
Parallel Processing of Approximate
Single-Source Personalized PageRank

Queries Using Shared-Memory

Runhui Wang

B.Sc.

A thesis submitted for the degree of Master of Philosophy at

The University of Queensland in 2019

School of Information Technology and Electrical Engineering

Abstract

Given a directed graph G, a source node s, and a target node t, the personalized PageRank (PPR)

π(s, t) measures the importance of node t with respect to node s. In this work, we study the single

source PPR query, which takes a source node s as input, and outputs the PPR values of all nodes in G

with respect to s. The single source PPR query finds many important applications, e.g., community

detection and recommendation. The cost of deriving the exact answers for single source PPR queries is

prohibitive. Most existing work focuses on approximate solutions. Nevertheless, existing approximate

solutions are still inefficient in terms of response time, and it is challenging to compute single source

PPR queries efficiently for online applications. This motivates us to devise efficient parallel algorithms

running on shared-memory multi-core systems, which avoid expensive synchronization cost compared

to distributed systems and provide sufficient memory support compared to GPUs.

In this thesis, we present an approach to efficiently parallelize the state-of-the-art index-based

solution FORA, and theoretically analyze the complexity of the parallel algorithms. We prove that our

proposed algorithm achieves a time complexity of O(W/P+ log2 n), where W is the time complexity

of sequential FORA algorithm, P is the number of processors used, and n is the number of nodes in the

graph. FORA includes a forward push phase and a random walk phase, and we present optimization

techniques for both phases, including effective maintenance of active nodes, improving the efficiency

of memory access, and cache-aware scheduling. An extensive experimental evaluation demonstrates

that our solution can achieve up to 37x speedup on 40 cores and 3.3x faster than alternative methods

on 40 cores. Moreover, the forward push alone can be used for local graph clustering, and our parallel

algorithm for forward push is 4.8x faster than existing parallel alternative method.

Declaration by author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical

assistance, survey design, data analysis, significant technical procedures, professional editorial advice,

financial support and any other original research work used or reported in my thesis. The content of

my thesis is the result of work I have carried out since the commencement of my higher degree by

research candidature and does not include a substantial part of work that has been submitted to qualify

for the award of any other degree or diploma in any university or other tertiary institution. I have

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available for

research and study in accordance with the Copyright Act 1968 unless a period of embargo has been

approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright

holder to reproduce material in this thesis and have sought permission from co-authors for any jointly

authored works included in the thesis.

Publications included in this thesis

No publications included

Submitted manuscripts included in this thesis

1. Runhui Wang, Sibo Wang, and Xiaofang Zhou, Parallelizing Approximate Single-Source

Personalized PageRank Queries on Shared-Memory, submitted to The VLDB Journal on 23rd

Feburary 2019.

Other publications during candidature

No other publications.

Contributions by others to the thesis

In all of the presented research in this thesis, Prof. Xiaofang Zhou and Dr. Sibo Wang, as my

advisors, have provided technical guidance for formulating the problems, refinement of ideas as well

as reviewing and polishing the presentation.

Statement of parts of the thesis submitted to qualify for the award

of another degree

No works submitted towards another degree have been included in this thesis.

Research involving human or animal subjects

No animal or human subjects were involved in this research.

Acknowledgments

It has been my great honor to join the Data and Knowledge Engineering (DKE) group as a research

student. Under the guidance of Prof. Xiaofang Zhou and Dr. Sibo Wang, I have learned a ton and

became a much better researcher in the field of Database Systems. Words cannot express my gratitude

for their consistent support and encouragement. My research would have been impossible without

the advisory and support from them. There was a time when my research was stuck, and I could not

figure a way out after exploring numerous relevant works. However, they encouraged me not to give

up easily, to keep examining the details and dig further into the problem. Finally, I was able to finish

my work with adequate technical depth and contribution.

Besides research, Prof. Xiaofang Zhou often gets us together to celebrate important traditional

Chinese festivals such as Mid-Autumn Festival and Chinese Lunar New Year. I had really good times

in these parties he organized and is truly grateful for his effort to make DKE group a great family.

I appreciate nice people who offered great help when I applied for Ph.D. programs. First of all, my

great thankfulness goes to Prof. Xiaofang Zhou, Dr. Sibo Wang and Dr. Wen Hua, who wrote strong

recommendation letters for my applications. Next, I would like to thank some of my old schoolmates

from Peking University, who offered crucial information and constructive advice for me. Besides,

I also extend my sincere gratitude to a special friend, who gave me much support and help during

the Application Season. Without their generous help, I would not have the opportunity to fulfill my

dreams.

My sincere thanks to my colleagues, who helped me to adapt to the study and life here in Australia.

They made my first several months of life here easier. Heartfelt thanks also go to my classmates and

teachers from the Bridge English Program, who gave me a relaxing and enjoyable two-month learning

before my research study. I would like to thank my friends who shared the same interest in playing

badminton. Playing badminton from time to time is a great way to release mental pressure from doing

research. I also want to say thank you to my friends who opened the door to the world of powerlifting

for me. Through the hard work with the weights, I have built a much stronger body as well as the

mind.

Last but not least, I am profoundly grateful for the support and love of my family. Without their

continuous encouragement, I could not have the chance to study abroad. It is extremely fortunate for

me to have a family that supports every important decision I make. Thanks to my siblings, who are

helping at home, I could pursue a higher degree abroad without worrying too much about my parents.

My parents always give me the freedom to make my own choices, and I am truly thankful for their

understanding.

Financial support

This research was partially supported by the UQ Research Training Scholarship, Research Higher

Degree Scholarship, and the Australian Research Council.

Keywords

Graph, Social Networks, Personalized PageRank, Parallelism

Australian and New Zealand Standard Research Classifications

(ANZSRC)

ANZSRC code: 080604, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 100%

Contents

Abstract . ii

Contents x

List of figures xiii

List of tables xiv

1 Introduction 1
1.1 Graph . 1

1.2 Personalized PageRank . 3

1.3 Motivation . 4

1.4 Problem definition . 5

1.5 Basics in parallel computing . 7

1.6 State of the art . 8

1.6.1 Sequential algorithm . 8

1.6.2 Parallel algorithm . 8

1.7 Main contributions . 9

2 Related Work 11
2.1 Overview . 11

2.2 PageRank and Personalized PageRank . 12

2.3 Personalized PageRank computing . 13

2.3.1 Forward Push . 13

2.3.2 Reverse Push . 15

2.3.3 Monte Carlo . 16

2.3.4 BiPPR and HubPPR . 16

2.3.5 FORA . 16

2.4 Parallel Computing . 18
x

CONTENTS xi

2.4.1 Cluster Computing . 18

2.4.2 Vectorization . 19

2.4.3 GPGPU Computing . 19

2.4.4 New Hardware . 21

2.4.5 Summary . 21

2.5 Parallel Programming . 22

2.5.1 Efficient Parallel Programming . 22

2.5.2 Cilk Plus . 22

2.5.3 Reducers . 23

2.5.4 Parallel Graph Processing Framework . 23

2.6 Parallel Breadth-First Search Algorithm . 24

2.7 Detailed Analysis of State of the art . 28

2.7.1 Parallel algorithm . 30

2.8 Summary . 32

3 PAFO: An Efficient Parallel Solution for Approximate SSPPR 33
3.1 Framework . 33

3.2 Parallel forward push phase . 34

3.2.1 Hybrid approach . 34

3.2.2 Cache-aware scheduling . 38

3.3 Parallel random walk phase . 42

3.3.1 Integer-based random walk counting . 42

3.3.2 Improving parallel memory access efficiency 45

3.4 Analysis of PAFO . 45

3.4.1 Forward push phase . 45

3.4.2 Combining two phases . 47

3.5 Summary . 48

4 Experimental Evaluation 49
4.1 Evaluation methods and settings . 49

4.2 Overall Performance and Scalability . 50

4.3 Forward push phase . 53

4.4 Random walk phase . 55

4.5 Preprocessing cost . 56

4.5.1 Accuracy . 57

4.6 Summary . 58

xii CONTENTS

5 Conclusion 59

Bibliography 61

List of figures

1.11 An example of a social graph . 1

1.12 An example of webpage graph . 2

1.21 Random walk . 3

1.41 Example of Approximate SSPPR queries. 6

2.61 Merge of two pennants x and y . 25

2.62 Bag . 26

3.21 Motivation for hybrid method (average on 20 sampled nodes). 35

4.21 Scalability: overall performance. 52

4.31 Forward push scalability. 53

4.32 Forward push speedup over Ligra . 54

4.41 Random walk scalability. 55

4.42 Integer-based update speedup . 56

xiii

List of tables

1.41 notations . 5

4.11 Datasets. (M=106, B=109) . 50

4.21 Overall performance on a single-core . 50

4.22 Overall performance on 40 threads . 51

4.51 Preprocessing time (seconds). 57

4.52 Accuracy: max absolute error . 57

4.53 Accuracy: max relative error . 57

xiv

Chapter 1

Introduction

In this chapter, we introduce the research problem that this thesis focuses on. Some basic concepts are

discussed briefly at first. Then the motivations of our research are presented. Next, a formal problem

definition is given before the introduction of state of the art. Finally, we include the key components of

our approach and results.

1.1 Graph

A graph is a set of vertices which are connected by a set of edges. It can represent objects and their

relationships. There are two examples that show the basic form of graphs. Figure 1.11 is a simple

social graph1. In this graph, each person is mapped to a unique node in the graph and every friendship

between two users is represented by an edge. If two users are friends, there will be an edge connecting

their nodes respectively in the graph. Similarly, the whole internet can be shown by a web-graph, like

figure 1.12 2, where a node stands for a website page and a directed edge indicates a link from one

page to another.

Figure 1.11: An example of a social graph

1Source: Facebook sign in pafe.
2Source: http://lod-cloud.net

1

2 CHAPTER 1. INTRODUCTION

Figure 1.12: An example of webpage graph

The graph is a fundamental data structure in a wide range of areas. Besides social networks and

weblink analysis, the graph can also be applied in many other areas such as road networks, citation

analysis, etc.. For such applications, there exist numerous queries like shortest path queries and nearest

neighbors search.

By extracting and taking advantages of the information lying under these graphs, we can devise

better applications and achieve superior user experience for IT companies. Take the social network

graph and recommendation systems as an example. By extracting the information that helps identify

the preferences of users, we can introduce new friends with similar hobbies for them and push relevant

news to them. Moreover, when users search on social networks, we are able to filter irrelevant

information and get more accurate results for them. In the next section, an important method for such

purposes will be introduced.

1.2. PERSONALIZED PAGERANK 3

1.2 Personalized PageRank

A

B

S1/2

1/2

Figure 1.21: Random walk

Given a directed graph G, a source node s, and a stopping probability α , we start a random walk

from the source node s as follows:

• At each step, we flip a biased coin that has α probability to show head and 1-α probability to

show tail.

• If it shows head, the walk stops. Otherwise, it randomly jumps to one of the out-neighbors.

• Repeat the above process until it stops.

The personalized PageRank (PPR) of node t with respect to s, denoted as π(s, t), is the probability

that a random walk from s stops at node t, and it indicates the importance of node t from the viewpoint

of node s.

Personalized PageRank has been used for personalized recommendations by many IT companies.

For instance, YouTube has used it for personalized video suggestions [1]; Twitter has used it for the

Who-To-Follow service [2], which recommends to a user s a number of other users that user s might

want to follow; Pinterest has used it for the recommendation of related Pins [3]; Tencent has used it

to re-involve inactive players [4] on its gaming platforms. Besides, personalized PageRank has been

widely used in web search [5, 6], community detection [7, 8], and spam detection [9].

One important variant of PPR is the single-source PPR (SSPPR) query, which takes as input a

source node s, and returns the PPR of each node with respect to s. The single source PPR query

finds many important applications, e.g., community detection [7, 8, 10] and recommendation [11, 12].

4 CHAPTER 1. INTRODUCTION

Despite the importance of SSPPR queries, it is still challenging to process them efficiently for large

graphs.

To derive the exact answer for an SSPPR query, it requires O(n2.37) [5] computational cost, where

n is the number of nodes in the graph and is prohibitive for large graphs. Meanwhile, it is expensive to

pre-store all SSPPR query answers since it requires O(n2) space, which is infeasible for large graphs.

Therefore, most existing solutions focus on the approximate version of the SSPPR queries, which

provides a trade-off between the running time and result quality.

1.3 Motivation

However, even under the approximate version, existing state-of-the-art solutions, e.g., FORA [13], are

still inefficient to answer an SSPPR query for online applications.

As shown by Twitter [2] and Pinterest [3], despite the fact that they use multiple machines to handle

PPR queries, each machine will maintain a copy of the underlying graph for the processing of PPR

queries mainly due to the widely known efficiency issue of distributed computations of graph problems.

To explain, distributed algorithms usually need to communicate with other machines, which degrades

the performance and the network bandwidth becomes the bottleneck for efficiency. Duplicated storage

of the graph is a huge waste of memory resource.

In contrast, the in-memory algorithms only need to access the shared main memory and are far more

efficient than the distributed counterparts. Fortunately, most graphs generated by popular applications

like Twitter [14] and YouTube [15] can fit in the memory of a single commodity server. Besides,

in recent years, the fast development of multi-core CPU architectures brings the performance of a

single CPU chip to a new level. These motivate us to devise efficient algorithms for SSPPR queries by

exploring multi-core parallelization with shared memory to boost the performance in terms of running

time.

To the best of our knowledge, most research works of PPR computation on shared-memory,

e.g, [7, 13, 16–18], focus on sequential algorithms and do not consider the computing capacity of

multicore systems. There are few research works [19,20] on parallel PPR computation. Guo et al. [19]

propose a parallel solution for PPR computing on dynamic graphs, focusing on updating PPRs when

new edges are added into the graph. However, their solution assumes that all the forward push [7]

results are available, and is impractical to support approximate SSPPR query answering. For instance,

if they pre-store all the forward push results for the FORA algorithm, the space consumption is O(n2)

as shown in [13], which is impractical for large graphs. What’s more, since they need all the forward

push results as the input, our parallel algorithm can be further used to help them reduce the prohibitive

1.4. PROBLEM DEFINITION 5

Table 1.41: notations

Notation Description

G = (V , E) The input graph G with vertex set V and edge set E

n,m The number of vertices and edges in G

Nout(v) The set of out-neighbors of vertice v

Nin(v) The set of out-neighbors of vertice v

π(s, v) The exact PPR value of v with regard to s

α The probability that a random walk terminates at a step

rmax The threshold of residue for local update

r(s, v) The residue of v during a local update process from s

πo(s, v) The reserve of v during a local update process from s

π̂(s,v) The approximate PPR value of v with regard to s

ε The threshold for approximation

δ The error bound

p f The failure probability

computational cost to derive all the forward push results. Shun et al. [20] extend their Ligra [21]

framework to parallelize the PPR computation. However, their solution does not provide a theoretically

linear speedup, and as shown in their experiment, the scalability of their proposed solution is still

unsatisfactory and leaves much room for improvement.

1.4 Problem definition

Given a directed graph G = (V,E), a source node s ∈ V , and a stop probability α , a random walk

from s is a traversal on the graph that starts from s and at each step it either stops at the current node

with probability α , or proceeds to a randomly chosen outgoing neighbor of the current node. The

personalized PageRank (PPR) of node t with respect to s, denoted as π(s, t), is the probability that a

random walk from s stops at node t, indicating the importance of t with respect to s.

The single-source PPR (SSPPR) query takes a source node s as input and returns the PPR value of

each node with respect to s. Solving the SSPPR query exactly is rather expensive [5], and requires

O(n2.37) computing cost. This motivates a line of research work [13, 17, 18] to study approximate

SSPPR query, which is defined as follows.

Definition 1 (Approximate SSPPR). Given a source node s, a threshold δ , a relative error bound

ε with 0 < ε < 1, and a failure probability p f , an approximate single-source PPR (SSPPR) query

6 CHAPTER 1. INTRODUCTION

c

a b

t π(c, t)
a 0.15
b 0.38
c 0.47

[0.9π(c, t), 1.1π(c, t)]
[0.135, 0.165]
[0.342, 0.418]
[0.423, 0.517]

(a) G (b) SSPPR answer with c as the source

Figure 1.41: Example of Approximate SSPPR queries.

returns an estimated PPR π̂(s, t) for each vertex t ∈V , such that for any π(s, t)> δ ,

|π(s, t)− π̂(s, t)| ≤ ε ·π(s, t) (1.1)

holds with at least 1 - p f probability.

