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At a Glance Commentary 

Scientific knowledge on the subject

Antibiotic resistance challenges current practice. New antimicrobials approved for clinical 

application are scarce, and this underscores the urgent need for alternative strategies. 

Phage therapy is a promising approach for the treatment of antibiotic resistant bacteria, 

however infection specific, proof-of-concept experimental studies are currently missing. 

What this study adds to the field

We assessed the efficacy of phage therapy for the treatment of experimental ventilator 

associated pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) in 

rats. Phage treatment improved survival compared to placebo and was equally as effective 

as traditional antibiotics in controlling MRSA infection. Combination of phages with antibiotics 

did not further improve outcome in this experimental setting.
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Abstract:

Rationale: Infections caused by multidrug resistant bacteria are a major clinical challenge. 

Phage therapy is a promising alternative antibacterial strategy. 

Objective: To evaluate the efficacy of intravenous phage therapy for the treatment of ventilator 

associated pneumonia due to methicillin-resistant Staphylococcus aureus in rats.

Methods: A randomized blinded controlled experimental study compared intravenous 

teicoplanin (3mg/kg, n=12), a cocktail of four phages (2-3 x 109 plaque forming units/ml of 

2003, 2002, 3A and K, n=12) and combination of both (n=11), given two, 12 and 24 hours after 

induction of pneumonia, then once daily for four days. The primary outcome was survival at 

day four. Secondary outcomes were bacterial and phage densities in lungs and spleen, 

histopathological scoring of infection within the lungs and inflammatory biomarkers in blood.

Measurements and Main Results: Treatment with either phages or teicoplanin increased 

survival from 0% to 58% and 50% respectively (p<0.005). Combination of phage with 

antibiotics did not further improve outcome (45% survival). Animal survival correlated with 

reduced bacterial burden in the lung (1.2 x 106 CFU/g of tissue for survivors versus 1.2 x 109 

CFU/g for non-surviving animals, p<0.0001), as well as improved histopathological outcomes. 

Phage multiplication within the lung occurred during treatment. IL-1β increased for all treatment 

groups over the course of therapy.

Conclusions: Phage therapy was as effective as teicoplanin in improving survival and 

decreasing bacterial load within the lungs of rats infected with methicillin-resistant S. aureus. 

Combining antibiotics with phage therapy did not further improve outcomes.

Key Words: bacteriophage; antibiotic resistance, microbial; pneumonia, ventilator associated.

Abstract word count without key words: 244 
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INTRODUCTION

Ventilator associated pneumonia (VAP) is common in mechanically ventilated patients (1-3). 

The rapid development of antibiotic resistance in this infection setting both challenges 

treatment efficacy and is associated with increased morbidity and mortality (4-6). 

Staphylococcus aureus is consistently being reported as one of the top three pathogens 

isolated in this particular setting (7, 8). Although the rate of methicillin-resistance is decreasing 

worldwide, methicillin-resistant S. aureus (MRSA) still accounts for a significant portion of total 

VAP cases (5-15%) (2, 7, 9); this proportion varies across continents and even across hospitals 

within the same country (2, 9, 10).

The use of bacterial viruses (bacteriophages or phages) as antimicrobials is being actively re-

evaluated as an alternative/complementary strategy to antibiotics, mainly in response to the 

rise in multidrug resistant infections (11, 12). The lack of trials conducted according to 

standards of good practices explains why phages are not yet part of the western 

pharmacopeia. Hence, studies ranging from experimental proof-of-concept to randomized 

controlled clinical trials are necessary to evaluate the potential of phage therapy for the 

treatment of multidrug resistant infections. The first phase I/II multicenter randomized 

controlled study (PhagoBurn) evaluating GMP-phage preparations has recently been 

published (13). PhagoBurn evaluated phage therapy for the treatment of burn wound infections 

due to Pseudomonas aeruginosa and while phages were well tolerated, their efficacy was 

challenged by innate bacterial immunity to phages and low phage titres within the study 

treatment cocktails (14, 15).

To date, many questions are yet to be investigated pertaining to phage therapy, especially in 

the context of pneumonia. For example, no clinical trial has evaluated phage therapy for the 

treatment of pneumonia. Additionally, there is a lack of preclinical data addressing (i) phage 

pharmacokinetics in the lung infection environment, (ii) frequency and mechanism of phage 

resistance selection in vivo, (iii) the effectiveness and appropriateness of phage-antibiotic 

combinations and (iv) the use of clinically validated administrative routes.  
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Accordingly, the goal of the present work was to evaluate the efficacy of phage therapy alone 

and in combination with teicoplanin for the treatment of experimental VAP due to methicillin-

resistant S. aureus (MRSA) in an experimental rat model. Emergence of phage resistance was 

monitored and data documenting phage pharmacokinetics in infected and non-infected 

animals were collected.
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MATERIAL AND METHODS

The ventilator-associated pneumonia model. Male Wistar rats (Crl:WI(Han), Charles River, 

Germany), aged 9-10 weeks (280 – 330g) were housed in specific pathogen-free rooms (12h 

light/dark conditions, 23°C ± 1°, water and nutrition ad libitum). Animal protocols were run in 

accordance with the guidelines of the Swiss Animal Protection Law and were approved by the 

Cantonal Committee on Animal Experiments of the State of Bern (approval BE 83/17).

