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Abstract: Exchange processes of surface and groundwater are important for the management of water
quantity and quality as well as for the ecological functioning. In contrast to most numerical simulations
using coupled models to investigate these processes, we present a novel integral formulation for
the sediment-water-interface. The computational fluid dynamics (CFD) model OpenFOAM was
used to solve an extended version of the three-dimensional Navier-Stokes equations which is also
applicable in non-Darcy-flow layers. Simulations were conducted to determine the influence of ripple
morphologies and surface hydraulics on the flow processes within the hyporheic zone for a sandy
and for a gravel sediment. In- and outflowing exchange fluxes along a ripple were determined for
each case. The results indicate that larger grain size diameters, as well as ripple distances, increased
hyporheic exchange fluxes significantly. For higher ripple dimensions, no clear relationship to
hyporheic exchange was found. Larger ripple lengths decreased the hyporheic exchange fluxes due to
less turbulence between the ripples. For all cases with sand, non-Darcy-flow was observed at an upper
layer of the ripple, whereas for gravel non-Darcy-flow was recognized nearly down to the bottom
boundary. Moreover, the sediment grain sizes influenced also the surface water flow significantly.

Keywords: groundwater-surface water interactions; integral model; computational fluid dynamics;
hyporheic zone; OpenFOAM,; ripples

1. Introduction

Hyporheic exchange—the exchange of stream and shallow subsurface water—is controlled
by pressure gradients along the streambed surface and subsurface groundwater gradients. Over
multiple scales, the bedform induced hyporheic exchange was identified as a crucial process for
the biogeochemistry and ecology of rivers [1-10]. On large and intermediate scales, stream stage
differences, meander loops or bars can generate hyporheic exchange. Accordingly, it is possible to
control surface water-groundwater exchange by river stage manipulation e.g., to manage the inflow of
saline groundwater into a river [11]. A decrease of the groundwater level, in turn, impacts surface
water infiltration up to a maximum where groundwater and surface water are disconnected. This
condition is achieved when the clogging layer does not cross the top of the capillary zone above the
water table [12]. On small scales, river sediments usually form topographic features such as dunes or
ripples. The flowing fluid encounters an uneven surface on the permeable streambed, which results in
an irregular pattern in the pressure along that surface and induces hyporheic exchange [11-13].
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Within theoretical, experimental, and computational studies the general mechanics of the bedform
induced hyporheic exchange were examined over the past decades. By manipulating streambed
morphology, stream discharge, and groundwater flow, experiments have been used to study driving
forces for the hyporheic exchange intensively [14-17]. At submerged structures such as pool-riffle
sequences or ripples, turbulences, eddies or hydraulic jumps may occur. Packman et al. [15], Tonina and
Buffington [18], Voermans et al. [19] and other studies showed, that turbulence influences hyporheic
exchange and should not be ignored. Facing these complex three-dimensional flow dynamics at the
sediment-water interface, it can be challenging to establish suitable flume experiments or field studies.
Computational fluid dynamics has proven to be a viable alternative. The majority of these studies
have focused on surface-subsurface coupled models. Reasons for the application of different models
for the surface and the subsurface are for example the strong temporal variability in streams including
relatively high velocities, whereas the velocities and temporal variabilities in the groundwater are
usually several orders of magnitude smaller, leading to different applied equations for the stream and
the subsurface. Often, the two computational domains are linked by pressure. Pressure distributions
from a surface water model are consequently used for a coupled groundwater model [20-26]. However,
also fully coupled models such as the Integrated Hydrology Model [27] or HydroGeoSphere have
already been successfully applied [28-30]. Within these models, open channel flow is described
by the two-dimensional diffusion-wave approximation of the St. Venant equations, whereas the
three-dimensional Richards equation is used for the subsurface. Water and solute exchange flux terms
enable to simultaneously solve one system of equations for both flow regimes.