Typically, δ and p f are set to be O(1/n) [13, 18]. Also, we assume that ε is no smaller than 1/n2,

which is small enough to provide almost exact results for PPR scores [22].

Example 1. Consider the graph G in Figure 1.41(a). Let c be the source node and the true PPR

values of each node with respect to c is shown in the second column of the table in Figure 1.41(b).

Assume that δ = 1/3, ε is 0.1, and the third column of the table in Figure 1.41(b) shows the range of

the estimated PPR values that makes Equation 1.1 holds. Then, returning the estimated PPR value

as π̂(c,a) = 0.09, π̂(c,b) = 0.40, π̂(c,c) = 0.51 is an answer for the approximate SSPPR query. To

explain, the PPR value of node b and c with respect to c are above δ , and their estimated PPR values fall

in the range to make Equation 1.1 hold. Besides, even though the estimated PPR value π̂(c,a) = 0.09

does not fall in the range to satisfy equation 1.1, the PPR value of node a with respect to c is below the

threshold δ , and it is fine to return the PPR value without the guarantee. �

Besides, in most applications of personalized PageRank, the underlying graphs are typically social

graphs or web graphs, which are generally scale-free. In particular, on scale-free graphs, for any k ≥ 1,

the fraction f (k) of nodes in G that have k edges satisfies that:

f (k) ∝ k−β ,

where β is a parameter whose value is in the range 2 < β < 3. On scale-free graphs, the average

degree m/n = O(logn). We will explore the property of scale-free graphs to prove the parallel time

complexity of forward push phase.

1.5. BASICS IN PARALLEL COMPUTING 7

1.5 Basics in parallel computing

In this section, we will introduce the basic paradigm of our parallel computing model and crucial basic

operations that guarantee the syncrhonisation of data while providing the best performance in practice.

Modeling parallel computation
A popular parallel model for shared-memory parallel algorithms is the work-depth model, where

the cost of an algorithm is determined by the total number of operations that it performs and the

dependencies among these operations.

Treat the operations as nodes and the dependencies as edges, we can have a dependency graph. For

instance, in forward push, a push operation to a node v depends on its in-neighbors when its residue

r(s,v) is currently zero. As another example, in BFS, the traversal will end up with a BFS tree, and

during the traversal, the visit to a node v and the exploration of the out-neighbor of v depends on its

ancestors in the tree. Also, the longest chain dependency will be the depth of the BFS tree.

Denote W as the total number of operations of an algorithm, namely the workload, and D as

the longest chain of dependencies among its operations, namely the depth. The (rephrased) Brent’s

theorem [23] below shows that the running time of a parallel algorithm can be bounded by W , D, and

the number of processors P.

Theorem 1.5.1 (Brent’s Theorem). For a computational task with workload W and depth D, on

P processors, a greedy scheduler, which steals works from other processors when it becomes idle,

achieves running time O(W/P+D).

A parallel algorithm is work-efficient if it requires at most a constant factor more work than its

sequential version. Another important factor is the depth of the parallel algorithm. When designing a

parallel algorithm, the goal is to:

• Design work-efficient parallel algorithm.

• The depth of the algorithm should not be too large, typically within poly-logarithmic of the input

size.

In this paper, we will use the work-depth model to analyze the parallel algorithms.

Atomic operations
In parallel computing, concurrent reads and writes are allowed, and existing modern multi-core

machines typically support atomic operations, which either successfully change the data, or have

no effect at all, leaving no intermediate state. The most widely used atomic operation supported by

modern CPUs is the Compare-and-Swap operation, which takes three arguments: a memory address,

8 CHAPTER 1. INTRODUCTION

an expected value, and a new value. It compares the content of the input memory address with the

expected value and, only if they are the same, modifies the contents of that memory location to the new

value. If the update succeeds, it returns true and otherwise returns false. Other atomic operations, like

Atomic-Add, can be easily implemented with the Compare-and-Swap operation. In what follows,

we will use Atomic-X to indicate that operation X is atomic.

1.6 State of the art

In this section, we provide a brief explanation of the state of the art algorithms for approximate SSPPR

queries. Both sequential and parallel algorithms will be discussed in a nutshell. Detailed introductions

and analysis will be presented in 2.7.

1.6.1 Sequential algorithm

The state-of-the-art sequential algorithm for approximate SSPPR is the FORA algorithm proposed

in [13]. FORA processes an SSPPR query with two phases, a forward push phase, and a random

walk phase, on the input graph. The forward push phase simulates the random walk in a deterministic

approach using the forward push algorithm proposed in [7].

Firstly, FORA performs a forward search using the forward push algorithm proposed in [24] (line

2 in algorithm 1). Then, it performs Monte-Carlo simulation by sampling random walks from different

nodes according to the Forward Push results (line 5-8 in algorithm 1). The first phase reduces the

number of random walks to sample and provide efficiency in terms of running time. The second phase

provides approximation guarantees so that the results are accurate.

1.6.2 Parallel algorithm

Shun et al. present a seminar work [20] to extend their Ligra framework to parallelize the forward push

phase. Meanwhile, the random walk phase can also be naturally parallelized with a parallel for loop,

which is generally supported by multi-thread frameworks, e.g., CilkPlus [25], on different nodes. Thus,

the state-of-the-art parallel algorithm for approximate SSPPR is a combination of the state-of-the-art

parallel algorithm for the forward push by Shun et al. [20] and a direct parallel solution for the random

walk phase. However, as we will see, this solution cannot achieve theoretically linear speedup and

provides inferior practical performance. The details of this solution in [20] and how to parallelize the

random walk phase will be provided in section 2.7.

1.7. MAIN CONTRIBUTIONS 9

Algorithm 1: Sequential FORA

Input: Input graph G, source vertex s, probability α

Output: the estimated PPR π̂(s,v) for each v ∈V

1 Let ω =
3log(2/p f)

ε2 ·δ
;

2 Run forward push with input graph G, source s, probability α , and rmax =
√

1
m·ω ;

3 Let π◦(s,v), r(s,v) be the output of the reserve and residue of each node v ∈V ;
4 for each node v ∈V with r(s,v) 6= 0 do
5 Let ωi = dω · r(s,v)e;
6 for i = 1 to ωi do
7 Pick an unused destination from the index stored for v, and let u be the destination.;

8 π◦(s,u)+ = r(s,v)
ωi

;

9 Return π◦(s,v) as the estimated PPR for each node;

1.7 Main contributions

In this thesis, we present how to efficiently parallelize FORA for SSPPR queries and theoretically

analyze the complexity of our proposed parallel algorithms. FORA consists of two phases: the forward

push phase and the random walk phase [13]. The forward push phase traverses the graph from the

source, iteratively proceed subsets of the vertices visited, and explore the out-neighbors of these

vertices until the certain termination condition is satisfied. Next, the random walk phase of FORA

samples random walks on different nodes according to the outputs in the forward push phase, and then

finally output the estimated PPR values with approximation guarantees.

In our PAFO, we guarantee that the workload of the parallel algorithm is proportional to that of

the sequential algorithm, and the running time of the parallel algorithm depends on O(W/P+ log2 n),

where W is the workload of the sequential algorithm, P is the number of processors used, and n is the

number of nodes in the graph. However, it is non-trivial to provide theoretical linear speed-up while

providing superior performance to parallelize FORA.

To explain, in the first phase, it is difficult to bound the number of iterations of the forward push

algorithm, and therefore challenging to provide linear speedup for this phase. Besides, we need to

maintain the active nodes, i.e., the nodes to be processed in every iteration, and it is challenging

to present an efficient data structure to support such an operation. Several data structures, e.g.,

Bag [26] and sparse set [27], are proposed to support the maintenance of the active nodes in parallel.

Nevertheless, such implementations have poor cache localities since they include many random

accesses. For the second phase, memory accesses are randomly issued, and it is challenging to present

10 CHAPTER 1. INTRODUCTION

an effective approach to reducing such random accesses and memory contentions caused by concurrent

read/write. We present an efficient solution for parallel FORA, named PAFO, and make the following

contributions:

• For the forward push phase, we present a hybrid approach to effectively maintain the active nodes

whenever necessary and also reduces the memory access costs. Then, we present cache-aware

scheduling to further improve query performance and scalability.

• For the random walk phase, we propose an integer-counting based method to reduce the memory

access overhead and present techniques to reduce data contention based on the integer-counting

based method.

• Theoretically, we show how to bound the depth of parallel forward push and prove that PAFO

achieves asymptotically linear speedup on scale-free graphs.

• Extensive experimental results show that PAFO achieves up to 37x speedup on 40 cores and

3.3x faster than alternatives on 40 cores.

Chapter 2

Related Work

2.1 Overview

In the literature, there exists a plethora of research work on PPR computation [5–7, 16–20, 22, 28–40].

Among them, considerable efforts [5–7,13,19,20,22,29,30,32,33,37–39] have been made to improve

the query efficiency of the single-source PPR queries. To provide exact or approximate answers with

theoretical guarantees for single-source PPR queries, there exist mainly two categories of solutions.

The first category relies on the matrix-based definition of PPR:

πππsss = (1−α) ·AT D−1
πππsss +α · eeesss, (2.1)

where πππsss is the PPR vector where the i-th entry stores the PPR π(s, i) of the node with i-th id with

respect to s, eeesss is a unit vector where only the s-th entry is 1 and other entries are zero, α is de stopping

probability as defined in Section 1.4, A is the adjacent matrix of the input graph, and D is a diagonal

matrix where the i-th entry is the out-degree of node i.

The solutions in this category are mainly based on the power-method as proposed in [5], which

makes an initial guess to the PPR vector, and then repeatedly uses the estimated PPR score as the

input of the RHS of Equation 2.1, and derives the new estimation of πππsss. The solutions in this category

mainly explore how to accelerate the calculation of Equation 2.1, and the state of the art in this

category is the BePI algorithm proposed in [29]. However, the solutions in this category typically incur

thousands of seconds to handle large graphs, e.g., on Twitter and are too slow to support real-world

applications. There is another line of local update based approach [7, 16, 19, 41] which is also based

on the matrix-based definition. However, such solutions either provide no approximation guarantee to

the SSPPR queries or cannot be directly applied to answer SSPPR queries.
11

12 CHAPTER 2. RELATED WORK

Another category relies on the random walk based definition of personalized PageRank and explores

Monte-Carlo simulation to provide an approximation for the PPR values [13, 17, 18, 31–33, 38]. The

state of the art solution in this category is FORA. However, even under approximation, the state of

the art FORA still needs tens of seconds to finish an SSPPR query processing, which motivates us to

devise parallel algorithms to reduce the SSPPR query time. Among existing work on PPR, there exist

only two research work that focuses on parallelizing PPR computation on shared-memory multicore

setting. The first is the state of the art parallel solution for PPR as we mentioned in Section 2.7.1. The

solution proposed by Guo et al. [19], however, provides no approximation guarantee to the SSPPR

query, and the space consumption to pre-store all the forward push result is prohibitive for large graphs,

e.g., Twitter.

Distributed systems are also considered for computing PPR in parallel. Bahmani et al. [38] utilize

MapReduce to calculate single-source PPR queries on distributed computer systems, aiming to handle

the graphs that are too large to fit in the memory on a single machine. They provide distributed

algorithms for the Monte-Carlo approach, which is orders of magnitude slower than FORA [13] when

providing the same accuracy, not to mention our parallel algorithms. Guo et al. [39] propose algorithms

to achieve bounded communication cost and balanced workload on each machine for answering exact

PPR. However, they still target to implement the distributed algorithm for classic solutions, which has

been shown to be orders of magnitude slower than FORA.

2.2 PageRank and Personalized PageRank

PageRank [5] is an algorithm applied to the renowned Google search engine to rank websites by

calculating their global importance according to the linkage structure of the internet. It ranks pages

based on the number of backlinks pointing to them and the overall PageRank scores of these backlinks.

It was first introduced in the late 1990s and has been used in all of Google’s web search tools since

then. However, the web’s growing size and increasing diversity require better flexibility in the ranking.

Moreover, every individual has his own perception of importance and usually needs a more personalized

result from search engines. Therefore, a personalized version of PageRank (PPR) is proposed to fulfill

the task, although its naive implementation demands tremendous computing power.

A simple example can demonstrate how PPR can be applied to a personalized search engine. A

Facebook user Robin wants to find a friend whose first name is “Kyle” and search for “Kyle”. If the

searching engine of Facebook simply applies PageRank, then Robin will get a list of the most popular

people whose first names are “Kyle” and his friend is probably not on the list. Instead, if PPR is

applied in the searching engine, Robin can get a list of people who are most important to Robin and

2.3. PERSONALIZED PAGERANK COMPUTING 13

named “Kyle”. In this approach, Robin can easily find his friend “Kyle” and connect with him on

Facebook.

A formal definition of Approximate Single-Source Personalized PageRank has been given in section

1.4 . Table 1.41 covers all the notations in this literature review and some of them will be explained in

the following subsections.

PPR has a wide range of applications and plays an essential role in daily life. It can be applied in

recommendation systems to identify user preferences, in order to provide better suggestions for users

and improve the user experience.

Recently, PPR is applied in Twitter’s Who-To-Follow algorithm [14] that recommends a number

of relevant users for a certain user to follow. This algorithm helps generate millions of connections

daily between different users who share similar interests, common connections and so forth. Similarly,

Baluja et al. apply PPR [15] YouTube for video suggestion and discovery. They analyze the entire

user-video graph by sampling random walks and propose a novel method to provide personalized

video suggestions for users. Moreover, PPR can also be applied for finding out leadership groups on

social network sites [42] and is useful in Word Sense Disambiguation systems [43].

2.3 Personalized PageRank computing

The exact PPR computing involves extracting eigenvalues of an n×n matrix where n is the number

of nodes in the graph. Due to the reason that n can reach millions or even billions in social network

graphs, the cost of this method is immensely expensive. Instead of calculating exact PPR, most recent

works focus on approximate PPR computing with a specified error bound.

A large volume of works have designed solutions for Personalized PageRank computing and

we will introduce some representative approaches in this subsection. To compute approximate PPR,

Monte-Carlo is a classic solution that samples large enough number of random walks to get the

estimation of PPR values [32]. However, the time complexity of this approach is unbearable for large

graphs. Several sequential algorithms have been proposed such as Forward Push [24], HubPPR [18],

BiPPR [18], and FORA [13], to approximate the PPR value in a more efficient way.

2.3.1 Forward Push

Forward Push [24] is capable of calculating exact PPR values with enough number of iterations,

which costs tremendous time. But it can also terminate early with the certain configuration to get the

approximate PPR values without any guarantee on the accuracy of results.

14 CHAPTER 2. RELATED WORK

Given a graph G, a source node s, a probability value α , and a threshold rmax, it computes two

values for each node v in G: a reserve πo(s,v) and a residue r(s,v). The reserve πo(s,v) represents the

approximation of the exact PPR value of v with respect to s, and the residue r(s,v) is a by-product.

Algorithm 2: Forward Push

Input: Graph G(V,E), Source vertex s, Probability α , Residue threshold rmax

Output: πo(s,v), r(s,v) for all v ∈V

1 r(s,s)← 1;r(s,v)← 0 for all v ∈V\{t} ;
2 πo(s,v)← 0 for all v /∈ V ;
3 Queue = {s};
4 while Queue is not empty do
5 get a v ∈ Queue;
6 πo(s,v)← πo(s,v))+ r(s,v) · α;
7 if |Nout(v)| is 0 then
8 r(s,s)← r(s,s) + r(s,v) · (1−α);

9 else
10 for each o ∈ Nout(v) do

11 r(s,o)← r(s,o) + r(s,v) · (1−α)

|Nout(v)|
;

12 if
r(s,o)
|Nout(o)|

> rmax and o /∈ Queue then

13 Queue.insert(o);

14 r(s,v)← 0;

15 return πo(v, t) for each v ∈V ;

The process of Forward Push in FORA is illustrated in Algorithm 2. The input includes a Graph

G, a source vertex s, a terminating probability α , and a residue threshold rmax. The output comprises

of reserve value πo(s, v) and residue value r(s, v) of each vertex v in G after the Forward Push. The

reserve πo(s, v) is the approximate PPR values of v with respect to s and residue is a byproduct of the

algorithm. During the initialization of the algorithm, r(s,s) is set to 1 and for all other vertices in G,

their residue values are set to 0. The reserve values of all vertices in G are set to 0. Afterward, for each

vertex v in Queue, split its residue value into two parts: one for updating its reserve πo(s, v), and the

other for forward push. The proportion of to be reserved in πo(s, v) is determined by the factor α .