The VAP model published by Wu et al. (16) was adapted as follows (Fig. 1A). Animals were 

anaesthetized with sevoflurane followed by intraperitoneal injection of 20 µg/kg fentanyl. The 

anaesthetized animals were intubated with a G14 angiocath (Braun, Vasofix) (t-4). Correct 

placement of the endotracheal tube was confirmed using capnometry. A polyurethane catheter 

(PU-065-50, SAI Infusion Technologies) was inserted in the jugular vein and connected to a 

harness with a Luer valve (QuickConnect, SAI Infusion Technologies) for therapeutic 

interventions and blood samplings. Rats were ventilated for four hours (10 mL/kg tidal volume, 

5 cmH2O of positive end-expiratory pressure, 50 breaths/min with FiO2 0.35) on ventilators for 

small animals (VentElite, Harvard Apparatus). After ventilation, animals were infected by 

instillation of 0.15 mL inoculum containing 6-8 x 109 colony forming units (CFU, LD100) of 

stationary phase S. aureus strain AW7 (17) (See online data supplement) into the endotracheal 

tube (t0). Strain AW7 is a clinical MRSA strain producing α-hemolysin, a critical mediator of S. 

aureus pneumonia (18, 19). Immediately after inoculation, animals were extubated and placed 

into separate cages.

Treatment protocol. Two hours (t2) after bacterial challenge, animals were randomly divided 

into four groups (n=10-12) and received: (i) 0.3ml of 0.9%NaCl (control); (ii) an intravenous 

phage cocktail consisting of equal titers (~2-3 x 109 PFU/ml) of phages 2003, 2002, 3A and K; 

(iii) intravenous teicoplanin (3mg/kg); (iv) a combination of both. Each treatment was further 

applied at t12, t24, t48 and t72 (Fig. 1A). We choose a glycopeptide antibiotic as the control 

treatment, as it is the standard of care according to current guidelines (3, 20). We preferred 
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teicoplanin to vancomycin, because besides being equivalent to vancomycin (21, 22), its 

pharmacokinetic profile better matched our phage treatment regimen.

The respective therapies were given blinded (see online data supplement). Seven animals 

instilled with 0.15ml NaCl 0,9% after ventilation (t0) served as the SHAM group and seven 

uninfected animals were administered phages (t2, t12, t24, t48 and t72) for pharmacokinetic 

studies (SHAM+phage).

Blood sampling was performed at catheter insertion (t0), at the start of therapy (t2), t24 and t96. 

In non-surviving animals, blood was collected from animals immediately after death or 

euthanasia (see online data supplement), dissections were performed and lungs and spleens 

were collected. Surviving animals were euthanized at t96 with pentobarbital (150 mg/kg) before 

dissection.

Outcomes. Survival at t96 was the primary outcome. The secondary outcomes were 1) 

bacterial and phage loads in the lungs and spleen; 2) histopathological scoring of pneumonia 

(23); 3) quantification of inflammation biomarkers in the blood and 4) assessment of phage 

resistance. Methods describing secondary outcomes can be in the online data supplement.

Statistics. Log-rank tests were used to assess survival. Animals were divided into two 

mortality groups, Survivors and Non-survivors. Differences between the groups were 

determined using t test, Mann Whitney test, ordinary one- or two-way ANOVA. Corrections for 

multiple pairwise comparisons were achieved using the methods of Tukey (one-way) or Holm-

Sidak (two-way). Analyses were performed using GraphPad Prism (v7) with a significance 

level of p<0.05.
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RESULTS

Phage therapy significantly improves survival in rats with experimental VAP.

The experimental model of VAP was rapidly lethal, with 80% of untreated animals succumbing 

to infection within 12 hours and 100% mortality by 86 hours (Fig. 1B). To assess the efficacy 

of phage therapy in this infection setting, we developed a treatment cocktail consisting of four 

phages with complimentary host-range profiles, which infected 91.6% of S. aureus isolates 

tested (Fig. E1A, online data supplement). Importantly, the combination of multiple phages 

was shown to limit the development of phage resistance in vitro (Fig. E1B, online data 

supplement). Application of the cocktail improved survival compared to placebo (p< 0.001, log-

rank test). All animals treated with phages survived for at least 12 hours following infection and 

58% of the animals survived until the end of the experiment. This was comparable to the effect 

of the standard of care treatment teicoplanin (50% survival, p=0.85). 

