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Abstract 

Cis-regulatory elements such as promoters and enhancers, that govern transcriptional gene 

regulation, reside in regions of open chromatin. DNase-seq and ATAC-seq are broadly used 

methods to assay open chromatin regions genome-wide. The single nucleotide resolution of 

DNase-seq has been further exploited to infer transcription factor binding sites (TFBS) in 

regulatory regions through TF footprinting. However, recent studies have demonstrated the 

sequence bias of DNase I and its adverse effects on footprinting efficiency. Furthermore, 

footprinting and the impact of sequence bias have not been extensively studied for ATAC-seq.  

In this thesis, I undertake a systematic comparison of the two methods and show that a 

modification to the ATAC-seq protocol increases its yield and its agreement with DNase-seq 

data from the same cell line. I demonstrate that the two methods have distinct sequence biases 

and correct for these protocol-specific biases when performing footprinting. The impact of bias 

correction on footprinting performance is greater for DNase-seq than for ATAC-seq, and 

footprinting with DNase-seq leads to better performance in our datasets. Despite these 

differences, I show that integrating replicate experiments allows the inference of high-quality 

footprints, with substantial agreement between the two techniques.  

These techniques are further employed to characterize the cis-regulatory elements governing 

the embryogenesis of a complex organism, the fruit fly Drosophila melanogaster. Combining 

tight staging of embryos and tissue-specific nuclear sorting with open chromatin profiling, 

enables the definition of temporally and tissue-specifically resolved putative cis-regulatory 

elements. Large scale motif enrichment analyses of these elements confirm known associations 

between TFs and specific tissues or developmental time-points, as well as implicating novel 

links. Finally, DNase-seq signal and sequence features associated with putative TFBSs are 

combined in an integrative model that is highly predictive of tissue-specific TF binding.  

Taken together, these analyses demonstrate the power of open chromatin profiling and 

computational analysis in elucidating the mechanisms of transcriptional gene regulation. 
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Zusammenfassung 

Cis-regulatorische Elemente wie Promotoren und Enhancer, die die Regulation der 

Transkription von Genen steuern, befinden sich in Regionen des dekondensierten Chromatins. 

DNase-seq und ATAC-seq sind weit verbreitete Verfahren, um solche offenen 

Chromatinregionen genomweit zu untersuchen. Die einzel-Nukleotid-Auflösung von DNase-

seq wurde des Weiteren genutzt, um Transkriptionsfaktor-Bindungsstellen (TFBS) in 

regulatorischen Regionen durch TF-Footprinting zu bestimmen. Kürzlich durchgeführte 

Studien haben jedoch gezeigt, dass DNase I einen Sequenzbias aufweist, welcher nachteilige 

Auswirkungen auf die Footprinting-Effizienz hat. Auch wurden das Footprinting und die 

Auswirkungen des Sequenzbias auf ATAC-seq noch nicht umfassend untersucht. 

In dieser Arbeit nehme ich einen systematischen Vergleich der beiden Methoden vor und zeige, 

dass eine Modifikation des ATAC-seq-Protokolls die Ausbeute und die Übereinstimmung mit 

den DNase-seq-Daten derselben Zelllinie erhöht. Ferner zeige ich, dass die beiden Methoden 

unterschiedliche Sequenzbiases haben und korrigiere diese protokollspezifischen Biases beim 

Footprinting. Der Einfluss von Bias-Korrekturen der Footprinting Ergebnisse ist für DNase-

seq größer als für ATAC-seq, und Footprinting mit DNase-seq führt zu besseren Ergebnissen 

in unserer Datensätze. Trotz dieser Unterschiede zeige ich, dass die Integration replizierter 

Experimente die Ableitung von qualitativ hochwertigen Footprints ermöglicht, wobei die 

beiden Techniken weitgehend übereinstimmen. 

Diese Techniken werden ferner eingesetzt, um die cis-regulatorischen Elemente zu 

charakterisieren, die die Embryogenese der Fruchtfliege Drosophila melanogaster bestimmen. 

Durch die Verwendung von Embryonen die sich im richtigen Entwicklungsstadium befinden, 

sowie gewebespezifischer Kernsortierung mit offenem Chromatin-Profiling können zeitlich 

und gewebespezifisch aufgelöste vermeintliche cis-regulatorische Elemente definiert werden. 

Umfangreiche Motivanreicherungsanalysen dieser Elemente bestätigen bekannte 

Zusammenhänge zwischen TFs und spezifischen Geweben oder Entwicklungszeitpunkten und 

implizieren neue Verbindungen. Schließlich werden DNase-seq-Signal und Sequenzmerkmale, 

die mit mutmaßlichen TFBSs verbunden sind, in einem integrativen Modell kombiniert, das 

die gewebespezifische TF-Bindung in hohem Maße vorhersagt. 

Zusammengenommen demonstrieren diese Analysen die Fähigkeit der offenen Chromatin-

Profilierung und der Computeranalyse zur Aufklärung der Mechanismen der Genregulation. 
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1. Introduction 

The orchestrated regulation of the activity of thousands of protein-coding genes is a 

fundamental feature of all living organisms, allowing for the maintenance of internal 

homeostasis and reaction to environmental stimuli. Coordinated gene expression across 

different cells further allows for organismal development, in which a zygote develops into an 

embryo containing dozens of different cell types with specialized functions. 

While almost all cells of an organism share the same genomic DNA, not all elements in the 

genome are simultaneously used in all cells; temporal and spatial patterns of gene expression 

driven by temporally and spatially active cis-regulatory elements (CREs), shape organismal 

development and cell function. Such specificity is achieved by keeping different portions of 

the genome accessible in different conditions, facilitated by the organization of DNA around 

protein macromolecular complexes called nucleosomes, leading to chromatin formation. When 

accessible (or synonymously: residing in regions of open chromatin), CREs like promoters and 

enhancers can be bound by regulators such as transcription factors, which in turn are able to 

tune the transcription levels of target genes. Profiling tens of thousands of accessible regions 

in chromatin is thus crucial to understanding transcriptional regulation. 

Two major experimental methods, DNase-seq and ATAC-seq, couple open chromatin profiling 

with next-generation sequencing to probe accessible regions genome-wide and have been 

instrumental in characterizing CREs in multiple organisms. In addition, these techniques 

harbor the potential to infer the binding of individual transcription factors within open 

chromatin regions, requiring tailored data analysis methods known as transcription factor 

footprinting approaches and a thorough understanding of experimental artifacts influencing the 

results. 

Combining the power of open chromatin profiling techniques with established model 

organisms (such as Drosophila melanogaster) allows for detailed investigation of 

transcriptional regulatory networks, where both spatial and temporal patterns of promoter and 

enhancer activities are able shape the precise development of an entire organism. 
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1.1 Thesis outline 

In Chapter 2, I present background regarding the molecular biology of transcription (Section 

2.1), with a focus on chromatin structure, sequence elements and a short introduction to 

transcription factors. A brief description of Drosophila early embryo development is then 

presented in Section 2.2. 

Section 2.3 details the experimental techniques used throughout this thesis, with an emphasis 

on ATAC-seq and DNase-seq. Computational analysis strategies are presented in Chapter 2.4, 

with a detailed discussion on methods used to infer transcription factor binding in open 

chromatin regions. 

Chapter 3 contains a detailed description of the experimental and analytical methods used in 

this thesis, relating to experiments performed on human and Drosophila cells. 

Results are presented in Chapter 4; in Section 4.1, I present results on comparing ATAC-seq 

and DNase-seq with respect to their ability in detecting open regions, using data from human 

cell lines. Inference of transcription factor binding using footprinting is presented, outlining 

the experimental biases affecting the two techniques. Different transcription factors show 

distinct footprint and background signal profiles in ATAC-seq and DNase-seq, where 

footprinting performance depends on the intrinsic experimental biases of the two techniques, 

in a protocol- and transcription factor-specific manner. Integrating information from biological 

replicates is presented as a strategy to infer high-confidence, reproducible transcription factor 

footprints in open chromatin. 

Section 4.2 covers results associated with the application of open chromatin profiling in the 

early embryonic development of the fruit fly Drosophila melanogaster. Open chromatin is 

profiled for specific tissue subsets within precisely staged embryos (performed by the 

laboratories of Prof. Eileen Furlong at the EMBL and Dr. Robert Zinzen at the MDC), enabling 

the inference of both tissue- and time point-specific putative CREs. Different analysis strategies 

uncover the rich sequence content, including transcription factor binding motifs, underlying 

these regions. These analyses link transcription factors to putative CREs that are spatially and 

temporally active in neural and mesoderm development, finding known associations as well as 

implicating novel ones. 

Section 5 includes a brief discussion, where I discuss the results presented in Chapter 4 and 

highlight the potential advantages and shortcomings of my work in the broader context of 
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transcription factor binding and motif inference. Appendix and reference sections can be found 

at the end of the thesis.  
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2. Background  

2.1. Transcriptional regulation of gene expression 

2.1.1. Chromatin 

In eukaryotic cells, nuclear DNA is assembled into a higher order structure, known as 

chromatin. Chromatin consists of a basic repeating unit named the nucleosome, which is an 

octamer made up of two copies each of histones H2A, H2B, H3 and H4 around which 147 base 

pairs (bp) of DNA is wrapped1. These histones are termed “core histones” and they consist of 

two domains: a “histone-fold” motif which is responsible for histone-histone and histone-DNA 

interactions, and an amino-terminal tail which can be subjected to posttranslational 

modifications (PTMs)2. The nucleosomes were found to be separated by 10-60 bp of linker 

DNA; the organization of this 10 nm chromatin fiber is termed the “nucleosomal array” or the 

primary structural unit3. Nucleosome-nucleosome interactions constitute the 30 nm fiber, also 

known as the secondary structural unit which is mediated by the linker histones such as H1 and 

H5 and further compaction of this 30 nm fibre forms the tertiary structural unit, resulting in the 

240 nm metaphase chromosome seen in mitosis3.          

Two distinct chromatin structures were found via carmine acetic-acid staining of interphase 

nuclei4. The densely stained regions were found to maintain their condensed state throughout 

the cell cycle and these regions were collectively named “heterochromatin”. Other regions 

(lightly stained in interphase) were observed to decondense as the cells progressed from 

metaphase to interphase; these were later found to exist in the form of the 30 nm fiber at this 

stage of the cell cycle5 and these regions were termed “euchromatin”.  

Euchromatin is generally defined as early replicating in S phase, gene rich and transcriptionally 

permissive; whereas heterochromatin is late replicating in S-phase, gene-poor, transcriptionally 

inactive in general, low in recombination activity and associated with repeat sequences 

abundant in pericentric and telomeric regions6. Chromatin modifications were found to be 

associated with these different chromatin states, for example DNA methylation is abundant in 

heterochromatin whereas DNA in euchromatin is generally hypomethylated7. Many histone 

PTMs have also been characterised to date (acetylation, methylation, phosphorylation, 

ubiquitylation, sumoylation, ADP ribosylation, deimination and protein isomerisation) which 

are associated with heterochromatin or euchromatin, depending on the site of modification2. 

Regulation of chromatin structure, via the action of these modifications, or other chromatin-
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associated proteins, play crucial roles in the transcriptional regulation of gene expression, as 

explored in the next sections.  

 

2.1.2. Cis-regulatory elements 

Transcriptional regulation of gene expression is mediated by the collective action of cis-

regulatory elements (CREs) such as promoters, enhancers, silencers and insulators (figure 1). 

At a basal level, gene transcription is achieved by the assembly of the transcription preinitiation 

complex (PIC), which is comprised of RNA polymerase II (Pol II, enzyme catalyzing 

transcription) and the basal transcription factors, at the core promoter regions8. The core 

promoter regions, which refer to the 50-100bp regions surrounding transcription start sites 

(TSSs), have two main classes: peaked (TSS spanning at most several nucleotides) and broad 

(several weak TSSs over an extended region)9. Core promoters are rich in sequence content 

and contain numerous motifs such as the TATA box, BRE, Inr, MTE, DPE, DCE, and XCPE1, 

some of which constitute binding sites for basal transcription factors, and the prevalence of 

which depends on the promoter class9. Enhancers, on the other hand, are TSS-distal elements 

that regulate expression by interacting specifically with promoters via looping10. These distal 

elements are bound by transcription factors (TFs, see next section), which in turn recruit 

coactivators/corepressors that regulate the target gene10. 
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Figure 1: Transcriptional regulation of gene expression. Cis-regulatory elements (promoter, enhancer, 

silencer, insulator) are schematically shown around a gene locus. Factors and histone modifications associated 

with these elements are also shown. Adapted from reference11. 

 

Transcriptional gene regulation by these elements is closely linked to chromatin regulation, as 

active promoters and enhancers are found in open chromatin regions, where nucleosomes are 

locally displaced10. Therefore, locations of cis-regulatory elements can be assayed via open 

chromatin profiling techniques such as DNase-seq and ATAC-seq (see section 2.3.3). In 

accordance with this, active elements harbor active histone marks such as histone H3 lysine 4 

trimethylation (H3K4me3) for promoters and H3K4me1 and H3K27 acetylation (H3K27ac) 

for enhancers2. Chromatin accessibility enables the binding of tissue-specific TFs to their 

cognate sequences (see next section). 
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2.1.3. Transcription factors 

As mentioned above, TFs bound at short specific sequences called motifs (see section 2.4.3.1) 

within CREs are major regulators of gene expression12. TFs may be activators or repressors of 

gene expression and in most cases many factors act together to exert combinatorial control12. 

There are multiple mechanisms that affect factor binding, such as the affinity to target 

sequences and the number and arrangement of sites with respect to each other13. In addition, 

while pioneer transcription factors can bind nucleosome-associated inaccessible DNA and 

make the local chromatin structure more accessible by displacing nucleosomes, binding of 

other transcription factors require an already open/primed structure14. Many TFs bind 

enhancers in a tissue and time-point specific manner, and some act as master regulators that 

specify a given lineage12. 

TFs are classified according to their families, which in turn is based upon their specific DNA-

binding domains (DBDs)15. There are around 100 characterized eukaryotic DBDs to date, 

examples of which include helix-turn-helix (HTH), homeodomain, zinc finger (ZF), leucine 

zipper (bZIP) and helix-loop-helix (bHLH)15. The motifs recognized by TFs are influenced by 

the specific interactions between the DBD and the underlying DNA sequence.    

 

2.2. Drosophila melanogaster as a model organism of embryogenesis 

Drosophila melanogaster is a widely studied model organism, and consequently the stages of 

embryonic development are well documented. At the onset of fertilization, a set of maternally 

deposited and localized factors, namely bicoid, nanos and torso, lead to patterning in the 

developing embryo, by forming gradients and activating zygotic gap genes, which in turn 

activate pair-rule genes16. This occurs within the first three hours of embryogenesis, where 13 

rapid rounds of mitotic division takes place, without membrane formation, and the 6000 nuclei 

sharing the same cytoplasm17. This constitutes the blastoderm stage (stage 5), followed by 

gastrulation (stage 8), and time-points spanning 2-4hr post fertilization (pf) correspond to these 

stages. Upon gastrulation, the three germ layers (ectoderm, endoderm and mesoderm) are 

generated. As the datasets analyzed in this thesis are focused on the mesoderm and neurogenic 

ectoderm, the next stages will be summarized for these germ layers.  
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2.2.1. Specification of the mesoderm 

The mesoderm gives rise to the somatic, visceral and heart muscle18. In the developing 

mesoderm, 2hr windows post fertilization correspond to the following stages: 4-6hr pf (stages 

8-9) multipotent mesoderm, 6-8hr pf (stages 10-11) specification, 8-10hr pf (stages 12-13) 

diversification and 10-12hr pf (stages 13-15) terminal differentiation19 (figure 2). The TF twist 

has a central role in mesoderm specification at multiple stages, starting as early as 

gastrulation18. It also regulates other central mesoderm-specific genes dMef2, which primes the 

differentiation into muscle20, and tinman, which specifies the dorsal mesoderm21. Tinman 

further regulates bagpipe, which, in conjunction with biniou, specifies the visceral mesoderm22 

(figure 2). These TFs constitute the master regulators of mesoderm specification19. 

 

Figure 2: Expression of five main mesoderm TFs during early embryonic development. Regulatory 

relationships between the 5 TFs is shown on the left. Stage specific expression patterns of twi and mef2 in the 

developing embryo is shown on the right panel (above), with the embryonic development stages (in 2hr 

windows) in which all 5 TFs are expressed, are stated below. Adapted from reference19. 

 

2.2.2. Specification of the neurogenic ectoderm 

The neurogenic ectoderm gives rise to the central nervous system. In the developing neurogenic 

ectoderm, 2hr windows post fertilization correspond to the following stages: 4-6hr pf 

neuroblast formation, 6-8hr pf newborn neurons, 8-10hr pf neural patterning and 10-12hr pf 

terminal differentiation. The neurogenic ectoderm is made up of three columns along the 

dorsoventral (DV) axis: ventral, intermediate, and dorsal, where the cell fates for these columns 

are specified by the homeobox genes, vnd, ind, and msh, respectively23. Figure 3 shows the 

respective locations of the three columns in the developing embryo, marked by the expression 

of these genes. Proneural genes achaete, scute, lethal of scute, wingless, hedgehog, gooseberry, 

and engrailed also play important roles in neuroblast formation23. 
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Figure 3: The developing CNS and the three columns of the neuroectoderm. The CNS development in 

embryos at stages 5, 8 and 9, is shown (the neurogenic region shown in light purple, left). The three columns of 

the neuroectoderm, as marked by vnd, ind and msh, are shown (together with segment polarity and pair rule 

genes that define segment boundaries, right). Adapted from http://www.sdbonline.org and reference24. 

 

2.3. Genome-wide sequencing techniques to identify and characterize cis-regulatory 

elements 

2.3.1. Next-generation sequencing 

Before the advent of next-generation sequencing technologies, the predominant methods for 

uncovering the sequence of DNA fragments have been Maxam-Gilbert25 and Sanger 

sequencing26. Maxam-Gilbert method uses a set of chemical reactions that cleave a DNA 

template preferentially at one or two specific nucleotides (G+A, G, C+T, C). On the other hand, 

Sanger sequencing takes advantage of nucleotide analogues (dideoxynucleotides) that 

terminate the elongation of a template DNA molecule by DNA polymerase at a specific 

nucleotide (A, C, G or T). For both methods, conducting all four respective reactions on the 

same template and visualizing the resulting fragments side by side via gel electrophoresis, 

allows decoding the template sequence. Even though protocol modifications such as labeling 

the four reactions with different fluorophores to have direct fluorescent readout has increased 

automation in the case of Sanger sequencing27,28, these methods have limited throughput. For 

instance, the human genome projects29,30, where Sanger sequencing was employed, have been 

collective efforts of multiple groups, over the course of several years, with an estimated cost 

of 0.5-1 billion dollars31. Around the time the human genome projects were approaching 

completion, the National Human Genome Research Institute started an advanced DNA 

sequencing technology program, to fund the development of new technologies aimed at 

sequencing an individual human genome for 1000 dollars or less32. This set the stage for many 
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next-generation sequencing technologies, including Illumina/Solexa that has been used in the 

generation of all datasets analyzed in this thesis. 

The first step of the Illumina/Solexa sequencing workflow is library preparation33. In general, 

this involves DNA fragmentation, forward and reverse adapter ligation to the ends of the 

resulting fragments and amplification via PCR, although the experimental details depend on 

the protocol and starting material. For instance, RNA molecules need to be reverse transcribed 

into cDNA first. The following steps are cluster generation and sequencing, as illustrated in 

Figure 4. Cluster generation is achieved by a process called solid-phase amplification. This 

process starts with the adapter-ligated fragments annealing to complementary oligonucleotides 

covalently attached to the surface of a glass slide, known as the flow cell. The annealed 

oligonucleotides prime an extension reaction copying the original strand, creating flow cell-

bound fragments. In turn, the free ends of the bound fragments anneal to other nearby 

complementary oligonucleotides, forming bridges. This initiates further rounds of extension 

and annealing (e.g. bridge amplification), generating many copies of the same fragment locally, 

called a cluster. All clusters on the flow cell are then sequenced via a reversible termination 

strategy. Sequencing primer anneals uniquely to the forward adapter and primes the extension 

reaction. Akin to Sanger sequencing, elongation-terminating nucleotide analogues are used. In 

contrast to the dideoxynucleotides used in Sanger sequencing, however, the fluorescently 

labeled 3´-O-azidomethyldNTPs used in this reaction enable the termination to be reversed34. 

