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cent transformed cells or inhibiting their outgrowth. This antitu-

mor immunity is substantiated by the main cellular effectors of the 

innate and the adaptive immune system, namely natural killer cells, 

natural killer T cells, and T cells (TCs), as well as increased pro-

immune humoral factors (e.g., interferons) in the tumor microen-

vironment. On the other hand, in the tumor-promoting phase re-

ferred to as ‘immune escape’, the immune system can further 

tumor progression either by selecting cancer cells that are more 

capable of surviving the host’s immunocompetence or by modify-

ing the tumor microenvironment in such a way that tumor out-

growth is facilitated [2]. In between the above phases is the equilib-

rium where cancerous cells are kept under control but are not 

eliminated by the immune system. This balance of antitumor and 

tumor-promoting factors may maintain the tumor in a function-

ally inactive state of dormancy over a period of many years [3].

The processes mentioned above also make up the rationale for 

the development of immunotherapeutic options in breast cancer 

(BC) [3–5], as characteristically in this tumor entity, already at very 

early stages, cancer cells are able to disseminate hematogenously 

from the primary tumor site, and distant metastases often occur 

only after many years of latency [6]. In this context, one predomi-

nant organ associated with the dissemination and survival of BC 

tumor cells is, besides others such as locoregional lymph nodes, the 

bone marrow (BM). Of note, the detection of disseminated BM 

tumor cells correlates with an increased rate of secondary osseous 

and visceral metastases and with a worse overall survival [7–11]. 

Consequently, in addition to surgical resection of the primary 

tumor and locoregional irradiation, curative BC therapy aims at 

eliminating disseminated micrometastatic tumor cells. In this con-

text, besides cytostatic and/or hormonal therapies, new supportive 

treatment options like immunotherapy are increasingly gaining 

oncological interest. Hence, we also review aspects of BC immu-

noediting processes with respect to potential immunotherapeutic 

approaches. 
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Summary
More recently, immunotherapy has emerged as a novel 
potentially effective therapeutic option also for solid 
malignancies such as breast cancer (BC). Relevant ap-
proaches, however, are determined by the 2 main ele-
ments of cancer immunoediting – the elimination of 
nascent transformed cells by immunosurveillance on 
the one hand and tumor immune escape on the other 
hand. Correspondingly, we here review the role of the 
various cellular immune players within the host-protec-
tive system and dissect the mechanisms of immune 
evasion leading to tumor progression. If the immune 
balance of disseminated BC cell dormancy (equilibrium 
phase) is lost, distant metastatic relapse may occur. The 
relevant cellular antitumor responses and translational 
immunotherapeutic options will also be discussed in 
terms of clinical benefit and future directions in BC 
management.

© 2016 S. Karger GmbH, Freiburg

Introduction

An intact immune system plays a dual role in cancer: it can pre-

vent/control as well as shape/promote cancer by a process called 

‘cancer immunoediting’ [1]. On the one hand, in a host-protective 

elimination phase named ‘immunosurveillance’, the immune sys-

tem can recognize and suppress tumor growth by destroying nas-
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Cellular Immune Responses

Tumor Site

In human BCs, like in other malignancies, the presence of pri-

mary tumor-infiltrating lymphocytes (TILs), especially of the Th1 

and cytotoxic variety, is correlated with the absence of metastatic 

invasion and improved clinical outcome in terms of overall sur-

vival rates [12]. This holds particularly true for BCs with aggressive 

features such as high histologic grade or estrogen receptor-α nega-

tivity [13, 14].

Intriguingly, in triple-negative invasive BC patients receiving 

neoadjuvant chemotherapy and subsequent surgical treatment, the 

immunohistochemical or mainly the hematoxylin and eosin stain-

ing analysis of primary tumor needle biopsy specimens revealed 

that the pathologic complete response rates of tumors showing a 

high TIL score were significantly higher than those of tumors with 

a low TIL count [15, 16]. These results suggested that the pretreat-

ment host immune response may enhance the ability of anthracy-

cline/taxane-based neoadjuvant chemotherapy to eliminate cancer 

cells [17]. This hypothesis was further corroborated by large stud-

ies which demonstrated triple-negative as well as HER2-overex-

pressing BC phenotypes with high levels of intratumoral cytotoxic 

TCs to have heightened sensitivity to anthracycline-based chemo-

therapy, as assessed by the immediate response to neoadjuvant 

therapy and long-term disease-free survival rates [18–20]. Further, 

in HER2-positive BC patients, high levels of TILs were also found 

to be associated with improved therapeutic responses to the mono-

clonal antibody trastuzumab [21].