The combination of phages and antibiotic did not further improve outcome compared to phage 

or antibiotic alone (45% survival, p=0.57 and 0.74, respectively. Fig 1B). In support of this, we 

did not observe synergy or antagonism for teicoplanin and the phage cocktail in vitro (Fig. E2, 

online data supplement).

Phage therapy controls bacterial load within infected lungs of surviving rats. 

Mortality correlated with high bacterial load within the lung (Fig. 2A). Animals that succumbed 

to infection had 1,000-times more MRSA in the lung when compared to those that survived 

(1.2 x 109 CFU/g verses 1.2 x 106 CFU/g, respectively, p <0.0001, t test). When compared with 

teicoplanin, phages were equally as effective at controlling bacterial loads within the lung of 

infected rats, and combination of phages and antibiotic did not further reduce lung bacterial 

burden (Fig. 2B, no difference between treatment groups, p=0.72, two-way ANOVA). 

Metastasis to the spleen was infrequently detected (13 of 42 spleens tested) and there was no 

difference in spleen bacterial loads between groups based on time-to-mortality (Fig. 2C, p = 

0.30, Mann Whitney test). 
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In the absence of pneumonia, intravenous application of phages did not lead to phage 

accumulation within the lung. However, phages were detected in the lungs of rats with 

pneumonia treated with the phage cocktail, suggesting either amplification and/or persistence 

of phages at the site of infection (Fig. 2D). The average phage load for the lung was higher in 

non-surviving animals, however this was not statistically significant (Fig. 2E, p=0.30, Mann 

Whitney test). Similarly, a positive correlation between CFU/g of lung and PFU/g of lung was 

observed, but this did not reach statistical significance (Fig 2F, r = 0.33, p = 0.12, Pearson two-

tailed correlation test). In the absence of infection, phages were sequestered by the spleen 

(Fig. 2D).

Despite bacterial load reductions within the lungs, phage treatment did not eradicate the 

infection (Fig. 2B). To evaluate selection of phage resistance, which may explain MRSA 

persistence, we performed phage cross-streaking assays using a total of 100 bacterial isolates 

taken from 10 infected lungs of animals treated with phages, and 10 infected lungs from 

animals treated with a combination of phages and antibiotics. All of the MRSA strains tested 

remained susceptible to phage lysis irrespective of rat mortality, suggesting that persistence 

was not due to the evolution of resistance (Fig. 3).

Phage and/or antibiotic therapy is associated with reduced lung damage in surviving 

rats. 

Experimental MRSA VAP resulted in considerable lung damage (Fig. 4A). The lungs of 

ventilated but uninfected rats received a histopathological score of “1” indicating mild injury 

with mild to moderate perivascular and peribronchiolar inflammation and oedema. Application 

of phages in uninfected rats did not result in additional lung damage. All infected rats that 

succumbed to infection early had an average total histopathological score of 2.65 indicating 

moderate to severe disease (Fig. 4B). In contrast, survival was associated with a lower 

histopathological score compared to rats that did not survive (average of 2.06, p> 0.0001, 

representative image Fig. 4C). The score for surviving animals was still higher than that of 

uninfected rats (p= 0.056). More specifically, surviving rats treated with either phages, or 

Page 9 of 35  AJRCCM Articles in Press. Published on 01-July-2019 as 10.1164/rccm.201812-2372OC 

 Copyright © 2019 by the American Thoracic Society 



teicoplanin displayed a reduction in lung damage compared to treated rats that did not survive 

(Fig. 4D, p< 0.05 for both, Holm-Sidak test). The difference between histopathological score 

for survivors and non-survivors treated with a combination of phages and teicoplanin however 

was not significant (Fig. 4D, p= 0.32). Given the importance of staphylococcal exotoxins in this 

infection setting, we also analyzed necrosis independent of other histopathological factors. 

MRSA induced significant necrosis when compared to uninfected SHAM controls. For infected 

animals, high scores for necrosis correlated with poor animal survival (Fig. E3A) and there 

were no differences in necrosis scores between each treatment group (Fig. E3B). To 

characterise this further, we performed rabbit red blood cell (RBC) lysis assays for filtered 

supernatants from phage-exposed cultures as a functional measure of exotoxin production. In 

support of the necrosis data (Fig. E3B), phages had no discernible impact on RBC cell lysis in 

vitro (Fig. E4).   

Lung inflammation correlated with increased cytokines in blood. 