In each round, the correct base is incorporated into the growing chain, visualized via the 

fluorescent signal and the termination reversed for the next base to be added. Cycles are 

repeated until the desired sequence length (e.g. read length) is achieved. In this way, sequences 

from one end of the fragments are uncovered, termed single-end sequencing. Both ends can be 

sequenced by repeating the whole process with a second sequencing primer complementary to 

the reverse adapter, termed paired-end sequencing.   
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Figure 4: Illumina/Solexa sequencing chemistry. Fragments are subjected to bridge amplification followed by 

cluster generation (left). Fragments are then sequenced via a cyclic reversible termination strategy (right). 

Adapted from reference35. 

 

Of the sequencers produced by Illumina, the HiSeq series and NextSeq 500 have been used in 

the production of the datasets analyzed in this thesis. To put the throughput into context, both 

HiSeq 2500 and NextSeq 500 machines can produce reads from a human genome at 30x 

coverage, in less than 30 hours31. This paves the way to probe the genome at unprecedented 

scale, using a multitude of genomics techniques. 

 

2.3.2. Techniques to profile transcription factor binding sites and histone modifications 

Transcription factors and histone modifications play crucial roles in the transcriptional 

regulation of gene expression. Therefore, techniques that enable them to be mapped genome-

wide, have become instrumental in probing the complex transcriptional programs of cells. 
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2.3.2.1. ChIP-seq 

Chromatin immunoprecipitation (ChIP) is perhaps the most widely used method to profile in 

vivo protein-DNA interactions36,37. In ChIP, proteins are covalently crosslinked to DNA using 

formaldehyde, to stabilize existing contacts36,38. The cells and nuclei are lysed, and the 

chromatin is then sheared by sonication to obtain shorter fragments, ideally in the 200-500 base 

pair range (Figure 5). Next, fragments bound to the protein of interest are enriched using an 

antibody specific to the protein (eg. the immunoprecipitation step). The DNA fragments are 

released from the protein-DNA complexes, by reversing the crosslinks. Finally, fragment 

sequences are determined to infer the binding locations of the protein of interest. In the early 

days of the ChIP assay, this was mostly achieved by designing probes specific to a locus of 

interest and assessing whether the probes hybridized to the obtained fragments36,37. Another 

method readily used is quantitative real-time polymerase chain reaction (qPCR) with primers 

against regions of interest38. Both approaches are low-throughput as they require pre-selection 

of candidate regions. Combining ChIP with next generation sequencing (ChIP-seq), overcomes 

this issue and profiles chromatin-associated proteins at a genome-wide scale.                

 

Figure 5: ChIP-seq. In ChIP chromatin is fixed, fragmented, and enriched for the bound protein or histone 

modification of interest by immunoprecipitation with a specific antibody (left). Adapters are ligated and libraries 

are sequenced (right). Adapted from reference39. 

 

In ChIP-seq, adapters are ligated to the ends of the fragments, followed by cluster generation 

and sequencing steps, as detailed in the previous section (Figure 5). In this way, millions of 

fragments can be sequenced in parallel. An important control in ChIP-seq is the input or total 

DNA, obtained by processing the samples in the same way, but omitting the 
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immunoprecipitation step38. Input DNA is sequenced alongside the immunoprecipitated 

samples and gives insights into the fragmentation and sequencing biases. An additional control 

used in some cases is immunoprecipitation with a non-specific antibody (eg. IgG)38.  

Since the first ChIP-seq studies published in 200740–43, there have been many variations to the 

protocol44. For instance, nano-ChIP-seq45 and linear DNA amplification (LinDA)46 are two 

variations that require much less starting material than the original protocol: ~10000 cells as 

opposed to ~10 million. In another variation, ChIP-exo47, the immunoprecipitated fragments 

are subjected to 5’ to 3’ exonuclease digestion, which brings the 5’ ends of the fragments to 

the immediate vicinity of the bound protein, increasing the resolution from ~200 base pairs of 

the standard protocol to pinpointing the binding site. The next section will focus on batch 

isolation of tissue-specific chromatin for immunoprecipitation (BiTS-ChIP)48, another 

technique that extends the standard ChIP-seq protocol and which has been partially used in the 

generation of some of the datasets analyzed in this thesis.    

 

2.3.2.2. BiTS-ChIP 

BiTS-ChIP48,49 allows conducting ChIP-seq on a batch of tissue-specific nuclei isolated from 

a developing embryo (figure 6). The first step is to find a nuclear marker that is expressed 

exclusively in the tissue of interest and that can be used for fluorescent labeling of the nuclei. 

This can either be an endogenous protein or a transgene driven using a tissue-specific enhancer, 

coding for a tagged nuclear protein. Embryos expressing such a nuclear marker are collected, 

staged (eg. aged to the developmental stage of interest) and formaldehyde fixed to stabilize 

existing protein-DNA contacts. Individual nuclei are extracted by mechanical disruption of the 

fixed embryo. The nuclei are then fluorescently labeled by staining using a highly specific 

antibody against the chosen nuclear marker. Antibody staining is not needed if the nuclear 

marker is designed to have a fluorescent tag. Subsequently, a highly pure (typically >97%) 

population of fluorescently labeled, tissue-specific nuclei is obtained by fluorescence activated 

cell sorting (FACS). These nuclei are used in ChIP-seq experiments to infer tissue-specific 

patterns of histone modifications or binding of transcription factors and other chromatin-

associated proteins.         
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Figure 6: BiTS-ChIP protocol. Embryos expressing a tissue-specific nuclear marker are aged to the desired 

stage and formaldehyde fixed, followed by nuclear extraction, staining and FACS sorting. This results in a pool 

of tissue-specific nuclei that can then be assayed by ChIP-seq. Adapted from reference49. 

 

2.3.3. Techniques to profile open chromatin 

As covered in section 2.1.2, tissue- and developmental stage-specific regulatory elements 

reside in nucleosome-free, accessible regions of the genome. These regions are hypersensitive 

to nuclease attack50. Digestion with the nuclease DNase I, coupled to high throughput 

sequencing (DNase-seq), is the first established genome-wide technique to probe such open 

chromatin regions51,52, and is widely applied in research consortia such as ENCODE53,54 or the 

Roadmap Epigenomics55. 

  

2.3.3.1. DNase-seq 

Initially isolated from bovine pancreas56, DNase I is a nuclease that can cleave DNA molecules 

by hydrolyzing the phosphodiester bonds of the sugar phosphate backbone57. In the mid-70s, 

studies have demonstrated that DNase I preferentially cleaves transcriptionally active 

chromatin58,59. Specifically, cells where selected gene loci (globin58 and ovalbumin59) are 

transcriptionally active, are subjected to digestion by DNase I. The resulting DNA is observed 

to be depleted for fragments associated with the active genes, as shown by decreased annealing 

to gene-specific probes. This effect is not observed for cells where the genes are not transcribed, 

leading to the hypothesis that transcriptional activity is associated with an altered chromatin 

conformation, more susceptible to DNase I cleavage. These observations were extended some 

years later, in studies of Simian Virus 4060 and Drosophila chromatin61, which demonstrated 

that DNase I cleaves the underlying chromatin in a position-specific manner. These studies 

estimated two regions preferably digested by DNase I to be shorter than the length of DNA 
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wrapped around 2 nucleosomes60, and approximately 140 base pairs61, respectively. 

Furthermore, both studies discussed that these regions could possibly be devoid of 

nucleosomes. They were defining for the first time, what we now know to be DNase 

hypersensitive sites (DHSs).  

Historically, DHSs were mapped using a method called indirect end-labeling62–64. Briefly, the 

chromatin is first digested by DNase I, and then the isolated DNA cleaved further by a rare-

cutting sequence-specific restriction endonuclease (RE). The resulting fragments are separated 

by gel electrophoresis, transferred to a membrane and hybridized to probes specific to the 

immediate flanks of the RE cut sites. The determined fragment lengths provide a direct measure 

of the distance between the RE and DNase I cleavage sites, from which the DHSs can be 

inferred. This method is low-throughput and can only be applied to a limited number of loci at 

a time, as it requires the loci of interest to be previously characterized (eg. knowledge of 

sequence and RE recognition sites). In contrast, DHSs are readily mapped today with the high-

throughput, genome-wide DNase-seq method.           

There are two variations of DNase-seq that are generally referred to as single-hit51,65 and 

double-hit52 protocols, as the resulting fragments represent a DNase I cut on one or both ends, 

respectively. In the single-hit protocol (figure 7, left), DNase I digestion is carried out and the 

first linker harboring an MmeI restriction enzyme recognition site is ligated to the digested 

ends. MmeI then cuts 20bp downstream from its recognition site, where the second linker is 

subsequently ligated. In the double-hit protocol (figure 7, right), the DNase I digested 

chromatin is subjected to size fractionation to get 100-500bp fragments. Illumina adapters are 

then ligated to the ends of the fragments. In both protocols, the linker-flanked fragments are 

PCR amplified, purified and sequenced according to the Illumina sequencing workflow. 

Computational analysis of DNase-seq datasets to infer DHSs and transcription factor footprints 

are discussed in sections 2.4.2 and 2.4.3.             
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Figure 7: DNase-seq. In the single-hit DNase-seq protocol, a 20bp region representing one end of a DNase I-

cut fragment is retrieved via an MmeI digestion step (left). In the double-hit protocol, the fragments are cleaved 

on both ends by DNase I (right). Adapted from reference65. 

 

2.3.3.2. ATAC-seq 

A more recent technique to profile open chromatin regions is the assay for transposase-

accessible chromatin using sequencing (ATAC-seq)66. Instead of a nuclease like DNase I, 

ATAC-seq employs Tn5 transposase enzymes. Transposases contribute to genomic 

rearrangements and consequently genome evolution, by mobilizing DNA elements called 

transposons67. Tn5 is a bacterial transposon normally functioning to confer antibiotic resistance 

to the host, through the three resistance genes it harbors (kanamycin, bleomycin and 

streptomycin)68,69. As with many others, mobilization of the Tn5 transposon is realized via a 

“cut-and-paste” mechanism where it is cleaved from its original location and inserted into the 

target DNA by the Tn5 transposase69. This depends on the specific interaction of the 

transposase with the 19bp sequences at the two ends of the Tn5 transposon. The Tn5 

transposon-transposase complex then binds the target DNA and via a nucleophilic attack, the 

3’ ends of the transposon get covalently linked to the 5’ ends of the cleaved target DNA70. 

During this process, the minus strand of the target DNA is cleaved at a position 9bps 
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downstream of the plus strand, which leads to the duplication of these 9bps on either side of 

the inserted transposon. A better understanding of and modifications to the components of this 

system, led to its usage as an in vitro tool70. These include making the Tn5 transposase 

hyperactive through mutations71, and using a modified version of the 19bp end sequence called 

the mosaic end (ME) with greater transposition efficiency72. Furthermore, it was found that 

pre-loading hyperactive Tn5 transposases in vitro with sequencing adapters harboring ME 

sequences, without the intervening transposon DNA, is sufficient for transposition73,74. Since 

there is no intervening DNA, this altered transposition reaction leads to the fragmentation of 

target DNA via transposase attack and cleavage while the resulting fragments are 

simultaneously tagged by adapter ligation to the 5’ ends, a process known as “tagmentation”74. 

These developments and the reports of transposons preferentially integrating into nucleosome-

free regions75, set the stage for ATAC-seq as a Tn5 transposase-based method to profile open 

chromatin66. ATAC-seq has a fast and straightforward protocol that comprises of cell/nuclei 

isolation, lysis, tagmentation, PCR amplification and sequencing (figure 8). Much less starting 

material is required for ATAC-seq in comparison to DNase-seq, ~500-50,00066 vs ~1-10 

million65 cells or nuclei, respectively, although recent protocol variations allow both techniques 

to be applied at the single cell level76–78. As for DNase-seq, computational analysis of ATAC-

seq datasets are discussed in more detail in sections 2.4.2 and 2.4.3.       

 

Figure 8: ATAC-seq. In ATAC-seq, Tn5 transposase dimers insert adapters into open chromatin regions, 

generating sequencing-ready fragments. Adapted from reference66. 
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2.4. Computational analysis of genome-wide sequencing datasets 

2.4.1. Read processing, alignment and filtering 

As described in section 2.3.1, next generation sequencing technologies output sequences of 

defined length, also known as reads, belonging to fragments of interest from a given 

experimental setup. The output at this stage is generally in fastq format, which includes both 

the sequence information, as well as a per nucleotide quality metric for each read. A popular 

choice for the quality metric is called the phred score79, which is essentially a measure of the 

probability of the base call during sequencing being correct for each nucleotide. 

As adapters are ligated to the fragments for sequencing (see section 2.3.1), reads may contain 

adapter sequences which need to be trimmed, since otherwise they would interfere with proper 

alignment to the reference genome. Adapter sequences and where in the read they might be 

encountered are specific to the experimental setup and read length. For instance, an ATAC-seq 

library has a range of fragment lengths, starting from as short as 38bp74. The first nucleotide in 

the read corresponds to the 5’ end of the fragment. When the read is longer than the fragment, 

therefore, the 3’ end of the read will comprise of adapter sequences. Another example can be 

a single-hit DNase-seq library, where the fragment length is 20bp51, and the reads would need 

to be trimmed down to this length. Tools for adapter trimming, can generally also be used to 

trim low quality bases from reads when needed.  

The next step is to align the reads to the reference genome, in other words to determine which 

genomic region the read (and fragment) was originally derived from. This is essentially an 

approximate string matching problem80: the objective is to find where the read sequence 

matches the reference sequence, while allowing for mismatches and gaps. The main reasons 

for this are errors in sequencing and differences between the assayed sample and the reference 

genome due to sequence variation. Another consideration is the sheer amount of data. Aligning 

millions of reads to a reference genome millions of bases long, requires efficient algorithms. 

Two algorithmic ideas used by aligners are filtering and indexing80. Briefly, filtering eliminates 

regions of the reference genome where a match is not expected for a given read, by comparing 

the shorter subsequences within the read to the reference genome81. Indexing, on the other 

hand, refers to preprocessing the reference genome to allow matching sequences to be queried 

much faster. The main indexing approaches used are the enhanced suffix array82 and the FM-

index83, which is based on the Burrows-Wheeler transform84. Aligners Bowtie285 and BWA86, 
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used in the analyses presented in this thesis, incorporate the FM-index. The output is in sam 

(short for sequence alignment/map) format which can be converted to the binary bam format.        

Following the alignment, the .bam file can be further processed as needed. One of the first 

choices to be made is the handling of multimappers, i.e. reads that map to multiple locations in 

the genome. These may be filtered out to retain only reads that map uniquely to a single 

location, which increases certainty at the expense of coverage over repetitive regions. Another 

consideration is that, most library preparation methods include a PCR amplification step, which 

can lead to the same fragment to be sequenced multiple times. These PCR duplicates may be 

removed, with the choice depending on the experimental protocol: if independent fragments 

originating at the same location are expected, removing duplicates may discard some true 

fragments. Paired-end sequencing may aid in more confident removal of duplicates, as both 5’ 

and 3’ ends are considered. The final processed .bam file can then be used in downstream 

analyses.       

 

2.4.2. Finding regions of enrichment via peak calling 

Once discovering where the reads originated from in the reference genome via the alignment 

step, one common downstream analysis is to find the regions of enrichment, i.e. regions where 

the reads accumulate to generate enriched signal over background expectation. This is achieved 

by peak calling algorithms which have slight differences in application depending on the 

experimental protocol. For instance, in ChIP-seq (see section 2.3.2.1 and figure 5), the 

fragments of interest encompass a TF or histone modification. The sequenced reads belong to 

the 5’ ends of these fragments, either on the plus or minus strand, shown as blue and red tags, 

respectively in figure 9, left. For the tag density to reflect the center of binding, many peak 

calling tools estimate fragment lengths and subsequently shift or extend the tags in the 3’ 

direction (figure 9, right)87. The updated signal profile is then used to calculate regions of 

enrichment that reflect TF binding or locations of modified histones. On the other hand, in 

DNase-seq and ATAC-seq, the 5’ ends of the reads represent the DNase I cut sites and the Tn5 

transposition sites, respectively (see sections 2.3.3.1 and 2.3.3.2). Therefore, in this case peak 

calling algorithms are used to infer 5’ read end pileups, without shifting. Open chromatin 

regions, and thus cis-regulatory elements, are inferred in this way. 
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Figure 9: ChIP-seq peak calling. In ChIP-seq, the fragments span binding sites of the factor of interest (left). 

The 5’ end of the fragments are shifted or extended to represent the center of binding (right). Adapted from 

reference87. 

 

The algorithmic approaches utilized by peak callers will be exemplified via two specific tools 

used in this thesis: MACS88 and JAMM89. For ChIP-seq datasets, MACS estimates the 

fragment length, d, and shifts all reads by d/2 towards the 3’ direction. To find peaks, MACS 

models read counts with a Poisson distribution, where mean and variance are expressed with a 

single parameter, lambda. As covered in section 2.3.2.1, input controls are essential for ChIP-

seq experiments. By estimating lambda from the input control locally (i.e. from the same 

genomic regions as the peak candidates), MACS finds peaks that are significantly enriched 

over input. JAMM, also estimates the fragment length, d, however instead of shifting reads, it 

extends them towards the 3’ direction, to match d. JAMM first determines broad windows of 

enrichment (over the control sample) throughout the genome, and then finds peaks within those 

windows by clustering the signal. Gaussian mixture models90 with peak and noise components 

are used to this end. Both MACS and JAMM can be used with ChIP-seq data, as well as with 

DNase-seq and ATAC-seq data when the parameters are set accordingly.         

A common method to find reliable peak sets is called the Irreproducible Discovery Rate 

(IDR)91. The IDR pipeline is comprised of calling peaks in replicates separately, comparing 

the results to assess both the extent of overlap among peak sets and the similarity of score ranks 

among overlapping peaks, and subsequently finding the number of reproducible peaks at a 

given IDR threshold. 

The identified peaks are subject to further downstream analyses depending on the type of 

experiment. Among these is differential signal analysis, which refers to methods such as 

EdgeR92 and DESeq93. Initially designed to assay differential gene expression among two 
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conditions, these methods can be employed in any case where regions of interest can be defined 

(e.g. peaks) and replicates are available for sets of conditions to be compared. In general, read 

counts within peaks are modeled using the negative binomial distribution, where the parameter 

for variance separates technical from biological variation, facilitating the identification of 

regions that show significantly higher signal in one condition compared to the other.          

 

2.4.3. Finding transcription factor binding sites 

As the previous section illustrated, peak calling on TF ChIP-seq datasets allows finding TF-

bound regions genome-wide. However, this analysis has a relatively low resolution (i.e. the 

identified regions are much larger than the actual TF-DNA contact sites, 100-200bps vs 6-

15bps, respectively) and would require a separate ChIP-seq experiment to be conducted for 

each TF of interest. Therefore, in the following sections, approaches to find putative TF binding 

sites at higher resolution is discussed, first focusing on sequence features defined by position 

weight matrices, followed by the data-driven TF footprinting.  

 

2.4.3.1. Position weight matrices 

TFs bind short (typically 6-15bps) and specific sequences throughout the genome. Individual 

binding sites of a given TF are not always identical; but display position-specific nucleotide 

preferences when aggregated, also known as binding motifs94. Motifs are most commonly 

represented via position weight matrices (PWMs)95. As shown in figure 10, each column in a 

PWM represents a base position, with the rows giving the weights of each of the four 

nucleotides at that position. The weights are usually log likelihoods (against a background 

model) of observing a given nucleotide at a given position, and an equivalent representation 

with plain probabilities or frequencies is called the position frequency matrix (PFM)94. PWMs 

(and PFMs) can also be represented visually, using motif logos (figure 10), where the 

nucleotides expected at a given position are drawn in proportion to their respective weights, 

with the total height representing the information content (IC)96. IC of a given position equates 

to the log likelihood (in log2 scale, against a background model) of each nucleotide multiplied 

by its frequency, summed over all four nucleotides. Thus, it ranges from 0, designating no 

specific nucleotide preference, to 2, where a single nucleotide is specifically preferred at a 

given position. One caveat of the PWM model is that it assumes all base positions to be 

independent of each other, which is not true for all TFs, where more complex approaches may 
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be more appropriate97. Nevertheless, the simple PWM models are the most broadly used to 

date94.  

