Article

Integral Flow Modelling Approach for Surface Water-Groundwater Interactions along a Rippled Streambed

Tabea Broecker ${ }^{\text {1,* }}$, Katharina Teuber ${ }^{1}$, Vahid Sobhi Gollo ${ }^{1}$, Gunnar Nützmann ${ }^{2,3}$, Jörg Lewandowski ${ }^{2,3}$ © and Reinhard Hinkelmann ${ }^{1}$
1 Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, 13355 Berlin, Germany
2 Ecohydrology Department, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
3 Geography Department, Humboldt-University Berlin, 10099 Berlin, Germany
* Correspondence: tabea.broecker@uwi.tu-berlin.de; Tel.: +30-314-72-444

Received: 18 June 2019; Accepted: 16 July 2019; Published: 22 July 2019

Abstract

Exchange processes of surface and groundwater are important for the management of water quantity and quality as well as for the ecological functioning. In contrast to most numerical simulations using coupled models to investigate these processes, we present a novel integral formulation for the sediment-water-interface. The computational fluid dynamics (CFD) model OpenFOAM was used to solve an extended version of the three-dimensional Navier-Stokes equations which is also applicable in non-Darcy-flow layers. Simulations were conducted to determine the influence of ripple morphologies and surface hydraulics on the flow processes within the hyporheic zone for a sandy and for a gravel sediment. In- and outflowing exchange fluxes along a ripple were determined for each case. The results indicate that larger grain size diameters, as well as ripple distances, increased hyporheic exchange fluxes significantly. For higher ripple dimensions, no clear relationship to hyporheic exchange was found. Larger ripple lengths decreased the hyporheic exchange fluxes due to less turbulence between the ripples. For all cases with sand, non-Darcy-flow was observed at an upper layer of the ripple, whereas for gravel non-Darcy-flow was recognized nearly down to the bottom boundary. Moreover, the sediment grain sizes influenced also the surface water flow significantly.

Keywords: groundwater-surface water interactions; integral model; computational fluid dynamics; hyporheic zone; OpenFOAM; ripples

1. Introduction

Hyporheic exchange-the exchange of stream and shallow subsurface water-is controlled by pressure gradients along the streambed surface and subsurface groundwater gradients. Over multiple scales, the bedform induced hyporheic exchange was identified as a crucial process for the biogeochemistry and ecology of rivers [1-10]. On large and intermediate scales, stream stage differences, meander loops or bars can generate hyporheic exchange. Accordingly, it is possible to control surface water-groundwater exchange by river stage manipulation e.g., to manage the inflow of saline groundwater into a river [11]. A decrease of the groundwater level, in turn, impacts surface water infiltration up to a maximum where groundwater and surface water are disconnected. This condition is achieved when the clogging layer does not cross the top of the capillary zone above the water table [12]. On small scales, river sediments usually form topographic features such as dunes or ripples. The flowing fluid encounters an uneven surface on the permeable streambed, which results in an irregular pattern in the pressure along that surface and induces hyporheic exchange [11-13].

Within theoretical, experimental, and computational studies the general mechanics of the bedform induced hyporheic exchange were examined over the past decades. By manipulating streambed morphology, stream discharge, and groundwater flow, experiments have been used to study driving forces for the hyporheic exchange intensively [14-17]. At submerged structures such as pool-riffle sequences or ripples, turbulences, eddies or hydraulic jumps may occur. Packman et al. [15], Tonina and Buffington [18], Voermans et al. [19] and other studies showed, that turbulence influences hyporheic exchange and should not be ignored. Facing these complex three-dimensional flow dynamics at the sediment-water interface, it can be challenging to establish suitable flume experiments or field studies. Computational fluid dynamics has proven to be a viable alternative. The majority of these studies have focused on surface-subsurface coupled models. Reasons for the application of different models for the surface and the subsurface are for example the strong temporal variability in streams including relatively high velocities, whereas the velocities and temporal variabilities in the groundwater are usually several orders of magnitude smaller, leading to different applied equations for the stream and the subsurface. Often, the two computational domains are linked by pressure. Pressure distributions from a surface water model are consequently used for a coupled groundwater model [20-26]. However, also fully coupled models such as the Integrated Hydrology Model [27] or HydroGeoSphere have already been successfully applied [28-30]. Within these models, open channel flow is described by the two-dimensional diffusion-wave approximation of the St. Venant equations, whereas the three-dimensional Richards equation is used for the subsurface. Water and solute exchange flux terms enable to simultaneously solve one system of equations for both flow regimes.

For many coupled surface-subsurface models, the Darcy law is applied within the sediment. However, especially for coarse bed rivers, this law may cause errors in the presence of non-Darcy hyporheic flow [15]. Following Bear [31], the linear assumption of the Darcy law is only valid if the Reynolds number does not exceed a value between 1 and 10. Applying Darcy's law in non-Darcy-flow areas leads to an overestimating of groundwater flow rates [32]. Packman et al. [15] investigated hyporheic exchange through gravel beds with dune-like morphologies and applied the modified Elliot and Brooks model [33]. They realized that the model did not perform well-among other reasons-due to non-Darcy flow in the near-surface sediment which was not considered in the model. One possible solution to model groundwater in non-Darcy-flow areas is e.g., to use the Darcy-Brinkmann equation instead of the Darcy law. However, there is an additional parameter-the effective viscosity-which has to be determined.