The cytokine profile in blood of MRSA infected rats was different to that of uninfected controls 

(p< 0.01, two-way ANOVA, Fig. 5A). MRSA infection resulted in an increase in two of the six 

pro-inflammatory cytokines tested. IL-6 was increased in MRSA infected rats compared to 

SHAM controls (p< 0.01), and whilst TNFα levels were below the limit of detection in uninfected 

rats, levels were elevated for 22 of the 25 MRSA infected rats. IL-1β levels increased 

significantly in each treatment group over the course of therapy including uninfected animals 

treated with phages (SHAM+phage), which suggests that the IL-1β response is induced by the 

phage in the absence of bacterial infection (Fig. 5B). IL-18, an additional inflammasome marker 

was not detectable in samples after 96 hours of treatment (data not shown). IL-1α increased 

only in MRSA infected animals treated with phages (with or without antibiotic). The levels of 

TNFα and IL-6 returned to baseline levels following 96 hours of treatment (Fig. 5B). IL-10, and 

IL-17A levels did not vary over the course of treatment (data not shown). 

Page 10 of 35 AJRCCM Articles in Press. Published on 01-July-2019 as 10.1164/rccm.201812-2372OC 

 Copyright © 2019 by the American Thoracic Society 



DISCUSSION

Phage therapy is a promising alternative and/or complementary strategy to overcome the rising 

problem of multi-resistant bacteria. Although an increasing amount of data has been generated 

in the last five years, strong pre-clinical evidence and milestone clinical studies are still lacking 

to support its use in human medicine (24, 25). We recently reported a positive effect of a 

cocktail of bacteriophages for the treatment of P. aeruginosa experimental endocarditis (26) 

as part of the Phagoburn clinical trial (13); in the current report, we systematically evaluated 

the efficacy of a new anti-S. aureus phage cocktail for the treatment of VAP in rats.

To better mimic the clinical setting, we adapted a model of VAP previously described by Wu 

et al. by using higher oxygen fraction (0.35 vs 0.21) and by lowering minute-ventilation rates. 

This first enabled us to generate the typical ventilator-induced injuries observed in ICU patients 

as demonstrated by the mild to moderate, perivascular and peribronchiolar inflammation 

reported in ventilated but not infected animals and secondly, these adaptations increased the 

severity of the experimental model, with infected but untreated animals harbouring high 

bacterial loads within the lungs (Fig. 2A). 

Our study has some important implications. First, we could demonstrate that phage therapy 

significantly reduced mortality compared to placebo in a lethal model of staphylococcal 

pneumonia (Fig. 1B). This effect was comparable to that of the standard of care. Similar results 

have been reported in other pneumonia models caused by gram-negative pathogens including 

Klebsiella pneumoniae, Acinetobacter baumannii and P. aeruginosa (14, 15, 27, 28). 

Nevertheless, our report, focusing on a troublesome clinically relevant antibiotic-resistant 

gram-positive pathogen, better emulates the clinical setting, in the way that we first ventilated 

the animals, before infecting them via the endotracheal tube – mimicking bronchoaspiration – 

and then treating them with phages given intravenously as opposed to via intraperitoneal 

injection.

Phages were detected in infected lungs and were not detected in the absence of infection (Fig. 

2B) highlighting the capacity for phages administered in the bloodstream to become 
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concentrated at the site of infection. Additionally, we observed sequestration of phages in the 

spleen of uninfected animals, as has been described in other experimental models (29-31), 

the physiological significance of which remains to be determined. Phage titers did not explain 

early death (ie. one might expect that low titers early on may lead to poor outcomes), however 

this result is confounded by lower bacteria (hosts for phage replication) in the lungs of surviving 

animals.

Moreover, our observation that phage-treated non-infected animals displayed some increase 

in IL1-production raises some concern about the use of phage therapy without a diagnosis or 

high suspicion of VAP. This phenomenon has also been observed in other studies, using other 

experimental settings and different phages (32), which highlights the need for a thorough 

reassessment of the exact impact of induced inflammation upon the clinical course of the 

disease. One obligatory step would be the use of highly purified, toxin free phage preparations 

produced using Good Manufacturing Practices (GMP).

Although phage therapy resulted in a reduction of bacterial densities within the lungs, it neither 

cleared nor cured the infection. This partial microbiological response might be due to either 

limited time of treatment or emergence of bacterial immunity against phages. We did not 

observe the emergence of resistance during short course therapy in vivo, which supports our 

previous observations using an anti-Pseudomonas phage cocktail for the treatment of 

endocarditis (26). In the absence of resistance, survival of bacteria following phage treatment 

may be attributable to a subpopulation of phage-tolerant persister cells; a hypothesis that we 

are currently investigating. Equally concerning, is the observation that the standard-of-care 

antibiotic chosen did not eliminate bacteria from the lung of infected animals. This supports 

claims that glycopeptides, may not be the best antibiotic choice in this infection setting, and 

that others, such as linezolid, which showed clear synergism with phages in vitro (Fig. E2), 

should be considered (33).