 

Figure 10: A position weight matrix and its motif logo visualization. In a PWM, each column represents the 

position, and each row represents the weights associated with each nucleotide (above). The PWM can be 

visualized via a motif logo, where the total height at each position corresponds to IC (below). Adapted from 

reference94. 

 

When the sequences of multiple binding sites for a given TF are known, and if the 

corresponding positions in the respective binding sites can be aligned to represent the binding 

motif, a PFM can be constructed simply by calculating nucleotide frequencies per position, 

which could then be converted to a PWM. As covered in the previous sections, ChIP-seq is an 

in vivo method that provides binding sites for a given TF genome-wide, which can then be used 

to look for the underlying PWM model. This constitutes the de novo motif discovery problem, 

where neither the precise locations of the binding sites within the ChIP-seq peaks, nor the 

expected motif parameters are known, and algorithms usually attempt to find the motifs that 

maximize IC97. There are also in vitro methods that assess TF-DNA binding, including protein-

binding microarrays (PBMs), which provide robust binding scores for 8-mers98 and high-

throughput SELEX (HT-SELEX), in which 10-40bp long sequences are subjected to 

successive cycles of TF-binding, leading to increased specificity at each cycle99. PWMs are 

constructed from these in vitro approaches, using tailored computational methods94. Databases 

such as UniPROBE100 and JASPAR101 provide comprehensive PWM collections from such 

efforts.               

If the binding model(s) of a TF is readily available, it becomes possible to scan a set of 

sequences or the whole genome, using the PWM model, to find motif matches that constitute 

putative TF binding sites (TFBSs). Many methods achieve this by sliding the PWM model one 

nucleotide at a time, and at each position, scoring the likelihood that the underlying sequence 

matches the PWM model, via summing the corresponding weights of the observed 
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nucleotides102. The same likelihood calculation is carried out with a background model as well, 

and the log-likelihood ratio of the PWM model vs the background model, constitutes the match 

score. The background can be defined in different ways; one common way is to use a zero-

order Markov model (i.e. frequencies of the four nucleotides) derived from the entire sequence 

set103, whereas other methods choose more complex approaches such as local first-order 

Markov models, taking dinucleotide frequencies into account within a local window104. 

Putative TFBSs are usually analyzed further with data driven approaches to delineate true 

bound sites, such as TF footprinting covered in the next section. 

 

2.4.3.2. Transcription factor footprinting 

In the late 60s, it was observed that binding of RNA polymerase protects the underlying DNA 

from cleavage by DNase I105, the first indication that protein bound DNA is less accessible to 

DNase I, compared to flanking regions. The emergence of sequencing methodologies a decade 

later25,26, made it possible to infer the sequences of these protected stretches of nucleotides or 

shortly “footprints”106. Briefly, the first “DNase I footprinting” method106 consisted of DNase 

I treatment of a DNA template (lac operator) in the presence of a specific binding protein (lac 

repressor), and electrophoresis of the resulting fragments on a nucleotide-resolution 

polyacrylamide gel. With this method, as the bound nucleotides cannot be cleaved by DNase 

I, the corresponding fragments cannot be obtained and the footprint appears as a gap on the 

gel. The products of standard Maxam-Gilbert sequencing25 (see section 1.3.1) are run alongside 

the DNase I cleavage products on the same gel and the footprint sequence is inferred by 

comparison to the gap position. Variations of this in vitro method allow footprint inference in 

vivo as well107,108, however these are low-throughput as they rely on probes specific to the 

region of interest. 

The more recent high-throughput DNase-seq method, on the other hand, enables the inference 

of footprints genome-wide109,110. This is of special relevance to TFs, and a multitude of TF-

footprinting methods have been developed to date111, which can be grouped under three general 

categories: site-centric, segmentation based, and integrative site-centric methods. Site-centric 

methods model footprints specifically for candidate TFBSs, using the shape or magnitude of 

the DNase-seq signal around them112–115. Segmentation based methods, on the other hand, scan 

the DNase-seq signal for footprint-like signatures (eg. peak-trough-peak pattern) and 

subsequently match the identified footprints to putative TFs116–120. Integrative site-centric 
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methods model bound sites using combinations of diverse features, such as motif match score, 

sequence conservation and variable length bins of DNase-seq signal around candidate 

TFBSs121–126.     

The efforts to assay bound sites genome-wide via TF-footprinting have come under scrutiny 

by studies demonstrating that DNase I cleaves the underlying DNA in a non-uniform manner, 

where sequence composition dictates the cleavage propensities (also known as sequence 

bias)127,128. This necessitates the discrimination of actual footprints from footprint-like signal 

profiles originating solely due to sequence bias115. To account for this, a number of TF-

footprinting tools explicitly model and incorporate the bias background in their models or 

processing pipelines, by calculating the ratio of observed to expected DNase cuts for short 

sequences of fixed length111,114,119. 6-mers have been the primary choice, as they capture 

enough variation to represent the bias115, in line with the finding that the main sequence 

information content around a DNase cut site is confined to the flanking 3 nucleotides on either 

side127. Open chromatin regions111,115,119 or DNase-seq experiments conducted on 

deproteinized genomic DNA111,114 have been used to infer these 6-mer cleavage propensities. 

Recent efforts have explored the feasibility of TF-footprinting with ATAC-seq123,124,129–131, 

however this is not yet studied as extensively as for DNase-seq. Furthermore, like DNase I, 

Tn5 transposase is reported to have specific target sequence preferences, which encompass the 

central 9bps that get duplicated during transposition, as well as ~5bp flanking regions on either 

side69,74,132,133. In line with this, a recent method aiming to correct sequence biases in high-

throughput sequencing datasets, reported a 17bp long gapped k-mer with 8 meaningful 

positions as the optimal k-mer to correct ATAC-seq data134, however, the signal was not 

smoothed completely in this setting. Taken together, the optimal way to correct for Tn5 

sequence bias and its putative effects on TF-footprinting remain open questions in the field.       
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3. Materials and Methods 

Each subsection within materials and methods is denoted part 1, part 2 or both, depending on 

which results section it refers to.  

 

3.1 DNase-seq and ATAC-seq experimental procedures and data preprocessing 

Part 1 

DNase-seq and ATAC-seq assays were performed on human cell lines, K562 and HEK293 

cells. K562 and HEK293 cells were cultured in Iscove’s Modified Dulbecco’s Medium 

(IMDM) and Dulbecco’s Modified Eagle’s Medium (DMEM), respectively, both 

complemented with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin. 

Single-hit DNase-seq experiments were conducted on 50 million cells as previously 

described65, with the minor modification of using 5’ phosphorylated oligo 1b. Samples digested 

with 12U, 4U and 1.2U total DNase I were pooled. Libraries constructed from pooled digests 

were sequenced on the Illumina HiSeq2500 platform using the single-end sequencing mode 

with 50-bp reads. Analysis was conducted in line with the official ENCODE DNase-seq 

pipeline. Specifically, the reads were trimmed to the first 20 bases, as only this portion 

corresponded to the ends of DNase I-digested fragments, due to the MmeI cleavage step in the 

protocol. Trimmed reads were aligned to the hg19 build of the human genome, using the 

Burrows-Wheeler aligner (BWA)86, tolerating up to two mismatches. Sequences aligning to 

more than four locations were discarded. Further processing was performed to filter out 

unwanted chromosomes and problematic regions such as alpha satellites. In order to remove 

PCR artifacts, reads that piled up (>=10 reads) at a single base were discarded, if they 

constituted at least 70 percent of all reads in the surrounding 30 base pair window. 

ATAC-seq experiments were performed on 50000 cells for the K562 samples and 100000 cells 

for the HEK293 samples, following the published protocol66 but increasing transposition time 

from 30 minutes to 1 hour for all samples. In addition, lysis conditions were varied in different 

experiments. For the K562 sample denoted “10 minute lysis”, cell lysis was performed via a 10 

minute centrifugation in lysis buffer, as described in the original protocol66. For the K562 

sample denoted “5 minute lysis”, a shorter lysis of 5 minutes was used. For the K562 sample 

denoted “no lysis buffer” and all HEK293 samples, the centrifugation in lysis buffer step was 
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omitted altogether, and the cell pellets were taken directly to the transposition reaction. 

Libraries were sequenced on HiSeq2000 (Illumina), with 100-bp paired end reads. Since 

fragments as short as 38 base pairs were expected, adapter sequences were trimmed from the 

3’ end of the reads. Specifically, matches of any length to the reverse-complemented Nextera 

Transposase Adapters (CTGTCTCTTATACACATCTGACGCTGCCGACGA, 

CTGTCTCTTATACACATCTCCGAGCCCACGAGAC) were removed. Trimmed reads 

were aligned to the hg19 build of the human genome, using bowtie285 with parameter -X set to 

1500, to allow correct alignment of paired-end fragments up to 1500 base pairs. Only reads 

that aligned uniquely to a single location were retained, by filtering out the multimappers 

marked with the XS:i flag in the sam file. PCR duplicates were removed using Picard 

(http://broadinstitute.github.io/picard/). Further processing was performed to filter out contigs 

as well as the Y and mitochondrial chromosomes, and retain only reads that aligned 

concordantly as a pair within the expected fragment length range (38-1500 bp). 

Library complexity and saturation were calculated using the preseq program135, using the 

c_curve and lc_extrap functionalities. Correlations of reads counts between libraries were 

calculated using the bamCorrelate bins command of the deepTools suite, with the parameters 

–corMethod pearson, -bs 100, --fragmentLength 1 and –doNotExtendPairedEnds. 

 

Part 2 

DNase-seq and ATAC-seq assays were performed on Drosophila melanogaster embryos. 

Transgenic D. melanogaster embryos carrying a mesodermal marker gene (histone H2B fused 

with streptavidin-binding protein) were described previously48.  Staged embryos were collected 

and formaldehyde fixed as previously described136.  In brief, embryos were collected on apple-

agar plates in two-hour windows following three one-hour pre-collections for synchronization 

purposes.  After ageing (at 25 °C) to the desired age, embryos were washed from the plates 

into a sieve using water, and dechorionated in 50% bleach (diluted from 6-14% sodium 

hypochlorite, Merck) for 2 min.  Formaldehyde fixation was performed for 15 min with shaking 

(500 rpm) at room temperature in cross-linking solution (50 mM Hepes, 1 mM EDTA, 0.5 mM 

EGTA, 100 mM NaCl, pH 8, 1.8% formaldehyde v/v) with a heptane layer.  Fixation was 

stopped by pelleting embryos by centrifugation at 500 g and exchanging the buffer for 125 mM 



3. Materials and Methods | 3.1 DNase-seq and ATAC-seq experimental procedures and data 

preprocessing 

27 
 

glycine in PBS and shaking for a further 5 min.  The embryos were washed in PBS, dried, snap 

frozen in liquid nitrogen, and stored at −80 °C in ~ 1 g aliquots. 

Embryo dissociation and nuclear isolation were performed as described previously (steps 1–

10)48 using a dounce homogenizer and a 22G needle. The resulting nuclei were pelleted at 

2,000g at 4 °C, resuspended in nuclear freezing buffer (50 mM Tris at pH 8.0, 25% glycerol, 5 

mM Mg(OAc)2, 0.1 mM EDTA, 5 mM DTT, 1× protease inhibitor cocktail (Roche), 1:2,500 

superasin (Ambion)) and flash frozen in liquid nitrogen. 

Target populations of cell nuclei from staged fixed embryos were obtained by FACS as 

previously described48 with the following modifications. Prior to incubation with primary 

antibodies, nuclei from 6–8-h embryos were incubated in PBS supplemented with 5% BSA, 

0.1% TritonX-100 and 0.2% Igepal-630 on a rotator at 4 °C for 30 min. Primary antibody 

staining was performed overnight at 4 °C in 3 ml PBS supplemented with 5% BSA and 0.1% 

TritonX-100 per 1g frozen embryos. Primary antibodies used were monoclonal anti-Elav 

(Developmental Studies Hybridoma Bank 9F8A9 at 1:100 dilution) to mark postmitotic 

neurons and anti-Mef2 (produced and pre-cleared in the Furlong laboratory and used at 1:200 

dilution) to mark myogenic mesoderm. Secondary antibody staining was performed for 1 h at 

4 °C in the same buffer. Following each antibody staining, nuclei were washed twice by 

pelleting and resuspending in 10 ml PBS supplemented with 5% BSA. An aliquot of stained, 

unsorted nuclei was put aside to represent the whole embryo. For DNase digestion, nuclei were 

resuspended in R buffer (7.5mM Tris pH8, 45mM NaCl, 30mM KCl, 6mM MgCl2, 1mM 

CaCl2) and 10–20 million nuclei were digested using 5–20 U DNaseI at 37 °C for 3 min, and 

the reaction was stopped by adding 500 μ l stop buffer (50mM Tris pH8, 100 mM NaCl, 0.1% 

SDS, 100 mM EDTA pH8). A small control digest without DNaseI was performed to assess 

DNA integrity. Following addition of RNaseA, samples were incubated at 55 °C for 10 min, 

then 25 μ l proteinase K (25 mg/ml) was added and the samples were incubated overnight at 

65 °C to reverse cross-links. A small aliquot was run on a 1% agarose gel to assess digestion 

levels, and optimal digests were size-fractionated using 10–40% sucrose gradients. DNA 

fragments ~ 100–500 bp in length were isolated from fractions using a Qiagen PCR clean up 

kit and checked for enrichment in known hypersensitive sites by qPCR. The digests with the 

highest qPCR enrichment were selected for library preparation using the NextFlex qRNA-seq 

Kit v.2 (Biooscientific #NOVA-5130-12). In brief, ~ 10–30 ng DNA consisting of ~ 100–500 

bp fragments that result from DNase digestion was end-repaired and terminal adenosine 
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residues were added. Adapters containing in-line molecular barcodes were ligated, after which 

the material was size selected using AMPure beads (negative selection with 0.6× beads, then 

positive selection with 0.98× beads). PCR amplification was performed using barcoded primers 

to introduce sample barcodes for 12–16 cycles, depending on input amount. The PCR-

amplified library was purified using AMPure beads, quantified using a Qubit High-sensitivity 

DNA kit (Invitrogen), and sized on a Bioanalyzer High-Sensitivity DNA chip (Agilent). 

Libraries were pooled and sequenced in paired-end mode on a HiSeq2000 (Illumina). Reads 

were mapped to the dm3 reference genome using BWA aln, keeping only reads with a mapping 

quality score greater than 20. Duplicate reads originating from PCR were removed using the 

Je suite making use of the molecular indices. 

S2 cells were either kept in their native (unfixed) chromatin state or fixed for 10 mins at room 

temperature with 1% formaldehyde. Cell lysis was done in 0.05% Igepal-640, incubating 5 

mins on ice. DNase-seq was performed as explained above for the embryos. 

For the embryo ATAC-seq datasets, embryos were staged, fixed, subjected to nuclear 

extraction and sorted as explained above. To sort intermediate column (IC) specific-nuclei, an 

appropriate primary antibody was used: (against a GFP specifically expressed in the IC) anti-

GFP, rabbit mAb (#G10362 conc: 0.2 mg/ml), at 1:200 dilution for 1 hour, nutating at 4 °C. 

The secondary antibody used was goat anti-Rabbit IgG (H+L) Superclonal Secondary 

Antibody, Alexa Fluor 555 (Product # A27039) at 1:100 dilution. No staining was needed to 

sort ventral column (VC) specific-nuclei, since dsRED could be assayed directly in the VC-

dsRED fly nuclei. ATAC-seq was performed on 200,000 sorted or unsorted nuclei, with the 

following protocol: nuclei were pelleted by centrifugation (3200g, 5min, 4 degrees), 

resuspended in 1ml lysis buffer (PBT + 0.2% NP40), lysed by rotating for 60min at 4 degrees, 

and then washed once with PBT (same centrifugation). Pellets were resuspended in 

tagmentation reaction (25ul TD buffer (Illumina), 5ul Tn5 enzyme (Illumina) and 20ul water) 

and incubated at 37 degrees for 1 hour. Reverse-crosslinking was carried out by adding 50ul 

STOP buffer (50mM Tris-HCl (pH 8.0), 100mM NaCl, 0.1% SDS, 100mM EDTA (pH 8.0), 

1mM spermidine, 0.3mM spermine and 40ug/ml RNase A) to each reaction and incubating at 

55 degrees for 10 min. 3ul Proteinase K (20 mg/ml) was then added and the samples incubated 

at 65 degrees overnight. Transposed DNA was purified using QIAquick PCR Purification Kit 

(Qiagen), in 10ul elution buffer. The following 50ul PCR reaction was prepared for each 

sample: 10ul water, 2.5ul forward primer, 2.5ul reverse primer (with barcodes), 25ul NEBNext 



3. Materials and Methods | 3.2 Peak calling 

29 
 

High-Fidelity 2X PCR Master Mix (NEB) and the 10ul transposed DNA. Then, a 15ul qPCR 

reaction was prepared with: 5ul from the prepared PCR reaction mix, 2.5ul water, 0.5ul forward 

primer, 0.5ul reverse primer, 1.5ul 10X Sybr Green, and 5ul NEBNext High-Fidelity 2X PCR 

Master Mix (NEB). We ran the qPCR with the following protocol: 72 degrees for 3 min, 98 

degrees for 30 sec, followed by 25X (98 degrees for 10 sec, 63 degrees for 30 sec and 72 

degrees for 2 min). For each sample we inferred the CT value and calculated CT+6 as the 

optimal number of PCR cycles. The main PCR reaction was then ran with the same protocol 

as for the qPCR, but using the optimal number of cycles. The PCR amplicons were ran on a 

1.2% agarose gel, and gel extracted to exclude primer dimers, using QIAquick Gel Extraction 

Kit (Qiagen) and 20ul elution buffer, constituting the final ATAC-seq library. Libraries were 

sequenced on NextSeq (Illumina), with 75-bp paired end reads. Adapter trimming was done as 

explained for part 1. Trimmed reads were aligned to the dm6 reference genome, using Bowtie2, 

and aligned reads further processed as explained in part 1. 

 

3.2 Peak calling 

Part 1 

In order to find open chromatin regions, peak calling was performed on the processed DNase-

seq and ATAC-seq datasets using JAMM89, with parameters -f 1 and -d y. Parameter -f 1 

ensured taking only the 5’ ends of the reads into account which corresponded to the actual 

cleavage/transposition sites. As duplicates were already removed prior to peak calling, 

parameter -d y was used to keep all processed reads.    

Where replicates were available, peaks in agreement between the two replicates were found 

using the irreproducible discovery rate (IDR) pipeline91. Specifically, the “batch-consistency-

analysis.r” script of the pipeline was executed using the “signal.value” parameter, ranking the 

peaks of the two replicates by signal intensity for comparison. The “half.width” and 

“overlap.ratio” parameters were set to -1 and 0, respectively, where true peak widths were used 

without alteration and two peaks were considered to be part of the same region if there was at 

least 1bp overlap between them. The number of peaks that were found to be concordant at the 

stringent 0.01 IDR threshold was noted. Then, JAMM was once again used, this time to call 

peaks on the two replicates together rather than individually, with the -f 1,1 parameter. In this 

way, peaks were called where both replicates consistently displayed signal enrichment. This 
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peak set was further truncated using the number obtained from the IDR analysis, resulting in 

the final JAMM-IDR peaks.  

For K562 ATAC-seq datasets, where replicates were not available, reads of the modified 

dataset with no lysis buffer was randomly subsetted to match the library depth of the original 

protocol with 10 minute lysis, and peaks were called using JAMM as described above, with 

the addition of the -e auto parameter for automatic estimation of a minimum fold enrichment. 

These K562 ATAC-seq peak sets were used to infer signal to noise ratios by calculating 

log2(average signal in the peaks/average signal in the 300bp upstream and downstream 

flanking regions). 