The strategy for propagating the other part of residue r(s,v) depends on whether the vertex has

outgoing neighbors. If it does not, then propagate that portion of residue to the source vertex s.

2.3. PERSONALIZED PAGERANK COMPUTING 15

Otherwise, propagate the residue evenly to all of its outgoing neighbors (shown in line 12). When the

residue value for each vertex is less than its threshold rmax · |Nout(o)|, the algorithm terminates and

the reserve πo(s, v) for each vertex v is their estimated PPR value π(s, v). The accuracy depends on

the threshold rmax, which is determined by multiple factors. According to Andersen et al [24], the

time complexity of Forward Push is O(1/rmax) and the reserve value πo(s, v) is the approximation of

π(s,v). Nevertheless, this method does not guarantee the worst-case accuracy, so that forward push

itself cannot suffice definition 1 in section 1.4.

2.3.2 Reverse Push

Reverse Push [7] begins from the given target node t and moves backward, to calculate π̂(v, t) for

every v ∈ G. The idea is reverse to Forward Push and propagates the residue values from the target

to all the possible sources. It begins from target t and in each iteration, it maintains a Queue while

performing push operations. The details are shown in the algorithm.

Algorithm 3: Reverse Forward Push

Input: Graph G(V,E), Targe vertex t, Probability α , Residue threshold rmax

Output: πo(v, t), r(v, t) for all v ∈V

1 r(t, t)← 1;r(v, t)← 0 for all v ∈V\{t} ;
2 πo(v, t)← 0 for all v ∈ V ;
3 Queue = {s};
4 while Queue is not empty do
5 get a v ∈ Queue;
6 πo(v, t)← πo(v, t))+ r(v, t) · α;
7 for each i ∈ Nin(v) do

8 r(i, t)← r(i, t) + r(v, t) · (1−α)

|Nin(v)|
;

9 if
r(i, t)
|Nin(i)|

> rmax and i /∈ Queue then

10 Queue.insert(o);

11 r(v, t)← 0;

12 return πo(v, t) for each v ∈V ;

According to Lofgren and Goel, if target t is randomly chosen from V , the average running time is

O
(

d
rmax

)
where d is the average in-degree of the chose node.

16 CHAPTER 2. RELATED WORK

2.3.3 Monte Carlo

Monte-Carlo (MC) is a classic solution for approximate PPR calculation. With a source node s given,

MC generates ω random walks starting from s and records the fraction of random walks f (v) that

terminate at v for each node v. Then f (v) can be used for estimating the PPR π(s,v). As demonstrated

in [32], with a sufficient number of random walks ω = Ω

(
log(1/p f)

ε2δ

)
, MC satisfies the definition 1

although the computational cost grows in an inverse-square way with respect to the error bound ε .

2.3.4 BiPPR and HubPPR

BiPPR [18] and HubPPR [18] are designed for answering pairwise PPR queries, which specifies both

source node s and destination node t, and return the PPR value π(s, v).

BiPPR is presented by Lofgren [18] for estimating and searching Personalized PageRank based

on Monte-Carlo (MC) simulation method. Their novel bi-directional estimator is simple but able

to guarantee both correctness and performance compared to Monte-Carlo approach. The forward

direction samples random walks as described in the MC approach. Different from MC, the amount of

random walks demanded in BiPPR is much smaller because the backward search scheme provides

enough additional information for the query. In the backward search method, it performs a reservepush

that resembles the reverse process of Forward Push and terminates early with a predefined threshold.

First, BiPPR performs Reserve Push to gather sufficient information and then samples a small

number of random walks and finally get the estimated PPR value for the node pair. The authors analyze

and report that with a threshold of O

(
ε ·

√
m ·δ

n · log(1/p f)

)
, their algorithm strikes a balance between

the searches from two directions and achieve an overall high efficiency for pairwise PPR calculation.

To apply BiPPR in SSPPR query, a naive solution is creating a node pair (s,v) for each v ∈ G

and executing BiPPR query on each pair to get the SSPPR of source s. Obviously, this approach is

not efficient because it generates too much additional information which can be avoided if certain

optimization for SSPPR applies.

HubPPR [17] is derived from BiPPR and has an index structure. It is an improved algorithm that is

suitable for top-k queries. However, it is not good for answering Single Source PPR queries because it

inherits the defects from BiPPR.

2.3.5 FORA

FORA [13] is state of the art for approximate SSPPR computing and provides both efficiency and

accuracy compared to existing works. It is a combination of Forward Push and MC Random Walk,

2.3. PERSONALIZED PAGERANK COMPUTING 17

with a sophisticated defined threshold rmax for Forward Push.

Algorithm 2 shows the process of FORA execution. It first invokes Forward Push (algorithm 2) with

specified inputs to get approximate PPR values that are not accurate enough. Then FORA performs an

adequate number of random walks on each v ∈ G to guarantee the accuracy of the approximation.

Algorithm 4: FORA

Input: Graph G, Source vertex s, Probability α , Residue threshold rmax

Output: Estimated PPR value π̂(s, v) for all v ∈ V

1 Invoke Algorithm 1 with input G,s,α,andrmax and get the returned values r(s, vi) and πo(s, vi)
for each vi ∈ G;

2 rsum← ∑vi∈V r(s, vi);

3 ω ← rsum ·
(2ε/3+2) · log(2/p f)

ε2 ·δ
;

4 π̂(s,vi)← πo(s, vi) for all vi ∈V;

5 for vi ∈V with r(s, vi) > 0 do

6 ωi← d r(s, vi)·ω/rsum e;

7 ai←
r(s, vi)

rsum
· ω

ωi
;

8 for j = 1 to ωi do
9 Generate a random walk W from vi;

10 Let t be the destination vertex of W;

11 π̂(s, t)← π̂(s, t) +
ai · rsum

ω

12 return π̂(s,v1), π̂(s,v1), · · · , π̂(s,vn)

As proved in [13], FORA achieves the best efficiency when

rmax =
ε√
m
·

√
δ

(2ε/3+2) · log(2/p f)

And the expected time complexity of FORA by this rmax becomes

O
(

1

ε ·
√

δ
·
√

m · (2ε/3+2) · log(2/p f)

)

Given that δ = O(1/n), p f = O(1/n), and that the graph is scale-free 1, FORA improves the time

complexity over the MC Random Walk by 1/ε .

1A scale-free graph satisfies m/n = O(logn)

18 CHAPTER 2. RELATED WORK

In FORA+, SSPPR computing is further accelerated with a simple indexing scheme for random

walk phase. The indexing method pre-calculates the random walks required by MC and stores the

destinations of these random walks for each node. According to [13], FORA+ is about 1 order of

magnitude faster than FORA, 33 times faster than BiPPR and 46 times faster than MC Random Walk

on a large social graph with 1.5 billion edges. However, on large graphs like Twitter, which has billions

of edges, the average SSPPR query response time is still over 100 seconds [13]. Therefore, the state of

the art sequential algorithms is not suitable for answering online SSPPR queries.

2.4 Parallel Computing

Nowadays, parallel computing is becoming more and more important due to multiple reasons. Above

all, with a wide range of indications that Moore’s Law is coming to an end, computing performance on

a single CPU core is not likely to keep improving exponentially as in the past decades.

The advances in Integrated Circuit technology are slowing down in recent years. On one hand,

the exponential growth of the number of transistors in a dense integrated circuit cannot sustain in the

following decades due to the physical limit of silicon. On the other hand, the clock speed of the CPU

has reached a plateau because of the cooling problems of high clock speed CPU are not easy to solve

inexpensively. Therefore, the computing power of a single CPU core is becoming the bottleneck and

parallel computing is becoming the trend.

Generally, there are three layers in the area of parallel programming on CPU including cluster

computing, shared-memory multi-threading, and vectorization.

2.4.1 Cluster Computing

Cluster computing involves a cluster of computers and memory is distributed among these computers.

In the distributed computing model, a coordinator is responsible for task assigning and scheduling

and typically the data is transferred through a fast local area network. When the main bottleneck of a

program is arithmetic intensity instead of the data transfer bandwidth, distributed computing can be a

wise choice.

A renowned programming model for cluster computing is MapReduce [44], which has an associated

implementation for processing and generating big data sets with a parallel, distributed algorithm on a

cluster. Lower level issues such as job distribution, data storage and tolerance of faults are handled

automatically in MapReduce, where a simple abstract for computation is also provided. In MapReduce,

the input reader splits the input data and each one is assigned to each Map function. Then the Map

function processes the data (values or key/value pairs) and generates key/value pairs before partitioning

2.4. PARALLEL COMPUTING 19

function assigns data for each reducer. Finally, Reduce function is called after its input has been sorted

by the Comparison function.

However, once the logic of algorithm gets more complex, programming on MapReduce comes to

be increasingly challenging as the framework requires rigid “one Map and one Reduce” operation. In

many areas, MapReduce can be deployed to achieve high throughput including machine learning, text

processing and bioinformatics [45]. Moreover, large-scale graph processing algorithms can also be

accelerated with the help of MapReduce [46]. Bahmani et al. [38] designed a MapReduce algorithm

for calculating Personalized PageRank on extremely large graphs that cannot fit into the main memory

on a single server.

Furthermore, computer clusters communicate through the network while the overhead of data

transfer over a network is much higher than onboard access. As a contrast, current gigabit Ethernet

can run on bandwidth up to 1.25 gigabytes per second while memory I/O bandwidth on a common

server board can reach more than 150 gigabytes per second. So when the program requires fast

synchronization, a shared memory multicore machine is usually more suitable than a distributed

system.

2.4.2 Vectorization

Vectorization is a CPU feature supported by some architectures. It achieves parallel computations over

vector arrays in a way that through one single CPU instruction, multiple data can be processed (SIMD).

Special vector registers that is much longer than regular registers are designed in these architectures to

perform parallel data processing, such as AVX, IMCI, and AVX-512 in Intel Architecture. Vectorization

typically lies in for-loops and many compilers such as GCC(++) and ICC try automatically vectorize

the for-loop to get the maximum performance. This feature can be extremely helpful when the

algorithm has coalesced memory access pattern and no data contention. Otherwise, the for-loop may

not be vectorized automatically.

2.4.3 GPGPU Computing

Recently, General-Purpose Graphics Processing Unit (GPGPU) is becoming popular for parallel

computing owing to its monstrous computing power compared to CPU.

test Nvidia Telsa V100 (PCIe version) has a computing capacity of 7 Tera floating-point operations

per second (TFlops) for double-precision, while the latest Intel Xeon Platinum 8180 has a peak

performance of 2.1 TFlops [47] [48]. For simplicity, in the rest of this section, 8180 refers to Intel

Xeon Platinum 8180 and Tesla refers to Nvidia Telsa V100.

20 CHAPTER 2. RELATED WORK

Compared with CPU, GPU has a much larger number of cores but its cores have a higher latency

because of their simpler architecture, which means GPU trades the performance of a single core for a

larger number of cores. For example, Tesla has 5120 Cuda cores that have simpler instruction set and

less cache memory (4096KB L2 in total, no L3 cache), while 8180 has 28 CPU cores and complex

instruction set with a 38.5MB L3 cache. Furthermore, the maximum power consumption for Tesla

and 8180 is 250 watts and 205 watts respectively, so the peak FLOP performance per watt is better on

Tesla in this case. Given the information above, GPU computing is worth researching not only because

of its computing power but also its energy efficiency.

Limitations of GPU

The main challenge for designing GPU algorithm is how to make full use of its limited storage of

memory. Specifically, the number of memory a CPU can support can be two orders of magnitude

larger than a GPU. What’s more, CUDA, the state of art GPU programming architecture, requires CPU

control to transfer data from main memory to GPU memory and launch threads in GPU, which means

the computing power of GPUs can be fully utilized only if I/O bandwidth is not the bottleneck.

GPU Clusters

The notion of GPU clusters has been introduced recently to further utilize the ability of GPU [49] [50].

Several essential components are required in a GPU cluster: host nodes, a number of GPUs and

interconnect between host nodes and GPUs.

The hardware requirements for I/O in GPU clusters are strict because the I/O bandwidth is very

likely to become the bottleneck of the program. Since GPU is usually a peripheral component for a

computer system, they can be connected to the system through PCIe. The latest generation of PCIe with

16 lanes can reach a throughput of 31.5 GB/s, which is still no match of the main memory bandwidth

of up to 119GiB/s 2 for Intel 8180, nor the memory bandwidth of 900 GB/s in Tesla [51] [52] [53].

So the design of algorithms for GPU accelerating must take into account the I/O limitations so as to

maximize the usage of resources.

the network performance should also match the whole system so that the cluster can be maintained

in a well-balanced manner. To get the cluster work, GPU drivers for each installed GPUs, Clustering

API (e.g. Message Passing Interface, MPI) and programming architecture (e.g. CUDA, OpenCL) are

required [54] [55] [56].

21 GiB = 10243 Bytes, 1 GB = 109 Bytes

2.4. PARALLEL COMPUTING 21

GPU Cluster Applications

GPU clusters have been used in supercomputers and cloud computing as well. The famous super-

computer company Cray unveiled its first GPU supercomputer XK6 in 2011 and now its cutting-edge

GPU supercomputer CS-Storm is equipped with Nvidia’s latest Volta or Pascal architecture GPUs,

enabling scientists and researchers to accelerate their resource-consuming applications. [57] Recently,

Komatitsch et. al. [58] purposed a High-order finite-element seismic wave propagation modeling with

MPI on large GPU clusters.

GPU Programming Model

The mainstream of GPU programming frameworks such as CUDA and OpenCL, share a similar model.

The difference is that CUDA is specified for Nvidia GPUs but OpenCL is for GPUs from different

vendors as well as all kinds of CPUs [59]. Firstly, CPU prepares memory for GPU and then launches

kernels on GPU to process the data. Once the GPU finishes its work, the CPU gets results from GPU

memory.

2.4.4 New Hardware

In the area of parallel computing, a new force called Xeon Phi Processors developed by Intel provide

highly parallel computing power [60].

The first generation of Xeon Phi Processors came in 2011 as co-processors and in form of PCIe

add-in card, which is similar to a GPU. It also possesses up to 16GB in-card memory, with a bandwidth

up to 352GB/s. The architecture, Knights Corner, allows a larger number of cores of 61 and the peak

performance can reach 1.2TFlops. Xeon Phi co-processors were applied in the former world’s fastest

supercomputers Tianhe-2 which was launched in June 2013.

Then in 2016, its successor Knights Landing makes Xeon Phi Processors bootable (used as a

standalone CPU) as well [61]. The second generation of Xeon Phi has 72 cores, 490GB/s bandwidth,

and 3.0 TFlops peak performance. Recent research work has explored Xeon Phi. Saule Et al [62]

explored the performance of Matrix Multiplication on Intel Xeon Phi. And Liu Et al compared Nvidia

GPU and Xeon phi on Monte-Carlo radiation transport calculations [63]. Mirsoleimani Et al scaled

Monte-Carlo Tree search [64].

2.4.5 Summary

As we can see, multi-core architectures have been developing rapidly, increasing the computing

performance and efficiency by a large scale. These advances in technologies drive us to exploit

22 CHAPTER 2. RELATED WORK

the ever-ascending computing power and boost the development of better algorithms for real-life

applications.

2.5 Parallel Programming

To make full use of multiple parallel processor cores, we need efficient parallel programming, which

is notoriously difficult and bug-prone. Several factors are responsible. First of all, the cost of

synchronization is unlikely to be avoided. Without synchronization, one thread may not be aware of

the latest version of some data updated by another thread, in which case errors are inevitable. And data

race happens when more than one thread tries to update the same variable at the same time.