For many coupled surface-subsurface models, the Darcy law is applied within the sediment.
However, especially for coarse bed rivers, this law may cause errors in the presence of non-Darcy
hyporheic flow [15]. Following Bear [31], the linear assumption of the Darcy law is only valid if the
Reynolds number does not exceed a value between 1 and 10. Applying Darcy’s law in non-Darcy-flow
areas leads to an overestimating of groundwater flow rates [32]. Packman et al. [15] investigated
hyporheic exchange through gravel beds with dune-like morphologies and applied the modified Elliot
and Brooks model [33]. They realized that the model did not perform well—among other reasons—due
to non-Darcy flow in the near-surface sediment which was not considered in the model. One possible
solution to model groundwater in non-Darcy-flow areas is e.g., to use the Darcy-Brinkmann equation
instead of the Darcy law. However, there is an additional parameter—the effective viscosity—which
has to be determined.

In the present study, an extended version of the three-dimensional Navier-Stokes equations after
Oxtoby et al. [34] is used for the whole system comprising the stream as well as the subsurface. For the
application in the groundwater, sediment porosity, as well as an additional drag term, are included into
the Navier-Stokes equations. The model is consequently also applicable for high Reynolds numbers
within the subsurface where the Darcy law cannot be applied. To our knowledge, this solver was
never used for the hyporheic zone before. We apply the new integral solver to evaluate the effect
of ripple geometries and surface hydraulics on hyporheic exchange processes, based on the study
by Broecker et al. [35] who investigated free surface flow and tracer retention over streambeds and
ripples without considering the subsurface. In Broecker et al. [35] the three-dimensional Navier-Stokes
equations were solved in combination with an implemented transport equation. In that study, ripple
sizes, spacing as well as flow velocities affected pressure gradients and tracer retention considerably.
Seven simulation cases were examined varying ripple height, length, distance, and flow rate. The
investigated ripple geometries and flow rates are mainly transferred to the present study. Only case
6 is not used for the present study, as the irregular distance between the ripples gave no significant
new findings compared to equal distances [35]. In contrast to Broecker et al. [35], the present study
examines both free surface flow and subsurface flow. The aim of the present study is to evaluate
the impact of ripple dimensions, lengths, spacing and surface velocity on flow dynamics within the
hyporheic zone using a new integral model.
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Figure 1. Model geometry and initial condition for the water level (sediment: yellow, water: blue, air:

gﬁg»mﬁg M@dgk&aﬁpb@mysmﬁg’hﬁi@ﬂ@g@&@hfor the water level (sediment: yellow, water: blue, air:
gray); top: front view, bottom right: cross-section.

The mesh has been discretized using the three-dimensional finite element mesh generator gmsh.
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were observed for the air-phase, which is not of interest for our simulations.
Table 1. Simulation cases including ripple geometries and flow rates.

Table 1. Simulation cases 1ricludmg ripple geometries and flow rates.

Case 2 3 4 5 6
(Reference fase)

ripple height@88) (Refafence Case) T4 12 36 %56 ®56

ripple.length (¢ 20 5 0 20

o ggl}é%(@%t (cm) 0 56 12 1140% 5.‘%’ 5.&20 5.6,
ﬂov&lPaPé%i%th (cm) 0520 o5 5 495 2G5 2Q2s5

111,11.11&: distance tem) v v 6 v 26 S
22 Numerical Mmhglow rate (m?/s) 0.5 05 05 05 05 025