In summary, the data available suggest that particularly in ag-

gressive subtypes such as triple-negative and HER2-positive BC the 

immune response plays a pivotal part in tumor chemosensitivity 

and clinical outcome.

Bone Marrow Site

TCs play a central role in cell-mediated tumor immunity. Con-

ventionally, the precursors of TCs are produced in the BM but sub-

sequently leave the BM and mature in the thymus. Mature cells 

then emigrate from the thymus into the circulation. Repeatedly, 

circulating naive TCs leave the blood to enter peripheral lymphoid 

organs where they may encounter their specific tumor antigen and 

become activated as effector (cytotoxic or helper) TCs.

Relating to BC immunity and the generation of tumor-specific 

effector and memory TCs, blood/BM interactions proceed in 3 

steps [22, 23]:

i) Naive TCs as well as tumor cells are recruited from the circula-

tion to the BM (‘homing’) via constitutively expressed adhesion 

molecules [24, 25]; 

ii) BM-resident antigen-presenting cells, particularly dendritic 

cells, can scan, process, and cross-present BC-associated anti-

gens to prime TCs [22, 26]; and

iii) activated TCs proliferate and may become effector and memory 

cells that either recirculate or remain in the BM compartment.

The coexistence of BM-resident tumor-specific TCs and dis-

seminated BC cells maintains the quiescent state, i.e., the immune 

balance, which is referred to as tumor dormancy, while a loss of TC 

function can lead to tumor metastasis even after years of latency 

[27–30].

Furthermore, especially in the case of BC, in a significant num-

ber of patients during the course of disease, tumor-specific TC re-

sponses could be proven to have been induced and maintained in 

the form of BM memory TCs (TMCs) – a subset of BC-specific 

TCs that persist long-term [31].

TMCs are an ideal source for the generation of therapeutic ef-

fector TCs expressing the CD8 glycoprotein at their surfaces. This 

is due to the fact that secondary CD8+ TC responses take place 

more quickly and more effectively than primary responses [32–34]. 

Correspondingly, in a trial of advanced metastasized BC patients 

with tumor-reactive TMCs in the BM, no tumor-specific TCs were 

detected in the peripheral blood at the beginning. After therapy 

with reactivated autologous BC-reactive BM TMCs, however, 

about 44% of patients showed tumor-specific TCs in the peripheral 

blood [35, 36]. 

Tumor Immune Escape

Mechanisms

In the studies cited above [35, 36], which will be discussed in 

more detail in the subsequent chapters, roughly half of the BC pa-

tients treated did not respond to the immunotherapy employed. In 

these patients, counterregulation mechanisms may have taken ac-

tion leading to post-therapy tumor immune escape along the fol-

lowing lines:

i) The immune recognition of tumor cells can be circumvented 

because of loss of tumor antigen expression that may occur in at 

least 3 ways [2]: through development of tumor cells lacking 

 expression of potent rejection antigens; by means of down-

regulation of major histocompatibility complex (MHC) class I 

proteins that present these antigens to tumor-specific TCs; or 

via loss of tumor cells’ antigen processing capacity that is man-

datory to develop the antigenic peptide epitopes and load them 

onto the MHC class I molecules.

ii) At the tumor cell level, resistance to cytotoxic lysis by immune 

cells may be brought about by enhanced expression of anti- 

apoptotic effector molecules such as FLIP and BCL-XL [37] or 

by persistent activation of pro-oncogenic transcription factors 

like STAT3 [2]. Alternatively, tumor cells can evade immune-

mediated killing through expression of mutated inactive forms 

of death receptors [37]. Concertedly, these mechanisms may 

promote tumor progression.

iii) Tumor immune escape may develop due to local immuno-

suppression in the tumor microenvironment. Such an immuno-

suppressive state can be established either by tumor cells pro-

ducing immunosuppressive cytokines (e.g., vascular endothelial 

growth factor and transforming growth factor-ß (TGF-ß)) or by 

recruitment of specific immunosuppressive leukocyte popula-

tions (e.g., regulatory TCs (Tregs) and myeloid-derived sup-

pressor cells) [2, 37, 38]. 
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Clearly, the rate of BC progression is determined by the balance 

between the above immune-inhibitory factors of tumor immune 

escape and the host-protective capacity of the immune system as 

well as the immune-stimulatory conditions of immunotherapeutic 

approaches. 