Apart from data race, keeping hardware doing work efficiently while running multiple threads is

another conundrum. Taking Pthread for example, creating a single Pthread takes more than 10,000

instruction cycles, and the communication overhead between Pthreads cannot be neglected either.

What’s more, updating shared variables requires employing mechanisms like mutex locks, which

makes threads block and keep waiting.

Non-determinism will also be caused by multi-thread programming since the actual sequence of

instructions cannot be predicted and varies from one execution to another. Some existing frameworks

that designed for high-performance multicore applications, like TBB [65], OpenMP [66] and MPI [54],

are not easy to use and may increase the code complexity significantly. To mitigate the misery of

parallel programming, we explore two parallel programming environments.

2.5.1 Efficient Parallel Programming

Cilk++ [67] offers an easier way to code parallel program and provides good scalability across various

machines. It is a programming environment that consists of a compiler, a runtime system, and a

race-detection tool. It claims to guarantee effective load-balance computations. Moreover, with its

Hyperobjects [68], which allows different threads to maintain coordinated local views of the same

global variable, we can avoid data race for certain variables from the root. Specifically, the Bag

notation proposed by C.E. Leiserson et al. [26] can be effective for parallel graph traversing. More

details of the data structure Bag will be introduced in the following sections.

2.5.2 Cilk Plus

Cilk Plus is a language extension to C and C++ that derives from Cilk++ and commercialized by

Intel [25]. In Cilk Plus, there are three keywords for invoking parallel execution: cilk spawn, cilk sync

2.5. PARALLEL PROGRAMMING 23

and cilk for. These keywords do not mandate parallelism but only indicate that some work can be done

simultaneously in multiple threads.

Concretely, the keyword cilk spawn creates a new branch of execution and cilk sync concludes

all the branches that are created by cilk spawn. It is the responsibility of Cilk Plus Runtime to decide

whether these branches should be executed sequentially or simultaneously. At the beginning of the

execution of a Cilk Plus program, the runtime creates as many workers (threads) as possible or as

specified in the code, so that the overhead of dynamic thread creating is avoided. During the execution,

Cilk Plus Runtime makes rationale work scheduling strategy among all the threads so that the CPU

cores are kept busy.

2.5.3 Reducers

Cilk Plus supports Hyperobjects [68], which is a linguistic mechanism that allows simultaneously

updates to shared variables and data structures without contention. It makes different branches maintain

coordinated local views of the same global variables.

Among the hyperobjects, reducers are extremely helpful to our problem. A Cilk++ reducer is

defined as a C++ class that implements an algebraic “Monoid”. An algebraic Monoid is a triple

(T,⊗,e), where T is a set and ⊗ is an associative binary operation over T with identity e. For example,

if we need a reducer to represent the Frontier, T will be a subset of vertices in the graph, e will be

an empty set, and ⊗ will be a reduce function that combines two subsets from two different workers.

Creating an identity happens only when the runtime decides to “steal” a branch from the thread that

has called cilk spawn and the branch is allocated to another “worker”. Reduce function will be called

by Cilk Plus Runtime before cilk sync implicitly to make sure that all the work has been finished and

then local views will be integrated by this reduce function.

2.5.4 Parallel Graph Processing Framework

Ligra [21] is a higher-level programming platform that is intended for parallel graph processing. It is

state of the art for shared-memory multicore systems. The underlying idea of its parallelism is to build

a frontier in each iteration of vertices processing, and then process the vertices in this frontier during

the next iteration.

For programmers, they simply implement the required mapping functions and the system will

take care of the rest. Therefore, its programming is highly structured and easy to maintain. Besides,

it provides Cilk Plus, OpenMP and Intel ICPC compiling options which can be specified before

compilation. As the author claims, compiling with Cilk Plus generally gives the best performance.

24 CHAPTER 2. RELATED WORK

Specifically, it provides two main interface vertexMap() and edgeMap() that process vertices

and edges respectively, and a vertexSubset type which is a subset of vertices U ⊆ V . However, its

scheme for maintaining Frontier is not efficient for PPR calculation so the actual performance in PPR

computing is not satisfying.

2.6 Parallel Breadth-First Search Algorithm

An efficient Parallel Breath-First Search (PBFS) is proposed by Leiserson et al. [26] to achieve almost

linear-speed up on multicore shared memory systems. Instead of maintaining a First-In-First-Out

(FIFO) queue, PBFS uses an efficient implementation of a multiset data structure called “bag”, to

achieve parallel inserting without contention. The bag structure supports O(1) splitting, O(logn)

merging two bags where n is the size of the larger one and amortized O(1) insertion.

Algorithm 5: PBFS

Input: Bag G, Bag v0

1 V0 = BAG-CREATE();
2 BAD-Insert(V0, v0);
3 t = 0;
4 while Vt is not empty do
5 Vt+1 = BAG-CREATE();
6 Process-Bag(Vt , Vt+1);
7 t = t +1;

Parallel BFS

Algorithm 5 and 6 show the process of PBFS. The main idea is to maintain a bag for parallel search

instead of a FIFO queue. A frontier is a bag of nodes that need to be processed in the next iteration and

the processing of any two of them has no dependencies. In each iteration, the algorithm processes the

bag created in the previous iteration and maintains a new bag for the next iteration. The parallel bag

processing adopts the Divide-and-Conquer paradigm to achieve concurrency by recursively splitting

the bag into two smaller bags. Therefore the whole task in one iteration is split into numbers of small

tasks. The GRAINSIZE indicates the maximum number of nodes to be processed in each task. The

details of Bag maintenance will be explained in the following subsections.

2.6. PARALLEL BREADTH-FIRST SEARCH ALGORITHM 25

Algorithm 6: Process-Bag

Input: Bag in-bag, Bag out-bag

1 if in-bag.size < GRAINSIZE then
2 for each v ∈ in-bag do
3 for each o ∈ Nout(v) do
4 if o is not accessed yet then
5 mark o as accessed;
6 out-bag.insert(o);

7 return;

8 new-bag← in-bag.split;
9 cilk spawn Process-Bag(new-bag, out-bag, α , rmax);

10 Process-Bag(in-bag, out-bag, α , rmax);
11 sync;

Bag

To begin with, we first introduce a data structure that is proposed by Leiserson et al. [26] for Parallel

Breadth-First-Search. A subsidiary data structure called pennant is a tree of 2k nods, where k is a

natural number. A node x in a pennant comprises of two pointers x.left and x.right to its children. The

right child of the root node is empty and the left child is a complete binary tree. Basic operations on

pennants include union and split.

x y x

y

Figure 2.61: Merge of two pennants x and y

A union operation combines two pennant x and y of the same size 2k and creates a new pennant of

size 2k+1 in O(1) time. The splitting of a pennant x of size 2k+1 into two pennants x and y of size 2k in

O(1) time.

26 CHAPTER 2. RELATED WORK

Pennant-Union(x,y)

1. y.root.right = x.root.left

2. x.root.left = y.root

3. return x

Pennant-Split(x)

1. y.root = x.root.left

2. x.root.left = y.root.right

3. y.root.right = NULL

4. return y

A bag contains a set of pennants in different sizes, from 20 to 2b, where 2b+1 is the maximum

capacity of the bag. An array B of pointers (called backbone) is used in a bag to store the pointers to

these pennants. Each element B[i] is either a null pointer or a pointer to a pennant of size i. To create an

empty bag, we need to allocate space of O(b) for a backbone of null pointers. The process takes Θ(b)

time but the bound ban be optimized to O(1) by recording the largest nonempty index of the backbone.

Three important operations of the bag include BAG-INSERT, BAG-UNION, and BAG-SPLIT.

Figure 2.62: Bag

BAG-INSERT is called when we want to insert an element into the bag. Firstly, a pennant p of size

1 is created for this element, then we insert p into the bag as follows:

Bag-Insert(B, p)

1. i = 0

2. while B[i] 6= NULL

3. p = Pennant-Union(B[i], p)

4. B[i] = NULL

5. i ++

6. B[i] = p

Because Pennant-Union function takes constant time, the Bag-Insert function takes O(1) amortized

time and O(logn) time in the worst case, where n is the total number of elements in a bag.

2.6. PARALLEL BREADTH-FIRST SEARCH ALGORITHM 27

Bag-Union(B1, B2)

1. c = NULL (c is a pennant, the “carry” bit)

2. for i = 0 to b

3. S = {B1[i],B2[i],y}
4. if B1[i] 6= NULL, B2[i] 6= NULL, c6=NULL

5. c = Pennant-Union(B2, c)

6. if only one pennant of S is NULL

7. p1, p2 ∈S and p1, p2 6=NULL

8. c = Pennant-Union(p1, p2)

9. B1[i] = NULL

10. if only one pennant of S is not NULL

11. p∈S and p 6=NULL

12. c = NULL

13. B1[i] = p

Bag-Split(B0)

1. B1 = Bag-Create()

2. y = B0[0]

3. B[0] = NULL

4. for i = 1 to b

5. if B[i] 6= NULL

6. B1[i-1] = Pennant-Split(B0[i])

7. B0[i-1] = B0[i]

8. B0[i] = NULL

9. if y 6= NULL

10. Bag-Insert(B0, y)

11.return B1

The Bag-Union process resembles binary integer addition. In each step, the Full-Adder function

takes three pennant as input, where the first two are from two Bags and have same size 2i and the third

pennant is the “carrier” that is either NULL or of size 2i. The “carry bit” is the same notation in binary

integer addition and is a byproduct of the algorithm. Since pennant-union takes O(1) time, Bag-Union

takes Θ(b) time. When n is the size of the smaller bag, the algorithm can be optimized to Θ(lgn).

Optimization for Bag

As introduced in [26], a simple yet effective optimization can make the code execute faster without

affecting the asymptotic behavior of the algorithm. Concretely, PBFS sets the GRAINSIZE to 128 and

maintains a set of nodes of size GRAINSIZE by an additional pennant, which is called hopper.

When a Bag is created, additional space for the hopper is also allocated. Bag-Insert tries to insert

the element into the hopper instead of a pennant of size 1. When the hopper is full, it is inserted into

the backbone of the bag, and another hopper is allocated.

Summary

The Bag structure can be utilized for our implementation of parallel FORA for the forward push phase.

It is work-efficient for maintaining active nodes in each iteration. However, since Bag is a tree structure

and inevitably uses pointers, the memory locality is an issue. The dynamic allocation and segmentation

of memory caused by this structure will affect the overall performance in a negative way.

28 CHAPTER 2. RELATED WORK

2.7 Detailed Analysis of State of the art

Before we present our parallel solution for answering approximate SSPPR queries, we need to dive

into the details of the state of the art solutions and diagnose the technical issues that we will focus on.

Forward push phase

The forward push phase simulates the random walk in a deterministic approach using the forward

push algorithm proposed in [7]. It starts from the source s and simulates the message passing using a

unit mass. It maintains two values for each node v ∈V : a residue r(s,v) and a reserve π◦(s,v). The

reserve π◦(s,v) indicates the amount of mass that stopped at node v, and r(s,v) indicates the amount

of the mass that currently stays at node v. Initially, r(s,s) is 1 and all the other values are zero. Then,

at each step, the forward push algorithm selects a node v and do a push operation to the message as

follows: (i) it first converts α portion of the residue r(s,v) to its reserve; (ii) then it propagates the

remaining message evenly to its neighbors. If we continue this process until all residues are zero, then

the reserve values are exactly the PPR values. However, this incurs enormous computational costs and

in [7], they propose to use a threshold rmax to control the computational cost. In particular, a node v is

selected to do a push operation only if its residue satisfies that:

r(s,v)/|Nout(v)|> rmax,

where Nout(v) is the set of out-neighbors of node v. With this strategy, the time complexity of the

forward push algorithm can be bounded with O
(

1
rmax

)
. The pseudo-code of the forward push algorithm

is shown in Algorithm 2.

After any number of push operations, the following invariant holds for an arbitrary target node t:

π(s, t) = π
◦(s, t)+ ∑

v∈V
r(s,v) ·π(v, t)

Note that, here r(s,v) is bounded by rmax · |Nout(v)|, and π(v, t) is bounded by 1. In the worst

case, ∑v∈V r(s,v) ·π(v, t) will reach m · rmax. Therefore, if we are to run the forward push algorithm to

provide approximate SSPPR query, we need to guarantee that:

m · rmax ≤
ε

n
,

indicating that the time complexity needs to be O(m·n
ε
), which is too prohibitive. It is difficult to bound

∑v∈V r(s,v) ·π(v, t), so FORA includes another random walk phase, which allows us to provide error

bound for ∑v∈V r(s,v) ·π(v, t) with significantly smaller computational costs.

Random walk phase

2.7. DETAILED ANALYSIS OF STATE OF THE ART 29

In the random walk phase, FORA mainly samples random walks according to the residue of each

node. In particular, let

ω =
3log(2/p f)

ε2 ·δ
, (2.2)

where δ , ε , and p f are the threshold, the relative error bound, and the failure probability as defined in

Definition 1.

Suppose rmax is set to 1, that is to say, the Forward Push phase did nothing, then to provide

an approximation for the PPR values, we can use the classic Monte-Carlo simulation approach by

sampling random walks. According to [13], it suffices to sample ω random walks from the source s

and use the fraction c(v)/ω of random walks that stopped at node t as the estimation of π(s, t), where

c(v) is the number of random walks that stopped at v.

Then, for each node v, it samples dr(s,v) ·ωe random walks from node v. Let X be a random walk

from node v, and u be the ending node of random walk X , then we add r(s,v)
dr(s,v)·ωe to the reserve of node

u, i.e., π◦(s,u) for this random walk X . Then, FORA repeats this process for all random walks and

returns π◦(s,v) for each v as the answer. The pseudo-code of FORA is shown in Algorithm 1.

For FORA, the following lemma [13] indicates that they provide approximate SSPPR query answer.

Lemma 2.7.1. For any node v ∈V with π(s,v)> δ , Algorithm 1 returns an approximate PPR π̂(s,v)

that satisfies Equation 1.1 with probability at least 1− p f .

FORA analysis
Recall that the forward push phase has a time complexity of O(1

rmax
). To consider the complexity

of the random walk phase, note that the residue of each node v is at most d|Nout(v)| · rmaxe. Therefore,

the total number of random walks can be bounded by:

∑
v∈V
d|Nout(v)| · rmax ·ωe ≤ n+m · rmax ·ω.

We assume that m≥ n, which typically holds for real-world graphs, then the time complexity of FORA

is:

O(
1

rmax
+m · rmax ·ω).

By setting rmax =
√

1
m·ω , FORA achieves the best time complexity, which is

√
m ·ω . For each

node v, FORA pre-stores the destinations of the maximum number of random walks required, i.e.,

d|Nout(v)| · rmax ·ωe, and the total space consumption is O(
√

m ·ω). When generating random walks

from v, it directly uses the first unused destinations in the index and avoids the expensive online

30 CHAPTER 2. RELATED WORK

random walks. Since p f = O(1/n), and on scale-free graphs m = O(n · logn), the time complexity of

FORA is O
(

n·logn
ε

)
.

2.7.1 Parallel algorithm

The state-of-the-art parallel algorithm for approximate SSPPR is a combination of the state-of-the-art

parallel algorithm for forward push by Shun et al. [20] and a direct parallel solution for the random

walk phase, since the random walk phase can be naturally parallelized with a parallel for loop supported

by many multi-thread frameworks, e.g., CilkPlus [25], OpenMP [66]. Next, we explain the solution

in [20] and show how to parallelize the random walk phase.

Parallel Forward Push

Shun et al. extend their Ligra framework [21], a shared-memory parallel graph processing framework,

to parallelize the forward push algorithm. The main intuition of Ligra is that in many graph traversal

algorithms, e.g., BFS, forward push, can be implemented in iterations. In each iteration, they process

a subset of the vertices and update along their out-neighbors, which can be processed in parallel. In

Ligra, there are two interfaces:

• VertexMap. This function takes as input a vertex set F and an update function UF , which

updates the data associated with each node in parallel.