In the present study, an extended version of the three-dimensional Navier-Stokes equations after Oxtoby et al. [34] is used for the whole system comprising the stream as well as the subsurface. For the application in the groundwater, sediment porosity, as well as an additional drag term, are included into the Navier-Stokes equations. The model is consequently also applicable for high Reynolds numbers within the subsurface where the Darcy law cannot be applied. To our knowledge, this solver was never used for the hyporheic zone before. We apply the new integral solver to evaluate the effect of ripple geometries and surface hydraulics on hyporheic exchange processes, based on the study by Broecker et al. [35] who investigated free surface flow and tracer retention over streambeds and ripples without considering the subsurface. In Broecker et al. [35] the three-dimensional Navier-Stokes equations were solved in combination with an implemented transport equation. In that study, ripple sizes, spacing as well as flow velocities affected pressure gradients and tracer retention considerably. Seven simulation cases were examined varying ripple height, length, distance, and flow rate. The investigated ripple geometries and flow rates are mainly transferred to the present study. Only case 6 is not used for the present study, as the irregular distance between the ripples gave no significant new findings compared to equal distances [35]. In contrast to Broecker et al. [35], the present study examines both free surface flow and subsurface flow. The aim of the present study is to evaluate the impact of ripple dimensions, lengths, spacing and surface velocity on flow dynamics within the hyporheic zone using a new integral model.

2. Materials and Methods

2. Materials and Methods

2.1. Geometry and Mesth

 fit
 FFigure 1.

Figure 1. Model geometry and initial condition for the water level (sediment: yellow, water: blue, air:
 gray); top: front view, bottom right: cross-section.
The mesh has been discretized using the three-dimensional finite element mesh generator gmsh.

 aimehtse sumbsorlacin,

 were observed for the air-phase, which is not of interest for our simulations.

Table 1. Simulation cases including ripple geometries and flow rates.

Table 1. Simulation cases including ripple geometries and flow rates.						
Case (Reference fase)						
ripple height (cmse	(Refeffence Case)	2.4	${ }_{11.2}$	4.6	55	${ }^{6} 5$
rippleifenth (criht (cm)	${ }^{20} 5.6$	1.4	11.2	5.6	5.620	$5.6{ }^{20}$
ripple distance $(\mathrm{cm})(\mathrm{cm})$		55				
flowipplengeth (cm)	0.520	8.5	0		20.5	20.25
flow rate ($\mathrm{m}^{3} / \mathrm{s}$)	0.5	0.5	0.5	0.5	0.5	0.25

2.2. Torsimutatelqxalange processes of surface water and groundwater, the open source software Open Source Field Operation and Manipulation (OpenFOAM) version 2.4.0 has been used. A solver called "porous simpliate exchange processes of surface water and grgundwater the 9 pen source software Open Source Field Operation and Manipulation (OpenFOAM) version 2.4.0 has been used. A solver called "porousInter" has been applied. This solver was developed by Oxtoby et al. [34] and is based
interFoam solver by OpenFOAM. PorousInter is a multiphase solver for immiscible fluids and extends the three-dimensional Navier-Stokes equations by the consideration of soil porosity and effective grain size diameter. For our simulations two phases-water and air-are considered to allow water level fluctuations. Since the porousInter-solver does not account for the solid fraction of the soil, values that are represented by [] ${ }^{\mathrm{f}}$ are averaged only over the pore space volume. The conservation of mass and momentum are defined after Oxtoby et al. [34] as:

Mass conservation equation

$$
\begin{equation*}
\varphi \nabla \cdot[\overrightarrow{\mathrm{U}}]^{\mathrm{f}}=0 \tag{1}
\end{equation*}
$$

Momentum conservation equation

$$
\begin{equation*}
\varphi\left(\frac{\partial[\rho]^{\mathrm{f}}[\overrightarrow{\mathrm{U}}]^{\mathrm{f}}}{\partial \mathrm{t}}+\cdot[\overrightarrow{\mathrm{U}}]{ }^{\mathrm{f}} \nabla\left([\rho]^{\mathrm{f}}[\overrightarrow{\mathrm{U}}]\right)\right)=-\varphi \nabla[\mathrm{p}]^{\mathrm{f}}+\varphi[\mu]^{\mathrm{f}} \nabla^{2}[\overrightarrow{\mathrm{U}}]{ }^{\mathrm{f}}+\varphi[\rho]^{\mathrm{f}} \overrightarrow{\mathrm{~g}}+\mathrm{D} \tag{2}
\end{equation*}
$$

