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Abstract

Integer programming is an important tool for optimising large-scale industrial processes and problem

solving in general. Many industries benefit greatly from the use of integer programming to solve large

and complex problems. While general-purpose integer program solvers are becoming increasingly

powerful, most problems of interest are too difficult to solve directly, and instead require special

treatment, such as a problem decomposition. The difficulty in solving an integer programming problem

is directly influenced by the number of constraints, in that problems with more constraints are more

difficult to solve than similar problems with fewer constraints.

In this thesis, we explore a capability that has been developed since the 1990s, but only recently

became available in the high-powered commercial solvers, Gurobi, CPLEX and XPRESS, known as

lazy constraints. Also referred to as branch-and-cut, lazy constraints act as a modelling tool that allows

the solver to add additional constraints during the solution process. This is often in response to having

started with a reduced set of constraints that no longer completely describes the problem, and thus

some constraints must be returned to the problem.

This thesis attempts to provide preliminary answers to the questions: “When and where are lazy

constraints likely to be useful?” and “What are the important implementation issues when using lazy

constraints?” In order to do this we investigate the three main scenarios where using lazy constraints

may be beneficial. Each chapter of this thesis covers one of these scenarios with example problems

and implementations.

The first scenario is the most direct: models that have sets of constraints where many (or all)

constraints in the set may be unnecessary. By removing these constraints, we may solve a smaller

model that will solve faster than the original, but if we have removed any individual constraints that are

necessary, the solutions returned will not be feasible. When a solution to the relaxed problem violates

one such constraint, that constraint is added to the relaxed problem and we continue solving. When an

optimal solution to the relaxed problem that does not violate any constraints of the original problem is

found, we thus have an optimal solution to the original problem.

We apply this to several models for a particular problem, the Liner Shipping Fleet Repositioning

Problem. In this problem, we move several ships between two locations in such a way as to minimise

their movement costs by serving extra demands along the way. There are many capacity constraints in

the models, however there are few scenarios where ships actually exceed their capacity. By removing

the capacity constraints, the problem solves much faster, and only a very small number (< 1%) are

actually used.

The second scenario is for problems which benefit from Benders decomposition, a problem

decomposition first described in 1962. Benders decomposition benefits greatly in most cases from

the use of lazy constraints by embedding the formulation in a branch-and-cut framework. Benders

decomposition involves removing a number of variables and constraints from a problem, and instead

approximating their contribution to the objective through some auxiliary variables. These variables are

controlled through additional constraints, called Benders cuts.



When solving a problem using Benders decomposition, we need to add multiple rounds of Benders

cuts. Originally, one would solve the master problem to or near optimality, one would add cuts, and

then one would solve the master problem again. For most problems, the master problem takes the

longest to solve, with the cut-generation process being very fast or even trivial. With the use of

lazy constraints, one may add Benders cuts during the solution of the master problem, cutting out

unnecessary repetition.

We apply Benders decomposition to a number of problems, such as the Uncapacitated Facility

Location Problem, and demonstrate how large and difficult problems benefit from such a treatment.

We also cover some implementation details and other ways of improving the efficiency of Benders

decomposition. We show the most important aspects of Benders decomposition are the disaggregation

of the sub-problem and the use of lazy constraints.

The third scenario is similar to the first: models that have exponentially sized sets of constraints.

In these problems, it is especially likely that many of these constraints will be unnecessary. We

demonstrate the power of handling these sets lazily for the Travelling Salesman Problem and two

puzzles: Anne Bonney (the Pieces of 8) and the Fillomino Puzzle. We also note the interesting parallels

between the lazy formulations for these problems and Benders decomposition.

Finally, we draw from the experience of the earlier chapters to provide initial answers to our

original questions. We also note some interesting areas for future research that show promise. The

most significant of these is the combination of lazy constraints and/or Benders decomposition with

other decomposition strategies, especially Dantzig-Wolfe decomposition.
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Chapter 1

Introduction

If I have seen further it is by

standing on the shoulders of giants

Isaac Newton

Operations Research is a relatively new field of mathematics, but it is one of the fastest-growing

and arguably most important fields of the modern world. Strongly related to Management Science

and Data Analytics, Operations Research is primarily focussed on finding high-quality solutions to

optimisation problems, often in industrial settings. The importance of Operations Research as a field is

best described by the Institute for Operations Research and Management Science (INFORMS) [7]:

Operations Research and Analytics are proven scientific mathematical processes that

enable organizations to turn complex challenges into substantial opportunities by trans-

forming data into information, and information into insights that save lives, save money

and solve problems.

Having celebrated its 70th birthday recently, the simplex method is one of the most widely used

algorithms today and is the cornerstone of linear and integer programming. Linear and integer

programming are important tools for modelling optimisation problems and are critical to the operation

of large-scale industrial processes. On its website, the leading optimisation software package Gurobi

boasts that more than 1600 companies choose to use its tools, and lists a number of the more prominent

companies. As of November 2018, that list contains 28 companies from industries as diverse as natural

resources, technology, hospitality, defence, utilities, logistics and sport.

This thesis is concerned with a modelling technique called lazy constraints, used for solving large

and difficult problems. This technique is applicable to a wide range of problems from many industries,

and as such is important to understand and warrants continued development. In this thesis, we attempt

to provide preliminary answers to the questions: “When and where are lazy constraints likely to be

useful?” and “What are the important implementation issues when using lazy constraints?” In this
1
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chapter, we review the foundational theory upon which this thesis is based, before answering the first

question and providing the layout of the remainder of the thesis.

1.1 Linear programming

Linear programming is the foundation of much modern industrial optimisation, and the topic of linear

programming is a relatively new one, less than 100 years old. Although the first apparent description

of a linear program (also referred to as an LP) was given by Fourier [8], and three other papers from

the early 20th century were published on the topic, none of these definitively described a solution

method, and thus “sparked zero interest on the part of other mathematicians” [9]. It was not until

George Dantzig formulated the simplex method in 1947, and subsequently published further results in

1949 and the 1950s, that the topic of linear programming began to grow.

In his reflections on the origins of the simplex method, Dantzig notes a number of important factors

that aided the rapid uptake of linear programming as a practical tool [9]. The first is that the simplex

method is the first algorithm useful for solving systems of linear inequalities — rather than equalities

— with more than three variables. Many other ideas that had developed during World War II “had never

found expression” [9], but suddenly became tractable when a solution method was presented. Within

two years of Dantzig first presenting his results, there was a sizeable literature from mathematicians,

economists and statisticians in the new fields of Operations Research and Management Science.

The second important factor was the development of digital computers in the late 1940s and early

1950s. Dantzig writes:

The computer became the tool that made the application of linear programming possible.

Everywhere we looked, we found practical applications that no one earlier could have

posed seriously as optimization problems because solving them by hand computation

would have been out of the question. By good luck, clever algorithms in conjunction

with computer development gave early promise that linear programming would become a

practical science.

While the advent of digital computers represented a boon to linear programming, it was not until

the mid-1950s that it became practical to apply it to real-world problems. Robert Bixby reported

that the first computers to handle LPs were cumbersome to work with, and the majority of the total

computation time was spent “manually feeding cards into the [computer]” [10]. In 1954 an LP was

solved on an IBM 701, considered by some to be the “first real ‘scientific computer”’. From this point

onwards, it became possible to solve larger and larger LPs because of algorithmic advancements and

computational developments.

The first description of the simplex method was a tableau method, suitable for hand computations

but inefficient to implement on a computer, especially those that existed at the time. By 1954, there

were many studies covering the revised simplex method [11], a generalisation of the tableau-based
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method using linear algebra notation and techniques. This was more suitable for implementation on

computing systems, and is one of the algorithmic advancements referred to by Bixby [10].

A search of a university engineering and sciences library will reveal several shelves of books

dedicated to the topic of linear programming, many of them named as such. Most of them cover the

use of the simplex and revised simplex methods, and employ similar but not identical notation. In this

introduction to linear programming, we cover some of the knowledge contained in these tomes, and

recommend Winston and Goldberg (2004) as an introductory text to linear and integer programming

and Nocedal and Wright (2006) as a more advanced reference, as they are well-presented with clean

notation. We use our own notation throughout to ensure a clean and consistent presentation of the

material. The standard formulation of a linear program, introduced by Dantzig, is as follows:

min cT x (1.1)

s.t. Ax = b

x≥ 0

where x is an n-vector of decision variables, A is an m× n matrix, b is an m-vector and c is an

n-vector. For this program, min cT x is called the objective function, and the other lines are called the

constraints. The objective value of a particular solution, xp, is cT xp.

More general linear programs, perhaps with inequality constraints or without the non-negativity

restriction on the decision variables, can be transformed into the standard form using known procedures,

the most useful of which can be found in Chapter 13 of Nocedal and Wright (2006). When discussing

optimisation problems such as the standard linear program, the following definitions are important:

Definition 1. An optimisation problem is infeasible if the set of feasible solutions is empty.

In the context of the standard linear program, that is to say there does not exist a vector x that

simultaneously satisfies Ax = b and x ≥ 0. In most cases, this will be due to an inconsistency of

constraints in Ax = b.

Definition 2. An optimisation problem is unbounded if the objective function is not bounded on the

feasible region.

Again, for the standard linear program, this corresponds to a sequence of points xk, each of which

are feasible, such that cT xk→−∞.

Definition 3. If an optimisation problem is neither infeasible nor unbounded, then there exists at least

one optimal solution, x∗, such that for any other solution x in the set of feasible solutions, cT x∗ ≤ cT x.

Note that this is not a strict inequality as there may be multiple solutions that achieve the same

objective value, in which case there are multiple optimal solutions.
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1.1.1 The revised simplex method

A number of topics covered in later sections depend upon consequences of the revised simplex method,

particularly duality theory. We begin with a linear program of the following form:

max cT x (1.2)

s.t. Ax≤ b

x≥ 0.

Again, any linear program can be converted to this form using standard procedures. In particular,

equality constraints can be replicated using two opposing inequality constraints; greater-than-or-

equal-to constraints can be converted to less-than-or-equal-to constraints by negating both sides; and

minimisation can be converted to maximisation by negating the objective function. With a program

in this form, we convert the constraints to equality constraints by adding slack variables, s. That is,

Ax≤ b becomes Ax+ s = b, but we will represent this as Ãx̃ = b where Ã and x̃ have been augmented

with the m×m identity matrix and the vector of non-negative slack variables, s, respectively. These

artificial variables represent the difference between the left- and right-hand sides of their respective

constraint.

We assume that the problem is feasible, and that we have an initial feasible solution to the problem.

In many cases, this solution may be x = 0, so that si = bi ∀i ∈ {1, ...,m}. If no such solution exists,

then the problem is infeasible. It is assumed, without loss of generality, that Ã has full row rank, i.e.

all constraints of the problem are linearly independent. If this is not the case, then either there are

redundant constraints that may be removed without changing the feasible region, or the problem is

infeasible, which is against our assumption.

The variables that are non-zero in this solution are said to be in the basis, and are hence referred to

as basic variables, denoted by xB. Note that slack variables may also be basic variables, and often are

initially. Variables not in the basis are called non-basic variables. Since these variables are zero-valued,

the result of multiplying them by any matrix columns will also be zero. As such, we construct the

basis matrix, B, which contains those columns of the constraint matrix Ã corresponding to the basic

variables. The vectors p j are the columns of Ã, and hence B, which correspond to the variables x j.

Each iteration of the revised simplex method yields a basic feasible solution to (1.2). A basic

feasible solution must have exactly m basic variables, thus making B an m×m matrix. Since Ã has full

row rank and B is made up of m columns of Ã, B is invertible. The set of basic feasible solutions is

only a subset of the set of feasible solutions; however, if (1.2) has at least one optimal solution, then it

has at least one basic feasible solution that is optimal. For a more detailed explanation and proof of

this claim, we refer the reader to Section 13.2 of Nocedal and Wright (2006).

The constraints of problem (1.2) are now written as:

BxB = b (1.3)
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xB = B−1b, (1.4)

that is, the current solution xB is computed from the inverse of the basis matrix B−1 and the original

constraint vector b. Similarly, the objective value may be computed by:

zB = cBT
xB, (1.5)

where cB contains the elements of the objective vector c corresponding to the basic variables. Each

iteration of the revised simplex method moves from one basic feasible solution to another by choosing

a non-basic variable to enter the basis, and a basic variable to leave. The algorithm will terminate once

it has found an optimal solution or that the problem is unbounded.

STEP 1: Entering variable
To determine which, if any, non-basic variable should enter the basis, we first calculate the dual

variables yT = cBT B−1. Next, we compute the reduced cost c′j = c j− yT p j for all non-basic variables

x j. The reduced cost is a measure of how much the objective value would improve by if this variable

was to enter the basis.

Since the problem is one of maximisation, we require a variable with a positive reduced cost. If

there are no non-basic variables with a positive reduced cost, then the algorithm terminates with an

optimal solution. Otherwise, an entering variable is chosen from the non-basic variables with positive

reduced cost. A simple rule may be to choose the variable with the largest reduced cost, but modern

solvers have more sophisticated schemes for choosing entering variables, which are beyond the scope

of this thesis.

The entering variable is denoted x j∗ .

STEP 2: Leaving variable
Now that a variable is entering the basis, we must choose a basic variable to leave the basis. First,

we compute the direction in which all variables will move by the introduction of x j∗ into the basis,

α j∗ = B−1 p j∗ . As we increase the value of x j∗ , the other variables will reduce by α j∗ . This ensures

we remain on the boundary of the feasible region (i.e. where Ãx̃ = b). To see this, consider increasing

x j∗ by an amount, λ . The new solution can thus be represented by:[
xB−λα j∗

λ

]
, (1.6)

which is a vector of the basic variables augmented by the entering variable, x j∗ . Multiplying this

point by the relevant parts of the constraint matrix gives:

[
B p j∗

][ xB−λα j∗

λ

]
= BxB−λBα

j∗+λ p j∗

= b−λBB−1 p j∗+λ p j∗

= b
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since BxB = b (because xB is a basic solution) and α j∗ = B−1 p j∗ by definition. So, for any

value λ , the constraints Ax = b will be satisfied. Thus, the only constraints to be considered are the

non-negativity constraints: x≥ 0.

Since the leaving variable will become non-basic, it will take zero value. Therefore, we choose the

leaving variable to be the first variable to reach zero when moving in the direction α j∗ , or

r = argmin
k

{
xB

k

α
j∗

k

α
j∗

k > 0
}
. (1.7)

The leaving variable will thus be xr. If there is no such variable, then it is possible to continue

moving in the direction α j∗ without ever violating the constraints. Since the entering variable has a

positive reduced cost, we may choose as large a solution as desired, and thus the algorithm terminates

with an unbounded solution.

STEP 3: New basis
Now that we have chosen entering and leaving variables, we change to our new basis, where x j∗

has entered and xr has left. It is also a good time to compute the new basis matrix, B, and its inverse,

as well as the new values of xB and zB. Return to step 1, and repeat until the algorithm terminates.

Note that it is possible that one may find a series of basic feasible solutions with the same objective

value. In this case, the simplex method may cycle between these basic feasible solutions without ever

terminating. For this reason, it is important to include cycle-elimination in an implementation of the

revised simplex method, so that it will terminate in a finite number of steps.

1.1.2 Duality theory

A significant portion of the theory around linear programming focusses on duality theory. To highlight

some of the important properties of duality theory, we start with the linear program introduced at the

beginning of the revised simplex method (1.2). This program is called the primal problem:

max cT x (1.8)

s.t. Ax≤ b

x≥ 0

Every linear program has a dual program. The dual program for (1.8) is:

min bT y (1.9)

s.t. AT y≥ c

y≥ 0

where y is an m-vector of dual variables. Note that these dual variables, y, are the same dual

variables encountered in the revised simplex method. The primal and dual problems are closely related,

and (for a maximisation primal problem) the following properties hold:
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1. The dual of the dual is the primal.

2. The objective value for any feasible solution to the primal problem is a lower bound on the

optimal solution to the dual problem, and any feasible solution to the dual problem is an upper

bound on the optimal solution of the primal problem.

3. If the primal problem has an optimal solution, x∗, then the dual problem also has an optimal

solution, y∗, and cT x∗ = bT y∗.

4. If the primal problem is unbounded, then the dual problem is infeasible. Similarly, if the dual

problem is unbounded, then the primal problem is infeasible.

These properties also hold for a minimisation problem, but point 2 must be appropriately reversed

so that any solution to the primal problem is an upper bound on any solution to the dual problem

etc. The first property can be seen simply by taking the dual of the dual to reveal the original primal

problem. To take the dual of the dual, we put the dual in the same form as (1.8) and apply the

same transformation. To do this, we must change the objective function to a maximisation, and the

constraints to less-than-or-equal-to. Both of these can be achieved by multiplying by -1, giving us the

following program:

max −bT y (1.10)

s.t. −AT y≤−c

y≥ 0

Taking the dual of this as above gives:

min − cT x (1.11)

s.t. −Ax≥−b

x≥ 0

Now, changing the minimisation to a maximisation and the constraints to less-than-or-equal-to

using the same process as before, we return to the primal problem.

The second property can be shown by multiplying the constraints of (1.8) by yT and the constraints

of (1.9) by xT , to give yT Ax≤ yT b and xT AT y≥ xT c respectively. Since yT Ax = xT AT y, we have that

yT b≥ xT c, which says the objective value of any feasible dual solution is no less than the objective

value of any feasible primal solution. This property is known as weak duality and is very important for

Benders decomposition, which will be examined in detail in Chapter 3.

The third property is known as strong duality and is easily shown from the results of the revised

simplex method. Assuming the algorithm has terminated with an optimal solution, then the reduced

costs are zero for all basic variables (cBT − yT B = cBT − cBT B−1B = 0) and non-positive for all non-

basic variables. This means cT − yT A ≤ 0, and thus AT y ≥ c. Also, if y j < 0 for any constraint j,
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then the slack variable corresponding to constraint j would have positive reduced cost, and thus the

algorithm would not have terminated, so y ≥ 0. Therefore, y constitutes a feasible solution to the

dual problem, and yT b = cBT B−1b = cBT xB, or the dual problem and primal problem have the same

objective value. By weak duality, the solutions to the primal and dual problems must be optimal.

The fourth property can be seen from the second property. If the primal problem is unbounded, then

there exists a sequence of points xk such that cT xk→ ∞. Assume a feasible solution to the dual exists.

Then, yT b = yT Axk ≥ cT xk→ ∞, which is a contradiction, so the dual problem must be infeasible. A

similar argument can be used to show the second part of the property.

Note that this only applies in one direction: if the primal problem is infeasible, the dual problem

does not have to be unbounded, as the primal and dual problems may both be infeasible. The most

concise summary is that if a linear program is unbounded, then its dual program is infeasible, and if a

linear program is infeasible, then its dual program is either infeasible or unbounded.

1.1.3 Interior-point methods

The revised simplex method is not the only algorithm for solving linear programs. There are different

variants of the revised simplex method (referred to as pivot step algorithms), but there are also a

number of interior-point algorithms. Where the simplex method traces along the boundaries of the

feasible region until reaching an optimal vertex, interior-point algorithms move between solutions in

the interior of the feasible region.

The first interior-point algorithm is attributed to John Von Neumann in 1948 [14]. This is an

inefficient method and is generally not used in practice, but its introduction sparked interest in research

into similar methods. The first practical algorithm was introduced by Karmarkar in 1984 [15]. For

more information about the specifics of interior-point methods, we recommend Chapter 3 of the book

by Dantzig and Thapa (2003) .

Both the revised simplex method and interior-point algorithms are used for solving linear programs

today. Gurobi, one of the leading commercial solvers, explains why:

Interior-point methods have benefited significantly from recent advances in computer

architecture, including the introduction of multi-core processors and SIMD instructions

sets, and are generally regarded as being faster than simplex for solving LP problems from

scratch. However... neither algorithm dominates the other in practice. Both are important

in computational linear programming. [16]

1.2 Integer programming

Ten years after the blossoming of linear programming, researchers were struggling with the problem of

solving linear programs where integer-valued answers were desired. In an interview in 2017 reflecting

on his early work in integer programming, Ralph Gomory [17] remembered working with a group of

naval researchers in 1957 trying to design carrier fleets using linear programming:
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When you have an aircraft carrier, you’ve got to have some destroyers with it, and so forth.

So you need to figure out the number of ships and things like that, and how far they can

go – and do they need tankers. And they use linear programming to minimize the cost of

the task force, how it was composed. But the trouble was that the answers came out things

like 2 and a quarter aircraft carriers. They weren’t whole numbers. And it wasn’t clear

what you did with 2 and a quarter aircraft carriers. You could fiddle around with it and

decide, did they mean 2, or did they mean 3?

At this time there were many people and organisations with similar problems: they understood the

power of linear programming but could not apply it to problems that required integer-valued answers.

Motivated by his collaborations with the Office of Naval Research, Gomory developed an algorithm

for solving linear programming problems where the answers were required to be integer-valued [18].

Such problems became known as integer (IP) or mixed-integer (MIP) programming problems, the

distinction being that MIPs also contain continuous-valued variables where IPs do not. Many highly

educated and respected individuals at the time suspected that it may not even be possible to find such

answers. Gomory recalls:

I can remember meeting Martin Beale in the hall. He was a very good man. He died

young, unfortunately. And he said, I see you’re down to give the seminar next week. What

are you going to talk about? I said, how to solve linear programs in integers. And he

looked at me. He said, “that can’t be done”. [17]

Gomory’s method is to solve the linear programming problem, and if the solution is not integer-

valued, then there exists a valid inequality that is satisfied by all possible integer solutions, but is

violated by the current optimal solution. By adding this inequality to the problem and solving again, a

new optimal solution is obtained. This process is repeated until an integer solution is found. Gomory

is also able to prove that this algorithm converges in a finite number of steps [19], thus making it a

viable method for solving IPs and MIPs.

This method is known as a cutting-plane approach, as each Gomory cut is a hyperplane through the

solution space that “cuts off” a previously feasible region. This is equivalent to adding the Gomory cut

to the original linear program and solving it again. The term valid inequality is used here to distinguish

it from another type of cutting plane, called a lazy constraint, which is introduced in a later section.

Cutting plane algorithms are useful for dealing with the difference between the LP hull and the

IP hull. The LP hull is the convex region containing feasible solutions to the linear programming

relaxation of an integer program, while the IP hull is the convex hull of the feasible integer solutions,

as illustrated in Figure 1.1. If one finds a set of cutting planes that covers the optimal face of the IP hull

of the given problem, then the simplex algorithm will give the optimal integer solution to that problem.

This is not always practical, as high-dimensional problems may require an exponentially large set

of cutting planes to achieve this. As such, few solvers exclusively use cutting-plane algorithms for

solving IPs or MIPs.
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Figure 1.1: Graphical representation of an integer program in two variables. (a) The nodes represent
feasible integer solutions, the straight lines are constraints and the green line is a contour of the
objective function, showing the direction of increase. (b) The IP hull is highlighted in blue and the
difference between the LP hull and IP hull is in yellow. (c) A valid inequality is shown in red.

1.2.1 Branch-and-bound

Within a few years, other methods for solving integer programs emerged with varying degrees of

success. One of the most pervasive is the method now known as branch-and-bound. It was first

presented by Land and Doig in 1960 as a method for solving general mixed-integer programming

problems [20]. At the time, the authors believed it would be less effective than “successful ad hoc

methods” that were tailored to specific problems, instead thinking it would be used for “testing the

validity of such ad hoc methods for new problems”.

The essence of branch-and-bound is as follows: solve the problem as a linear programming problem

(i.e. without the integrality constraints). If the solution is integer, stop. Otherwise, find a variable

that should be integer-valued but is not, and create some new problems where the chosen variable

is fixed to integer values about its current value. This is slightly more restrictive than more modern

versions, where instead of fixing the variables, they are constrained to be less-than-or-equal-to the floor

or greater-than-or-equal-to the ceiling of their current value.

Each iteration of this algorithm creates a branch, a partition of the search space into two smaller

spaces. A visual representation of this for the model

max
x1,x2
{5x1 +4x2|2x1 +3x2 ≤ 14,4x1 +2x2 ≤ 17,x1 ≥ 0,x2 ≥ 0} (1.12)

is given in Figure 1.2. The LP-optimum occurs at (2.875,2.75), but both x1 and x2 must be integer, so

we choose one variable to branch on, in this case x1. This leads to two new problems, the up branch

where x1 ≥ 3 and the down branch where x1 ≤ 2. Each of these new problems can be solved as linear

programming problems, and either their solution is an integer solution, or it is not and another branch

can be constructed. Each of these sub-problems is called a node of the branch-and-bound tree.
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Figure 1.2: Graphical representation of branch-and-bound, where we choose to branch on x1. (a) The
original IP with the LP-optimum marked in red. (b) The up branch, and (c) the down branch. The
feasible region of each branch is highlighted in blue

The bound part of branch-and-bound refers to handling nodes of the branch-and-bound tree that

cannot yield the optimal solution. When an additional constraint is added to a maximisation linear

program, the optimal value will be less-than-or-equal-to its previous optimal value. This is intuitive, as

either the new constraint does not make the previous solution infeasible and thus the optimal solution

will not change, or it does make it infeasible and the new optimal solution will be no better than the

previous solution. If it was feasible and better than the previous optimal solution, then it would satisfy

the new constraint and all the previous constraints, which would make it a feasible solution of the

original problem, and be better than the original optimal solution, contradicting the assumption that

the original solution was optimal.

Using this fact, if an integer solution has been found at one node, and the objective of another

node is less-than-or-equal-to the objective value of the integer solution, then evaluating any subsequent

branches of that node can not possibly deliver an improved integer solution. Similarly, if a node

is infeasible, adding more constraints will not make it feasible. In this way the tree can be pruned,

reducing the amount of computation necessary.

An example of this is in Figure 1.3. If the left side of the tree has been explored, then we have

an integer solution with an objective value of 22. If we encounter the node (4,0.5) which also has

an objective value of 22, we do not need to explore further, since it could not possibly yield a better

solution. This tree also demonstrates that it is sometimes necessary to branch on one variable multiple

times, as the optimal solution is found by branching on x1 twice. Once an integer solution has been

found and all other nodes have objective values less-than-or-equal-to the current solution, the process

terminates with the optimal solution.



12 CHAPTER 1. INTRODUCTION

(2.875,2.75)

25.375

(2,3.333)

23.332

(2,3)
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x2 ≤ 3

(1,4)
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x1 ≤ 2

(3,2.5)

25

(3.25,2)
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Inf
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Figure 1.3: Complete branch-and-bound tree for the example IP in Figure 1.2. Green nodes are integer
solutions and red nodes are infeasible problems. The objective value is displayed beneath each node

1.2.2 Problem decompositions

The foundational solution methods for mixed-integer programming problems were in place by the

early 1960s, with the revised simplex algorithm for linear programs and branch-and-bound for integer

programming. Since then, most methodological advancements have been cutting plane algorithms or

problem decompositions.

Dantzig-Wolfe decomposition was introduced in 1960 for solving linear programming problems

with a particular structure [21]. This formed the basis of a number of important techniques, generally

referred to as column-generation, as they involve introducing additional variables that correspond to

the columns of the constraint matrix. The most influential paper in this space is by Barnhart et al.

in 1998, which lays out the method known as branch-and-price (informally referred to as delayed

column-generation) for solving large integer programming problems with a special structure.

Dantzig-Wolfe decomposition and branch-and-price create formulations involving composite

variables, which implicitly contain a number of constraints of the original problem. This is particularly

desirable when the original problem contains a vast number of constraints that could be built into such

variables. For example, in a vehicle routing problem, variables of the original problem may correspond

to whether a vehicle traverses a particular arc, where a composite variable may be whether or not a

vehicle takes a particular route from start to finish. This variable implicitly assigns values to variables

of the original problem, as well as respecting flow-conservation and capacity constraints.

The benefits from such a formulation, presented by Barnhart et al. (1998), may include a tighter

LP-relaxation than the original problem, elimination of symmetry, or simply that it may be the only
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choice. The main drawback of such a formulation is the huge number of variables. Often, the number

of variables that must be considered is impractical and cannot be generated a priori. In this case,

branch-and-price may be necessary.

This is a significant drawback, as branch-and-price does not take advantage of the power of

commercial solvers. While the master and sub-problems can be solved using a commercial LP solver,

no commercial solvers support the addition of variables during the optimisation process, and thus do

not accommodate the branching process. There are modern, non-commercial solvers such as SCIP [23]

which support branch-and-price, however such solvers are significantly slower than commercial solvers.

For problems that Barnhart et al.suggested that branch-and-price may be the only choice, then these

non-commercial solvers may be the best option, but if one can formulate the problem in such a way

that they can generate all columns a priori , the commercial solvers will be much faster.

Soon after Dantzig-Wolfe decomposition appeared, Benders decomposition was introduced for

solving integer programming problems that have a particular (but different from Dantzig-Wolfe

decomposition) structure [24]. Benders decomposition can be described as a row-generation technique,

as it involves introducing new constraints that correspond to the rows of the constraint matrix. It is

also described as a divide-and-conquer algorithm, as it takes a large MIP and separates it into a master

problem and one or more sub-problems, all of which are much easier to solve than the original problem.

Benders decomposition will be covered in more detail in Chapter 3.

1.2.3 Constraint programming

Another style of modeling and solving a range of decision problems is known as Constraint pro-

gramming (CP). Where Linear and Integer programming were developed primarily in the fields of

Mathematics and Statistics, Constraint programming was developed in Computer Science and Artificial

Intelligence [25]. Operations research (LP and IP) and Constraint programming developed during the

same period of time to solve many similar problems in quite different ways. It was only in the last few

decades that researchers began comparing the different approaches and even looking to integrate them.

A nice summary of the similarities between OR and CP can be found in the Ph. D. Thesis by

Greger Ottosson (2000), which looks at integrating the techniques of both fields to solve common

problems. More recently, Hooker and van Hoeve (2018) explore several methods for solving problems

using OR and CP in conjunction. John Hooker in particular has published much research on integrating

OR and CP, particularly in the form of logic-based Benders decomposition [26]. While the methods

are different, the problems that OR and CP aim to solve are the same.

1.2.4 Integer program solvers

The increasing interest in practical applications of linear and integer programming from industry en-

couraged the development of efficient computer solvers. In some cases, implementations were devised

to solve specific problems quickly, such as the Concorde solver for solving the Travelling Salesman
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Problem (TSP) [27]; however, the most important developments were those of the commercial MIP

codes, such as CPLEX and Gurobi.

CPLEX was first released in 1988, and by version 1.2 it was capable of solving general MIPs. In

his retrospective on LP computing, Bixby displayed the results of a study on the version-to-version

power increase of the CPLEX code over 12 versions [10]. He compared the time that each code took to

solve 1892 problems taken from academia and industry over the previous 20 years. The computations

were performed on identical machines, so only the difference in the software was being compared. He

found that the time to solution was roughly halved every version, with two exceptions where there

were 5.5× and 10× speed increases. After 10 years of development, the CPLEX code was already

1000× faster than when it had started.

This trend of roughly doubling in speed with each new version continues to this day, and can be

found in other codes. Gurobi, CPLEX’s main competitor, was released in 2009 and was found to

be similar in terms of speed to CPLEX version 11, which had been available since 2007. Gurobi

and CPLEX have seen consistent improvements each release, and in a presentation at the INFORMS

Annual Meeting in 2017, Bixby stated that he had no reason to believe the trend would end any time

soon [28]. Until the end of 2018, performance benchmarks comparing Gurobi and CPLEX were

maintained on Hans Mittelmann’s website [29]. These comparisons have now stopped, however many

of the historical benchmarks can be found through a link on the website.

The leading commercial MIP solvers CPLEX and Gurobi use a combination of branch-and-bound,

cutting planes, logical pre-processing, heuristics, and parallelism to achieve higher speeds. Logical

pre-processing involves looking for combinations of constraints that force variables to take particular

values, allowing them to be effectively removed from the problem. Heuristics look for integer solutions

without following the branch-and-bound tree and can help prune the tree more quickly, because if

a good integer solution is found, we may be able to terminate a number of dead-end branches that

otherwise would have wasted computation time. Parallelism refers to the independence of the nodes of

the branch-and-bound tree, so that multiple nodes may be processed simultaneously, allowing the tree

to be explored more quickly.

1.2.5 Lazy constraints

Perhaps the most significant development for practitioners in modern-day solvers — besides the

consistent speed increases — was the introduction of lazy constraints. Lazy constraints are user-

generated cutting planes that can be added during the branch-and-bound process. This is sometimes

referred to as branch-and-cut, but that term is also applied to the use of valid inequalities. The

difference is that a valid inequality is one that is satisfied by all integer solutions, but not by the solution

of the linear relaxation, and so pares away at the space between the LP hull and the IP hull. Lazy

constraints are allowed to cut off previously feasible integer solutions, and the importance of this

ability is the subject of this thesis.

An example of how lazy constraints work is shown in Figure 1.4. The problem is in two variables
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Figure 1.4: Graphical representation of lazy constraints in two variables. (a) The blue area is the
feasible region for the underlying problem, the red lines are constraints to be handled lazily and the
green line is a contour of the objective function, showing the direction of increase. (b) The red nodes
are integer solutions which are now feasible after having removed the red constraints. The current
optimal solution is circled in green (c) A constraint is added lazily, cutting off several integer solutions,
and the optimal solution is now feasible in the underlying problem

with three constraints. We suspect that we may not need both red constraints, so we remove both.

Note that these are the only pair of constraints that do not make the problem unbounded when they

are removed. We now have a more relaxed problem with only one constraint, and this permits new

integer solutions that are not feasible in the underlying problem. When we solve this problem, we find

one such illegal solution, which is violating one of the constraints we left out. By reintroducing that

constraint and solving again, we now find the correct integer solution.

CPLEX introduced the ability to add valid inequalities during the branch-and-bound process as

early as 2006; however, it was not until 2012 that CPLEX separated the functions for adding user cuts

and lazy constraints, and Gurobi also added full lazy constraint functionality in 2012. As such, there

are not many studies that explicitly use this technique, and some studies that do will be referred to in

the relevant sections of this thesis.

The amount of time required to solve an IP or MIP is heavily dependent on the number of

constraints, and less so on the number of variables. This is due to how the revised simplex algorithm

works: at each iteration, the dual variables associated with each constraint must be computed. The

more constraints in the problem, the more dual variables there are that must be computed. Thus,

models with fewer constraints are more likely to solve than models with more. This is not the only

feature that dictates the difficulty of an MIP, but it is a significant one.

The power of using lazy constraints is that it is possible to “leave out” constraints from a problem

that must be satisfied by any feasible solution, but which may not be required by the solver to find the

optimal solution. This results in a smaller, easier-to-solve model. While solving this relaxed model,

we inspect each integer solution found during the branch-and-bound process. If the solution violates

one of the constraints not included in the relaxed model, we then add it as a lazy constraint, the integer

solution is discarded, and all unprocessed nodes of the branch-and-bound tree are updated with the new



constraint. The result is that only those constraints that are required for finding the optimal solution

are included, and only when they are needed. This can lead to dramatic improvements in solution time

in some problems.

There are three main scenarios where using lazy constraints may be beneficial. They are as follows:

1. Models that have exponentially sized set(s) of constraints. Many of the constraints in these

sets are unlikely to be required, so can be implemented as needed. This also includes problems

where explicitly describing all constraints is difficult, but correcting invalid solutions is easy.

These will be covered in Chapter 4

2. Models that have sets of constraints that may be mostly or wholly unnecessary. These problems

are less common and the benefit of using lazy constraints is less but can still be significant.

These problems will be covered in Chapter 2

3. Benders decomposition is often applied most efficiently using lazy constraints. These problems

will be covered in Chapter 3.

Each of the chapters in this thesis cover a number of problems that fall into one of these three

categories. These are examples of when lazy constraints can be beneficial, but there is a larger idea

we are exploring here: the idea of modelling a problem in a lazy fashion. We can treat the modelling

process the same as we do the constraints of our models and start with a smaller, relaxed formulation

that gives reasonable but not necessarily feasible solutions. These solutions are then corrected using

lazy constraints. This process has the potential to save time spent implementing formulations as well

as improving the efficiency of those formulations.

All of this is summed up by the following “lazy maxim”:

Only that which is necessary, and only when it is necessary

The next chapter explores multiple formulations of a particular problem which has a set of mostly

unnecessary constraints. We apply lazy constraints to this problem in the most direct way, and so it

provides a good introduction to the idea of lazy constraints.







Chapter 2

Branch and Cut

The more I threw away, the more I

found

Don DeLillo

2.1 Introduction

Branch-and-cut is a broad term used to describe a number of similar techniques for solving IPs and

MIPs. The term first appeared in the late 1980s, but the ideas date back to the 1950s when Dantzig et

al. used them for solving larger instances of the Traveling Salesman Problem (TSP) [30]. In the 1990s,

branch-and-cut became state-of-the-art and has since then been standard in all MIP solvers.

In the simplest terms, branch-and-cut is similar to the branch-and-bound algorithm where additional

constraints may be added after the branching process has begun. The differences are that these

constraints are not just the branching constraints (which divide the search-space into smaller, distinct

regions for each node of the branch-and-bound tree), and that they apply to all nodes in the branch-

and-bound tree.

The first cuts used were called valid inequalities, constraints that were not structural to the problem,

but which were satisfied by all valid integer solutions. Similar to Gomory cuts [19], they were used

to reduce the gap between the LP and IP hulls without removing feasible integer solutions. Later,

lazy constraints were introduced, which are cutting-planes that are allowed to cut off feasible integer

solutions.

When solving an integer programming problem, there is some underlying problem that we want

to solve which may not be the same as our current formulation. Lazy constraints are not used to cut

off integer solutions that are feasible in the underlying problem. Rather, they are applied as though

they are constraints that are supposed to be in our current formulation but, for whatever reason, are

absent (see Figure 1.4). In practice, this allows us to formulate a smaller, relaxed problem that may
19
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permit integer solutions that are not feasible in the underlying problem, and to remove such solutions

as required using lazy constraints.

The idea of branch-and-cut predates that of branch-and-bound, with Dantzig applying branch-and-

cut to the TSP in 1959 [31]. Gomory’s paper on general cutting planes for solving integer programming

problems [18] stimulated research into valid inequalities, however there were fewer studies that used

lazy constraints [32–34]. By the 1990s, branch-and-cut was recognised as one of the most important

techniques for solving MIPs, but the solvers of the 1980s were not able to effectively handle row

generation.

In 1991, Grötschel and Holland noted that the code they were using, despite being one of the more

powerful codes of the time, took a long time to update when adding new constraints [35]. “... if the

LP-package used is better suited for a row generation process than [our current solver] is, the total

speed-up obtained by faster recognition procedures might be worth the higher programming effort”. In

the same year, the MINTO solver developed at Georgia Tech was released, and was “the first general

purpose MIP code to make systematic use of cutting-plane techniques”.

In the 2000s, a few notable non-commercial solver packages with branch-and-cut capabilities were

produced, particularly ABACUS (A Branch-And-CUt System) [36] and SCIP (Solving Constraint

Integer Programs) [37]. These solvers allowed users to easily implement branch-and-cut in powerful

solvers when the commercial solvers did not have such support. Around the same time, CPLEX

implemented a branch-and-cut capability that allowed users to add valid inequalities during the

branching process via a callback, a function that is called at nodes of the branch-and-bound tree from

which additional constraints may be added. However, it was not until 2012 that branch-and-cut became

particularly powerful, as both CPLEX and Gurobi implemented full lazy constraint capability.