• EdgeMap. This function takes as an input graph G, a vertex set F , and an update function UF ,

which applies to the out-neighbors of the nodes in F , and update the data associated with these

out-neighbors in parallel.

These two interfaces are sufficient to parallelize the forward push since in each iteration, it proceeds

a set F of the vertices, and update their own residue and reserve values, which can be handled with

VertexMap interface. Besides, recall that these nodes in F will propagate the masses to their out-

neighbors with the push operation, which can be handled with the EdgeMap interface. Algorithm

7 shows the Ligra implementation for the forward push algorithm. In the VertexMap function, it

proceeds the nodes in F in parallel, and for each node in F , it invokes the UpdateSelf procedure,

which adds α portion of the residue to its reserve and reset its residue to zero (Algorithm 7 Lines 4-6).

Then, it invokes the EdgeMap function and handles the nodes in F in parallel. In particular, for each

out-neighbor of v ∈ F , it invokes the UpdateNeighbor procedure, which propagates (1−α)
|Nout(v)| portion of

r(s,v) to each of its out-neighbor (Algorithm 7 Lines 1-2). Note that during the parallel processing

of EdgeMap, different nodes in F may write on the residue value of the same node simultaneously.

Therefore, an Atomic-Add is used to avoid unexpected behaviors.

2.7. DETAILED ANALYSIS OF STATE OF THE ART 31

Algorithm 7: Parallel forward push with Ligra

Input: Graph G, source vertex s, probability α , threshold rmax

Output: πo(s,v),r(s,v) for all v ∈V

1 Procedure UpdateNeighbor(v,u);

2 Atomic-Add(r′(s,u), (1−α)·r(s,v)
|Nout(v)|);

3

4 Procedure UpdateSelf(v);
5 π◦(s,v) = π◦(s,v)+α · r(s,v);
6 r′(s,v) = 0;
7

8 r(s,s)← 1;r(s,v)← 0 for all v 6= s;
9 πo(s,v)← 0 for all v ∈V ;

10 Let F = {s};
11 while F is not empty do
12 r′(s,v) = 0 for all v ∈V ;
13 VertexMap(F , UpdateSelf);
14 EdgeMap(G, F , UpdateNeighbor);
15 r(s,v) = r′(s,v) for all v ∈V ;
16 F = {v|r(s,v)/Nout(v)> rmax};

Parallel random walk

As we can observe from Algorithm 1 Lines 4-7, the execution of the random walk of each node

has no dependency on the random walks of other nodes. Therefore, the random walk phase can be

naturally be parallelized by replacing Line 4 of Algorithm 1 with a parallel for and Line 8 of Algorithm

1 with an atomic operation.

Parallel Cost analysis

For the parallel forward push as proposed by Shun et al. [20], the total workload can be bounded by

O
(

1
rmax

)
, which is the same as the sequential algorithm. However, it is difficult to bound the depth D

of the parallel forward push algorithm, and to our knowledge, it is still an open problem if the parallel

forward push algorithm can finish in a poly-logarithmic depth of n. Therefore, theoretically, the parallel

forward push algorithm can be quite inefficient due to the large depth D. For parallel random walks, it

is easy to verify that the task can be finished with a workload the same as the sequential algorithm.

For the depth of parallel random walks, the depth of the parallel for loop can be bounded by O(logn)

depth. Meanwhile, for each node, the maximum number of random walks may reach polynomial of n.

32 CHAPTER 2. RELATED WORK

Therefore, by parallelizing random walks on such nodes, the depth of such nodes can also reach logn.

Combining them together, the depth can be bounded by O(log2 n).

2.8 Summary

In this section, we reviewed some of the works related to Personalized PageRank, compared the

efficiency of existing solutions, and discussed parallel computing hardware and programming. What’s

more, we explored the parallel computing models and state of art parallel graph processing frameworks.

Existing methods for parallel graph processing still have much room for further optimization. In the

following section, we will explain how to apply existing solutions to the parallel version of FORA and

improve overall performance, and provide theoretical analysis of our proposed solution.

Chapter 3

PAFO: An Efficient Parallel Solution for
Approximate SSPPR

In this section, we introduce our solution PAFO, an efficient Parallel Framework for Approximate

SSPPR. Firstly, we explain the parallel forward push phase, which includes two techniques that

optimize overall efficiency. Then, we present our methods to improve the performance of parallel

random walk phase. Next, we give a detailed analysis of our solution and provide theoretical support.

3.1 Framework

To process FORA in parallel, we parallelize forward push phase and random walk phase separately.

Data layout

In our computing model, we use adjacent lists to represent a graph, an atomic double1 array to store

residue values of each node in the graph, and another double array to store reserve values of each node.

For the index of the random walk phase, we adopt the same representation used in FORA, which has

the same idea as adjacent lists.

Main idea

For the parallel processing of forward push, PAFO applies different strategies in different situations.

Concretely, there are two scenarios for PAFO. Firstly, when the total number of active nodes in the

graph is small, PAFO adopts the same idea as Ligra [21] and PBFS [26] to achieve concurrency.

Specifically, we process a subset of nodes that are active in each iteration and maintain a subset of

1The basic data type in C++
33

34 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

newly activated nodes for the next iteration. Secondly, when the amount of active nodes surpasses

a given threshold, PAFO simply performs a parallel scanning on the whole residue array to identify

active nodes and process such nodes.

For the second scenario, since the number of active nodes is quite large, contentions among parallel

processing of these nodes become more severe. Contention happens when multiple active nodes are

processed on different threads, and they try to update the residue value of the same nodes at the same

time. Although atomic operations guarantee that all concurrent updates will be processed one by one

without loss, the overall write latency is increased because such operations lock the cache lines when

they update data. To mitigate such performance decrease, we propose a cache scheduling method to

reduce the contentions at the cache line level.

finishes, PAFO samples random walks based on the results of forward push. Because the targets

of these random walks are randomized, the reserve array is accessed in an arbitrary manner, which

incurs poor memory performance without utilizing cache memory well. To make better use of cache

in modern multicore architectures, we propose an integer-counting based update strategy to improve

memory efficiency.

3.2 Parallel forward push phase

Our parallel forward push phase includes several techniques to improve the practical performance and

bound the parallel time complexity. In this section, we present the optimizations and postpone the

theoretical analysis to Section 3.4. Firstly, we demonstrate how to effectively maintain the active nodes

in Section 3.2.1. Then we demonstrate how to process push operations in a cache-friendly manner

through cache-aware scheduling in Section 3.2.2. At the end of Section 3.2.2, we further discuss under

what scenarios our cache-aware scheduling can be potentially applied.

3.2.1 Hybrid approach

We first explain our hybrid approach to improve the memory efficiency when accessing active nodes in

parallel. Our parallel algorithm shares a similar spirit as Algorithm 7 in that it also processes nodes by

iterations. In each iteration, our forward push algorithm also proceeds the nodes

F = {v|r(s,v)/Nout(v)> rmax},

in parallel and repeats this process until F becomes empty. We denote the nodes in F as active nodes.

3.2. PARALLEL FORWARD PUSH PHASE 35

10-9

10-7

10-5

10-3

10-1

 10 20 30 40

(# of active nodes)/n

number of iterations

Twitter
Friendster

 0

 1.5

 3

 4.5

 6

10-510-410-310-210-1100

Running time (s)

c

Twitter
Friendster

(a) ratio of active nodes to n (b) tuning c

Figure 3.21: Motivation for hybrid method (average on 20 sampled nodes).

In our parallel algorithm, we include two different models to maintain the active nodes. This is

motivated by the observations as shown in Figure 3.21 (a). In particular, in the first few iterations of

the forward push algorithm, the number of nodes to be pushed, or simply say active nodes, is relatively

small, but the size is growing sharply. When the forward push continues, e.g., when the number of

iterations reaches 5, the number of active nodes in an iteration will be very large and reach O(n). Then,

with the further process of iterations, the number of active nodes decreases sharply and size again

becomes very small, and this process repeats until the size becomes zero. Moreover, as we can observe,

the majority of the workload is processed in middle iterations when the number of active nodes is in

the order of O(n).

Main idea

Motivated by the observation, we use two different maintaining mechanisms to the active nodes for

the case when the number of active nodes reaches O(n), denoted as heavy workload iterations, and

when the number of active nodes is small, denoted as light workload iterations.

In the light workload iterations, we use the bag structure, which will be explained in details shortly.

However, the major deficiency of the bag structure is that it needs to synchronize the bag structure

frequently, and the memory access in the bag structures are not very efficient since it maintains the

active nodes in a relatively random fashion. Therefore, this motivates us to explore a direct scan of the

entire node set when the workload shifts from the light workload to the heavy workload.

With this strategy, we avoid the expensive cost to maintain the bag structure and make the memory

access cache-friendly. Figure 3.21 (b) shows how the parameter affects the performance, and we can

see that when we choose n/100 as the boundary, it achieves the best practical performance. Therefore,

36 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

we set c = 1/100 as the default value in our experiment. Also, the major computational cost of this

hybrid forward push algorithm actually mainly comes from the heavy workload iterations, and by

splitting these two cases, we can focus the optimization to the heavy workload iterations, as will be

explained in Section 3.2.2.

Light workload iterations. For the light workload iterations, we use the bag structure, which is

initially proposed in [26] for parallel BFS and has the following property:

Property 1 (Bag). The bag data structure provides two efficient operations to support high parallelism.

• Insert. The insert operation takes O(1) amortized time.

• Split. The split operation, which divides elements in the bag into two bags with roughly equal size,

takes O(logx) time, where x is the number of elements in the bag.

Next, we explain how we use the bag structure in our hybrid approach. As shown in Algorithm 8,

initially, the source node is added into the bag structure B. Then, when the number of active nodes is

smaller than c · |V |, where c is a small constant to split the heavy workload and light workload, we use

the bag structure to handle the nodes in parallel.

In particular, it first recursively divides the Bag B into smaller bags of which the sizes are under

the specified threshold grainsize 2 (Algorithm 8 Line 4), and then process the bags in parallel (Lines

5-13). This helps to balance the workload on different processors and guarantee that each processor

will have sufficient work to do.

As we can see, to use the bag structure, it needs to insert the active nodes in the next iteration

into the bag structure. Also, since a node may be touched by multiple active nodes in this iteration,

duplicates may be inserted into the bag structure, which should be avoided. To handle this case,

a condition checking is added to identify whether the node should be added into the bag or not

(Algorithm 8 Lines 11-12). To explain, since residues are added with atomic operations, it behaves

like sequential operations, and in a sequence of additions to r(s, i), only one addition will make r(s, i)

satisfy the condition in Line 11.

Obviously, to maintain the bag structure, we need to do synchronization on the bag structure,

which brings additional costs. This cost will be unnecessarily high when the number of nodes in

the bag reaches O(n). Therefore, for heavy workload iterations, we use a mechanism with far less

synchronization cost, which is more effective without increasing the time complexity.

2The grainsize is set to 128 according to Leiserson et al. [26]

3.2. PARALLEL FORWARD PUSH PHASE 37

Algorithm 8: PAFO hybrid forward push

Input: Graph G, source vertex s, probability α , threshold rmax

Output: π◦(v, t), r(v, t) for all v ∈V

1 r(s,v),π◦(s,v)← 0 for all v ∈V ;r(s,s)← 1;
2 Bag-create(B,{s}); Bag-create(B′, /0); F ← |B|;
3 while F < c · |V | do
4 recursively split B into small bags with constant size; denote B be the set of the small bags;
5 Parallel for each X ∈B do
6 for each v ∈ X do
7 rv = r(s,v); π◦(s,v)← π◦(s,v)+ rv ·α;
8 for each i ∈ Nout(v) do
9 ri← r(s, i);

10 Atomic-Add(r(s, i), (1−α)·rv
|Nout(V)|);

11 if r(s, i)≥ rmax|Nout(i)|> ri then
12 Bag-insert(B′, i);

13 Atomic-Add(r(s,v),−rv);

14 B← B′, B′← /0;F ← |B|;

15 while F ≥ c · |V | do
16 F ← 0 ;
17 Parallel for each v ∈V do
18 if r(s,v)≥ rmax · |Nout(v)| then
19 repeat Lines 7-10 and 13;
20 F ← F +1;

21 B← /0;
22 Parallel for each v ∈V do
23 if r(s,v)≥ rmax · |Nout(v)| then
24 Bag-insert(B,v);

25 Repeat Lines 3-24 until F becomes zero;
26 return π◦(s,v),r(s,v) for each v ∈V ;

Heavy workload iterations

In the heavy workload iterations, we directly scan the entire node set in the graph to find the active

nodes. Since the number of active nodes is O(n), therefore, the scan cost does not increase the time

38 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

complexity.

In the heavy workload iterations, all the nodes are processed in parallel in a way that if this node

is active, a push operation is processed on this node, and otherwise ignored. This direct parallel

scan avoids the synchronization cost to maintain the active nodes, and also process the nodes in a

cache-friendly manner since the nodes are processed sequentially in parallel.

Also, instead of counting the number of active nodes in the next iteration, we count the number

of active nodes in this iteration, which helps avoid the checking cost as shown in Algorithm 8 Lines

11-12. With this strategy, we may do one light workload iteration using the parallel scan.

However, this cost will be still O(n) and can be bounded by previous scanning iterations. Finally,

when the workload becomes light workload, it rebuilds the bag structure as shown in Algorithm 8 Lines

22-24, and repeats the above two phases until the algorithm stops. We set c to be 1/100 according to

the experimental results as shown in Figure 3.21. Besides, according to our evaluation, around 90% of

the time is spent on heavy workload iterations in the forward push phase. Therefore, we next explain

how to optimize the heavy workload iterations.

Remark. Beamer et al. [69] also propose a hybrid solution for Breadth-First Search (BFS) on

scale-free graphs, which can reduce the number of edges examined by a large scale. However, our

hybrid solution differs from the ones in [69] in two aspects. First, our solutions work on the forward

push algorithm, whose time complexity does not depend on the number of edges. Therefore, the hybrid

approach proposed in [69] will not help on the forward push algorithm. Second, our hybrid solution

does not maintain the active nodes in heavy workload iterations in order to improve memory efficiency,

while the hybrid solution proposed in [69] maintains the active nodes all the time.

3.2.2 Cache-aware scheduling

We next explain our cache-aware scheduling, which mainly aims to optimize the performance of the

heavy workload iterations.

Rationale

In our heavy workload iterations, it applies a direct scan of all the nodes and proceeds a push

operation to a node if it is active. Such a process is handled in parallel, and which core will handle

which part of the task entirely depends on the default schedule, which may not be cache-friendly at all.

For instance, assume that a processor px is processing a node vi, then all the out-neighbors of vi,

and the residue array of the out-neighbors are also loaded into the L1 or L2 cache of core px. Then,

3.2. PARALLEL FORWARD PUSH PHASE 39

suppose after the processing of vi, another node v j is immediately dispatched to px to process. In this

case, if v j shares no common out-neighbors with vi at all, then the cache stored on px becomes utterly

useless and another load process is required.

However, if v j shares most of the out-neighbors of v j, then most of the content will be already in

the L1 or L2 cache of px, and the processing can benefit a lot from the existing cache content. Besides,

when two processors are concurrently updating the residue of the nodes on the same cache line, cache

contention happens, resulting in L1 cache stalls, which incurs additional costs. This motivates us to

propose the cache-aware scheduling for heavy workload iterations.

Quantify cache misses and cache contentions

In most scheduling, e.g., CilkPlus default scheduling, tasks are divided into smaller tasks of small

grain sizes. We follow this paradigm and group g nodes with consecutive IDs into a task. Then, the

goal of the schedule is to provide a schedule such that some grain-size tasks g1,1,g1,2, · · · is assigned

to core 1, some grain-size tasks g2,1,g2,2, · · · is assigned to core 2, · · · , and some grain-size tasks

gP,1,gP,2, · · · is assigned to core P that is aware of the cache contention and cache misses. Let cm be the

penalty of cache misses, and cc be the penalty of cache contention. Let x be the total number of cache

misses and y be the total number of cache contentions during the processing of all these grain size

tasks. Then, the goal of the scheduling is to minimize cm · x+ cc · y. However, it is rather challenging

to track the execution time of each task since it highly depends on the source node, and it is actually

difficult to quantify the cache contention and cache misses. Next, we first explain how to quantify the

cache contention and cache misses between two grainsize tasks.