where φ is the soil porosity $(-) ; \vec{U}$ is the velocity $(\mathrm{m} / \mathrm{s}) ; \rho$ is the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right) ; \mathrm{t}$ is time $(\mathrm{s}) ; \mathrm{p}$ is pressure (Pa); μ is the dynamic viscosity ($\mathrm{Ns} / \mathrm{m}^{2}$), g is the gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right.$) and D an additional drag term $\left(\mathrm{kg} /\left(\mathrm{m}^{2} \mathrm{~s}^{2}\right)\right)$. The drag term was developed by Ergun [37] and accounts for momentum loss by means of fluid friction with the porous medium and flow recirculation within the sediment. To consider flow recirculation, an effective added mass coefficient is included after van Gent [38]. The porous drag term is defined as:

$$
\begin{equation*}
D=-\left(150 \frac{1-\varphi}{\mathrm{d}_{\mathrm{p}} \varphi}[\mu]^{\mathrm{f}}+1.75[\rho]^{\mathrm{f}}[\overrightarrow{\mathrm{U}}]^{\mathrm{f}}\right) \frac{1-\varphi}{\mathrm{d}_{\mathrm{p}}}[\overrightarrow{\mathrm{U}}]^{\mathrm{f}}-0.34 \frac{1-\varphi}{\varphi} \frac{[\rho]^{\mathrm{f}} \partial\left[\overrightarrow{\mathrm{U}}^{\mathrm{f}}\right]^{\mathrm{f}}}{\partial \mathrm{t}} \tag{3}
\end{equation*}
$$

with $d_{p}(m)$ as effective grain size diameter.
PorousInter uses the volume of fluid (VOF) approach. Consequently, multiple phases are treated as one fluid with changing properties [39]. The indicator fraction $\alpha(-)$ varies between zero for the air phase and one for the water phase. The water-air interface is captured by a convective transport equation:

$$
\begin{equation*}
\varphi \frac{\partial[\alpha]^{\mathrm{f}}}{\partial \mathrm{t}}+\varphi \nabla \cdot\left([\alpha]^{\mathrm{f}}[\overrightarrow{\mathrm{U}}]^{\mathrm{f}}\right)=0 \tag{4}
\end{equation*}
$$

The dynamic viscosity and the density of each fluid are calculated according to their fraction as:

$$
\begin{align*}
& \mu=\alpha \mu_{\mathrm{w}}+\mu_{\mathrm{a}}(1-\alpha) \tag{5}\\
& \rho=\alpha \rho_{\mathrm{w}}+\rho_{\mathrm{a}}(1-\alpha) \tag{6}
\end{align*}
$$

The subscripts w and a denote the fluids water and air.

2.3. Turbulence

Turbulent properties have been captured by a large eddy simulation (LES) turbulence model (see also Section 3.1). Eddies up to a certain size were consequently directly resolved, whereas for small eddies a subgrid model is used. For the present study, the Smagorinski subgrid scale model [40] has been applied.

A measure $M(\vec{x}, t)$ for the turbulence resolution was calculated after Pope [36]:

$$
\begin{equation*}
\mathrm{M}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\frac{\mathrm{k}_{\mathrm{r}}(\overrightarrow{\mathrm{x}}, \mathrm{t})}{\mathrm{K}(\overrightarrow{\mathrm{x}}, \mathrm{t})+\mathrm{k}_{\mathrm{r}}(\overrightarrow{\mathrm{x}}, \mathrm{t})} \tag{7}
\end{equation*}
$$

where $K(\vec{x}, t)$ defines the turbulent kinetic energy of the resolved motions by:

$$
\begin{equation*}
\mathrm{K}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\frac{1}{2}\left(\overrightarrow{\mathrm{U}}-\overrightarrow{\mathrm{U}}_{\text {mean }}\right)\left(\overrightarrow{\mathrm{U}}-\overrightarrow{\mathrm{U}}_{\text {mean }}\right) \tag{8}
\end{equation*}
$$

and $\mathrm{k}_{\mathrm{r}}(\vec{x}, t)$ defines the turbulent kinetic energy of the residual motions. The solver by Oxtoby et al. [34] and $\mathrm{k}_{\mathrm{r}}(\overrightarrow{\mathrm{x}}, \mathrm{t})$ defines the turbulent kinetic energy of the-residual motions. The solver by Oxtoby et al.
 34] had
 kine firlisenergkinetic energy.

2:4: Boundary and Initial Conditions

 inte tw ofractions: for the air and for the water phase: The parameter ox is fixed aceordingly at the inlet.