Potential Anti-Escape Strategies

In BC patients with failed immune response to cellular immu-

notherapeutic approaches, a significantly higher proportion of 

Tregs was found in the BM [35]. Tregs are a subpopulation of TCs 

which generally suppress (hence also called suppressor TCs) or 

downregulate activities of effector TCs thus modulating immune 

reactions, maintaining tolerance to self-antigens, and abrogating 

autoimmune disease. Consequently, in future immunotherapy 

studies, patients might benefit from ex vivo Treg depletion prior to 

TC stimulation.

Additional strategies potentially capable of reducing the immu-

nosuppressive effects of Tregs are currently investigated in murine 

models or first clinical studies and comprise i) denileukin diftitox, 

a fusion protein of interleukin 2 and diphtheria toxin targeting 

Treg cells [39–41], ii) direct antibody blockade of the immunosup-

pressive moieties of Tregs [37, 38], and iii) pharmacological agents 

such as cyclooxygenase-2 inhibitors as well as the antineoplastics 

temozolomide (tumor DNA methylator), fludarabine (purine 

analog), and cyclophosphamide (CTX) [42, 43]. Strikingly, CTX, a 

well-known chemotherapeutic compound, when being applied 

solely at low doses in a metronomic regimen could be demon-

strated to induce a selective profound reduction in circulating 

Tregs through enhanced apoptosis and decreased proliferation of 

this cell type [44, 45]. Simultaneously, spontaneous antitumor TC 

responses were found restored [42, 45].

Correspondingly, in a recent study of metastasized BC patients, 

Ge et al. [46] reported metronomic CTX treatment over 3 months to 

cause a transient reduction in circulating Tregs by more than 40% 

associated with a strong and lasting increase in breast tumor-specific 

TCs, which significantly correlated with disease stabilization and 

overall survival. Consequently, low-dose CTX might be successfully 

integrated into a future concept of chemoimmunotherapy. 

Cellular Immunotherapy

Possible Accesses

Cellular immunotherapy approaches are based on 2 different 

principles [47]:

i) The body’s own immune system can be actively and specifically 

stimulated through confrontation of immune cells with autolo-

gous or allogeneic tumor antigens in situ. This leads to a primary 

activation of naive effector cells or to a secondary reactivation of 

memory cells which were formed during an earlier confronta-

tion of the immune system with the specific antigen. This proce-

dure corresponds to an active immunization, i.e., a vaccination.

ii) Autologous or allogeneic immune cells (tumor-specific TMCs 

from BM [35, 36] or peripheral blood [48], TILs [49], or engi-

neered TCs [50]) with a specific affinity for tumor-associated 

antigens can get activated ex vivo and subsequently applied di-

rectly into the human organism as cellular immunotherapy. 

This is equivalent to a passive immunization, i.e., an adoptive 

immunotherapy (ADI).

Vaccination

Vaccine-based therapies do firstly require the identification of 

tumor-specific antigens (expressed on malignancies only) and 

tumor-associated antigens (expressed on all types of cells but 

overexpressed on cancer cells). In breast cancer, relevant anti-

gens that could be targeted by vaccination include MUC-1, 

MAGE-A3, and NY-ESO-1 which are characteristically ex-

pressed on estrogen receptor-negative and/or triple-negative 

tumor subvariants [51, 52]. In vaccination strategies, liposome-

based and synthetic peptide vaccines are employed. Additionally, 

the administration of in vitro activated dendritic cells can be in-

volved [53]. In BC patients, attempts along the above lines are 

currently being evaluated in clinical trials which are comprehen-

sively expounded elsewhere [54]. 