Part 2 

Peaks were called on Drosophila embryo DNase-seq datasets using MACS288 with the 

following parameters: -f BAMPE -g 1.2e8 --keep-dup all --call-summits. Parameter -f BAMPE 

ensured using real fragment sizes given by read pairs instead of the default fragment size 

modelling by MACS2. Parameter -g 1.2e8 specified the effective euchromatic genome size of 

Drosophila melanogaster. We kept all duplicates with --keep-dup all, as duplicates were 

removed prior to peak calling using molecular barcodes. Multiple summits of signal were found 

for each peak by --call-summits. Summits were extended 40bps upstream and downstream, and 

merged. The coverage of summits from all samples was calculated to identify the maximum 

coverage position of each cluster which was subsequently called the cluster summit.  To call 

reproducible summits in each sample within these clusters, summits were slopped by around 

20 bp and IDR was run, taking only those regions passing 10 percent IDR. (An alternative set 

of DHSs was also generated for these datasets using the JAMM-IDR approach outlined in part 

1 and merging all peaks. In order to avoid confusion, these will be referred to as JAMM-IDR-

DHSs whenever mentioned in this thesis.)      

Peaks were called on Drosophila S2 cell DNase-seq datasets using JAMM89 with the -f 1,1 and 

-d y parameters, to call peaks on replicates together, without removing duplicates. The 

procedure was followed separately for the native and crosslinked datasets. JAMM’s filtered 

peak output was used as the final set of DHSs in both cases.   

Peaks were called on Drosophila embryo ATAC-seq datasets using MACS288 with the 

following parameters: -f BED -g dm --nomodel --shift -50 --extsize 100 --keep-dup all -p 0.05. 
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Parameter -f BED specified the input format as bed and -g dm referred to the effective 

euchromatic genome size of Drosophila melanogaster, equivalent to 1.2e8 as above. The 

combination of parameters --nomodel --shift -50 --extsize 100 was used to inhibit the default 

fragment size modelling by MACS2 and instead shift and extend the reads by 50bp and 100bp, 

respectively. This corresponded to smoothing the ATAC-seq signal in a 100bp window, 

centered on the 5’ end of reads (the transposition site). Duplicates were kept with --keep-dup 

and the p-value threshold for reporting peaks was set as 0.05 with -p 0.05. Peaks found in pairs 

of replicates were subjected to IDR analysis as explained in part 1 above, but using the 

“p.value” parameter to rank the peaks by p-value in this case. The number concordant peaks at 

the stringent 0.01 IDR threshold was noted. Next, reads in replicate datasets were pooled, and 

MACS2 was used to call peaks on the pooled datasets as explained above. This peak set was 

truncated using the number obtained from the IDR analysis, leading to the MACS2-IDR peaks. 

Finally, for each pooled dataset, peak calling was repeated with the addition of the --call-

summits parameter, to call sub-peak resolution summits. Summits that overlapped the MACS2-

IDR peaks were retained. As above, summits were extended 40bps upstream and downstream, 

merged across all datasets, resulting in the final ATAC-HSs. A weighted summit per ATAC-

HS was defined as the average of original summit locations.      

 

3.3 Sequence bias of DNase I and Tn5 transposase 

Part 1 

The sequence bias of the Tn5 transposase was calculated in the form of 6-mers, similar to the 

previous calculations of DNase bias114. To this end, libraries generated by Tn5 transposition 

on deproteinized genomic DNA (see supplementary table 2) were preprocessed in the same 

way as ATAC-seq datasets as detailed above. As the 5’ ends of the reads corresponded to the 

transposition sites, the sequences of all 6-mers centered on these sites were retrieved (e.g. 

transposition between the third and fourth nucleotides). Occurrences of all these 6-mers in the 

data were counted and the relative frequencies were calculated for each. Similarly, background 

genomic frequencies were calculated by counting all 6-mers present in the mappable portion 

of the genome. The frequencies observed in the data were normalized to the background 

frequencies to obtain the final transposition propensities per 6-mer. Deviations from one 

indicated increased or decreased propensities, thus bias.   
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The average Tn5 transposition propensity in a candidate binding site of a given transcription 

factor was calculated by retrieving and counting all 6-mers associated with the site (without 

flanks). The counts were multiplied by the Tn5 transposition propensities of the associated 6-

mers, summed and normalized by the total number of 6-mers in the site. The same calculation 

was applied for DNase, using the previously calculated DNase cleavage propensities per 6-

mer114.   

Part 2 

DNase I bias was calculated in the form of 6-mers, as described above; but using DHSs, instead 

of naked DNase-seq experiments. Specifically, reads within DHSs were taken into 

consideration when counting the 6-mer occurrences. In accordance with this, the background 

6-mer frequencies were derived from the DHS sequences. For Drosophila embryo DNase-seq 

datasets, the JAMM-IDR-DHSs were used in conjunction with pooled reads from all datasets. 

This resulted in a single set of 6-mer bias values representing all embryo DNase-seq datasets. 

In the Drosophila S2 cell DNase-seq datasets, native DHSs were used to calculate bias for 

native datasets, and crosslinked DHSs for crosslinked datasets.       

 

3.4 Scanning the genome for candidate binding sites 

Part 1 

The SpeakerScan Toolset104 was used to scan the hg19 build of the human genome with 

position weight matrices (PWMs), to find candidate transcription factor binding sites (TFBS). 

PWMs contain expected frequencies for each nucleotide in a per-base fashion, modeling the 

binding sequence preferences of a given TF. A pseudocount of 0.0005 was added to each 

frequency in the PWMs, to ensure non-zero entries. At each PWM-sized window in the 

genome, a TFBS score was calculated, as the log-likelihood of the underlying sequence 

matching the PWM versus a background model. The background was modeled with a first 

order Markov chain in a 500 bp local window, centered on the considered position. The top 

scoring 50000 sites were taken along for transcription factor footprinting in this study. To 

validate the significance of motif matches for all PWMs, we simulated DNA sequences using 

the PWM model (positive set) and a background modeled with a first order Markov chain from 

hypersensitive sites (negative set) and sampled TFBS scores from these positive and negative 

sets. For a range of false positive rates (FPR, up to 1*10-6) we found the corresponding TFBS 
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scores and reported the one closest to the lowest score in each motif set, and the associated 

FPR as an empirical p-value. This demonstrated that all our sets included significant motif 

matches, with the lowest empirical p-value being 5*10-5 (Appendix A: supplementary table 

5). 

Part 2 

FIMO103 from the MEME suite was used with default settings, to scan the dm3 build of the 

Drosophila melanogaster genome with a custom set of PWMs (see below), to find candidate 

transcription factor binding sites (TFBS). The background was modeled with a zero order 

Markov chain, using nucleotide frequencies derived from the total set of distal DHSs from the 

embryo datasets (A 0.279, C 0.221, G 0.221, T 0.279). All motif occurrences with a p-value 

less than 1e-4 (default FIMO output) were taken along for TF footprinting or integrative 

modelling of TF binding analyses. 

The custom set of PWMs used in this thesis were previously published137. Briefly, Drosophila 

PWMs were collected from: the Furlong laboratory; the modENCODE consortium; Berkeley 

TF ChIP-Seq data; Berkeley Drosophila Transcription Network; Flyfactor/Flyreg database; 

and the Jaspar database. In addition, TF ChIP datasets from developmental stages of 

Drosophila embryogenesis were collected from: the Furlong laboratory; modENCODE ChIP-

Seq and ChIP-chip and Berkeley ChIP-Seq and ChIP-chip. PWMs that were represented by the 

ChIP datasets were retained, and clustered (normalized Pearson correlation > 0.75) to get the 

final non-redundant set of 226 PWMs.  
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3.5 Identification of transcription factor footprints 

Part 1 

Transcription factor footprinting was performed with a site-centric method from our lab as 

previously described114. Specifically, candidate TFBSs were considered with 25bp flanks 

upstream and downstream (parameter PadLen=25). Parameter k=2 was used to model two 

components; one for the footprint and one for the background. Both components were modeled 

as multinomials along the considered window size (TFBS+50bps), where each value 

corresponded to the cleavage/transposition probabilities at a given nucleotide. For the footprint 

component, these probabilities were found by computing the aggregate DNase or ATAC-seq 

signal (from the 5’ ends of the reads) around the TFBSs that overlap ChIP-seq peaks for that 

factor and re-estimating the signal via expectation maximization. For the background 

component, the probabilities were calculated as the signal that would be expected solely due to 

the protocol-specific bias values, given the sequences around the candidate TFBSs (parameter 

Background=”Seq”). As we had previously not observed a distinct difference in performance, 

the background was kept fixed and not re-estimated (parameter Fixed=T). Once both 

components were learned, footprint scores were calculated for all candidate TFBSs, as the log-

odds of footprint versus background (footprint log-likelihood ratio, FLR). To learn footprint 

models without bias correction, our method was applied as described above, but with a uniform, 

fixed background model that assumes equal cleavage probabilities at each nucleotide.    

The IDR strategy was applied here as well where replicates were available, to find reproducible 

footprints. To this end, candidate TFBSs with positive FLRs in both replicates were chosen 

and ranked by FLR. IDR analysis was performed with the same parameters as explained for 

peak calling, where FLR values replaced signal intensities. Again, the number of sites that 

passed the stringent 0.01 IDR threshold was noted. Finally, TFBSs were ranked by the average 

FLR from the two replicates and truncated according to the IDR result. This led to the 

reproducible FLR-IDR footprints.   

Footprint model AUCs (both area under the ROC and precision-recall curves) were calculated 

by 4-fold cross validation. Briefly, the data was split into 4 parts, and for TFBSs in each part, 

FLR was calculated using footprint and background models learned from the other 3 parts. 

TFBSs were ranked by FLR, and those intersecting ChIP-seq peaks were labeled as the true 

positives. The AUCs obtained from the four parts were averaged to obtain the final value. 
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Similarly, sensitivity and specificity measures were also obtained using models trained on 3/4 

of the data and tested on the remaining 1/4. 

Correction of Tn5 sequence bias in K562 ATAC-seq data with the seqOutBias software was 

carried out according to the guidelines provided in the vignette. Specifically, for plus strand 

reads, --kmer-mask NXNXXXCXXNNXNNNXXN and for minus strand reads --kmer-mask 

NXXNNNXNNXXCXXXNXN was used to correct the signal. The corrected data was then 

used to learn footprint models with our method, in conjunction with a uniform, fixed 

background model.  

Part 2 

For all Drosophila DNase-seq and ATAC-seq datasets (embryo and S2), footprinting was 

performed as explained in part 1 above; but with k=3 to model three components; two for the 

footprint and one for the background. In addition, for DNase-seq datasets, DHS-derived bias 

values were used (see section 3.3).  

 

3.6 Differential signal analyses 

Part 2 

To conduct differential signal analysis in the Drosophila embryo DNase-seq datasets, we first 

counted reads in DHSs using the featureCounts function from the Bioconductor package 

Rsubread. DESeq293 was then used, with the default mean normalization, to identify 

statistically significant differences in read counts (signal) between different tissues or time-

points. The Wald test was used to test significance, against the null hypothesis of fold change=1 

(no difference in signal). To define our strict tissue-specific regions, we contrasted a given 

tissue, with the other tissues from the same time-point (e.g. meso-specific regions are defined 

by contrast to neuro and other datasets). DHSs were deemed tissue-specific if they were found 

only in the tissue of interest (and not the contrasted tissues) and if they had significantly higher 

signal here (fold change > 4, Benjamini-Hochberg adjusted p-value < 0.01). To define the time-

point specific regions, we contrasted consecutive time-points of the same tissue as described 

above; but relaxing the fold change threshold to > 1.5. DHSs that were found in all relevant 

samples, with fold change values between -1.5 and 1.5, and an adjusted p-value > 0.05 were 

defined as the shared regions between those samples that show no differential signal.  
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To conduct differential signal analysis in the Drosophila embryo ATAC-seq datasets, we first 

counted reads in ATAC-HSs using the multiBamCov tool from the bedtools suite. DESeq293 

was used, with the default mean normalization and Wald test, as described above. We defined 

tissue-specific ATAC-HSs by contrast to the unsorted datasets at the same time-point, requiring 

fold change > 2 and Benjamini-Hochberg adjusted p-value < 0.01. 

 

3.7 Motif enrichment analyses 

Part 2 

Motif enrichment analyses were conducted on the TSS-distal tissue and time-point specific 

regions defined by differential signal analyses (see section 3.6). Each specific set was extended 

100bp upstream and downstream from its summit and the resulting overlapping regions were 

merged. For each tissue specific set, a length, TSS-distance and GC content-matched 

background sets was selected from among all distal DHSs or ATAC-HSs (also +/-100bp 

extended and merged). For each time-point specific DHS, the background was selected 

according to the same criteria; but from among the set of shared regions (also +/-100bp 

extended and merged) between consecutive time-points. Matching was done with MatchIt, 

choosing the ratio parameter to have the same range of background regions across specific sets 

(6000-7000 for tissue-specific DHSs and ATAC-HSs, and 1000-2000 for time-point specific 

DHSs). Motifs used in enrichment analyses were obtained by combining all fly motif databases 

from the MEME suite (OnTheFly, Fly Factor Survey, dmmpmm, idmmpmm and flyreg) and 

the custom PWM list (see section 3.4) for a total of 1677 redundant PWMs. AME from the 

MEME suite was then used with default settings to assess the enrichment of these motifs in the 

specific sets vs the background sets. Specifically, Fisher’s exact test was employed to test 

whether the number of motif matches in the specific set is significantly greater than the 

background set. Motif matches were defined using a p-value threshold of 0.0002 given by 

FIMO (see section 3.4). Motifs were reported as enriched, if they passed a Bonferroni-corrected 

p-value threshold of 0.05. All enriched PWMs per analysis were then combined (e.g. all tissue-

specific set results and all time-point-specific set results were combined separately). Enriched 

PWMs were trimmed to remove uninformative edges using trimPWMedge function from the 

MotIV package with an information content threshold of 0.5. After trimming, the matrix-

clustering tool from the RSAT suite was used to cluster the redundant PWMs with parameters 
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-w 4, -cor 0.7 and -Ncor 0.5, requiring at least 4 aligned bases, Pearson correlation of 0.7 and 

width-normalized correlation of 0.5 among PWMs, to cluster them. 

Using the same specific and background sets as for enrichment, we trained models using GKM-

SVM138, to find sequence features that discriminate the specific sets from the background sets. 

GKM-SVM was used with default parameters where L=10 and K=6: feature weights were 

inferred for 10-mers, and the number of informative bases to estimate 10-mer counts was 6. 

AUROC values were derived from 5-fold cross validation. The top 300 10-mers (ranked by 

feature weights) associated with each specific set were then clustered to get PWM-like 

sequence features using RSAT as described above. These GKM-SVM derived PWMs were 

aligned to the enriched clusters, using TOMTOM from the MEME suite with default settings, 

and taking the best alignment per tested GKM-SVM-PWM.  

 

3.8 Integrative model of TF binding 

Part 2 

Putative TFBSs obtained by FIMO, using the custom PWMs (see section 3.4), were filtered to 

retain only TSS-distal regions and eliminate regions with 0 or 1 count across all Drosophila 

embryo DNase-seq datasets. Furthermore, PWMs with <50 putative TBFSs overlapping ChIP-

seq peaks were also eliminated. Three features were extracted for each remaining TFBS: 1) 

log2-transformed read counts in a +/-25bp region spanning the TFBS, 2) motif match score 

from FIMO and 3) sequence conservation as measured by the number of substitutions per base 

across the Drosophila phylogeny. All three were standardized to zero mean and unit variance 

and used as features to predict TF binding in an integrative model based on logistic regression 

(l1_logreg software: https://web.stanford.edu/~boyd/l1_logreg/). Models were trained in a 

supervised manner, where putative TFBSs overlapping ChIP-seq peaks constituted the positive 

sets. We subsetted equal numbers of positive and negative sites and calculated AUROCs with 

4-fold cross validation. Models were trained for all time-points spanned by the ChIP-seq data 

(e.g. if a TF had ChIP-seq data for 0-12hr embryos, then we trained models for all embryo 

DNase-seq data spanning all tissues and time-points). Feature coefficients from best 

performing models per PWM were averaged to create the generic model. 
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4.1. Part 1: Reproducible inference of regulatory regions and transcription factor 

footprints using open chromatin profiling data 

 

Contribution Statement: 

Aslihan Karabacak Calviello performed all the sequencing data analysis, supervised by Uwe 

Ohler. ATAC-seq and DNase-seq datasets were generated by Antje Hirsekorn. Material 

appearing in this Section has been copied or adapted from our preprint (doi: 

https://doi.org/10.1101/284364). 

 

4.1.1. A modified ATAC-seq protocol decreases mtDNA contamination and improves 

agreement with DNase-seq 

Early ATAC-seq libraries generated with the original protocol have large numbers of reads 

mapping to mitochondrial DNA (mtDNA) that need to be discarded, which severely impacts 

the final library depth66. For an ATAC-seq library where we followed this protocol, we made 

the same observation in K562 cells, with 75% of the reads mapping to mtDNA (figure 11A, 

supplementary table 1). To decrease the mtDNA contamination, we evaluated two different 

approaches: decreasing the time of cell lysis to 5 minutes in lysis buffer (from the original 10 

minutes) and eliminating the lysis buffer step altogether by proceeding directly to the 

transposition reaction. Of these, particularly the approach where no lysis buffer was used, led 

to a substantial improvement, with only 18% percent of the reads mapping to mtDNA in this 

library (figure 11A, supplementary table 1). Avoiding the detergent lysis may help 

mitochondrial membranes to stay intact, with other forces such as osmotic pressure being 

adequate to permeabilize the nuclear membrane.  

To adequately quantify the protocol-related differences of ATAC-seq vs. DNase-seq, we also 

generated a single-hit DNase-seq library in K562 cells, and compared this alongside three other 

publicly available single-hit DNase-seq datasets (supplementary table 2) with the ATAC-seq 

libraries. Avoiding the usage of lysis buffer also increased the read-level agreement between 

the two experimental approaches (figure 11B, Pearson correlations of read counts in 100 base 

pair bins; figure 12A). This effect was already partially visible in data from the short lysis 

protocol. To investigate whether this observation is also reflected at the region-level of open 

chromatin, we called peaks with JAMM89 and identified the set of concordant peaks using the 
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irreproducible discovery rate (IDR) pipeline for DNase-seq data where replicates were 

available (see methods)91. Using the peak signal values for ranking, at the stringent 0.01 IDR 

threshold, we found 80,300 JAMM-IDR peaks for DNase-seq. We also called peaks with 

JAMM in the ATAC-seq datasets; since replicates were not available for these libraries, the 

IDR procedure was not applied here. We found 134,761 and 90,973 peaks for the original 

protocol and the modified protocol with no lysis buffer usage, respectively. Compared to the 

original protocol, the open regions identified with the modified protocol are more TSS-

proximal, with higher GC content, and, in line with previous reports139, have a modestly 

reduced signal to noise ratio (figure 12B). The ATAC-seq peaks found with the original and 

modified protocols had 45,340 (figure 11C, left) and 37,934 (figure 11C, right) overlaps to 

DNase-seq peaks, respectively. Using an extended unfiltered set of open regions as background 

for Fisher’s exact test, both overlaps were found to be highly significant (pval<2.2e-16), with 

a slightly higher odds ratio for the modified protocol (13.15 vs 10.75). This improved 

agreement at the open chromatin region-level, albeit moderate, provided further support that 

avoiding detergent lysis increases the concordance between ATAC-seq and DNase-seq.   

 

Figure 11: Generating ATAC-seq libraries without the usage of lysis buffer increases agreement with 

DNase-seq. (A) Percentage of all reads that align to the mitochondrial genome in K562 ATAC-seq libraries 

generated with the published protocol (10 min lysis), shorter lysis (5 min lysis) or without using lysis buffer (no 

lysis buffer). (B) Agreement of these libraries with all K562 DNase-seq libraries as measured by Pearson 

correlations of read counts in 100bp bins genome wide. (C) Overlap of peaks found in K562 DNase-seq data 

with peaks in ATAC-seq data generated using the published protocol (left) and peaks in ATAC-seq data 

generated without using lysis buffer (right). 
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Figure 12: Characterization of ATAC-seq datasets generated with different protocols in K562 cells. (A) 

Pairwise Pearson correlations of read counts in 100bp bins genome-wide for all ATAC-seq and DNase-seq 

datasets in K562 cells. ATAC-seq datasets are labeled with the employed protocol: 10 min lysis (published 

protocol), 5 min lysis and no lysis buffer. DNase 1-3 are the replicates from the ENCODE project and 4 is the 

library newly generated for the study, all following the single-hit protocol. (B) Comparison of hypersensitive 

sites (HSs) found in K562 ATAC-seq datasets generated with the original (10 min lysis) and modified (no lysis 

buffer) protocols. HSs are compared with respect to distance to the nearest TSS (left), GC content (middle) and 

log2 fold change of read counts in HSs vs. flanking regions (right). 