As mentioned in Section 1.2.5, one type of problem where the use of lazy constraints is often

beneficial is where there may be a number of constraints in the problem that are mostly or wholly

unnecessary. This chapter contains an example problem with a number of different formulations, with

results to show the difference that lazy constraints can make. This problem is the Liner-Shipping

Fleet-Repositioning Problem.

2.2 The Liner-Shipping Fleet-Repositioning Problem

The Liner-Shipping Fleet-Repositioning Problem (LSFRP) is a type of vehicle routing problem that

involves repositioning ships between regular service routes while maximising profit. This is achieved

by visiting ports and delivering cargo while repositioning. However, despite the body of literature

devoted to liner-shipping and its surrounding problems, very little of this research is focussed on the

liner-shipping fleet-repositioning problem.

The first study that explores the LSFRP is by Tierney et al. (2012). In this paper, the authors

solve a simplified version of the LSFRP without cargo flows, empty equipment, or sail-on-service

(SOS) opportunities (discussed further below). Tierney and Jensen continue to explore this problem

and incorporate cargo flows into the model [39]. In Tierney and Jensen (2012) , the authors use a
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mixed-integer program (MIP) in conjunction with a specially constructed graph to solve the LSFRP.

This graph incorporates many of the LSFRP-specific constraints (such as SOS opportunities) so they

can be removed from the model formulation. This approach is able to solve several instances to

optimality, but there are many larger instances where the problem cannot be solved because the solver

runs out of memory or exceeds the maximum CPU time of one hour.

Another approach to solving the LSFRP is proposed by Kelareva, Tierney and Kilby (2014) . In

this study, they solve the full LSFRP with SOS opportunities; however, they do not incorporate cargo

flows into their model. A constraint programming (CP) method is used with lazy clause generation,

and is tested against the MIP in Tierney et al. (2012). After testing the different models on a data

set, the CP method is found to be faster than the MIP for all instances. However, this only occurs

after choosing a search strategy for the particular problem. The authors note that, without sufficient

understanding of the problem and of CP modelling techniques, it is difficult to choose a search strategy

that is fast and successfully finds optimal solutions. Furthermore, the CP method cannot be extended

to allow pre-computations, chaining of SOS, or opportunities to carry empty cargo containers.

A more recent study on the LSFRP is by Tierney et al. (2015), which expands on the work by

Tierney and Jensen (2012). They improve the model, provide a public data set, and use a heuristic

approach. This model is able to incorporate many complex aspects of the LSFRP, including SOS

opportunities, phase-in/phase-out requirements, and flexible arcs. Some of these (SOS opportunities

and phase-in/phase-out requirements) are processed into the graph structure, along with sailing costs

and cabotage restrictions. The MIP forms a “disjoint path problem in which a fractional multi-

commodity flow is allowed to flow over arcs in the vessel paths, along with a small scheduling

component in the flexible nodes” [41].

Much of the state-of-the-art nature of this problem is covered in the book Tierney (2015). A

number of different models are presented, but we are particularly interested in the models with cargo

flows (Chapter 6) and without flexible visitations. Four main models are presented in Chapter 6 of

Tierney’s book [42]: an arc-flow model (6.2), a path-based model (6.3), and the equipment as flows

and demands models (6.4.2-6.4.3). The arc-flow model is a standard MIP that can solve many small

instances, but does not scale well. The path-based model must be implemented using branch-and-price,

as there are too many variables in the larger instances to generate them a priori. The equipment as

flows and demands models are a more interesting approach to modelling the problem.

The path-based model and the equipment as flows and demands models are individually able to

solve the largest instances covered by Tierney (2015), but it is possible to do much better by combining

these methods and applying branch-and-cut. First, we introduce the problem and then explore the

methods for solving it.

2.2.1 Problem description and model formulation

The LSFRP consists of finding sequences of activities that move vessels between services in a

liner shipping network, while maximising profit by trading off ship moving costs and cargo flow
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Figure 2.1: A time-space graph of a service with three vessels. Reprinted with permission from Tierney
et al. (2015)

incomes [41]. “Liner shipping services are composed of multiple slots, each of which represents a

cycle that is assigned to a particular vessel”. The slots contain nodes or ports that must be visited by

vessels at specific times in sequence. When a vessel is assigned a slot, it sails to all of its ports in order

and delivers its cargo. Figure 2.1 shows an example of a service with three slots (represented by the

differently styled lines in the graph) and five ports (a,b,c,d,e). The diagram shows that each slot takes

three weeks to return to the start of the cycle, so three ships would be needed to run this service weekly.

An instance of the LSFRP occurs when transitioning a fleet from one set of services to a new one.

Another aspect of repositioning that needs to be taken into account is the time constraints. The

time at which a ship may begin repositioning is known as the phase-out time. The ship must finish

repositioning by the phase-in time of the goal service. In between these two times the ship is available

for repositioning and is able to undertake a number of activities to reach its goal service and reduce

costs.

An example of this can be seen in Figure 2.1. Three ships are operating a weekly service on a

three week journey, and must phase-in before the circled nodes in weeks 2, 3 and 4. Before the circled

nodes, the ships may undertake repositioning activities and visit nodes not on the new service, but after

the circled nodes, the ships must operate the full service.

The LSFRP is best described using Figure 2.2. This shows a ship that must be repositioned from

its initial service (Chennai Express) to a goal service (Intra-WCSA). During repositioning the vessel

can deliver cargo to ports to offset the cost of moving the ship, thus cargo flows are an important aspect

of the problem. One way to do this is to take advantage of sail-on-service (SOS) opportunities, which

are situations in which a repositioning ship can replace an on-service vessel for part of its service in
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Figure 2.2: Liner shipping network. Reprinted with permission from Tierney et al. (2015)

order to reduce costs (by not having two ships sailing on the same course unnecessarily). There are

two main methods of performing a SOS opportunity: transhipping, where all cargo from the on-service

ship is moved onto the repositioning ship at a port, or parallel sailing, where the two ships visit the

same ports sequentially and the on-service vessel only unloads cargo, while the repositioning vessel

only loads cargo.

Empty containers and flexible arcs

Another way for ships to offset the cost of repositioning is to transport empty containers from ports

with an empty equipment surplus to ports with a deficit. The revenue from performing this type of

activity is calculated as an approximation of the savings from moving the equipment now, as opposed to

at a later date, potentially through a more expensive channel. There are two types of cargo considered

in this problem: dry and refrigerated (reefer). We must differentiate between the two types, since when

transporting cargo the reefer containers must be plugged into a power outlet, which means that ships

will only have a limited reefer capacity. The dry capacity, however, refers to the total capacity of the

ship, as dry containers can be stored in reefer slots. This is not the case when moving empty equipment,

but we still make the distinction as the deficit we are supplying may be for a specific container type.

We use the term flexible visits to denote ports with empty equipment available but no actual cargo

demands. These flexible visits are travelled to via flexible arcs.

There are also various restrictions placed on the cargo carried by repositioning ships such as

trade zones. Trade zones are countries or groups of countries with trade agreements. Often, cargo

cannot flow between trade zones without violating these agreements. To avoid the movement of

cargo violating these trade zone restrictions, the law, or a customer contract, repositioning ships are

disallowed from crossing into other trade zones while carrying cargo. A similar restriction is known as

a cabotage restriction, which prevents international ships from performing domestic cargo services [41].

These are all aspects that need to be considered when modelling the LSFRP. Most of these restrictions

have been incorporated directly into the network of potential ship paths, so they will not be represented

in the MIP formulation.
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For the original model formulation, we refer the reader to the paper by Tierney et al. (2015). We

have maintained consistency in notation from previous studies. We now present a reduced formulation

of the LSFRP.

2.2.2 Reduced MIP

Starting with the arc-flow model described by Tierney (2015) , a reduced version is formulated that

does not incorporate flexible arcs or empty equipment. These aspects of the problem are omitted for

simplicity to allow us to explore the core structure of the LSFRP without added complexity. By noting

the percentage of the public data set that does not include these additional requirements (66%), it can

be seen that the reduced problem is still able to provide much value, as the majority of the instances

do not contain the more complex aspects of the problem. There are more reasons why omitting these

aspects of the problem are reasonable, some of which will be explored in Section 2.2.8.

We now move the ships through a time-space network where each node, also called a visit,

represents a particular port at a particular time. This network is thus acyclic, which will be useful in

Section 2.2.4. Also, no two ships may visit the same node, since they would be at the same port at the

same time. The reduced Liner Shipping Fleet Repositioning Problem is described as follows:

Parameters
S Set of ships.

V Set of visits

V ′ Set of visits minus the graph sink.

A Set of arcs

A′ Set of arcs minus those arcs connecting to the graph sink, i.e. (i, j) ∈ A, i, j ∈V ′.

Q Set of cargo types; Q = {dc,r f}.
M Set of demand triplets of the form (o,d,q), where o ∈V ′, d ⊆V ′, and q ∈ Q

are the origin visit, possible destination visits, and the cargo type respectively.

MOrig
i , (MDest

i ) Set of demands with an origin (destination) visit i ∈V .

uq
s Capacity of vessel s for cargo type q ∈ Q.

vs Starting visit of ship s ∈ S.

r(o,d,q) Amount of revenue gained per TEU of loaded containers carried for the

demand triplet.

cSail
si j Fixed cost of vessel s utilizing arc (i, j) ∈ A′.

cMv
i Cost to move a single TEU on or off a ship at visit i ∈V ′.

cPort
si Port fee associated with vessel s at visit i ∈V ′.

a(o,d,q) Amount of demand available for the demand triplet.

In(i) Set of visits with an arc connecting to visit i ∈V .

Out(i) Set of visits receiving an arc from visit i ∈V .

τ Graph sink, which is not an actual visit.
Variables



2.2. THE LINER-SHIPPING FLEET-REPOSITIONING PROBLEM 25

x(o,d,q)i j Amount of flow of demand triplet (o,d,q) ∈M on arc (i, j) ∈ A′

ys
i j 1 if vessel s sails on arc (i, j) ∈ A, 0 otherwise

Objective

max

{
∑

(o,d,q)∈M

(
∑
j∈d

∑
i∈In( j)

(r(o,d,q)− cMv
o − cMv

j )x(o,d,q)i j

)
(2.1)

−∑
s∈S

∑
(i, j)∈A′

cSail
si j ys

i j− ∑
j∈V ′

∑
i∈In( j)

∑
s∈S

cPort
s j ys

i j

}
(2.2)

Constraints

s.t. ∑
s∈S

∑
i∈In( j)

ys
i j ≤ 1 ∀ j ∈V ′ (2.3)

∑
j∈Out(i)

ys
i j = 1 ∀s ∈ S, i = vs (2.4)

∑
i∈In(τ)

ys
iτ = 1 ∀s ∈ S (2.5)

∑
i∈In( j)

ys
i j− ∑

i∈Out( j)
ys

ji = 0 ∀ j ∈V ′\
⋃
s∈S

vs,s ∈ S (2.6)

∑
(o,d,r f )∈M

x(o,d,r f )
i j ≤∑

s∈S
ur f

s ys
i j ∀(i, j) ∈ A′ (2.7)

∑
(o,d,q)∈M

x(o,d,q)i j ≤∑
s∈S

udc
s ys

i j ∀(i, j) ∈ A′ (2.8)

∑
i∈Out(o)

x(o,d,q)oi ≤ a(o,d,q) ∑
i∈Out(o)

∑
s∈S

ys
oi ∀(o,d,q) ∈M (2.9)

∑
i∈In( j)

x(o,d,q)i j − ∑
k∈Out( j)

x(o,d,q)jk = 0 ∀(o,d,q) ∈M, j ∈V ′\(o∪d) (2.10)

x(o,d,q)i j ≥ 0,ys
i j ∈ {0,1} ∀(i, j) ∈ A′,(o,d,q) ∈M,s ∈ S (2.11)

The objective function maximises the profit of the shipping company. The first line (2.1) calculates

the profit from delivering the cargo by adding the revenue minus the cost to transport the cargo on

and off the ship. This is multiplied by the amount of cargo carried. The second line of the objective

function (2.2) subtracts the sum of the sailing costs and the port fees for each port visited by each ship.

Constraint (2.3) ensures that only one ship visits each port, while (2.4-2.6) conserve the flow of

each ship from its starting port to the sink node. If a ship uses an arc, that arc is assigned a reefer

capacity by (2.7) and a total capacity by (2.8). Constraint (2.9) ensures that cargo can only flow along

an arc if it is on a ship. Constraint (2.10) conserves the flow of cargo from its source node to its

destination by ensuring that if it enters an intermediate node, it must also exit that node.

Note about the formulation

As stated, this model is adapted from the model described by Tierney (2015), however there is an

issue with the original formulation, and thus this formulation. The revenue from serving a demand is
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calculated from the amount of that demand flowing into each potential destination, however there is no

provision for consumption of the demand. Thus, it is possible to pick up a demand and flow it through

multiple destinations, collecting the revenue multiple times.

This is made possible because of the way the x(o,d,q)i j variables are handled: flow conservation

constraints apply to all nodes except the origin and any destinations, and the capacity cannot be

exceeded. Because of this, it is possible to load demand at a destination or carry a demand through a

destination to collect the revenue multiple times. It also seems possible to load more than the available

amount of a demand if it is picked up from a demand point, as that is not constrained.

Having said this, the model works as intended on the data sets used by Tierney (2015). It is unclear

whether this is by chance or by construction, but taking advantage of any opportunities for collecting

demand revenues multiple times comes at a cost of lost opportunities for serving other demands or

increased sailing costs that completely negate the benefits. Should one wish to use this model for

their own purposes, this problem may need to be fixed. In the data used by Tierney (2015), multiple

destinations for an order correspond to the same physical location at different times, and so have the

same unloading cost, so it is always optimal to unload a demand at the first destination encountered.

As such, the constraints

x(o,d,q)i j = 0 ∀i ∈ d,∀ j ∈ Out(i),∀(o,d,q) ∈M (2.12)

will prevent demand from being carried out of one of its destinations. If it is not the case that the

unloading costs at all destinations are the same, then a more substantial modification to the model may

be required.

Tightening the MIP

While the reduced MIP is able to solve a number of smaller instances [41], it is still unable to solve

the last seven instances in the public data set. We note that one of the reasons the MIP struggles on

larger problems is because the linear relaxation of the problem generates solutions in which fractional

ship variables are used to transport all of a demand triplet. In order to prevent this, an additional set of

constraints is added:

x(o,d,q)oi ≤ a(o,d,q) ∑
s∈S

ys
oi ∀i ∈ Out(o),(o,d,q) ∈M; (2.9a)

These constraints prevent ships from moving a greater fraction of the demand triplet than the

fraction of the ship used. This is a disaggregated version of constraint (2.9) from the reduced

formulation, as it is no longer summed over i ∈ Out(o). This is allowed since only one ship can visit

any node, and thus only one arc leaving each node will have a non-zero value of ys
i j in any integer

solution. By the properties of disaggregation, this must give a tighter bound for the linear relaxation.

This improved bound yielded strong improvement on some larger instances, but it is still unable to

solve five instances to optimality within the timeout limit.
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2.2.3 Revised formulation

Despite these tighter constraints, fractional parts of demand triplets can still be shipped, as the new

constraints apply to all the ships rather than individual ships (the RHS is summed over s). To combat

this, we reformulate the model for individual ships by adding a ship index to the x variables. As stated

earlier, an important aspect of the problem to note is that the paths need to be node-distinct, meaning

that only one ship can visit each node. This property means that no product can be transshipped, and

allows the ship index to be added to the x variables. The revised formulation with xs,(o,d,q)
i j variables is

shown below.

Variables
xs,(o,d,q)

i j Amount of flow of demand triplet (o,d,q) ∈M on arc (i, j) ∈ A′ and ship s ∈ S

ys
i j 1 if vessel s sails on arc (i, j) ∈ A.

Objective

max

{
∑

(o,d,q)∈M
∑
s∈S

∑
j∈d

∑
i∈In( j)

(r(o,d,q)− cMv
o − cMv

j )xs,(o,d,q)
i j (2.13)

−∑
s∈S

∑
(i, j)∈A′

cSail
si j ys

i j− ∑
j∈V ′

∑
i∈In( j)

∑
s∈S

cPort
s j ys

i j

}
(2.14)

Constraints

(2.3−2.6)

∑
(o,d,r f )∈M

xs,(o,d,r f )
i j ≤ ur f

s ys
i j ∀(i, j) ∈ A′,s ∈ S (2.15)

∑
(o,d,q)∈M

xs,(o,d,q)
i j ≤ udc

s ys
i j ∀(i, j) ∈ A′,s ∈ S (2.16)

∑
i∈Out(o)

xs,(o,d,q)
oi ≤ a(o,d,q) ∑

i∈Out(o)
ys

oi ∀(o,d,q) ∈M,s ∈ S (2.17)

∑
i∈In( j)

xs,(o,d,q)
i j − ∑

k∈Out( j)
xs,(o,d,q)

jk = 0 ∀(o,d,q) ∈M, j ∈V ′\(o∪d),s ∈ S (2.18)

xs,(o,d,q)
i j ≤ ys

i j min(a(o,d,q),uq
s ) ∀(i, j) ∈ A′,s ∈ S,(o,d,q) ∈M (2.19)

xs,(o,d,q)
i j ≥ 0,ys

i j ∈ {0,1} ∀(i, j) ∈ A′,s ∈ S,(o,d,q) ∈M (2.20)

The objective value is unchanged from the reduced MIP, except now the x variables are also

summed over all ships s ∈ S. Constraints (2.15-2.18) are disaggregated versions of constraints (2.7-

2.10), so there is now one constraint for each ship. Finally, constraint (2.19) is a disaggregated version

of constraint (2.9a), which ensures that for each ship, and on each arc, no more cargo can be transported

than is available or able to be transported on the ship.

Note that the aforementioned problem also exists in this formulation, however it still gives the

correct solutions for the data sets used by Tierney (2015), and the suggested correction can still be

applied by adding the ship index to the z variables. While this formulation does introduce more
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variables into the problem, it also provides a linear relaxation with a tighter bound, which allows it to

solve much faster for larger instances.

2.2.4 Model reformulation

In his book, Tierney also considers a model reformulation that dramatically reduces the number of

variables and constraints in the problem [42]. Instead of the flow of demands on ships and along arcs

using variables xs,(o,d,q)
i j , we consider only the amount of each demand carried on each ship, x(o,d,q)s .

This is possible because the network is acyclic (since it is a time-space network), no transshipment

is allowed, each node may be visited by at most one ship, and demands have a specific origin. This

means each demand may be carried by at most one ship, and if any two demands are ever carried

together, they will always be carried together.

Consider a ship that visits port A and loads some demand from that port. The ship then proceeds to

port B where it loads another demand from this port. Finally, the ship proceeds to port C. Because the

demands from ports A and B were carried together, the sum of demands from A and B cannot exceed

the capacity of the ship on this arc. If demand B is unloaded at port C, it will not be possible to return

to port A to load more demand of type A, and vice versa.

The following formulation uses these ideas originally presented by Tierney (2015), but the notation

is slightly different. We define the set M̄s as the set of all demands (o,d,q) that can be moved by ship

s. By extension, V̄ Orig
sq is the set of all nodes from which ship s can pick up a demand of type q from

M̄s, i.e.

V̄ Orig
sq = {o|(o,d,q) ∈ M̄s}

Finally, we define A(o,d,q) as the set of all arcs (i, j) ∈ A′ across which a demand triple (o,d,q) ∈M

can possibly travel, and Mi j is the set of all demand triples that could possibly travel across arc

(i, j) ∈ A′. We also use the set MOrig
i from the original formulation, which is the set of demands

that originate from i ∈V . Starting with the revised formulation from Section 2.2.3, we modify the x

variables as mentioned above, remove constraints (2.15-2.19), and replace them with the following:

∑
(k,d,q)∈MOrig

k

x(k,d,q)s ≤ ∑
j∈Out(k)
(k, j)∈A′

udc
s ys

k j ∀k ∈
⋃

q∈Q

V̄ Orig
sq ,s ∈ S (2.21)

∑
(k,d,r f )∈MOrig

k

x(k,d,r f )
s ≤ ∑

j∈Out(k)
(k, j)∈A′

ur f
s ys

k j ∀k ∈ V̄ Orig
s,r f ,s ∈ S (2.22)

x(o,d,q)s ≤min
(

a(o,d,q),uq
s

)
∑

j∈Out(o)
(o, j)∈A(o,d,q)

ys
o j ∀(o,d,q) ∈ M̄s,s ∈ S (2.23)

x(o,d,q)s ≤min
(

a(o,d,q),uq
s

)
∑
j∈d

∑
i∈In( j)

(i, j)∈A(o,d,q)

ys
i j ∀(o,d,q) ∈ M̄s,s ∈ S (2.24)
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∑
(o,d,q)∈Mi j∩M̄s

x(o,d,q)s ≤ udc
s ∀(i, j) ∈ A′,∀s ∈ S (2.25)

∑
(o,d,r f )∈Mi j∩M̄s

q=r f

x(o,d,r f )
s ≤ ur f

s ∀(i, j) ∈ A′,∀s ∈ S (2.26)

Constraints (2.21-2.22) ensure that the sum of all demands loaded at any node cannot exceed the

total capacity of the ship, and the sum of reefer demands loaded at any node cannot exceed the reefer

capacity of the ship. Constraints (2.23-2.24) ensure that a demand can only be carried if the ship

passes through the demand’s origin and one of its destinations, and caps the flow of each demand by

the minimum of the demand’s availability and the ship’s capacity for the specific type. Constraints

(2.25-2.26) are the capacity constraints for each arc for all demand types and specifically reefer cargo.

This formulation is now much smaller than the revised formulation. However, there are a few

details to take note of to complete the formulation.

Splitting demand triples

While it is true for a specific path through the network that if two demands are carried together at any

time, they will be carried together until one is unloaded, that does not mean that the two demands must

be carried together in the first place. This can occur if one of the demands has more than one possible

destination. Consider the example in Figure 2.3, where demand A will be picked up from Origin A.

There are two choices: either proceed directly to Origin B, still carrying cargo A, and pick up cargo B,

or proceed to destination A1, unload cargo A and continue to Origin B. In the first case, a capacity

constraint would limit the amount of demands A and B that may be carried together, but in the second

case no such restriction exists.

This means the variables for demand A must be separated into one for each destination, so the

capacity constraints may be applied correctly. We now must search for any demand triples (o,d,q)

that fit the following criteria:

• There are two destinations d1,d2 ∈ d such that d2 is reachable from d1.

• There exists another demand m∗ with origin o∗ such that o∗ is reachable from d1, and d2 is

reachable from o∗.

• There exists a destination d∗ of demand m∗ such that either d∗ is reachable from d2 or vice versa.

• There exists a path between the origins o and o∗ that does not pass through d1.

Figure 2.3: A scenario where the variables for a particular demand triple need to be separated.
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If such conditions are met, then the variables for x(o,d,q)s are split up into x(o,di,q)
s ∀di ∈ d, and an

additional constraint is added:

∑
di∈d

x(o,di,q)
s ≤ a(o,d,q). (2.27)

This constraint enforces the total availability of the split demand. The splitting of such demands

ensures we do not unnecessarily over-constrain the problem. Each demand triple has an associated

revenue and amount, both of which are inherited by the new split variables.

Modifying the objective function

Because we are no longer explicitly calculating which arcs the cargo travels along, we cannot easily

determine which destination it is being delivered to. We assume that cargo is unloaded at the earliest

possible time, that is, if the node i is visited, all demands (o,d,q) where i ∈ d will be unloaded. In the

public data set, each destination in a demand triple is the same physical port — the difference is the

delivery time. This means the unloading cost of each demand triple is the same for all destinations.

This allows us to take the unload cost of any destination from the demand triple. If the destinations

have different unload costs, then it is necessary to split the demand triple as discussed in the previous

section.

2.2.5 Branch-and-price

While the MIP models presented are effective for solving the smaller instances, they do not scale well

and struggle to solve the larger instances. None of the MIP formulations are able to solve the two

largest instances in under one hour. To overcome this, we use a path-based formulation similar to the

ones found in Tierney (2015) and Tyler (2015) . Instead of considering individual arcs for the ships to

travel along, we consider entire paths for the ships from start to finish. This greatly reduces the number

of constraints, as many of them (such as capacity and flow-conservation constraints) are built into the

path variables, so we need only ensure every ship takes exactly one path and no two paths visit the

same node.

The model itself is relatively simple; however, the number of variables is vast. To handle this, we

use branch-and-price, also known as delayed column generation, to generate paths that will improve

our current solution until no more such paths can be found, at which point we have the optimal solution.

We begin with the Restricted Master Problem (RMP), which chooses a path for each ship.

Parameters
P Set of paths

Csp Profit of vessel s sailing on path p (revenue from moving product less the cost of the path)

δisp 1 if vessel s sailing on path p goes through node i ∈V ′, 0 otherwise
Variables

zsp 1 if vessel s sails on path p ∈ P, 0 otherwise
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Objective

max ∑
p∈P

∑
s∈S

Cspzsp (2.28)

Constraints

∑
p∈P

zsp = 1 ∀s ∈ S (2.29)

∑
p∈P

∑
s∈S

δispzsp ≤ 1 ∀i ∈V ′ (2.30)

zsp ≥ 0 ∀s ∈ S,∀p ∈ P (2.31)

The objective is to maximise the sum of the profits for the paths that are chosen. Constraints (2.29)

say each ship is used exactly once, and constraints (2.30) ensure each node is visited at most once.

This is a simple model because many of the complex constraints have been built into the structure of

the paths. The difficulty comes from generating the paths. As there are far too many possible paths to

enumerate a priori , we use branch-and-price to generate paths that could improve our solutions.

To generate new paths, we solve a series of sub-problems, one for each ship, which consist of

constraints similar to (2.3-2.6) and (2.15-2.19). However, the objective function has been modified to

include the dual variables πs and λi associated with constraints (2.29) and (2.30) respectively:

max

{
∑

(o,d,q)∈M
∑
j∈d

∑
i∈In( j)

(r(o,d,q)− cMv
o − cMv

j )xs,(o,d,q)
i j (2.32)

− ∑
(i, j)∈A′

cSail
si j ys

i j− ∑
j∈V ′

∑
i∈In( j)

cPort
s j ys

i j− ∑
(i, j)∈A′

λiys
i j−πs

}
(2.33)

If a solution is found with a positive objective value, then it represents a new path that may improve

the solution to the master problem. The path is then added to the pool of potential paths, and the master

problem is solved again. This continues until no such paths are found, at which point the solution to

the master problem is the optimal solution to the original problem.

In this formulation, the variables zsp are continuous variables, but a solution is only valid if they

are binary, which means we require an integer solution to the master problem. Normally, this would

require branching; however, for the LSFRP, the master problem solutions are naturally integer, and

thus no branching is required. For proof of this, see Tyler (2015). This is one reason column generation

is effective for this problem.

2.2.6 Branch-and-cut

The combination of column generation with the model reformulation is very effective, as shown by

the results in Section 2.2.7. The only downside to this formulation is that there is a vast number

of constraints (2.25-2.26), and many of them are likely to be unnecessary. As such, we can handle
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them as lazy constraints, which makes the implementation a branch-and-price with a branch-and-cut

sub-problem.

When solving the sub-problems, we must check every integer solution for violated capacity

constraints. If a capacity constraint is violated, we add it back in as a lazy constraint and continue

solving. Once the sub-problem has been solved, any capacity constraints introduced are added as

regular constraints for the next time the sub-problem is solved. This leads to another dramatic

improvement, especially for the largest instances. We can similarly handle the capacity constraints of

the reformulated MIP as lazy constraints, which makes that a branch-and-cut implementation.

2.2.7 Results

Computational experiments were performed on a compute cluster running Linux. Each job was

assigned a maximum of 8 cores running at 2.4GHz each, and 56GB of RAM. The instances used are

from the public data set by Tierney et al. (2015). Table 2.1 shows for each instance the number of

ships (|S|), number of nodes (|V |) and arcs (|A|) in the network and the number of potential requests

(|M|).
Seven formulations are compared: the original MIP formulation (MIP), the revised MIP formulation

from Section 2.2.3 (Rev. MIP), the reformulated MIP from Section 2.2.4 (Ref. MIP), the reformulated

MIP with lazy capacity constraints (Lazy MIP), branch-and-price on the revised MIP model (B+P),

branch-and-price on the reformulated model (Ref. B+P), and branch-and-price on the reformulated

model with lazy capacity constraints (Ref. B+P+C). All formulations were implemented using Python

3 as part of the Anaconda distribution (4.1.1) and use the Gurobi 7.0.1 [44] optimisation package.

All software is 64-bit. The maximum runtime for each instance was set to 24 hours for experimental

purposes, but the results reported are capped at 1 hour.

A comparison of the runtimes for each formulation on a number of the instances is shown in Table

2.1. For the smaller instances (numbers up to 32), all formulations are able to solve to optimality

in a few seconds. In most cases, one of the reformulated branch-and-price formulations performs

best. For the larger instances, a clear pattern emerges: Ref. B+P+C is better than Ref. B+P, which in

turn is better than B+P. For the two largest instances, B+P fails to solve in an hour, but it can solve

the instances to optimality in approximately 9200 seconds (2.5 hours). Thus, Ref. B+P performs

10-20× better than the original B+P, and handling the capacity constraints lazily yields another 2-4×
improvement.

The column labelled Capacity cons. contains the number of capacity constraints in the Ref. MIP

and Ref. B+P formulations. This is presented for comparison against the numbers of lazy constraints

added by the Lazy MIP and Ref. B+P+C formulations. The reason for the extra power in the Ref.

B+P+C formulation over Ref. B+P is clear: there are many unnecessary constraints in the model that

we do not consider. A large number of the instances are solved to optimality without ever finding a

violated capacity constraint, and even the largest instances need fewer than 40 lazy constraints added,

a remarkably small number compared to the 100,000 that were originally in the problem.
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One reason for this is that the data is such that there are very few opportunities for a ship to exceed

its capacity since the sizes of the demands are very small compared to the capacity of the ship. As

such, often a capacity violation occurs when many different demands are being carried. By leaving out

all these constraints and adding in only the ones we need and only when we need them, we are able to

solve the sub-problems significantly faster, and thus find the optimal solution much sooner.

The MIP formulations do not scale well with the problem size, with no MIP formulations solving

the two largest instances in one hour. This is to be expected, as the numbers of variables and constraints

in the MIP formulations increase much faster than those of the B+P formulations. However, between

the MIP formulations, we see the same trend as before: the reformulated model is more powerful

than the original model, and the lazy formulation is more powerful again, but the improvement is

less dramatic in this case. This is because we are solving one aggregated problem rather than several

independent sub-problems, so the capacity constraints represent a smaller proportion of the model than

in the B+P formulations.

2.2.8 Discussion

For the LSFRP, applying the capacity constraints lazily is always a benefit for any difficult instances.

While the lazy formulations may perform slower for the smaller instances, this should not be seen as

a problem because they are effectively trivial instances. Again, the significant difference in the time

taken to solve the most difficult instances is due to the reduction in the number of constraints that must

be considered by the solver. This increases the number of simplex iterations that can be performed

each second, and potentially reducing the number of simplex iterations required to process a node,

allowing nodes to be explored more quickly.

The models presented in this chapter are all capable of considering the movement of empty

containers. It is simply a matter of creating a number of demands for them, with specific origins and

destinations. The only problem exists in the data: it is never profitable to carry empty cargo. This is

because the sum of the cheapest loading and unloading costs is greater than the highest revenue from

moving an empty cargo, which means the costs will never be covered by the revenue. By raising the

profitability of moving empty cargo, improved solutions are obtained in a similar amount of time.

Branch-and-price scales far better for this problem than any of the MIP formulations, but the

main reason for this is that the master problem returns naturally integer solutions. If this were not

the case, we would need to implement a branching framework that would slow the process down

considerably. As mentioned in Section 1.2.2, a complete branch-and-price implementation does not

take full advantage of the solvers, which means that, given enough development time, the MIP may

one day be more powerful than the branch-and-price implementation.

Problems with constraints that are mostly unnecessary are some of the easiest to apply lazy

constraints to, as one can simply remove the constraints in question then check said constraints in a

callback whenever an integer solution is found. If one such constraint is violated, add it lazily and

continue solving. However, deciding which constraints to make lazy is more difficult, and relies upon
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the experience and intuition of the modeller.

In the next chapter, we explore a common technique called Benders decomposition which often

benefits from the use of lazy constraints. The use of lazy constraints in the LSFRP only concerns

the feasibility of the solutions, while for Benders decomposition, lazy constraints can also be used to

approximate the objective function. As such, Benders decomposition can be generalised to cover any

problem that may benefit from lazy constraints.
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Chapter 3

Benders Decomposition

For the great doesn’t happen

through impulse alone, and is a

succession of little things that are

brought together.

Vincent van Gogh

In integer programming, many problems can be difficult to solve on useful instances. This means

techniques for decomposing the problems into smaller, easier to manage problems are desired. The

two main options for this are row-generation or column-generation. One of the main techniques is

known as Benders decomposition, so named after Jacques F. Benders [24], and involves relaxing a

difficult MIP by projecting out a number of variables, and instead generating constraints to replace

them, which makes it a row-generation procedure. While the base technique is more than 50 years

old, there have been many improvements suggested over the years, and it appears to be undergoing a

revival as many methods that take advantage of improvements in parallel computing and new software

tools are making Benders decomposition significantly more effective.
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Figure 3.1: Number of papers on Benders decomposition per year according to Clarivate Web of
Science [6]
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3.1 History

The late 1950s and early 1960s were a time of great development in the theory of mathematical

programming. The first hints of branch-and-bound arrived at the start of the 1960s [20], and Gomory’s

cuts for solving mixed-integer programming problems had only just been published [19]; however,

both methods were limited by the size of the problem they could successfully be applied to. There was

still very little published knowledge around how to solve large programming problems with integer

variables.

Benders’ paper from 1962 entitled “Partitioning procedures for solving mixed-variables program-

ming problems” lays out an idea for decomposing difficult problems with a certain structure [24]. In

this paper, Benders decomposition is proposed quite generally, but the author gives a specific example

of a “mixed-integer programming problem in which certain variables may assume any value in a

given interval, whereas others are restricted to integral values only”. Benders decomposition is most

commonly applied to this type of problem.

In his 1972 paper, Geoffrion further generalises Benders decomposition to any problem with a set

of complicating variables, where the optimisation problem is “a much easier optimisation problem in

[the other variables] when [the vector of complicating variables] is temporarily held fixed” [45]. While

this extends the applicability of Benders decomposition beyond mixed-integer programming problems,

the majority of studies involving Benders decomposition concern MIPs, and they will be the focus of

this chapter.

There were only a handful of problems solved using Benders decomposition in the 1970s. During

this decade, much of the focus was on improving the effectiveness of computational solvers. During

the 1980s, more studies on Benders decomposition began to appear with the intention of improving its

practicality. The most influential studies were released by T.L. Magnanti and R.T. Wong.

Magnanti and Wong introduced the idea of Pareto-optimal cuts: cuts that are not dominated by any

other cuts [46]. The definitions and details around Pareto-optimal cuts are explored further in Section

3.4. In their paper, Magnanti and Wong propose a method for generating Pareto-optimal Benders

cuts which is shown to accelerate Benders decomposition, greatly in some situations. Importantly,

they apply Benders decomposition to the Uncapacitated Facility Location (UFL) problem, which is

discussed further in Section 3.3.

Magnanti and Wong continue to demonstrate the ability of their algorithm with studies on network

design [47] and transportation planning [48]. Despite the usefulness of their algorithm, it is not

simple to implement and suffers from issues that affect its performance, such as a dependency on

the Benders sub-problem. Papadakos [49] presents a modified version of the algorithm that removes

its dependence on the Benders sub-problem, giving it more consistent performance. Even with this

improvement, studies that apply Benders decomposition seldom consider or strive for Pareto-optimal

Benders cuts. As we show in Section 3.4, there are alternatives to the Magnanti-Wong method for

generating Pareto-optimal Benders cuts.

There are also a number of survey papers that cover the recent history of Benders decomposition
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more thoroughly than this introduction. Costa (2005) covers a variety of network design problems that

often form the basis of more complicated problems. Rahmaniani et al. (2017) focusses more on the

implementation specifics. Many of the details covered in this chapter have been separately covered by

Rahmaniani et al., but with different context and levels of detail.

Today, there are two main improvements to Benders decomposition that are consistently proving

to be powerful techniques: disaggregation of the Benders sub-problem, and embedding the whole

process in a branch-and-cut framework. Disaggregating the sub-problem (breaking it into multiple,

independent problems) and applying one Benders cut for each sub-problem tightens the solution

space more than using aggregated cuts. For problems where the sub-problems are easier to solve than

the master problem, using a branch-and-cut approach (i.e. implementing the Benders cuts as lazy

constraints) is significantly more efficient.

3.2 Theory

Since all the problems covered in this chapter are MIPs, we present the theory of Benders decomposition

for MIPs of the required structure. The paper by Geoffrion [45] provides a framework for Benders

decomposition in general.

Benders decomposition is applicable to MIPs of the following form:

min
x,y

cT x+ f T y (3.1)

Subject to:

Ax+By≥ b (3.2)

x≥ 0,y ∈ Y (3.3)

where Y is some restricted set of potential solutions. Typically, Y at least constrains y to be integer,

but it also includes any constraints on the y-variables that do not involve the x-variables. The only

reason the x-variables are stated to be continuous is so the sub-problem is an LP, which is beneficial

for reasons that will soon become apparent. If the x-variables are not continuous, there are still ways

of solving the problem using Benders decomposition.

While it is possible for many MIPs to be transformed into this form by arbitrarily partitioning the

variables into two sets, it does not yield any improvement in practice, as the power in using Benders

decomposition comes from exploiting certain properties that are not present in every problem. Benders

notes that the method “... may be advantageous if the structure of the problem indicates a natural

partitioning of the variables” [24]. Over time, this has become known as the following:

The variables y ∈ Y are considered “complicating” variables, as if a solution for them is

known, the problem reduces to a simple linear program that may be efficiently solved

using well-established techniques. [45, 51–54]
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We will consider the case where the problem reduces to an LP, but it may also be a dynamic

program or other optimisation problem, so long as it is convex. It must be convex, because Benders

decomposition works by removing the objective component and all constraints containing the x-

variables, instead approximating their objective contribution by some auxiliary variable, θ . We then

add constraints on the value of this new variable that depend upon the master problem variables, so

as to always provide an underestimate (in the case of minimisation) of the actual contribution of the

x-variables.

The procedure is then to solve the reduced problem, which is smaller and easier to solve, and

when a feasible solution to this problem is found, a sub-problem is solved to ensure the value of θ

correctly estimates the contribution of the x-variables. If it does not, a new cut is added to update

this approximation. This continues until a solution is found to the master problem where θ gives the

correct value, at which point the solution is considered a valid integer solution to the original problem.

First, we begin with the original problem (3.1-3.3). The x-variables are removed from the problem,

and instead their contribution to the objective function is approximated by a new variable, θ . This

gives us the initial Benders master problem (BMP), also known as the relaxed master problem:

min
θ ,y

θ + f T y (3.4)

Subject to:

y ∈ Y (3.5)

This problem is now smaller than the original problem, in that it has fewer variables and con-

straints, and thus should be easier to solve. There are two problems with this: the variable θ begins

unconstrained; and the relaxed master problem may permit solutions that are infeasible in the original

problem. These two issues are covered in Sections 3.2.1 and 3.2.2 respectively.