In a previous study, Yilmaz and colleagues reported synergy between teicoplanin and phages 

for the treatment of MRSA biofilms in an experimental implant-related infection model in rats 
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(34). In the current report, we did not observe improved outcomes for rats treated with a 

combination of anti-S. aureus phages and teicoplanin for the treatment of pneumonia. This 

correlates with research from others focusing on pneumonia due to K. pneumoniae (27), 

suggesting that synergism between phage and antibiotics is perhaps infection setting 

dependent. 

In addition, we found that mortality correlated not only with bacterial density within the lung 

(Fig. 2A), but also with lung tissue necrosis (Fig. E3). It is apparent that phage administration 

did not prevent or limit tissue necrosis or limit exotoxin production (Fig. E4), raising the question 

as to whether treatment outcomes could be further improved using adjunctive anti-toxin 

strategies such as protein synthesis inhibitors or anti-alpha toxin immunotherapeutics.  

Our study has some limitations. First, we used a rapidly lethal model of pneumonia, whereas 

the overall mortality of ventilator associated pneumonia in humans is much lower at around 10 

– 17% (35). As such, we plan to evaluate phage therapy in the future in less acute models of 

pneumonia, settings where longer courses of treatment are possible, which will likely provide 

further insights into phage pharmacodynamics and the development of bacterial phage 

immunity in vivo. 

Second, despite what we perceived to be good bioavailability of phages in the lung, we could 

not eradicate the infection. It is not yet clear how often phages should be given. We 

administered them once daily, since we expected phage amplification at the site of infection to 

be enough to decrease bacterial load. It is possible that we did not reach the optimal multiplicity 

of infection (MOI) appropriate to combat the high bacterial burden within the lungs. Further 

experiments are needed to evaluate the potential benefit of more frequent phage delivery 

and/or the application of more highly concentrated phage cocktails. 

In addition to more frequent application of phages, the route of administration could be 

optimised. For instance, aerosolisation could be used to deliver more phages to densely 

infected lung tissues. Aerosols are currently being used in mechanically ventilated patients to 

treat pneumonia (36) and previous studies succeeded in delivering anti-Pseudomonas phages 
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to the lung (28). Currently, no such report exists for anti-S. aureus phages. Moreover, the 

encapsulation of anti-Gram negative bacteriophages in phospholipid vesicles (37) and 

polymeric microparticles (28) effectively concentrated phages in the lung and these processes 

should be evaluated for anti-S. aureus phages. 

A well-known limitation of phage therapy is its narrow spectrum of activity (38). This caveat 

has clearly been demonstrated in the PhagoBurn study, where patients harbouring a resistant 

strain at the beginning of the treatment could not be cured from the wound infection. In the 

case of VAP, which often begins with prior colonisation (39), we may have the benefit of a time 

window of opportunity to personalize the phage treatment for the patients strain prior to the 

initiation of therapy.

Conclusions

Phage therapy significantly improved outcome compared to placebo and was equivalent to 

antibiotic in controlling MRSA-ventilator associated pneumonia. This study was the first to 

explore phage therapy for the treatment of MRSA experimental VAP. However, many 

questions remain unanswered, which preclude its immediate clinical implementation. Further 

studies are needed to assess whether alternative administration approaches, such as phage 

aerosolisation or other antibiotic-phage combinations (ie. using protein synthesis inhibitors as 

opposed to cell wall inhibitors), could further improve the efficacy of this therapy. 
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FIGURES

Figure 1. Survival of rats with MRSA VAP treated with phage, antibiotics or a 
combination of both. Study design of the VAP model with sampling time points (A). Kaplan-

Meier survival curves for animals with MRSA VAP that were untreated (n= 10), treated with 

the phage cocktail (n= 12), treated with the conventional antibiotic, teicoplanin, (n= 12) or a 

combination of both (n= 11) (B).
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Figure 2. Bacterial and phage loads in the lung and spleen of animals with experimental 
MRSA VAP. Animals were divided into two groups based on mortality: non-survivors and 

survivors. Bacterial burden for the lungs of rats infected with MRSA. Significance was 

determined using t test, **** p < 0.0001 (A). Comparative analysis of lung bacterial load for 

rats treated with phages, teicoplanin, or a combination of both (B). Bacterial burden for the 

spleen of rats infected with MRSA (C). Phage titres for the lung and spleen (D). Comparative 

analysis of phage burden for the lung of non-surviving and surviving rats. The p-value was 

determined using t test (E). Correlation analysis between lung phage titres and bacterial loads. 