 

 

 

 

 

 

 

 



4. Results | 4.1. Part 1: Reproducible inference of regulatory regions and transcription factor 

footprints using open chromatin profiling data 

41 
 

4.1.2. Open chromatin regions are found reliably at moderate library depths  

The library depth of next-generation sequencing protocols that is required for a given 

downstream application is not always clear, especially when the regions of interest are not as 

clearly defined as e.g. protein-coding genes. To investigate the effect of library depth on 

uncovering open chromatin regions, we generated 11 ATAC-seq libraries with different depths 

in HEK293 cells using the protocol with no lysis buffer (four high, three medium and four low-

depth libraries, figure 13A and supplementary table 1). The individual libraries were derived 

from two biological replicates. To obtain the highest possible depth representing these two 

samples (>300,000,000 read pairs each), all technical replicates were merged and denoted by 

“combined ATAC-seq replicates”. Alongside the ATAC-seq experiments, we generated a 

single-hit DNase-seq library in HEK293 cells and additionally downloaded and processed two 

publicly available single-hit DNase-seq replicates (supplementary table 2). We observed strong 

positive correlations between all ATAC-seq and DNase-seq libraries at the level of genome-

wide read counts (0.62-0.77 Pearson correlations of read counts in 100 base pair bins; figure 

14), and JAMM-IDR peaks called for the combined ATAC-seq and DNase-seq replicates 

showed again a significant overlap (figure 15A).  

 

Figure 13: The task of finding open chromatin regions saturates at medium depth. (A) Number of reads 

after processing in the 11 HEK293 ATAC-seq libraries with different library depths. The two biological 

replicates are shown in blue and red, with the shades representing the technical replicates. (B) Numbers of 

reproducible peaks found with the JAMM-IDR strategy at different depths. (C) The overlaps between one set of 

peaks in (B) shown for high vs. medium (left), high vs. low (middle) and medium vs. low sets (right). 
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Figure 14: Pairwise Pearson correlations of read counts in 100bp bins genome-wide for the ATAC-seq 

and DNase-seq datasets in HEK293 cells. All ATAC-seq datasets are generated with the protocol where no 

lysis buffer is used. The corresponding library depth (high, medium or low), biological (B1 or B2) and technical 

(T1 or T2) replicate status is indicated. DNase 1 and 2 are the replicates from the ENCODE project and lab 

refers to the library newly generated for the study, all following the single-hit protocol. 

 

We then investigated to what extent the individual ATAC-seq libraries sequenced at different 

depths could capture the open chromatin regions uncovered by the combined replicates. To this 

end, libraries of similar depth from different biological replicates were matched in a pairwise 

manner to get JAMM-IDR peaks (supplementary table 3). This resulted in six total peak sets, 

corresponding to two of each of high, medium and low-depth library comparisons. Similar 

numbers of peaks were found at high and medium depth, with a slight decrease at low depth 

(figure 13B, figure 15A). Additionally, these peak sets displayed notable agreement among 

themselves and with the peaks of the combined ATAC-seq dataset (figure 13C, figure 15A). 

These observations suggested near-saturation for the task of defining open chromatin regions, 

even though none of the libraries were at saturation at these depths (figure 16). Moreover, these 

six IDR peak sets showed 63% to 72% overlap with the peaks of the DNase-seq data, which 

exceeded the 61% observed for the combined ATAC-seq data (figure 15A); even though a 
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higher number of peaks was found in the combined dataset, IDR analysis of the individual 

datasets led to more reproducible subsets of the total pool. In support of this, the peaks found 

in the combined ATAC-seq dataset that did not overlap any of the peaks in the six individual 

sets, were predominantly low-signal, distal regions (figure 15B). Taken together, replicate 

libraries of low to medium depth of 25-50 million reads were sufficient for reliable 

identification of open chromatin regions in human cell lines.   

 

 

Figure 15: Analysis of reproducible peaks in HEK293 cells. (A) Overlaps between all reproducible JAMM-

IDR peaks found in HEK293 DNase-seq and ATAC-seq datasets. The number in each cell represents the ratio 

of the peaks in the row-dataset that overlap the peaks of the column-dataset. Total numbers of peaks are given 

on the right. (B) Number of JAMM-IDR peaks in the combined ATAC-seq replicates that overlap the union of 

peaks from the six individual datasets zero, one, two or more times (left). Peak signal values (middle) and 

distance to closest TSS (right) are shown for these four groups. 
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Figure 16: Library complexity and saturation plots for HEK293 ATAC-seq datasets. Complexity (left) and 

saturation plots (right) for biological replicate 1 technical replicate 1 (B1-T1). Library complexity is shown at 

high and low library depth levels, in red and blue, respectively. (B1-T2, B2-T1 and B2-T2 follow similar trends, 

not shown.) 

 

4.1.3. Sequence bias of ATAC-seq deviates from that of DNase-seq  

A multitude of studies have explored the efficacy of transcription factor footprinting with 

DNase-seq. These studies have demonstrated that the DNase I enzyme cleaves genomic DNA 

in a non-random fashion, where it has different cut propensities for different sequences, and 

this sequence bias has adverse effects on the quality of footprinting when left uncorrected115. 

Our lab has previously published a site-centric computational footprinting tool where 6-mer 

DNase bias has been incorporated into the model to estimate the bias background in a 

multinomial mixture framework114. In order to gain insights into the sequence bias of ATAC-

seq data, we calculated the 6-mer cleavage propensities of the Tn5 transposase, using available 

data from libraries generated by Tn5 transposition on deproteinized genomic DNA74 

(supplementary table 2). Comparison of the cleavage propensities in libraries generated using 

human genomic DNA vs. D.melanogaster genomic DNA, revealed very similar results (figure 

17A, Pearson correlation 0.94), indicating that the Tn5 transposase has specific sequence 

preferences which are consistent in data from the two species. The dynamic range of this bias 

is on the same order of magnitude as for DNase bias114. We next asked how the sequence 

preferences of the Tn5 transposase compare to those of DNase I. Using values inferred 

previously from a single-hit DNase-seq experiment of deproteinized K562 cells114, we 

observed this correlation to be fairly low (figure 17B, Pearson correlation 0.30). This indicated 

that these enzymes have largely distinct sequence biases. 
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Figure 17: The sequence bias of the Tn5 transposase is distinct from that of DNase I. (A) Comparison of 

Tn5 transposition propensities of all 6-mers (log10 scale) in two libraries generated using deproteinized 

genomic DNA from human (YH1) and D.melanogaster. (B) 6-mer transposition propensities in the human 

library compared to cleavage propensities of DNase inferred previously from a single-hit DNase-seq experiment 

using deproteinized genomic DNA from K562 cells. 

 

4.1.4. ATAC-seq and DNase-seq generate different footprint shapes for the same factor 

In order to systematically examine how ATAC-seq compares to the more established DNase-

seq method in transcription factor footprinting, we first focused on CCCTC binding factor 

(CTCF), a factor with a well-known, high information content binding site with substantial 

available ChIP-seq data including in HEK293 cells (supplementary table 4). We scanned the 

human genome for matches to the CTCF binding model obtained from the JASPAR database 

(supplementary table 5). As aggregate signal across all candidate CTCF motif matches is 

expected to be a mixture of footprint (bound sites) and background (unbound sites), our 

method114 was applied to infer the bound subset by modeling the shapes of the CTCF footprints 

in the DNase-seq and combined ATAC-seq replicates. Shape of the aggregate signal at sites 

that overlap CTCF ChIP-seq peaks was used to initialize the footprint model. The background 

was modeled using protocol-specific bias values. The resulting footprint and background 

profiles revealed marked differences between ATAC-seq and DNase-seq (figure 18A, left and 

right, respectively). Most notable was a wider region of protection in the ATAC-seq data, in 

line with a previous study74 which reported that the Tn5 transposase dimer needs circa 30 

nucleotides to bind DNA and that cleavage occurs in the central 9 nucleotides. Another 

difference concerned the background profiles, attributable to the distinct sequence preferences 

of these two enzymes. In short, from the same set of CTCF motif matches, different footprint 

and background models were learned using ATAC-seq and DNase-seq datasets. 

 



4. Results | 4.1. Part 1: Reproducible inference of regulatory regions and transcription factor 

footprints using open chromatin profiling data 

46 
 

4.1.5. Footprinting using ATAC-seq and DNase-seq uncovers common bound sites 

This observation led to the question whether the same sites would be identified as bound by a 

transcription factor when using ATAC-seq and DNase-seq in the same cell type. Using the 

protocol-specific footprint and background models learned for CTCF, we calculated the 

footprint scores for all considered motif matches, as the log-odds of footprint versus 

background per site (footprint log-likelihood ratio, FLR, see methods). The FLR is thus derived 

in a protocol-specific manner, solely from the single-nucleotide resolution signal around motif 

sites, without relying on additional features, and it accounts for sequence bias, making it an 

ideal metric to compare the footprints from the two protocols. As a positive FLR indicates a 

higher probability of being bound vs. unbound, we selected the motif matches that had a 

positive FLR in both replicates of the assayed method. We again used IDR to find the 

reproducible subset of CTCF footprints among these sites, ranked by FLR (FLR-IDR, see 

methods). Following this methodology for the combined ATAC-seq replicates, 12,651 motif 

sites had positive FLRs in both replicates, of which 8,298 were found to be reproducible by 

FLR-IDR (figure 19A). For the DNase-seq replicates, of the 13,592 sites with positive FLRs, 

8,480 were reproducible. Nearly all of the reproducible footprints of ATAC-seq and DNase-

seq overlapped CTCF ChIP-seq peaks (98% and 96% respectively, figure 19A). Furthermore, 

these reproducible footprints from the two experimental protocols were also concordant, with 

6,170 sites (74%) overlapping (figure 18B). This analysis of ATAC-seq and DNase-seq data 

thus identified many common sites as bound, despite the difference in footprint shapes.  

We next investigated the individual contributions of bias modeling and replicates to this 

increased concordance and accuracy. The contribution of the replicates comes from the 

application of IDR as mentioned above, which creates a systematic way to find relevant cutoffs 

for the footprint score. To elucidate the contribution of bias, we first trained CTCF footprint 

models in the combined ATAC-seq and DNase-seq replicates, as outlined above, but using a 

uniform background, which is equivalent to no bias correction (see methods). We then 

compared the sensitivity-specificity trade-off between the bias corrected and uncorrected 

models, for both DNase-seq and ATAC-seq (figure 19B; IDR thresholds agreed well with 

observed specificity). Bias correction increased the sensitivity of only DNase-seq, and the 

specificity was not affected for either method. Moreover, correcting bias in DNase-seq had a 

greater impact than correcting bias in ATAC-seq on the CTCF footprint score correlations 

between the two experimental methods (figure 19C). To investigate this further, we trained 

footprint models with and without bias correction for three additional transcription factors 
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(MAZ, REST and YY1) with available ChIP-seq data in HEK293 cells. We compared the 

model performances using area under the precision-recall curve for both ATAC-seq and 

DNase-seq (figure 19D). This again revealed a larger impact of bias correction on model 

performance for DNase-seq compared to ATAC-seq, including a rare case in which correction 

leads to decreased performance. This observation may result from the factor not leaving a 

footprint due to a short residence time on chromatin and thus true bound sites showing signals 

that resemble the bias background. In any case, DNase-seq bias correction had a more 

pronounced effect on TF footprinting than ATAC-seq bias correction. 

 

Figure 18: The number of reproducible footprints scales with library depth. (A) CTCF footprints inferred 

from HEK293 ATAC-seq data (left) and DNase-seq data (right). Vertical lines depict the edges of the motif 

match. (B) Overlap between reproducible CTCF footprints in the HEK293 DNase-seq and combined ATAC-seq 

replicates, found using the FLR-IDR strategy. (C) Numbers of reproducible CTCF footprints in HEK293 

ATAC-seq datasets at different depths. (D) The overlaps between one set of footprints in (C) shown for high vs. 

medium (left), high vs. low (middle) and medium vs. low sets (right). (E) The ratio of reproducible CTCF 

footprints (IDR footprints) or all CTCF motif regions with positive footprint scores (all footprints) that overlap 

CTCF ChIP-seq peaks, in all six individual sets at different depths (supplementary table 3). Red dashed line 

indicates this ratio for all considered CTCF motif sites. 
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Figure 19: Performance of footprint models trained in HEK293 DNase-seq and ATAC-seq datasets. (A) 

Overlaps between all reproducible FLR-IDR CTCF footprints found in HEK293 DNase-seq and ATAC-seq 

datasets. The number in each cell represents the ratio of the footprints in the row-dataset that overlap the 

footprints of the column-dataset. Numbers of footprints and their overlaps with ChIP-seq peaks are given on the 

right. (B) The relationship between sensitivity and specificity measures of CTCF footprint models found in 

HEK293 DNase-seq (left) and ATAC-seq (right) datasets with and without bias correction. The vertical lines 

show the footprint scores that correspond to relaxed and stringent IDR thresholds, 0.1 and 0.01 respectively. (C) 

Correlations of CTCF footprint scores between HEK293 ATAC-seq and DNase-seq datasets with respect to 

their bias correction status. (D) Area under the precision-recall curve of footprint models learned for four factors 

(CTCF, MAZ, REST, YY1) in HEK293 ATAC-seq and DNase-seq datasets. 
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4.1.6. Number of reproducible footprints scales with library depth 

Previous studies that inferred cell-type specific TF binding site annotations from DNase 

footprint data typically used very large datasets (with hundreds of millions of reads per cell 

type)109,116. To investigate the feasibility of footprinting at lower library depths, we next 

conducted the analysis on the 11 individual ATAC-seq libraries. We used the same setup for 

pairwise comparisons as for peak calling (supplementary table 3), this time to find reproducible 

CTCF footprints at different library depths. Even though the numbers of motif matches that 

had positive footprint scores were in the same range for all analyzed pairs, the numbers of 

reproducible footprints gradually declined with decreasing depth (figure 18C, figure 19A). This 

indicated that, unlike peak calling, footprinting efficiency did not saturate and rather followed 

the library complexities at these depths (figure 16). However, the footprints at distinct depths 

had substantial overlaps with each other and also constituted almost perfect subsets of the 

footprints found in the combined ATAC-seq data (figure 18D, figure 19A). Moreover, these 

reproducible footprint sets consistently showed 99% overlap with CTCF ChIP-seq peaks, 

compared to around 80% when considering all motif sites with positive FLRs (figure 18E). 

Taken together, even though deeper sequencing is beneficial to footprinting coverage, the 

assessment of reproducibility enables finding smaller but equally reliable sets of footprints at 

lower depths.      

 

4.1.7. Properties of footprinting apply to larger sets of transcription factors 

To elucidate whether the previous observations would also apply more generally beyond 

CTCF, we conducted the footprinting analysis on other factors. The limited availability of 

ChIP-seq data in HEK293 cells motivated an experimental setup to learn the footprint shapes 

in K562 cells, where ChIP-seq data is more abundant (supplementary table 4), and use these 

models to find footprints in HEK293 cells. To this end, all ATAC-seq data in K562 cells was 

merged to get adequate depth (supplementary table 1) and among the K562 DNase-seq 

datasets, the second ENCODE replicate was chosen (supplementary table 2). As proof of 

principle, we first confirmed that the CTCF footprint shapes were almost identical to those 

learned from HEK293 data (figure 20A). We then learned footprint models from K562 data for 

19 additional transcription factors with available ChIP-seq data (supplementary tables 4 and 

5). For a subset of these factors, namely NRF1, CREB1 and USF1, the footprint shapes 

reflected the expected protection pattern in both ATAC-seq and DNase-seq data; in line with 
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the previous observations from CTCF motif regions, the ATAC-seq footprints displayed a 

wider region of protection compared to the DNase-seq footprints (shown for NRF1 in figure 

21A). The footprint scores (FLR) for these three factors and CTCF were in close 

correspondence with the associated ChIP-seq signal values in K562 cells, conferring further 

confidence in these footprint models (figure 20B-E). Thus, we used these models to identify 

bound sites reproducibly with the FLR-IDR strategy in HEK293 cells. As for CTCF, 

reproducible footprints were found to be concordant between DNase-seq and combined ATAC-

seq replicates; at the level of individual HEK293 ATAC-seq datasets, library depth and the 

numbers of reproducible footprints showed again a strong dependency (shown for NRF1 in 

figure 21B and C, respectively). As the observations could be replicated for multiple factors, 

these results likely provide insights into the general properties of the footprints.       
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Figure 20: The relevance of the learned footprint models. (A) Identical CTCF footprint profiles in HEK293 

and K562 ATAC-seq (left) and DNase-seq (right) datasets. (B-E) Concordance between ChIP-seq signal 

intensities and footprint scores (FLR) in K562 ATAC-seq (left) and DNase-seq (right) data for (B) CTCF, (C) 

NRF1, (D) CREB1 and (E) USF1. Motif sites that overlap ChIP-seq peaks are divided in ten bins according to 

FLR. The mean ChIP-seq signal intensity and FLR is plotted for each bin. 
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Figure 21: Analysis of NRF1 footprints. (A) NRF1 footprints inferred from K562 ATAC-seq data (left) and 

DNase-seq data (right). Vertical lines depict the edges of the motif match. (B) Overlap between reproducible 

NRF1 footprints in the HEK293 DNase-seq and combined ATAC-seq replicates, found using the footprint 

models learned from the K562 data. (C) Numbers of reproducible NRF1 footprints in HEK293 ATAC-seq 

datasets at different depths. 

 

4.1.8. Protocol-specific sequence biases influence footprinting efficiency 

Strong footprints that were concordant in both ATAC-seq and DNase-seq data were only found 

for four of the 20 assayed factors. For most factors, clear footprints were observed in one of 

the experimental methods, but not the other. Therefore, we asked whether the distinct sequence 

biases of the two methods play a role in the factor-dependent performance of footprinting. To 

get a continuous measure for performance (as opposed to the discrete visual assessment of 

footprint shapes), for all TFs in both experimental settings, we calculated the area under the 

receiver operating characteristic curve (AUC), ranking candidate sites by FLR and considering 

those that overlap ChIP-seq peaks to be true binding sites. In order to assess how performance 

is linked to the relationship between the footprint and background models, the Pearson 

correlations between these two models (eg. footprint-background model similarities) for each 

TF were calculated and compared to the AUCs. The AUCs negatively correlated with the 

footprint-background model similarities in both ATAC-seq and DNase-seq datasets (figure 

22A and B, correlations of -0.36 and -0.6, respectively), indicating that when a footprint model 

is clearly distinguished from the background, it is more likely to explain transcription factor 

binding accurately. Moreover, the differences per TF between ATAC-seq and DNase-seq 
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datasets for these two measures (AUCs and footprint-background model similarities), also had 

a negative correlation (-0.53, figure 22C), suggesting that the experimental protocol which 

achieves better separation between the footprint and background components, is also 

performing better for a given TF. Overall, DNase-seq footprinting had a clear advantage over 

ATAC-seq derived footprints (cf. figure 23A, which compares the area under the precision-

recall curve values). 

As the background component is derived directly from sequence bias and given our previous 

observation that DNase-seq bias correction shows a stronger positive effect compared to 

ATAC-seq bias correction, we once again explored the role of bias more explicitly. In 

particular, two of three factors for which ATAC-seq outperformed DNase-seq, MEF2A and 

STAT1, had the lowest DNase I cleavage propensities (eg. sequence bias) over their motif 

regions, among all assayed factors (figure 22D), whereas the Tn5 transposition propensities for 

these factors were average (figure 23B). Therefore, the background models learned from 

DNase bias for these factors had footprint-like shapes, impeding the clear separation between 

the two components, and thus explaining the poor performance of DNase-seq (shown for 

MEF2A in figure 23C). The equivalent scenario was not as clear to observe for ATAC-seq, 

possibly due to the difference in the efficiency of bias modeling, see discussion. In summary, 

due to the distinct sequence biases of ATAC-seq and DNase-seq, the sequence content of 

transcription factor binding sites can influence footprinting efficiency in a protocol-specific 

manner. 
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Figure 22: TF-footprinting accuracy is linked to clear discrimination of footprint from background. (A,B) 

AUCs vs footprint-background model similarities in (A) ATAC-seq data and (B) DNase-seq data. (C) 

Difference in AUCs (ATAC-DNase) vs difference in footprint-background model similarities (ATAC-DNase). 