3.2.1 Optimality

To ensure θ gives the correct objective value for the current master problem solution, y∗, we may need

to add additional constraints. To achieve this, we construct the Benders sub-problem (BSP):

min
x

cT x (3.6)

Subject to:

Ax≥ b−By∗ (3.7)

x≥ 0 (3.8)

Since this is a linear program, we can find its dual program and corresponding dual solutions. The

Benders dual sub-problem (BDSP) is:
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max
u

uT (b−By∗) (3.9)

Subject to:

AT u≤ c (3.10)

u≥ 0 (3.11)

where u is the vector of dual variables. By strong duality, u∗T (b−By∗) = cT x∗, i.e. the optimal

solution to the dual problem is the same as the objective value of the BSP for the current master

problem solution.

If the value of y∗ in the RHS of the BSP were instead y∗+∆y, then the objective value of the

dual problem would become u∗T (b−B(y∗+∆y)). Since y∗ does not appear in the dual constraints

(3.10), u∗ is still a feasible solution, and u∗T (b−B(y∗+∆y))≤ u′T (b−B(y∗+∆y))≤ cT x′, where u′

is the optimal solution to the problem max
u
{uT (b−B(y∗+∆y))|AT u≤ c,u≥ 0} and x′ is the optimal

solution to the problem min
x
{cT x|Ax≥ b−B(y∗+∆y),x≥ 0}. This means that u∗T (b−By) provides

an underestimate of the objective value of the BSP for all master problem solutions y ∈ Y , and the

constraint

θ ≥ u∗T (b−By) (3.12)

is valid. We add this constraint to the master problem to update our approximation. This cut is known

as a Benders optimality cut. Because this provides an underestimate for all potential master problem

solutions, it will not cut off any legal solutions to the original problem. Thus, if a solution to the master

problem is found and the value of θ is equal to the objective of the sub-problem, this is a candidate

solution to the original problem.

This constraint not only corrects the value of the approximation for the current solution, but also

provides information about how the objective value will change as y changes, often providing correct

estimates for a number of other master problem solutions. The effectiveness of Benders decomposition

relies upon the strength of the Benders cuts produced. Notions of dominance of Benders cuts have

been investigated over the past 30 years, and will be covered in Section 3.4.

3.2.2 Feasibility

When removing the sub-problem components from the original problem, the relaxed master problem

is now allowed to take more solutions than the original problem because it is no longer constrained

by the feasibility of the sub-problems. In the ideal case, there exist constraints that are implicit in the

original problem that can be made explicit in the master problem to ensure feasibility. A good example

of where this occurs is the Uncapacitated Facility Location (UFL) problem, which is described in

Section 3.3.

If this is not the case, then at some point we may find the sub-problem is infeasible for a given

master problem solution, y∗. If this occurs, then instead of adding a Benders optimality cut, we must
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add a Benders feasibility cut. This new cut is designed to prevent the master problem from finding

solutions that render the sub-problem infeasible again. There are several different ways of constructing

Benders feasibility cuts.

The first is the traditional Benders feasibility cut. By duality theory, if the BSP is infeasible, then

the BDSP is either unbounded or infeasible. The constraints of the BDSP do not depend upon the

master problem solution, y∗, which means that if the BDSP is infeasible for any master problem

solution, it will be infeasible for all master problem solutions. This in turn means the BSP is infeasible

or unbounded for all master problem solutions, and thus the original problem is either infeasible or

unbounded. So if we assume the original problem has a feasible solution, then whenever the BSP is

infeasible, the BDSP is unbounded.

If the BDSP is unbounded, there is some direction u∗ such that u∗T (b−By∗)> 0 and AT αu∗ ≤ c

for any α ∈ R+, which means we can move in the direction u∗ without ever hitting a constraint. To

prevent this, we add the traditional Benders feasibility cut:

(b−By)T u∗ ≤ 0 (3.13)

which cuts off the unbounded direction. If this cut bounds the dual sub-problem, then it will be

feasible and bounded, and hence the primal sub-problem will be feasible and bounded. This type of

cut is best detailed by Geoffrion [45] and, in conjunction with Benders optimality cuts, can solve any

Benders decomposition problem to optimality given sufficient resources. This qualifier is necessary

since it has been noted that traditional Benders feasibility cuts are ineffective in many cases [55].

The most common applications of Benders decomposition tend to have mostly binary variables in

the master problem, as they represent a number of decisions to be made (open this facility, close that

arc). As such, practitioners of Benders decomposition have started using a new type of feasibility cut,

a combinatorial Benders cut. Introduced by Codato and Fischetti (2006), the idea is to find a minimal

source of infeasibility, called a minimal (or irreducible) infeasible subsystem (MIS or IIS). The Gurobi

documentation concisely describes an IIS:

An IIS is a subset of the constraints and variable bounds of the original model. If all

constraints in the model except those in the IIS are removed, the model is still infeasible.

However, further removing any one member of the IIS produces a feasible result. [44]

Such constraints can often be “removed” by changing the value of a master problem binary variable,

especially in the case of big-M constraints. By adding a constraint that the sum over such binary

variables (or possibly one minus the variables) must be greater-than-or-equal-to 1, we are saying

at least one of these constraints must be relaxed, which is likely to remove the infeasibility. These

constraints often have intuitive explanations and can be constructed using an algorithm if one does not

have the ability to compute an MIS or IIS. An example of these is the sub-tour elimination constraints

of the Travelling Salesman Problem, explored in more detail in Section 4.1.

Note that there may be multiple IISs in a given infeasible problem. This means it may be possible

to add multiple feasibility cuts for the same infeasible problem. These cuts have been shown to be
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more effective than traditional Benders feasibility cuts [2, 52, 55] and are easy to obtain using the

functionality available in Gurobi and CPLEX. All examples of Benders decomposition in this thesis

that require feasibility cuts use combinatorial Benders cuts.

3.2.3 Procedure

The recipe for implementing Benders decomposition has changed over the years, but the general idea

has remained the same. The original algorithm for implementing Benders decomposition is as follows:

1. Start with the original problem

2. Remove x-variables and replace objective contribution with approximation, θ . This new problem

is the Benders Master Problem (BMP)

3. Construct the Benders sub-problem (BSP)

4. Solve the BMP and retrieve the optimal solution, (y∗,θ ∗)

5. Solve BSP for the current solution, (y∗,θ ∗), and retrieve the optimal solution, x∗

6. If BSP is infeasible, add a Benders feasibility cut and go to step 4

7. If cT x∗ = θ ∗ (or approximately equal to), terminate with the optimal solution to the original

problem, (x∗,y∗)

8. Retrieve the dual variables u∗ from the BSP, use them to add an optimality cut to the BMP, and

go to step 4

As mentioned in the introduction to this chapter, there are two main improvements to this algorithm

which have greatly improved the effectiveness of Benders decomposition: disaggregation of the

Benders sub-problem, and embedding the whole process in a branch-and-cut framework.

Disaggregation of the Benders sub-problem

Consider the Benders sub-problem (BSP) (3.6-3.8). If part of the constraint matrix A is block-diagonal,

we can partition this problem into a set of separate optimisation problems, one corresponding to each

block. This occurs frequently in practice, where the sub-problem contains a number of independent

decisions or scenarios that can be solved individually. Assume we can partition the BSP into a series

of sub-problems indexed by j ∈ {1, ...,J}, and A j, c j, (b−By∗) j are the corresponding portions of

data and x j are the relevant variables. Then we have J problems of the form:

min
x

cT
j x j (3.14)

Subject to:
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A jx j ≥ (b−By∗) j (3.15)

x j ≥ 0 (3.16)

Each of these sub-problems now produces corresponding dual variables, which can be used to add

Benders optimality cuts for a variable, θ j. Now, the disaggregated Benders master problem is:

min
θ ,y

∑
j

θ j + f T y (3.17)

Subject to:

θ j ≥ (u∗j
k)T (b−By) j ∀k ∈ {1, ..., |K|},∀ j ∈ {1, ...,J} (3.18)

y ∈ Y (3.19)

where |K| is the number of sets of Benders optimality cuts generated. The benefits from this

formulation are numerous. The first is that the sub-problems are individually easier to solve than

the original sub-problem, and solving multiple smaller sub-problems is often faster than solving one

aggregated sub-problem. The second is that the approximation provided by the collection of θ j is

tighter than the associated aggregated version. This is because the (u∗j
k)T (b−By) j terms are being

maximised individually, then the sum of their maxima is taken to provide the approximation of θ . In

the aggregated version, the (u∗j
k)T (b−By) j terms are first summed together, and then the maximum is

taken. The sum of the maxima will always exceed the maximum of the sums.

Proposition 1. For a set of dual variables u∗, the disaggregated Benders cuts will be tighter than the

aggregated Benders cut.

Proof. Let y′ be an arbitrary solution to the BMP. Then define ak
j = (u∗j

k)T (b−By′) j, that is, the

estimate of the contribution of θ j by cut k. Then θ j = max
k
{ak

j} and θ = max
k

{
∑

j∈{1,...,J}
ak

j

}
. For any

specific j and for every k, ak
j ≤max

k
{ak

j}. Now, summing both sides over j, we have:

∑
j∈{1,...,J}

ak
j ≤ ∑

j∈{1,...,J}
max

k
{ak

j}, (3.20)

or rather:

θ ≤ ∑
j∈{1,...,J}

θ j, (3.21)

so the disaggregated formulation will always be tighter than the aggregated version.

Branch-and-cut

In the majority of problems that are suitable for Benders decomposition, the sub-problems are much

easier to solve than the master problem. In this case, it is far more efficient to embed Benders

decomposition in a branch-and-cut framework. That is, rather than solving the master problem to
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optimality, adding Benders cuts, and solving the master problem again, one simply solves the master

problem once and evaluates the sub-problems at nodes of the branch-and-bound tree, adding Benders

cuts where necessary. Each time a Benders cut is added, the tree is updated appropriately, i.e. nodes

that are now rendered infeasible or non-optimal are removed.

It is difficult to determine who first embedded Benders decomposition in a branch-and-cut frame-

work, but Fischetti attributes it to Miliotios in the 1970s by folklore [57]. One of the first publications

to demonstrate embedding Benders decomposition in a branch-and-cut framework is that by Geoffrion

and Graves in 1974, where they solve the master problem until a feasible solution better than their

current upper bound is found, rather than solving it to optimality [58]. More recently, a number of

studies have implemented Benders decomposition in a branch-and-cut framework and found it to be

very efficient [52, 59, 60]. The main question is when to separate cuts. This is covered in the last

subsection of 3.7.3. The next section contains an example application of Benders decomposition with

details on some of the techniques mentioned.

3.3 The Uncapacitated Facility Location Problem

The Uncapacitated Facility Location (UFL) problem is one of the simplest problems to benefit

from Benders decomposition. Benders decomposition was first applied to the UFL problem by

Balinski [61, 62], and has since been improved upon by others, most notably by Magnanti and

Wong [46] and Fischetti, Ljubić and Sinnl [60]. It is an ideal problem for exposition, not just

because it is simple and its decomposition is intuitive, but also because it allows disaggregation of the

sub-problems.

The UFL problem concerns a set of locations, N, and a set of potential facilities, F . A number

of facilities must be opened, and each location must be connected to a facility. The objective is

to minimise the combined non-negative costs of opening facilities, f j, and connecting locations to

facilities, ci j. The UFL is described as:

Sets
N Set of locations

F Set of potential facilities
Data

ci j Cost of connecting location i ∈ N to facility j ∈ F

f j Cost of opening facility j ∈ F
Variables

xi j 1 if location i ∈ N is connected to facility j ∈ F , 0 otherwise

y j 1 if facility j ∈ F is open, 0 otherwise
Objective

min ∑
i∈N

∑
j∈F

ci jxi j + ∑
j∈F

f jy j (3.22)

Constraints
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∑
j∈F

xi j ≥ 1 ∀i ∈ N (3.23)

xi j ≤ y j ∀i ∈ N,∀ j ∈ F (3.24)

xi j ∈ {0,1},y j ∈ {0,1} ∀i ∈ N,∀ j ∈ F (3.25)

Constraints (3.23) say that each customer must be connected to at least one facility and constraints

(3.24) only allow customers to be connected to open facilities. Note that in this formulation all variables

are binary. It is possible to relax the x-variables to be continuous and the optimal solution will still

be integer. This is easy to see, since if all values of y are binary, for each location i ∈ N, the optimal

solution will have xi j = 1 for the cheapest open facility j ∈ F and all other values of x will be 0.

For the UFL problem, the disaggregation of the Benders sub-problem is intuitive, since if one

knows which facilities are already open, the problem is trivial to solve: connect every location to its

closest open facility. Thus, the job of the BMP is to decide which facilities to open, and the BSP

updates the approximation of the connection costs.

We replace ∑
j∈F

ci jxi j with θi and remove any constraints that contain x-variables. The BMP is thus:

min ∑
i∈N

θi + ∑
j∈F

f jy j (3.26)

Subject to:

∑
j∈F

y j ≥ 1 (3.27)

θi ≥ 0,y j ∈ {0,1} ∀i ∈ N,∀ j ∈ F (3.28)

All of the original constraints have been removed, as they all contain x-variables. To ensure

feasibility of the sub-problems, at least one facility must be open, so we introduce constraint (3.27).

This constraint was implied by constraints (3.23-3.24), but it must now be added explicitly. Note that

this constraint is sufficient to ensure feasibility of all sub-problems, so we will not need to generate

Benders feasibility cuts for this problem.

Solving this problem results in a selection of the potential facilities to open, and the θi variables

give estimates of the connection costs for that selection. Initially, since θi is only constrained to be

non-negative, θi = 0 which is incorrect. We then solve the sub-problems, one for each location i ∈ N:

min ∑
j∈N

ci jxi j (3.29)

Subject to:

∑
j∈F

xi j ≥ 1 (3.30)

xi j ≤ y∗j ∀ j ∈ F (3.31)

xi j ≥ 0 ∀ j ∈ F (3.32)
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(a) Locations (b) Master solution (c) Sub-problem solution

Figure 3.2: Example of UFL problem. (a) Black represents customer locations and red is potential
facilities (b) Green is open facilities and red is closed facilities (c) The customers are connected to
their closest open facilities

The solution to this problem is trivial: xi j is 1 if j is the closest open facility to location i and 0

otherwise. To generate a Benders optimality cut, we must solve the dual of the BSP. Let λi and πi j be

the dual variables associated with constraints (3.30) and (3.31) respectively. Then the dual of the BSP

for location i ∈ N is:

maxλi− ∑
j∈N

πi jy∗j (3.33)

Subject to:

λi−πi j ≤ ci j ∀ j ∈ N (3.34)

λi ≥ 0,πi j ≥ 0 ∀ j ∈ F (3.35)

This problem has an analytic solution, one that can be found without explicitly solving the dual of

the BSP:

λ
∗
i = min{ci j|y∗j = 1}= ci j(i) (3.36)

π
∗
i j = max(0,ci j(i)− ci j) (3.37)

These values have a natural interpretation: λi is the cost of connecting location i to a facility for

the solution y∗, and πi j is the potential saving from connecting location i to facility j. The Benders

optimality cut is thus:

θi ≥ λ
∗
i − ∑

j∈N
π
∗
i jy j, (3.38)

i.e. the cost of connecting location i to a facility is the current cost minus any potential savings.

When these cuts are added to the BMP, the approximation of θi improves and the current master

problem solution is rendered infeasible. As the solver continues to encounter integer solutions, the
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approximations are checked and updated if necessary. This continues until a solution to the master

problem is found where θi = ∑
j∈F

ci jxi j ∀i ∈ N, i.e. the approximations are all correct. This is then

accepted as an incumbent integer solution, and the solver continues to branch-and-bound until the

optimal solution is found.

3.3.1 Implementation details

There are a number of other small improvements to Benders decomposition that are useful in a number

of problems. They are to warm start the model, suggest user heuristics and choose a branching

direction.

Warm start or initial cuts

The master problem of a Benders decomposition is a relaxation of the original model since constraints

and variables have been removed. While this makes it easier to process branch-and-bound nodes for

the smaller model, the solution to the LP-relaxation may be worse, and so more branching may be

required. As part of this, any auxiliary variables that are introduced will start with only the standard

non-negativity constraints (and an upper bound in the case of maximisation problems). This means the

approximations will be wrong for many of the early integer solutions and many Benders cuts will be

added at the beginning.

A way to overcome this is to repair the LP-relaxation by adding some initial Benders cuts. These

may either be sensible Benders cuts to add, as demonstrated in Section 3.5.3 (under the Initial Cuts

subheading), or the more generic warm start. First introduced by McDaniel and Devine, the idea is to

solve the LP-relaxation and add a Benders cut for the (possibly fractional) solution repeatedly [63]. As

the LP-relaxation is faster to solve than the MIP, it quickly builds up a collection of Benders cuts that

close the gap between the LP-optimum of the Benders master problem and the LP-optimum of the

original problem. This is equivalent to adding Benders cuts at the root node of the branch-and-bound

tree, or to solving the LP-relaxation using Benders decomposition.

Once the warm start is complete, it is possible to remove any Benders cuts that are not active (have

a non-zero slack). This leaves the solver with a small set of Benders cuts that give a tight LP-relaxation,

thus minimising the number of constraints in the model at this point without sacrificing progress. There

are scenarios where warm starts do not have a huge impact, but in most problems they are necessary

for Benders decomposition to be more effective than the MIP solvers.

It is also possible to construct warm start cuts analytically, as is done in Section 3.7.4. For some

problems this is a simple task, but for others it can be very difficult. Analytic warm start cuts can

provide strong benefits over default warm start cuts (generated using dual variables returned by the LP

solver) as shown in Section 3.7.5, but it is possible that the algorithm for generating these cuts may be

inefficient enough to remove all benefit from using analytic cuts.

More generally, a warm start refers to adding Benders cuts at the root node of the branch-and-

bound tree, which is usually a fractional solution. We also add Benders cuts at other nodes of the
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branch-and-bound tree, whenever we find an integer solution. It is possible to add Benders cuts at

any node of the branch-and-bound tree, whether it is fractional or integer, so long as the node is

feasible. The main benefit of this is that the tree may be pruned more aggressively, potentially reducing

the amount of nodes that need to be explored. The drawbacks are the extra time spent solving the

Benders sub-problems and the additional Benders cuts being carried by the solver. Often the drawbacks

outweigh the benefits, as discussed at the end of Section 3.7.3.

User heuristics

When adding a Benders optimality cut, we are discarding a solution that is infeasible in the original

problem because the values of the auxiliary variables are incorrect. When this happens, it is possible to

construct a new solution that is feasible in the original problem by keeping the master problem solution,

and setting the values of the approximation variables to the values calculated by the sub-problem(s). If

this solution is better than the incumbent solution, the solver will benefit from knowing it; however,

there are no guarantees that it will find this solution by itself. In these cases, we suggest this solution as

a user-generated heuristic to the solver for consideration. This is very important in the UFL problem,

but it is not always useful, especially if the solver is able to construct these solutions itself.

Branching direction

By default, Gurobi and CPLEX choose which branches to explore in the branch-and-bound tree based

on their analysis. It is possible to override this and choose to always explore a particular branch first,

either up or down. When all the variables in the master problem are binary, these correspond to setting

variables to 1 or 0 respectively. In the context of the UFL problem, setting a variable to 0 corresponds

to forcing a facility to be closed, while setting a variable to 1 forces a facility to be open.

In theory, by forcing a number of facilities to be open, the objective function will close many

of the others, which leads to an integer solution more quickly than forcing facilities to be closed.

When Benders cuts are only added at integer solutions, finding such solutions earlier in the solution

process allows us to cut off parts of the search space earlier, potentially helping to find the optimal

solution more quickly. Thus, setting a branching direction of 1 may yield some benefit. This is

problem-dependent, and relies on one branch being stronger than another.

3.3.2 Results

We now compare three different formulations: MIP, DBD and DBD+. MIP is a direct MIP implemen-

tation, DBD is a standard disaggregated Benders decomposition formulation with no improvements,

and DBD+ is disaggregated Benders decomposition with warm start, removing slack warm start cuts,

user heuristics and a branching direction of 1. All code is implemented in Python 3.5 (64-bit) as part

of the Anaconda 4.1.1 distribution and uses the Gurobi 7.0.1 (64-bit on 8 threads) solver package [44],

running on a distributed computing machine. The machine contains Intel Xeon processors (2.4GHz)
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with 8 cores and 56GB of RAM assigned to each job. This amount of RAM is more than necessary,

and is requested so it is not a constraint. All instances are given 1 hour in which to prove optimality.

Table 3.1 contains a summary of the performance of the three implementations on four different

instance sets. The number of instances in each set is shown in brackets. The instance sets have all been

sourced from the UFLLib [64], a library of UFL problem instances, some of which remain unsolved.

For each of the implementations, we report the number of instances solved to optimality. We also

report the average time in seconds and the average number of branch-and-bound nodes explored by

each implementation. These averages are only taken over instances that were solved to optimality by

all three implementations to provide an accurate comparison of performance.

For the KoerkelGhosh-sym instance set, there is a clear pattern: DBD+ is the strongest implemen-

tation and MIP is the weakest. This is a typical example of how Benders decomposition performs:

applying disaggregated Benders decomposition in a branch-and-cut framework provides a benefit, but

there is more that can be achieved through improvements such as warm starting the solver or supplying

user heuristics.

The Large Duality Gap instance sets are designed specifically to be difficult for branch-and-bound-

based techniques, becoming progressively harder from set A to set C. This is evident in the performance

of the MIP, which solves instances in set A more quickly than set C. Benders decomposition solves

more quickly than the MIP for all instance sets; however, in this case the extra improvements such as

warm-starting and user heuristics do not have a positive impact.

There are some instances where such methods will not make any difference to the solution, and

adding them only wastes time that could have been spent by the solver processing more nodes.

To see this, compare the number of branch-and-bound nodes required to prove optimality for the

KoerkelGhosh instances. DBD+ explores far fewer nodes than DBD, showing that the improvements

had a positive impact. In the Large Duality Gap instances, however, the number of nodes explored

Instance set Formulation Optimal Time (s) Nodes

KoerkelGhosh-sym (45)
MIP 6 2066.76 26331.6
DBD 12 212.47 54800.5

DBD+ 14 45.14 12082.5

LargeDualityGapA (30)
MIP 30 40.63 31354.6
DBD 30 10.48 43161.4

DBD+ 30 12.41 39978.6

LargeDualityGapB (30)
MIP 30 78.73 69969.9
DBD 30 4.91 16725.6

DBD+ 30 6.48 16750.7

LargeDualityGapC (30)
MIP 30 758.36 661190.1
DBD 30 129.26 479610.5

DBD+ 30 157.87 498991.3

Table 3.1: Comparison of three formulations for solving the UFL problem. The number of instances
in each instance set is shown in brackets. Reported are the number of instances solved to optimality,
the average solution time and the average number of branch-and-bound nodes explored across the
instances which all formulations solved to optimality
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by DBD and DBD+ is similar, almost exactly the same in the case of set B. This shows that the

improvements do not help reduce the number of nodes to explore, and thus do not assist in finding the

optimal solution more quickly.

Another comparison of the number of branch-and-bound nodes is interesting. In theory, Benders

decomposition is a relaxation of the original model, which means the LP-relaxation will be less tight

and thus more branch-and-bound nodes may need to be explored to find the optimal solution. If

the solver is warm-started, then the LP-relaxation will be tighter and fewer nodes would have to

be explored, but potentially still more than the original model, as the LP-optimum of the Benders

model cannot possibly be better than that of the original model. Exploring more nodes in Benders

decomposition is not necessarily a problem because the master problem is much smaller than the

original model, and nodes are explored much more quickly, often orders of magnitude faster.

The KoerkelGhosh-sym instance set behaves mostly as one would expect: Benders decomposition

requires more nodes to be explored than the MIP, and warm-started Benders decomposition explores

fewer than Benders decomposition without a warm start. The interesting part is that warm-started

Benders decomposition explores fewer nodes than the MIP. The same behaviour is evident in the Large

Duality Gap instance sets B and C, where Benders decomposition explored far fewer nodes than the

MIP.

We speculate the reason for such behaviour is the automated cutting planes and other improvement

techniques built into the solvers. The master problem shared by the Benders models is much smaller

than the original MIP model, so Gurobi is able to apply cutting planes and pre-processing algorithms

more effectively, leading to a tighter model that solves faster. This behaviour is evident elsewhere,

such as in the network maintenance scheduling problem [3] explored in Section 3.5. It is also possible

that this behaviour is a result of finding good integer solutions earlier, thus cutting off more sub-trees

that do not contain the optimal solution. This may occur due to the above reasons, or simply because

the model is much smaller.

3.3.3 Cut selection for the UFL

The Benders optimality cuts for the UFL can be identified by which facility j was chosen for the value

of λi (i.e. λi = ci j), usually the closest open facility to i. We say this cut is centred about facility j.

Balinski [62] and Magnanti and Wong [46] note that one could also use the cut centred about the

second-closest open facility, as it gives the correct estimate for the current solution. So which cut

should we use?

Consider a toy example with four potential facilities, labelled A, B, C and D. Facilities B and D are

currently open, and facilities A and C are closed. The cost of connecting location i to facilities A, B,

C and D are 20, 30, 40 and 50 respectively. We first consider the cut centred about the closest open

facility, then the cut centred about the second-closest open facility.

The current closest facility to i is B at a distance of 30, so λi = 30. If facility A were opened,

then i could be served for a cost of 20 instead, so πiA = 10. Since the cost of connecting location i to
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facilities B, C and D is no less than the cost of connecting to B, πi j = 0 for j ∈ {B, C, D}. This gives

the following Benders cut:

θi ≥ 30−10yA, (3.39)

which says that the cost of connecting location i to a facility is at least 30, unless we open facility

A, at which point it will cost only 20. This cut will give the correct objective value whenever at least

one of A or B is open. However, if A and B are both closed, this cut will underestimate the objective

value, since i will be connected to either C or D, both of which cost more than 30.

If we take the cut centred about D, then we get λi = 50, πiA = 30, πiB = 20, πiC = 10 and πiD = 0.

This yields the Benders cut

θi ≥ 50−30yA−20yB−10yC, (3.40)

which also gives the correct objective value of 30 for the current configuration (since yA = yC = 0).

This cut also holds as long as at most one facility in {A,B,C} is open. If more than one facility from

this set is open, the cut will underestimate the objective value.

In general, a Benders cut for the UFL centred about a facility j will give the correct approximation

as long as no more than one facility closer than j is open, and at least one facility at a distance less

than or equal to j is open. This means that each Benders cut will give the correct objective value for a

number of solutions and underestimate it for all others. Since there are only 24 = 16 master problem

solutions for this toy example, we can compare these two different cuts to see which master problem

solutions they give the correct objective value for.

Figure 3.3 shows which master problem solutions are covered by the cuts centred about facilities

B and D. The black squares represent the only infeasible master problem solution. Notice that the

cut centred about B covers more master problem solutions than the one centred about D, but the cut

centred about D covers solutions not covered by the cut centred about B. Is the cut centred about B

stronger than the cut centred about D? Are any Benders cuts for the UFL stronger than the others?

With the exception of the trivial cut (θi ≥ min
j

ci j), the answer is no, and the reason is because all

Benders cuts for the UFL problem are Pareto-optimal.

yA 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
yB 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
yC 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
yD 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Centred about B X X X X X X X X X X X X
Centred about D X X X X X X X

Figure 3.3: Comparison of master problem solutions where different cuts give the correct objective
value
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3.4 Pareto-optimality

The notion of Pareto-optimality of Benders cuts was introduced by Magnanti and Wong [46]. The

following definitions are derived from their original description, and are taken directly from [2]. The

Benders cuts are all defined for a minimisation problem, but the theory holds for a maximisation

problem by reversing inequalities appropriately. Let θ̄ a(y) be the value that Benders cut a attains for

master problem solution y.

Definition 4. A Benders cut θ ≥ θ̄ a(y) dominates another Benders cut θ ≥ θ̄ b(y) if θ̄ a(y) ≥ θ̄ b(y)

for all feasible y ∈ Y and is a strict inequality for at least one feasible y.

An example of this can be seen in Figure 3.4. This definition leads to the following lemma:

Lemma 1. If θ ≥ θ̄ a(y) is dominated by θ ≥ θ̄ b(y), then for all feasible solutions yi where θ̄ a(yi) =

θ̄ ∗(yi), θ̄ b(yi) = θ̄ ∗(yi),

where θ̄ ∗(yi) is the objective value of the sub-problem for master problem solution yi. This is easy

to see, since θ̄ b(yi)≤ θ̄ ∗(yi) by definition of being a valid Benders cut, and θ̄ b(yi)≥ θ̄ a(yi) = θ̄ ∗(yi)

by definition of being a dominating cut. An example of this can be seen in figure 3.4, where the cut

centred about B covers a superset of the solutions covered by the cut centred about A.

Definition 5. A Benders cut θ ≥ θ̄ a(y) is Pareto-optimal if it is not dominated by any other Benders

cuts.

A Pareto-optimal cut is then a Benders cut that is not strictly worse than any other Benders cut. This

is, in a sense, the strongest type of cut one can construct. There are a number of methods for finding

Pareto-optimal Benders cuts in the literature. The first was introduced by Magnanti and Wong [46], in

the same study that introduced the concept of Pareto-optimality of Benders cuts. This method was

later improved by Papadakos [49] and has since been used in a number of different studies [52, 65–67].

3.4.1 Pareto-optimality of the UFL Benders cuts

For the UFL problem, the Benders cut centred about j (except when j is the closest-possible facility)

is Pareto-optimal. This was shown for the aggregated sub-problem case by Magnanti and Wong [46] in

yA 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
yB 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
yC 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
yD 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Centred about A X X X X X X X X
Centred about B X X X X X X X X X X X X

Figure 3.4: Comparison of master problem solutions where different cuts give the correct objective
value. Note that the cut centred about A is dominated by the cut centred about B
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the context of their Pareto-optimal cut generation scheme, but it can also be shown for the disaggregated

sub-problems, and in a more intuitive manner.

To prove a cut is Pareto-optimal, begin by assuming that it is not, i.e. there exists another Benders

cut that dominates it. Then, by Lemma 1, this dominating cut must give the correct objective value

at all the same points as the original Benders cut. By finding enough of these points, the dominating

cut reduces to the original cut. Since a cut cannot dominate itself, there does not exist any cut that

dominates the original Benders cut, and thus it is Pareto-optimal. We now provide such a proof for the

Benders cuts of the UFL problem.

First, define the following subsets of facilities for convenience:

O = { j ∈ F |y∗j = 1} The set of open facilities

C = { j ∈ F |y∗j = 0} The set of closed facilities

L+
i = { j ∈ F |ci j ≥ ci j(i)} The set of facilities at least as far away as j(i)

L−i = { j ∈ F |ci j < ci j(i)} The set of facilities closer than j(i)

Note that O∪C = F and L+
i ∪L−i = F . Denote the Benders cut centred about j for location i as

θi ≥ λ̄i− ∑
j∈F

π̄i jy j. Assume there exists a cut that dominates this cut, say θi ≥ λ̂i− ∑
j∈F

π̂i jy j. For the

current master problem solution, the Benders cut gives the correct objective value of ci j(i), so the

dominating cut must also give the correct objective value, that is:

ci j(i) = λ̂i− ∑
j∈O

π̂i j. (3.41)

Now, if a facility j∗ ∈ L+
i ∩C is opened, the objective value does not change as the closest open

facility has not changed. The Benders cut gives the correct objective value at this point (since π̄i j = 0

whenever ci j > ci j(i)), so the dominating cut must also give the same objective value, i.e.

ci j(i) = λ̂i− ∑
j∈O

π̂i j− π̂i j∗. (3.42)

If we subtract equation (3.42) from equation (3.41), we find that π̂i j∗ = 0, the same value as the

Benders cut. Similarly, if any facility j∗ ∈ L+
i ∩O \ { j(i)} is closed, the objective value does not

change and the Benders cut gives the correct objective value in this case. So the dominating cut must

also give the same value, that is

ci j(i) = λ̂i− ∑
j∈O

π̂i j + π̂i j∗. (3.43)

This time, subtracting equation (3.41) from equation (3.43) gives us π̂i j∗ = 0, again the same value

as the Benders cut. So we have that π̂i j = π̄i j ∀ j ∈ L+
i \{ j(i)}. Note that L−i ∩O = /0, since otherwise

there would be an open facility closer to i than j(i), which is impossible by definition.

For any facility j∗ ∈ L−i ∩C, if that facility is opened, it will be the new closest facility, and so the

objective value will change to ci j∗ . The Benders cut gives the correct objective value in this case, and
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so must the dominating cut, that is:

ci j∗ = λ̂i− ∑
j∈O

π̂i j− π̂i j∗. (3.44)

Now, subtracting equation (3.44) from equation (3.43), we find that ci j(i)− ci j∗ = π̂i j∗ , and since

ci j(i) > ci j∗ , π̂i j∗ = π̄i j∗ . So now π̂i j = π̄i j ∀ j ∈ F \{ j(i)}. If we now consider the scenario where a

facility j∗ ∈ L−i ∩C is opened and the facility j(i) is closed, the objective value will be ci j∗ , and the

Benders cut will give the correct objective value for this point, so the dominating cut must also give

the correct objective value, or:

ci j∗ = λ̂i− ∑
j∈O

π̂i j− π̂i j∗+ π̂i j(i). (3.45)

Subtracting equation (3.45) from equation (3.44) shows that π̂i j(i) = 0, the same as the Benders cut.

Finally, considering the original solution, the Benders cut and dominating cuts are equal, so we have:

λ̄i− ∑
j∈O

π̄i j = λ̂i− ∑
j∈O

π̂i j (3.46)

= λ̂i− ∑
j∈O

π̄i j (3.47)

∴ λ̄i = λ̂i, (3.48)

and thus the dominating cut is exactly the Benders cut. Since a cut cannot dominate itself, there

are no cuts that dominate the Benders cut, and thus it is Pareto-optimal. This proof considers the cut

centred about j(i), but since the master problem solution, and hence j(i), is arbitrary, this proof applies

to all such Benders cuts on the condition that the closest possible facility is closed. If this was not the

case, one could not select a j∗ ∈ L−i ∩C to finish the proof, and the cut in this case happens to be the

trivial cut.

The same method for proving Pareto-optimality appears in the paper by Pearce and Forbes [2],

shown in Section 3.7. It is also useful for finding algorithms that generate Pareto-optimal Benders cuts

analytically. One benefit to generating Benders cuts this way is that it does not require the solution of

multiple (or in the case of the UFL, any) LPs.

The usefulness of generating Pareto-optimal cuts compared to simply using the dual variables

returned by the LP solver varies depending upon the problem. In some cases, they may make a small

difference; in others they are almost necessary for finding solutions to large instances. The only time

using them is not beneficial is when they give little improvement over the default cuts and it takes a

large amount of time to compute them.

Benders decomposition is useful for a range of problems and the remainder of this chapter will

consider a few examples of such problems. The first example is the Maximum Total Flow with

Flexible Arc Outages (MaxTF-FAO) problem, which schedules the maintenance of arcs in a network

to minimise the impact on the flow through that network over a number of time periods. Benders
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decomposition is useful for this problem because the time periods are independent, and so the sub-

problem can be disaggregated by time. There are a few other problems with a similar structure that

would also benefit from Benders decomposition.

The second example is the Dynamic Uncapacitated Facility Location and Network Design Problem

(DUFLNDP), which is an extension of the UFL problem. In this problem, customers must be served by

facilities, but their connections are no longer direct. Instead, a network is constructed and the demands

must be routed to facilities. This problem also controls the network over multiple time periods, where

the flows in each time period are independent of each other. This means the sub-problems can be

disaggregated by customer and time periods.

Lastly, we generalise the work on the DUFLNDP and describe a class of problems that are likely

to benefit from Benders decomposition.
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3.5 Paper: Disaggregated Benders Decomposition for Solving a

Network Maintenance Scheduling Problem

Abstract

We consider a problem concerning a network and a set of maintenance requests to be under-

taken. The aim is to schedule the maintenance in such a way as to minimise the impact on the total

throughput of the network. We embed disaggregated Benders decomposition in a branch-and-cut

framework to solve the problem to optimality, as well as explore the strengths and weaknesses

of the technique. We prove that our Benders cuts are Pareto-optimal. Solutions to the linear

programming relaxation also provide further valid inequalities to reduce total solving time. We

implement these techniques on simulated data presented in previous papers, and compare our

solution technique to previous methods and a direct mixed-integer programming formulation. We

prove optimality in many problem instances that have not previously been proven.

3.5.1 Introduction

Network design and scheduling problems are an important area of study, particularly as they have

widespread practical applications. Examples of these problems include minimising the cost of main-

taining a network [68], restoring a damaged network [69] or extending an existing network [65]. In

practice, networks are often large, and optimising their design can be difficult and time-consuming.

Industry is always interested in any improvements to operations that result in reduced costs.

Benders decomposition is a powerful technique for breaking a difficult mixed-integer program

(MIP) into smaller, easier-to-solve problems [24]. It has been successfully applied to a number of

problems, particularly network design and facility location problems. This technique is especially

powerful when the sub-problems can be disaggregated to allow us to add stronger disaggregated

Benders cuts [52, 60]. Magnanti and Wong [48] show that the use of Pareto-optimal cuts with

Benders decomposition can improve convergence time by up to 50 times over other Benders cuts.

In 2008 Camargo et al. apply disaggregated Benders decomposition to the design of hub-and-spoke

networks [70]. Tang and Jiang use disaggregated Benders decomposition to solve a capacitated facility

location problem with existing facilities that can be removed or extended [65], and Lusby, Muller and

Petersen use disaggregated Benders decomposition for scheduling the maintenance of power plants in

France [71].

Embedding Benders decomposition into a branch-and-cut framework can lead to significant

improvements [60, 72]. Thanks to recent advancements, many state-of-the-art solvers now allow users

to add their own cuts in the branch-and-bound framework. For Gurobi and CPLEX, this feature is

known as lazy constraints. By supplying a “user callback”, one can add additional constraints at each

node of the branch-and-bound tree. This allows us to claim the advantages inherent in using both

branch-and-cut and the modern solvers multi-processing and parallel-computing abilities.
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Network design and scheduling problems are perfect candidates for Benders decomposition,

because they can be separated into sub- and master problems. The sub-problems for these problems

involve computing the maximum flow through the network, and the master problem handles the

higher-level design of the network in order to have the largest flow subject to design constraints.

Disaggregated Benders decomposition can be applied if the flow at any time is independent of the flow

at other times. This often makes the solution of large network design problems easier [48, 72].

We consider a problem of performing maintenance on a network to minimise the impact on total

flow through the network over time. Boland et al. (2014) solve this problem to near-optimality

using heuristics. In this paper we show this problem can be solved to optimality in many cases

using disaggregated Benders decomposition embedded in a branch-and-cut framework. The problem

formulation we use is similar to that of Boland et al. (2014), with different notation and a necessary

change to one constraint. Our main contributions are the implementation of Benders decomposition to

this network maintenance scheduling problem, a proof of Pareto-optimality of the Benders cuts used,

and a discussion of the benefits of using Benders decomposition.

The networks considered by Boland et al. (2014) are rail networks for moving coal from the Hunter

Valley to shipping terminals in Newcastle. The arcs of the network represent railway lines and the

nodes are junctions, where it is possible to choose which direction to take. In the real network, the

shipping terminal is comprised of different machines and railways that are also modelled as being part

of the same network, and similarly have maintenance jobs assigned to them. Note that the presented

approach can be applied to any situation where a network is to be modified over a set of time periods,

and the flow in each time period is independent of the flow at all other times.