Pearson 2-tailed correlation test, r = 0.33, p = 0.12. Line of best fit represented in black (F). 
For each panel, data are summarised using the mean (solid black lines), and the limit of 

detection for each organ is represented by dotted black lines. Abbreviations: CFU, colony 

forming units; PFU, plaque forming units; Teico, Teicoplanin. 
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Figure 3. Determination of phage susceptibilities for bacteria isolated from the lungs of 
phage treated rats. One hundred bacterial colonies were tested for phage resistance using 

cross streak assays. All isolates were susceptible to the phage based on the absence of growth 

in the phage streak. Four representative colonies are shown. 

Page 17 of 35  AJRCCM Articles in Press. Published on 01-July-2019 as 10.1164/rccm.201812-2372OC 

 Copyright © 2019 by the American Thoracic Society 



Figure 4. Histopathogical scoring of lung tissue following MRSA VAP. Rat lung inoculated 

with MRSA (untreated control) showing a necrotic bronchiolus (arrows) with intraluminal 

bacterial colonies (*), which invade surrounding, necrotic alveoli (A). Scoring for lung 

histopathology was published by Montgomery et al(23). A score of 1, 2, 3 represents mild, 

moderate or severe pneumonia, respectively. Significant differences were determined using 

one-way ANOVA with multiple comparisons using the method of Tukey. *** p < 0.0005, **** p 

< 0.0001 (B). Lung 96 hours after MRSA inoculation followed by phage therapy displaying a 

hyperplastic bronchiolus (regeneration, arrow) filled with and surrounded by many 

inflammatory cells (neutrophilic granulocytes, macrophages) that display a good immune 

response and few bacterial micro-colonies (*) (C). Comparative analysis of non-surviving and 

surviving animals following treatment. Significant differences were determined using two-way 

ANOVA with multiple comparisons using the method of Holm and Sidak. As none of the 

untreated animals survived, the MRSA group was excluded from the two-way ANOVA. * p < 

0.05, ** p < 0.01. (D). A and C are representative images of 200x HPF (high power field) 

magnification. For B and D, animals that died are represented by crosses, and those that 

survived are represented by closed circles. Black lines represent the mean. 
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Figure 5. Evaluation of inflammatory biomarkers for rats with experimental MRSA VAP. 
Concentration of select cytokines in the blood of rats following two hours of MRSA pneumonia 

(black bars, n=25) compared to uninfected controls (SHAM, white bars, n=12). Significant 

differences were determined using two-way ANOVA with multiple comparisons using the 

method of Holm and Sidak, ** p < 0.01. # indicates that levels were below the limit of detection 

(A). Cytokine concentration dynamics in the blood of late death/surviving rats following MRSA 

VAP (t0) and treatment with phages (n=7) or teicoplanin (n=6) or combination of both (n=5), as 
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well as uninfected controls (SHAM, n=5), and uninfected controls treated with phages 

(SHAM+phage, n=7) (B). For each panel, data represent the mean and standard error. 
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MATERIAL AND METHODS

Bacteria and Phages 

Bacterial strain and growth conditions. MRSA strain AW7 was isolated from a patient with 

bacteremia (1-3). The strain is representative of sequence type 247 as determined by whole-

genome sequencing (CC8, SCCmecI [1B], hlgABC+, lukDE+, sea+, scn+, PVL-). Importantly, 

AW7 produces α-hemolysin, which is a critical mediator of S. aureus pneumonia (4-6). In 

addition to beta lactam resistance, the genome harbors resistance determinants for 

aminoglycosides, tetracyclines, macrolides and chloramphenicol. AW7 was stored frozen in 

Tryptic Soy Broth (TSB) containing 10% (v/v) glycerol at -80oC and sub-cultured on Tryptic 

Soy Agar (TSA) plates to ensure purity before testing. For liquid culture, TSB was inoculated 

with at least five single colonies and incubated for 24 hours with agitation (200 rpm) at 37oC. 

Bacteriophages. Phages K and 3A were purchased from the University of Laval, Québec 

(https://www.phage.ulaval.ca/en/phages-catalog/). Phage 2003 was isolated from the 

staphylococcal phage product of the Eliava Institute of Bacteriophages, Microbiology and 

Virology, Tbilissi, Georgia. Briefly, serial dilutions of the phage product were mixed with 

S. aureus strain 8325-4 and grown in double-layer TSA plates. A single plaque was excised, 

resuspended in 2 mL of sterile saline, and then passed through a 0.45 µm syringe filter. The 

method was repeated three times to ensure isolation of a single phage. Phage 2002 was 

isolated from sewage water (Vidy wastewater treatment plants, Lausanne, Switzerland). 

Briefly, a sample of wastewater was added to a mixture of five different S. aureus strains 

(S144-1, S47-1, Bk, G04 and Jn) in liquid culture then plated in double-layer TSA plates. A 

single plaque was excised and the phage was purified as described above for Phage 2003. 

