Abundances of methanol and formaldehyde have been summarized broadly for several types of 

comets. Most recently, Bockelée-Morvan and Biver17 published a review of molecular abundances 

in cometary atmospheres, in which values of several CHO-bearing molecules are summarized from 

remote sensing spectroscopic observations. Formaldehyde and Methanol show the highest 

abundances, which is in agreement with our study, but broadly range between 0.6 - 6.2 % 

(methanol-to-water) and 0.13-2.4 % (formaldehyde-to-water). For other CHO-compounds, the 

upper limit appears to be significantly lower, e.g. 0.18 % for formic acid and 0.12% for ethanol.  

Bockelée-Morvan and Biver17 further point out the differences of molecular abundances between 

various types of comets. This is in agreement with values we found in further existing literature: 

For comet Halley (1P) the ratios of methanol to water were found to be 1.8% by Bockelée-Morvan 

et al.18 and Eberhardt et al.19, and 1.7 % by Rubin et al.20. The ratio of formaldehyde to water 

ranges in Halley-type comets from 1.5% 20 to 4% 18. Furthermore, methanol-to-water ratios for 

several long-period comets range from 1.48% in comet C2/2012 F6 21, to 3.9% in comet C/2001 

A2 22. 

For the majority of long-periodic comets methanol-to-water ratios around 2.5% were derived, such 

as for comet Hale-Bopp (C/1995) by Bockelée-Morvan et al.23. For these long period comets, 

formaldehyde-to-water ratios are generally lower, around 1% for comet Hale-Bopp 23 and for 

comet Hyakutake (C/1996-B2) 24. 

The ratios of several other CHO-bearing molecules to water, including formic acid, acetaldehyde, 

and ethylene glycol, have been determined for long-periodic comets. Generally, the highest 

abundances for ethylene glycol-to-water are around 0.3%: Comet Hale-Bopp (0.25%) 25, comet 
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Lemmon (0.24%), and comet Lovejoy (0.35%) 26. Besides these molecules, most other CHO-

bearing molecules in long periodic comets show abundances lower than 0.1% with respect to 

water. Relevant for this study are ratios derived from Jupiter-family comets, given similar short 

periodic orbit and evolutionary conditions to the comet 67P. For those comets, relative abundance 

determinations for minor CHO-bearing molecules are rare. Le Roy et al.4 performed a study on 

the comet 67P, revealing abundances of 0.01% or lower for minor CHO-bearing molecules.  

Like the long period comets, the abundances of methanol and formaldehyde in Jupiter-family 

comets are discussed broadly in the literature. Dello Russo et al.27 provides a detailed and recent 

overview on molecular abundances of CHO-bearing molecules relative to water in Jupiter-family 

comets. The ratios appear to vary significantly among different Jupiter-family comets. The average 

methanol-to-water ratios range from 0.49 % in comet 73P/Schwassmann-Wachmann-C and 0.54 

% in 73P/Schwassmann-Wachmann-B up to 3.48 % in comet 2P/Encke. Values available for 

comet 67P in 2014 show ratios on the lower side of this range, 0.31 to 0.55%, depending on the 

comet hemisphere.4  The abundance of methanol in May 2015 is with 0.21%, hence low compared 

to the 2014 measurement and low compared to other Jupiter family comets. The differences 

between our results and Le Roy et al.4 implies changes in the ratios relative to water over the 

Rosetta investigation period. This is caused by changing conditions when the spacecraft first 

encountered the comet and the post-equinox and pre-perihelion period in May 2015 analyzed here. 

In particular, Le Roy et al.4 noted differences among the hemispheres of the comet and they used 

data from a period when the comet was beyond 3.1 au from the Sun and when the southern 

hemisphere was in winter. Furthermore, among others Hässig et al.28, Fougere et al.29, Läuter et 

al.30 , and Biver et al.31 showed how relative abundances of a multitude of species varied as a 

function of heliocentric distance and spacecraft location at 67P. 
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Figure 4. Comparison of Hasegawa/Herbst ISM model and ROSINA-DFMS. The plot 

shows the intensity of CHO-bearing molecules in the ISM modelled by Hasegawa and Herbst 

(1992) in comparison to the ROSINA-DFMS data from May 2015 at the comet 67P. 