(D) Average DNase I cleavage propensities over candidate TFBSs for all 20 assayed factors. 
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Figure 23: Method and TF-specific footprinting efficiency. (A) Area under the precision-recall curve of 

footprint models learned for all 20 assayed factors in K562 ATAC-seq and DNase-seq datasets. (B) Average 

Tn5 cleavage propensities over candidate TFBSs for all 20 assayed factors. (C) MEF2A footprints inferred from 

K562 ATAC-seq data (left) and DNase-seq data (right). Vertical lines depict the edges of the motif match. (D) 

Comparison of AUCs (area under the ROC curve) obtained with our method (FLR) vs the seqOutBias method. 
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4.2. Part 2: Characterization of tissue-specific cis-regulatory elements in Drosophila 

embryonic development  

Contribution Statement: 

Aslihan Karabacak Calviello performed the motif enrichment, GKM-SVM, TF footprinting, 

and integrative TF binding model analyses supervised by Uwe Ohler. Embryo ATAC-seq 

datasets were generated by Alexander Glahs and Aslihan Karabacak Calviello. Embryo DNase-

seq datasets were generated and preprocessed (including peak calling and defining tissue and 

time-point specific DHSs) by Dr. James Reddington and Dr. David Garfield. 

 

4.2.1. Nuclear sorting coupled to ATAC-seq or DNase-seq captures tissue-specific cis-

regulatory elements 

In this and the subsequent results sections, we utilize open chromatin profiling techniques to 

gain insights into the embryogenesis of the fruit fly Drosophila melanogaster. To this end, the 

BiTS-ChIP strategy (see section 2.3.2.2) is combined with either DNase-seq or ATAC-seq. 

Briefly, embryos in a chosen developmental stage are collected, formaldehyde fixed and 

subjected to nuclear extraction. Nuclear markers exclusively or predominantly expressed in the 

tissue of interest, are then used to fluorescently sort the nuclei to get tissue-specific subsets 

from the whole embryo (see methods for details). Therefore, the application of DNase-seq or 

ATAC-seq on these subsets enables assaying chromatin accessibility genome-wide in a tissue 

and time-point specific manner and elucidating the cis-regulatory networks in play during 

embryogenesis.        

We profiled the open chromatin landscape of the developing embryo using this type of data, 

via two collaborative projects. The first one was in collaboration with Prof. Eileen Furlong’s 

laboratory (specifically Dr. James Reddington and Dr. David Garfield) at EMBL. Here, 

embryos from five consecutive time-points (2-4hr, 4-6hr, 6-8hr, 8-10hr and 10-12hr) were 

collected. These span a wide spectrum of developmental stages, ranging from the blastoderm 

to terminally differentiated cells and collectively represent roughly half of the total 

embryogenesis time, which takes around 24hr. For all time-points, DNase-seq experiments 

were conducted on unsorted nuclei, representing the whole embryo at that stage. For the four 

time-points spanning 4-12hr, nuclei were sorted to get subsets specific to the mesodermal 

(shortly “meso”) and neural (shortly “neuro”) lineages. The myogenic TF, dMef2, was the 

mesodermal nuclear marker for all time-points, whereas TF Worniu and RNA-binding protein 
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Elav were the neural nuclear markers for stages 4-6hr, and from 6hr on, respectively. Nuclei 

that had neither the mesodermal nor the neural markers were also obtained from the sorts and 

are henceforth referred to as “other”. Finally, only for the 6-8hr time-point, visceral and non-

visceral mesoderm subsets were obtained, using the visceral mesoderm specific TF Biniou as 

the nuclear marker. These datasets are referred to as “binpos” and “binneg” in the rest of this 

thesis. Figure 24 shows normalized DNase-seq signal profiles of all datasets around an intronic 

region of the Mef2 gene locus, which is known to harbor enhancers with mesodermal activity. 

As expected, all mesodermal datasets (meso, binpos and binneg) have elevated signals in this 

region. Similar observations are made for other loci as well, e.g. neuro datasets show elevated 

signals at regions related to neural development (not shown). Taken together, this illustrates 

the power of combining the BiTS strategy with open chromatin profiling in characterizing 

tissue-specific regulatory elements that would otherwise not be detected when the whole 

embryo is profiled in bulk.  

 

Figure 24: Tissue- and time-point-specific DNase-seq signal profiles around Mef2 gene locus. Depth 

normalized signal profiles from all embryo DNase-seq datasets are shown at the Mef2 gene locus. Significantly 

higher signals can be observed in the mesoderm-specific datasets (Meso and VM) (adapted from the figure 

kindly provided by J. Reddington).  
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The second project was in collaboration with Dr. Robert Zinzen’s laboratory (specifically 

Alexander Glahs) at the MDC. In this case, we wanted to assay two specific subpopulations of 

the neural lineage: the intermediate and ventral columns of the developing neuroectoderm. 

Embryos from 4-6hr, 6-8hr and 8-10hr time-points were collected and for each time-point, TFs 

Ind and Vnd were used as nuclear markers for the intermediate and ventral column, 

respectively. Unsorted nuclei representing the whole embryo at these stages were also 

collected. In this project, we employed ATAC-seq to assay open chromatin regions. Figure 25 

shows normalized ATAC-seq signal profiles of all datasets around the ind gene locus. As 

expected, ind-sorted datasets show elevated signals (especially at 4-6hr and 6-8hr) compared 

to vnd-sorted and unsorted datasets at this locus. This once again confirms the utility of our 

tissue-specific sorting strategy and demonstrates that either DNase-seq or ATAC-seq can be 

used in conjunction with it to assay tissue-specific cis-regulatory elements. 

       

 

Figure 25: Tissue- and time-point-specific ATAC-seq signal profiles around ind gene locus. Depth 

normalized signal profiles from all embryo ATAC-seq datasets are shown at the ind gene locus. Significantly 

higher signals can be observed in the ind-sorted datasets. 

 

4.2.2. Cis-regulatory elements open in the same tissue-specific context share common 

sequence signatures 

Having established the potential of our strategy in finding tissue-specific cis-regulatory 

elements, we next set out to characterize the sequence features that define tissue-specificity in 

our DNase-seq datasets. We focused our attention to TSS-distal regions to assay known or 

putative enhancers. To this end, the total set of distal DNase hypersensitive sites (DHSs) were 

found via peak calling, and tissue-specific subsets were identified using differential signal 
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analysis (see methods). Briefly, a DHS was deemed tissue-specific, if it was only found in a 

given tissue, and if it had significantly higher signal in that tissue compared to the other tissues 

at the same time-point. For example, 4-6hr meso specific DHSs were defined by contrast to 4-

6hr neuro and 4-6hr other datasets. We first asked whether we could identify sets of TFs that 

were crucial for a given tissue. Therefore, we conducted motif enrichment analyses on the 

tissue-specific DHSs, using all fly-specific PWM databases (fly factor survey, dmmpmm, 

idmmpmm, OnTheFly and flyreg) from the MEME suite, combined with a custom list of fly 

PWMs from the Furlong laboratory, denoted “custom PWMs” henceforth (see methods), for a 

total of 1677 redundant PWMs. For each tissue-specific set, we defined a set of background 

regions as GC-content, length and TSS-distance matched subsets from all distal DHSs; and 

assessed the enrichment of all 1677 PWMs over background regions using AME from the 

MEME suite (see methods). Enriched PWMs were then clustered according to similarity to 

eliminate redundancy. Figure 26 (left) shows the resulting motif enrichment heatmap for each 

cluster and tissue-specific DHS set. For the annotations pertaining to each cluster (e.g. most 

enriched PWMs within the cluster and a summary motif representing the whole cluster), see 

appendix B: supplementary table 6. The heatmap clearly demonstrates that the motifs are 

enriched in a tissue-specific way, as the resulting clusters can generally be linked to a single 

tissue. Several TFs that are known to be important for the mesodermal lineage are enriched 

specifically in the meso datasets as expected: Mef2 (cluster 34), Tin (cluster 14), Bin (cluster 

10) and Twi (cluster 3), indicating that the identified enrichments represent meaningful 

associations between TFs and tissues. In the neuro datasets, the motif for Ttk (clusters 12 and 

13) is strongly enriched. Despite our clustering strategy to eliminate redundancy, some 

resulting clusters still represent similar motifs. For example, clusters 26, 38 and 45, which are 

all significantly enriched in the neuro datasets, might represent the same TF, likely belonging 

to the Sp1/Klf family. The neuro-specific enrichment of the G-rich clusters 6 and 27, likely 

represent true signal rather than an artifact, as our background sets were matched for GC-

content. Finally, a specific E-box motif (cluster 1) and GATA (cluster 8) are enriched in the 

other datasets alongside an unknown cluster (cluster 64). In some of these neuro- and other-

specific clusters, further efforts are needed to identify the true associated TFs. 
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Figure 26: Motif enrichment results in tissue-specific DHSs. Heatmap shows the enriched motif clusters for 

the tissue-specific DHS sets, with the corresponding GKM-SVM results above (left). Alignments between 

enriched clusters and GKM-SVM derived PWMs are shown for clusters 14 (tin), 10 (bin), 13 (ttk) and 1 (E-

box), respectively (right). 

 

 

Having identified tissue-specific signatures using known motifs, we next asked whether 

sequence features that discriminate the specific sets from the background sets could be found 

without prior knowledge. We employed a computational method that combines gapped k-mer 
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features with support vector machines (GKM-SVM, see methods), using 10-mers (short 

sequences of length 10) as features and the same set of background regions as for the motif 

enrichment analyses. This method successfully learns the 10-mer features that discriminate the 

specific sets from the background sets, as indicated by area under the receiver operating 

characteristic curve (AUROC) values around 0.8 for all datasets (figure 26, above heatmap). 

Therefore, we next clustered the top 300 10-mer features associated with each tissue-specific 

dataset, using the same clustering strategy as for the enriched motifs, in order to group similar 

10-mers together to generate PWM-like profiles. We noticed that many of the GKM-derived 

PWMs were concordant with the AME clusters, as exemplified for clusters 14 (tin) for meso, 

10 (bin) for binpos, 13 (ttk) for neuro and 1 (E-box) for other datasets, shown in figure 26, 

right. We then aligned the GKM-derived PWMs in each tissue-specific set to all 68 AME 

clusters, to identify the subset of AME clusters represented. These cluster subsets and the 

clusters known to be enriched for each tissue-specific set, showed significant overlaps for 10 

of the 13 sets (figure 27), indicating that this method identifies meaningful sequence signatures, 

supported by known binding models for transcription factors. Finally, an interesting potential 

of this method is to learn novel sequence features, as it is not biased by known features such as 

PWMs. In line with this, some GKM-derived PWMs aligned to AME clusters that were not 

enriched in that tissue (figure 27), and others did not align to any of the AME clusters at all 

(not shown). A more detailed exploration of these sequence features might provide additional 

insights on achieving tissue-specificity, however we have not explored this further.          
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Figure 27: Overlaps between enriched motifs and GKM-SVM-derived PWMs. Venn Diagrams showing the 

agreement between enriched motif clusters and GKM-SVM derived PWMs for each tissue-specific DHS set. p-

values are derived from Fisher’s exact test (two-sided).  

 

4.2.3. Contrasting regions open in the same tissue at consecutive time-points uncovers 

temporally resolved sequence features 

In the previous section, we focused on sequence features defining tissue-specificity. As our 

DNase-seq dataset is also temporally resolved (i.e. belonging to specific time-points of 

embryonic development), we next asked whether sequence features that discriminate 

consecutive time-points of the same tissue could be identified. To this end, we defined time-

point specific DHSs, by contrasting consecutive time-points, using a strategy similar to the 

definition of tissue-specific DHSs. A DHS is deemed time-point specific, if it is found at that 

time-point and not the other, and if it has significantly higher signal at that time-point. For 

example, the comparison 8-10hr vs 10-12hr meso datasets results in two sets of time-point 

specific DHSs: the “early” ones associated with the 8-10hr dataset (using 10-12hr as the 

contrast set), and the “late” ones associated with the 10-12hr dataset (with 8-10hr used as the 
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contrast set this time). In this setting, we also defined DHSs that are shared between the two 

time-points as those that are found in both datasets and do not exhibit significantly higher or 

lower signal in either dataset. In order to calculate motif enrichments in the time-point specific 

DHSs, the background sets had to be defined. As consecutive time-point specific DHSs could 

have differences in sequence content (e.g. GC content), which in turn could influence the 

results, we did not directly contrast these sets. Instead, we selected GC-content, length and 

TSS-distance matched background sets from the shared regions associated with each tissue-

specific set, as a proxy to directly comparing consecutive time-points. Following the 8-10hr vs 

10-12hr meso example above, the background for both early and late sets are selected from the 

regions shared between these two datasets. Motif enrichment analyses were conducted using 

this background definition, with a similar approach to the analyses in the tissue-specific DHSs 

(i.e. with the same set of 1677 PWMs and same strategy to cluster the enriched motifs). The 

resulting heatmap is in figure 28A, where every corresponding early-late pair is shown as a 

group. Contrasting consecutive time-points of the same tissue is a more challenging task 

compared to defining tissue-specific DHSs, making the interpretation of the associated 

heatmap more difficult. One clear observation is the enrichment of motifs representing the 

Forkhead TF family (to which bin belongs), specifically in the 6-8hr binpos dataset, compared 

to the 4-6hr meso dataset (clusters 8, 39, 12 and 21). Twi (cluster 2) is enriched in 4-6hr meso 

datasets compared to 6-8hr meso, 6-8hr binneg and 6-8hr binpos datasets. Furthermore, cluster 

19 is significantly enriched in 2-4hr whole embryo datasets, compared to both 4-6hr meso and 

4-6hr neuro datasets, which is expected as this is an E-box motif cluster, including the TF Zld, 

essential for early stages of embryogenesis. Another interesting, but rather less interpretable 

cluster is 31 (Ttk and Ab), which shows enrichment in almost all early datasets, regardless of 

tissue. In a similar vein, clusters 11, 23 and 32 show a general late-specific enrichment. 

Whereas cluster 23 represents the Sp1/Klf TF family, interestingly, the other two clusters both 

implicate Lola, despite having very different motifs. In line with the motif enrichment results, 

that generally identified a given cluster as enriched in either the early or late time-point, GKM-

SVM achieved AUROC values of 0.7-0.8 for all time-point specific sets (figure 28, above 

heatmap), also indicating the presence of sequence features that differentiate consecutive time-

points.      
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Figure 28: Motif enrichment results in time-point-specific DHSs. (A) Heatmap shows the enriched motif 

clusters for the time-point-specific DHS sets, with the corresponding GKM-SVM results above. (B-D) Patterns 

of tissue and time-point specific motif enrichment values over consecutive embryonic stages, shown for tin 

(FBgn0004110) and twi (berkeley_bdtnp_twi) in (B), kr (OTF0214.1) and klu (OTF0242.1) in (C) and GATA 

(FBgn0003507_2) and E-box (FBgn0259789) in (D), left and right, respectively.  

 

Our motif enrichment analyses provide not only the presence, but also the significance of 

enrichment for a given PWM, via an adjusted p-value. Therefore, we combined the 

observations from the tissue and time-point specific analyses and assessed the change of 

enrichment significance over developmental time for multiple PWMs. Figure 28B-D shows six 

examples: tin and twi for meso (B), kr and klu for neuro (C) and GATA and E-box for other 

datasets (D, all left and right, respectively). Tin and twi both show a gradual decrease in meso-

specific enrichment values over developmental time, in line with their crucial functions in 

specifying the mesodermal lineage early in embryogenesis. Time-point specific enrichments 
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are generally in line with the tissue-specific enrichments; note the steep slope between 6-8hr 

and 8-10hr in the meso-specific enrichment values for tin, reflected in the 6-8hr vs 8-10hr early 

time-point enrichment. Kr and klu, both show a gradual increase of neuro-specific enrichment 

values over time. In the other-specific datasets, the GATA and E-box motifs show a gradual 

increase and decrease, respectively. Taken together, these analyses temporally resolve the 

motif enrichment results, with the potential to link TFs to certain stages of lineage specification.    

 

4.2.4. Transcription factor footprinting poses challenges in this system 

The utility of TF footprinting was demonstrated in the first part of the results presented in this 

thesis, successfully identifying bound sites for a set of TFs in human cell lines K562 and 

HEK293. Consequently, we next wanted to apply the same TF footprinting methods to our 

Drosophila DNase-seq data, to infer bound sites and gain further insights into the embryonic 

development of this complex organism. As the DNase-seq experiments were conducted on 

formaldehyde fixed embryos, we first wanted to explore the effects of the fixation on 

footprinting performance. To this end, we used further DNase-seq datasets generated in the 

Furlong laboratory, on fixed (crosslinked) and unfixed (native) Drosophila S2 cells. We 

focused on CTCF and Beaf32, due to the availability of ChIP-seq datasets in S2 cells for these 

factors (see supplementary table 4). We scanned the Drosophila genome using the PWMs 

obtained from the JASPAR database for these two factors (used PWMs are marked with an 

asterisk in Appendix B: supplementary table 9), getting motif matches genome-wide that 

represent putative transcription factor binding sites (TFBSs). We then examined the bp-

resolution DNase I cut profiles around these putative TFBSs. Interestingly, the native and 

crosslinked S2 DNase-seq datasets displayed distinct cut profiles, shown for Beaf32 in figure 

29A. This altered cut profile led to the hypothesis that formaldehyde crosslinking changed the 

properties of the DNase I-chromatin interaction, impacting the sequence preferences (bias) of 

DNase I. To test this hypothesis, we turned to a widely used alternative method to infer the 

bias: instead of using naked DNase-seq datasets as outlined in the previous sections of the 

thesis, we computed the 6-mer bias values from the DHSs of the datasets. The putative cut 

profiles inferred solely from these data-specific bias values, explained the observed profiles 

almost completely, for both native and crosslinked datasets (figure 29B and C, respectively). 

The cut profile inferred from naked DNase-seq derived bias showed a general resemblance to 

the observed profiles, albeit not explaining them completely (figure 29D). Therefore, we 

conducted footprinting analysis learning the background component from data-specific bias 
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values, in order to more accurately identify footprints that differentiate from the background. 

This analysis performed quite differently for Beaf32 and CTCF. Whereas footprinting 

performance was rather high, with the native dataset outperforming the crosslinked dataset for 

Beaf32, performance was much lower for CTCF, with the crosslinked dataset outperforming 

the native dataset, as measured by area under the precision recall curve (AUC PR) values 

(Figure 29E).     

 

 

Figure 29: Differences in DNase I cut profiles and footprinting in native and crosslinked S2 DNase-seq 

data. (A) Aggregate DNase I cut profiles around Beaf32 motifs that overlap ChIP-seq peaks show differences 

among crosslinked and native datasets. (B) Aggregate cut profile in the native dataset matches the native DHS 

bias inferred profile. (C) Aggregate cut profile in the crosslinked dataset matches the crosslinked DHS bias 

inferred profile. (D) Naked bias inferred profile shows similarity to both DHS bias inferred profiles, not 

matching either one perfectly. (E) Footprinting performance for Beaf32 and CTCF, based on 4-fold cross 

validated AUC-PR (baseline denotes the fraction of positive examples in the training set).   