Figure 2. Boundary conditions.
igure 2 . Boundary conditions.
Figure 2. Boundary conditions.
In OpenFOAM a definition of a constant water leyel at the outlet is challenging [4] Therefore, a weir strycture is, establishhed as a barrier tak keep a constant water level for our mod itl. The water'flows

 condifionthe sediment, two materials are chosen: coarse sand with a grain size diameter of 2 mm and

 inlet up to the weir structure (see Figure 1).
2.5. Validation
2.5. Validation

To ensure reliable behavior of the integral model concerning the hydraulics for the interaction

 throve fadampuith different water levels and dam geometries were compared with numerical and analy yical solutions.
analytical s.flutions.
First, flo W through a rectanguardam With a constant waterlevel at both sides Was investigated The dam width amounts to 16 m and the dam height to 4 m . The dam helght is equal to the water level
 levee at the left side of the dam. A median rraze size diameter of 2 mm and a porosity of 0.25 were which corfespond to a sandy dam filling. At the riighthand he water levelis fixed to 4 m . The seepage

Water 2019,11,1517 Wnalytical solution after DiENucci [46] (see Figure 3). The seepage calculated with the integral solyer 6 was in between the two-dimensional analytical solution after Di Nucci and the numerical solutions
 (hingequiqu

 dam.

Analytical solution 2D

For the second validation case, the seepage through a homogeneous dam with a constant water

 gained with the intooral model ware elncor to the colntion aftor Cacaorande romnared to the solution after Kozeny.

Numerical solution: Integral solver
Analytical solution: Kozeny
Analytical solution: Casagrande
Numerical solution: Integral solver

 with the integral solver.

Figure 4. Seepage through a homogeneous dam after Kozeny [45], Casagrande [48] and calculated with the integral solver.

Quri terst simullations showwed that the inttegirall fllow model can predtict the imteraction off sunfface

3. Results and Discussion

 \$00 bodmentetieodytfeadyclloditionslitions.

Figure 5. In- and outflowing fluxes at the left and right side of the ripple crest. Figure 5. In- and outflowing fluxes at the left and right side of the ripple crest.

3.1. Reference Case

For the reference case (see Table 1, case 1), the discharge amounts to $0.5 \mathrm{~m}^{3} / \mathrm{s}$, the ripple length to 20 cm and the height to 5.6 cm . Figure 6 shows the pressure distribution and velocity vectors at the investigated ripple (see Figure 1) for case 1 with a sandy and a gravel sediment. The solver solves the pressure term p_rgh as the static pressure minus the hydrostatic pressure ($\rho g z$ with z as coordinate vector). The highest pressure is observed at the last third of the upstream face of the ripple. Low pressure is present at the ripple crest and the first two-thirds of the upstream face as well as downstream the crest. As these pressure differences lead to hyporheic exchange, flow occurs in downstream and upstream directions from high to low pressure. The described flow paths fit well to the results by Fox et al. [49], where the exchange of water between surface and subsurface was illustrated based on tracer experiments in the laboratory at a rippled sandy streambed. Also Thibodeaux and Boyle [50], Elliott and Brooks [14] and Janssen et al. [51] came to similar results from laboratory experiments with triangular bedforms. Fehlman [52] and Shen et al. [53] presented non-hydrostatic pressure distributions at triangular bed forms which were also similar to our results with pressure peaks at the middle of the stoss face, pressure minimum at the crest with low pressure remaining at the lee face until the pressure increases again at the stoss face of the following ripple. The description of the principal pressure pattern at the observed ripple in our simulations is valid for the sand as well as for the gravel, though the pressure values differ. Due to the higher resistance of the sand compared to gravel, higher pressure gradients are observed. Conversely, it behaves in terms of subsurface velocities: higher velocities are determined in the gravel sediment compared to the less permeable sand.

The applied LES turbulence model allows to resolve large parts of the turbulence at the streambed directly. Hence, between each ripple pair, eddies are identified. Comparing Figure 6 left and Figure 6 right, it is obvious, that the flow field in the surface water depends on the properties of the sediment: While in the sand, two eddies (clockwise as well as counterclockwise) can be recognized between the
pressure is present at the ripple crest and the first two-thirds of the upstream face as well as downstream the crest. As these pressure differences lead to hyporheic exchange, flow occurs in downstream and upstream directions from high to low pressure. The described flow paths fit well to the results by Fox et al. [49], where the exchange of water between surface and subsurface was Water $\mathbf{~ d b u s , t r a t e d ~ b a s e d ~ o n ~ t r a c e r ~ e x p e r i m e n t s ~ i n ~ t h e ~ l a b o r a t o r y ~ a t ~ a ~ r i p p l e d ~ s a n d y ~ s t r e a m b e d . ~ A l s o 8 ~ o f ~} 17$ Thibodeaux and Boyle [50], Elliott and Brooks [14] and Janssen et al. [51] came to similar results from laboratory experiments with triangular bedforms. Fehlman [52] and Shen et al. [53] presented non-

 the the sand compared to gravel, higher pressure gradients are gbserved. Conversely, it behaves in terms of subsurface vecocities: higher velocities are determined in the gravel sediment compared to the less the area where the water within the ripple flows back to the surface water.
permeable sand

 is used. ${ }^{\text {isused. }}$
 streambed directly. Hence, between each ripgle pair, eddies are identified. Comparing Figure 6 left area for gravel and sad according to Figure As described already above, in -as well as outfow are and tigure 6 right, it is obvious, that thee flow field in the surface water depends on the properties of

 claimedt fongrawelnctanyperedttonsfardygerdinhentes: model as for the example in [23,24] is not adequate, since not only the surface water influences the subsurface, but also the subsurface affects the surface