To produce large quantities of phage, amplification was performed in double-layer agar 

plates using S. aureus strain 8325-4 as a susceptible host. For each agar plate, the soft layer 

containing phages was scraped and suspended in 10 ml of sterile saline, homogenized by 

vortex then centrifuged at 4000 rpm for 40 minutes. The supernatant containing phages was 

then passed through a 0.45 µm filter. The concentration of the phage preparation was 

determined using double-layer assays. The host-range of each phage from the cocktail was 

determined in double layer-assays for 83 diverse S. aureus isolates.

Assessment of phage resistance development. S. aureus AW7 was infected with each of 

the four phages independently, as well as with a multiphage cocktail at a multiplicity of 

infection (MOI) of 0.1 in 96-well plates. Plates were incubated at 37°C for 24h. Optical 

density (OD595) was recorded every ten minutes. 
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Checkerboard assay. Phage-antibiotic synergy was determined using checkerboard 

assays. Briefly, two-fold dilutions of teicoplanin beginning at 32 µg/ml, and ten-fold dilutions 

of the phage cocktail starting at a concentration of ~2x107 PFU/ml were prepared in sterile 

TSB. Decreasing concentrations of teicoplanin (50 µl volumes) were distributed along 

columns of a 96 well plate, and decreasing concentrations of phage (also 50 µl volumes) 

were distributed along rows. A suspension of S. aureus AW7 (~1x106 CFU/ml) was prepared 

in sterile TSB, and 100 µl was distributed into each well (total volume 200 µl in each well, 

final inoculum 5x105 CFU/ml). Each well from one column served as a growth control (no 

antibiotic or phage), and a second column was not inoculated with bacteria (no growth 

control). The lowest concentration of phage, antibiotic and the combination of both to inhibit 

bacterial growth was determined by assessing turbidity with an unaided eye, as defined by 

European Committee on Antimicrobial Susceptibility Testing guidelines.

Rabbit red blood cell lysis assay.  S. aureus AW7 was grown to mid-exponential phase, at 

which point cells were treated with sub inhibitory concentrations (1/4 of the MIC) of antibiotics 

and phages alone or in combination for 6 hours (teicoplanin 0.125 ug/ml, linezolid 0.25 ug/ml, 

phages at an MOI of 0.001). Cultures were centrifuged and supernatants were filter 

sterilized. Rabbit red blood cell lysis experiments using filtered supernatants were then 

performed as described previously (7). Four biological replicates were performed for each 

experimental condition. Linezolid reduces exotoxin production in S. aureus and was included 

as a control. 

Experimental model of ventilator associated pneumonia in rats (additional 
information)

Power calculation. In order to perform a power calculation, we hypothesized that treatment 

with phages and standard antibiotic therapy would increase survival from 20% to 80% within 

4 days (primary outcome). These estimates, with an alpha=0.05 and a power (1-β) = 0.8 

required a sample size of 13 per group (Power analysis performed with SigmaPlot 12.0, 

module “Sample Size for Proportion”). Not all of the animals were fit enough to be 

randomized following surgery as determined by the Cantonal Committee on Animal 

Experiments of the State of Bern (approval BE 83/17), thus the sample sizes for each group 

were 10-12 animals.

Page 27 of 35  AJRCCM Articles in Press. Published on 01-July-2019 as 10.1164/rccm.201812-2372OC 

 Copyright © 2019 by the American Thoracic Society 



4

Blinding Procedure. Treatment syringes (phages, antibiotic or a combination of both) as 

well as placebo control syringes (0.9% NaCl) were prepared and four doses were packaged 

into unmarked envelopes. Envelopes were randomly delivered to the surgeon prior to the 

initiation of therapy by an independent researcher who did not participate further in the study. 

Criteria for Euthanasia. Animal welfare was determined at least three times per day using 

an in-house Welfare Score Sheet for Rodents, which is summarised in Table 1. Animals 

were excluded from randomisation if they showed persistent respiratory instability, missing 

reflexes as measured by a failure to withdraw from painful stimulus, or an inability to remain 

upright two hours after anesthesia. Animals were euthanized if the total score was greater 

than ‘1’ or if body weight decreased by more than 20%. 

Table 1. Welfare Score Sheet for Rodents 

Secondary outcomes

Bacterial and phage loads in tissues and blood. Bacterial loads were determined from 

heparinized blood and organs. Organs were first mechanically homogenized in weight-

adapted volumes of 0.9% NaCl (2 ml for spleens, 3 ml for lungs). Samples were serially 

diluted and plated onto TSA. Plates were incubated at 37°C and colonies were counted the 

following day. Phage loads were determined using double-layer agar plates, whereby the top 

agar layer consisted of 100 µl of diluted sample and 3.0 x 107 CFU of MRSA AW7. Plates 

were incubated at 37°C and plaques were counted the following day.