Denote B as the number of update data that can be fitted into a cache line. For instance, in forward

push, the update will touch the residue array of the out-neighbors. Therefore, the size is 8 bytes and

assume that a cache line is 64 byte, we can put 8 residue data into a cache line and B is therefore 8. We

map the nodes in V to numbers from 0 to |V |−1, and then divide the residue array into dn/Be disjoint

sets: R1,R2, · · · ,Rdn/Be, such that each set includes nodes with ids in [B · i,B(i+1)). We denote each

such Ri as a cache line base, using i for the ease of exposition. Then, every time to load part of the

residue array into the cache line, we load some set Ri 0≤ i < dn/Be. Then, for each task gi, we can

get the set C(gi) of cache line bases that will be loaded into cache, which is:

C(gi) = {Ri|Nout(v j) ∈ Ri where v j is in task gi}.

Then, the number of cache lines that gi will occupy is |C(gi)|. For two tasks gi and g j, we define the

cache overlap score of two tasks gi and g j as

O(gi,g j) = |C(gi)∩C(g j)|.

40 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

The cache overlap score is then a good indicator of the cache contention of the tasks among different

cores, and the cache misses of the tasks in the same core. In particular, if two tasks gi and g j are

processed in parallel, then the smaller the cache overlap score it is, the less cache contention will be

caused by these two tasks. In the meantime, if gi and g j are processed consecutively in the same core,

the higher the cache overlap score is, the more cache line can be reused, and the less number of cache

misses it will cause.

Now assume that each grain-size task takes the same amount time to finish, and each core i has

h = d n
g ·P
e grain-size tasks denoted as gi,1,gi,2, · · · ,gi,h. Then we denote the cache miss score of core

i as:

CM(i) =
h

∑
β=2

(|C(gi,β)|−O(gi,β ,gi,β−1))

We further define the contention score of the j-th parallel tasks g1, j,g2, j · · · ,gP, j as:

CC(i, j) = ∑
1≤β<i≤P

O(gβ , j,gi, j)

Then, we formalize our cache-aware scheduling as the following optimization problem.

Definition 2 (Cache-aware scheduling). The cache-aware scheduling aims to find a schedule that

minimizes

cm ·
P

∑
i=1

CM(i)+ cc

P

∑
i=1

h

∑
j=1

CC(i, j),

i.e., the total penalty of the cache misses and cache contentions during the task processing.

However, the number of possible scheduling options is exponential, which will incur prohibitive

processing time to derive the optimal solution. Therefore, we present a greedy approach, which aims

to minimize the contention and maximize the cache locality in each iteration. In particular, we first

assign a task g1, j to core 1 such that its cache miss penalty over the previous task of core 1 is minimum.

Then, we assign a task g2, j for the second core such that

cm · (C(g1, j)−O(g2, j−1,g2, j))+ cc ·CC(2, j)

is minimized among all possible tasks. Note that the first part cm · (C(g1, j)−O(g2, j−1,g2, j)) is the

total cache miss penalty and the second part cc ·CC(2, j) is the total cache contention penalty. For the

i-th core, we assign a task that:

cm · (C(gi, j)−O(gi, j−1,gi, j))+ cc ·C(i, j)

3.2. PARALLEL FORWARD PUSH PHASE 41

is minimized. After assigning a grain-size task to each core, we start from core 1 again and repeat

this process until all tasks are assigned. In the above greedy approach, one expensive process is to

calculate the cache overlap score O(gi,g j) for two different grain-size tasks gi and g j, since we need

to examine the out-neighbors of all nodes in gi and g j, which can be quite huge. We next present an

efficient k-min sketch based solution to approximate the cache overlap scores, and significantly reduce

the cache overlap score calculation cost to O(k), where k is the input of k-min sketch.

Cache overlap score computation. We use the k-min sketch [70] to improve the efficiency of

computing cache overlap scores. Recall that we divide the whole residue array into {R1,R2, · · · ,Rdn/Be}.
For each Ri, we generate k independent random variable li,1, li,2, · · · , li,k ∈ [0,1] in uniform. Then, for

each task gi, let li, j
min = minRx∈C(gi) lx, j. According to [70], we have that:

β (gi) =
k

∑
k
j=1 li, j

min

−1

is an unbiased estimation of |C(gi)|.

Also, given any two tasks gi and gw, we can also use the k-min sketch to provide an unbiased

estimation γ(gi,gw) of |C(gi)∪C(gw)|, which is:

γ(gi,gw) =
k

∑
k
j=1 min{li, j

min, l
w, j
min}
−1.

Recall that the cache overlap score of gi and g j is defined as O(gi,g j) = |C(gi)∩C(g j)|, and

satisfies that:

O(gi,g j) = |Ci|+ |C j|− |Ci∪C j|

Therefore, we use

β (gi)+β (g j)− γ(gi,g j)

as the estimation of the cache overlap score. Since β (gi), β (g j), and γ(gi,g j) all can be computed

with O(k) time, therefore, we can calculate the approximation of the cache overlap score with O(k)

cost.

Total schedule cost analysis. Now, we consider the cost of the greedy approach for cache-aware

scheduling. We have dn/ge tasks to do the schedule, and in the greedy approach, we need to choose

from the remaining node whose penalty is minimal. Such a greedy strategy takes quadratic time in

terms of the number of tasks. Also, to compute CC(i, j) it takes O(P) time. Therefore, the total cost is

O(c2 ·k ·P ·n2/g2). In our scheduling, we set cc and cm to be the same. Also, when the tasks scheduled

42 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

to a core i are all finished, core i will steal tasks from other cores to make each core busy and balance

the workload.

Discussion on cache-aware scheduling on more graph algorithms. Intuitively, our cache-aware

scheduling can be generalized to more graph algorithms instead of just the forward push algorithm.

However, it should be observed that the proposed cache-aware scheduling would only be effective

when there are heavy iterations that are frequently visiting a large portion of the nodes to traverse its

out-neighbors or in-neighbors; also, in different iterations, the set of visited nodes have quite large

overlaps. Therefore, some graph algorithms may not be well fitted for the cache-aware scheduling.

For instance, the BFS or DFS traversal algorithms will not visit the same node twice due to its

traversal natural. The power-iteration [5] method to calculate PageRank scores tend to benefit from

our scheduling algorithm since on one hand it will involve several heavy iterations; on the other hand,

the set of visited nodes in heavy iterations typically overlap by a large margin.

3.3 Parallel random walk phase

Next, we elaborate on the details on how to parallelize the random walk phase. In the random walk

phase, given a node v, it samples dr(s,v) ·ωe random walks. Let u be the destination of a random walk,

it then adds
r(s,v)

dω · r(s,v)e
to π◦(s,u). It is expected that the update to π◦ will be very cache-unfriendly

since the destination accessed are typically not following any order.

To alleviate such a situation, one possible way is to try to put as much of the data to be updated into

the cache as possible. Therefore, it is important to reduce the size of the update data array. Besides,

since multiple processors are updating the data array, by maintaining multiple copies of the update

data array, chances are that we can alleviate the data contention and improve the performance.

Motivated by these intuitions, we first present an integer-based random walk counting approach,

which stands as the backbone for reducing the size of the update array. Then, we present our techniques

to alleviate the data contentions in random walk phase by maintaining multiple copies of the data array.

Notably, with our technique to reduce the array size, even if we maintain multiple copies, the total

size of the update array is still no more than the reserve array. Next, we first explain the integer-based

random walk counting method.

3.3.1 Integer-based random walk counting

In a Monte-Carlo approach, we can simply count the number c(v) of random walks that stopped at v

and then use c(v)/ω as the estimation of π(s,v), where ω is the number of random walks sampled

with s as the source node. Therefore, most of the calculations can be handled by integer additions.

3.3. PARALLEL RANDOM WALK PHASE 43

Algorithm 9: PAFO random walk phase

Input: Graph G, source vertex s, probability α

Output: the estimated PPR π̂(s,v) for each v ∈V

1 Let ω =
3log(2/p f)

ε2 ·δ
;

2 Let π◦(s,v), r(s,v) be the reserve and residue of each node v ∈V after the forward push phase;
3 Let c(v) = 0 for all v ∈V ;
4 Parallel for each node v ∈V with r(s,v) 6= 0 do
5 Let ωv = bω · r(s,v)c;
6 for i = 1 to ωv do
7 Pick an unused destination from the index stored for v, and let u be the destination;
8 Atomic-Add(c(u),1);

9 Parallel for each node v ∈V do
10 π◦(s,v)← π◦(s,v)+ c(v)/ω;

11 Parallel for each node v ∈V do
12 if r(s,v) ·ω > ωv then
13 Pick an unused destination from the index stored for v, and let u be the destination;
14 Atomic-Add(π◦(s,u),r(s,v)−ωv/ω);

15 Return π◦(s,v) as the estimated PPR for each node;

However, in FORA, as we can see from Algorithm 1 Line 8, when we sample a random walk from

a node v, if it terminates at node t, let ai =
r(s,v)

dω · r(s,v)e
, then we add ai to π◦(s, t). Since ai is different

for different node v, we cannot simply record the number of random walks that stopped at t and divide

them by the total number of random samples as the estimation. Thus, it needs to use float-point values

instead of integer values, which brings additional memory overhead. To overcome the deficiency, we

propose an integer-based random walk solution, which updates on integer arrays instead on float-point

arrays, and thus is more likely to reduce cache misses.

Recall from Section 1.6.1 that, after the forward push from s, for an arbitrary node v, it samples

ωv = dr(s,v) ·ωe random walks from v. For a sampled random walk from v, let X j be a Bernoulli

variable depending on the random walk from v such that if t is the destination, X j = 1 , and otherwise

X j = 0. Then, in expectation, given ωv random walks, the total number of random walks to terminate

at node t is:

E[
ωv

∑
j=1

r(s,v)
ωv

X j] = r(s,v) ·π(v, t) (3.1)

Here, for any X j (0 < j < ωv), it multiplies the same coefficient ai =
r(s,v)

ωv
in FORA, which is used

44 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

to guarantee that its expectation is r(s,v) ·π(v, t). Then, by adding all the random walks from different

nodes, the sum of the expectation of the random walks is exactly

∑
v∈V

r(s,v)π(v, t),

and then concentration bound can be applied according to [13] to provide an approximation guarantee.

Denote av, j as the coefficient of X j regarding node v as the source of random walks, and replace it

within Equation 3.2. We have that:

E[
ωv

∑
j=1

av, j ·X j] =
ωv

∑
j=1

av, j ·π(v, t)

That is to say, we need to guarantee the following:

ωv

∑
j=1

av, j = r(s,v). (3.2)

to provide approximation guarantees.

Clearly, when we set av, j =
r(s,v)

ωv
, the above equation holds. However, in such a setting av, j will

be highly dependent on r(s,v), and may differ when the node changes. Therefore, we aim to find an

assignment for av, j that depends on vi as less as possible. To achieve this, our settings are as follows:

av, j =

1/ω if j ≤ br(s,v) ·ωc

r(s,v)−br(s,v) ·ωc/ω otherwise

As we can observe, for all j ≤ br(s,v) ·ωc, the coefficient does not depend on r(s,v), and at most

one case, i.e., j = dr(s,v) ·ωe, will depend on r(s,v) and this happens only if r(s,v) ·ω > br(s,v) ·ωc.
Also,

ωv

∑
j=1

av, j = r(s,v),

which means Equation 3.2 holds for such an assignment. Therefore, we can still provide an approx-

imation guarantee for the answers. Algorithm 9 shows our parallel random walk phase with the

integer-counting based method. In particular, when a random walk is sampled with v as the source,

most likely, we will increment the counter c(u) of the destination u (Algorithm 9 Lines 5-8). Therefore,

most of the update will access the count array c(v), and this further motivates us to control the size of

the count array to improve memory access efficiency in a multi-core setting.

3.4. ANALYSIS OF PAFO 45

3.3.2 Improving parallel memory access efficiency

Recall from the last section that, in the random walk phase, the major overhead now is to count the

number c(v) of random walks that terminates at node v. In our implementation, we observe that for the

most of the indexed random walk destinations, the number c(v) will be less than 28−1 = 255, and

will always be smaller than 216−1. Therefore, for the count array, instead of using 4 bytes for each

node, we choose the size of each entry according to the statistics in the indexed random walks.

Given a significantly reduced size of update arrays, we can afford to make multiple copies of the

count array and alleviate the update costs. Firstly, we reorder the nodes in the count array such that

the nodes with 1 byte are stored sequentially and then comes to the nodes with 2 bytes. Then, for

the nodes with 1 byte (resp. 2 bytes), we make 8 copies (resp. 4 copies) of the count array. When a

processor updates the count of the arrays, it uses the (i+1)-th copy for the update if its id is in the

range [i ·P/8, i ·P/8+P) (0≤ i < 8) (resp. [i ·P/4, i ·P/4+P) (0≤ i < 4)). As we will see in Chapter

4, with this strategy, our random walk phase improves over the alternative solution by up to 2.5x.

3.4 Analysis of PAFO

3.4.1 Forward push phase

In the forward push phase, we first analyze the workload of the hybrid approach. Note that the

memory-contention aware scheduling only needs one pass preprocessing, and can reuse the scheduling

repeatedly. Then, the scheduling will not affect the complexity and therefore we omit its discussion in

parallel time complexity analysis.

Workload

Consider the workload in the light workload iterations. In each light workload iteration, the cost

mainly includes two parts. The first part is the push operation to each node; the second part is the

maintenance of the bag structure for the next iteration. We charge the cost of the bag maintenance to

the next iteration for the ease of cost analysis. Let b be the number of active nodes in a light workload

iteration. Then, the total cost to insert these nodes to the bag structure is O(b) since it takes O(1)

amortized time to insert an element into the bag structure. Then, to divide the bag into many small

constant size bag structures, we analyze as follows. Let T (b) be the cost to divide b elements into two

(roughly) equal size parts. Then the total cost of the dividing part is:

T (b) = logb+2T (b/2),

46 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

According to [71], it is not difficult to find that the total cost T (b) can be bounded by O(b). Therefore,

the total cost of the bag maintenance can be bounded by O(b). Considering the push cost of each node,

it does the same work as the sequential version, and therefore the total workload in this iteration has

the same complexity as sequential algorithms.

Next, consider the heavy workload iterations. Since the number of nodes is O(n), and the scanning

cost is also O(n). Therefore, the maintenance cost for the active nodes does not increase the complexity.

The push cost is also the same as the sequential algorithms. Hence, the workload in the iteration has

the same complexity as sequential ones.

Recall from Section 1.6.1 that the workload of sequential forward push is O
(

1
rmax

)
, therefore the

workload of the hybrid approach is also O
(

1
rmax

)
.

Depth

As we mentioned in Section 2.7.1, it is still an open problem that whether the depth of the forward

push algorithm proposed in [7] can be bounded in poly-logarithmic of n. Denote rsum =∑v∈V r(s,v), we

notice that in our problem, it suffices to guarantee that rsum ≤ m · rmax to preserve the time complexity

of FORA in the random walk phase if the time complexity of the forward push phase can be still

bounded by O
(

1
rmax

)
, with rmax =

√
1

m·ω .

Our main observation is that due to the small choice of rmax, the cost of the forward push is

O(
n · logn

ε
). On scale-free graphs, such cost is also O(

m
ε
). Also, notice that by doing a batched

forward push on each node in an iteration with a cost of O(m), the sum of the residues after this

iteration will be at most (1−α) · rsum, where rsum is the sum of residues in this iteration. Then, we can

apply the following strategy to achieve bounded depth. We apply the hybrid approach with O(logn)

rounds, and if the algorithm still does not stop. Let rh
sum be the sum of the residues of after the last

iteration of the hybrid approach. Then, we do batched forward push with O(log1−α (ε/rh
sum)) rounds

if rh
sum > ε . We denote this solution as the batch-push strategy.

Lemma 3.4.1. On scale-free graphs, with batch-push strategy, the depth of parallel forward push can

be bounded by O(log2 n), and the workload is still the same as the sequential FORA.