2.2. Nosipiudategsghiange processes of surface water and groundwater, the open source software Open
Sourcg:r Field Oﬁeratim}l‘ and Manipulatiorfl (O%enFOAM) version 2.4.0 has been used. A solver cfalled
%)rous‘irf’f‘enr"’l e R AR RO e S A S e L RSy 4 T (PR RORESS A gLe

pen Source Field Operation and Manipulation (OpenFOAM) version 2.4.0 has been used. A solver
called “porouslnter” has been applied. This solver was developed by Oxtoby et al. [34] and is based
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interFoam solver by OpenFOAM. PorousInter is a multiphase solver for immiscible fluids and extends
the three-dimensional Navier—Stokes equations by the consideration of soil porosity and effective grain
size diameter. For our simulations two phases—water and air—are considered to allow water level
fluctuations. Since the porousInter—solver does not account for the solid fraction of the soil, values that
are represented by [ ]f are averaged only over the pore space volume. The conservation of mass and
momentum are defined after Oxtoby et al. [34] as:

Mass conservation equation

- f
pV-[U =0 )
Momentum conservation equation
- f
a f u — f — f o f .
14 [p19£ L [0Vl 0] |= —pVIpl +o V(0] +plo)'E +D @

where @ is the soil porosity (-); U is the velocity (m/s); p is the density (kg/m3); tis time (s); p is pressure
(Pa); p is the dynamic viscosity (Ns/m?), g is the gravitational acceleration (m/s?) and D an additional
drag term (kg/(m?s?)). The drag term was developed by Ergun [37] and accounts for momentum loss
by means of fluid friction with the porous medium and flow recirculation within the sediment. To
consider flow recirculation, an effective added mass coefficient is included after van Gent [38]. The
porous drag term is defined as:
f f [ ]f o
1= fron | 122 1-¢ e 0[U]
D = —(150———[u] +1.75[p] [U] |—5—[U] -0.34————— (©)]
dpep dp Q@ at
with dp (m) as effective grain size diameter.
Porouslnter uses the volume of fluid (VOF) approach. Consequently, multiple phases are treated as
one fluid with changing properties [39]. The indicator fraction o (-) varies between zero for the air phase
and one for the water phase. The water-air interface is captured by a convective transport equation:

f o f
P22 v (W'[U]) = 0 @

The dynamic viscosity and the density of each fluid are calculated according to their fraction as:
Bo= oy tpa(l-o) 5)

P = xpytpa(l-x) (6)

The subscripts w and a denote the fluids water and air.

2.3. Turbulence

Turbulent properties have been captured by a large eddy simulation (LES) turbulence model (see
also Section 3.1). Eddies up to a certain size were consequently directly resolved, whereas for small
eddies a subgrid model is used. For the present study, the Smagorinski subgrid scale model [40] has
been applied.

A measure M(Q,t) for the turbulence resolution was calculated after Pope [36]:

R ke(X, t)

M(x,t) = — — (7)
K(x,t) +k.(x,t)
where K(;, t) defines the turbulent kinetic energy of the resolved motions by:
N 1 - - - -
K(x,t) = E(U_Umean)(U_Umean) ()
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3.1. Reference Case

For the reference case (see Table 1, case 1), the discharge amounts to 0.5 m?/s, the ripple length to
20 cm and the height to 5.6 cm. Figure 6 shows the pressure distribution and velocity vectors at the
investigated ripple (see Figure 1) for case 1 with a sandy and a gravel sediment. The solver solves the
pressure term p_rgh as the static pressure minus the hydrostatic pressure (pgz with z as coordinate
vector). The highest pressure is observed at the last third of the upstream face of the ripple. Low
pressure is present at the ripple crest and the first two-thirds of the upstream face as well as downstream
the crest. As these pressure differences lead to hyporheic exchange, flow occurs in downstream and
upstream directions from high to low pressure. The described flow paths fit well to the results by
Fox et al. [49], where the exchange of water between surface and subsurface was illustrated based on
tracer experiments in the laboratory at a rippled sandy streambed. Also Thibodeaux and Boyle [50],
Elliott and Brooks [14] and Janssen et al. [51] came to similar results from laboratory experiments with
triangular bedforms. Fehlman [52] and Shen et al. [53] presented non-hydrostatic pressure distributions
at triangular bed forms which were also similar to our results with pressure peaks at the middle of the
stoss face, pressure minimum at the crest with low pressure remaining at the lee face until the pressure
increases again at the stoss face of the following ripple. The description of the principal pressure
pattern at the observed ripple in our simulations is valid for the sand as well as for the gravel, though
the pressure values differ. Due to the higher resistance of the sand compared to gravel, higher pressure
gradients are observed. Conversely, it behaves in terms of subsurface velocities: higher velocities are
determined in the gravel sediment compared to the less permeable sand.