The remainder of this section will be a short description of the max-flow min-cut theorem, which

is useful in solving this problem. In Section 2, we define the problem and present the formulation.

Section 3 is where we describe the use of Benders decomposition and lazy constraints to separate and

solve the problem. We also examine a scenario that makes this problem more difficult to solve, and

prove the Pareto-optimality of our Benders cuts. In Section 4, we present our results and compare

them to those found by Boland et al. (2014), as well as to a direct MIP implementation in our version

of Gurobi. Section 5 contains concluding remarks.

Max-flow min-cut theorem

The max-flow min-cut theorem was discovered and proven by Elias, Feinstein and Shannon [73], and

independently by Ford and Fulkerson [74]. We will use the nomenclature from Elias, Feinstein and

Shannon [73] in talking about the max-flow min-cut theorem.

A cut-set of a network is defined as a set of arcs which, when removed, prevents all flow from the

source to the sink. This does not necessarily have to make the graph disconnected, because arcs are

allowed to flow backwards, but there will be no complete path flowing forwards from the source to the

sink. A simple cut-set is a cut-set that would no longer be a cut-set if any arc was omitted from it.

The value of a cut-set is the sum of the capacities of all arcs in the set. A minimal cut-set is a cut-set

with the smallest value of all possible cut-sets of the network.
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With these definitions, we can state the max-flow min-cut theorem, which we have paraphrased

from Elias, Feinstein and Shannon [73]:

Theorem 1. The maximum possible flow from the source to the sink through a network is equal to the

minimum value among all simple cut-sets.

For proof of this theorem we refer the reader to the original paper by Elias et al. [73]. We use

this theorem to place bounds on the flow of the network based on the availability of arcs that are in a

simple cut-set, especially the minimum cut-set.

3.5.2 Problem definition

We start with a network G = (N,A) where N is the set of nodes and A is the set of directed arcs.

Without loss of generality, we assume the network has only one source and one sink, and that there

is a directed arc from the sink to the source, denoted arc ã. If this is not the case, an augmented

network can be constructed by adding two new nodes: the global source and global sink. Directed

arcs are added from the global source to all original sources, and from all original sinks to the global

sink. Finally, the global sink is connected to the global source by arc ã, which measures the total flow

through the network. All arcs added to the original network must have a sufficiently high capacity so

as to not affect the maximum flow through the network.

We have a set of maintenance requests that must be performed. Each request r ∈ R has a release

time Rer, a deadline Der and a duration Durr. We assume a work crew will be available for each job

regardless of where in the time window the job occurs. If maintenance is being performed on an arc,

the flow along that arc must be 0. If the arc is open, the flow must not exceed the arc capacity, ua.

The problem maximum total flow with flexible arc outages (MaxTF-FAO) is now as follows:

Sets
N Set of network nodes

A Set of network arcs, A⊆ N×N, and A 3 a = (a0,a1)

T Set of time periods

R Set of maintenance requests

Ra Set of maintenance requests to be performed on arc a ∈ A
Data

ua Capacity of arc a ∈ A

δ−(i) Set of arcs entering node i ∈ N

δ+(i) Set of arcs leaving node i ∈ N

Durr Duration of maintenance job r ∈ R

Rer Earliest time job r ∈ R can be started

Der Deadline for job r ∈ R
Variables
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xat Flow over arc a ∈ A at time t ∈ T

yat 1 if arc a ∈ A is operational at time t ∈ T and 0 if it is undergoing maintenance

zrt 1 if maintenance request r ∈ R starts at time t ∈ T and 0 otherwise

Maximise ∑
t∈T

xãt (MIP-OBJ)

Subject to:

∑
a∈δ−(i)

xat− ∑
a∈δ+(i)

xat = 0 ∀i ∈ N,∀t ∈ T (MIP1)

xat ≤ uayat ∀a ∈ A,∀t ∈ T (MIP2)
Der−Durr+1

∑
t=Rer

zrt = 1 ∀r ∈ R (MIP3)

yat + ∑
r∈Ra

min{t,Der}

∑
t ′=max{Rer,t−Durr+1}

zrt ′ = 1 ∀a ∈ A,∀t ∈ T (MIP4)

xat ≥ 0, yat ∈ {0,1}, zrt ∈ {0,1} ∀a ∈ A,∀t ∈ T,∀r ∈ R (MIP5)

The objective (MIP-OBJ) is the sum of flow across ã, which measures the total flow of the network,

over the considered time periods. Constraints (MIP1-MIP2) ensure that flow into and out of a node

are the same, and flow along any arc does not exceed the capacity. Constraints (MIP3) ensure every

maintenance job is performed exactly once, and constraints (MIP4) say if a maintenance job is currently

operating on arc a at time t, then yat = 0 (the arc is closed), otherwise yat = 1 (the arc is open). Finally,

(MIP5) ensures all x variables are non-negative and all other variables are binary.

As in Boland et al. (2014), we make the assumption that no two jobs in Ra for any a can overlap.

This allows us to describe constraint (MIP4) as an equality, rather than an inequality. The importance

of this is that if no maintenance is being performed upon an arc at a certain time, constraints (MIP4)

will force the relevant arc to be open at that time. This does not change the optimal solution of the

problem, but it may help when applying Benders decomposition. Boland et al. (2014) prove that this

problem is NP-Hard.

3.5.3 Disaggregated Benders decomposition and lazy constraints

In this problem, the continuous variables xat only occur with integer variables in one constraint: the

capacity constraint (MIP2). This allows us to apply Benders decomposition by separating out the

continuous variables into a sub-problem, and approximating the solution to the sub-problem with a

new variable θ . The result of this is a smaller, more relaxed problem that can be explored faster.

This decomposition has a natural interpretation. The master problem finds the optimal maintenance

schedule given the estimates of the network throughput, and the sub-problems calculate the actual

throughput given the network configuration. Because the flow through the network at each time

t ∈ T is independent of the flow at other times, we further break up the problem by disaggregating

the sub-problems in t, so we solve one sub-problem for each time period. This is an important step,
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because without disaggregation, Benders decomposition performs poorly, as is discussed in the results

section.

Given a feasible solution for yat found by the master problem, denoted by y∗at , we solve the

sub-problems for each time period. Each sub-problem is of the form:

max xãt ′ (SP-OBJ)

Subject to:

∑
a∈δ−(i)

xat ′− ∑
a∈δ+(i)

xat ′ = 0 ∀i ∈ N (SP1)

xat ′ ≤ uay∗at ′ ∀a ∈ A (SP2)

xat ′ ≥ 0 ∀a ∈ A (SP3)

for every t ′ ∈ T . These are small linear programs (LPs) that are easily solved by any good

optimisation software package. Using a commercial solver to solve these as LPs takes a negligible

amount of time and allows us to easily extract the information we require. Solvers that are specialised

in solving network flow problems exist, but their use may only provide marginal benefits. To apply

Benders decomposition, we must find the dual to this sub-problem, also known as the primal problem.

Let πi be the unconstrained dual variable associated with constraints (SP1) and γa ≥ 0 the dual variable

associated with constraints (SP2). The dual problem is then:

min ∑
a∈A

uay∗at ′γa (DP-OBJ)

Subject to:

(πa0−πa1 + γa)≥ 0 ∀a ∈ A\{ã} (DP1)

πã0−πã1 + γã−1≥ 0 (DP2)

γa ≥ 0 ∀a ∈ A (DP3)

This problem is the minimum cut problem [75]. As ã has a large objective coefficient (larger than

any other cut-set of the network), γã = 0 in any optimal solution. To satisfy (DP2) with γã = 0, we

must set πã0 = 1. The nodes are then partitioned into two sets, P1 and P2, where πi = 0, ∀i ∈ P1 and

π j = 1, ∀ j ∈ P2. Note the global source is in P1 and the global sink is in P2. For all arcs that go from

P1 to P2, γa = 1, and for all other arcs, γa = 0. The partitions are chosen so the combined capacity of

the connecting arcs is minimised. In practice, these values are returned by the solver when the primal

problem is solved.

We approximate the solutions to the sub-problems with new variables in the master problem, θt ′ .

For each t ′ ∈ T , any feasible solution of the dual problem provides a valid upper bound on the objective

of the dual problem, and hence the objective of the primal problem. Thus, for an optimal dual solution

γ∗, our Benders optimality cut is given by:

θt ′ ≤ ∑
a∈A

uayat ′γ
∗k

at ′, ∀k ∈ {1...K},∀t ′ ∈ T (BOC)
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where K is the number of times we have added Benders optimality cuts. We now present the

Benders master problem for the disaggregated Benders decomposition formulation for the MaxTF-FAO

problem:

Maximise ∑
t∈T

θt (MP-OBJ)

Subject to:

θt ≤ ∑
a∈A

uayatγ
∗k

at ∀k ∈ {1...K},∀t ∈ T (BOC)

Der−Durr+1

∑
t=Rer

zrt = 1 ∀r ∈ R (MP1)

yat + ∑
r∈Ra

min{t,Der}

∑
t ′=max{Rer,t−Durr+1}

zrt ′ = 1 ∀a ∈ A,∀t ∈ T (MP2)

θt ≥ 0, yat ∈ {0,1}, zrt ∈ {0,1} ∀a ∈ A,∀t ∈ T,∀r ∈ R (MP3)

The master problem includes all constraints from the original MIP that do not contain xat variables.

The contribution of the xat variables to the objective function is approximated by the new variables θt .

While exploring the branch-and-bound tree, at each integer solution, the values of θt are compared to

the actual maximum flow of the given network configuration. For each t ∈ T , if the approximation

given by θt is incorrect, we add a new Benders cut to the problem, which we add as a lazy constraint.

Thus, we may add up to |T | Benders cuts at each integer solution, however in practice we add many

fewer. This is how Benders decomposition is embedded in a branch-and-cut framework.

An advantage of the disaggregation of the flow problems is they now only depend on the configura-

tion of arcs yat ′ for each t ′ ∈ T . As such, we store solutions to these flow problems, where the key is the

vector (yat ′,∀a ∈ A). While solving linear flow problems is fast, recalling the solution from memory is

faster and only marginally increases memory usage of the solver. This is especially important for this

problem, because there will often be many duplicates of specific flow problem instances. The number

of times we solve and recall flow problems will be shown in the results section for some cases, as well

as a comparison of the impact on solving time. There are several other improvements we make to

increase the effectiveness of the solver.

Initial cuts

We begin by considering the case where all arcs are turned on, i.e. (yat = 1,∀a ∈ A,∀t ∈ T ). This

gives an upper bound on the flow through the network in any case, because turning an arc off cannot

possibly increase the total flow. The set of arcs that have a non-zero dual variable associated with their

capacity constraints ({a|γ∗a > 0}) is a “minimum cut-set” from the max-flow min-cut theorem [73]. In

other words, they are bottlenecks of the network, since turning any of them off will directly affect the

total flow through the network.
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Figure 3.5: Example of placing cuts on bottlenecks. Numbers next to arcs are of the form: ArcID -
capacity (flow). Dashed lines are arcs whose associated dual variables are non-zero

This is not the only cut-set of the network. We can find other cut-sets by increasing the capacity of

all arcs in the original cut-set to an amount higher than arc ã. This may increase the maximum flow of

the network. However, if the total flow is not equal to the capacity of ã, we can identify another cut-set

using the new dual variables. By repeating this process until the total flow is equal to the capacity of ã,

we can add multiple initial constraints to assist the solver.

Figure 3.6: A layered network. The edges

are labelled by ArcID (capacity). The two

layers have capacities of 10 and 20

Consider the trivial case in Figure 3.5. To start with,

the arc with capacity 10 is the bottleneck. It is the only

arc with a non-zero dual variable, so the initial cut will

be θt ≤ 10y2,t for every t. Next, we change the capacity

of this arc to be larger than that of the total flow arc (i.e.

101). When we solve the flow problem again, we see arc

1 will be the bottleneck. Since it is the only arc with a

non-zero dual variable, we add another cut θt ≤ 20y1,t for

every t. We increase the capacity of this arc as before,

calculate the solution to the new flow problem, and find

the total flow arc is now the bottleneck. When this occurs,

we are finished adding initial cuts.

Both these initial cuts are valid, since turning off ei-

ther of these arcs will restrict all flow through the network

and θt = 0. For larger problems, the bottlenecks will

consist of multiple arcs, and the cuts provide information

about how closing arcs in those bottlenecks affects the

flow.

Consider now the less-trivial example in Figure 3.6.

This is a layered network, where the sum of the capacities

of arcs 3-6 is 10 and of arcs 7-10 is 20. In this case the initial cut-set will be arcs 3-6 since they form
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the minimum cut-set. The cuts we add will be:

θt ≤ 2y3,t +3y4,t +4y5,t + y6,t . ∀t ∈ T

Because this is a minimum cut-set by the max-flow min-cut theorem, cutting any of these arcs will

reduce the total flow through the network. When we increase these capacities and solve the maximum

flow problem again, we find the second cut-set of arcs 7-10. We then add the cuts:

θt ≤ 4y7,t +8y8,t +5y9,t +3y10,t , ∀t ∈ T

which are also valid. With these initial cuts, we find a feasible solution to the master problem. We

then solve the problem as before, except now we start with a tighter LP bound.

User heuristics

Another potential improvement is user-suggested heuristics. While the MIP solver is exploring nodes,

adding Benders cuts will cut off the current solution because the values of θt are too high. When

this happens, we construct a feasible solution with the same values of yat and zrt , but set θt equal

to the solutions to the sub-problems that were solved, and suggest this to the solver as a heuristic

solution. In our experiments, it has in some cases led to significant jumps in reducing the optimality

gap, particularly on larger problems.

Warm start

Finally, we implement what is known as a “warm start”, where we relax the integrality constraints and

run the main algorithm to add Benders optimality cuts (BOC). First suggested by McDaniel and Devine

(1977), a warm start can often improve the initial bound of the Benders master problem [52, 76]. Due

to the relaxation of the Benders master problem, the optimal objective value of the linear relaxation of

the master problem will be higher than that of the original problem. By adding Benders optimality cuts

based on the solution to the linear relaxation, we tighten the master problem, reducing the objective

value of the LP-relaxation.

We continue adding Benders cuts and solving the linear relaxation until the objective value found

by the relaxed problem stops decreasing, or no more Benders cuts are added. Once this occurs, we

restore the integrality constraints and solve the problem once more. The results of this are a tighter LP

bound and possible improvements in the solving time of the MIP. However, the time it takes to solve

the relaxed problem multiple times must be taken into account.

Strength of the LP-Relaxation

Any job r ∈ R can start during the time window [Rer,Der-Durr+1]. If the size of this window is larger

than the duration of the job, the LP-relaxation of the problem provides a weaker bound. This is because

it is possible to fractionally assign values to zrt and thus have arcs fractionally open for more than the
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duration of the maintenance. The result of this is a weaker LP bound on the objective value and thus a

longer solving time, which applies to all MIP implementations.

Consider the example of a job r where Rer = 0, Durr = 10 and Der = 29. This job could start at

times t ′ ∈ [0,20]. We are only considering the scheduling constraints (MIP3-MIP4) here. When the

variables yat and zrt are allowed to be continuous, it is possible for zrt to take values of 1
3 at times 0, 10

and 20, and 0 elsewhere. Because in constraint (MIP4) we sum the zrt over values of t ′ within Durr

time periods previous to t, at every t ∈ [Rer,Der],

∑
r∈Ra

min{t,Der}

∑
t ′=max{Rer,t−Durr+1}

zrt ′ =
1
3
.

This implies that

yat +
1
3
= 1, so ∀a ∈ A,∀t ∈ T

yat =
2
3
. ∀a ∈ A,∀t ∈ T

This means the arc the job is being performed on will be fractionally closed for the entire time

between Rer and Der, whereas in an integer solution it must be fully closed for Durr. If closing this

arc results in a change in the minimum cut-set of the network, but fractionally closing the arc does not,

the relaxed problem will not properly reflect the impact on the objective value from closing this arc.

Instances with this property are thus more difficult to solve.

Algorithm details

We include the pseudo-code for our algorithms to give a brief idea of how our implementations are set

up. Algorithm 1 is the main procedure, which includes potential calls to the sub-routines PRE-CUTS

and WARM START, depending on whether or not they are being used. When we talk about building

models, we are referring to creating a Model object in Gurobi [44] and attaching all relevant variables

and constraints.

Because we disaggregate the sub-problems in time, and they are all identical, we only need to

build one model and use it to solve the flow sub-problems for all time periods. The results of these

sub-problems are stored in a hash table, Y. For any time t ′, (yat ′ , ∀a ∈ A) will be the configuration of

arcs of the network, i.e. which arcs are open and which are closed. The configuration (yat ′ , ∀a ∈ A) is

the key to a hash table entry that holds a tuple. The first value is the total flow through the network

and the second is a vector (γa, ∀a ∈ A) of the dual variables associated with the capacity constraints of

each arc.

When we require the solution to a sub-problem for a certain configuration of arcs, we first check

to see if we have already solved it. If yat ′ is a valid key to the hash table, we simply recall the tuple

stored in that entry. If that particular configuration has not been solved, we pass the values yat ′ to the
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Algorithm 1 Main Procedure

Initialise information about Network and Jobs: N,A,ua,R,Ra,T
Create empty hash table Y to hold solutions to Sub-Problems
Build Sub-Model and Master Model
Initialise Sub-Model variables xa and Master Model variables yat ,zrt
Set yat = 1, ∀a ∈ A, ∀t ∈ T
OPTIMISE Sub-Model for one time value
Add constraints: θt ≤ x∗ã, ∀t ∈ T

if Pre-cuts then
Run procedure PRE-CUTS

if LP-Relax then
Run procedure WARM START

Run procedure OPTIMISE MASTER MODEL

Algorithm 2 OPTIMISE MASTER MODEL
OPTIMISE Master Model with callback MMCB
MMCB:
if Found new incumbent solution then

for all t ′ ∈ T do
Retrieve values of y∗at ′ and pass to Sub-Model
if not y∗at ′ in Y then

OPTIMISE Sub-Model
Y[y∗at ′]← (xã, (γa, ∀a ∈ A))

else
(xã, (γa, ∀a ∈ A))← Y[y∗at ′]

θ̄t ′ ← xã
if θt ′ > xã then

Add lazy constraint θt ′ ≤ ∑
a∈A

uayat ′γa

if USE HEURISTIC then
if ∑

t∈T
θt > ∑

t∈T
θ̄t then

Suggest θt = θ̄t ∀t ∈ T as heuristic solution

Algorithm 3 PRE-CUTS
Retrieve dual variables from Sub-Model (γa, ∀a ∈ A)
while not γã > 0 do

Add constraints θt ≤ ∑
a∈A

uayatγa, ∀t ∈ T

for all a ∈ A do
if γa > 0 then

ua = uã +1
OPTIMISE Sub Model
Retrieve dual variables from Sub-Model (γa, ∀a ∈ A)

Reset values of (ua, ∀a ∈ A)
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Algorithm 4 WARM START
Relax integrality constraints for yat and zrt
while True do

OPTIMISE Master model without callback
for all t ′ ∈ T do

Retrieve values of (yat ′ , ∀a ∈ A) and pass to Sub-Model
OPTIMISE Sub-Model
if θ ′t > xã then

Add constraint θ ′t ≤ ∑
a∈A

uayat ′γa

if Objective has not improved, time limit expired or max iterations reached then
Exit While

Enforce integrality constraints for yat and zrt

sub-problem model and solve the max-flow problem. We then store the results of this in the hash table

under the key yat ′ .

Algorithm 2 describes the user callback for computing and adding the Benders optimality cuts

inside the branch-and-bound tree. The last “if” statement of Algorithm 2 is where we suggest a user

heuristic solution to the solver. Algorithm 3 implements the initial cut method described in Section

3.5.3, and Algorithm 4 is the warm start described in Section 3.5.3.

Proof of Pareto-optimality of Benders cuts

It has been shown that the use of Pareto-optimal cuts can greatly improve the convergence rate of

Benders decomposition [46, 48, 49, 65]. Pareto-optimal cuts are especially powerful when there is

degeneracy in the sub-problems of the Benders decomposition, which is the case in network design

problems [48]. The definitions of dominating and Pareto-optimal cuts we use come from Magnanti

and Wong [46], but are modified to match our problem.

Since these cuts are disaggregated in time, we will omit all t parameters for simplicity. This means

we will consider θ instead of θt , and likewise xa, ya, γa. Since our Benders cuts depend only upon our

y variables, we write them in a general form θ ≤ θ̄ k(y), where θ̄ k(y) = ∑
a∈A

uayaγk
a and k ∈ {0, ...,K}

represents the number of different Benders cuts.

Definition 6. A Benders cut θ ≤ θ̄ k(y) dominates another Benders cut θ ≤ θ̄ l(y) if θ̄ k(y)≤ θ̄ l(y) for

all feasible y and is a strict inequality for at least one feasible y.

The contrapositive of this is that if there exists a feasible solution y∗ such that θ̄ k(y∗) > θ̄ l(y∗),

then θ ≤ θ̄ k(y) does not dominate θ ≤ θ̄ l(y).

Definition 7. A Benders cut θ ≤ θ̄ k(y) is considered Pareto-optimal if it is not dominated by any other

cuts.

That is to say, if for any other Benders cut θ ≤ θ̄ l(y) one can find a feasible solution y∗ such that

θ̄ k(y∗)< θ̄ l(y∗), then θ ≤ θ̄ k(y) is Pareto-optimal.
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Observation 1. For a given network configuration ya and its primal and dual flow solutions xa and γk
a ,

the set Ak = {a ∈ A|γk
a = 1} ⊂ A must constitute a simple cut-set of the original network.

This comes from the max-flow min-cut theorem. This is necessary for the Benders cut generated

by Ak to be Pareto-optimal. If Ak is not a cut-set, the Benders cut generated by Ak is not a valid cut. We

show this by closing all arcs in Ak and opening all others. Since Ak is not a cut-set, it is still possible for

flow between the source and the sink to occur, so θ > 0. However, we also have that θ ≤ ∑
a∈Ak

uay∗a = 0.

If the set Ak is a cut-set but not a simple cut-set, there exists an arc a′ ∈ Ak such that Ak \{a′} is still a

cut-set. Let Al = Ak \{a′}, which means Al ∪{a′}= Ak. We now compare the Benders cuts generated

by these two sets:

θ ≤ ∑
a∈Al

uaya < ∑
a∈Al

uaya +ua′ya′ = ∑
a∈Al∪{a′}

uaya = ∑
a∈Ak

uaya.

So the Benders cut θ ≤ θ̄ l(y) dominates θ ≤ θ̄ k(y), and thus the Benders cut generated by Ak

cannot be Pareto-optimal. Using this we show that all the Benders cuts we generate are Pareto-optimal.

Theorem 2. Given a simple cut-set Ak, the Benders cut θ ≤ ∑
a∈Ak

uaya = θ̄ k(y), is Pareto-optimal.

Proof. The cut-set Ak does not have to be minimal in the original network. Now, for any other Benders

cut θ ≤ θ̄ l(y), we have another cut-set Al = {a ∈ A|γ l
a = 1} ⊂ A, and Ak 6= Al . If we compare these

two Benders cuts, we get

θ ≤ ∑
a∈Ak

uaya = θ̄
k(y), and

θ ≤ ∑
a∈Al

uaya = θ̄
l(y).

For θ ≤ θ̄ k(y) to be Pareto-optimal, we need to find a solution y∗ such that θ̄ k(y∗) < θ̄ l(y∗).

Because Ak 6= Al , we choose an arc a′ such that a′ ∈ Al and a′ /∈ Ak. Now we can take the solution

y∗a =

0, a ∈ Ak

1, otherwise,

which is to turn off all arcs in Ak and open all other arcs. Our Benders cuts now look like:

θ ≤ ∑
a∈Ak

uay∗a = 0, and

θ ≤ ∑
a∈Al

uay∗a ≥ ua′ > 0.

So θ ≤ θ̄ l(y) does not dominate θ ≤ θ̄ k(y). Since Al is arbitrary, we have that θ ≤ θ̄ k(y) is

Pareto-optimal.



3.5. SOLVING A NETWORK MAINTENANCE SCHEDULING PROBLEM 69

3.5.4 Results

We test our implementation on the same data as Boland et al. (2014), using all combinations of the

improvements described in Section 3.5.3. All our code is implemented in Python 3.5 (64-bit) as part

of the Anaconda 4.1.1 distribution and uses the Gurobi 6.5 (64-bit on 8 threads) solver package [44],

running on a distributed computing machine. Python has an in-built hash table functionality called

dictionaries. The machine contains Intel Xeon processors (2.4GHz) with 8 cores and 24GB of RAM

assigned to each job. All instances are given 1 hour in which to prove optimality, with the exception of

the real-world instances, which are given 2 hours.

Data we collect includes the total run time of the program, the optimality gap, the number of

branch-and-bound nodes processed and how many times the sub-problem was solved and recalled

from memory. For the warm start, we also record the number of warm start iterations performed.

When comparing solving times of the programs over instances of differing difficulty, we use the shifted

geometric mean with shifting parameter 10s, as it focuses on the ratios between solving times, and

helps to “prevent the hard instances from dominating the reported result” [?]. For a list of n solving

times, ti, where i ∈ {1, ...,n}, the shifted geometric mean with shift parameter h is given by

SGM = exp

[
1
n

n

∑
i=1

ln(ti +h)

]
−h. (SGM)

Because ua ∈ N for our data sets, all feasible solutions will have integer objective values. This

allows us to set a termination condition for the MIP gap, since an absolute gap of less than one is

sufficient to prove optimality. Without this condition, in some rare cases the solver finds the optimal

solution in less than 10 minutes, and then spends vast amounts of time trying to close the gap by

exploring hundreds of thousands of nodes. Since this is unnecessary, we will terminate the program if

the absolute gap is less than 0.999.

Comparing our results with those of Boland et al. (2014) is not a simple task. As they use a

straight MIP formulation in CPLEX and a number of heuristics, it is difficult to report optimality gaps.

For the heuristics, the optimality gap is computed using the best upper bound found by the CPLEX

implementation, which is not proving optimality in many cases. This means their optimality gaps

are over-estimates, and their heuristics may be closer to optimality than reported. As such, we will

compare our results to a direct MIP formulation in Gurobi.

Simulated data

Each of the three constructed data sets from Boland et al. (2014) has eight networks of increasing size,

and each network has 10 randomly-generated lists of maintenance requests, giving 80 instances per

instance set. For all instances, the number of jobs per arc is between 5 and 15, and the duration is

between 10 and 30 time steps. For the first instance, the number of possible starting times for each job

ranges between 1 and 35, whereas in the second instance set, each job has between 25 and 35 potential

start times. The second instance set is thus more difficult to solve in general, because there is a much

higher chance of having jobs where the potential starting window is larger than the duration of the job,



70 CHAPTER 3. BENDERS DECOMPOSITION

Table 3.2: Comparison of MIP and DBD implementations on simulated networks. For each instance
set and each network, the average solving time and number of instances solved to optimality are shown.

1 2 3 4 5 6 7 8
Instance set 1

MIP
Time (s) 1691.8 3606.6 55.5 3612.9 3617.6 3613.4 3625.9 3215.1
Solved 6 0 10 0 0 0 0 2

DBD
Time (s) 21.3 57.7 8.3 1540.1 3600.1 933.4 2633.0 927.3
Solved 10 10 10 7 0 9 3 8

DBD+PC
Time (s) 18.0 61.3 10.7 1611.9 3600.1 605.5 2667.1 846.2
Solved 10 10 10 7 0 10 3 8

DBD+WS
Time (s) 22.5 73.3 8.5 1517.3 3600.1 1073.6 2536.2 935.7
Solved 10 10 10 7 0 10 4 8

DBD+HE
Time (s) 17.8 64.1 12.2 1851.9 3600.1 730.7 2681.8 874.6
Solved 10 10 10 6 0 10 3 9

Instance set 2

MIP
Time (s) 3255.7 3607.0 57.2 3614.1 3617.7 3613.8 3626.3 3634.8
Solved 1 0 10 0 0 0 0 0

DBD
Time (s) 57.4 3418.3 11.0 2899.6 3600.7 3600.2 3314.2 1560.2
Solved 10 3 10 2 0 0 1 7

DBD+PC
Time (s) 52.2 3598.6 12.3 2944.8 3600.6 3600.1 3301.6 865.0
Solved 10 1 10 2 0 0 1 8

DBD+WS
Time (s) 55.6 3425.4 11.3 2924.6 3601.6 3600.2 3600.3 1126.7
Solved 10 1 10 2 0 0 0 8

DBD+HE
Time (s) 53.4 3402.3 15.2 2919.0 3602.5 3600.1 3261.8 1094.5
Solved 10 2 10 2 0 0 1 8

Instance set 3

MIP
Time (s) 9.0 25.7 14.6 155.6 219.5 83.7 749.8 591.9
Solved 10 10 10 10 10 10 10 10

DBD
Time (s) 3.1 4.9 5.3 10.6 16.1 11.3 27.8 32.4
Solved 10 10 10 10 10 10 10 10

DBD+PC
Time (s) 3.5 5.4 6.1 12.0 16.6 13.7 30.2 36.0
Solved 10 10 10 10 10 10 10 10

DBD+WS
Time (s) 3.3 5.2 5.4 11.1 16.8 11.9 31.2 34.5
Solved 10 10 10 10 10 10 10 10

DBD+HE
Time (s) 4.0 5.9 7.0 13.3 20.4 13.9 30.0 39.6
Solved 10 10 10 10 10 10 10 10

which causes the problem discussed in Section 3.5.3. Finally, there is a third instance set where the

number of possible starting times for each job is between 1 and 10. This is an especially easy case

because there will almost never be a job with the aforementioned problem.

The single most important requirement for solving any of these problems is disaggregation of

the sub-problems. Applying standard Benders decomposition without any separation of the sub-

problem results in performance worse than that of the direct MIP implementation. Where the MIP

implementation may solve within seconds, the Benders decomposition implementation terminates

after 1 hour with an optimality gap of a few percent. However, applying disaggregated Benders

decomposition gives a significant speed increase over the MIP, and thus an even greater increase over

standard Benders decomposition.

Table 3.2 contains a comparison of MIP and DBD with each of the three main features: pre-cuts
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Table 3.3: Comparison between direct MIP implementation in Gurobi and disaggregated Benders
decomposition implementation with recall but no other features (DBD). For each instance set, there are
80 instances. Reported are the number of instances solved to optimality and the number of instances
where the LP-Relaxation is solved (LPR) by the MIP, the shifted geometric mean of solving times for
instances that are solved by both methods, the geometric mean of optimality gaps for instances that are
not solved by either and the fraction of CPU time spent solving the sub-problems in the callback

Instance set 1 2 3

MIP
Completed (LPR) 18 (80) 11 (69) 80 (80)

S.G.M. Time (s) 138.86 58.27 87.20
Avg. Gap (%) 0.673 1.565 -

DBD

Completed 57 33 80
S.G.M. Time (s) 13.03 10.90 11.90

Avg. Gap (%) 0.046 0.179 -
Avg. Callback Fraction 0.0198 0.0135 0.0596

Table 3.4: Comparison of disaggregated Benders decomposition with and without saving solutions to
sub-problems and recalling them when they reoccur. We report the number of times each technique
solves fastest or to a smaller optimality gap, the number of instances solved to optimality and the
shifted geometric mean of the times in seconds for the instances where both algorithms solve to
optimality

Without Recall With Recall
Instance set Wins S.G.M. Time (s) Completed Wins S.G.M. Time (s) Completed

1 26 90.33 58 54 81.93 57
2 30 69.76 33 50 57.89 33
3 1 17.39 80 79 11.90 80

(+PC), warm start (+WS) and user-suggested heuristics (+HE). Shown are the arithmetic means of

the solving times for each network and each instances set for each method, as well as the number of

schedules (out of 10) solved to optimality for each. In all cases, DBD outperforms MIP, however the

usefulness of each improvement on their own is less clear.

Table 3.3 shows the difference between the direct MIP and disaggregated Benders decomposition

(DBD). The MIP fails to solve many instances from sets 1 and 2, and for the problems it does solve, it

has a significantly higher solving time. There are 11 instances in set 2 for which the MIP can not solve

the LP-relaxation within 1 hour. All instances solved by the MIP are solved by DBD, but DBD solves

three times as many instances in sets 1 and 2 as does the MIP. For the instances not solved by either

implementation, DBD manages to close the optimality gap significantly better than MIP, by an order of

magnitude in all cases. Even for the easiest instances (instance set 3), DBD is able to prove optimality

in a fraction of the time of the direct MIP. This shows that disaggregated Benders decomposition is

significantly more efficient than solving the direct MIP for this problem, and is able to solve many

instances to optimality.

The first improvement is the saving and recalling of solutions to the sub-problems using a hash

table. Table 3.4 compares two cases, using disaggregated Benders decomposition with and without the

recall feature. The three statistics reported are: the number of times each case is faster or solved to a

lower optimality gap; the shifted geometric mean of the run times in seconds for instances where the
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Table 3.5: Comparison of number of flow problems solved and recalled for networks and instance
sets. We report the number of flow problems solved and recalled averaged over 10 schedules for each
network and instance set, as well as the fraction of flow problems solved

Network
Instance set 1 2 3 4 5 6 7 8

1
Solved 3231 7494 3668 15735 24160 16981 31046 24293

Recalled 28739 42790 13328 46701 62044 49272 53407 29900
Fraction 0.102 0.151 0.221 0.254 0.282 0.259 0.365 0.419

2
Solved 5404 14749 4245 30526 37926 43339 48533 36784

Recalled 38721 70469 12350 70217 71496 87960 74913 38063
Fraction 0.123 0.174 0.273 0.311 0.348 0.331 0.390 0.460

3
Solved 1420 2082 2298 3539 4515 3661 5270 5203

Recalled 13246 15001 10596 16276 16801 17854 19063 18129
Fraction 0.098 0.124 0.183 0.181 0.214 0.172 0.220 0.229

Table 3.6: Comparison of disaggregated Benders decomposition with and without adding initial cuts.
We report the number of times each technique solves fastest or to a smaller optimality gap, the number
of instances solved to optimality and the shifted geometric mean of the times in seconds for the
instances where both algorithms solve to optimality

Without Initial Cuts With Initial Cuts
Instance set Wins S.G.M. Time (s) Completed Wins S.G.M. Time (s) Completed

1 44 81.93 57 36 79.52 58
2 40 66.77 33 40 56.99 32
3 74 11.90 80 6 13.20 80

solver finds the optimal solution in both cases; and the number of instances in each set that solve to

optimality in each case.

The only plus for the “without recall” case is that it solves one more instance to optimality in

instance set 1 than when the solver uses the recall feature. This can be attributed to the possibility of

finding alternate dual solutions, and hence Benders cuts, and thus taking a different solution trajectory

that allows the solver to find the solution more quickly. All other data suggests using the recall feature

is better than not using recall. It wins more than half the time, with lower average run times. Using the

recall feature is significantly better on the easiest instances, and less so on the harder instances. All

future algorithm comparisons will use the recall feature.

Table 3.5 shows how often the same flow problem occurs in various instances. For each instance

set and network, the average number of flow problems solved and recalled are shown, as well as the

fraction of times a network flow problem is solved as opposed to recalled from memory. In all cases,

more solutions are recalled than solved, and in the smaller instances, as many as 90% of sub-problems

have already been solved for other time periods.

The next feature we consider is adding initial cuts as described in Section 3.5.3. The results in

this case are less obvious, with initial cuts having a smaller impact than the recall feature. As the

easiest instances solve so quickly, adding initial cuts only slows down the procedure, with 74 of the 80

instances solving faster without initial cuts. For the more difficult instances, it is evenly split in terms
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Table 3.7: Comparison of disaggregated Benders decomposition with and without adding user heuristics
and using a warm start. The number of times each technique solved fastest or to a smaller optimality
gap, the number of instances that were solved to optimality and the shifted geometric mean of the
times in seconds for the instances where both algorithms solved to optimality are reported

Without Heuristics With Heuristics
Instance set Wins S.G.M. Time (s) Completed Wins S.G.M. Time (s) Completed

1 52 81.93 57 28 91.88 59
2 51 61.15 33 29 61.28 31
3 74 11.90 80 6 12.58 80

Without Warm Start With Warm Start
Instance set Wins S.G.M. Time (s) Completed Wins S.G.M. Time (s) Completed

1 48 78.16 57 32 78.08 57
2 52 75.53 33 28 75.61 33
3 75 11.90 80 5 14.41 80

of the number of wins, but the average solving time is smaller when using initial cuts. This means

using initial cuts is faster in the cases when they win, and only slightly slower when they lose.

The use of user-suggested heuristics or a warm start, as described in Section 3.5.3, do not improve

the performance of Benders decomposition for small instances of this problem. Often adding these

features adds extra computational effort for little benefit. The features have the least negative impact

on instance set 2, the hardest of the simulated instances. Using a warm start is slightly more beneficial

than user heuristics, particularly for instance set 1.

We also test all combinations of the features on the simulated instance sets. None of the com-

binations have a substantial impact on the time taken to solve problems or the number solved to

optimality. For the larger, real-world instances, this is not the case, so we show the results for all

possible combinations.

While Benders decomposition does exhibit poor convergence in these instances, it is still possible

to prove optimality in many cases, as well as find good solutions quickly. The key features that

enable this are the disaggregation of the sub-problem and embedding Benders decomposition inside a

branch-and-cut framework.

Number of branch-and-bound nodes

One particularly interesting result is the number of branch-and-bound nodes processed by Gurobi in

the MIP and DBD models. Since the Benders master problem is a relaxation of the original MIP, we

expect it to process branch-and-bound nodes more quickly, because it is a smaller model with fewer

variables and constraints. Also, we know the LP-relaxation of the Benders master problem can be no

tighter than the original MIP, and thus one could reasonably expect that to solve the Benders master

problem to optimality would require exploring more branch-and-bound nodes than in the case of the

MIP. Our results show the opposite.

Figure 3.7 compares the numbers of branch-and-bound nodes explored by MIP and DBD for each

instance in instance set 1. The dashed line represents equality: points on this line are instances where
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(a) Neither (b) DBD but not MIP (c) Both

Figure 3.7: Comparison of the number of branch-and-bound nodes explored by the MIP and DBD
implementations for instance set 1. (a) Instances where neither DBD nor MIP solve to optimality (b)
Instances where DBD solves to optimality but MIP does not (c) Instances where both DBD and MIP
solve to optimality

(a) Neither (IS 2) (b) DBD but not MIP (IS 2) (c) Both (IS 3)

Figure 3.8: Comparison of the number of branch-and-bound nodes explored by the MIP and DBD
implementations for instance sets 2 and 3. (a) Instances in set 2 where neither DBD nor MIP solve to
optimality (b) Instances in set 2 where DBD solves to optimality but MIP does not (c) Instances in set
3 where both DBD and MIP solve to optimality

DBD and MIP explore the same number of nodes. Points above the line represent instances where

DBD explores more nodes than MIP, and points below the line are instances where MIP explores more

nodes than DBD. The instances are also separated by which methods solve them to optimality.

To start, there are no instances solved by MIP and not by DBD. Figure 3.7a contains instances that

are not solved to optimality by either method in the 1-hour time frame. All points are above the line,

which means DBD explores more nodes than MIP. That is to say, given a fixed amount of time, DBD

consistently processes more nodes than MIP. This lines up with our expectations.