 

We next returned to the embryo DNase-seq datasets to evaluate the performance of TF 

footprinting here. To this end, we selected 5 mesodermal TFs (bin, lmd, mef2, tin and twi) and 

scanned the Drosophila genome with their PWMs (the utilized PWMs are marked with an 

asterisk in Appendix B: supplementary table 9), to find genome-wide putative TFBSs. We then 

defined the 6-8hr meso dataset as the positive set, and the 6-8hr neuro dataset as the negative 

set. As explained for the S2 datasets above, data-specific bias values were also inferred in this 

setting, from the DHSs of embryo DNase-seq datasets (see methods). We first compared the 
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library depth normalized DNase-seq cut profiles for the positive and negative datasets around 

the putative TFBSs that overlapped the ChIP-seq datasets for each TF (also see Appendix B: 

supplementary table 9). We also included the putative cut profiles that would result solely due 

to the embryo dataset-specific bias. Figure 30, panels A-E show these comparisons for bin, 

lmd, mef2, tin and twi, respectively. One of the main conclusions from these plots is that the 

shape of the DNase-seq signal around the TFBSs is very similar for the positive and negative 

datasets, with the bias-inferred profiles closely mirroring them, indicating that the shape of the 

signal might be not be very informative in identifying true bound sites (positive set). Another 

important conclusion is that the positive datasets show higher DNase-seq signals compared to 

the negative datasets for each TF, arguing that signal intensity might be more discriminatory 

than shape in this case. To test this further, we learned footprint models from the positive and 

negative datasets for each TF and compared the performance of these models to simply ranking 

the motif sites according to DNase-seq tag counts. Figure 31A, shows the performance (AUC 

PR) of the footprint models, which can discriminate the positive and negative datasets (i.e. 

achieve better performance in the positive datasets, as expected). However, the simple tag 

count ranking achieves better separation between the positive and negative datasets (Figure 

31B), as well as significantly outperforming the footprint models (Figure 31C), confirming the 

utility of signal intensity in predicting bound sites.      
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Figure 30: DNase I cut profiles around motif sites of 5 mesoderm specific TFs. Aggregate DNase I cut 

profiles around bin, lmd, mef2, tin and twi (A-E) motifs that overlap ChIP-seq peaks mirror each other in 6-8hr 

meso (positive) and 6-8hr neuro (negative) datasets, with these profiles matching the bias-inferred profiles in 

each case. The average signals in the positive datasets are always higher. 

 

Figure 31: Performance of footprint models compared to ranking by tag counts. (A) Footprinting 

performance comparison for the 5 meso TFs using 6-8hr meso vs 6-8hr neuro datasets. (B) Tag count 

performance comparison for the 5 meso TFs using 6-8hr meso vs 6-8hr neuro datasets. (C) Direct comparison of 

footprinting and tag count results for the 6-8hr meso datasets (A-C, performance based on 4-fold cross validated 

AUC-PR, baseline denotes the fraction of positive examples in the training set). 
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In order to investigate whether these observations on the embryo DNase-seq datasets would 

also be replicated in the embryo ATAC-seq datasets, we applied a subset of the same analyses 

here. We defined TSS-distal tissue-specific ATAC-HSs for all ind and vnd-sorted datasets, as 

sites that exhibit significantly higher ATAC-seq signal in these sorted sets compared to the 

unsorted sets of the same time-points (see methods). For each tissue-specific set, we selected 

GC-content, length and TSS-distance matched background sets from all distal ATAC-HS sites. 

Motif enrichment analyses were conducted on the tissue specific sets, to find significant 

enrichment over the associated background, and the enriched motifs were subsequently 

clustered. The resulting motif enrichment heatmap in figure 32A, shows that the enriched 

clusters are generally ind or vnd-specific, with few exceptions, indicating that we identify 

motifs that potentially differentiate between these closely related tissues. This rich sequence 

content associated with the specific sets is also supported by the GKM-SVM results, which 

achieve AUROC values of around 0.8 in separating the tissue-specific sets from the 

background (figure 32A, above heatmap). As observed in the neuro-specific DNase-seq 

datasets previously, there are two highly enriched clusters implicating Ttk: clusters 7 and 16. 

Moreover, cluster 8 represents a G-rich motif, previously found to be enriched in the neuro-

specific DNase-seq datasets as well, increasing the likelihood that a true signal is reflected 

rather than an artifact. Interestingly, this cluster is more specifically enriched in the vnd-sorted 

datasets, indicating the potential to link neuro-related sequence features to specific subsets of 

the developing neuroectoderm in this setting. Cluster 17 represents the TF Dichaete (D), highly 

enriched in the ind-sorted datasets in line with its functions in the developing neuroectoderm. 

Therefore, we next wanted to assess TF footprinting efficiency in our embryo ATAC-seq 

datasets, using this TF. We scanned the Drosophila genome with Dichaete PWM (marked with 

an asterisk in Appendix B: supplementary table 9), to find putative TFBSs. Akin to the analyses 

for the 5 meso TFs, we used the 6-8hr ind-sorted dataset as the positive set and contrasted it 

with the 6-8hr unsorted dataset. Figure 32B shows the library depth normalized ATAC-seq 

signals around the TFBSs, including the putative signal profile inferred solely from naked 

ATAC-seq 6-mer bias values. Once again, signal shape is similar among the positive and 

negative datasets, which is partially reflected in the bias profile (possibly due to inference of 

bias values from naked ATAC-seq rather than ATAC-HS sites). The positive dataset shows 

higher ATAC-seq signal, which leads footprint models being outperformed by the simple tag 

count ranking, shown in figure 32C, confirming the observations from our embryo DNase-seq 

datasets.         
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Figure 32: Motif enrichment and footprinting analyses in ATAC-seq data. (A) Heatmap shows the enriched 

motif clusters for the tissue-specific ATAC-HS sets, with the corresponding GKM-SVM results above. (B) 

Shape of the aggregate ATAC-seq signal around Dichaete motifs that overlap ChIP-seq peaks mirror each other 

in the ind-sorted and unsorted datasets, with the ind-sorted dataset showing higher signal. (C) Performance 

comparison of footprinting and tag count ranking in identifying Dichaete binding in ind-sorted vs unsorted 

datasets, based on 4-fold cross validated AUC-PR (baseline denotes the fraction of positive examples in the 

training set). 

 

4.2.5. An integrative model allows finding putative binding sites for a multitude of 

factors 

Upon observing that in both Drosophila open chromatin profiling projects, signal intensity was 

a better predictor of TF binding compared to signal shape (i.e. footprints), we wanted to predict 

bound sites for a multitude of TFs, using signal intensity as a feature. To this end, we selected 

a subset of the custom PWMs (see Appendix B: supplementary table 9, and methods for 

selection details), and scanned the Drosophila genome to find putative TFBSs for each. For 

each TFBS, we extracted the following three features: log-transformed DNase-seq tag counts 

at the TFBS with 25bp flanking regions upstream and downstream, motif match score and a 

score representing the sequence conservation (number of substitutions per base across the 

Drosophila phylogeny, SPH). We trained TF-specific logistic regression models using these 
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three features, in a supervised manner, based on stage-matched ChIP-seq peaks for that TF (see 

methods). For example, for a TF with ChIP-seq data from 6-8hr embryos, we trained separate 

logistic regression models with tag counts from all 6-8hr DNase-seq datasets (meso, neuro, 

other and whole embryo) and calculated area under the receiver operating characteristic curve 

(AUC) values as a measure of performance. Figure 33 shows the best model AUCs per PWM, 

on the right panel (i.e. the TF-specific AUCs), and the corresponding model coefficients on the 

left panel. Tag counts are the most important features, with the highest model coefficients, with 

smaller contributions from motif scores and SPH to model performance. Appendix B: 

supplementary table 9 lists the best AUC per PWM, as well as the dataset in which it was 

achieved. In general, the best models are achieved in the relevant datasets, for example the 5 

meso TFs bin, lmd, mef2, tin and twi achieve best AUCs in 6-8hr binpos, 6-8hr binpos, 8-10hr 

meso, 4-6hr meso and 6-8hr meso datasets, respectively, indicating that our integrative models 

correctly capture the relationship between tissues and TFs.  

We next asked whether a common model could explain binding for most TFs. To this end, we 

created a generic model using the average coefficients for each feature (shown as the horizontal 

lines in figure 33, left panel). The generic model AUCs were calculated per TF, for the same 

datasets that achieved best TF-specific model AUCs. The generic model leads to only a mild 

decrease in overall model performance (Figure 33, right), indicating that it is applicable to a 

multitude of TFs. Thus, the generic model can be used to assay bound sites when open 

chromatin data is available, but ChIP-seq data is not.    

 

Figure 33: A logistic regression with three features is highly predictive of TF binding. Feature coefficients 

associated with tag counts, motif score and SPH, derived from the best-performing model per PWM (left). Best 

performing TF-specific model AUCs are compared to the AUCs derived from using the generic integrative 

model on the same datasets (right). 
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5. Discussion 

Part 1 

DNase-seq has been widely used to assay open chromatin regions and TF footprints. The 

emergence and increasing use of ATAC-seq, necessitates a systematic comparison of the two 

methods, especially for TF-footprinting. Here, in a comparative setting, we have shown that 

although the two methods have distinct sequence biases and generate different footprint shapes 

for the same TF, the sites they identify as bound are largely in agreement. However, the 

sequence content of TFBSs combined with protocol-specific sequence biases, impact 

footprinting efficiency for some TFs, leading to larger differences for these factors and making 

one method preferable to the other.  

There are opposing views on the library depth required for TF-footprinting. Whereas some 

studies require at least 200 million reads109, others demonstrate efficient TF-footprinting at 

moderate sequencing depths (50-60 million reads)122,129, in agreement with our results. These 

moderate numbers were reported for both segmentation-based129 and integrative site-centric122 

tools, challenging the view that these approaches have different depth requirements109. To get 

the highest possible depth, pooling all replicates has been a common practice in TF-footprinting 

studies. However, our results indicate that keeping the replicates separate to assess 

reproducibility may lead to more accurate footprint predictions. This is especially relevant for 

low-depth libraries, where this approach enables finding reliable subsets of the total footprint 

pool.     

Although the sequence bias of DNase I is well characterized, there is still no consensus about 

the benefits of bias correction for TF-footprinting. Whereas some studies report increased 

accuracy upon bias correction111, others do not make this observation122. One explanation for 

this might be the different approaches to DNase signal processing and TF-footprinting. 

Methods that extensively smooth the signal, or use features that diverge from single-nucleotide 

resolution (eg. binned signal) might be less affected by bias. Since our method has single-

nucleotide resolution, we have used protocol-specific biases to model the background in our 

TF-footprinting approach, and we could demonstrate significant improvements on footprinting 

when using bias correction on DNase-seq data. While ATAC-seq footprinting showed also 

promising results on par with DNase-seq in HEK293 data (figure 19D), its performance in 

K562 data was significantly lower for almost all factors (figure 23A) where it outperformed 

DNase-seq for only three factors, two of which had low average DNase I cleavage propensities 
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over their motif regions that resulted in a footprint-like background profile. The opposite was 

not as clear to observe, i.e. for factors where DNase-seq outperformed ATAC-seq, the average 

Tn5 cleavage propensities over the motif regions were not consistently at the lower end of the 

spectrum. Furthermore, the range of average cleavage propensities over all TFs was narrower 

for Tn5 (figure 22D vs figure 23B). 

Recent studies have proposed several Tn5 bias correction methods and in order to rule out that 

this observation resulted from our 6-mer based approach, we used a different bias correction, 

in which a 17bp long gapped k-mer with 8 meaningful positions is used to correct ATAC-seq 

data134. This more sophisticated bias correction method did not improve the footprint model 

performance (figure 23D). Taken together, correcting for Tn5 sequence bias does either not 

have a strong impact on ATAC-seq footprinting, or neither of the approaches we used is 

comparable in its impact to DNase-seq bias correction. 

Our comparative analysis clearly confirms previous reports that DNase cleavage bias might 

render footprints of some factors “invisible”, and that, in general, performance to identify 

footprints can vary significantly across assays and TFs. While an effective footprinting for all 

TFs, may in principle be achieved through a combination of assays with different sequence 

biases, our results do not suggest ATAC-seq for this purpose, due to its reduced performance; 

although it is possible to achieve better performance in deeper datasets as exemplified by our 

HEK293 data. Finally, in contrast to previous studies that reported no correlation between 

ChIP-seq signal values and footprint scores119, we have previously observed and now observe 

again a strong link between these two measures, implying that the footprint score we have 

defined here is a quantitative measure of occupancy. In summary, we expect that the insights 

gained from this work will provide experimental design and computational analysis guidelines 

for future TF-footprinting studies. 
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Part 2 

Drosophila melanogaster is a widely studied model organism, where many TFs that govern 

crucial stages of embryogenesis are known. Here, we combine open chromatin profiling with 

tissue and time-point specificity, to elucidate sequence features governing cell fate decisions 

during Drosophila embryogenesis. The pre-existing information regarding lineage-specifying 

master regulators confirms the relevance of our results. 

The tissue-specific motif enrichment results presented here capture known TFs, and potentially 

implicate novel ones. One caveat of these results, however, is that it is not always a trivial task 

to link a single TF to an enriched cluster, due to multiple TFs having similar motifs. This can 

be exemplified via the neuro-specifically enriched Sp1/Klf family motif, where the exact 

associated TF is unclear. Furthermore, in some cases, where a given motif is clearly enriched, 

it can be difficult to associate the TF with the enrichment. For example, Ttk, the motif of which 

is significantly enriched in neural tissues in both DNase-seq and ATAC-seq datasets, is actually 

a repressor of neural fate140,141. In such cases, further elucidation of the link is necessary. In 

other cases, the relationship is much easier to appreciate; for example, the GATA motif 

enriched in other-specific datasets, clearly implicates Srp, which is known to be important for 

the specification of the endoderm142. As the sorted datasets are mesoderm and neuroectoderm 

specific, it is plausible to assume that the third layer, endoderm, should be enriched in the other-

specific datasets. These results implicate the potential as well as the complications associated 

with tissue-specific motif analyses. 

Comparing time-points, adds another layer to the motif enrichment analyses. Surprisingly, it is 

possible to find sequence features that discriminate these datasets, even though they correspond 

to consecutive time-points of the same tissues. One explanation for this might be the activity 

of slightly different sets of TFs per specific time-point. In line with this, we show that the motif 

enrichment values of TFs vary over our time-points. For example, both twi and tin show higher 

enrichments at earlier time-points, which is in line with their importance in specifying the early 

mesoderm specification. On the other hand, kr and klu, both of which are known to have 

functions in neural development143,144, show an increase of motif enrichment in neuro datasets, 

as development progresses. The time-point analyses enable the observation of these trends. 

Another interesting observation from these analyses is the existence of motifs that show a 

“general-early” or “general late” enrichment regardless of the tissue. It is of interest to further 

investigate whether these correspond to biologically meaningful sequence signatures. 
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Finally, we show the caviats related to TF footprinting in this system and predict TF bound 

sites with an alternative integrative model. Furthermore, we propose a generic model that 

performs well for a majority of assayed TFs. We expect this model and our comprehensive 

motif enrichment analyses, to constitute a useful resource.           
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Cell type Sample description Total 

mapped read 

pairs 

Percent 

mtDNA 

Percent 

uniquely 

aligned after 

removing 

mtDNA 

Percent 

duplication 

after 

removing 

mtDNA 

Final read 

pairs after 

processing 

K562 10 minute lysis 98241437 74.9 60.86 36.1 11824634 

K562 5 minute lysis 59725560 73.3 61.68 28.52 8293938 

K562 No lysis buffer 64162804 18 76.09 28.83 26203527 

HEK293 High depth, bio1-tech1 212332636 21.7 79.15 38.6 74957855 

HEK293 High depth, bio1-tech2 215849442 16.7 79.41 42.41 75883012 

HEK293 High depth, bio2-tech1 189055455 8.3 80.35 17.42 106390553 

HEK293 High depth, bio2-tech2 212178995 3.4 80.84 25.81 112909794 

HEK293 Medium depth, bio1-tech1  101177506 22 78.93 22.54 44903594 

HEK293 Medium depth, bio1-tech2 115293922 16.9 79.12 27.43 50914321 

HEK293 Medium depth, bio2-tech1 85731217 8.4 80.28 8.82 53211877 

HEK293 Low depth, bio1-tech1 53199070 21.9 78.99 12.83 26607741 

HEK293 Low depth, bio1-tech2 59968056 16.8 79.19 15.84 30798873 

HEK293 Low depth, bio2-tech1 40964758 8.4 80.3 4.54 26613414 

HEK293 Low depth, bio2-tech2 51835433 3.4 80.81 7.72 34364305 

 

Supplementary table 1: General statistics of the ATAC-seq datasets generated in the study. 
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Cell type Data type Description Accession code Library depth after 

processing 

K562 DNase-seq Replicate 1 (ENCODE) ENCFF000SWU 72166285 

K562 DNase-seq Replicate 2 (ENCODE) ENCFF000SXA 138770111 

K562 DNase-seq Replicate 3 (ENCODE) ENCFF000SWY 88033023 

K562 DNase-seq Replicate lab Generated for the study 134851555 

HEK293 DNase-seq Replicate 1 (ENCODE) ENCFF000SPK 68339552 

HEK293 DNase-seq Replicate 2 (ENCODE) ENCFF000SQB 164469299 

HEK293 DNase-seq Replicate lab Generated for the study 126253898 

Human 

(YH1) 

Tn5 

transposition 

Deproteinized genomic 

DNA 
SRX030445 39753928 

D. 

melanogaster 

Tn5 

transposition 

Deproteinized genomic 

DNA 
SRX030438 22705812 

 

Supplementary table 2: Descriptions, accession codes and final read counts for the utilized DNase-seq datasets 

and libraries generated by Tn5 transposition of deproteinized genomic DNA. 

 

 

 

Comparison name Biological replicate 1 Biological replicate 2 

High depth ATAC-seq 1 High depth, bio1-tech1 High depth, bio2-tech1 

High depth ATAC-seq 2 High depth, bio1-tech2 High depth, bio2-tech2 

Medium depth ATAC-seq 1 Medium depth, bio1-tech1 Medium depth, bio2-tech1 

Medium depth ATAC-seq 2 Medium depth, bio1-tech2 Medium depth, bio2-tech1 

Low depth ATAC-seq 1 Low depth, bio1-tech1 Low depth, bio2-tech1 

Low depth ATAC-seq 1 Low depth, bio1-tech2 Low depth, bio2-tech2 

 

Supplementary table 3: Scheme for ATAC-seq library comparisons for JAMM-IDR peak calls or FLR-IDR 

footprint calls. 
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Cell line Factor Accession code 

HEK293 CTCF ENCFF002DCV 

HEK293 MAZ ENCFF834ZRT 

HEK293 REST ENCFF201ZGY 

HEK293 YY1 ENCFF443TBN 

K562 CREB1 ENCFF001UJI, ENCFF001UJJ 

K562 CTCF 
ENCFF002CEL, ENCFF002CLS, ENCFF002CWL, ENCFF002DBD, 

ENCFF002DDJ 

K562 E2F4 ENCFF002CWM 

K562 ETS1 ENCFF002CLX 

K562 GABPA ENCFF002CLZ 

K562 GATA2 ENCFF002CMA, ENCFF002CWQ 

K562 MAX ENCFF002CXD 

K562 MAZ ENCFF002CXE 

K562 MEF2A ENCFF002CMD 

K562 NFYA ENCFF002CXI 

K562 NRF1 ENCFF002CXK, ENCFF454OVP, ENCFF657YIC, ENCFF664FFU 

K562 REST ENCFF002CMF 

K562 RFX1 ENCFF654RTP 

K562 RFX5 ENCFF002CXV 

K562 SP1 ENCFF002CMN, ENCFF191QSX 

K562 SRF ENCFF002CMP 

K562 STAT1 ENCFF002CYB, ENCFF002CYC, ENCFF002CYD, ENCFF002CYE 

K562 USF1 ENCFF002CMV 

K562 YY1 ENCFF002CMW, ENCFF002CMX, ENCFF002CYQ 

K562 ZNF143 ENCFF002CYR 

S2 CTCF GSM409078 

S2 BEAF32 GSM1278639 

 

Supplementary table 4: ChIP-seq peaks used in the analysis. 