Case	Inflow Left $\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	Inflow Right $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Inflow Sum $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Outflow ${\mathbf{L e f t ~}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)}$	Outflow Right $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Outflow Sum $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Total Flux $\left(\mathbf{m}^{\left.\mathbf{3} / \mathbf{s} / \mathbf{m}^{\mathbf{2}}\right)}\right.$
1	2.9×10^{-4}	3.8×10^{-5}	3.3×10^{-4}	2.1×10^{-4}	1.2×10^{-4}	3.3×10^{-4}	2.7×10^{-3}
2	1.4×10^{-4}	6.3×10^{-6}	1.4×10^{-4}	3.7×10^{-5}	1.3×10^{-4}	1.6×10^{-4}	5.1×10^{-3}
3	6.6×10^{-4}	5.3×10^{-5}	7.2×10^{-4}	4.9×10^{-4}	2.4×10^{-4}	7.3×10^{-4}	3.0×10^{-3}
4	4.0×10^{-4}	6.1×10^{-5}	4.6×10^{-4}	3.3×10^{-4}	1.6×10^{-4}	4.9×10^{-4}	2.2×10^{-3}
5	4.2×10^{-4}	6.0×10^{-5}	4.8×10^{-4}	1.7×10^{-4}	2.9×10^{-4}	4.6×10^{-4}	3.9×10^{-3}
6	1.2×10^{-4}	2.0×10^{-5}	1.4×10^{-4}	9.6×10^{-5}	4.8×10^{-5}	1.4×10^{-4}	2.9×10^{-4}

${ }^{1}$ Total flux $=(\operatorname{mag}($ inflow left $)+\operatorname{mag}($ inflow right $)+$ mag (outflow left) + mag (outflow right))/area.

Based on the overall high velocities within the sediment our simulations indicate, that non-Darcy-flow is present in the whole ripple nearly down to the bottom boundary for the gravel bed and to a part of the sandy bed (see Figure 7). At the near-surface area at the crest of the gravel ripple, Reynolds numbers up to 1770 were recognized, while for the sandy bed Reynolds numbers up to 330 were determined. For a better illustration of the non-Darcy-flow areas, Reynolds numbers up to 10
are illustrated in Figure 7. Consequently, dark red areas have a Reynolds number that equals or is higher than 10. Due to lower permeability, the flow velocities of the surface water influenced the sandy sediment less than the gravel bed with high permeability. The explicit modeling of the hyporheic zone with Darcy's law is not possible in river beds with such coarse grain sizes since groundwater flow rates would be overestimated. Facing e.g., contaminant transport depending on residence time serious misperceptions could appear. The Reynolds number distribution of the following cases were similar to the reference case: for the whole gravel ripple down to the bottom non-Darcy-flow is apparent, while for the sand a small layer at the interface as well as the crest shows non-Darcy-flow areas. Only for case 5 with a distance of 20 cm between each ripple, there is even more non-Darcy-flow within the sandy ripple.

Table 3. Hyporheic fluxes of a single ripple in the center of a series of ripples for case 1-6 (gravel). Right and left indicate the part of the ripple right and left of the ripple crest (compare Figure 4).

Case	Inflow Left $\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	Inflow Right $\left(\mathbf{m}^{3} / \mathbf{s}\right)$	Inflow Sum $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Outflow Left $\left(\mathbf{m}^{3} / \mathbf{s}\right)$	Outflow Right $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Outflow Sum $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Total Flux ${ }^{\mathbf{1}}$ $\left(\mathbf{m}^{\left.\mathbf{3} / \mathbf{s} / \mathbf{m}^{2}\right)}\right.$
1	2.2×10^{-3}	2.5×10^{-5}	2.2×10^{-3}	1.0×10^{-3}	1.2×10^{-3}	2.2×10^{-3}	1.8×10^{-2}
2	5.6×10^{-4}	2.9×10^{-5}	5.9×10^{-4}	1.6×10^{-4}	3.7×10^{-4}	5.2×10^{-4}	1.8×10^{-2}
3	4.5×10^{-3}	3.8×10^{-5}	4.6×10^{-3}	1.5×10^{-3}	2.1×10^{-3}	3.6×10^{-3}	1.7×10^{-2}
4	3.5×10^{-3}	0	3.5×10^{-3}	2.0×10^{-3}	1.9×10^{-3}	3.9×10^{-3}	1.7×10^{-2}
5	3.6×10^{-3}	0	3.6×10^{-3}	8.4×10^{-4}	2.2×10^{-3}	3.1×10^{-3}	2.7×10^{-2}
6	9.3×10^{-4}	1.4×10^{-5}	9.4×10^{-4}	4.6×10^{-4}	5.2×10^{-4}	9.8×10^{-4}	1.9×10^{-3}

${ }^{1}$ Total flux $=(\operatorname{mag}$ (inflow left $)+\operatorname{mag}($ inflow right $)+\operatorname{mag}($ outflow left $)+m a g($ outflow right $\left.)\right) /$ area. Water 2019, 11, x FOR PEER REVIEW

Figure 7. Reynolds numbers at a sandy (top) and gravel (bottom) ripple for case 1 (Table 1). Figure 7: Reynolds numbers at a sandy (top) and gravel (bottom) ripple tor case 1 (Table 1).