Figure 3.7b represents instances where DBD solves to optimality, but MIP does not. This means

each of these points is further to the left, but no lower than they would be if both solvers are allowed to

run to optimality. The majority of the points are below the line, and the ones above the line are likely

to move below it if MIP is given more time to run. Figure 3.7c shows instances where both methods

solve to optimality. In all but one case, DBD uses fewer nodes than MIP.

Figure 3.8 shows the same trend for instance sets 2 and 3. Note that for instance set 2, the only

instances MIP solves to optimality are from network 3, all of which are solved to optimality without
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Table 3.8: Comparison of implementation performance for 2010 real-world instance. Optimality gap
(in percent), best solution and best upper bound are reported for all eight combinations of the three
main techniques

Without Initial Cuts With Initial Cuts
No Heuristics Heuristics No Heuristics Heuristics

No Warm Start
% Gap 3.70 5.22 15.38 4.54
Best Soln. 136.15 134.98 125.28 135.08
Best Bound 141.19 142.03 144.54 141.22

Warm Start
% Gap 13.74 7.25 8.52 5.57
Best Soln. 124.12 131.57 130.52 133.87
Best Bound 141.18 141.11 141.64 141.33

Table 3.9: Comparison of implementation performance for 2011 real-world instance. Optimality gap
(in percent), best solution and best upper bound are reported for all eight combinations of the three
main techniques

Without Initial Cuts With Initial Cuts
No Heuristics Heuristics No Heuristics Heuristics

No Warm Start
% Gap 6.33 4.62 8.64 6.17
Best Soln. 140.43 139.26 134.00 139.93
Best Bound 149.33 145.70 145.57 148.57

Warm Start
% Gap 8.68 3.98 7.65 6.17
Best Soln. 134.17 140.10 135.07 136.96
Best Bound 145.81 145.67 145.40 145.41

branch-and-bound. Figure 3.8a shows DBD processes nodes more quickly than MIP, and 3.8b shows

DBD solves to optimality using fewer nodes than MIP. For instance set 3, all problems are solved to

optimality by both methods, and in every case DBD uses fewer nodes than MIP.

This shows that in most cases DBD can solve instances to optimality using fewer nodes than MIP.

Combined with the fact that DBD can process nodes more quickly than MIP, it demonstrates the

practical strength of Benders decomposition.

Real world instances

We also test our techniques on the instance sets derived from real-world data, provided by Boland et al.

(2014). The network is representative of the Hunter Valley Coal Chain, and there are two lists of jobs

designed to span one year each, for 2010 and 2011. The time is discretised into hours, so there are

8761 time periods for each problem (since 2010 and 2011 are not leap years). The unrestricted flow

over 1 year is 161.3 megatonnes (Mt), and the success of an algorithm is measured in the minimisation

of the impact on the network. The majority of jobs have durations between 1 and 18 hours, while the

potential time window is set at 2 weeks for each job.

The fact that the potential job window is significantly larger than the duration of the job in all cases

leads to the problem described in Section 3.5.3. As such, Benders decomposition again exhibits poor

convergence. However, solutions are comparable to those found by Boland et al. (2014). After two

hours, the best solution found for the 2010 data is between 124.1 Mt and 136.2 Mt, with a confirmed
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bound of 141.1 Mt. This translates to an impact of between 25.1 Mt and 37.18 Mt, with a bound of

20.2 Mt. Boland et al. (2014) found solutions with an impact between 24.6 Mt and 26.4 Mt in two

hours. In this instance, the best solution is once again found without the use of any of the features, but

there are some differences in relative performance.

Suggesting heuristic solutions is better in all cases except where no features are used at all. The

best solution is often significantly better, and the optimality gap is lower. Similarly, using initial cuts

is always better, with the exception of the no features case. Using a warm start, however, is rarely

better. It is important to remember that Integer Programming is inherently chaotic, and as such the

high quality of the solution where no features are used may simply come down to a good solution

trajectory, where a good solution is found by the solver “by chance”. Nevertheless, the trend is that

pre-cuts and user-suggested heuristics are beneficial in this instance.

For the 2011 data, solutions between 134.0 Mt and 140.4 Mt are found, with a confirmed bound

of 145.4 Mt. This translates to an impact of between 20.9 Mt and 27.3 Mt, with a bound of 15.9 Mt.

Boland et al. (2014) found solutions with an impact between 19.8 Mt and 20.5 Mt in the same time.

In this case, the trends are slightly different. Suggesting user heuristics is still always a good idea

for these large problems, with an improvement occurring in all cases. Using initial cuts is often a bad

idea, with only one improvement out of four cases. Using a warm start is the better option, with three

cases showing improvement. The smallest optimality gap is found using Heuristics and a warm start

without initial cuts.

3.5.5 Conclusion

We have shown that, while disaggregated Benders decomposition displays poor convergence for many

instances of this problem, it is still an effective technique for solving the MaxTF-FAO problem. The

key aspects that provide the most benefit are the disaggregation of sub-problems and the saving-and-

recalling of solutions to those sub-problems. In many simulated cases, optimal solutions can be found

in a short enough time to be practically useful, and we have proven optimality of a number of cases that

have not previously been proven. The amount of choice in the real world problems makes it difficult to

prove optimality, but reasonable solutions can be returned in a short amount of time, with objective

values similar to those returned by heuristic methods.

Implementing disaggregated Benders decomposition in a state-of-the-art solver leads to fewer

branch-and-bound nodes needing to be processed than the solver would normally require. This suggests

the smaller master problem is more tractable to the solver and allows for more effective automatic use

of techniques such as cutting planes or heuristic generation. It is likely that similar benefits will occur

in other problems when Benders decomposition is applied. The strength of these benefits will likely

increase over time as state-of-the-art solvers improve.

In future we would like to consider more broadly the class of integrated network design and

scheduling problems to which this technique applies. It would also be interesting to look at other

problems to which disaggregated Benders decomposition can be applied, and see if similar benefits
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can be obtained.

3.6 Discussion of Paper: Disaggregated Benders Decomposition

for Solving a Network Maintenance Scheduling Problem

This paper demonstrates the usefulness of Benders decomposition for solving large MIPs. It also

exemplifies the key issues with implementing Benders decomposition: disaggregation of the sub-

problems is necessary and embedding Benders decomposition in a branch-and-cut framework is

efficient. On top of this, it also shows there are a number of details that can have an effect on the power

of Benders decomposition.

The most important point is that disaggregation of the sub-problem is necessary in this problem. The

sub-problems are independent between time periods, and in most instances there are 1000 time periods,

which makes disaggregation extremely powerful. As noted in the paper, Benders decomposition

performs far worse than the MIP without disaggregation of the sub-problem. This is mostly because

applying the Benders cuts separately to 1000 different auxiliary variables is far tighter than applying

aggregated cuts to a single variable.

There are also details about the similarity of the sub-problems. Since they are identical in every way

except the time index, which does not appear in any of the parameters of the sub-problem, it is possible

to build a single model for solving all sub-problems. More than this, it is likely that some network

configurations will appear multiple times, perhaps for different time periods. As a result, storing the

solutions to sub-problems and recalling them when they reappear leads to a small reduction in time

taken to solve the problem. This is mostly a reduction in the time spent solving the sub-problems.

The storage of solutions to the sub-problems is also important since when we find a new Benders

cut for a certain time period, we do not apply it to all time periods. While it is a valid and possibly

useful Benders cut for all time periods, it is likely that the cut will be unnecessary for a large number

of time periods, and the extra cuts would thus unnecessarily slow the master problem down. This is in

line with the lazy maxim: only that which is necessary, and only when it is necessary.

The methods outlined in this paper are applicable to a wide range of problems. One of the closest-

related problems to the network maintenance scheduling problem is the network restoration problem

considered by Nurre et al. (2012). The formulation of the network restoration problem is almost

identical to that of the network maintenance problem, and the only differences appear in the master

problem of the Benders decomposition, meaning one could easily adapt such formulations to handle

both problems.

There are many groups of problems with such similarities, and could easily be described as a class

of problems, where all members of the class benefit from the same techniques. The next problem we

consider is the Dynamic UFL and Network Design problem (DUFLNDP), which is part of a more

general class of facility location and network design problems. This class will be described in Section

3.8.
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3.7 Paper: Disaggregated Benders decomposition and branch-

and-cut for solving the budget-constrained dynamic uncapac-

itated facility location and network design problem

Abstract

We present an approach for solving to optimality the budget-constrained Dynamic Uncapac-

itated Facility Location and Network Design problem (DUFLNDP). This is a problem where a

network must be constructed or expanded and facilities placed in the network, subject to a budget,

in order to satisfy a number of demands. With the demands satisfied, the objective is to minimise

the running cost of the network and the cost of moving demands to facilities. The problem can be

disaggregated over two different sets simultaneously, leading to many smaller models which can

be solved more easily. Using disaggregated Benders decomposition embedded in a branch-and-cut

framework, we solve many instances to optimality that have not previously been solved. We use an

analytic procedure to generate Benders optimality cuts which are provably Pareto-optimal.

3.7.1 Introduction

In this paper we apply Benders decomposition to a facility location and network design problem,

specifically looking at a number of ways of improving convergence of the algorithm. In particular, we

disaggregate the Benders sub-problems, use an alternative to the standard Benders feasibility cuts and

analytically construct Benders optimality cuts. We also prove the Pareto-optimality of the analytic

Benders cuts and discuss the importance of using Pareto-optimal cuts.

Facility location problems are important in many areas of both industry and government. From

deciding the location of stores and warehouses, to important services such as police, fire and health,

facility location problems can have a large impact on a population. Equally important are network

design problems, such as road or utility network optimisation. We are interested in the combination of

these two types of problems.

The facility location problem dates back to the start of the 20th century [77], and is the basis of

many more detailed problems. Benders decomposition [24] is an ideal technique for solving facility

location problems, particularly the uncapacitated facility location (UFL) problem [60]. Geoffrion [45]

generalises the concept of Benders decomposition and lays out a framework that includes optimality

and feasibility cuts, and Geoffrion and Graves [58] apply Benders decomposition to a multicommodity

variant of the facility location problem to great effect. Magnanti and Wong [46] explore regular and

disaggregated Benders decomposition, apply it to the UFL problem, and propose an interior point

method for accelerating convergence of the algorithm.

More recently, an efficient implementation of Benders decomposition for the UFL is demonstrated

by Fischetti et al. (2017). They apply disaggregated Benders decomposition with a number of

additional features which are useful, particularly for the UFL. Tang, Jiang and Saharidis (2013) use

disaggregated Benders decomposition to solve a capacitated facility location problem where the
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capacities could be modified for a cost [65]. They also consider adding extra constraints to enforce

feasibility and tighten the lower bound on the objective value, which are important in the application

of Benders decomposition.

Capacitated facility locations are more difficult to solve with Benders decomposition. This is

because the shared capacity constraints prevent disaggregation of the sub-problems, one of the most

powerful improvements of Benders decomposition. Fischetti, Ljubić and Sinnl (2017) examine how to

adapt the techniques for solving the uncapacitated version to the capacitated problem. Castro et al.

(2017) also apply Benders decomposition to a capacitated facility location problem. An example of

a richer variant of capacitated facility location problems is presented in Jena, Cordean and Gendron

(2016), who solve the problem using Lagrangian relaxation-based techniques.

Network flow and design problems have also been a major area of study over the last century.

Today, many efficient methods for finding the maximum flow through a network exist [73,74]. As such,

more recent studies tend to focus on network design problems, where the network itself is optimised

to achieve some goal, such as maximising the throughput of the network over time. Many of these

problems are excellent candidates for Benders decomposition. Nurre, Cavdaroglu and Wallace (2012)

consider a problem where a utilities network has been partially destroyed, and the reconstruction must

be scheduled to maximise total throughput of the network over time. Boland et al. (2014) find the

optimal maintenance schedule of a network, also to maximise throughput.

Magnanti, Mireault and Wong (1986) apply Benders decomposition to the Uncapacitated Network

Design problem, which forms the basis of many fixed-charge network design problems. In particular,

they generate Pareto-optimal Benders cuts to assist convergence of the algorithm. We extend their work

to our problem, and in particular generate Pareto-optimal Benders cuts without needing to solve any

additional linear programs (LP). A survey of Benders decomposition applied to fixed-charge network

design problems can be found in Costa (2005).

A subset of network design problems are hub location problems, where a number of hubs must

be located to minimise the cost of routing demands through a network. One example of this is the

Hub Line Location problem, considered by de Sa et al. (2015), where hub facilities must be built

in a public transit network and connected in a line. The objective is to minimise the weighted travel

time of all demands through the network. Another example is the Uncapacitated Multiple Allocation

Hub Location problem considered by Camargo, Miranda Jr. and Luna (2008), where hubs must be

built so demands can be routed between locations via hubs. All of the above studies apply Benders

decomposition to great effect. Contreras and Fernández (2014) solve the Supermodular Hub Location

problem using techniques very similar to Benders decomposition, and also employ branch-and-cut

as an efficient solution technique. de Sa et al. (2013) also apply Benders decomposition to another

hub location problem, with a number of improvements such as a “warm start”, disaggregation of the

sub-problems and modified feasibility cuts. For more information on hub location problems, the reader

is directed to Laporte, Nickel and da Gama (2015).

It is known that embedding Benders decomposition in a branch-and-cut framework is efficient

[80,82]. Since 2012, a feature has been available in Gurobi (and earlier in CPLEX, although the feature
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was introduced and improved gradually), known as “lazy constraints”, which provides the ability to

add additional constraints to the model at nodes of the branch-and bound tree. This is, in essence,

branch-and-cut. As such, our implementation of Benders decomposition will use lazy constraints to

add Benders cuts during the solution process of the master problem.

We are considering the budget-constrained Dynamic Uncapacitated Facility Location and Network

Design Problem (DUFLNDP) presented by Ghaderi and Jabalameli (2013). The government sets a

fixed budget every year for the construction of new health clinics and roads, and one must work within

that budget to minimise the running cost of the network while satisfying all demand for health services

by routing demand through the network to health clinics.

The remainder of this paper is structured as follows: Section 3.7.2 contains our reformulation of

the DUFLNDP, which is the base model to which we apply disaggregated Benders decomposition

in Section 3.7.3. This section also covers many details around the implementation of disaggregated

Benders decomposition such as Pareto-optimality of Benders optimality cuts and feasibility of sub-

problems. In Section 3.7.4 we describe the use of a warm start with Benders decomposition to improve

the initial LP-bound. Our computational results are in Section 3.7.5, before concluding with Section

3.7.6.

3.7.2 Model Formulation

Ghaderi and Jabalameli (2013) introduce the budget-constrained Dynamic Uncapacitated Facility

Location and Network Design problem (DUFLNDP), which is defined on a network of locations.

Every location is a client, and all have the potential to host a facility for servicing clients. There is a

set of potential links between locations, on which arcs of the network can be constructed.

The problem covers a number of time periods. At each time there are budgets for opening new

facilities and links. Open facilities and links also have associated maintenance or operating costs,

which, together with the demand routing costs, form the total cost which is to be minimised.

The main assumptions in this problem are:

• Facilities and links have unlimited capacity

• Once opened, facilities and links will remain open until at least the end of the planning horizon

• Facilities and links are opened instantaneously between time periods

Our notation is slightly different from Ghaderi and Jabalameli (2013), in particular the variable

names. We also present a simplified version of the budgetary constraints which achieve the same

outcome. The time periods we are optimising over start at 1, and if a network exists already, we denote

that as being at time 0. We now present the model formulation:



3.7. BRANCH-AND-CUT FOR SOLVING THE DUFLNDP 81

Sets
N Set of network nodes. These include clients and facilities

A Set of network arcs, both existing and potential. A⊆ N×N

T Set of time periods

Parameters
dkt Demand of client k ∈ N at time t ∈ T

git Cost of opening facility at node i ∈ N at time t ∈ T

ci jt Cost of constructing arc (i, j) ∈ A at time t ∈ T

ρi jt Cost per unit of routing demand on arc (i, j) ∈ A at time t ∈ T

fit Operating cost of open facility i ∈ N at time t ∈ T

hi jt Operating cost of open arc (i, j) ∈ A at time t ∈ T

B̄t Available budget for opening facilities at time t ∈ T

B̂t Available budget for opening arcs at time t ∈ T

Variables
Wit 1 if facility i ∈ N is open at time t ∈ T , 0 otherwise

Xi jt 1 if arc (i, j) ∈ A is open at time t ∈ T , 0 otherwise

Zi jkt Fraction of demand of client k ∈ N travelling along arc (i, j) ∈ A at time t ∈ T

Uit 1 if facility i ∈ N is constructed at time t ∈ T , 0 otherwise

Vi jt 1 if arc (i, j) ∈ A is constructed at time t ∈ T , 0 otherwise

Objective

Minimise ∑
t∈T

∑
i∈N

fitWit + ∑
k∈N

∑
(i, j)∈A

ρi jtdktZi jkt + ∑
(i, j)∈A

i< j

hi jtXi jt

 (3.49)

Constraints

Wkt + ∑
j∈N

Zk jkt ≥ 1 ∀k ∈ N,∀t ∈ T (3.50)

∑
j∈N

Z jikt ≤ ∑
j∈N

Zi jkt +Wit ∀i,k ∈ N, i 6= k,∀t ∈ T (3.51)

Z jkkt = 0 ∀k ∈ N,∀ j ∈ N,∀t ∈ T (3.52)

Zi jkt +Z jikt ≤ Xi jt ∀(i, j) ∈ A, i < j,∀k ∈ N,∀t ∈ T (3.53)

Wi,t−1 +Uit =Wit ∀i ∈ N,∀t ∈ T (3.54)

Xi j,t−1 +Vi jt = Xi jt ∀(i, j) ∈ A,∀t ∈ T (3.55)
t

∑
t ′=1

∑
i∈N

git ′Uit ′ ≤
t

∑
t ′=1

B̄t ′ ∀t ∈ T (3.56)
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t

∑
t ′=1

∑
(i, j)∈A

ci jt ′Vi jt ′ ≤
t

∑
t ′=1

B̂t ′ ∀t ∈ T (3.57)

Xi jt = X jit ∀(i, j) ∈ A, i < j,∀t ∈ T (3.58)

Wit ∈ {0,1},Uit ∈ {0,1} ∀i ∈ N,∀t ∈ T (3.59)

Xi jt ∈ {0,1},Vi jt ∈ {0,1},Zi jkt ≥ 0 ∀(i, j) ∈ A,∀t ∈ T,∀k ∈ N (3.60)

The objective function (3.49) is the sum of three costs: the facility operating costs, the cost of routing

demand to other facilities and the arc operating costs. Constraints (3.50) say that if a node k has an

open facility, then it services its own demand. If not, all demand must leave the node. Constraints

(3.51) are flow-conservation constraints at the nodes. Constraints (3.52) ensure demand can not be

returned to the node of origin, thus eliminating cycles. Constraints (3.53) restrict the routing of demand

to open arcs only. Constraints (3.54) and (3.55) control the opening of facilities and arcs based on the

relevant construction variables, and constraints (3.56) and (3.57) ensure that the budget is not exceeded

in any time period. Finally, constraints (3.58) enforce bi-directionality of the arcs.

3.7.3 Disaggregation and Benders decomposition

In this problem, the variables Zi jkt are continuous, where all others are integer (binary). The constraints

which contain the continuous variables are (3.50-3.53), and these constraints are separate for each

k ∈ N and t ∈ T . Thus it is possible to disaggregate the sub-problems by time and facility. A discussion

of disaggregation level can be found in Section 3.7.5.

Benders Master Problem

We denote the contribution of the sub-problem (k, t) as θkt . The master problem is:

Minimise ∑
t∈T

∑
i∈N

fitWit + ∑
k∈N

dktθkt + ∑
(i, j)∈A

i< j

hi jtXi jt

 (3.61)

Subject to:

Wi,t−1 +Uit =Wit ∀i ∈ N,∀t ∈ T (3.62)

Xi j,t−1 +Vi jt = Xi jt ∀(i, j) ∈ A,∀t ∈ T (3.63)
t

∑
t ′=1

∑
i∈N

git ′Uit ′ ≤
t

∑
t ′=1

B̄t ∀t ∈ T (3.64)

t

∑
t ′=1

∑
(i, j)∈A

ci jt ′Vi jt ′ ≤
t

∑
t ′=1

B̂t ∀t ∈ T (3.65)

θkt ≥ BendersOptimalityCut(m,W,X,k, t) ∀k ∈ N,∀t ∈ T,∀m ∈ {1, ...,M} (3.66)

BendersFeasibilityCut(p,W,X) ∀p ∈ {1, ...,P} (3.67)

Wit ∈ {0,1},Ui,t ∈ {0,1},θit ≥ 0 ∀i ∈ N,∀t ∈ T (3.68)
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Xi jt ∈ {0,1},Vi jt ∈ {0,1} ∀(i, j) ∈ A,∀t ∈ T (3.69)

Constraints (3.66) represent the disaggregated Benders cuts, which are added as necessary after

solving the associated sub-problems, which will be covered in the Sub-Problems subsection. Similarly,

constraints (3.67) represent the added constraints required for feasible sub-problems. M and P are

the number of added Benders optimality and feasibility cuts respectively. We now solve this relaxed

master problem with a single branch-and-bound tree. For each feasible integer solution, W ∗ and X∗,

we solve each of the sub-problems and calculate their actual contributions to the master problem

objective function. If necessary, we add more Benders optimality or feasibility cuts. This is called the

main phase of the algorithm.

Initial feasibility

For the solution to be feasible, it must be possible to service the demand of every client for every time

period. In the original MIP, this was ensured by the routing variables and constraints. After separating

out the sub-problems, our master problem now has no constraints ensuring that there will be a path from

every source to a facility, meaning that we may encounter feasible solutions to our master problem that

are infeasible in the original MIP, and will make the sub-problems infeasible. The standard Benders

decomposition framework includes Benders feasibility cuts [45] which find unbounded rays in the

dual of the sub-problem and cut them off, however these are often ineffective [52, 55].

A second option is to augment the master problem with additional constraints to remove these

solutions, without removing any solutions that are feasible in the original problem. Since links and

facilities are only constructed, never destroyed, if the network is feasible in the first time period, it will

be feasible for every time period. To ensure this happens, we modify the master problem to make the

first time period a special case. The objective, parameters and variables remain unchanged, we only

modify some constraints and add new ones. The modified and new constraints are:

Constraints

Zi jkt ≤ Xi jt ∀(i, j) ∈ A,∀k ∈ N,∀t ∈ T (3.53a)

Xi j,t−1 +Vi jt = Xi jt ∀(i, j) ∈ A, i < j,∀t ∈ T, t > 2 (3.55a)

Xi jt = X jit ∀(i, j) ∈ A, i < j,∀t ∈ T, t > 1 (3.58a)

Xi j,1 +X ji,1 ≤ 1 ∀(i, j) ∈ A, i < j (3.70)

Xi j,0 +Vi j,1 = Xi j,1 +X ji,1 ∀(i, j) ∈ A, i < j (3.71)

Xi j,1 +X ji,1 +Vi j,2 = Xi j,2 ∀(i, j) ∈ A, i < j (3.72)

∑
j∈N

(i, j)∈A

Xi j,1 +Wi,1 ≥ 1 ∀i ∈ N (3.73)

∑
i∈N

Wi,1 ≥ 1 (3.74)
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The modification to constraint (3.53) combined with constraint (3.70) enforces directionality of

arcs in the first time period and (3.55,3.58) are modified appropriately. Constraints (3.71-3.72) handle

the budget constraints, to ensure that if a direction is built in the first time period, the opposite direction

will be built for free in the second time period.

These modifications allow us to add constraints (3.73-3.74), which ensure that each location has

either a facility at the location or an arc leaving the location, and that at least one facility must exist,

respectively. This way, either a node is a facility, or it is connected to a node which is either a facility, or

connected to a node... and so on. This only fails if a cycle occurs where multiple nodes are connected

to each other and none have facilities, so cycle-breaking may be necessary. This change in formulation

is more useful in the instances when there is no pre-existing network, as when there are fixed elements

of the network there is less choice in its design.

IIS feasibility cuts

To handle the case where cycles occur, we add cycle-breaking feasibility cuts, where the sum of

facilities in the cycle plus the sum of arcs leaving the cycle must be at least one. In the main phase, we

identify such cycles and add the necessary constraints. In the warm start (see Section 3.7.4), however,

identifying such cycles is more difficult due to the fractional values placed on arcs and nodes.

Using Gurobi, we compute the Irreducible Inconsistent Subsystem (IIS), which is “a subset of the

constraints and variable bounds of the original model. If all constraints in the model except those in

the IIS are removed, the model is still infeasible. However, further removing any one member of the

IIS produces a feasible result.” [44] The IIS is then a collection of capacity constraints on nodes and

arcs which, when lifted, make the sub-problem feasible. This leaves us with the nodes and arcs which

can be expanded or added to resolve the infeasibility. We then add a feasibility cut of the form:

∑
i∈IIS

Wi0 + ∑
(a,b)∈IIS

Xab0 ≥ 1 (3.75)

This ensures that enough facilities and arcs will be opened that the demand from the infeasible

source nodes can be served. This is known as a combinatorial Benders cut [56], and they have been

shown to be significantly stronger than the standard Benders feasibility cuts [55].

Sub-Problems

If we have a feasible solution for the integer variables W ∗ and X∗, we can solve the sub-problems as a

collection of linear programs. Since dkt only depends on k and t, we can leave it out of the objective

of the sub-problem and instead apply it to the objective of the master problem. The contribution of

each sub-problem to the master problem is represented by θkt . The goal of each sub-problem is to find

the cheapest way of servicing the demand of that facility at that time. There are two possibilities for

this: either the site is a facility and can service its own demand for free, or the demand is routed to the

nearest (cheapest) open facility. For each k ∈ N and t ∈ T we have the sub-problem:

Minimise ∑
(i, j)∈A

ρi jtZi jkt (3.76)
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Subject to:

−∑
j∈N

Zk jkt ≤W ∗kt−1 (3.77)

∑
j∈N

Z jikt− ∑
j∈N

Zi jkt ≤W ∗it ∀i ∈ N \{k} (3.78)

Z jkkt = 0 ∀ j ∈ N (3.79)

Zi jkt ≤ X∗i jt ∀(i, j) ∈ A (3.80)

Zi jkt ≥ 0 ∀(i, j) ∈ A (3.81)

Constraint (3.77) has been rearranged to show its similarity to (3.78), which we will take advantage

of when formulating the explicit dual. There are two collections of dual variables that we are interested

in: γi for each node constraint (3.77,3.78) and λi j for each arc constraint (3.80). These variables then

lead to the following dual formulation:

Maximise γk−∑
i∈N

γiW ∗it − ∑
(i, j)∈A

λi jX∗i jt (3.82)

Subject to:

ρi jt +λi j + γ j− γi ≥ 0 ∀(i, j) ∈ A, j 6= k (3.83)

λi j ≥ 0,γi ≥ 0 ∀(i, j) ∈ A,∀i ∈ N (3.84)

The reason that constraints (3.83) do not apply when j = k is because in those cases γ j is replaced

by the unbounded dual variable associated with constraints (3.79), and since this dual variable does

not appear in the objective function, it can be set to a suitably large number, thus ensuring feasibility

of the dual constraints for those arcs.

Constraint (3.83) ensures that the reduced cost of each arc is non-negative. This formulation yields

the following Benders cut:

θkt ≥ γk−∑
i∈N

γiWit− ∑
(i, j)∈A

λi jXi jt (3.85)

One can solve these sub-problems as linear programs and extract the dual variables provided by the

solver in order to construct a Benders cut. Alternatively, one can solve the sub-problems and produce

the required dual variables analytically.

Analytic solution to Benders sub-problems

Each sub-problem is a shortest path problem. For each location, one must find the cheapest way of

servicing its demand, either at a facility at the source or by routing the demand to another location with

a facility. Each sub-problem is indexed by k and t, where k is the source node and t is the time period.

Magnanti and Wong (1981) note that the analytic dual variables for the UFL problem have a natural

interpretation; the dual variables for the DUFLNDP also have a natural interpretation. γi represents the



86 CHAPTER 3. BENDERS DECOMPOSITION

Algorithm 5 Algorithm for computing dual variables for analytic Benders optimality cut for sub-
problem (k, t), assuming the sub-problem is feasible

Begin with master problem solution W ∗it ,X
∗
abt ,θ

∗
kt ∀i ∈ N,∀(a,b) ∈ A

Compute shortest distance Di from k to i for all nodes i ∈ N \{k}
γk = min

j
{D j|W ∗jt = 1, j ∈ N \{k}}

for i ∈ N \{k} do
γi←max(0,γk−Di)

for (i, j) ∈ A do
if X∗i jt = 0 then

λi j←max(0,γi− γ j−ρi jt)
else

λi j← 0

Add Constraint θkt ≥ γk− ∑
i∈N

γiWit− ∑
(i, j)∈A

λi jXi jt

saving associated with opening a facility at location i and λi j the saving from opening an arc from i to

j. Magnanti and Wong also demonstrate for the UFL problem that Pareto-optimal Benders cuts can be

determined without solving additional LPs. The DUFLNDP shares this property, as we now show.

Analytic Benders cut

The algorithm for computing the dual variables can be found in Algorithm 5. Note that it assumes

that the facility at the source node k is closed, as otherwise the solution is trivial. The approach is

also similar to that used by Magnanti et al. (1986), however there are some minor differences to

accommodate the fact we can change the destination by placing additional facilities. We begin by

constructing a shortest path tree from the source location, giving each node a distance Di from the

source node. If there is no path between k and i, then Di = ∞. These distances follow a shortest-path

property, namely D j ≤ Di +ρi j. Now, the value of γk is assigned the length of the shortest path to the

nearest open facility i∗, that is, γk = min{Di|W ∗it = 1} ≡ Di∗ . For all other nodes, γi = max(0,γk−Di).

Next we calculate the values for the dual variables λi j, associated with the arcs (i, j) ∈ A. For all

arcs (i, j), λi j = max(0,γi− γ j−ρi j). For open arcs (X∗i jt = 1), λi j = 0 by the shortest path property.

Theorem 3. The dual variables calculated using Algorithm 5 are dual optimal.

Proof. For these dual variables to form a dual feasible solution, they must satisfy the Constraints (3.83).

The constraints are trivially satisfied for any arc where γi = 0. For all closed arcs, λi j ≥ γi− γ j−ρi jt ,

which satisfies Constraint (3.83).

For any open arc (i, j), λi j = 0, so we must show that ρi j + γ j− γi ≥ 0. By the property of the

shortest path distances, D j ≤ Di +ρi j, or ρi j +Di−D j ≥ 0. We also have, by construction of the dual

variables, that γ j ≥ γk−D j, or D j ≥ γk− γ j. Finally, we are only considering where γi > 0, and in this

case we have that γi = γk−Di. Combining these, we get:

ρi j + γ j− γi = ρi j + γ j− (γk−Di)
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≥ ρi j +(γk−D j)− (γk−Di)

≥ ρi j +Di−D j

≥ 0

So the dual variables obtained from Algorithm 5 are dual feasible. The objective value given by

these dual variables is the same as the optimal objective value of the primal problem, which is the

length of the shortest path (Di∗ = γk), since for all nodes, either γi = 0 or W ∗it = 0, and likewise for arcs.

Thus the dual variables form a dual optimal solution, and may be used to add a Benders optimality cut

to the master problem.

The cuts generated using these dual variables are Pareto-optimal, which is important for improving

convergence of the master problem [46]. We prove they are Pareto-optimal in the following subsection.

In terms of the natural interpretation, we place much of the savings on the arcs, since if facilities

beyond closed arcs are opened, no saving will be obtained until the arcs are open.

Pareto-optimality of the analytically-derived Benders cuts

Magnanti and Wong (1981) describe the importance of using Pareto-optimal cuts when using Benders

decomposition. In this section we show that the analytic Benders cuts are Pareto-optimal. Since a

Benders cut is a linear function of the current network configuration, it can be described as θ ≥ θ̄(y),

for y ∈ Y where Y is the set of all feasible solutions to the master problem. Let the contribution

to the objective value for network configuration y be given by θ̄ ∗(y). The following definitions are

paraphrased from Magnanti and Wong:

Definition 8. A Benders cut θ ≥ θ̄ a(y) dominates another Benders cut θ ≥ θ̄ b(y) if θ̄ a(y) ≥ θ̄ b(y)

for all feasible y ∈ Y and is a strict inequality for at least one feasible y.

This definition leads to the following lemma:

Lemma 2. If θ ≥ θ̄ a(y) is dominated by θ ≥ θ̄ b(y), then for all feasible solutions yi where θ̄ a(yi) =

θ̄ ∗(yi), θ̄ b(yi) = θ̄ ∗(yi).

This is easy to see, since θ̄ b(yi)≤ θ̄ ∗(yi) by definition of being a valid Benders cut, and θ̄ b(yi)≥
θ̄ a(yi) = θ̄ ∗(yi) by definition of being a dominating cut.

Definition 9. A Benders cut θ ≥ θ̄ a(y) is Pareto-optimal if it is not dominated by any other Benders

cuts.

One can prove that a Benders cut is Pareto-optimal by assuming that there exists another cut which

dominates it, finding enough points y ∈ Y where the Pareto-optimal cut equals the objective value, and

specifying that the dominating cut must also equal the objective value at these points. This leads to

all terms of the dominating cut being fixed to those of the Pareto-optimal cut. Thus there are no cuts

which dominate the original cut, and it is Pareto-optimal. We now show that our analytic Benders

optimality cuts are Pareto-optimal.
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Theorem 4. Benders optimality cuts derived using Algorithm 5 are Pareto-optimal

Proof. All Benders cuts for this problem are of the form:

θkt ≥ γk−∑
i∈N

γiWit− ∑
(i, j)∈A

λi jXi jt (3.86)

Let the dual variables associated with the analytic Benders cut (i.e. the cut generated by Algorithm

5) be γ̄i and λ̄i j. In the current solution, the closest open facility is i∗ (Di∗ = γ̄k).

We assume that the current cheapest facility i∗ is not the same as the location, i.e. i∗ 6= k. If i∗ = k,

then the cut is trivial and not Pareto-optimal. In that scenario, one could take the same approach

as Balinski by constructing the cut about the second-closest facility. We also assume that there

exists another location j ∈ N such that d j < di∗ , since otherwise the cut will again be trivial and not

Pareto-optimal. We begin by defining some partitions of the nodes and arcs of the problem:

Fo = {i|W ∗it = 1}, the set of open facilities,

Fc = {i|W ∗it = 0}, the set of closed facilities,

F+ = {i|di ≥ γ̄k}, the set of facilities at equal or greater distance than i∗,

F− = {i|di < γ̄k}, the set of facilities closer than i∗,

Lo = {i|X∗i jt = 1}, the set of open links, and

Lc = {i|X∗i jt = 0}, the set of closed links

Now assume there exists a Benders cut using the dual variables γ̂i and λ̂i j, which dominates the

analytic Benders cut. As they are both Benders cuts, they must both equal the objective value, and thus

each other, for the current solution to the master problem. If we open a facility at the source, k, the

objective value will be zero and the analytic cut will be tight, so the dominating cut must also equal

zero for this solution. This leads to:

0 =γ̄k− γ̄k−∑
i∈N
i6=k

γ̄iW ∗it − ∑
(i, j)∈A

λ̄i jX∗i jt

=0− ∑
i∈Fo

i6=k

γ̄i− ∑
(i, j)∈Lo

λ̄i jX∗i jt

Since γ̄i ≥ 0 and λ̄i j ≥ 0, we have that γ̄i = γ̂i = 0 ∀i ∈ Fo and λ̄i j = λ̂i j = 0 ∀(i, j) ∈ Lo. Note that

i∗ ∈ Fo, and so γi∗ = 0. Returning to the current solution, the two cuts must equal each other, and for

both cuts, either γi = 0 or Wit = 0 ∀i ∈ N, and similarly for arcs, so we have that γ̂k = γ̄k.

Now, for any other location i ∈ N, if we open a facility at i, the analytic cut will still be tight, so

the dominating cut must also be tight. Since the only changes in both cuts is Wit , we have that γ̄i = γ̂i

∀i ∈ N. All that remains is to show that λ̄i j = λ̂i j ∀(i, j) ∈ Lc.

For any arc (i, j) ∈ Lc where γ̂i ≤ ρi jt , λ̂i j = 0, which will be tight since even if a facility were

opened at j, it would still be further away than the closest open facility, so λ̄i j will also be zero. The

other case where λ̂i j = 0 is when γ̂ j > γ̂i−ρi jt , that is, the arc does not create a short-cut in the network.
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In this case, opening the arc does not change the objective value and the analytic cut will be tight, so

λ̄i j = 0 for all arcs where λ̂i j = 0.

If λ̂i j > 0, then λ̂i j = γ̂i− γ̂ j−ρi jt and γ̂i > ρi jt . If we open the arc (i, j) and the facility j, then the

analytic cut will be:

γ̂k− γ̂ j− λ̂i j =γ̂k− γ̂ j− (γ̂i− γ̂ j−ρi jt)

=γ̂k− γ̂i +ρi jt

which is the length of the shortest path between k and i plus the length of the arc from i to j. Since

γ̂i > ρi jt , this will be lower than the original path length, and thus j will be closer than i∗ to k. So the

analytic cut is tight at these points, and the dominating cut must also be tight. Since γ̄ j = γ̂ j for all

j ∈ N, we have:

γ̂k− γ̂ j− λ̂i j =γ̄k− γ̄ j− λ̄i j

=γ̂k− γ̂ j− λ̄i j

λ̂i j =λ̄i j

So λ̄i j = λ̂i j ∀(i, j) ∈ A, and thus the dominating cut is identical to the analytic cut. So there are no

cuts which dominate the analytic cut, and thus it is Pareto-optimal.

This algorithm thus provides a way of generating Pareto-optimal Benders cuts without solving

additional LPs. It is a replacement for the Magnanti-Wong core-point methods, and is arguably simpler,

easier to implement and more reliable. Magnanti and Wong (1981) showed that the natural Benders

cut for the UFL is Pareto-optimal, and this can also be proven using the above method. In future, we

would like to find more problems where algorithms for generating Pareto-optimal cuts can be applied

in place of more complicated methods.

Benders cut separation

When to generate Benders cuts is an important consideration, as generating them too frequently can

lead to a large number of unnecessary cuts burdening the model. In the literature, studies typically

generate Benders cuts according to one of three schemes: at every feasible branch-and-bound node

encountered, at nodes that yield an improvement in the lower bound, or at nodes where new incumbent

solutions are found [52, 59].

In our case, generating Benders cuts only for new incumbent solutions is sufficient. Combined with

the warm start and our procedure for generating Pareto-optimal Benders cuts at integer solutions, any

additional benefit from adding Benders cuts for fractional solutions is outweighed by the extra time

spent solving the sub-problems at each feasible node. Other studies draw similar conclusions [59].

3.7.4 Warm start

When applying Benders decomposition to a problem, the master problem is “relaxed” by projecting

out the variables of the sub-problem. A result of this is that the initial LP-optimum of the master
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problem is lower (when minimising) than that of the original problem. This will mean that more effort

must be expended in the branch-and-bound phase to find the optimal solution. This can be overcome

by using a “warm-start” [52, 63], which involves solving the linear relaxation of the problem and using

the results to add Benders cuts to the master problem. Performing this repeatedly until the bound does

not increase substantially, or no more cuts are added, significantly tightens the initial LP-bound and

reduces the runtime of the solver.