Adoptive Immunotherapy

Results from animal experiments [55–57] were the rationale for 

the establishment of a phase I trial where patients with advanced 

metastasized BC were treated with reactivated autologous tumor-

specific BM TMCs [35, 36]. In 16 BC patients with tumor-reactive 

BM TMCs, another BM aspiration was performed which provided 

tumor-specific TMCs for the following flow of ADI treatment: 

i) TMCs were activated by antigen-pulsed dendritic cells with an-

tigens originating from lysates of a microbiologically tested 

MCF-7 cell line. After incubation of the antigen-presenting cells 

with TMCs, the cell suspension (2 × 106 to 5.7 × 107 TCs) was 

intravenously applied under antibiotic prophylaxis (fig. 1). This 

Fig. 1. Adoptive immunotherapy (ADI) of metastasized breast cancer pa-

tients. Process of ADI treatment preparation (PB = Peripheral blood; BM = 

bone marrow; DC = dendritic cell; TC = T cell; MCF-7 = human breast cancer 

cell line MCF-7; TA = tumor antigen). Adapted from [36, 57].
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immune cell transfer was well tolerated except for influenza-like 

symptoms in 2 patients.

ii) As early as 1 week after intravenous ADI, tumor antigen-reac-

tive TMCs could be detected in the peripheral blood of about 

50% of the patients (ADI responders). The responding patients 

had received the highest total number of TMCs and harbored 

the lowest tumor burden. Of note, significantly higher levels of 

tumor-specific TMCs had been observed in the BM of patients 

with subsequently positive ADI response compared to non- 

responding patients.

iii) In none of the treated patients with overt bone metastases tu-

mor-reactive TCs were detectable in the peripheral blood after 

ADI. This massively reduced immune responsiveness may be 

related, at least in part, to the increased release of immuno-

suppressive TGF-ß from the bone during the osseous metastatic 

process [36, 58–61].

iv) Finally and most importantly, ADI responders had a signifi-

cantly longer median survival than non-responders (58.6 vs. 

13.6 months; p = 0.009) with 3 out of 16 patients still being alive 

at last follow-up and more than 7 years after ADI [36].

In summary, results hint at a relationship between immune 

 response and cancer prognosis and suggest that preferably BC 

 patients without bone metastases but with immunologic response 

to adoptive TC transfer might benefit from this treatment option. 

Perspectives

The central aim of forthcoming studies will be the control of 

tumor escape mechanisms as described in the preceding chapters. 

Firstly, approaches to deplete or reduce Tregs in their capacity 

to suppress the immune system might substantially improve spon-

taneous or immunotherapy-related tumor defense. One strategy in 

this context may be a combined chemoimmunotherapy of metro-

nomic CTX with an adoptive TC transfer (ADI). This might in-

clude a selection of defined tumor antigens with immune adjuvants 

preventing the re-activation of type-2 TC responses during stimu-

lation. Additionally, new approaches to polyclonal TC expansion 

deserve consideration attempting to replace autologous dendritic 

cells by artificial antigen-presenting cells with improved TC-stimu-

latory properties [62].

Secondly, although still in the experimental phase, recent initia-

tives aim at grafting patients’ primary TCs with a second TC recep-

tor known to recognize a defined tumor antigen [47]. There is 

hope that, in the long run, such engineered tumor-specific TCs 

(CAR-T cells) may be successfully used for adoptive immunother-

apy purposes [63, 64]. 

Thirdly, other current attempts focus on adoptive TC therapy 

with TILs [65–68]. In this context, tumor-reactive TCs are har-

vested from tumor-infiltrated lymph nodes or tumor tissue. In 

metastatic melanoma patients, a transfer of ex vivo activated and 

expanded autologous TILs after a preceding lympho-depleting 

chemotherapy was demonstrated to induce tumor regression in 

about 50% of treated patients [67, 68]. Therefore, a pivotal scien-

tific focus is on the improvement of the tumor antigen recognition 

capacity and, hereby, the therapeutic efficacy of TILs or genetically 

engineered TCs [68–78].

Finally, immune checkpoints are currently the focus of clinical 

research (fig. 2). The expression of ‘cytotoxic T-lymphocyte-associ-

ated antigen 4’ (CTLA-4) on the plasma cell membrane of TCs in-

duces a downregulation of their activity and thereby leads to im-

munosuppression. This effect is mediated by B7 expression on an-

tigen-presenting cells as for example dendritic cells. CTLA-4 is in 

competition with stimulating CD28 for binding to B7. Therefore, 

the expression of one or the other results in TC suppression 

(CTLA-4) or stimulation (CD28).