Janssen et al. [51] stated that the largest discrepancies of most CFD simulations of flow over ripples and dunes occur in the eddy zone. Especially for Reynolds-averaged Navier-Stokes turbulence models this is a known weakness. Therefore, we have chosen a LES turbulence model. At the same time, we are aware of the computational limitation, which is additionally increased by the

Janssen et al. [51] stated that the largest discrepancies of most CFD simulations of flow over ripples and dunes occur in the eddy zone. Especially for Reynolds-averaged Navier-Stokes turbulence models this is a known weakness. Therefore, we have chosen a LES turbulence model. At the same time, we are aware of the computational limitation, which is additionally increased by the calculation of the three-dimensional Navier-Stokes equations in the sediment in contrast to the commonly applied Darcy law. However, facing the growing availability of computational sources and the observed non-Darcy-flow areas in the investigated cases, we apply a promising tool for analyzing integral surface-subsurface flow processes with high resolution.

3.2. Ripple Dimension

For cases 2 and 3 the ripple length to height ratio is the same as for the reference case (see Table 1), but the ripple height and length are quartered for case 2 and doubled for case 3 . Figure 8 shows the velocity and pressure distributions for the investigated ripples in the middle for case 2 for sand and gravel. The general pressure pattern for case 2 for sand and gravel as well as for the reference case are similar: the lowest pressure occurs at the crest and the highest pressure upstream of the crest. But the high-pressure area related to the ripple size is much higher for case 2 than for the reference case. Related to the ripple face area at the interface, we consequently expect higher inflow rates compared to the reference case, which can be seen in Tables 2 and 3. The total flux per area is higher for case 2 with $5.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}^{2}$ and $1.81 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}^{2}$ than for the reference case with $2.7 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}^{2}$ and

11 of 18

 is useded.

 from the creat. from the crest.
of one inflow area can be recognized at the upstream face of the ripple. Between these inflow areas, there is an outflow area. Another outflow area is located upstream of the lower inflow area, but the main outflow occurs downstream of the ripple crest. In the simulation of the gravel ripple, less eddies are observed than for the simulation with the sand. For the gravel ripple only one inflow area is presert20Thicheatflow is located similar to case 1 and 2 : upstream from the inflow area andf 17 downstream from the crest.

12 of 18

 is usteks.d.

 simulations including additional ripple size variations would be necessary for a more profound interpretation.
with more simulations including additional ripple size variations would be necessary for a more profound interpretation.

Water 2019, 11, x FOR PEER REVIEW
3.3. Ripple Length
3.3. Fopple Leen㩆he ripple height equals the reference case, but the ripple length is doubled with 40 cm .

 artand
 alpecisived jeffareaqgysprbetakdy etgain the.turbulence, which is higher for large height-to-length-ratios as already described by Broecker et al. [31].

Figiqure 10. Pressure distribution and velocity vectors at a sandy (left) nd gravel (right) ripple for case 4 (Tabble). The white line indicates the sediment-water interface. The colors indicate the thressure distribution. Please note that the scaling is different in the right and the left panel. The arrows indicate distribution. Please note that the scaing is dirferent in the right and the ert panel the arrows indicate flow directions of the surface and the subsurface flow. To visualize the intensity of the flow U a grey is used. is used.

FFigure 11 shows the velocity and pressure distributions fqr case 5 with the same ripple geometryetry
 higher pressure gradients for grayel and sand compared to the reference case The flowf fiedds within the pressure gradienss tri grajel and sand compared the the rerence case. The flow fietds within the ripples tre similar to the reference case. But for this case there there also in- ind outflow areas at the flat ripple tare similar to the reference case. But for this case there are also in- and outflow areas at the flat strembed between the ripples fifboth simulations Eddies foccur between the investived riples but due to the distance the hare more elongated than frit the reference case (case i) Since the pressure

 hypaterneirozteheypaceeses, apart from Broecker et al. [31] where only a surface water model was used.

Water 2019, 11, x FOR PEER REVIEW

14 of 18

Fiziy

 isisusded.

Figure 12. Reynolds numbers at a sandy ripple for case 5
Figure 12. Reynolss numbers at a sandy yipple for case 5

3.5. Flow Rate

For ge

 $1.8 b$ xervations observations e.g., by Marion et al. [54] and Elliott and Brooks [14].

Higure 13. Reymolds mumbers att a samdyy wippple for case 6 .