This yields significant improvements to the runtime of the program, however it is sometimes more

useful to use continuous analogues of the Pareto-optimal analytic Benders cuts in the warm start.

Because of this, we analytically construct the dual variables to be used in the pre-cuts. This yields the

strongest cuts possible, which can improve the solution speed of the master problem. Some studies

have found that performance could be increased by removing any warm start cuts with non-zero slack

at the end of the warm start phase to reduce the number of constraints in the master problem [60]. In

our case, some instances performed better and others performed worse, because some cuts that had

non-zero slack at the LP-optimum were required for finding the IP-optimum, and were added a second

time. As such, the results shown are for implementations where all warm start cuts are carried through

the whole optimisation procedure.

Feasibility of sub-problems

The first thing to check, just like the main phase, is the feasibility of the sub-problems. In the warm

start, because all variables are continuous and not integer (or binary), the arcs of the network are

allowed to be partially open, and likewise for facilities. As such, it is no longer enough that there be a

path to an open facility, instead we may require a collection of paths to route all demand to one or

more facilities. As with the main phase, infeasible sub-problems will only occur when a cycle exists

in the network. The IIS feasibility cuts are capable of handling the relaxed problem, and as such are

always used in the warm start.

Solution of the sub-problems

After having ensured the feasibility of the relaxed solutions to the master problem, we solve the flow

sub-problems as LPs and extract the paths from these results. When more than one path is required,

it is because partially opened arcs or facilities are restricting the flow of demand. In most cases, the

longest path will not have any of these restricting factors.

If there are n paths in the solution, there will be at least n−1 restricting factors. These restricting

factors, denoted by the set C , correspond to potential non-zero values for γ or λ dual variables, and

as such there are several constraints on these values. The first is that the sum of the dual variables

corresponding to the arcs and final facility of each path must equal the saving from travelling along the

path. That is, given a path p of length Lp which ends at node destp, and the set of arcs on that path Ap:

γk−Lp = γdestp + ∑
(a,b)∈Ap

λab (3.87)
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This equation ensures the reduced cost of each path is zero. In most cases, γk will be the length of

the longest path (opening a facility allows demand from the longest path to be serviced at the source),

however in the case where the longest path has restricting factors, the RHS of the above equation will

be non-zero for the longest path and γk will be greater than Lp.

Another condition is that the value of the Benders cut must be equal to the objective value of the

sub-problem for the current master problem solution. This is necessary for the dual variables to form a

dual-optimal solution. The final condition is that the reduced cost of each arc is non-negative. If a

solution is found which satisfies these three conditions, then it is dual optimal, and the dual variables

can be used to construct a Benders cut.

If there are n paths and n−1 restricting factors, then these dual variables can be calculated directly

by solving equation (3.87) for all paths simultaneously. In this case, the matrix will be non-singular

and thus the values of the dual variables for all restricting factors can be determined. However, as there

is much degeneracy in network flow problems, often there will be more than n−1 restricting factors

for n paths. This occurs when a path has two or more restricting factors which lie only on that path. In

this case, one can either determine which n−1 factors to use by eliminating any “extra” factors, or

one can solve the following linear program:

Minimise γk (3.88)

Subject to:

Lp− γk + γdestp + ∑
(a,b)∈C
(a,b)∈Ap

λab = 0 ∀p ∈ P (3.89)

γk−∑
i∈N

γiW̄it− ∑
(i, j)∈A

λi jX̄i jt = ∑
(i, j)∈A

ρi jtdkt Z̄i jkt (3.90)

γ j− γi +λi j +ρi jtdkt ≥ 0 ∀(i, j) ∈ A (3.91)

The effect of constructing analytic warm start Benders cuts this way can be seen in the Results

section.

Budget cover inequalities

In addition to this, we also add inequalities on the budget variables, U and V , to potentially tighten

the relaxed problem. The budget constraints are effectively a knapsack problem, and as such we can

add cover inequalities similar to those described by Gu, Nemhauser and Savelsbergh (1998). After a

solution to the relaxed problem is found, we check, for each time period, which facilities and arcs have

been partially or wholly constructed. We sum the variables over all facilities/links and time periods up

to and including the current time period, and if this is not an integer value, then some facilities or links

have been partially opened.

S is the sum of facilities/links that have been opened up to this point in time. We then order

the facilities/links from cheapest to most expensive to open, and if the sum of opening costs of the

first dSe facilities/links is greater than the available budget, we add a new constraint of the form:



92 CHAPTER 3. BENDERS DECOMPOSITION

t

∑
t ′=1

∑
i∈S̄

Uit ′ ≤ bSc (3.92)

t

∑
t ′=1

∑
(i, j)∈S̄

i< j

Vi jt ′ ≤ bSc (3.93)

where S̄ is the cheapest dSe facilities/links. If it is impossible to open all facilities/links in S̄, then

turning one off to open another facility/link which is more expensive will not be possible either. Thus,

these cuts can be lifted to include all facilities/links more expensive than the most expensive member

of S̄.

3.7.5 Results

We are comparing two different formulations and a number of implementation features using the

public data set from Ghaderi and Jabalameli (2013). The tests are performed on a high-performance

computing system running Linux. Each job was assigned a maximum of 8 cores running at 2.4GHz

each, and 56GB of RAM. The implementations are written in Python 3 as part of the Anaconda

distribution (4.1.1) and use the Gurobi 7.0.1 [44] optimisation package. All software used is 64-bit.

The maximum runtime for each instance is 50|N||T | seconds, where |N| is the number of nodes and

|T | is the number of time periods, which is consistent with Ghaderi and Jabalameli (2013).

All instances are grouped in threes, where each instance in a group is on the same network, tested

over 5, 10 and 20 time periods. Each instance has two cases: one where a network already exists, and

one where it must be created from scratch. Table 3.10 shows the number of nodes, links and time

periods of each instance, which can be used to calculate the runtime of each instance.

We start with the mixed-integer programming (MIP) implementation with no improvements. We

then compare it to disaggregated Benders decomposition, as well as comparing the addition of the

following implementation details: combinatorial feasibility cuts, analytic cuts for the warm start and

main phases and budget-cover cuts. We also compare our initial results to those found by Ghaderi and

Jabalameli (2013). The tests in their study were computed on a machine with dual quad-core 2.66GHz

Intel Xeon X5550 processors with 32GB of RAM running Python 2.6 and CPLEX 12.1. While the

hardware is similar, the software versions are quite different, and the performance difference over

four years can be more than an order of magnitude. This is seen by comparing the time to solution of

CPLEX and our MIP.

Tables 3.11 and 3.12 contain details about the results of different implementations for the existing

and new network instances respectively. Shown are the optimal objective values for each instance

solved to optimality (or the best objective and best bound for the two new network instances not solved

to optimality), and the solving times using a number of different implementations. MIP is the standard

MIP model when given to Gurobi without any decomposition. DBD is a standard implementation of



3.7. BRANCH-AND-CUT FOR SOLVING THE DUFLNDP 93

Table 3.10: Problem sizes for Ghaderi and Jabalameli instances [83]

Inst. N L T Inst. N L T Inst. N L T
TP1 20 46 5 TP10 40 162 5 TP19 80 171 5
TP2 20 46 10 TP11 40 162 10 TP20 80 171 10
TP3 20 46 20 TP12 40 162 20 TP21 80 171 20
TP4 20 61 5 TP13 60 180 5 TP22 80 280 5
TP5 20 61 10 TP14 60 180 10 TP23 80 280 10
TP6 20 61 20 TP15 60 180 20 TP24 80 280 20
TP7 40 137 5 TP16 60 205 5 TP25 56 200 5
TP8 40 137 10 TP17 60 205 10 TP26 56 200 10
TP9 40 137 20 TP18 60 205 20 TP27 56 200 20

Figure 3.9: Comparison of different implementations on existing and new instances. Each curve shows
the fraction of problems solved to optimality by the represented implementation within a given amount
of time. Note the horizontal axis is plotted on a logarithmic scale

disaggregated Benders decomposition using standard feasibility cuts and a warm start. Accelerated

DBD (A-DBD) is disaggregated Benders decomposition with combinatorial feasibility cuts used in the

warm start and main phase, plus analytic Benders cuts in the warm start. For the majority of cases,

A-DBD is better than the straightforward MIP, especially on larger networks and in the new network

instances. There is only a minor benefit to A-DBD over MIP for the existing networks, however on the

new network cases Accelerated DBD is a clear winner, with DBD performing worse than the MIP on

medium to large instances.

We have not shown results for Benders decomposition without a warm start, because it performs

terribly. For this problem, the initial LP-bound is very weak, because one only has to open enough

arcs and facilities to satisfy the constraints described in Section 3.7.3. The main phase then takes an

incredible amount of time to converge to the optimal solution, if at all. With the addition of the warm

start, often the initial bound can be tightened to within 10% of the optimal objective value, and in

some of the best cases for A-DBD, the initial bound is less than 3% from the optimal solution. The

warm start makes Benders decomposition competitive for this problem.

Figure 3.9 is a graphical representation of the effectiveness of each implementation. Each curve

represents a particular implementation, and shows the fraction of all instances in a given class which
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Implementation Warm Start Main Phase
Feasibility Optimality Feasibility Optimality Solved

E
xi

st
in

g DBD 1.30 15853.71 0.97 124.62 22
DBD+CF 7.90 16062.98 0.30 121.95 22
A-DBD 10.22 1736.02 0.34 136.36 24

N
ew

DBD 140.11 551.71 308.20 24266.60 7
DBD+CF 342.38 12237.88 0.47 372.89 19
A-DBD 362.76 6203.81 0.21 423.57 21

Table 3.13: Comparison of number of cuts added in each phase and number of instances solved to
optimality for three implementations. Results are split into existing network and new network instances.
Number of cuts added are reported as shifted geometric means with a shift parameter of 1

solved to optimality in less time than indicated on the horizontal axis. The implementations MIP, DBD

and A-DBD are as mentioned above. DBD+CF uses combinatorial feasibility cuts, but no analytic

Benders cuts in the warm start, and WCS is the worst case scenario, which represents the time limits

of all instances. In both plots, A-DBD is better than all other implementations, being able to solve all

existing network instances to optimality in less time than any other method. Note that MIP is actually

better than DBD and DBD+CF, which highlights the importance of using analytically calculated dual

variables for this problem.

The main reason for the difficulty of the new network cases is the feasibility of the networks. In

the existing network case, the networks are either already feasible or can be made feasible very easily,

whereas for the new network case a brand new feasible network must be made from scratch. Standard

Benders feasibility cuts are much less powerful in this problem, as can be seen in the new networks

case. DBD fails to solve many instances to optimality in the given time and is better than the MIP in

only 20% of the instances, however DBD+CF does better than the MIP for all instances.

Analytic Benders cuts in the warm start provide much benefit, which can be seen from comparing

the DBD+CF and A-DBD implementations. We should, however, make a note that this depends upon

the quality of the dual variables chosen by the solver. For these results, the dual variables chosen by

Gurobi produced very weak Benders cuts, which was evidenced by the number of cuts generated in the

warm start. Table 3.13 shows that the number of optimality cuts generated by DBD+CF in the warm

start is significantly higher than the number generated by A-DBD. On other machines with different

hardware and different versions of Gurobi, the cuts generated were stronger, and thus the improvement

of A-DBD over DBD+CF was smaller. It was, however, always a positive difference.

In order to compare the usefulness of the budget cover cuts, we must turn off the cuts that Gurobi

adds itself. Figure 3.10 shows a similar comparison to Figure 3.9. The new implementations NoCuts

and NoCuts+Budg are the same as DBD, but with the solver-added cuts turned off, and NoCuts+Budg

adds budget cover cuts during the warm start. In all cases, the budget cover cuts give a marginal benefit,

however the loss of the solver-added cuts is also evident. In short, the only time one should have to

add budget cover cuts is when they are not using a powerful, modern solver such as Gurobi or CPLEX,

both of which are capable of finding such cuts without user input.

Our next comparison is the use of analytic cuts in the main phase of Benders decomposition, i.e. at
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Figure 3.10: Comparison of budget cover cuts on existing and new instances. Each curve shows the
fraction of problems solved to optimality by the represented implementation within a given amount of
time. Note the horizontal axis is plotted on a logarithmic scale

Figure 3.11: Comparison of analytic cuts for warm starts and main phase on existing and new instances.
Each curve shows the fraction of problems solved to optimality by the represented implementation
within a given amount of time. Note the horizontal axis is plotted on a logarithmic scale

each potential incumbent solution from the branch-and-bound tree. Figure 3.11 compares the DBD+CF

and A-DBD implementations with and without analytic benders cuts in the main phase (+AMP). In all

cases, choosing dual variables analytically provides only marginal benefit. This can be attributed to

Gurobi picking very strong dual variables in the main phase, unlike the warm start. Importantly, using

analytic duals does not cause any implementations to perform worse, and there is little effort involved

in implementing them.

Other technical considerations are branching priorities and direction. When searching the branch-

and-bound tree, one must decide which variables to branch on first, and which direction should be

explored first. Modern solvers have the ability to make good decisions about branching, however in

some cases the user may have certain insight into the problem which the solver can not see.

In the DUFLNDP, the location of the facilities is the main structural decision, since there can be

multiple paths to each facility, and opening or closing a particular arc has less impact than opening

or closing a facility. This can be seen in Figure 3.12, which compares the A-DBD with different
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Figure 3.12: Comparison of different branching priorities for the A-DBD implementation on existing
and new instances. Each curve shows the fraction of problems solved to optimality by the represented
implementation within a given amount of time. Note the horizontal axis is plotted on a logarithmic
scale

branching priorities. BPW and BPX branch on the facilities and arcs first respectively. BPT prioritises

the facilities and arcs in the first time period, and BPB first branches on the construction variables, U

and V .

Branching priority does not make much difference to the smaller instances, as there are often many

fewer nodes to explore. For the larger instances, only BPW performs better than A-DBD, that is,

branching on facilities first is almost always better than not setting any priorities. BPT is more effective

in the new networks case, as setting a variable in the first time period fixes the variables corresponding

to the same arc or facility for all subsequent time periods. Branching on the arcs first is by far the

worst option, failing to solve many of the existing network instances and under-performing all other

implementations on the new networks.

Branching direction is best left to the solver. Gurobi and CPLEX have very advanced methods for

determining whether to branch up or down first for each node, and choosing to always branch in a

particular direction is often less effective. This is the case for the DUFLNDP, regardless of whether or

not branching priorities have been set.

Disaggregation level

In this problem it is possible to disaggregate over two different sets: the source of each demand

and each separate time period. We show here that it is best to disaggregate by both sets at the same

time. Disaggregation of sub-problems, and thus Benders cuts, always results in tighter bounds. These

tighter bounds allow the master problem to be solved more quickly. The trade-off is that having more

sub-problems can take longer to solve, particularly if there are overheads associated with those sub-

problems. In this problem, the most sub-problems we solve are 1600, which is acceptable considering

the speed increases we obtain from this. In other problems, the number of sub-problems may enter the

hundreds of thousands, at which point even the smallest overheads will start to add up.
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Table 3.14: Comparison of solution times for problem TP9E with different levels of disaggregation

Disaggregation level # S.P.s solved S.P. cumulative time (s) Master solve time (s)
Time only 580 24.74 283.35
Node only 760 14.72 232.77

Node and Time 11200 9.48 101.47

A specific example is data set TP9E, which we can compare results for if we disaggregate only

by nodes, only by time and by both nodes and time. For this instance there are 40 nodes and 20

time periods. Table 3.14 shows the number of sub-problems (S.P.s) solved, the total time spent

solving sub-problems and the total time spent solving the entire problem for the different levels of

disaggregation.

We can see that disaggregating more leads to smaller sub-problems which solve significantly faster.

The average solve time for each sub-problem is 43ms, 19ms and 0.85ms for time only, nodes only and

both, respectively. Even though many more sub-problems must be solved when disaggregating by

both nodes and time, the cumulative time spent solving them is less, and the tighter cuts provided by

disaggregation leads to a faster solve time of the master problem.

3.7.6 Conclusion

Disaggregated Benders decomposition embedded in a branch-and-cut framework is an effective method

for solving the DUFLNDP if implemented properly. Adding constraints that enforce feasibility to avoid

relying upon Benders feasibility cuts, using combinatorial Benders feasibility cuts, and using a warm

start are good ways of improving the effectiveness of the solver. Analytically derived Pareto-optimal

Benders cuts can also be beneficial in some cases. For this particular problem, it is the disaggregation

of the sub-problems and combinatorial Benders feasibility cuts which provide the most impressive

speed increase, which has allowed us to solve almost all instances to optimality within the time limits.

In the future, we would like to generalise this approach to a wide range of network design and facility

location problems where similar techniques are beneficial.
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3.8 Generalised UFL and Network Design Problem

There are a number of problems with a structure similar to those of the UFL and DUFLNDP problems.

We call the most general formulation the Generalised Uncapacitated Facility Location and Network

Design Problem (GUFLNDP). This problem aims to minimise the running and/or construction costs of

a network such that a number of requests for transportation may be served. The network is composed

of nodes and arcs, and each node may have the capacity to support a facility. Each request has a

specific origin node and a set of potential destination facilities. The problem may also cover multiple

time periods, where facilities and arcs may be constructed or removed between time periods for a cost.

Any problem that satisfies the following conditions is a candidate GUFLNDP problem:

• Has a demand routing component where demands have specific origins and amounts

• No shared capacity between demands

• Demand flows are instantaneous (no storage between time periods)

• No constraints directly involving the routing variables other than the standard constraints

presented below

If these conditions are met, the problem will fit the GUFLNDP framework. The main commonality

among problems in the GUFLNDP class is that they are good candidates for disaggregated Benders

decomposition. Even further, they all have identical Benders sub-problems, which can be solved

the same way, independent of the master problem. The master problem supports a rich variety of

constraints that control the network structure, but in the end the sub-problems are to move the requests

through the generated network, and this can be solved using problem-independent methods.

There are a number of problems that are in the GUFLNDP class. A non-exhaustive list of these

problems is:

• Uncapacitated Facility Location problem (UFL) [46, 60]

• Network Design problem [47]

• Dynamic UFL and Network Design problem (DUFLNDP) [2, 83]

• Two-Level UFL problem with Single-Assignment [85]

• Urban Rapid Transit Network Design problem [86]

• Hub and Shuttle Public Transit System Design problem [67]

• Tree of Hubs Location problem [52]

• Hub Line Location problem [53]

• Gateway hub location problem [87]
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• Integrated Urban Heirarchy and Transportation Network Planning [88]

• TSP with Generalised Latency [54]

Each of these problems is essentially a network design problem with a multi-commodity flow

component. A number of these studies show that Benders decomposition is useful for solving these

problems [2, 46, 47, 52–54, 60, 67, 86, 87], particularly when the sub-problems are disaggregated

[2, 52–54, 60, 67, 86] and when Benders decomposition is implemented in a branch-and-cut framework

[2, 52, 53, 60]. Here, we present the formulation of the GUFLNDP, show how to apply Benders

decomposition to it and discuss some of the common improvements.

3.8.1 Formulation of the GUFLNDP

The GUFLNDP concerns a network of nodes N and arcs A. There is a subset of nodes F ⊆ N that are

potential facilities for serving demands. There are potential costs associated with opening facilities

and arcs, and with keeping them open. There is a set of requests R, all of which must be met. Each

request has an origin αr and a set of potential destination facilities Ωr where it may be served. The

demand of these requests must be routed through the network on open arcs from the origin to an open

facility that can serve it.

There is a cost associated with routing demand through the network, but not with serving it. There

may also be multiple time periods across which the network is to be controlled, as long as the serving

of demands occurs instantaneously. A problem with multiple time periods is called dynamic, while a

problem without is called static. The objective function is quite flexible, but it is always to minimise

some linear cost associated with the network. The most common is to minimise the running cost of the

network, but one could also find the minimum-cost network that satisfies all demands regardless of

running cost. Any balance of the construction and running costs can be accommodated.

For neatness and without loss of generality, the constraints in our formulation assume that F = N

and A = N×N, so the summations do not require conditions. For the arcs, it is also possible that

there will be multiple copies of each arc, so that A ⊆ N×N×P for some set P. This is a useful

modelling technique for some problems, such as the Tree of Hubs Location problem [52], where arcs

can be regular arcs or inter-hub arcs that are cheaper to use but can only exist in specific circumstances.

Finally, we assume all costs are non-negative. We now present the formulation of the GUFLNDP:

Sets
N Set of nodes

F Set of potential facilities. F ⊆ N

A Set of arcs

R Set of requests

T Set of time periods
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Parameters
go

it Cost of opening facility at node i ∈ F at time t ∈ T

gc
it Cost of closing facility at node i ∈ F at time t ∈ T

co
i jt Cost of opening arc (i, j) ∈ A at time t ∈ T

cc
i jt Cost of closing arc (i, j) ∈ A at time t ∈ T

ρi jt Cost per unit for routing demand along arc (i, j) ∈ A at time t ∈ T

fit Operating cost of open facility i ∈ F at time t ∈ T

hi jt Operating cost of arc (i, j) ∈ A at time t ∈ T

αr Origin node of request r ∈ R

Ωr Set of destination facilities for request r ∈ R

ωir 1 if i ∈Ωr (facility i ∈ F can serve request r ∈ R), 0 otherwise

drt Weight of demand r ∈ R at time t ∈ T
Variables

xit 1 if facility i ∈ F is open at time t ∈ T , 0 otherwise

yi jt 1 if arc (i, j) ∈ A is open at time t ∈ T , 0 otherwise

zi jrt Fraction of request r ∈ R that travels along arc (i, j) ∈ A at time t ∈ T

uo
it 1 if facility i ∈ N is opened at time t ∈ T

uc
it 1 if facility i ∈ N is closed at time t ∈ T

vo
i jt 1 if arc (i, j) ∈ A is opened at time t ∈ T

vc
i jt 1 if arc (i, j) ∈ A is closed at time t ∈ T

Objective

min ∑
t∈T

{
∑
i∈F

fitxit + ∑
(i, j)∈A

(
hi jtyi jt + ∑

r∈R
drtρi jtzi jrt

)
+

∑
i∈F

(go
itu

o
it +gc

itu
c
it)+ ∑

(i, j)∈A

(
co

i jtv
o
i jt + cc

i jtv
c
i jt
)}

(3.94)

Constraints

Request constraints

ωαrrxαrt + ∑
j∈N

zαr jrt ≥ 1 ∀r ∈ R,∀t ∈ T (3.95)

∑
j∈N

z jirt ≤ ∑
j∈N

zi jrt +ωirxit ∀i ∈ N \{αr},∀r ∈ R,∀t ∈ T (3.96)

z jαrrt = 0 ∀ j ∈ N,( j,αr) ∈ A,∀r ∈ R,∀t ∈ T (3.97)

zi jrt ≤ yi jt ∀(i, j) ∈ A,∀r ∈ R,∀t ∈ T (3.98)

Construction and deconstruction constraints

xi(t−1)+uo
it−uc

it = xit ∀i ∈ F,∀t ∈ T (3.99)

yi j(t−1)+ vo
i jt− vc

i jt = yi jt ∀(i, j) ∈ A,∀t ∈ T (3.100)
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Variable constraints

xit ∈ {0,1},uo
it ∈ {0,1},uc

it ∈ {0,1} ∀i ∈ N,∀t ∈ T (3.101)

yi jt ∈ {0,1},vo
i jt ∈ {0,1},vc

i jt ∈ {0,1} ∀(i, j) ∈ A,∀t ∈ T (3.102)

zi jrt ≥ 0 ∀(i, j) ∈ A,∀r ∈ R,∀t ∈ T (3.103)

The objective (3.94) is the accumulation of all costs: construction, deconstruction, operating and

routing. The request constraints govern how the requests can be served. Constraints (3.95) say that, for

each request r, either it can be served at the origin node αr if it is a viable facility and it is open, or the

demand must leave αr. Constraints (3.96) are the flow consistency constraints on the nodes, i.e. for

all the demand that flows into a node, it must be served at that node or moved elsewhere. Constraints

(3.97) prevent demand from returning to the origin node. Constraints (3.98) ensure demand cannot flow

along arcs unless they are open. Finally, the construction and deconstruction constraints (3.99-3.100)

link the relevant variables with the opening and closing of facilities and arcs.

The request constraints are the minimal set of constraints required for the GUFLNDP that must be

present in all problems. They are also the only constraints in which the zi jrt variables are allowed to

appear. If multiple time periods are included, the construction and deconstruction constraints will also

be required, since otherwise the time periods would be completely independent and could be solved

as such. If deconstruction is not permitted as in the case of the DUFLNDP, one simply removes the

relevant variables from the formulation.

3.8.2 Benders decomposition for the GUFLNDP

As highlighted earlier, many problems that fit the framework of the GUFLNDP are prime candidates

for Benders decomposition. Here, we present the Benders formulation for the general problem and

describe how this changes for more specific problems.

Benders master problem

The Benders master problem contains all constraints from the original formulation that do not include

the continuous zi jrt variables. For the GUFLNDP, this is only the construction and deconstruction

constraints. For all other problems, any additional constraints pertaining to the design of the network

remain in the master problem. The routing costs for each request r ∈ R at each time t ∈ T are now

approximated by the new variables θrt , and these approximations are updated by adding Benders

optimality cuts.

A usual problem with Benders decomposition is that the relaxation of the master problem allows

solutions that make the sub-problems infeasible. In this case, it is because there are no constraints

ensuring enough facilities and arcs are open to allow the requests to be served. Similar to the DUFLNDP,

we handle this by adding some feasibility constraints that will place minimum requirements on the

network. These may still not be enough to ensure the sub-problems are feasible, often due to the
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occurrence of cycles in the network, at which point we add Benders feasibility cuts during the

branch-and-bound process. The Benders master problem for the GUFLNDP is:

min ∑
t∈T

{
∑
i∈F

fitxit + ∑
(i, j)∈A

hi jtyi jt + ∑
r∈R

drtθrt+

∑
i∈F

(go
itu

o
it +gc

itu
c
it)+ ∑

(i, j)∈A

(
co

i jtvi jt + cc
i jtv

c
i jt
)}

(3.104)

Subject to:

Feasibility constraints

∑
i∈Ωr

xit ≥ 1 ∀r ∈ R,∀t ∈ T (3.105)

ωαrrxαrt + ∑
j∈N

(αr, j)∈A

yαr jt ≥ 1 ∀r ∈ R,∀t ∈ T (3.106)

Construction and deconstruction constraints

xi(t−1)+uo
it−uc

it = xit ∀i ∈ F,∀t ∈ T (3.107)

yi j(t−1)+ vo
i jt− vc

i jt = yi jt ∀(i, j) ∈ A,∀t ∈ T (3.108)

Variable constraints

xit ∈ {0,1},uo
it ∈ {0,1},uc

it ∈ {0,1} ∀i ∈ N,∀t ∈ T (3.109)

yi jt ∈ {0,1},vo
i jt ∈ {0,1},vc

i jt ∈ {0,1} ∀(i, j) ∈ A,∀t ∈ T (3.110)

The only change to the objective function is that the contribution from the routing costs is replaced

by approximation variables θrt . The request constraints are removed as they are now part of the

Benders sub-problems, and the construction and deconstruction constraints are unchanged. There

are also two additional constraints to help ensure feasibility of the sub-problems. Constraints (3.105)

say that for every request, at least one valid facility must be open, and constraints (3.106) ensure

that for each demand r ∈ R, either it can be served at αr, or there exists an arc for it to leave αr.

These constraints eliminate many feasible solutions to the relaxed master problem that would lead to

infeasible sub-problems, but not all of them. The remaining infeasible master problem solutions are

handled using Benders feasibility cuts in the sub-problems.

Benders sub-problems

For the GUFLNDP, we have one sub-problem for each request and each time period, and their

corresponding master problem variables are θrt . These problems are solved for a particular solution to
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the master problem, so here the variables x∗ and y∗ are fixed. For each r ∈ R and t ∈ T , we have the

following Benders sub-problem:

min ∑
(i, j)∈A

ρi jtzi jrt (3.111)

Subject to:

Request constraints

ωαrrx∗αrt + ∑
j∈N

zαr jrt ≥ 1 (3.112)

∑
j∈N

z jirt ≤ ∑
j∈N

zi jrt +ωirx∗it ∀i ∈ N \{αr} (3.113)

z jαrrt = 0 ∀ j ∈ N \{αr},( j,αr) ∈ A (3.114)

zi jrt ≤ y∗i jt ∀(i, j) ∈ A (3.115)

zi jrt ≥ 0 ∀(i, j) ∈ A (3.116)

Each sub-problem is a linear program, and as such a solution to its dual program can be used to

construct a Benders optimality cut to inform the master problem how the θrt variables will change

with the master problem variables x and y. Given a solution to the master problem, (x∗,y∗), the dual

problem for the sub-problem (r, t) is:

max γαr −∑
i∈N

γiωirx∗it− ∑
(i, j)∈A

λi jy∗i jt (3.117)

Subject to:

ρi jt +λi j + γ j− γi ≥ 0 ∀(i, j) ∈ A, j 6= αr (3.118)

γi ≥ 0 ∀i ∈ N, λi j ≥ 0 ∀(i, j) ∈ A (3.119)

The γi are the dual variables associated with constraints (3.112,3.113), and λi j with (3.115). The

dual variables associated with (3.114) are unbounded, do not appear in the objective function, and

appear only in the dual constraints when j = αr; that is, the arcs that flow back to the origin. In these

cases, the dual variable can be set to a sufficiently large number, thus making the constraints feasible

without changing the objective value. As such, we need only consider arcs that do not flow back to the

request origin.

It is possible for a request to have no path from its origin to any of its potential destinations. This

occurs when there is a disconnected segment of the network and there are no valid facilities at any

of the nodes in the segment. To handle this, we add Benders feasibility cuts to prevent the master

problem from generating such networks again.

We use combinatorial Benders feasibility cuts, where we find an Irreducible Inconsistent Subsystem

(IIS), which returns a set of capacity constraints on the arcs and facilities that are preventing feasibility
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of the sub-problems. We then add the feasibility constraint that at least one such arc or facility must be

open. This is similar to the IIS feasibility cuts used for the DUFLNDP in Section 3.7.3; however, if

deconstruction is allowed, these must be applied to specific time periods where infeasibility occurs

rather than only the first time period.

Pareto-optimal Benders cuts for the GUFLNDP

It is possible to construct Pareto-optimal Benders cuts for all of the problems in the GUFLNDP class

using the same techniques as the UFL and DUFLNDP problems. The only difficulty is that in the

case of the DUFLNDP, we assume it is possible to open a facility at the origin of each demand, which

allows us to set the dual variables associated with the arcs and facility of the current solution to 0. It is

easy to prove Pareto-optimality, since the Benders cut will be tight in the scenario where the facility

at the origin is opened and all arcs on the current solution are closed. For GUFLNDP problems, this

assumption may not hold and the dual variables for parts of the current sub-problem solution may

actually take non-zero values.

When designing an algorithm for producing Pareto-optimal Benders cuts for a GUFLNDP problem,

one must consider which alternative network configurations are possible — with respect to the master

problem constraints — and whether or not their Benders cut will give the correct objective value

for those configurations. If there exists at least one alternative configuration that does not use the

facility or an arc from the current solution, then the Benders cut must hold tightly for at least one such

configuration. In the ideal case, the shortest-possible path would be arc-distinct from the path used in

the current sub-problem solution, allowing all dual variables on the current solution to be 0. However,

if this is not the case, then a longer path must be used and the dual variables for some arcs may be

non-zero to account for this.

The solution for each sub-problem is the shortest path through the network defined by the fixed

variables x∗ and y∗ from the origin to the nearest open facility. To analytically construct a Benders cut,

we require information about the distances between nodes in the network. For simplicity, we will drop

the time indices t, which does not matter since each sub-problem is independent of sub-problems at

other times. For the rest of this section, a will represent (i, j) as a shorthand for an arc.

First, let Dc
i j(λλλ ) be the lambda-weighted length of the shortest path from i to j across open arcs

with arc lengths adjusted by their corresponding λ value. Shortest path distance properties apply

to these values, i.e. for any open arc, Dc
k j(λλλ )≤ Dc

ki(λλλ )+ρi j +λi j. Second, we require the quantity

Do
i (λλλ ) = min

j,P

{
ρi j + ∑

a∈P
(ρa +λa)+ γpn|(i, j) ∈ A;P is a path from j to a valid facility pn

}
, or 0 if i is

a valid facility. If i is not a valid facility, then Do
i (λλλ ) is the length of the shortest possible path from i to a

valid facility where the arc-weights beyond the first arc have been increased by the value of the relevant

dual variables. By shortest path properties, we also have for any arc Do
i (λλλ ) ≤ Do

j(λλλ )+ρi j +λ jk∗ ,

where k∗ is the next node on the shortest λ -weighted path from j to a valid facility.

We also define a function P∗(A′,ρρρ ′,o,ddd) which returns a triple: (l,k, p). p is the shortest path

through the network using only arcs in A′ with arc lengths ρρρ ′, from node o to a node in ddd. ddd is the
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Algorithm 6 Algorithm for computing dual variables for analytic Benders optimality cut for sub-
problem (r, t), assuming the sub-problem is feasible.

1: Begin with master problem solution x∗it ,y
∗
at ∀i ∈ N,∀a ∈ A

2: Initialise λλλ = 0,γγγ = 0
3: (γαr , i

∗,CS)← P∗({a ∈ A|y∗at = 1},ρρρ,αr,{i ∈Ωr|x∗it = 1})
4: for i ∈Ωr \{αr} do
5: γi←max

(
γαr −Dc

αri(λλλ ),0
)

6: Order←{(Do
i (λλλ ),−1, i)|i ∈ N \ (Ωr∪{αr})}∪

{
(max(Do

i (λλλ ),D
o
j(λλλ )), i, j)|(i, j) ∈ A

}
7: Sort Order from smallest to largest, left to right
8: for (d, i, j) in Order do
9: if i =−1 then

10: γ j←max(γαr −Dc
αr j(λλλ ),D

o
j(λλλ ))

11: else
12: λi j←max(0,γi− γ j−ρi j)

13: (•,•,SP)← P∗(A,ρρρ +λλλ ,αr,Ωr)
14: Q←CS∩SP
15: for a ∈ Q do
16: ∆a← P∗(A\{a},ρρρ +λλλ ,αr,Ωr)[0]− γαr

17: while max
a∈Q

∆a > 0 do

18: a← arg min
a∈Q
∆a>0

∆a

19: λa← ∆a
20: γαr ← γαr +∆a
21: Propagate()
22: for a ∈ Q do
23: ∆a← P∗(A\{a},ρρρ +λλλ ,αr,Ωr)[0]− γαr

24: ∆i∗ ← P∗(A,ρρρ +λλλ ,αr,Ωr \{i∗})[0]− γαr

25: if ∆i∗ > 0 then
26: γi∗ ← ∆i∗

27: γαr ← γαr +∆i∗

28: Propagate()
29: Return γγγ , λλλ

set of potential destinations, where the γ value of each destination is included in the path length. l is

the length of p, and k is the facility at the end of p. P∗(A′,ρρρ ′,o,ddd)[0] returns only the length l of the

shortest path. Dc
i j(λλλ ) and Do

i (λλλ ) are special cases of this function which will be used most often. In

practice, this will be used to compute shortest paths through the λ -weighted network. Algorithm 6

shows the procedure for computing the Pareto-optimal Benders cut.

In line 3, we find the shortest path across open arcs to an open valid facility, i.e. the current solution.

This also assigns the initial value of γαr and marks the facility i∗ used in the current solution. In lines 4

to 5, we compute the γ values for the other valid facilities by taking the difference between the length

of the current shortest path and the length of the shortest path from the origin to the new destination. If

the facility is open, the γ value will be 0 as it cannot be closer than the current closest facility. If the

facility is closed and closer than the current closest facility, its γ value will represent the immediate
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Algorithm 7 Propagate(): Algorithm for propagating γ values after an adjustment has been made.
This procedure maintains dual feasibility of the dual variables. The function min() minimises tuples
from left to right.

R←{(γαr −ραri−λαri, i)|∀i ∈ Neighαr
}

while R is not empty do
(d, i)←min(R)
if γi < d then

γi← d
for j ∈ Neighi do

R← R∪{(γi−ρi j−λi j, j)}

saving from opening that facility.

In lines 6 to 12, we compute the γ values for all remaining nodes and λ values for all arcs. Since λλλ

depends upon other values of γγγ and λλλ , they must be processed in order. To do this, we create a list

called Order and fill it with a series of triples, where the first value is the current shortest possible

distance to a valid open facility, and the second and third identify which arc or node this value refers

to. Starting with the nodes and arcs closest to valid facilities, we compute their values for γ and λ as

specified in the algorithm.

Line 13 then computes the shortest-possible λ− and γ−weighted path from the origin to a valid

open facility. Lines 14 to 23 cover a special case where the shortest possible path and the current

solution share at least one arc. The set Q contains all arcs that are on both the shortest possible path

from the origin to a valid facility and the current shortest path across open arcs to an open valid facility.

For each of these arcs, we compute the value ∆a, which is the difference between the length of shortest

possible λ - and γ-weighted path from the origin to a valid facility that does not contain the arc a, and

the current value of γαr . Initially, γαr will be the length of the current solution.

For the arc a with the smallest positive value of ∆a, we set λa to ∆a and increase γαr by ∆a. We may

then need to adjust some γ values to reflect the changes in Dc
i j(λλλ ) and Do

i (λλλ ) caused by the additional

λ value. This is achieved using the Propagate() function on line 21, shown in Algorithm 7. Starting

from αr, we consider all neighbours and check if the relevant dual constraint is satisfied. If not, we

change the value of γ corresponding to the node at the end of the arc and check all neighbours of that

node also. This will continue until we reach a, where the increased value of λa will have satisfied the

constraint, or until we reach arcs with slack in their dual constraints.

We then recompute ∆a for all a ∈ Q on lines 22 and 23. We pick the arc with the smallest positive

value of ∆a, apply the same changes, and repeat until ∆a ≤ 0 for all arcs in Q. In lines 24 to 28, we

perform a similar procedure for the current facility, where we find the shortest possible path to an

alternative facility. If this path is longer than the current solution, we add the difference to γi∗ and γαr ,

and then propagate the γ-values again. At this point, the values of γγγ and λλλ constitute a Pareto-optimal

Benders cut.
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Figure 3.13: Network for GUFLNDP numerical example. O is the origin, G is an open facility and H
is a closed facility. Solid arcs are open, dashed arcs are closed. Arcs are labelled with their lengths.

3.8.3 Numerical example

Consider the network in Figure 3.13, where we are solving the sub-problem for a request from O to

either G or H, i.e. αr =O and Ωr = {G,H}. Currently, G is open and H is closed. The current solution

is to take the path O→ B→ C→ D→ F→ G, and has a length of 9. Lines 3 to 5 of Algorithm 6

assign initial values to γ for each node as shown in the following table:

i O A B C D E F G H

γi 9 0 0 0 0 0 0 0 1

If we were to open facility H, then there would be a path of length 8 to a valid facility, which is a

saving of 1 unit, as reflected by γH = 1. For all other nodes, the γ value is irrelevant except for dual

feasibility as they do not occur in the dual objective function. The next step is to work out in which

order the values of γ and λ are updated, as in line 6 of Algorithm 6. For this example, the sorted list

Order looks like:

Order = {(1,-1,E), (1,E,G), (2,-1,D), (2,-1,F), (2,D,E), (2,D,F), (2,F,G), (2,F,H), (3,-1,C), (3,C,D),

(4,-1,A), (4,A,C), (5,-1,B), (5,B,C), (5,B,F), (5,O,A), (5,O,B)}
Setting the dual variables in this order updates the remaining γ values and only sets two non-zero

λ values (λOA = 2 and λDE = 2). The current non-zero dual variables are:

i O A B C D E F H (i, j) (D,E) (O,A)

γi 9 6 7 5 4 1 2 1 λi j 2 2

If O were a valid facility, we would stop with a set of dual variables that generate a Pareto-optimal

Benders cut. Since it is not, we must compare the shortest possible λ - and γ-weighted path with the

current solution.