The ‘programmed cell death protein-1’ (PD-1) is also expressed 

on the plasma cell membrane of TCs. Activated by its ligands PD-L1 

and PD-L2, the generation of Tregs is induced and the activity of 

immune cells is downregulated [79]. PD-L1 is expressed by about 

30% of BC cells and results in relevant immunosuppression [80].

Several immune checkpoint inhibitors are now under clinical 

investigation. Nivolumab, pidilizumab, and pembrolizumab are 

anti-PD-1 antibodies. In metastatic BC, a study with pembroli-

zumab has just been presented [81]. In only 18.5% of the patients 

included a clinical response was detected. Nevertheless, this re-

sponse was long-lasting. Nivolumab showed a clinical benefit in 

patients with malignant melanoma where cases expressing PD-L1 

on the tumor cells were correlated with best responses [82]. In 

those patients, even a prolonged overall survival was observed. BC-

related data is promising although systematic studies are still 

missing.

As described above, blockade of CTLA-4 by antibodies such as 

ipilimumab or tremelimumab enhances the immune reaction 

against tumor cells. In malignant melanoma patients, ipilimumab 

resulted in favorable clinical responses. Consequently, this antibody 

is now being tested in other solid carcinomas, with BC-related data 

still missing. Nevertheless, a combination of checkpoint inhibitors 

might be a promising therapeutic option. In patients with malig-

Fig. 2. Checkpoint inhibitors (CTLA-4 = Cytotoxic T-lymphocyte-associated 

antigen 4; PD-(L)1 = programmed cell death protein (ligand) 1; APC = antigen-

presenting cell; MDSC = myeloid-derived suppressor cell; ROS = reactive oxy-

gen species; TCR = T cell receptor; MEDI 4736/MPDL 3280A = anti-PD-L1 

monoclonal antibodies). Adapted from [54].
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nant melanoma, for instance, ipilimumab together with pembroli-

zumab was tested against a solitary ipilimumab therapy. This trial 

showed a relevant benefit in the cohort of patients with combined 

therapy thus justifying further studies [83]. Modulating the im-

mune system, however, is not free of clinical side effects. Suppress-

ing immunosuppressive effects may be related e.g. to several auto-

immune reactions (thyroiditis, colitis, pancreatitis etc.). Therefore, 

thorough clinical observation within trials is mandatory.

All in all, in contrast to other neoplasms such as melanoma, BC 

treatment with immune checkpoint-abrogating agents has only re-

cently become a field of interest. Hence, most clinical trials based 

on immune checkpoint blockade are pilot or phase I/II studies 

[54]. 

Conclusion

In BC, the presence of TILs has been shown to correlate with a 

favorable long-term prognosis primarily of high-grade/highly pro-

liferative lesions. TILs were also associated with a favorable re-

sponse to neoadjuvant and adjuvant anthracycline-based chemo-

therapies. These findings support the addition of immunothera-

peutic strategies to conventional treatment concepts.

In late-stage metastasized BC patients, the adoptive transfer of 

BM TCs (ADI) can induce the presence of tumor antigen-reactive 

TCs in the peripheral blood. This positive immunologic response 

appears to depend significantly on the number of transferred spe-

cific memory TCs and on the absence of BM metastases. Immune 

responders show a significantly prolonged overall survival.

Eventually, future strategies to potentially overcome tumor im-

mune escape should comprise Treg depletion from BM prepara-

tions before their ex vivo activation. Additionally, a functional in-

hibition of the immunocompromising capacity of Tregs or a func-

tional TC stimulation may be achieved either by directly targeted 

antibodies (CTLA-4, PD-1, PD-L1, IL-2 receptor) or by pharmaco-

logic agents such as cyclooxygenase-2 inhibitors or CTX. Besides a 

checkpoint inhibition, immunomodulating metronomic low-dose 

CTX plus ADI appears to be a promising choice of combinatorial 

chemoimmunotherapy. Finally, current developments relating to 

artificial antigen-presenting cells, engineered tumor-specific TCs, 

and TILs should be followed up.
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