Proof. We first note that,

m · rmax =

√
m
ω

=

√
ε2m

3n logn
= ε

√
m

3n logn
.

On scale-free graphs, since m/n = logn, when the sequential forward push terminates, it actually only

requires that rsum = O(ε) to preserve the workload of the random walk phase. With the batch-push

3.4. ANALYSIS OF PAFO 47

strategy, we have that the sum of the residue after each iteration reduce by α portion. Therefore,

after log1−α (ε/rh
sum) iterations, where rh

sum is the sum of residues after the last iteration of the hybrid

approach after O(logn) round, the sum of residue rsum after the batch-push satisfies that:

rsum ≤ rh
sum · (1−α)log1−α (ε/rh

sum) = ε.

Hence, with O(log1−α (ε/rh
sum)) iterations, we guarantee that rsum = O(ε), which indicates the work-

load of the random walk phase is the same as sequential FORA. Also, notice that the number of

iterations in batch-push is bounded by O(log 1
ε
). Recall that we assume ε ≥ n−2. Therefore, the

total number of iterations in forward push can be bounded by O(logn+ log 1
ε
) = O(logn) iterations.

Consider the workload of batch-push. The workload is bounded by O(m log 1
ε
), while the workload

of the forward push is bounded by O(m/ε). Hence, the cost can be still bounded by O(m/ε), which

does not increase the workload of the forward push phase. Hence, the workload is still the same as

sequential FORA.

Consider the depth of parallel forward push. Since the number of iterations can be bounded by

O(logn). In each iteration, the maximum workload may reach polynomial of n, and therefore the

depth in each iteration may reach O(logn). The depth can then be bounded by O(log2 n).

According to Lemma 3.4.1, we revise our hybrid approach such that when the total number of

iterations exceeds c2 · logn, we apply the batch-push strategy. Nevertheless, we observe that in practice,

the number of iterations is typically small, e.g., as shown in Figure 3.21. Also, when applying a

batch-push, the overhead is actually quite large since it strictly does a push operation on each node with

nonzero residue, while in our heavy workload iterations or light workload iterations, only nodes whose

residue are above rmax times its out-degree need to do push operations. Therefore, in our evaluation,

we set c2 = 10 to avoid unexpected large iterations in the hybrid parallel forward push algorithm, and

in most cases, it will avoid the expensive batch-push costs.

3.4.2 Combining two phases

Next, we first analyze the workload and depth of the random walk phase. Then, we combine the two

phases together and analyze the total cost of PAFO.

Lemma 3.4.2. In the random walk phase of PAFO, the depth of Algorithm 9 can be bounded by

O(log2 n), and the workload is still the same as the sequential FORA.

Proof. Recall from the analysis of the forward push phase, when the algorithm terminates, it assures

that the total number of random walks is still the same as the sequential FORA. In our PAFO, we

maintain multiple copies of the update array, but each random walk will update exactly one copy of

48 CHAPTER 3. PAFO: AN EFFICIENT PARALLEL SOLUTION FOR APPROXIMATE SSPPR

the array. In our parallel random walk algorithm, we have an additional aggregation phase as shown

in Algorithm 9 Lines 9-14. However, since we maintain a constant number of update arrays, such

aggregation cost can be bounded by O(n), while the update cost is O(n · logn/ε) on scale-free graphs.

Therefore, the cost can be still bounded by O
(

n·logn
ε

)
, which is the same as the sequential random

walk phase. The depth of the random walk phase can also be bounded by O(log2 n) since we process n

nodes in parallel, and for each node, the number of random walks can reach polynomial of n.

Combining Lemmas 3.4.1-3.4.2 and Theorem 1.5.1, we have Theorem 3.4.3 on the parallel time

complexity of our PAFO.

Theorem 3.4.3. PAFO achieves a time complexity of O(W/P+ log2 n), where W is the workload of

the sequential FORA and P is the number of used processors. When W � log2 n, PAFO achieves

linear speedup with respect to the number P of used processors.

In our problem, the time complexity of our sequential FORA is higher than O(log2 n), and therefore,

asymptotically PAFO achieves linear speedup.

3.5 Summary

In this chapter, we present our parallel solution PAFO for answering approximate SSPPR queries in

parallel. We prove that PAFO achieves asymptotical linear speedup in theory and propose several

techniques to optimize performance in practice.

We give a detailed analysis of the performance bottleneck of state of the art and show how to tackle

these issues with our proposed techniques. We design a hybrid method and a cache-aware scheduling

strategy for parallel forward push, aiming to optimize memory access pattern and reduce contentions.

Besides, we also devise an integer-counting based update solution for parallel random walk phase. To

analyze the performance of PAFO in practice, we include extensive experimental evaluation in the

following chapter.

Chapter 4

Experimental Evaluation

In this section, we evaluate our proposed solutions against the states of the art. All experiments are

conducted on a Linux machine with 4 CPUs, each with 10-cores clocked at 2.2GHz, and 1TB memory.

All the implementations are written in C++ and compiled with full optimization. For all methods, we

use the CilkPlus [25] for multi-thread programming, which is shown in [19,21] to be the most efficient

framework on parallel graph processing.

4.1 Evaluation methods and settings

Methods

To compare the performance of parallel forward push algorithm, we include the state of the art

solution proposed in [20], denoted as Ligra. For our methods, we include two versions of the forward

push algorithm. The first one is the hybrid approach, dubbed as hybrid, which does not include the

cache-aware scheduling optimization as mentioned in Section 3.2.2. The second one is the solution

that includes the cache-aware scheduling optimization, dubbed as hybrid-cs.

For random walks, we use the straightforward solution as the baseline, and compare with our

optimized random walk algorithms. Finally, when comparing the total query performance, we use

Ligra to denote the combination of the parallel forward push algorithm in [20] and the straightforward

parallel random walk algorithm. Besides, since the Monte-Carlo approach can be embarrassingly

parallelized, we include the parallel version as our baseline and denote this approach as Parallel MC

for the comparison of total query performance. To compare the scalability, we test all the solutions

with different numbers of threads varying in {1,4,8,12,16, 20, · · ·36,40}.

Parameter setting
49

50 CHAPTER 4. EXPERIMENTAL EVALUATION

Table 4.11: Datasets. (M=106, B=109)

Name n m Type
LiveJournal(LJ) 4.8M 69.0M Directed

Orkut 3.1M 117.2M Undirected
Twitter 41.7M 1.4B Directed

Friendster 65.6M 3.6B Undirected
RMAT27 128M 8.6B Directed
RMAT28 256M 20.8B Directed

Table 4.21: Overall performance on a single-core

Dataset FORA Ligra PAFO
LJ 1.8s 7.1s 2.9s

Orkut 2.4s 6.1s 3.0s
Twitter 35.3s 109.4s 63.6s

Friendster 115.9s 259.5s 169.9s
RMAT27 385s 712s 496s
RMAT28 792s 1364s 1057s

Following previous work [13, 17, 18], we set δ = 1/n, p f = 1/n, and ε = 0.5. For the cache

scheduling, recall that we use k-min sketch to calculate the cache overlap score. In our preprocessing,

we set k = 32 to derive the cache overlap scores and derive the scheduling. Besides, we tune the rmax

for sequential FORA, and find that when rmax = 3ε ·
√

1
3m ·n · ln(2/n)

, it achieves the best trade-off

between the query performance and space consumption. Therefore, we set rmax to this value in all

experiments.

Datasets and query sets
To compare the performance and show the effectiveness of our proposed solution, we test on 4

public datasets: Livejournal, Orkut, Twitter, and Friendster. All these datasets are social networks that

are widely used to evaluate PPR query efficiency [13, 17, 18, 20, 31]. The statistics are shown in Table

4.11. To evaluate the scalability of our proposed solutions, we further generate 2 synthetic large-scale

datasets RMAT27 and RMAT28, which include 8.6 billion edges and 20.8 billion edges, respectively,

using the RMAT graph generator [72]. For these 6 datasets, we generate 50 queries and report the

average query time. For each experiment, we repeat 5 times and show the average performance.

4.2 Overall Performance and Scalability

We first examine the overall performance of PAFO against Ligra. For PAFO, we include all the

optimizations mentioned in Chapter 3, and postpone the evaluation of the effectiveness of each

optimization to Sections 4.3-4.4.

4.3. FORWARD PUSH PHASE 51

Table 4.22: Overall performance on 40 threads

Dataset Parallel MC Ligra PAFO
LJ 8.4s 0.61s 0.18s

Orkut 5.8s 0.57s 0.23s
Twitter 110s 7.4s 2.7s

Friendster 216s 17s 5.6s
RMAT27 472s 44s 13s
RMAT28 1004s 87s 29s

As we can see from Figure 4.21, our PAFO achieves significantly better speedup on almost all

the tested datasets. For instance, on Livejournal, our PAFO achieves a speedup of 15 with 40 cores,

while the speedup of Ligra is only around 11 with 40 cores. Moreover, when the size of the graph

increases, the speedup of PAFO generally increases. For instance, on Twitter graph, our PAFO achieves

a speedup of 23 with 40 cores, and on Friendster, the speedup becomes 35 with 40 cores. In contrast,

the speedup of Ligra with 40 cores is 15 and 17 on Twitter and Friendster, respectively. On synthetic

graphs, PAFO achieves the speedup of 37 and 36, which are almost linear speedup, while the speedup

of Ligra is around 16.

Next, we examine the performance of PAFO and Ligra. We first compare the performance of PAFO

and Ligra against the state-of-the-art sequential FORA algorithm. As we can see from Table 4.21, both

parallel implementations incur considerable overhead over the sequential solution. However, since

Ligra follows their previous design paradigm, which uses the VertexMap and EdgeMap interface, it

brings additional overheads. For instance, it needs to maintain two copies of the residue array. In

contrast, in our solution, only one residue array is required. Also, our solution includes optimizations

that are tailored for the SSPPR query, which further reduces the overhead of our forward push algorithm.

Comparing the performance of PAFO and Ligra with 40 cores, as shown in Table 4.22, our PAFO is

up to 3.3 faster than Ligra, and is always at least 2.4x faster than Ligra. Notice that it is different from

the numbers in Figure 4.21 since the parallel implementation incurs additional overheads. Besides, as

we can observe, even under parallelization, the Monte-Carlo approach is slower than the sequential

version of FORA running on a single core. Notably, our PAFO can finish an SSPPR query with 5.6

seconds on the 3.6 billion edge Friendster network, and 29 seconds on 20 billion edge RMAT28

network. Compared to the sequential FORA algorithm, our PAFO achieves up to 30x speedup.

In summary, our PAFO framework achieves superb scalability, efficient query processing, and is

the preferred choice when parallelizing the SSPPR queries.

52 CHAPTER 4. EXPERIMENTAL EVALUATION

PAFOLigra

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(a) Livejournal (b) Orkut

 0

 5

 10

 15

 20

 25

 30

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(c) Twitter (d) Friendster

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(e) Rmat27 (f) Rmat28

Figure 4.21: Scalability: overall performance.

4.3. FORWARD PUSH PHASE 53

PAFOLigra

0

5

10

15

20

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Figure 4.31: Forward push scalability.

4.3 Forward push phase

In this set of experiments, we evaluate the scalability of our parallel forward push algorithm and the

effectiveness of proposed optimization techniques mentioned in Section 3.2.

We first examine the scalability of our parallel forward push algorithm against Ligra on four large

datasets: Twitter, Friendster, RMAT27, and RMAT28. The results are as shown in Figure 4.31. As we

can see, in the forward push phase, our PAFO achieves 35x (resp. 39x) speedup over its single-core

counterparts on 40 cores on Friendster (resp. RMAT27) dataset. The improved scalability is mainly

due to the optimizations applied. Next, we examine the benefit of each optimization.

As shown in Figure 4.32, with our hybrid strategy, our solution can be 3x faster than the Ligra

54 CHAPTER 4. EXPERIMENTAL EVALUATION

Hybrid-csHybrid

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

(a) Twitter (b) Friendster

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

(c) RMAT27 (d) RMAT28

Figure 4.32: Forward push speedup over Ligra

based solution. However, when the number of threads increases, the speedup of the hybrid approach

over Ligra actually decreases.

However, with our cache-aware scheduling, we can see that with the increase of the number of

threads, our cache-aware scheduling, dubbed as hybrid-cs, further gains improved speedup. This

demonstrates the effectiveness of the scheduling method. Notably, the scheduling based method

improves over the hybrid approach by up to 100% with 40 cores, which demonstrates the effectiveness

of the scheduling method. Notably, our parallel forward push algorithm is up to 4.8x faster than Ligra.

Since the forward push algorithm alone is also widely used in local graph clustering [7], our parallel

forward push algorithm can be further used in a wider scope besides the approximate SSPPR queries.

4.4. RANDOM WALK PHASE 55

PAFOLigra

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 8 12 16 20 24 28 32 36 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Figure 4.41: Random walk scalability.

4.4 Random walk phase

In this set of experiment, we examine the scalability of the random walk phase and effectiveness of the

integer-counting based optimization.

As shown in Figure 4.41, the random walk phase for both PAFO and Ligra achieves no worse

scalability than the forward push phase. This is expected since the forward push phase is more

complicated, which includes multiple iterations and has more dependencies. In contrast, the random

walk phase is naturally parallelizable with a straightforward parallel for loop. Nevertheless, if the

straightforward approach is applied, the scalability is still unsatisfactory. As we mentioned, the random

walk phase includes a lot of random memory accesses, which is not cache-friendly. With our integer

counting based method, we can reduce the size of the update array to as small as 1/8 of the original

56 CHAPTER 4. EXPERIMENTAL EVALUATION

 0

 0.5

 1

 1.5

 2

1 8 16 32 40

speedup

number of threads

 0

 0.5

 1

 1.5

 2

1 8 16 32 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 0.5

 1

 1.5

 2

 2.5

1 8 16 32 40

speedup

number of threads

 0

 0.5

 1

 1.5

 2

 2.5

1 8 16 32 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Figure 4.42: Integer-based update speedup

update residue array, which is more cache-friendly. With the increasing number of cores, the multiple

copies of the update array significantly reduce the contention and help improve the scalability. With

our optimizations for the random walk phase, our parallel random walk is up to 2.5x faster than the

straightforward parallel update algorithm, which demonstrates the effectiveness of our optimization

techniques to the random walk phase1.

4.5 Preprocessing cost

In this set of experiments, we examine the preprocessing cost of the cache-aware scheduling. Notice

that we parallelize the greedy solution mentioned in Section 3.2.2 with full usage of the CPU cores.

1The number of copies in our experiment is 4, and it achieves the best performance in practice.

4.5. PREPROCESSING COST 57

Table 4.51: Preprocessing time (seconds).

dataset LJ Orkut Twitter Friendster RMAT27 RMAT28
k 32 32 32 32 32 32
g 1024 1024 2048 2048 4096 4096

Time(s) 2.2 2.05 37.8 158 275 840

Table 4.52: Accuracy: max absolute error

Dataset FORA PAFO
Livejournal 2.07×10−3 5.59×10−3

Orkut 5.73×10−7 3.74×10−7

Table 4.53: Accuracy: max relative error

Dataset FORA PAFO
Livejournal 1.09% 3.06%

Orkut 0.42% 0.39%

As shown in Table 4.51, even on the largest real-world Friendster dataset with 65.6 million nodes,

our off-line scheduling calculation can be finished in less than 160 seconds with k = 32 for k-min

sketch. As for synthetic dataset with 20 billion edges, the calculation finishes in 840 seconds, which

is less than the time of a single query on FORA. Because the scheduling can be calculated once and

reused for the subsequent queries, this moderate preprocessing overhead is compensated by the query

performance improvement with the cache-aware scheduling.

4.5.1 Accuracy

Finally, we evaluate the accuracy of PAFO and FORA with two datasets: Livejournal and Orkut.