Because of the way the dual variables have been set, all paths from the origin to a facility will have

a λ - and γ-weighted length of at least the length of the current solution, in this case 9. There are then

multiple ways of selecting such a path, however this does not matter, because the only arcs we are

concerned with are those that, when removed, increase the shortest possible weighted length. For this

example, there are 4 distinct paths between O and G with the shortest possible weighted length, but the

only arc which occurs on all such paths is (C,D). When computing ∆a on line 16 of Algorithm 6, (C,D)
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is the only arc to yield a positive value.

Removing (C,D) increases the length of the shortest possible weighted path to 11, which is 2 units

more than γO. Now, in accordance with lines 18 to 21 of Algorithm 6, we set γO = 11, λCD = 2 and run

the Propagate() function. This function initialises R = {(8,A),(9,B)}, and runs the following steps:

(d, i) Result

(8,A) γA = 6 < 8 so γA = 8 and R = {(7,C),(9,B)}
(7,C) γC = 5 < 7 so γC = 7 and R = {(4,D),(9,B)}
(4,D) γD = 4≥ 4 so R = {(9,B)}
(9,B) γB = 7 < 9 so γB = 9 and R = {(7,C),(2,F)}
(2,F) γF = 2≥ 2 so R = {(7,C)}
(7,C) γC = 7≥ 7 so R = /0

Now we are at line 24 of Algorithm 6, so we omit the facility at G and find the shortest possible

weighted path to a different valid facility, i.e. H. In this case, the path is also 11 units long, so ∆G = 0

and the algorithm terminates. The non-zero dual variables are:

i O A B C D E F G H (i, j) (D,E) (O,A) (C,D)

γi 11 8 9 7 4 1 2 0 1 λi j 2 2 2

These dual variables form a Pareto-optimal Benders cut for this case, and one can prove it using

the procedure outlined in the proof of Theorem 9.

Dual-optimality of the solution given by Algorithm 6

We will begin by proving dual-optimality of the solution given by lines 1 to 12 of Algorithm 6, and

then show that the changes made in lines 13 to 28 do not change the dual-optimality of the result.

Before we prove dual-optimality of the results of Algorithm 6, we first must prove a relation between

the γ-values of connected nodes.

Theorem 5. For each node i∈N, for the node j∈N and the path P that gives min
j,P
{ρi j+ ∑

a∈P
(ρat +λa)+

γpn|(i, j) ∈ A;P is a path from j to valid facility pn}, the inequality γi ≥ ρi j +λi j + ∑
a∈P

(ρa+λa)+ γpn

holds

Proof. We start by considering all valid facilities. For each facility k ∈Ωr, γk = max(γαr−Dc
αrk(λλλ ),0).

For all nodes j ∈ N such that ( j,k) ∈ A and k is the closest facility to j, we have that γ j = max(γαr −
Dc

αr j(λλλ ),ρ jk + γk). If γ j = ρ jk + γk, then as a result of line 12:

λ jk = max(0,ρ jk + γk− γk−ρ jk) (3.120)

= 0 (3.121)

So γ j = ρ jk +λ jk + γk. If γ j = γαr−Dc
αr j(λλλ ), then γ j ≥ ρ jk + γk, and we have two options to consider:

λ jk = 0 and λ jk > 0. If λ jk = 0, then γ j ≥ ρ jk + γk = ρ jk +λ jk + γk. If λ jk > 0, then:

λ jk = γ j− γk−ρ jk (3.122)
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γ j = ρ jk +λ jk + γk (3.123)

So in all cases, γ j ≥ ρ jk +λ jk + γk. Since γ j is set before λ jk, setting λ jk does not change the value

of γ j and so γ j is greater-than-or-equal-to the shortest λ -weighted path from j to a valid facility.

Now, for any node i ∈ N, assume that for the node j ∈ N and path P that gives min{ρi j + ∑
a∈P

(ρat +

λa)+ γpn|(i, j) ∈ A;P is a path from j to a valid facility pn}, that γ j ≥ ∑
a∈P

(ρa +λa)+ γpn . We again

have two options to consider: λi j = 0 and λi j > 0. If λi j = 0, then as a result of line 10 we have:

γi ≥ Do
i (λλλ ) (3.124)

≥ ρi j + ∑
a∈P

(ρa +λa)+ γpn (3.125)

≥ ρi j +λi j + ∑
a∈P

(ρa +λa)+ γpn (3.126)

In the case where λi j > 0, line 12 gives us:

λi j = γi− γ j−ρi j (3.127)

γi = ρi j +λi j + γ j (3.128)

≥ ρi j +λi j + ∑
a∈P

(ρa +λa)+ γpn (3.129)

So, by induction, we have that γi ≥ ρi j +λi j + ∑
a∈P

(ρa +λa)+ γpn for all i ∈ N, which is that γi is

greater than or equal to the length of the shortest λ -weighted path from i to a valid facility.

Theorem 6. For any arc (i, j), if γi = Do
i (λλλ ), then λi j = 0

Proof. This is easy to see, since if γi = Do
i (λλλ ):

γi = Do
i (λλλ )

≤ Do
j(λλλ )+λ jk∗+ρi j

≤ γ j +ρi j

∴ γi− γ j−ρi j ≤ 0

by Theorem 5 and the shortest path property of Do
i (λλλ ). Since λi j = max(0,γi− γ j−ρi jt), λi j = 0.

The contrapositive of this is that if λi j > 0, then γi = γαr −Dc
αri(λλλ ).

Theorem 7. During lines 15 and 16 of Algorithm 6, for any two arcs a,b ∈ Q, if ∆a > ∆b > 0, then a

is on the shortest possible path from αr to a valid facility that excludes b

Proof. If it were not, then the shortest path from αr to a valid facility that excludes b could also be

used as the shortest possible path from αr to a valid facility that excludes a, and thus ∆a ≤ ∆b. Since

∆a > ∆b, a must be on the shortest possible path from αr to a valid facility.

Theorem 8. The dual variables computed using Algorithm 6 are dual optimal
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Proof. The dual variables are dual feasible by construction. This is because when they are processed,

the γ values at both ends of each arc must be set before the arc is processed, and then λi j = max(0,γi−
γ j−ρi j) which will satisfy the dual constraints. The modifications made in the second half of Algorithm

6 do not make any constraints infeasible as the Propagate() function ensures γ j ≥ γi−ρi j−λi j.

For all locations i ∈ N \{i∗}, either ωir = 0, x∗it = 0 or γi = 0. For arcs not on the current solution,

either y∗at = 0 or λa = 0. γαr initially started as θ ∗ (by line 3), and for each arc on the current solution

P∗, either λa = 0, or λa = ∆a and ∆a was added to γαr (by line 20). In addition, either γi∗ = 0 or

γi∗ = ∆i∗ , and ∆i∗ was added to γαr (on line 27), so for the current solution the Benders cut is

γαr − γi∗− ∑
a∈P∗

λa = θ
∗+ ∑

a∈P∗
∆a + γi∗− γi∗− ∑

a∈P∗
∆a (3.130)

= θ
∗ (3.131)

This means these dual variables give exactly the objective value of the primal sub-problem. Since

these dual variables give the primal objective value and satisfy all dual constraints, they form a dual

optimal solution.

So the dual variables computed using Algorithm 6 form a valid Benders cut. We now prove that

this is a Pareto-optimal Benders cut using the definitions and proof method from Section 3.4

Theorem 9. The Benders cut formed using the dual variables given by Algorithm 6 are Pareto-optimal

Proof. The Benders cut generated by Algorithm 6, hereafter referred to as the analytic cut, is:

θrt ≥ γ
a
αr
−∑

i∈N
γ

a
i ωirxi−∑

a∈A
λ

a
a ya = θ̄

a(x,y) (3.132)

Now assume there exists a cut that dominates this cut, called the dominating cut and denoted

by θ̄ d(x,y). We denote the coefficients of this cut as γd and λ d , to match those of the analytic

cut. When a Benders cut gives the correct objective value for a given master problem solution, we

say it is tight at that solution. Since the analytic cut is tight for the current network configuration

(θ̄ a(x∗,y∗) = θ̄ ∗(x∗,y∗)) the dominating cut must also (θ̄ d(x∗,y∗) = θ̄ ∗(x∗,y∗)). Now, we consider

various scenarios that may or may not change the objective function as various values of x and y are

changed.

Feasible master problem solutions
When proving Pareto-optimality of a Benders cut, only master problem solutions that produce

feasible sub-problem solutions are considered. For the GUFLNDP, if there exists a path from the

origin to an open valid facility, the master and sub-problems will both be feasible. As there are no

other constraints on the design of the network, for example budget constraints or arc-dependencies, we

may choose any network configuration with an open path from the origin to an open valid facility.

Locations that are not valid facilities
With the exception of the origin, αr, any location that is not a valid facility (ωir = 0) does not

contribute directly to the value of either cut, and so is not important in assessing Pareto-optimality.
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Valid facilities
For all valid facilities, i ∈ Ωr, Do

i (λλλ ) = 0 since ωir = 1. Therefore γa
i = max(γa

αr
−Dc

αri(λλλ ),0),

and so we have two cases for their associated dual variables: γa
i = 0 or γa

i = γa
αr
−Dc

αri(λλλ )> 0.

If γa
i = 0, then γa

αr
≤ Dc

αri(λλλ ), that is, the shortest current λ -weighted path from the origin to the

closest open valid facility, i∗, is no longer than the current shortest λ -weighted path from the origin to

this location. Note that this includes i∗. For all facilities except i∗ in this case, opening or closing the

facility does not change the objective value. Since γa
i = 0 in this case, the analytic cut is tight, and thus

the dominating cut must also be tight. This means γd
i = γa

i = 0 for all facilities except i∗ where γa
i = 0.

If γa
i > 0, then there is an open path from the origin to this location that is shorter than the path

from the origin to i∗, since γa
αr

> Dc
αri(λλλ ). If a facility were opened at this location, then the shortest

path would now be Dc
αri(λλλ ), and the objective value would reduce by γa

αr
−Dc

αri(λλλ ) = γa
i . So the

analytic cut is tight, and so the dominating cut must also be tight. This means γd
i = γa

i whenever γa
i > 0

with the exception of i∗.

So we now have that γd
i = γa

i for any valid facility i except for i∗. Next we show that the dual

variables for the arcs must also match.

Closed arcs with zero lambda
For any arc (i, j) where λ a

i j = 0, we have:

γ
a
i − γ

a
j −ρi j ≤ 0

γ
a
i ≤ γ

a
j +ρi j

γ
a
αr
−Dc

αri ≤ γ
a
j +ρi j

γ
a
αr
≤ Dc

αri + γ
a
j +ρi j

Now, if γa
j = γa

αr
−Dc

αr j, the above inequality leads to Dc
αr j ≤ Dc

αri +ρi j, that is, the shortest path

from the origin to j is shorter than the shortest path from the origin to i plus the length of the arc from

i to j. This means that (i, j) is not a shortcut, and opening the arc will not affect the objective value, as

reflected by λi j = 0.

If γa
j = Do∗

j (λλλ ), then the above inequality instead leads to γa
αr
≤ Dc

αri(λλλ )+ρi j +Do∗
j (λλλ ), which is

that the current solution is shorter than the current shortest path from the origin to i, plus the length

of the arc from i to j, plus the shortest possible path from j to a valid facility. This again means that

opening (i, j) will not yield any change in the objective value.

Thus, for any closed arc (i, j) where λ a
i j = 0, opening just that arc will not change the objective

value, and the analytic cut is tight for this new solution. As such, the dominating cut must also be tight

for this solution, and so λ d
i j = λ a

i j = 0 for all closed arcs (i, j) ∈ A such that λ a
i j = 0.

Open arcs that are not part of the current solution
Similarly, for any open arc that is not on the current shortest path from the origin to a valid facility,

closing that arc will not affect the objective value, and so λ d
i j = λ a

i j = 0 for all such arcs.

Closed arcs with non-zero lambda
Next, consider all paths on the shortest path trees from valid facilities to the other nodes. As we

move backwards along one such path, P, we will cross arcs with zero and non-zero λ -values. Denote
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the facility at the end of the path by k, and the arc on P closest to k with a non-zero λ value as (pi−1, pi).

Since, for all arcs on P after this arc, λ a
p j p j+1

= 0, we know that γa
p j
≤ γa

p j+1
+ρp j p j+1 . This leads to:

γ
a
pi
≤ γ

a
pi+1

+ρpi pi+1

≤ γ
a
pi+2

+ρpi+1 pi+2 +ρpi pi+1

≤ ...

≤ γ
a
k +

n−1

∑
j=i

ρp j p j+1

Do
pi
(λλλ )≤ γ

a
pi
≤ Do

pi
(λλλ )

where pn = k. So γa
pi
= Do

pi
(λλλ ). Since λ a

pi−1 pi
> 0, γa

pi−1
= γa

αr
−Dc

pi−1
(λλλ ) by Theorem 6, and

λ a
pi−1 pi

= γa
αr
− (Dc

αr pi−1
(λλλ )+

n
∑
j=i

ρp j−1 p j + γa
k ), or the savings on the arc are equal to the difference

between the current solution and the current shortest path from the origin to pi−1, plus the real length

of the shortest possible weighted path from pi to k and the amount already saved by opening the facility

at k.

Opening the facility at k will reduce the objective value by γa
k as already shown. Opening the

shortest path from pi to k does not change the objective value since γa
αr
−Dc

αr pi
(λλλ )≤ Do

pi
(λλλ ), which

is reflected by the analytic cut (as all λ -values are zero). When (pi−1, pi) is opened also, the objective

value will reduce by the difference between the current shortest path and this new weighted shortest

path, i.e. λ a
pi−1 pi

. As such, the analytic cut also correctly estimates this solution, and so must the

dominating cut.

Now assume that when a facility, k, and the shortest possible weighted path from j to k, which

has n non-zero λ -values, are opened, the analytic cut gives the correct objective value. Formally, this

looks like γa
k + ∑

a∈P
λ a

a = γa
αr
−Dc

αr j(λλλ )− ∑
a∈P

ρa, where P is the path from j to k we are concerned with.

We now show that if an arc (i, j) has a non-zero λ value, then opening it and the shortest possible

weighted path from j to k, as well as the facility k, will also give the correct objective value. That is,

that γa
k +λ a

i j + ∑
a∈P

λ a
a = γa

αr
−Dc

αri(λλλ )−ρi j− ∑
a∈P

ρa holds.

Since λi j > 0, γa
i = γa

αr
−Dc

αri(λλλ ) by Theorem 6, and λ a
i j = γa

i − γa
j −ρi j. For γa

j , there are two

choices. If γa
j = γa

αr
−Dc

αr j(λλλ ):

λ
a
i j = γ

a
i − γ

a
j −ρi j

= γ
a
αr
−Dc

αri(λλλ )− (γa
αr
−Dc

αr j(λλλ ))−ρi j

= Dc
αr j(λλλ )−Dc

αri(λλλ )−ρi j

So Dc
αr j(λλλ ) = Dc

αri(λλλ )+ρi j +λ
a
i j

and γ
a
k + ∑

a∈P
λ

a
a = γ

a
αr
−Dc

αri(λλλ )−λ
a
i j−ρi j−∑

a∈P
ρa

or γ
a
k +λ

a
i j + ∑

a∈P
λ

a
a = γ

a
αr
−Dc

αrit(λλλ )−ρi j−∑
a∈P

ρa
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If instead γa
j = Do

j(λλλ )

(
= ∑

a∈P
(λ a

a +ρa)+ γa
k since λ a

jb = 0 for all b ∈ N by Theorem 6
)

, then:

λ
a
i j = γ

a
i − γ

a
j −ρi j

= γ
a
αr
−Dc

αri(λλλ )−∑
a∈P

(λ a
a +ρa)− γ

a
k −ρi j

or γ
a
k +λ

a
i j + ∑

a∈P
λ

a
a = γ

a
αr
−Dc

αri(λλλ )−ρi j−∑
a∈P

ρa

So in all cases, if the analytic cut correctly gives the objective value when the shortest weighted

path from a node j to its nearest facility k, and the facility itself, are opened, then it will also correctly

give the objective value when opening the arc (i, j). By induction, the analytic cut is tight for any

scenario where the shortest weighted path from a node j to its nearest facility k, and the facility itself,

are opened. This can be used to show that, for all (i, j) ∈ A such that λ a
i j > 0 and (i, j) is closed, that

λ d
i j = λ a

i j.

Arcs on the current solution
For arcs on the current solution that are not on the shortest possible path, λ a

a = 0. When we open

the shortest possible path, the Benders cut will give the correct objective value as shown above. Now,

if we close the arcs on the current solution that are not on the shortest possible path, the objective value

will not change, and the Benders cut is still tight, so λ d
a = λ a

a = 0 for these arcs.

The set Q contains the arcs that are on the current solution and the shortest possible path. For these

arcs, ∆a was calculated during the construction of the Benders cut. This value is the length of the

shortest possible path that does not use arc a minus the value of γαr at the time it was calculated. The

values of λa were set in order from smallest to largest ∆a, and we now consider these arcs in the same

order. For the first arc that was set, a1, every other arc in Q is on the shortest possible path that does

not include a1.

When we open the shortest possible path that does not include a1, the change in the objective

value is reflected by the Benders cut as shown above. Now, when we close a1, the objective value will

increase by λa1 , and the Benders cut will also show this, so the Benders cut is tight at this solution, and

λ d
a1
= λ a

a1
.

For each subsequent arc an ∈ Q, we must consider those arcs that were set before it. For each arc

ak, where k ∈ {1, ...,n− 1}, if it is on the alternative shortest path of an, then it does not affect the

value of λan , since λan is the difference between the shortest possible path excluding an and γαr . When

λak was set, both quantities increased by the same value, and thus ∆an did not change. These two arcs

are thus independent of each other.

If ak was not on the alternative shortest path of an, then it does affect the value of λan , for similar

reasons as above. By closing only an, a saving of the initial value of ∆an would be obtained, however

since γαr was increased by λak and the length of the alternative shortest path of an did not, λan

underestimates the reduction in the objective value. In this case, an depends upon ak.

For each arc an ∈Q where n > 1, we go through in order and start by opening the shortest possible

path, a scenario at which our Benders cut is tight. We then open all arcs upon which an depends, as

well as an itself. This scenario gives us the correct objective value, and the values of λ d for all arcs
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upon which an depends were previously fixed, so the only change is λan , and thus λ d
an
= λ a

an
for all

an ∈ Q.

Current facility and the origin

If we open the path to the closest possible facility that is not i∗, the Benders cut will give the correct

objective value as shown above. If we then close i∗, the Benders cut is also tight at this solution in how

γi∗ was set. Thus γd
i∗ = γa

i∗ . Now the only value of the dominating cut that has not been fixed is γd
αr

.

Returning to the original network configuration, the Benders cut must give the correct objective value,

and the only elements not shown to be equal between the two cuts are γd
αr

and γa
αr

, so γd
αr

= γa
αr

. Thus

the dominating cut is the analytic cut itself, and since a cut can not dominate itself, there are no cuts

that dominate the analytic cut, so it is Pareto-optimal.

3.8.4 Applicability of the GUFLNDP formulation

While it is possible to take a GUFLNDP problem and model it in the GUFLNDP framework, that may

not always be the best approach. For example, the Tree of Hubs Location problem is best solved using

a different formulation, first introduced by Contreras, Fernández and Marı́n (2009), and later used for

Benders decomposition by de Sá, de Camargo and de Miranda (2013). While the formulation may not

be identical, the ideas still apply: Benders decomposition is effective, the sub-problems disaggregate,

and combinatorial feasibility cuts are appropriate. Similarly, the UFL problem can be reformulated to

fit the GUFLNDP framework, but this introduces unnecessary complexity. The GUFLNDP should be

used as a guide for how to apply Benders decomposition to these problems, not an exact recipe.

It is also worth noting that it is possible to design algorithms that yield valid Benders cuts that are

not Pareto-optimal. For example, lines 1 to 12 of Algorithm 6 provide valid Benders cuts that may

even be Pareto-optimal in some cases, but not all. The bulk of the computation in this algorithm resides

in lines 13 to 28 due to the many shortest path computations, so the benefit of provably Pareto-optimal

cuts should be weighed against the increased cost in computing them.

While the majority of GUFLNDP problems will benefit from Benders decomposition, there are a

small number that will not. The GUFLNDP itself, for instance, does not benefit as it is far too general

and a large number of Benders cuts are required to find sensible integer solutions, let alone an optimal

solution. In this case, the number of additional constraints required may surpass the original problem

size, and so it is more effective to solve the problem as a MIP rather than using Benders decomposition.

Another example is the Two-Level UFL (TUFLP) problem. First considered by Kaufman, Eede

and Hansen (1977), this problem is an extension of the UFL problem, where customers are indirectly

connected to facilities via satellite facilities. This adds a new layer of variables and constraints to the

problem, greatly increasing the number of potential solutions to consider. This problem is also clearly

a GUFLNDP problem.

A recent honours thesis by Rist [91] applies Benders decomposition to the TUFLP and shows that

it is not particularly effective. The suggested reason for this is that the problem is very general and

many Benders cuts are required for finding an optimal solution. In some cases, the number of Benders
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cuts added is within an order of magnitude to the number of constraints removed from the original

MIP. This greatly reduces the effectiveness of Benders decomposition by removing the primary benefit

of a smaller master problem with far fewer constraints.

In both these cases, the problem is that the space of feasible master problem solutions is very

large, and so a large number of Benders optimality cuts are required to build the initial support for

the approximation variables. By the time the solutions are returning reasonable (but still incorrect)

approximations, the number of Benders optimality cuts is so large that processing the nodes of the

branch-and-bound tree will not be much faster than it was in the original MIP. Despite these examples,

the majority of GUFLNDP problems have quite restrictive master problems that reduce the number of

Benders cuts required to solve them, making Benders decomposition beneficial.

3.9 Discussion

There is a wide range of problems for which Benders decomposition is suitable, and there are many

improvements that consistently yield improvements. The most important of these is the disaggregation

of the sub-problem where possible, and the next most important is to embed Benders decomposition

in a branch-and-cut framework. There are few scenarios where implementing either of these is not

beneficial. The next thing to try is warm-starting the solver or adding initial cuts, which usually makes

an improvement.

The main reason why Benders decomposition solves problems faster than a standard MIP model is

that the master problem is significantly smaller, so it is easier to process nodes in the branch-and-bound

tree. It may be the case that more nodes need to be explored, but this is more than compensated for by

how much faster they are processed. In practice, the reduced size of the master problem can make the

automatic cutting plane and heuristic generation algorithms in the main solvers more effective, leading

to even more impressive speed increases.

Embedding Benders decomposition in a branch-and-cut framework is a prime application of

lazy constraints, and there are interesting parallels between Benders decomposition and other lazy

formulations. In particular, both cases involve solving incomplete problems that are “repaired” by

adding constraints lazily. The main difference is that for Benders decomposition, we first formulate the

complete problem and decompose it, whereas a lazy formulation starts with an incomplete problem

that is completed with lazy constraints. We explore these parallels further in the next chapter.
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Chapter 4

Lazy Formulations

Never put off till tomorrow what

may be done day after tomorrow

just as well

Mark Twain

This chapter contains some examples of problems with exponentially sized sets of constraints,

many of which are unnecessary for finding an optimal solution. It also introduces a new way of thinking

about modelling problems, where instead of formulating a compact model and then decomposing

or otherwise finding a way of solving it efficiently, one finds the simplest model that would give a

solution close to what is desired, and correct that solution with lazy constraints. The best problem with

which to introduce these ideas is the Travelling Salesman Problem.

4.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most widely studied problems in Operations

Research. The objective is to find the shortest tour through a set of locations and return to the starting

position. It was first considered by Hamilton in the mid-1800s, as it is equivalent to the problem of

finding the shortest Hamiltonian cycle through a graph. While it had been mathematically described

prior to the advent of linear programming, it became a central problem in 1954 when Dantzig et

al.found the shortest tour of 49 US cities — 48 state capitals and Washington D.C., the national

capital [30].

Since then, techniques for solving TSPs have been a hot topic of research, and many large TSPs

once considered intractable are now almost trivial. As of August 2018, the largest TSP solved to

optimality is a tour of 85,900 points in an application of Very-large-scale integration (VLSI), a

technique for designing integrated circuits. There are a number of larger VLSI problems that have

yet to be solved to optimality, and there is even a “world tour” of 1,904,711 cities across the globe,

including several research bases in Antarctica. Every few years, a new, slightly improved tour is found,
119
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the latest being in March 2018. A best bound for this problem was established in 2007, which puts the

current optimality gap at 0.0474% [92].

The Travelling Salesman Problem is an excellent example of how lazy constraints can be useful,

so much so that Gurobi uses it as one of its examples on implementing lazy constraints [93]. This

includes sample code demonstrating the implementation of a TSP solver using integer programming

with lazy constraints. There are multiple ways of formulating the TSP as an integer programming

problem, one of which is as follows:

Sets

N Set of locations

Data

di j Distance from location i ∈ N to location j ∈ N

Variables

xi j 1 if location i ∈ N is connected to location j ∈ N, 0 otherwise

Objective

min ∑
i∈N

∑
j∈N
j<i

di jxi j (4.1)

Constraints

∑
j∈N

xi j = 2 ∀i ∈ N (4.2)

xi j = x ji ∀i ∈ N,∀ j ∈ N (4.3)

xii = 0 ∀i ∈ N (4.4)

∑
i, j∈S
i< j

xi j ≤ |S|−1 ∀S⊂V,S 6= /0, |S|< |V |/2 (4.5)

xi j ∈ {0,1} ∀i ∈ N,∀ j ∈ N (4.6)

The objective is to minimise the sum of the distances of the connections. Constraints (4.2) ensure

that every node is connected to exactly two nodes, and constraints (4.3) make the variables symmetric,

so the result is an undirected graph. Constraints (4.4) stop nodes connecting to themselves, and

constraints (4.5) are to prevent disconnected sub-cycles from appearing in the solution. These are

necessary, since a valid solution to a 6-node TSP without constraints (4.5) may be similar to Figure

4.1.

To prevent this case from happening, it is sufficient to enforce that for every set of three nodes,

there can be at most two links connecting any nodes in that set. By enforcing this for every subset of

every size (greater than 2), as in constraints (4.5), the solution is guaranteed to be free of sub-cycles.

The problem with this is the number of constraints in (4.5) is of the order 2n−1, which is exponential in

the number of nodes. Thus, as the number of nodes increases, the difficulty in solving this problem

grows very quickly.
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Figure 4.1: A solution to a 6-node TSP with sub-cycles

An important note is that many of these sub-cycles are unlikely to occur in an optimal solution; for

example, assuming the cost of travelling between two nodes is proportional to the euclidean distance

between them, the two nodes on the left and the one furthest to the right in Figure 4.1 are unlikely to

occur as a sub-cycle, as the cost of that sub-cycle and the one formed by the remaining nodes would

be more expensive than the optimal solution. This also means the sub-cycle involving those remaining

nodes, while small, is also unlikely because it forces a longer sub-cycle to occur.

Thus, a more efficient way to solve the TSP is to start without constraints (4.5), and each time a

new incumbent integer solution is found, inspect it for sub-cycles. If a sub-cycle is found, add the

relevant constraint to remove it, and continue searching the branch-and-bound tree. A specialised

solver, the Concorde TSP solver [94], uses this among other techniques, and is considered one of the

best TSP solvers.

Dantzig, in his papers in 1954 [30] and 1959 [31], describes how one could add only those

constraints in (4.5) that are required, and only at the times they are required. This appears to be the

first description of a lazy modelling approach. Since then, similar approaches have been used for a

number of problems such as the Vehicle Routing problem [34], the Clique Partitioning problem [32]

and the Weighted Node Packing problem [33].

4.1.1 Compact formulation

The presented formulation is obviously not the only way of solving the TSP, and there are other

formulations that do not have an exponential number of constraints; however, they require the addition

of auxiliary variables to enforce the connectivity of the tour. There are at least two that are easy to

describe: a flow-based formulation and a time-based formulation.

The flow-based formulation involves flowing some commodity from an arbitrary source node to

all other nodes. That way, if a disconnected sub-cycle exists, there is no way to flow the commodity

to the nodes in the cycle, and the solution is infeasible. An auxiliary variable is added for each

potential connection between two nodes, and two sets of constraints are added: capacity constraints

and flow-conservation constraints. The capacity constraints limit the flow of the commodity to only

the selected links in the tour, and the flow-conservation constraints assign a demand of 1 to each node,

except for the source node, which has a sufficiently large supply.
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The time-based formulation requires the tour to be directed and enforces an ordering on the nodes.

If a connection between two nodes exists, the time that the end node is visited is at least the time the

start node is visited plus the length of the connection. There is only one node that is exempt from this

rule, which could be considered the start of the tour, and the last node of the tour can connect to the

first without violating these constraints. Thus, if a sub-cycle exists, there will be a series of inequalities

that, when combined, lead to a contradiction and render the solution illegal. This is a variation of MTZ

constraints, due to the authors who first proposed them for the Traveling Salesman Problem [95].

It is best to consider the time-based formulation for reasons that will soon become apparent. The

formulation is as follows:

Sets

N Set of locations

Data

di j Distance from location i ∈ N to location j ∈ N

Variables
xi j 1 if location i ∈ N is connected to location j ∈ N, 0 otherwise

zi Time of visit at location i ∈ N
Objective

min ∑
i∈N

∑
j∈N

di jxi j (4.7)

Constraints

∑
j∈N

xi j = 1 ∀i ∈ N (4.8)

∑
j∈N

x ji = 1 ∀i ∈ N (4.9)

xii = 0 ∀i ∈ N (4.10)

z j ≥ zi +di j−M(1− xi j) ∀i ∈ N,∀ j ∈ N \{0} (4.11)

xi j ∈ {0,1},zi ≥ 0 ∀i ∈ N,∀ j ∈ N (4.12)

Constraints (4.8-4.9) now say that there must be one arc entering and one arc leaving each node, in

contrast to constraints (4.2). Constraints (4.10) are unchanged, and constraints (4.11) are the new time

constraints. If a link (i, j) is not used, the big-M term effectively turns the constraint off. If the link is

used, the time of arrival at node j is at least the time of arrival at node i plus the distance between i and

j.

This is now a compact formulation of the TSP that does not involve any exponentially sized sets of

constraints. Perhaps the more interesting feature of this formulation is that it is suitable for Benders

decomposition.
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4.1.2 Benders decomposition

In this case, the master problem is the formulation above without (4.11), and the sub-problem is

to solve the timing problem to ensure the master problem solution is a valid solution. Since the

sub-problem does not appear in the objective function, no Benders optimality cuts are required, only

Benders feasibility cuts. As seen in Chapter 3, Irreducible Inconsistent Subset (IIS) feasibility cuts are

more effective than traditional Benders feasibility cuts, and are appropriate in this example.

Let us consider a case where there exists a sub-cycle of three nodes, {1,2,3}, and the distance

between each pair of these nodes is 5. Then constraints (4.11) give the following:

z2 ≥ z1 +5

z3 ≥ z2 +5≥ z1 +10

z1 ≥ z3 +5≥ z1 +15,

which is clearly a contradiction. Thus, the sub-problem is infeasible, and a Benders feasibility cut

is required. The only constraints in the sub-problem are (4.11), and if the right-hand side of any one

of the three cuts above contained the large negative big-M value, the infeasibility would be resolved.

That is, the IIS cut generated in this situation is:

∑
(i, j)∈IIS

xi j ≤ |IIS|−1, (4.13)

where IIS is the set of links in the sub-cycle. Note that as the graph is directed, the reverse cycle

would be feasible under this cut. Also, if there are more than three nodes in the sub-cycle, a re-ordering

of the nodes could also be considered feasible (although perhaps not optimal if the reordered tour is

longer). Thus, we could lift this cut to include all links between all nodes in the sub-cycle. This would

then make the cut equivalent to one of the constraints in (4.5).

This means that the original lazy formulation can be considered a Benders decomposition on an

underlying compact formulation. This was shown for a similar formulation of the TSP by Gavish and

Graves (1978). The flow-based compact formulation can be decomposed in the same manner; however,

the IIS cuts are the inverse of (4.5), in that rather than limiting the number of links between the nodes

in the sub-cycle, it enforces at least one arc to be opened from a node outside the sub-cycle to a node

in the sub-cycle.

Table 4.1 shows a comparison of three formulations on 10 randomly generated instances with 50

cities each. The locations are uniformly distributed in a square area and the distances between locations

are euclidean. The solution time, number of nodes processed, and lazy constraints added have been

averaged over the 10 instances. The Lazy formulation is the formulation presented in (4.1-4.5), the

Compact formulation is the time-based formulation shown in (4.7-4.11), and Benders is the result of

applying Benders decomposition to the Compact formulation. In the Benders formulation, we detect

multiple sub-cycles and add a cut for each one at each integer solution. This is achieved by modifying
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Formulation Time (s) Nodes Lazy Constraints
Lazy 0.46 1135 107

Compact 142.17 145209 -
Benders 115.23 42690 2554

Table 4.1: Comparison of different TSP implementations on 10 randomly-generated instances with 50
cities

the sub-problem to make the previous sub-cycle legal, re-solving and finding a new IIS. We repeat this

until the sub-problem is feasible.

The lazy formulation is the fastest, because it is the smallest model and does not require the

solution of additional LPs or the computation of any IIS. Instead, a simple labelling algorithm can

find sub-cycles and the cuts can be constructed directly. The Compact formulation is the slowest,

which is not surprising as it is the largest model with the most variables and constraints. The Benders

formulation is faster than Compact, but slower than Lazy. This is because of the additional time spent

solving the sub-problems and the fact the cuts are not as strong as those used in the Lazy formulation,

which results in the generation of more Benders cuts.

An interesting note is that the behaviour exhibited here is similar to that in the paper from Section

3.5. The Benders formulation is faster than the Compact formulation for two reasons: the nodes in

the branch-and-bound tree are smaller and easier to process, and fewer of them need to be explored

to solve the problem. As noted previously, this is likely because the algorithmic features built into

Gurobi are more effective on the smaller problem.

The TSP, while important, is not the only problem that has one or more exponentially sized set(s)

of constraints that would benefit from the use of lazy constraints. As such, it is important to understand

how to use them and in what contexts. Logic puzzles can be modelled as integer programs, and

make good classroom examples as they are easy to understand and often benefit from techniques also

applicable to industrial problems. The remainder of this chapter will cover two such puzzles: Anne

Bonney (the Pieces of 8 puzzle), and the Fillomino puzzle.

4.2 Anne Bonney (the Pieces of 8)

The Melbourne University Mathematics and Statistics Society holds a “puzzle hunt” every year (since

2004 with the exception of 2017). In act 1 of the 2011 collection of puzzles is one titled Anne Bonney,

which we refer to as the Pieces of 8 puzzle [97]. In this puzzle, one starts with an incomplete treasure

map that has the location of a ship, some buried treasure, and a few numbers. The resulting solution

is a contiguous path that connects the ship to the treasure, does not cross itself or touch itself except

diagonally, and the remaining squares are divided into eight pieces. The pieces numbered 1 through 7

contain that many squares (i.e. four squares in the piece of 4), and the eighth piece is of undetermined

size. Some maps have cells missing from the grid.
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Figure 4.2: An example starting grid and corresponding solution to Anne Bonney (Pieces of 8). Image
source: Corey Plover, MUMS Puzzle Hunt 2011 [97]

4.2.1 Lazy formulation

Like most logic puzzles, this can be modelled as an integer programming problem. Most of the rules

can easily be described by constraints, except for the rules that the pieces must be contiguous and the

path must be connected. While these rules can be tricky to describe in a compact model, they are easy

to enforce using a lazy model. Something to note is that the path may be considered a piece as well,

and it must be contiguous, which is the same as being connected. The path is denoted type 0, and the

missing cells are denoted type 9. The lazy integer programming model for solving the pieces of 8

puzzle is as follows:

Sets
C Set of cells, represented as (i, j)

K Set of cell types. K = {0, ...,9}, K7 = {1, ...,7} and K8 = {1, ...,8}
Ni j Set of cells that share an edge with cell (i, j) ∈C

Constants

pi j Pre-set value for cell (i, j) ∈C. -1 if no value given.

Variables

xi jk 1 if cell (i, j) ∈C is of type k ∈ K, 0 otherwise

Constraints

∑
k∈K

xi jk = 1 ∀(i, j) ∈C (4.14)

xi jpi j = 1 ∀(i, j) ∈C, pi j ≥ 0 (4.15)

xi j9 = 0 ∀(i, j) ∈C, pi j 6= 9 (4.16)

∑
(i, j)∈C

xi jk = k ∀k ∈ K7 (4.17)

∑
(i, j)∈C

xi j8 ≥ 1 (4.18)
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xi jk + ∑
k′∈K8
k′ 6=k

xi′ j′k′ ≤ 1 ∀(i, j) ∈C,∀(i′, j′) ∈ Ni j,∀k ∈ K8 (4.19)

∑
(i′, j′)∈Ni j

xi′ j′0 = 1 ∀(i, j) ∈C, pi j = 0 (4.20)

∑
(i′, j′)∈Ni j

xi′ j′0 ≥ 2xi j0 ∀(i, j) ∈C, pi j < 0 (4.21)

∑
(i′, j′)∈Ni j

xi′ j′0 ≤ 4−2xi j0 ∀(i, j) ∈C, pi j < 0 (4.22)

xi jk ≤ ∑
(i′, j′)∈Ni j

xi′ j′k ∀(i, j) ∈C,∀k ∈ K7 \{1} (4.23)

xi jk ∈ {0,1} ∀(i, j) ∈C,∀k ∈ K (4.24)

Constraints (4.14) ensure that each cell has exactly one type, and constraints (4.15) enforce the

pre-set values. Constraints (4.16) make sure that a cell can only be of type 9 (blank square) if it is

pre-set to type 9. Constraints (4.17) ensure the first seven pieces are of the correct size, and constraints

(4.18) say that there must be at least one cell in the eighth piece. Constraints (4.19) make sure

that no two pieces share an edge. Constraints (4.20) ensure the origin and destination have exactly

one neighbour each, and constraints (4.21-4.22) make sure all other path squares have exactly two

neighbours. Finally, constraints (4.23) say that for any cell of type k ∈ {2, ...,7}, it has at least one

neighbour of the same type. Note that constraints (4.22) can be tightened for cells on the boundary by

changing the RHS to 3−2xi j0, and are redundant for cells in the corners of the grid.