 

In earlier ROSINA studies such as Altwegg et al.7, the presence of large amounts of unsaturated 

species was discussed. Furthermore, this study shows that fragmentation processes in the ion 

source are not sufficient for production of this amounts of molecules with unsaturated C=O bonds 

occurring in form of aldehydes and carboxylic acids. The presence of these compounds is 

important as it might provide hints at a common origin of the material in comets and the ISM. 

Hasegawa and Herbst32 show models of gas-grain chemistry in dense interstellar clouds with 

complex organic molecules. Besides a high number of different organic species investigated in 

this study, some CHO-bearing molecules were taken into account. Figure 4 shows a comparison 

of the CHO-bearing molecules investigated in this study and in the Hasegawa/Herbst model (using 
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results from Model A from Hasegawa and Herbst32). The values are normalized to methanol 

(CH3OH) for better comparison and isomers occurring in the Hasegawa/Herbst model are 

appended to the compounds of same mass. Comparison of the Hasegawa/Herbst model to the 

ROSINA-DFMS results confirms that the investigated compounds are present in both studies, 

including saturated and unsaturated molecules. As can be seen in Figure 4, results from the 

Hasegawa/Herbst model show higher amounts for CHO, H2CO, and CH2O2, with formaldehyde 

being especially enriched compared to ROSINA. CH2HO has similar abundance, while formic 

acid (C2H4O) and ethanol (C2H5OH) are more abundant in the ROSINA data. 

 

4. Conclusions 

A laboratory calibration campaign of ROSINA-DFMS on CHO-bearing molecules was conducted 

to determine the molecular fragmentation pattern and sensitivity of the instrument to the 

molecules. Based on these lab results, a detailed identification and quantification campaign of 

CHO-bearing molecules in the DFMS space data for May 2015 post-equinox period was 

performed. This campaign revealed the presence of CHO-bearing molecules most-likely in the 

form of aldehydes, alcohols, and carboxylic-acids. The abundances of all compounds present were 

calculated relative to water. Formaldehyde and methanol are the most abundant of all CHO-

bearing molecules present, followed by acetaldehyde and ethanol. Other molecules present are 

significantly less abundant and have a maximum of 0.01 % abundance relative to water. The ratios 

of methanol and formaldehyde with respect to water are similar to values derived for other Jupiter-

Family comets but are at the lower end of the range. The abundances are generally lower than the 

ones derived by Le Roy et al.4 for comet 67P using DFMS data from early in the encounter when 
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the comet was far from the Sun and relative water outgassing was lower.cf. 33 The observations here 

are exclusively from a period when the comet was much closer to the Sun and the southern 

hemisphere was in summer. 

The time period here is closer to perihelion, when most ground-based observations of comets 

occur. Therefore, based on the comparison with ground-based measurements of other comets, 67P 

is classified as relatively poor in CHO-bearing species. Therefore, it is important that there are 

future rendezvous with other Jupiter-family comets and detailed comparison between in situ and 

ground-based observations. Similarly, ground-based observations of comets far from the 

perihelion would help confirm the differences in the in situ measurements of CHO-bearing species. 

Finally, concerning CHO-bearing species in comets and the ISM, abundant unsaturated CHO-

bearing species were detected in form of aldehydes and carboxylic acids with unsaturated C=O 

bonds in comet 67P. A comparison to the model of Hasegawa and Herbst32, showing the evolution 

of organics in the ISM, highlights the similarities to the ROSINA data from comet 67P on CHO-

bearing molecules, with a difference in abundance especially for formaldehyde. This difference 

might indicate the conservation of CHO-compounds in comets from earlier solar system formation 

stages.  
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SUPPORTING INFORMATION 

Appendix A: Table with Sensitivity and Fragmentation values as used for this work;  

Appendix B: Fragmentation patterns as used for this work. 
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