4. E8nchusigns

 hereefreke deterseosised have to be determined.

 distribution at the interface and to determine in- and outflowing fluxes, which can be important for
the interface and to determine in- and outflowing fluxes, which can be important for the understanding and prediction of hydrological, chemical, and biological processes. In contrast to other coupled models, it is applicable in non-Darcy-flow areas and allows to simultaneously simulate the surface and subsurface with one system of equation for surface and groundwater. We can develop upscaling approaches where we quantify the exchange rates depending on the ripple geometry and other variables with the high resolution three-dimensional integral model to serve as sink/source terms in one- or two-dimensional shallow water flow models. The shallow water equations are based on vertical averaged velocities (not discretizing the vertical dimension) and are generally applied on coarser scales. In a next step, also transport equations will be included in the presented integral model.

Author Contributions: Methodology, T.B. and K.T.; Software, T.B. and K.T.; Validation, T.B.; Investigation, T.B. and V.S.G.; Writing-original draft, T.B.; Writing—review and editing, T.B., R.H., G.N. and J.L.; Visualization, T.B.; Supervision, R.H. G.N. and J.L.

Funding: The funding provided by the German Research Foundation (DFG) within the Research Training Group 'Urban Water Interfaces' (GRK 2032) is gratefully acknowledged.

Acknowledgments: Parts of the simulations were computed on the supercomputers of Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen in Berlin.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boulton, A.J.; Findlay, S.; Marmonier, P.; Stanley, E.H.; Valett, H.M. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst. 1998, 29, 59-81. [CrossRef]
2. Brunke, M.; Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshw. Biol. 1997, 37, 1-33. [CrossRef]
3. Cardenas, M.B. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resour. Res. 2015, 51, 3601-3616. [CrossRef]
4. Dahm, C.N.; Grimm, N.B.; Marmonier, P.; Valett, H.M.; Vervier, P. Nutrient dynamics at the interface between surface waters and groundwaters. Freshw. Biol. 1998, 40, 427-451. [CrossRef]
5. Findlay, S. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnol. Oceanogr. 1995, 40, 159-164. [CrossRef]
6. Gomez-Velez, J.D.; Harvey, J.W.; Cardenas, M.B.; Kiel, B. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nat. Geosci. 2015, 8, 941. [CrossRef]
7. Harvey, J.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893-6922. [CrossRef]
8. Stonedahl, S.H.; Harvey, J.W.; Packman, A.I. Interactions between hyporheic flow produced by stream meanders, bars, and dunes. Water Resour. Res. 2013, 49, 5450-5461. [CrossRef]
9. Stonedahl, S.H.; Harvey, J.W.; Wörman, A.; Salehin, M.; Packman, A.I. A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour. Res. 2010, 46. [CrossRef]
10. Schaper, J.L.; Posselt, M.; McCallum, J.L.; Banks, E.W.; Hoehne, A.; Meinikmann, K.; Shanafield, M.A.; Batelaan, O.; Lewandowski, J. Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream. Environ. Sci. Technol. 2018, 52, 12285-12294. [CrossRef]
11. Harvey, J.W.; Bencala, K.E. The Effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour. Res. 1993, 29, 89-98. [CrossRef]
12. Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water; a Single Resource; Diane Publishing Inc.: Darby, PA, USA, 1998; Volume 1139.
13. Wondzell, S.M.; Gooseff, M. Geomorphic controls on hyporheic exchange across scales: Watersheds to particles. Treatise Geomorphol. 2013, 9, 203-218.
14. Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resour. Res. 1997, 33, 137-151. [CrossRef]
15. Packman, A.I.; Salehin, M.; Zaramella, M. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. J. Hydraul. Eng. 2004, 130, 647-656. [CrossRef]
16. Mutz, M.; Kalbus, E.; Meinecke, S. Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resour. Res. 2007, 43. [CrossRef]
17. Tonina, D.; Buffington, J.M. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resour. Res. 2007, 43. [CrossRef]
18. Tonina, D.; Buffington, J.M. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat. Can. J. Fish. Aquat. Sci. 2009, 66, 2157-2173. [CrossRef]
19. Voermans, J.; Ghisalberti, M.; Ivey, G. The variation of flow and turbulence across the sediment-water interface. J. Fluid Mech. 2017, 824, 413-437. [CrossRef]
20. Saenger, N.; Kitanidis, K.P.; Street, R. A numerical study of surface-subsurface exchange processes at a riffle-pool pair in the Lahn River, Germany. Water Resour. Res. 2005, 41, 12424. [CrossRef]
21. Cardenas, M.B.; Wilson, J.L. Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour. Res. 2007, 43. [CrossRef]