This formulation covers many of the rules and will produce solutions close to what is required, but

it still allows the possibility of a disconnected piece or section of path. Such solutions are excluded

through the use of lazy constraints. Now we must decide how to exclude these solutions. The most

general method for excluding a particular integer solution, x∗, is to add the following constraint:

∑
(i, j)∈C

∑
k∈K

x∗i jk=1

xi jk ≤ |C|−1, (4.25)

that is, the sum of all variables corresponding to assignments in the current solution must reduce

by at least 1. This does not cut off any solutions other than the current one, as to violate this constraint,

all values of x must be equal to x∗. The problem with this constraint is that if there are multiple

disconnected pieces, fixing one will satisfy this constraint while the others may remain broken. Thus,

we would like a tighter constraint for fixing these broken pieces.

Let P be the set of all cells in an offending piece or disconnected section of path, and k′ be the

type of piece or path. The following constraint will discard the current solution and prevent the same

configuration from occurring again:

∑
(i, j)∈P

xi jk′ ≤ |P|−1. (4.26)
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(a) Initial grid (b) First solution (c) Solved grid

Figure 4.3: Example of correcting a Pieces of 8 puzzle solution with lazy constraints or Benders
decomposition. (a) The starting grid showing the pre-set values. (b) The solution obtained without any
contiguity constraints. (c) The solution to this instance

This cut ensures that this specific selection of cells cannot occur again, in that at least one of the

offending cells must change its type. Importantly, we have not just cut off a single integer solution,

but all solutions that contain this illegal configuration of cells. In doing this, we have identified the

smallest portion of the solution that is breaking the rules, and have cut off only that offending portion.

The only exception to this is the eighth piece. Because its size is unknown, an illegal configuration

could be fixed simply by adding additional cells to the eighth piece, rather than moving existing ones.

This would make (4.26) an illegal cut. To remedy this, we use a more general cut:

∑
(i, j)∈P

(1− xi jk′)+ ∑
(i, j)∈PN

xi jk′ ≥ 1, (4.27)

where PN is the set of cells that neighbour a cell in P but are not in P themselves. This cut says

either one of the cells in the broken piece must be removed, or one of the neighbours needs to become

part of the same piece. This cut works for all pieces, so may be used as an alternative to (4.26).

Interestingly, in practice (4.26) is sufficient for solving all instances, even when applied to the

eighth piece. This is because of the interconnectivity of the other constraints, so that if another cell

were to be added to the eighth piece without taking away any existing cells, a cell from a different

piece would have to be removed. The only option for this is the path, as all other pieces have fixed size.

The need for the path to be connected is often enough to prevent this situation from occurring.

We apply each of these cuts to every part of a disconnected piece, which may mean that at a

particular integer solution, we add multiple cuts. This is not a problem because the cuts are tight, so

few of these cuts will be required overall. The other benefit is that there is always the potential that we

do not require any lazy constraints at all, and the lazy model will be sufficient for finding the solution.

An example of how this works is shown in Figure 4.3. Image (a) shows the starting grid for instance

1 with the pre-set values. The two 0s represent the ship and the treasure. Since the path is undirected,

these two are interchangeable. The black square in the bottom-left is a missing cell with a value of 9.

After solving the model without any contiguity constraints, solution (b) is obtained. Note that piece 8

is disconnected.
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Instance Time (s) Nodes Lazy Constraints
1 0.47 0 1
2 0.47 71 0
3 2.66 2842 0
4 0.11 0 0
5 0.22 1 4
6 0.26 1 5
7 0.16 0 0
8 0.70 537 17
9 0.14 0 0

Table 4.2: Time to solution, number of branch-and-bound nodes explored and number of lazy con-
straints required for the nine instances of the Pieces of 8 puzzle using the lazy formulation

At this point, a constraint like (4.26) is applied to the 8 piece, so at least one of those cells must

change. The solver then moves the cell in the top-left corner down and to the right, connecting it to

the rest of the piece, as well as maintaining the path-connectivity. This is a legal solution, and so the

optimisation terminates.

We implemented this formulation using Gurobi 8.1.0 with Python 3.7.0, both 64-bit, on a machine

running an Intel i5-8250U quad-core 1.6GHz processor with 4GB of RAM. Table 4.2 shows the time

it takes to solve each instance and the number of lazy constraints added before finding the solution.

Each instance has exactly 810 variables and about 3126 constraints, give or take a few depending upon

the number of pre-assigned values.

Note that four of the nine instances solved with 0 branch-and-bound nodes explored. In these

cases, the entire problem was solved by Gurobi’s pre-solver, a logical processor that looks to reduce

the size of the problems by making logical deductions about the relationships between the variables.

As stated previously, this is one of the main benefits of using lazy constraints with modern solvers: all

of the powerful processing techniques are automatically applied to the smaller, easier-to-solve models,

leading to even greater speed increases.

The other important result is that fewer than 10 lazy constraints were needed for all but one of the

instances. To describe the contiguity rules using a compact formulation would have required far more

than 10 additional constraints, and in more than half of the instances, those constraints are completely

unnecessary. This is another main benefit of using lazy constraints: saving time by not having to

design a compact formulation, and by not having to handle a number of constraints that may be mostly

or completely unnecessary.

4.2.2 Compact formulation

For this puzzle, it is not difficult to describe a compact formulation to solve it; however, similar to the

TSP, it does require a number of auxiliary variables to handle the contiguity of the pieces. The idea

is that each piece has a source cell that supplies commodity of type k ∈ K, and every cell generates 1

demand for its relevant commodity. If some cells are not connected to an appropriate source, then at
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least one piece is disconnected and the solution is infeasible. The compact formulation for the Pieces

of 8 puzzle is as follows:

Sets
C Set of cells, represented as (i, j)

K Set of cell types. K7 = {1, ...,7} and K8 = {1, ...,8}
Ni j Set of neighbours of cell (i, j) ∈C

Constants

pi j Pre-set value for cell (i, j) ∈C. -1 if no value given.

Variables
xi jk 1 if cell (i, j) ∈C is of type k ∈ K, 0 otherwise

yi jk 1 if cell (i, j) ∈C is the source of type k ∈ K, 0 otherwise

zi ji′ j′k Amount of flow from cell (i, j) ∈C to neighbouring cell (i′, j′) ∈ Ni j of commodity k ∈ K
Constraints

∑
k∈K

xi jk = 1 ∀(i, j) ∈C (4.28)

∑
(i, j)∈C

yi jk = 1 ∀k ∈ K (4.29)

xi jpi j = 1 ∀(i, j) ∈C, pi j ≥ 0 (4.30)

yi jpi j = 1 ∀(i, j) ∈C,1≤ pi j ≤ 8 (4.31)

yi∗ j∗0 = 1 (4.32)

xi j9 = 0 ∀(i, j) ∈C, pi j 6= 9 (4.33)

∑
(i′, j′)∈Ni j

xi′ j′0 = 1 ∀(i, j) ∈C, pi j = 0 (4.34)

∑
(i, j)∈C

xi jk = k ∀k ∈ K7 (4.35)

∑
(i, j)∈C

xi j8 ≥ 1 (4.36)

xi jk + ∑
k′∈K8
k′ 6=k

xi′ j′k′ ≤ 1 ∀(i, j) ∈C,∀(i′, j′) ∈ Ni j,∀k ∈ K8 (4.37)

∑
(i′, j′)∈Ni j

xi′ j′0 ≥ 2xi j0 ∀(i, j) ∈C, pi j < 0 (4.38)

∑
(i′, j′)∈Ni j

xi′ j′0 ≤ 4−2xi j0 ∀(i, j) ∈C, pi j < 0 (4.39)

xi jk ≤ ∑
(i′, j′)∈Ni j

xi′ j′k ∀(i, j) ∈C,∀k ∈ K7 \{1} (4.40)

zi ji′ j′k ≤Mxi jk ∀(i, j) ∈C,∀(i′, j′) ∈ Ni j,∀k ∈ {0,8} (4.41)

zi ji′ j′k ≤ (k−1)(xi jk− yi jk) ∀(i, j) ∈C,∀(i′, j′) ∈ Ni j,∀k ∈ K (4.42)

∑
(i′, j′)∈Ni j

zi′ j′i jk− ∑
(i′, j′)∈Ni j

zi ji′ j′k = xi jk− kyi jk ∀(i, j) ∈C,∀k ∈ K7 (4.43)
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Instance Time (s) Nodes
1 0.23 0
2 0.78 1
3 5.39 641
4 0.21 1
5 0.34 1
6 0.35 0
7 0.27 0
8 0.42 1
9 0.23 1

Table 4.3: Time to solution and number of branch-and-bound nodes explored for the nine instances of
the Pieces of 8 puzzle using the compact formulation

∑
(i′, j′)∈Ni j

zi′ j′i jk− ∑
(i′, j′)∈Ni j

zi ji′ j′k ≥ xi jk−Myi jk ∀(i, j) ∈C,∀k ∈ {0,8} (4.44)

yi jk ≤ xi jk ∀(i, j) ∈C,∀k ∈ K \{9} (4.45)

zi ji′ j′k ≥ 0 ∀(i, j) ∈C,∀(i′, j′) ∈ Ni j (4.46)

xi jk ∈ {0,1},yi jk ∈ {0,1} ∀(i, j) ∈C,∀k ∈ K (4.47)

Constraints (4.28) ensure that each cell has exactly one type, and constraints (4.29) specify exactly

one source for each piece. Constraints (4.30) enforce the pre-set values, and constraints (4.31) say that

if a pre-set value for a piece is given, it must be used as the seed. Constraints (4.32) set the source for

the path to one of the two pre-set values for the path, (i∗, j∗). Constraints (4.33) make sure that a cell

can only be of type 9 (blank square) if it is pre-set to type 9. Constraints (4.34) say that the origin and

destination have exactly one neighbour each. Constraints (4.35) ensure the first seven pieces are of the

correct size, and constraints (4.36) say there must be at least one cell in the eighth piece. Constraints

(4.37) make sure that no two pieces share an edge, and constraints (4.38-4.39) ensure all other path

squares have exactly two neighbours. Constraints (4.40) say that for any cell of type k ∈ {2, ...,7}, it

has at least one neighbour of the same type.

Constraints (4.41-4.42) only allow commodity to flow out of a cell if it is of the correct type.

Constraints (4.43-4.44) are flow-conservation constraints, which specify that the amount flowing into a

cell must be at least the amount flowing out, but if it is of type k, it generates a demand of size 1, and if

it is a source of type k it generates a sufficiently large supply. Since we know exactly how many cells

of types 1 to 7 there are, the corresponding constraints can be equality, but for the path and the 8th

piece, we must use a big-M constraint. Finally, constraints (4.45) constrain piece seeds to occur only

on cells of the same commodity.

This is a compact formulation that solves the Pieces of 8 puzzle without the need for additional

constraints. While this formulation is not very complicated, creating a similar formulation for other

puzzles can become inefficient. Table 4.3 shows the time and number of branch-and-bound nodes

required to solve the instances of the puzzle.

Note that most instances take longer to solve than with the lazy formulation, the exceptions being

instances 1 and 8. One other interesting difference is that the number of branch-and-bound nodes
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explored in this case is less than for the lazy formulation. Again, this is not a problem, as the lazy

model is significantly smaller than the compact formulation (far fewer variables and constraints), and

so processing each branch-and-bound node takes less time.

4.2.3 Benders decomposition

Now that we have a compact formulation, it is again possible to solve it using Benders decomposition

as it has a natural structure: the master problem involves assigning values to the cells, and the sub-

problem solves for the flow variables to enforce connectivity. Just like the TSP, there is no objective

function, so only Benders feasibility cuts are added to fix any cases where the sub-problems are

infeasible (i.e. a piece is not contiguous).

The master problem is exactly the same as the lazy formulation, as the y variables can also be

moved to the sub-problem. Again, we use an IIS of the constraints of the sub-problem to find a

feasibility cut. The scenario demonstrated in Figure 4.3 is the same for the Benders decomposition

implementation as it is for the lazy formulation. This is not surprising given they have the same master

problem and only one lazy constraint was required.

In this scenario, the cell (0,0) is the source for piece 8, and the constraints in the IIS belong to

one of two sets: (4.43) for the cells in the 8-piece excluding (0,0) and (4.41) for the neighbours of

cells in the 8-piece. This is because none of the cells are connected to the source, and so either one

of them needs to become the source, or a connection to a new cell that may allow a connection to a

source must be opened. Let P be the cells in one part of the broken piece, and PN be the cells that

neighbour cells in P but are not in P themselves. Then the Benders feasibility cut is:

∑
(i, j)∈P

(1− xi jk)+ ∑
(a,b)∈PN

xabk ≥ 1, (4.48)

that is, either one of the cells in the piece must be turned off, or one of the neighbours turned on.

Notice that this is the same as (4.27). This means the lazy formulation is equivalent to a Benders

decomposition on the underlying compact formulation. The difference is that in the lazy formulation,

the disconnected pieces are found algorithmically (without solving an LP and computing an IIS).

Instance Time (s) Nodes Benders Cuts
1 0.20 0 1
2 0.50 71 0
3 2.68 2842 0
4 0.16 0 0
5 0.28 0 4
6 0.30 0 3
7 0.22 0 0
8 0.64 162 6
9 0.20 0 0

Table 4.4: Time to solution and number of branch-and-bound nodes explored for the nine instances of
the Pieces of 8 puzzle using Benders decomposition
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Table 4.4 shows the results for the Benders decomposition formulation. It is faster than the compact

formulation for every instance except instance 8, but slower than the lazy formulation for all but

instances 1 and 8, same as the compact formulation. For this problem, the Benders formulation

often explored more nodes than the compact formulation, but it still took less time to solve, again

demonstrating the effectiveness of Benders decomposition and Gurobi’s advanced techniques.

Constraint programming can also be used to solve the Pieces of 8 puzzle, and may be the preferred

method for some. In particular, most problems which have no objective value (only a feasible solution

is sought) are good candidates for Constraint programming, and some of the CP techniques may prove

to be more effective. Further than this, when the sub-problems are feasibility problems (as they are

for the two problems thus presented), CP also makes sense, particularly in a logic-based Benders

decomposition framework [26].

4.3 The Fillomino Puzzle

The Fillomino puzzle is a more complex logic puzzle to model compared to the Pieces of 8 puzzle.

The puzzle requires the user to enter numbers into a grid, such that the result is a series of polyominoes

(dominoes for size 2, tetris tiles for size 4 etc.). Like the Pieces of 8 puzzle, many of the rules are easy

to explain in an integer programming model: every cell must have exactly one number assigned to it,

pre-set values must be obeyed. The difficulty comes in enforcing the connectivity of the polyominoes,

as there are now multiple of each type, the number of each type is not necessarily known beforehand,

and they are not allowed to touch each other.

In the following paper, Pearce and Forbes demonstrate two different methods for solving the

Fillomino puzzle: lazy constraints and composite variables. Composite variables refers to a formulation

where each variable represents a collection of decisions, and is a form of column generation. In the

case of the Fillomino puzzle, it is a priori column generation, as we generate all variables before we

begin solving the model.

As with the Pieces of 8 puzzle example, the lazy constraints formulation sets out a model that

satisfies most of the requirements of the solution, and corrects the solution with additional constraints.

The rules that polyominoes must be contiguous and are not allowed to touch are difficult to express

beforehand, and to do so would require an exponential number of constraints or a more complicated

compact model with auxiliary variables. Instead, we use lazy constraints to invalidate illegal solutions

as they appear, until we find a solution where all rules are obeyed, at which point we stop.

The results section shows that the number of constraints required to find the optimal solution

is numbered in the hundreds, which is negligible when compared to the size of the set of potential

constraints. The straightforward model with lazy connectivity constraints is effective, but the composite

variables formulation is more interesting.

Typically in an a priori column-generation approach, the formulation is effectively compact, as all

constraints of the original problem are present in the composite variables formulation, or have been

built into the definition of the variables. In this case, the formulation does not prevent two pieces of
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the same type from bordering each other, which would result in a piece of a particular type with twice

the allowed number of cells. These solutions are removed using lazy constraints.

As we have seen so far in this chapter, lazy formulations are similar to Benders decomposition. The

composite variables formulation is a column-generation approach, which is based on Dantzig-Wolfe

decomposition. This means the composite variables formulation in the following section is effectively

a Benders decomposition on a Dantzig-Wolfe decomposition. This interesting combination holds

much potential for future research, and will be discussed further in Chapter 5.
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4.4 Paper: Puzzle - The Fillomino Puzzle

Abstract

Logic puzzles form an excellent set of problems for the teaching of advanced solution tech-

niques in operations research. They are an opportunity for students to test their modelling skills

on a different style of problem, and some puzzles even require advanced techniques to become

tractable. Fillomino is a puzzle in which the player must enter integers into a grid to satisfy certain

rules. This puzzle is a good exercise in using lazy constraints and composite variables to solve

difficult problems.

Introduction

Logic puzzles form an excellent set of problems for the teaching of advanced solution techniques in

operations research. They are an opportunity for students to test their modelling skills on a different

style of problem, and some puzzles even require advanced techniques to become tractable. Puzzles are

also typically modelled as integer programs (IP), for example crossword construction [98], Su Doku

and the Log Pile puzzle [99], Rummikub [100], the Battleship problem [101] and more.

The use of composite variables can make the solution to some problems much easier to obtain,

however they are not widely used. The same can be said for lazy constraints: they are an extremely

powerful technique and can yield impressive results for difficult integer and mixed-integer programs,

however there are few publications demonstrating the use of lazy constraints. This is perhaps be-

cause they are not widely known techniques, and as such should be taught more often in advanced

undergraduate operations research courses.

Fillomino is a puzzle whose creation is credited to Nikoli Co., Ltd. [102]. The player must

enter integers into a grid to satisfy certain rules. Some cells in the grid have preset values which

cannot change. If two cells that share an edge have the same number, they become a tile. If a cell is

neighbouring a tile of the same value, it joins the tile. The grid must be filled with numbers such that

every cell is assigned a number, and every tile filled with ks has k cells belonging to it. Two tiles of the

same number cannot share an edge, since they would merge into one tile which has too many cells.

One last assumption that we make is every tile must contain at least one preset value, however there

are versions of the puzzle where this is not the case.

The solution to each puzzle is a unique layout of polyominoes ”(shapes made by combining

individual squares)”. An example of a starting grid and its unique solution can be seen in Figure 4.4.

Every puzzle can be solved logically, and an efficient algorithm exists for solving it in this way [103],

however we are interested in solving it using integer programming. This puzzle is an excellent example

of the usefulness of composite variables and lazy constraints.
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Integer Programming Formulation

We can formulate this puzzle as an integer program and apply lazy constraints to it to find the unique

solution to each grid. We require variables representing the entries in each cell of the grid, plus

variables recording how many tiles of each type there are. Since there is a unique solution, we do not

require an objective function. The formulation we present is as follows:

Sets
N,M The rows and columns of the grid

K The range of valid cell entries

Neighi j The set of cells which share an edge with (i, j)
Data

Preseti j The given value of cell (i, j). 0 implies cell (i, j) is empty

Variables
xi jk is 1 if cell (i, j) is of type k, 0 otherwise

yk is the number of tiles of type k
Constraints

∑
k∈K

xi jk = 1 ∀i, j ∈ N×M (4.49)

xi jPreseti j = 1 ∀i, j ∈ N×M|Preseti j 6= 0 (4.50)

xi j1 = 0 ∀i, j ∈ N×M|Preseti j 6= 1 (4.51)

xi jk ≤ ∑
(a,b)∈Neighi j

xabk ∀i, j ∈ N×M,∀k ∈ K|k > 1 (4.52)

∑
(a,b)∈Neighi j

xab2 ≤ 1+(|Neighi j|−1)(1− xi j2) ∀i, j ∈ N×M (4.53)

∑
(i, j)∈N×M

xi jk = kyk ∀k ∈ K (4.54)

Constraint (4.49) ensures every cell has exactly one value assigned to it. The next two constraints

(4.50-4.51) fix the preset values, and make sure no extra 1s are added. Constraint (4.52) says that a

Figure 4.4: Example of Fillomino starting grid and corresponding solution. Underlined numbers are
preset values
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cell can only have a value k if at least one neighbouring cell also has a value k. Since there is only

one unique domino (a tile with two cells), we can add a constraint for the case of 2s that says that if a

cell is a 2, it has exactly one neighbour which is of type 2, however if it is not a 2 then there are no

restrictions on how many neighbouring 2s there are. This is enforced by constraint (4.53). Finally, we

know that the number of cells of type k is k times the number of tiles of type k (4.54).

These are the base constraints to generate example solutions to the grid, however there is nothing

to prevent tiles of sizes other than k from occurring. One option is to add new variables of a network

flow nature, where each preset value has the option of being a sink of size k, and every cell is a source

of size 1. This formulation, however, becomes very large very quickly, and easily becomes intractable,

even on a 15×15 grid. We can avoid this by introducing lazy constraints.

Use of lazy constraints to enforce tile size

When a potential solution is found by the above implementation, we must check to make sure all tiles

are the correct size. To do this, we measure the size of each tile, and if it is not correct, we add one of

two lazy constraints.

Bounding tile size from above

Once we have a potential solution, we check the size of each tile. If any tiles are too big, then at least

one of the cells in this tile must change its value. Let T be the set of cells in this tile, which are all

numbered k∗ with |T |> k∗. We then add the lazy constraint:

∑
(i, j)∈T

xi jk ≤ |T |−1 (4.55)

We cannot say that the number must be equal to k∗, since this one tile may in fact be two tiles

which are joined by one incorrectly numbered cell. Enforcing an equality constraint would make the

unique solution invalid and the model would become infeasible. This constraint forbids the current

configuration of tiles, which forces the model to try something different. Eventually there will be no

more tiles which are larger than they are meant to be. This does not, however, stop them from being

smaller than they need to be.

Bounding tile size from below

If there are no tiles that are larger than they are allowed to be in a solution, we then check for tiles

that are smaller than required. For each such tile, let T be the set of cells in this tile, which are all

numbered k∗ and |T |< k∗. Also let T N be the set of cells which are a neighbour of at least one cell in

T , but are not in T , and whose preset value is 0. If their preset value was k∗, they would already be

part of this tile. We then add the lazy constraint:

∑
(i, j)∈T

xi jk∗− ∑
(a,b)∈T N

xabk∗ ≤ |T |−1 (4.56)
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This constraint says that either the tile needs to get smaller and perhaps disappear, or some of

the neighbours have to change their value to k∗. In other words, it will either remove the tile or

pull at least one neighbour into it. This will eventually bound all tiles from below. These two lazy

constraints, together with the integer programming formulation above, will find the unique solution to

each puzzle, however it may take a long time for the larger grids. We can speed it up using a number

of pre-processing techniques.

Pre-processing techniques

Upper bound on number of tiles

Since every tile has to cover at least one preset value, we can calculate an upper bound on the number

of tiles of each type. The simplest way would be to count the number of preset cells of type k and use

that as an upper bound for yk, however this fails to take into account the possibility that there may be

preset cells of the same type connected to each other. Thus, for every value k ∈ K, we count every

connected group of cells of type k and call this number Ck. If k = 2, then the number of tiles is exactly

equal to C2, otherwise we add constraints of the form:

yk ≤ Ck, ∀k ∈ K,k > 1 (4.57)

Lower bound on number of tiles

We can also work out a lower bound on the number of tiles of each type since every preset value has to

be covered. Because the upper bound on the number of tiles is an equality for type 2, we only need to

consider every value k ∈ K greater than 2. For each of these, we can calculate the geodesic distance of

each cell from the nearest preset value of k. The geodesic distance is the length of the shortest valid

path of cells from a preset value to the current cell.

For each value k > 2, we calculate the geodesic distance from each empty cell to the nearest cell

with preset value k. This distance represents the minimum number of cells of type k that must be

added to include each cell in a tile of type k. If it is possible for two cells with preset values k to be

part of the same tile, there will be two paths, one from each, of length at most bk−1
2 c which will touch.

By removing any cells whose geodesic distance is greater than bk−1
2 c, we can count the number of

connected components remaining, which gives us the minimum number of tiles needed to cover all

cells with preset values of k. The constraint is of the same form as above, except it will be a greater

than or equal to constraint.

Restriction on location of cells

Because a cell can only have a value k if it is part of a tile of type k, and each tile must cover at least

one preset value, if a cell has a geodesic distance of k or greater from the nearest preset cell of type

k, it can not possibly be part of a tile of type k. We can add constraints to reflect this by following a

similar procedure to the other pre-processing techniques. For each value of k ∈ K greater than 2, we
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calculate the geodesic distance from each preset value. Where n preset values of the same type are

connected, we know that all cells with a geodesic distance of at most k−n could possibly take the

value k. For all cells (i, j) which are not within k−n of any preset value, we add a constraint xi jk = 0,

which removes many unnecessary variables.

Composite variables formulation

Another way of formulating this problem is to consider it as a tiling problem. If we can find every

possible placement of tiles of every type, we can choose which combination of tiles gives us the unique

solution. We now present our composite variables formulation:

Sets
N,M The rows and columns of the grid

K The range of valid cell entries

P The set of all possible tiles that can be placed in the grid

Pk ⊆ P The set of all possible tiles of type k that can be placed in the grid

Neighi j The set of cells which share an edge with (i, j)

Ti j The set of tuples (k, p) representing all tiles p ∈ P which cover cell (i, j)
Data

Preseti j The given value of cell (i, j). 0 implies cell (i, j) is empty

Variables

xkp is 1 if tile p ∈ Pk is used, 0 otherwise

Constraints

∑
(k,p)∈Ti j

xkp = 1 ∀(i, j) ∈ N×M,Preseti j 6= 1 (4.58)

There is one constraint for every cell of the grid which says that it must be covered by exactly

one tile, with the exception of cells that have a 1 in them. Each tile is represented as a (k, p) pair,

describing which value of k it covers and which p ∈ Pk it is. If all possible tile placements are known,

this will yield the unique solution to the problem. To find all possible tile placements, we start with the

preset cells of each type and grow them outwards by adding neighbours one by one, until they are the

correct size, being careful to remove duplicates as we go.

The runtime of this implementation is highly dependent on how quickly you can find all possible

tile placements, as the integer program itself solves in a fraction of a second. Another possible concern

is that two tiles of the same type may touch in a solution. If this is the case, we can use a modified

version of the lazy constraints described above. By following the same procedure, checking each tile

to see if any one is larger than k cells, we look at all the cells in this oversized tile and note which tiles

p ∈ P they belong to in the current solution. Where T is the set of tiles in this violation, we add the
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Table 4.5: Comparison of runtimes for the Composite Variables and Lazy Constraints implementations.
All times are in seconds. The times spent solving the IP and the whole problem are reported separately

Composite Variables Lazy Constraints
Instance IP Total IP Total

1 0.03 1.54 28.05 28.22
2 0.03 1.75 33.32 33.48
3 0.02 1.13 4.07 4.23
4 0.03 1.34 2.79 3.01

constraint

∑
(k,p)∈T

xkp ≤ |T |−1 (4.59)

This will ensure we find the unique solution.

Results

We tested both implementations using Python 3.7 and the Gurobi [44] solver package. We sourced

four randomly-generated puzzles from the Puzzle Baron website [104], all of which are 20×20 and

follow our assumptions. Table 4.5 shows that, when implemented efficiently, the composite variables

implementation is significantly faster. The majority of time is spent generating the tiles, and once

completed, the IP solves in a fraction of a second. For the lazy constraints implementation, less than

one second is spent pre-processing the grid and adding initial constraints.

Table 4.6 shows the number of variables and constraints for both implementations, as well as the

number of nodes explored and lazy cuts generated for the lazy constraints implementation. For the

composite variables implementation, the number of variables reflects the number of potential tiles

which can be legally placed in the grid, and the number of constraints is 400 minus the number of

squares that contain 1s. This is because there are no options for placing 1s outside the preset locations,

so no tiles will cover those squares and as such they do not require constraints.

For the lazy constraints implementation, the number of variables we report here are the number left

after Gurobi’s presolve stage. Initially, the number is always 3609: 20×20×9 for the xi jk variables,

Table 4.6: Comparison between the Composite Variables and Lazy Constraints implementations. The
number of variables and constraints used in solving the IP, number of lazy constraints added and
number of nodes explored in the branch-and-bound tree are shown. The Lazy Cuts column is separated
into (Upper,Lower) cuts

Composite Variables Lazy Constraints
Instance Variables Constraints Variables Constraints Lazy Cuts Nodes

1 5219 325 755 6421 342, 545 28769
2 3979 324 536 6570 137, 379 51905
3 4348 326 612 6537 122, 332 6516
4 4842 329 648 6419 74, 335 5460
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and 9 for the yk variables. With our pre-processing, most of those variables will be fixed to 0 (or 1 in

the case of cells whose values have been preset), so the number remaining reflects the actual number of

possibilities for cell values. Since we know that there are around 325 cells which are not 1, and there

are usually 600 variables remaining, this suggests that on average a blank cell only has two choices for

which number it could be.

The number of lazy constraints added is also interesting. The number of times tiles have to be

bounded from below is always higher than, and usually at least double, the number of times they are

bounded from above. This may be because both constraints can be satisfied by moving a cell of the tile

to a neighbouring blank cell, thus maintaining the same size of the tile in a different location, however

it is much easier for this to occur with tiles that are smaller than needed compared to those which are

larger.

Conclusion

This problem is an excellent demonstration of how lazy constraints and composite variables can be

used to solve difficult problems, where the naive implementation is intractable. There are many other

puzzles and industrial problems which can benefit from similar approaches.
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4.5 Discussion of paper: Puzzle - The Fillomino Puzzle

In the lazy formulation for the Fillomino puzzle, the cuts used are the same as (4.27) from the Pieces

of 8 puzzle. In fact, one could devise a compact formulation for the Fillomino puzzle similar to that of

the Pieces of 8 puzzle, except in this case each polyomino is a distinct piece. This means there may be

30-40 pieces in a single board. The assumption that every piece has at least one pre-set value makes

this easier, as these can act as the sources for the pieces.

The difficulties in this case are handling the sources when two pre-set values occupy the same

piece, and preventing two pieces of the same number from bordering each other. This will require

additional constraints similar to those in the Pieces of 8 puzzle that say cells can only neighbour their

own type or the path, except in this case it is that cells can neighbour anything except other cells of the

same type but a different piece.

Note that it is also possible to strengthen constraint (4.59) by replacing it with a set of constraints

preventing illegal pairs of tiles from both occurring. This only matters if |T | > 2, otherwise the

constraints are identical. In the case where |T |= 3, there may be two or three pairs of tiles illegally

sharing borders, and these pairs must be identified, as it may be the case that three tiles are connected

in a chain, and removing only the middle tile makes the solution feasible, so the constraint preventing

both end tiles from being chosen is an invalid constraint.

The important point is that performing Benders decomposition on this formulation would yield

the same cuts as the lazy formulation, just as the Pieces of 8 puzzle does. In fact, the three examples

presented in this chapter follow a similar structure: they can be modelled using a lazy formulation,

which is equivalent to a Benders decomposition on some underlying compact formulation.

This raises an interesting philosophical question: is it better to find that compact formulation and

then apply Benders decomposition to it, or to model it in a lazy fashion from the start? We argue that

the latter is better, as it yields not only better computational results, but also savings in implementation

time. Rather than searching for a model that covers every aspect of a problem, instead look for the

easiest problem to solve that could possibly yield an answer close to the desired one, and correct it as

required with lazy constraints. In this case, one needs to know all the rules that integer solutions must

follow, how to detect when those rules are violated and how to construct cuts that solve that violation

without also removing valid integer solutions, but the alternative is to encode all those rules in the

compact formulation to begin with, which is likely more difficult.

While the discussion about feasibility for the Fillomino puzzle is important and necessary for a

theoretically-complete model, in practice feasibility issues occur rarely, as the four instances were all

solved without any feasibility cuts. This is not to say that these feasibility cuts can be ignored, only that

they occur rarely, and so can be handled lazily. This again exemplifies the point that some constraints in

a compact model are unnecessary. If one started with the composite variables formulation and ignored

the possibility of infeasible solutions until they arose, there is a good chance that they would never

need to implement any feasibility cuts, and it is simple to implement them when they are needed.
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Conclusion

Now this is not the end. It is not

even the beginning of the end. But

it is, perhaps, the end of the

beginning.

Winston Churchill

All examples presented in this thesis benefit from the use of lazy constraints to some degree. The

examples also have many similarities in their structures, particularly how they have a number of

unnecessary constraints, in that if we optimise without these constraints we still solve the underlying

problem. When we choose a set of constraints to handle lazily, it is because many (but perhaps not

all) constraints in the set are unnecessary. The constraints in the set which are necessary are added as

needed. These constraints appear in different forms: they may be directly unnecessary as in the case of

the LSFRP and the TSP, or they may be replaced by another, smaller set of constraints as in the case of

Benders decomposition. In all cases, the point is to solve the smallest model that will give reasonable

solutions, and correct those solutions with lazy constraints.

The lazy formulations presented in Chapter 4 are closely related to Benders decomposition. They

have some underlying feasibility problem that can be explicitly formulated for the purposes of obtaining

Benders feasibility cuts; however, it is also possible to construct the feasibility cuts without the explicit

formulation. Conversely, Benders feasibility cuts could be constructed without explicitly computing

an IIS or solving a sub-problem, if the form of the infeasibility and how to detect it is understood.

When to be lazy
As stated in the first chapter, there are three categories of models which are likely to benefit from

the use of lazy constraints:

1. Models that have exponentially sized set(s) of constraints

2. Models that have sets of constraints that may be mostly or wholly unnecessary

3. Models that are suitable for Benders decomposition
143
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Each chapter of this thesis covered one of these categories, presented examples of such problems

and showed the potential benefits from taking a lazy approach. In all cases, the portions of the models

that are handled lazily are important but not structural for finding feasible solutions. For example, if

one tried to solve a network flow model without flow-conservation constraints, the solutions obtained

would be useless and far from feasible. However, solving the same model without capacity constraints

would produce more reasonable solutions which have a chance of being feasible.

How to be lazy
Implementing branch-and-cut is not difficult, and simply requires the user to learn how to use the

features in their solver of choice. The difficult part is deciding what parts of the model to relax and how

solutions will be repaired. The most common use of lazy constraints will be for enforcing feasibility

after some constraints have been omitted from the formulation. When this occurs, one should strive

for the strongest feasibility cuts possible.

As discussed in Section 4.1.2, lifting of feasibility cuts is important and should be considered

anywhere they are used. A potential area of future research would be to consider notions of Pareto-

optimality of feasibility cuts, where the dominance criterion is defined upon the master problem

solutions excluded by the feasibility cuts. Lifting and tightening of cuts increases the number of master

problem solutions they exclude, and to prove a feasibility cut is Pareto-optimal would ensure it is the

strongest cut possible, i.e. one that defines a facet of the convex hull of the set of feasible solutions to

the master problem.

Many of the improvements to Benders decomposition discussed, such as warm-starting, user-

heuristics and Pareto-optimal Benders cuts, apply to Benders optimality cuts. All lazy formulations

presented in Chapter 4 only use lazy constraints to ensure the feasibility of solutions to the lazy

formulation, and as such these improvements would not apply. However, it is possible that a problem

could be formulated with lazy updates to the objective value in the same style as Benders decomposition,

in which case these improvements would carry across, as the approaches are mathematically equivalent.

5.1 Future directions

An exciting new area of research is the combination of the major decomposition methods: Dantzig-

Wolfe decomposition and Benders decomposition. Dantzig-Wolfe decomposition works by building

a number of constraints into the definition of some composite variables, thus reducing the number

of constraints. As mentioned in Section 1.2.2 and Barnhart et al. (1998) , the main drawback of

Dantzig-Wolfe decomposition is that it can lead to a large number of variables, perhaps too many to

explicitly consider. This then requires branch-and-price, which is undesirable as it does not take full

advantage of the commercial solvers.

An alternative is to change the composite variables used such that it is possible to generate them

a priori. This makes it possible to solve without branch-and-price, but there may still be too many

constraints. This is where Benders decomposition and/or lazy constraints enter the picture: handle a

number of the constraints lazily so that the master problem is small enough to solve.
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The composite variables formulation for the Fillomino puzzle is an example of this [1]. To build

as many constraints into the variables as possible, each variable would represent the placement of a

tile and the values of all cells neighbouring the tile. This way, we can be sure that no two tiles of the

same number are adjacent. The problem is that the number of possible neighbour sets for each tile

placement is vast, so there would be too many variables to generate a priori.

Instead, the formulation in Pearce and Forbes (2017) uses variables that correspond only to the

placement of individual tiles. This encodes many but not all constraints of the problem, and the number

of variables is now much smaller and it is possible to generate them all a priori. There are many

constraints required for preventing two tiles of the same type from being adjacent, but handling these

constraints lazily reduces the problem size even further to the point where it is very easy to solve.

There is at least one other recent study that explores this idea, which was presented at the Odysseus

2018 conference by Alyasiry, Forbes and Bulmer [105]. In this study, Alyasiry et al. considers the

Pick-up and Delivery Problem with Time Windows (PDPTW), which is described as follows:

... vehicles with limited capacity must be routed to serve given requests each of which

consists of a pickup location (origin) and corresponding delivery location (destination).

For each request the origin must precede the destination and both must be in the same

route. Any route must respect vehicle capacity and allowed time windows at each location,

as well as constraints which apply to specific problem variants.

The previous approach to solving this problem by Cherkesly et al. (2016) involved generating

entire routes for vehicles and choosing from those routes. The benefit to this approach is that many

constraints such as respecting the time windows, vehicle capacity and the flow-conservation of vehicles

and demands are incorporated into the design of the routes (only feasible routes are generated). This

makes for a small master problem with a vast number of variables.

The alternative presented by Alyasiry et al.instead generates fragments of routes, a series of visits

where a truck begins empty and finishes empty, but is never empty in the middle [105]. These fragments

can then be connected together to form a complete route for a truck. It is likely that the number of

fragments will be much smaller than the number of routes, since the number of ways a small collection

of fragments can be chosen, connected and ordered to form a feasible route is large. This leads to far

fewer variables in the master problem, to the point where it is possible to generate all fragments a

priori.

The problem is that not all combinations of fragments are feasible because of the time windows.

Each individual fragment may have some flexibility in when it can begin and end, and connections

between fragments can be restricted to only those that are possible; however, when three or more

fragments are joined together, the whole route may be infeasible. This infeasibility can be resolved

using lazy constraints in a branch-and-cut framework, where the smallest infeasible collection of

fragments is banned.

This idea of combining a composite variables formulation with lazy constraints represents an

enormous opportunity for solving problems for which a “formulation with a huge number of variables
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may be the only choice” [22]. Now we may have another choice, where the number of variables and

constraints can be balanced to the point where difficult problems become tractable. The key is to

get the tightest possible model (with the best LP bound) where all variables are generated a priori —

but perhaps not all constraints — so that the resulting MIP can be solved using the commercial MIP

solvers.

Because of the emerging importance of lazy constraints for solving practical problems, it would

also be worth benchmarking the commercial solvers’ lazy constraint functionality. Providing a stage

for solvers such as Gurobi and CPLEX to show off their efficiency in handling lazy constraints will

further improve the performance of models that use lazy constraints. This would be yet another factor

compounding the year-to-year improvements in formulations that take full advantage of commercial

solvers, ultimately leading to an increase in efficiency in all manner of industrial processes.

Lazy constraint capability represents the foundation of a new suite of tools for solving large

modelling problems. Whether used simply to reduce the size of an existing model, or to combine

them with an existing technique to provide even larger benefits, there is great potential for problems

previously considered intractable to become solvable for many practical purposes in the coming years.
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[66] O. Arslan and O. E. Karaşan. A Benders decomposition approach for the charging station

location problem with plug-in hybrid electric vehicles. Transportation Research B, 93:670–695,

2016.
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