 

 

 

 

 

 



Appendix A: Supplementary tables (part 1) 

79 
 

Factor name PWM ID 
Lowest PWM 

score in top 50K 

Closest threshold 

PWM score 

p-value associated 

with threshold 

CREB1 MA0018.2 9.06 7.78555 1*10-6 

CTCF MA0139.1  8.09 7.89799 5*10-5 

E2F4 M5180_1.01 1.71 1.78185 2*10-5 

ETS1 MA0098.1  8.11 6.9036 1*10-6 

GABPA MA0062.2 8.42 8.43115 4*10-5 

GATA2 MA0036.1 7.20 6.24233 1*10-6 

MAX M5613_1.02 5.45 3.68637 1*10-6 

MAZ M00649 9.32 8.22958 1*10-6 

MEF2A M5615_1.02 9.09 4.80812 1*10-6 

NFYA MA0060.1  8.83 8.46208 5*10-5 

NRF1 M00652 3.90 1.39346 1*10-6 

REST MA0138.2 5.89 5.80754 3*10-5 

RFX1 M00280 8.63 8.53351 5*10-5 

RFX5 M5779_1.02 7.03 5.27345 1*10-6 

SP1 MA0079.2 9.17 8.38317 1*10-6 

SRF MA0083.1 7.25 6.8771 1*10-6 

STAT1 MA0137.2 9.39 9.0732 3*10-5 

USF1 M5943_1.02 9.73 9.36591 1*10-6 

YY1 M5954_1.02 8.56 7.33829 1*10-6 

ZNF143 M5966_1.02 4.96 2.23431 1*10-6 

 

Supplementary table 5: PWM IDs used for genome-wide motif searches. 
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Cluster # TF Annotation Cluster summary motif 

cluster_1        E-box/bHLH (Da, Zld, Wor) 

 
cluster_2 Homeodomain (CG4328,Abd-

A,H2.0,Dfd,Zen) 

 
cluster_3 E-box/bHLH (Twi) 

 
cluster_4 E-box/bHLH (Espl, Myc, Met) 

 
cluster_5 C2H2-ZF (Jim, Hb) 

 
cluster_6 C2H2-ZF (Lola, Crol, Sug) 

 
cluster_7 C2H2-ZF (Peb) 

 
cluster_8 GATA (So, Srp) 

 
cluster_9 NF-KB (Rel), C2H2-ZF (Lola) 

 
cluster_10 Forkhead (Bin, Croc) 

 
cluster_11 Forkhead (Bin) 

 
cluster_12 C2H2-ZF (Ttk) 

 
cluster_13 C2H2-ZF (Ttk, Kr) 

 
cluster_14 Homeodomain (Tin, Vnd, Bap) 
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cluster_15 C2H2-ZF (Br) 

 
cluster_16 Homeodomain (Zen) 

 
cluster_17 Forkhead (Slp1) 

 
cluster_18 HTH (Bab1) 

 
cluster_19 HMG-box (D) 

 
cluster_20 Deaf1 

 
cluster_21 bZIP (Slbo) 

 
cluster_22 ETS-domain (Ets65A, Ets21C) 

 
cluster_23 Ets98B, Coop 

 
cluster_24 Da, Phol 

 
cluster_25 E-box/bHLH (Da) 

 
cluster_26 C2H2-ZF+Sp1/Klf (Luna) 

 
cluster_27 C2H2-ZF (L(3)neo38, CG7368) 

 
cluster_28 HTH (Rib), POU-homeodomain (Nub) 

 
cluster_29 Homeodomain (Exd) 
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cluster_30 Retn, Pan 

 
cluster_31 C2H2-ZF (Chinmo, CG12236) 

 
cluster_32 Grh 

 
cluster_33 C2H2-ZF (Cf2) 

 
cluster_34 MADS-box (Mef2) 

 
cluster_35 Homeodomain (Abd-A, Cad) 

 
cluster_36 Usp, CG8319 

 
cluster_37 C4-ZF(Kni, Eip75B) 

 
cluster_38 C2H2-ZF+Sp1/Klf (Klf15, Btd) 

 
cluster_39 C2H2-ZF (CG4854) 

 
cluster_40 HMG-box (Cic) 

 
cluster_41 C2H2-ZF (ZIPIC) 

 
cluster_42 C2H2-ZF (Lola) 

 
cluster_43 C2H2-ZF (Blimp-1) 
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cluster_44 HTH (Eip93F) 

 
cluster_45 C2H2-ZF (Klu) 

 
cluster_46 C2H2-ZF (Lola) 

 
cluster_47 C4-ZF (Tll, ERR) 

 
cluster_48 CR43669/70/71 

 
cluster_49 C2H2-ZF (Br) 

 
cluster_50 Forkhead (Slp1) 

 
cluster_51 C2H2-ZF (Trl) 

 
cluster_52 C2H2-ZF (Bowl) 

 
cluster_53 C2H2-ZF (Gl) 

 
cluster_54 C2H2-ZF (ZIPIC) 

 
cluster_55 C2H2-ZF (Br) 

 
cluster_56 CG15601 

 
cluster_57 C2H2-ZF (Lola) 
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cluster_58 C2H2-ZF (Br) 

 
cluster_59 C2H2-ZF (Shn) 

 
cluster_60 Homeodomain (Ftz) 

 
cluster_61 Dref 

 
cluster_62 Top2 

 
cluster_63 CG7745 

 
cluster_64 Mes2 

 
cluster_65 E-box/bHLH (HLH4C) 

 
cluster_66 SMAD (Mad) 

 
cluster_67 C2H2-ZF (Rn) 

 
cluster_68 Homeodomain (Ey) 

 
 

Supplementary table 6: Motif clusters enriched in the tissue specific DHSs. 
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Cluster # TF Annotation Cluster summary motif 

cluster_1 C2H2-ZF (Ttk, Kr) 

 
cluster_2 E-box/bHLH (Twi) 

 
cluster_3 C4-ZF (Usp, Hr4) 

 
cluster_4 Homeodomain (Vnd, Tin) 

 
cluster_5 C2H2-ZF (Lola), NF-KB (Rel) 

 
cluster_6 Homeodomain (Zen) 

 
cluster_7 Homeodomain (Bcd, Gsc) 

 
cluster_8 Forkhead (FoxP, Bin) 

 
cluster_9 HTH (Bab1) 

 
cluster_10 HMG-box (D, Sox15, Sox14) 

 
cluster_11 C2H2-ZF (Lola, Sug, CG7368) 

 
cluster_12 Forkhead (Slp1) 

 
cluster_13 bZIP (Slbo) 

 
cluster_14 C2H2-ZF (Jim, Hb, Rn) 
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cluster_15 C2H2-ZF (Ken) 

 
cluster_16 Deaf1 

 
cluster_17 E-box/bHLH (E(spl)m8-HLH) 

 
cluster_18 Dref 

 
cluster_19 E-box/bHLH (Zld, Da) 

 
cluster_20 Homeodomain (Cad, Bsh, CG34031, Abd-

A, Onecut) 

 
cluster_21 Forkhead (Bin) 

 
cluster_22 C2H2-ZF (Br) 

 
cluster_23 C2H2-ZF+Sp1/Klf (CG3065, Sr, Btd, Spps) 

 
cluster_24 Homeodomain (Cad), ARID-HTH (Retn) 

 
cluster_25 C2H2-ZF (Phol) 

 
cluster_26 C2H2-ZF (L(3)neo38, CG7368) 

 
cluster_27 GATA(Srp), Beaf32 

 
cluster_28 C2H2-ZF (Disco-r) 
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cluster_29 HTH (Rib), POU-homeodomain (Pdm2, 

Nub) 

 
cluster_30 C2H2-ZF (Peb, Chinmo) 

 
cluster_31 C2H2-ZF (Ab, Ttk) 

 
cluster_32 C2H2-ZF (Lola) 

 
cluster_33 HTH (Eip93F) 

 
cluster_34 ZF (Eip75B) 

 
cluster_35 C2H2-ZF (Klu) 

 
cluster_36 ETS-domain (Ets21C, Ets97D) 

 
cluster_37 E-box/bHLH (E(spl)mγ-HLH) 

 
cluster_38 C2H2-ZF (Br) 

 
cluster_39 Forkhead (Slp1) 

 
cluster_40 C2H2-ZF (Lola) 

 
cluster_41 C2H2-ZF (Br) 

 
cluster_42 Homeodomain (Ftz) 

 
cluster_43 STAT (Stat92E) 
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cluster_44 MADS-box (Mef2) 

 
cluster_45 C2H2-ZF (Lola) 

 
cluster_46 C2H2-ZF (ZIPIC) 

 
cluster_47 C2H2-ZF (Rn) 

 
cluster_48 C2H2-ZF (Shn) 

 
cluster_49 C2H2-ZF (Lola) 

 
cluster_50 Mes2 

 
cluster_51 CR43669/70/71 

 
 

Supplementary table 7: Motif clusters enriched in the time-point specific DHSs. 
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Cluster # TF Annotation Cluster summary motif 

cluster_1 E-box/bHLH (Espl), C2H2-ZF 

(CG7386) 

 
cluster_2 ZF(Hr51), HMG-box (Dtcf) 

 
cluster_3 C2H2-ZF+Sp1/Klf (Dar1, Luna) 

 
cluster_4 C2H2-ZF (CG7368) 

 
cluster_5 Homeodomain (CG4328, Cad) 

 
cluster_6 NF-KB (Dl, Rel) 

 
cluster_7 C2H2-ZF (Ttk, Pad) 

 
cluster_8 C2H2-ZF (Sug, Crol, Opa) 

 
cluster_9 C2H2-ZF (Jim, Dati) 

 
cluster_10 C2H2-ZF (Disco) 

 
cluster_11 bZIP (Gt) 

 
cluster_12 C2H2-ZF (Ab), ETS (Eip74EF) 

 
cluster_13 Homeodomain (Oc, Bcd) 

 
cluster_14 bZIP (Slbo) 
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cluster_15 C4-ZF (Tll) 

 
cluster_16 C2H2-ZF (Ttk) 

 
cluster_17 HMG-box (D) 

 
cluster_18 C2H2-ZF (Aef1) 

 
cluster_19 C2H2-ZF (Klu), C2H2-ZF+Sp1/Klf 

(Klf15) 

 
cluster_20 HMG-box (Cic) 

 
cluster_21 C2H2-ZF (ZIPIC) 

 
cluster_22 C2H2-ZF (Lola) 

 
cluster_23 C2H2-ZF (Blimp-1) 

 
cluster_24 HTH (Rib) 

 
cluster_25 Mes2 

 
cluster_26 C2H2-ZF (Lola) 

 
cluster_27 C2H2-ZF (ZIPIC) 

 
cluster_28 CG15601 

 
cluster_29 HTH (Eip93F) 
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cluster_30 C2H2-ZF (Erm) 

 
cluster_31 C2H2-ZF (CG4854) 

 
cluster_32 CR43669/70/71 

 
cluster_33 SMAD (Med) 

 
cluster_34 C2H2-ZF (Shn) 

 
cluster_35 C2H2-ZF (Peb) 

 
cluster_36 HTH+TEA (Sd) 

 
cluster_37 C2H2-ZF (Rn) 

 
 

Supplementary table 8: Motif clusters enriched in the tissue specific ATAC-HSs. 
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PWM TF 

name 

ChIP data Dataset with 

best AUROC 

AUROC Generic 

AUROC 

berkeley_BCD bcd 2-3hr 2_4filt 0.8672 0.8621 

berkeley_bdtnp_cad cad 0-4hr 2_4WE 0.9211 0.9149 

berkeley_bdtnp_dl dl 2-3hr 2_4filt 0.6889 0.6926 

berkeley_bdtnp_h h 0-8hr 4_6WE 0.6893 0.6822 

berkeley_bdtnp_run run 2-3hr 2_4WE 0.9345 0.9176 

berkeley_bdtnp_slp1 slp1 4-6hr, 6-8hr 6_8WE 0.9681 0.9626 

berkeley_GT gt 2-3hr 2_4WE 0.8192 0.7900 

berkeley_HB hb 2-3hr 2_4WE 0.7211 0.7259 

dmmpmm2009_FBgn0025647

_dmmpmm2009_0 

Trl 8-16hr 8_10WE 0.8334 0.8223 

flyfactor_bab1_sanger_5 bab1 0-12hr 4_6meso 0.9237 0.9307 

flyfactor_bap_optimized_furlo

ng 

bap 6-8hr 6_8binpos 0.9698 0.9713 

flyfactor_bin_optimized_furlo

ng* 

bin 6-8hr, 8-10hr, 

10-12hr 

6_8binpos 0.9811 0.9803 

flyfactor_chinmo_solexa chinmo 0-12hr 2_4WE 0.6754 0.3540 

flyfactor_disco_solexa_5 disco 0-8hr, 8-16hr 4_6DN 0.8690 0.8707 

flyfactor_dl_flyreg dl 2-3hr 2_4WE 0.6939 0.6907 

flyfactor_doc2_sanger_5 Doc2 4-6hr, 6-8hr 4_6DN 0.9734 0.9815 

flyfactor_dtcf_furlong dtcf/pan 4-6hr, 6-8hr 6_8WE 0.9611 0.9620 

flyfactor_eve_solexa eve 8-16hr 8_10WE 0.8761 0.8715 

flyfactor_lmd_solexa_5* lmd 6-8hr 6_8binpos 0.9678 0.9603 

flyfactor_lola-pd_solexa lola 0-12hr 2_4WE 0.7734 0.2890 

flyfactor_mef2_optimized_furl

ong* 

Mef2 2-4hr, 4-6hr, 

6-8hr, 8-10hr, 

10-12hr 

8_10meso 0.9827 0.9803 

flyfactor_pan_flyreg dtcf/pan 4-6hr, 6-8hr 4_6DN 0.9551 0.9578 

flyfactor_phol_sanger_5 phol 4-12hr 8_10meso 0.9709 0.9544 

flyfactor_pmad_furlong Mad 4-6hr, 6-8hr 4_6WE 0.9820 0.9769 

flyfactor_pnr_furlong pnr 4-6hr, 6-8hr 4_6DN 0.9610 0.9533 

flyfactor_pnr_sanger_5 pnr 4-6hr, 6-8hr 4_6WE 0.9722 0.9665 

flyfactor_sens_sanger_10 sens 4-8hr 4_6DN 0.7771 0.7678 

flyfactor_slp1_nar slp1 4-6hr, 6-8hr 6_8WE 0.9676 0.9711 

fly_factor_survey_FBgn00025

21_fly_factor_survey_1 

pho 0-16hr, 4-12hr, 

6-12hr 

6_8WE 0.8943 0.8830 

fly_factor_survey_FBgn00033

00_fly_factor_survey_1 

run 2-3hr 2_4filt 0.9345 0.9296 

fly_factor_survey_FBgn00116

55_fly_factor_survey_0 

Med 2-3hr 2_4WE 0.8385 0.8430 

fly_factor_survey_FBgn02678

21_fly_factor_survey_0 

da 2-3hr 2_4WE 0.6898 0.6885 

flyfactor_tin_optimized_furlon

g* 

tin 2-4hr, 4-6hr, 

6-8hr 

4_6meso 0.9795 0.9816 

flyfactor_ttk-pa_sanger_5 ttk 6-8hr 6_8DN 0.9712 0.9652 

flyfactor_twi_optimized_furlo

ng* 

twi 2-4hr, 4-6hr, 

6-8hr 

6_8meso 0.9827 0.9851 

flyfactor_vfl_sanger_5 vfl/zld 1hr, 2hr, 3hr 2_4filt 0.7316 0.7131 

flyfactor_vfl_solexa_5 vfl/zld 1hr, 2hr, 3hr 2_4filt 0.7720 0.7292 

flyreg_FBgn0024766_flyreg_0 eve 8-16hr 8_10WE 0.8758 0.8427 

idmmpmm2009_FBgn000041

1_idmmpmm2009_0* 

D 0-8hr 4_6DN 0.9883 0.9886 
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idmmpmm2009_FBgn000115

0_idmmpmm2009_0 

gt 2-3hr 2_4WE 0.8339 0.8085 

idmmpmm2009_FBgn000387

0_idmmpmm2009_0 

ttk 6-8hr 6_8WE 0.9695 0.9796 

idmmpmm2009_FBgn026063

2_idmmpmm2009_0 

dl 2-3hr 2_4WE 0.7007 0.6978 

jaspar_bap bap 6-8hr 6_8meso 0.9299 0.9040 

jaspar_BEAF-32* BEAF-

32 

0-12hr 6_8DN 0.7774 0.7418 

jaspar_CAD cad 0-4hr 2_4WE 0.9239 0.9171 

JASPAR_CORE_2014_insects

_FBgn0004862_JASPAR_CO

RE_2014_insects_0 

bap 6-8hr 6_8meso 0.9439 0.9281 

jaspar_CTCF* CTCF 0-12hr 8_10neuro 0.8613 0.7982 

jaspar_eve eve 8-16hr 10_12DN 0.8783 0.8822 

jaspar_exd exd 0-8hr 4_6DN 0.6190 0.5780 

jaspar_gt gt 2-3hr 2_4WE 0.8066 0.7453 

jaspar_h h 0-8hr 4_6WE 0.6686 0.6724 

jaspar_Mad Mad 4-6hr, 6-8hr 4_6WE 0.9730 0.9756 

jaspar_pnr pnr 4-6hr, 6-8hr 4_6DN 0.9624 0.9622 

jaspar_Trl Trl 8-16hr 8_10WE 0.8514 0.8362 

OnTheFly_FBgn0000411_On

TheFly_0 

D 0-8hr 4_6DN 0.9857 0.9842 

OnTheFly_FBgn0003448_On

TheFly_1 

sna 2-4hr 2_4WE 0.8492 0.8523 

OnTheFly_FBgn0004870_On

TheFly_0 

bab1 0-12hr 4_6meso 0.9142 0.9077 

OnTheFly_FBgn0015602_On

TheFly_0 

BEAF-

32 

0-12hr 8_10neuro 0.7850 0.7585 

OnTheFly_FBgn0039039_On

TheFly_0 

lmd 6-8hr 6_8binpos 0.9661 0.9697 

OnTheFly_FBgn0045759_On

TheFly_0 

bin 6-8hr, 8-10hr, 

10-12hr 

6_8binpos 0.9826 0.9867 

OnTheFly_FBgn0267821_On

TheFly_0 

da 2-3hr 2_4WE 0.6966 0.6974 

pouya_Dfd_disc_1 Dfd 0-8hr 6_8binneg 0.9546 0.9402 

repeatMasked_beaf32_Moden

code_Negre_et_al.2.repeatMas

ked 

BEAF-

32 

0-12hr 4_6DN 0.7683 0.7709 

repeatMasked_beaf32_Moden

code_Negre_et_al.6.repeatMas

ked 

BEAF-

32 

0-12hr 2_4WE 0.7563 0.7540 

repeatMasked_cp190_Modenc

ode_Negre_et_al.0.repeatMask

ed 

Cp190 0-12hr 10_12DN 0.8452 0.8064 

repeatMasked_cp190_Modenc

ode_Negre_et_al.3.repeatMask

ed 

Cp190 0-12hr 4_6DN 0.8088 0.8019 

repeatMasked_ctcf_Modencod

e_Negre_et_al.1.repeatMasked 

CTCF 0-12hr 10_12neuro 0.8210 0.7612 

repeatMasked_dfd_Modencod

e_Boyle_et_al.1.repeatMasked 

Dfd 0-8hr 4_6DN 0.9643 0.9519 
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repeatMasked_disco_Modenco

de_Negre_et_al.3.repeatMaske

d 

disco 0-8hr, 8-16hr 4_6DN 0.8747 0.8708 

repeatMasked_eve_Modencod

e_Boyle_et_al.0.repeatMasked 

eve 1-6hr, 8-16hr 4_6WE 0.9489 0.9462 

repeatMasked_hr78_Modenco

de_Negre_et_al.4.repeatMaske

d 

Hr78 8-16hr 8_10meso 0.9764 0.9688 

repeatMasked_kni_Modencod

e_Negre_et_al.3.repeatMasked 

kni 8-16hr 10_12WE 0.9608 0.9412 

repeatMasked_pnr_FurlongLa

b.3.repeatMasked 

pnr 4-6hr, 6-8hr 4_6WE 0.9595 0.9625 

repeatMasked_trl_Modencode

_Boyle_et_al.3.repeatMasked 

Trl 8-16hr 8_10WE 0.8642 0.8406 

repeatMasked_usp_Modencod

e_Boyle_et_al.0.repeatMasked 

usp 0-12hr 8_10WE 0.9572 0.9561 

 
Supplementary table 9: Performance of PWM-specific vs generic logistic regression models in predicting TF 

binding. 
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