22. Bardini, L.; Boano, F.; Cardenas, M.B.; Revelli, R.; Ridolfi, L. Nutrient cycling in bedform induced hyporheic zones. Geochim. Cosmochim. Acta 2012, 84, 47-61. [CrossRef]
23. Trauth, N.; Schmidt, C.; Maier, U.; Vieweg, M.; Fleckenstein, J.H. Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour. Res. 2013, 49, 5834-5850. [CrossRef]
24. Trauth, N.; Schmidt, C.; Vieweg, M.; Maier, U.; Fleckenstein, J.H. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J. Geophys. Res Biogeosci. 2014, 119, 910-928. [CrossRef]
25. Chen, X.; Cardenas, M.B.; Chen, L. Hyporheic Exchange Driven by Three-Dimensional Sandy Bed Forms Sensitivity to and Prediction from Bed Form Geometry. Water Resour. Res. 2018, 54, 4131-4149. [CrossRef]
26. Chen, X.; Cardenas, M.B.; Chen, L. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resour. Res. 2015, 51, 2923-2936. [CrossRef]
27. VanderKwaak, J.E. Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 1999.
28. Brunner, P.; Simmons, C. HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model. Groundwater 2011, 50, 170-176. [CrossRef]
29. Brunner, P.; Cook, P.G.; Simmons, C.T. Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour. Res. 2009, 45. [CrossRef]
30. Alaghmand, S.; Beecham, S.; Jolly, I.D.; Holland, K.L.; Woods, J.A.; Hassanli, A. Modelling the impacts of river stage manipulation on a complex river-floodplain system in a semi-arid region. Environ. Model. Softw. 2014, 59, 109-126. [CrossRef]
31. Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: New York, NY, USA, 1972.
32. Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Upper Saddle River, NJ, USA, 1979.
33. Packman, A.I.; Brooks, N.H.; Morgan, J.J. A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resour. Res. 2000, 36, 2351-2361. [CrossRef]
34. Oxtoby, O.; Heyns, J.; Suliman, R. A finite-volume solver for two-fluid flow in heterogeneous porous media based on OpenFOAM. In Proceedings of the 7th Open Source CFD International Conference, Hamburg, Germany, 24-25 October 2013. [CrossRef]
35. Broecker, T.; Elsesser, W.; Teuber, K.; Özgen, I.; Nützmann, G.; Hinkelmann, R. High-resolution simulation of free-surface flow and tracer retention over streambeds with ripples. Limnologica 2018, 68, 46-58. [CrossRef]
36. Pope, S.B. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 2004, 6, 35 [CrossRef]
37. Ergun, S. Fluid Flow Through Packed Columns. Chem. Eng. Prog. 1952, 48, 89-94.
38. van Gent, M. Wave Interaction with Permeable Coastal Structures; Elsevier Science: Amsterdam, The Netherlands, 1995; Volume 95
39. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201-225. [CrossRef]
40. Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99-164. [CrossRef]
41. Thorenz, C.; Strybny, J. On the numerical modelling of filling-emptying system for locks. In Proceedings of the 10th International Conference on Hydroinformatics, Hamburg, Germany, 14-18 July 2012.
42. Bayon-Barrachina, A.; Lopez-Jimenez, P.A. Numerical analysis of hydraulic jumps using OpenFOAM. J. Hydroinform. 2015, 17, 662-678. [CrossRef]
43. Westbrook, D.R. Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage. Int. J. Numer. Methods Eng. 1985, 21, 1791-1802. [CrossRef]
44. Aitchison, J.; Coulson, C.A. Numerical treatment of a singularity in a free boundary problem. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 330, 573-580. [CrossRef]
45. Kobus, H.; Keim, B. Grundwasser. Taschenbuch der Wasserwirtschaft; Blackwell Wissenschaftsverlag: Hoboken, NJ, USA, 2001; pp. 277-313.
46. Di Nucci, C. A free boundary problem for fluid flow through porous media. arXiv 2015, arXiv:1507.05547. Available online: https://arxiv.org/abs/1507.05547 (accessed on 14 July 2015).
47. Lattermann, E. Wasserbau-Praxis: Mit Berechnungsbeispielen Bauwerk-Basis-Bibliothek; Beuth Verlag GmbH: Berlin, Germany, 2010.
48. Casagrande, A. Seepage Through Dams; Harvard University Graduate School of Engineering: Cambridge, MA, USA, 1937.
49. Fox, A.; Boano, F.; Arnon, S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resour. Res. 2014, 50, 1895-1907. [CrossRef]
50. Thibodeaux, L.J.; Boyle, J.D. Bedform-generated convective transport in bottom sediment. Nature 1987, 325, 341-343. [CrossRef]
51. Janssen, F.; Cardenas, M.B.; Sawyer, A.H.; Dammrich, T.; Krietsch, J.; de Beer, D. A comparative experimental and multiphysics computational fluid dynamics study of coupled surface-subsurface flow in bed forms. Water Resour. Res. 2012, 48. [CrossRef]
52. Fehlman, H.M. Resistance Components and Velocity Distributions of Open Channel Flows Over Bedforms; Colorado State University: Fort Collins, CO, USA, 1985.
53. Shen, H.W.; Fehlman, H.M.; Mendoza, C. Bed Form Resistances in Open Channel Flows. J. Hydraul. Eng. 1990, 116, 799-815. [CrossRef]
54. Marion, A.; Bellinello, M.; Guymer, I.; Packman, A. Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resour. Res. 2002, 38, 27-1-27-12. [CrossRef]