We first calculate the ground-truth of the PPR scores using power-iteration by setting the number of

iterations to be 100. For each query, we calculate the maximum absolute error of all the estimated

PPRs compared to their ground-truth. Then we report the average of 100 queries. As shown in Table

4.52, both methods achieve highly accurate results, and the maximum absolute error of both PAFO

and FORA falls into the same order of magnitude on both datasets. We further report the maximum

relative error, where for each query, we calculate the maximum relative error of all the estimated PPRs

compared to their ground-truth, and then report the average on 100 queries. Recall that we set ε = 0.5,

which means in the worst case, the relative error can reach 0.5. From Table 4.53, we can see that

the maximum relative errors of both PAFO and FORA are actually far smaller than the worst case

guarantee. The conclusion is that by parallelizing the FORA algorithm, the impact to the accuracy is

sufficiently small and the parallel algorithm can still provide highly accurate result. The results on

Ligra shows a similar trend and we omit the results for simplicity.

58 CHAPTER 4. EXPERIMENTAL EVALUATION

4.6 Summary

In this chapter, we evaluate the performance of PAFO and our proposed techniques individually by

extensive experiments. Commonly used Real-life datasets for PPR evaluation and large-scale synthetic

datasets are used in these experiments.

As the scale of datasets increases, the scalability of PAFO also improves. Notably, PAFO achieves

nearly linear speedup on large datasets, with a speedup of up to 37 on 40 threads. We also compare

PAFO with Ligra and FORA in terms of response time. Experiments show that PAFO achieves

up to 4.8x speedup over Ligra for parallel forward push and is up to 3.4x faster than Ligra for

overall performance. Compared to FORA, PAFO is up to 30 times faster running on 40 threads.

Besides, the preprocessing time of our cache-aware scheduling is acceptable compared to performance

improvement.

Chapter 5

Conclusion

Personalized PageRank is an important algorithm that can be utilized to improve the results of

personalized searching, boost the performance of personalized recommendations, etc.. However,

most existing works that are designed for answering approximate SSPPR queries, focus on sequential

execution. State of the art parallel solutions either focus on dynamic graphs, which suppose that the

forward push results exist, or show poor overall performance for SSPPR queries.

In this thesis, we present PAFO, an efficient parallel solution that parallelizes the state-of-the-

art index-based algorithm FORA, for approximate SSPPR query processing. Our solution shows

significant improvement over existing works and can be applied in other graph queries to boost

performance as well.

Theoretically, we prove that our proposed PAFO achieves asymptotically linear speedup. For

practical performance, we present several optimization techniques to achieve superior performance

on both real-life datasets and synthetic datasets. For the first phase of PAFO, we demonstrate how to

effectively maintain active nodes and propose cache-aware scheduling that aims to reduce contentions

during multicore execution. For the second phase, we devise an integer-counting random walk update

strategy to improve the efficiency of memory access.

Extensive experimental evaluation on datasets with up to 20.6 billion edges shows that our solution

achieves up to 37x speedup on 40 cores, is 3.4x faster than alternatives on 40 cores, and is scalable to

super large graphs with 20.6 billion edges. Moreover, our parallel forward push algorithm improves

over the state-of-the-art by 4.8x.

Since the forward push algorithm has been extensively used for local graph clustering. Our parallel

forward push algorithm can be further used to improve the efficiency of these local graph clustering

algorithms. For example, Anderson et al. [7] propose an algorithm called PageRank-Nibble, to
59

60 CHAPTER 5. CONCLUSION

generate approximate PageRank values by repeatedly performing forward push from vertices. Then

they can apply a sweep cut to the residue array to give a partition. With our parallel forward push

algorithm, the response time of their solution can be reduced significantly.

Future Work

Although we have achieved excellent performance, there are still works to do for further acceleration

of SSPPR calculation. Moreover, our cache-aware scheduling can be extended for accelerating other

graph algorithms in parallel.

First of all, since the computing capacity of GPUs is much higher than multi-core CPUs, it is

exciting to further shorten the response time of SSPPR queries with the tremendous computing power

of GPU. However, due to the limit size of global memory inside GPUs, it is challenging to design

algorithms for large datasets. An effective graph splitting technique for large scale dataset is hard to

achieve. What’s more, in GPUs, besides global memory, there exists shared memory which serves the

similar function as “cache” for streaming multiprocessors, and the size of such share memory is much

smaller than global memory, typically dozens of kilobytes. Hence, it is extremely challenging to make

full use of such hardware features for parallel graph processing. Moreover, workload balance among

thousands of cores inside GPUs is another conundrum for graph processing. In summary, devising an

efficient GPU algorithm for parallel SSPPR computing and other graph queries is another important

work in the future.

Secondly, our cache scheduling strategy for parallel forward push can be applied to accelerate

other important graph algorithms such as Loopy Belief Propagation, Power Iteration, and local graph

clustering algorithms. Becuase these algorithms include heavy workload iterations as described in

section 3.2.1, our optimizing strategy is suitable for improving the efficiency of such algorithms. In

the future, we will explore the possibility of extending our scheduling technique for these algorithms

as well as more general graph queries.

Bibliography

[1] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly.

Video suggestion and discovery for youtube: taking random walks through the view graph. In

WWW, pages 895–904, 2008.

[2] P. Gupta, A. Goel, J. J. Lin, A. Sharma, D. Wang, and R. Zadeh. WTF: the who to follow service

at twitter. In WWW, pages 505–514, 2013.

[3] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong, J. Liu, and Y. Jing. Related pins

at pinterest: The evolution of a real-world recommender system. In WWW, pages 583–592, 2017.

[4] S. Luo, X. Xiao, W. Lin, and B. Kao. Baton: Batch one-hop personalized pageranks with

efficiency. In ICDE, 2019.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order

to the web. Technical report, Stanford InfoLab, 1999.

[6] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages 271–279, 2003.

[7] R. Andersen, F. R. K. Chung, and K. J. Lang. Local graph partitioning using pagerank vectors.

In FOCS, pages 475–486, 2006.

[8] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering. In

SIGKDD, pages 555–564, 2017.

[9] Z. Gyongyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen. Link spam detection based on mass

estimation. In VLDB, pages 439–450, 2006.

[10] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community detection using

neighborhood-inflated seed expansion. IEEE Trans. Knowl. Data Eng., 28(5):1272–1284, 2016.

[11] P. Nguyen, P. Tomeo, T. D. Noia, and E. D. Sciascio. An evaluation of simrank and personalized

pagerank to build a recommender system for the web of data. In WWW, pages 1477–1482, 2015.
61

62 BIBLIOGRAPHY

[12] H. Park, J. Jung, and U. Kang. A comparative study of matrix factorization and random walk

with restart in recommender systems. In BigData, pages 756–765, 2017.

[13] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang. FORA: simple and effective approximate

single-source personalized pagerank. In SIGKDD, pages 505–514, 2017.

[14] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: The who to follow service at

twitter. In WWW, pages 505–514, 2013.

[15] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly.

Video suggestion and discovery for youtube: taking random walks through the view graph. In

WWW, pages 895–904, 2008.

[16] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. Mirrokni, and S.-H. Teng. Local computation

of pagerank contributions. WAW, pages 150–165, 2007.

[17] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li. Hubppr: effective indexing for approximate

personalized pagerank. Proceedings of the VLDB Endowment, 10(3):205–216, 2016.

[18] P. Lofgren, S. Banerjee, and A. Goel. Personalized pagerank estimation and search: A bidirec-

tional approach. In WSDM, pages 163–172, 2016.

[19] W. Guo, Y. Li, M. Sha, and K.-L. Tan. Parallel personalized pagerank on dynamic graphs.

PVLDB, 11(1):93–106, 2017.

[20] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. W. Mahoney. Parallel local graph

clustering. PVLDB, 9(12):1041–1052, 2016.

[21] J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing framework for shared memory.

In PPoPP, pages 135–146, 2013.

[22] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: block elimination approach for random walk with

restart on large graphs. In SIGMOD, pages 1571–1585, 2015.

[23] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–206,

1974.

[24] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. Mirrokni, and S.-H. Teng. Local computation

of pagerank contributions. Algorithms and Models for the Web-Graph, pages 150–165, 2007.

[25] https://www.cilkplus.org/, 2018.

https://www.cilkplus.org/

BIBLIOGRAPHY 63

[26] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search algorithm (or

how to cope with the nondeterminism of reducers). In SPAA, pages 303–314, 2010.

[27] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In SPAA, pages

96–107, 2014.

[28] M. Gupta, A. Pathak, and S. Chakrabarti. Fast algorithms for topk personalized pagerank queries.

In WWW, pages 1225–1226, 2008.

[29] J. Jung, N. Park, L. Sael, and U. Kang. Bepi: Fast and memory-efficient method for billion-scale

random walk with restart. In SIGMOD, pages 789–804, 2017.

[30] F. Zhu, Y. Fang, K. C. Chang, and J. Ying. Incremental and accuracy-aware personalized pagerank

through scheduled approximation. PVLDB, 6(6):481–492, 2013.

[31] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R. Wen. Topppr: top-k personalized pagerank

queries with precision guarantees on large graphs. In SIGMOD, pages 441–456, 2018.

[32] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards scaling fully personalized pagerank:

Algorithms, lower bounds, and experiments. Internet Mathematics, 2(3):333–358, 2005.

[33] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and personalized pagerank. PVLDB,

4(3):173–184, 2010.

[34] M. Coskun, A. Grama, and M. Koyutürk. Efficient processing of network proximity queries via

chebyshev acceleration. In SIGKDD, pages 1515–1524, 2016.

[35] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast and exact top-k search for

random walk with restart. PVLDB, 5(5):442–453, 2012.

[36] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and M. Onizuka. Efficient ad-hoc search

for personalized pagerank. In SIGMOD, pages 445–456, 2013.

[37] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka. Efficient personalized

pagerank with accuracy assurance. In SIGKDD, pages 15–23, 2012.

[38] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank on mapreduce. In SIGMOD,

pages 973–984, 2011.

[39] T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin. Distributed algorithms on exact personalized

pagerank. In SIGMOD, pages 479–494, 2017.

64 BIBLIOGRAPHY

[40] S. Wang and Y. Tao. Efficient algorithms for finding approximate heavy hitters in personalized

pageranks. In SIGMOD, pages 1113–1127, 2018.

[41] H. Zhang, P. Lofgren, and A. Goel. Approximate personalized pagerank on dynamic graphs. In

SIGKDD, pages 1315–1324, 2016.

[42] F. Pedroche, F. Moreno, A. González, and A. Valencia. Leadership groups on social network

sites based on personalized pagerank. Mathematical and Computer Modelling, 57(7):1891–1896,

2013.

[43] E. Agirre and A. Soroa. Personalizing pagerank for word sense disambiguation. In Proceedings

of the 12th Conference of the European Chapter of the Association for Computational Linguistics,

pages 33–41. Association for Computational Linguistics, 2009.

[44] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communica-

tions of the ACM, 51(1):107–113, 2008.

[45] J. Lin and C. Dyer. Data-intensive text processing with mapreduce. Synthesis Lectures on Human

Language Technologies, 3(1):1–177, 2010.

[46] J. Lin and M. Schatz. Design patterns for efficient graph algorithms in mapreduce. In Proceedings

of the Eighth Workshop on Mining and Learning with Graphs, pages 78–85. ACM, 2010.

[47] List of nvidia graphics processing units. https://en.wikipedia.org/wiki/List_of_

Nvidia_graphics_processing_units. Accessed: 2018-03-14.

[48] A survey and benchmarks of intel® xeon® gold and platinum processors. https://

colfaxresearch.com/xeon-2017/. Accessed: 2018-03-14.

[49] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu cluster for high performance computing.

In Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference, pages 47–47.

IEEE, 2004.

[50] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C. Phillips,

and W.-m. Hwu. Gpu clusters for high-performance computing. In Cluster Computing and

Workshops, 2009. CLUSTER’09. IEEE International Conference on, pages 1–8. IEEE, 2009.

[51] Nvidia tesla v100. https://www.nvidia.com/en-us/data-center/tesla-v100/. Ac-

cessed: 2018-03-15.

[52] Xeon platinum 8180 - intel. https://en.wikichip.org/wiki/intel/xeon_platinum/

8180. Accessed: 2018-03-14.

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://colfaxresearch.com/xeon-2017/
https://colfaxresearch.com/xeon-2017/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://en.wikichip.org/wiki/intel/xeon_platinum/8180
https://en.wikichip.org/wiki/intel/xeon_platinum/8180

BIBLIOGRAPHY 65

[53] Pci express. https://en.wikipedia.org/wiki/PCI_Express. Accessed: 2018-03-14.

[54] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming with the

message-passing interface, volume 1. MIT press, 1999.

[55] J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose GPU

programming. Addison-Wesley Professional, 2010.

[56] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for heterogeneous

computing systems. Computing in science & engineering, 12(3):66–73, 2010.

[57] Cray® cs-storm™ accelerated gpu system. https://www.cray.com/products/computing/

cs-series/cs-storm. Accessed: 2018-03-15.

[58] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. High-order finite-element seismic

wave propagation modeling with mpi on a large gpu cluster. Journal of computational physics,

229(20):7692–7714, 2010.

[59] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL programming guide. Pearson

Education, 2011.

[60] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high performance programming. Newnes,

2013.

[61] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal,

and Y.-C. Liu. Knights landing: Second-generation intel xeon phi product. Ieee micro, 36(2):34–

46, 2016.

[62] E. Saule, K. Kaya, and Ü. V. Çatalyürek. Performance evaluation of sparse matrix multiplication

kernels on intel xeon phi. In International Conference on Parallel Processing and Applied

Mathematics, pages 559–570. Springer, 2013.

[63] T. Liu, X. G. Xu, and C. D. Carothers. Comparison of two accelerators for monte carlo radiation

transport calculations, nvidia tesla m2090 gpu and intel xeon phi 5110p coprocessor: A case

study for x-ray ct imaging dose calculation. Annals of Nuclear Energy, 82:230–239, 2015.

[64] S. A. Mirsoleimani, A. Plaat, J. Van Den Herik, and J. Vermaseren. Scaling monte carlo tree

search on intel xeon phi. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st

International Conference on, pages 666–673. IEEE, 2015.

[65] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor parallelism.

” O’Reilly Media, Inc.”, 2007.

https://en.wikipedia.org/wiki/PCI_Express
https://www.cray.com/products/computing/cs-series/cs-storm
https://www.cray.com/products/computing/cs-series/cs-storm

66 BIBLIOGRAPHY

[66] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.

IEEE computational science and engineering, 5(1):46–55, 1998.

[67] C. E. Leiserson. The cilk++ concurrency platform. Design Automation Conference, pages

522–527, July 2009.

[68] F. Matteo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other cilk++ hyper-

objects. InProceedings of the twenty-first annual symposium on Parallelism in algorithms and

architectures, 48(8):79–90, August 2009.

[69] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. Scientific

Programming, 21(3-4):137–148, 2013.

[70] E. Cohen. Size-estimation framework with applications to transitive closure and reachability.

Journal of Computer and System Sciences, 55(3):441–453, 1997.

[71] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd Edition.

MIT Press, 2009.

[72] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph mining. In

Proceedings of the 2004 SIAM International Conference on Data Mining, pages 442–446. SIAM,

2004.

	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Graph
	Personalized PageRank
	Motivation
	Problem definition
	Basics in parallel computing
	State of the art
	Sequential algorithm
	Parallel algorithm

	Main contributions

	Related Work
	Overview
	PageRank and Personalized PageRank
	Personalized PageRank computing
	Forward Push
	Reverse Push
	Monte Carlo
	BiPPR and HubPPR
	FORA

	Parallel Computing
	Cluster Computing
	Vectorization
	GPGPU Computing
	New Hardware
	Summary

	Parallel Programming
	Efficient Parallel Programming
	Cilk Plus
	Reducers
	Parallel Graph Processing Framework

	Parallel Breadth-First Search Algorithm
	Detailed Analysis of State of the art
	Parallel algorithm

	Summary

	PAFO: An Efficient Parallel Solution for Approximate SSPPR
	Framework
	Parallel forward push phase
	Hybrid approach
	Cache-aware scheduling

	Parallel random walk phase
	Integer-based random walk counting
	Improving parallel memory access efficiency

	Analysis of PAFO
	Forward push phase
	Combining two phases

	Summary

	Experimental Evaluation
	Evaluation methods and settings
	Overall Performance and Scalability
	Forward push phase
	Random walk phase
	Preprocessing cost
	Accuracy

	Summary

	Conclusion
	Bibliography