Histopathology and histopathological grading. Cranial and caudal tissue samples of the 

right and left lung from each rat were fixed in 10% neutral buffered formalin for 24 hours and 

embedded in paraffin. Blocks were sectioned and slides were stained with hematoxylin and 

eosin (H&E). On H&E-stained sections, morphologic changes were recorded as previously 

Observation Details Score
Attitude BAR (bright/active/responsive) 0.0
 Burrowing or hiding, quiet but rouses when touched 0.1

 Markedly diminished exploratory activity when assessed for neurobehavioral score, 
vocalizes or aggressive when touched 0.4

Porphyrins None 0.0
Mild around eyes and/or nostrils 0.1

 Obvious on face and/or paws 0.4
Gait and Posture Normal 0.0

Mild incoordination when stimulated, hunched posture, mild piloerection 0.1
 Obvious ataxia or head tilt, hunching, drags one or both limbs, severe piloerection 0.4
Weight Weight gain or weight loss < 5% 0.0
 Weight loss 5 – 10 % 0.1
 Weight loss > 10 % 0.4
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described Montgomery et al(8). Microscopic evaluation was performed in a blinded fashion 

without knowledge of treatment group by a European board certified veterinary pathologist 

(CG).

Inflammatory Cytokine Analysis. Heparinized blood was centrifuged at 2,000 g for 5 

minutes, and the plasma was frozen at –80°C for future analysis. Plasma concentrations of 

inflammation biomarkers interleukin (IL)–6, IL-1α, IL-1β, IL-10, IL-17A, IL-18 and tumor 

necrosis factor (TNF)–α were determined by microsphere-based multiplex immunoassay 

(BioRad, BioPlex pro Luminex Assay USA) on the Luminex platform according to the 

recommendations of the manufacturer.

Phage resistance assays. Phage cross streak assays were performed to assess phage 

resistance as described previously by Duerkop et al.(9). Briefly, 50 µl of the phage cocktail 

was streaked in a straight line across the surface of a TSA plate. Single colonies harvested 

from lung tissue homogenates were resuspended in 20 µl of sterile PBS then 5µl of the 

suspension was streaked across the plate intersecting the phage in a perpendicular 

arrangement. Plates were incubated overnight at 37°C and susceptibility was determined by 

the absence of bacterial growth within the phage streak. Five colonies from each of ten lungs 

(n=50) from animals treated with phage, and the same from animals treated with a 

combination of phage and antibiotics were tested.
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Figure E1. Characterization of the anti-Staphylococcus aureus phages used in this 
study. Host-range determination for each phage against 83 staphylococcal isolates from 
diverse sources (A). In vitro assessment of phage resistance development. S. aureus AW7 
was infected with each of the four phages independently, as well as with a multiphage 
cocktail at a multiplicity of infection (MOI) of 0.1. Optical density (OD595) was recorded every 
ten minutes. Data are presented as the mean (line) ± SEM (fill) from 4-5 replicates (B).
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Figure E2. Determination of phage-antibiotic synergism/antagonism for 
Staphylococcus aureus strain AW7. The minimum inhibitory concentration (MIC) for 
teicoplanin was 0.5 μg/mL (red box) and the minimal inhibitory multiplicity of infection 
(MIMOI) for the phage cocktail was 0.01 (blue box). No synergy between phages and 
teicoplanin was observed (A).  The MIC for Linezolid was 1.0 μg/mL (orange box). The 
combination of phages at an MOI of 0.0001 and linezolid at 0.25X the MIC inhibited growth 
(yellow box), indicating synergism (B). +, growth control; -, uninoculated control; MOI, 
multiplicity of infection. 
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Figure E3. Necrosis scoring of lung tissue following MRSA VAP. Necrosis of lung tissue 
was scored as follows: 0, no necrosis; 1, mild necrosis (1-9%); 2, moderate necrosis (10-
50% of the sample); 3, severe necrosis (>50% of the sample) (A). Comparison of Necrosis 
scores for the lungs of animals treated with phages, teicoplanin or a combination of both (B). 
Bars represent the mean. 
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Figure E4. Functional assessment of exotoxin activity as inferred from rabbit red 
blood cell lysis. Cultures of S. aureus AW7 were exposed to sub inhibitory concentrations 
of antibiotics and/or phages for six hours. Serial dilutions of filtered supernatants were then 
added to rabbit red blood cells at various dilutions and lysis was monitored by assessing 
optical density (550nm). Linezolid, which reduces exotoxin production in S. aureus, was 
included as a control. Data are represented by the mean and standard error of four biological 
replicates.  
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