The applied LES turbulence model allows to resolve large parts of the turbulence at the streambed
directly. Hence, between each ripple pair, eddies are identified. Comparing Figure 6 left and Figure 6
right, it is obvious, that the flow field in the surface water depends on the properties of the sediment:
While in the sand, two eddies (clockwise as well as counterclockwise) can be recognized between the
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pressure is present at the ripple crest and the first two-thirds of the upstream face as well as
downstream the crest. As these pressure differences lead to hyporheic exchange, flow occurs in
downstream and upstream directions from high to low pressure. The described flow paths fit well to
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Inflow Inflow Inflow Outflow Ou.t flow Outflow Total Flux !
Case Left (m%/s) Right Sum Left (m%/s) Right Sum (m3/s/m?)
(m3/s) (m3/s) (m3/s) (m3/s)
1 29x10%  38x107° 33x107% 21x10% 12x10% 33x10°* 27%x1073
2 14%x107%  63x10® 14x10% 37x10°° 13x10* 16x10* 5.1x1073
3 66x10% 53x107° 72x107% 49x107* 24x10% 73x107* 3.0x1073
4 40x10* 61x10° 46x10* 33x10% 16x10* 49x10™* 22x%x1073
5 42%x107%  60x107° 48x10% 17x10* 29x10% 46x107* 39x%x1073
6 12%x107%  20x10° 14x10% 96x107° 48x10° 14x10* 29x%x107%

! Total flux = (mag (inflow left) + mag (inflow right) + mag (outflow left) + mag (outflow right))/area.

Based on the overall high velocities within the sediment our simulations indicate, that
non-Darcy-flow is present in the whole ripple nearly down to the bottom boundary for the gravel bed
and to a part of the sandy bed (see Figure 7). At the near-surface area at the crest of the gravel ripple,
Reynolds numbers up to 1770 were recognized, while for the sandy bed Reynolds numbers up to 330
were determined. For a better illustration of the non-Darcy-flow areas, Reynolds numbers up to 10
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are illustrated in Figure 7. Consequently, dark red areas have a Reynolds number that equals or is
higher than 10. Due to lower permeability, the flow velocities of the surface water influenced the sandy
sediment less than the gravel bed with high permeability. The explicit modeling of the hyporheic zone
with Darcy’s law is not possible in river beds with such coarse grain sizes since groundwater flow
rates would be overestimated. Facing e.g., contaminant transport depending on residence time serious
misperceptions could appear. The Reynolds number distribution of the following cases were similar to
the reference case: for the whole gravel ripple down to the bottom non-Darcy-flow is apparent, while
for the sand a small layer at the interface as well as the crest shows non-Darcy-flow areas. Only for
case 5 with a distance of 20 cm between each ripple, there is even more non-Darcy-flow within the
sandy ripple.

Table 3. Hyporheic fluxes of a single ripple in the center of a series of ripples for case 1-6 (gravel).
Right and left indicate the part of the ripple right and left of the ripple crest (compare Figure 4).

Inflow In'ﬂow Inflow Outflow Ou.t flow Outflow Total Flux !
Case Left (m%/s) Right Sum Left (m/s) Right Sum (m3/s/m?)
(m3/s) (m3/s) (m3/s) (m3/s)

1 22x107%  25x107°  22x10%  1.0x107% 12x107% 22x107° 1.8 x 1072

2 56x107%  29x107° 59x10% 16x107% 37x10* 52x107* 1.8 x 1072
3 45%x103 38x107° 46x10% 15x1073 21x10% 3.6x1073 1.7 x 1072
4 35x 1073 0 35x10%  20x107% 19x102 39x1073 1.7 x 1072
5 3.6x1073 0 36x10°  84x10™% 22x107% 3.1x1073 2.7 x 1072
6 93x10™% 14x107° 94x10* 46x10™% 52x10* 9.8x10™* 1.9 x 1073

! Total flux = (mag (inflow left) + mag (inflow right) + mag (outflow left) + mag (outflow right))/area.
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Janssen et al. [51] stated that the largest discrepancies of most CFD simulations of flow over
ripples and dunes occur in the eddy zone. Especially for Reynolds-averaged Navier-Stokes
turbulence models this is a known weakness. Therefore, we have chosen a LES turbulence model. At
the same time, we are aware of the computational limitation, which is additionally increased by the
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Janssen et al. [51] stated that the largest discrepancies of most CFD simulations of flow over
ripples and dunes occur in the eddy zone. Especially for Reynolds-averaged Navier—Stokes turbulence
models this is a known weakness. Therefore, we have chosen a LES turbulence model. At the same
time, we are aware of the computational limitation, which is additionally increased by the calculation
of the three-dimensional Navier-Stokes equations in the sediment in contrast to the commonly applied
Darcy law. However, facing the growing availability of computational sources and the observed
non-Darcy-flow areas in the investigated cases, we apply a promising tool for analyzing integral
surface-subsurface flow processes with high resolution.

3.2. Ripple Dimension

For cases 2 and 3 the ripple length to height ratio is the same as for the reference case (see Table 1),
but the ripple height and length are quartered for case 2 and doubled for case 3. Figure 8 shows the
velocity and pressure distributions for the investigated ripples in the middle for case 2 for sand and
gravel. The general pressure pattern for case 2 for sand and gravel as well as for the reference case are
similar: the lowest pressure occurs at the crest and the highest pressure upstream of the crest. But
the high-pressure area related to the ripple size is much higher for case 2 than for the reference case.
Related to the ripple face area at the interface, we consequently expect higher inflow rates compared to
the reference case, which can be seen in Tables 2 and 3. The total flux per area is higher for case 2 with
5.1 x 1073 m3/s/m? and 1.81 x 1072 m3/s/m? than for the reference case with 2.7 x 103 m3/s/m? and
1.84ster Y18, Hfbf§%21_’EER REVIEW 11 of 18
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of one inflow area can be recognized at the upstream face of the ripple. Between these inflow areas,
there is an outflow area. Another outflow area is located upstream of the lower inflow area, but the
main outflow occurs downstream of the ripple crest. In the simulation of the gravel ripple, less eddies
are observed than for the simulation with the sand. For the gravel ripple only one inflow area is
pré¥ent20Theél, dbitflow is located similar to case 1 and 2: upstream from the inflow area dhdf17
downstream from the crest.
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simulations including additional ripple size variations would be necessary for a more profound
interpretation.
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with more simulations including additional ripple size variations would be necessary for a more
profound interpretation.
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observations e.g., by Marlon et al [54 ] and Elhott and Brooks [14].
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distribution at the interface and to determine in- and outflowing fluxes, which can be important for
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the interface and to determine in- and outflowing fluxes, which can be important for the understanding
and prediction of hydrological, chemical, and biological processes. In contrast to other coupled
models, it is applicable in non-Darcy-flow areas and allows to simultaneously simulate the surface
and subsurface with one system of equation for surface and groundwater. We can develop upscaling
approaches where we quantify the exchange rates depending on the ripple geometry and other
variables with the high resolution three-dimensional integral model to serve as sink/source terms
in one- or two-dimensional shallow water flow models. The shallow water equations are based on
vertical averaged velocities (not discretizing the vertical dimension) and are generally applied on
coarser scales. In a next step, also transport equations will be included in the presented integral model.
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