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ABSTRACT
Node.js has gained popularity in cloud development due to its
asynchronous, non-blocking and event-driven nature. However,
scalability issues can limit the number of concurrent requests while
achieving an acceptable level of performance. To the best of our
knowledge, no cloud-based benchmarks or metrics focusing on
Node.js scalability exist. This paper presents the design and imple-
mentation of Ibenchjs, a scalability-oriented benchmarking frame-
work, and a set of sample test applications. We deploy Ibenchjs in
a local and isolated cloud to collect and report scalability-related
measurements and issues of Node.js as well as performance bot-
tlenecks. Our findings include: 1) the scaling performance of the
tested Node.js test applications was sub-linear; 2) no improvements
were measured when more CPUs were added without modifying
the number of Node.js instances; and 3) leveraging cloud scaling
solutions significantly outperformed Node.js-module-based scaling.
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1 INTRODUCTION
Clouds provision on-demand computing resources over a network
of nodes in a pay-as-you-go manner. Cloud applications are com-
monly implemented with the client/server paradigm; thus, cloud
workload is mainly driven by requests. Node.js—which is essentially
Javascript on the server—has gained popularity in developing cloud
applications. It is fast and a good fit for (micro)service-oriented
cloud deployment due to its single-threaded, asynchronous non-
blocking I/O and event-driven nature. Node.js applications can be
deployed and run via Platform as-a-Service (PaaS) cloud software,
which abstract large parts of the software/hardware stack.

As the number of concurrent clients and their requests increase,
clouds elastically scale provisioned resources such that the deployed
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applications maintain an appropriate quality of service. Scaling up
or vertical scaling adds more resources to a cloud instance, but
has minimal benefits for Node.js since its event-loop becomes a
bottleneck permitting the execution of only one Javascript function
at a time. Instead, via scaling out or horizontal scaling, multiple
instances of a cloud application can be started up; PaaS software
provide generic scaling solutions for any type of containerized
applications. Additionally, Node.js provides its own specific scaling
solutions; Cluster is such a Node.js module that forks multiple
worker processes to handle requests.

Thus, a number of questions arise regarding the efficacy of
Node.js in utilizing cloud resources as well as selecting an appropri-
ate scaling strategy. Such knowledge could be leveraged by cloud
providers—via improved autoscaling, fine-tuned cloud architec-
ture or even expert advice to their clients—to better satisfy their
service level agreements while minimizing costs. To the best of
our knowledge, this is the first attempt to formalize a set of tools,
methodologies and benchmarking frameworks for experimentally
evaluating the scalability of Node.js deployed on PaaS clouds. The
main contributions of this paper, which contains elements from
the first author’s master’s thesis [21], are: First, we implement and
open source Ibenchjs, a scalability-oriented benchmark framework
suitable for PaaS, and a set of resource-intensive test applications1.
Second, we perform various scalability experiments on a six-host
Docker Swarm cloud with various scaling strategies and patterns.
Third, we analyze scalability effects of different types of test appli-
cations; identify associated performance bottlenecks; quantify and
characterize Node.js scalability; and leverage regression analysis to
fit the measured performance into theoretical scalability models.

2 BACKGROUND
PaaS Clouds and Docker Swarm: Cloud computing abstracts
and virtualizes computing, networking, and storage resources, pro-
viding the end-user with elastic and on-demand services in a pay-as-
you-go manner. Platform-as-a-Service (PaaS) clouds furnish users
with a ready-to-use platform for maintaining a complete software
lifecycle: development, deployment, testing and maintenance [14].

Docker [2] is a platform for developers and system administra-
tions to build, ship, and run distributed applications, in a platform-
agnostic way. Users compile and upload their own filesystem images

1https://github.com/CAS-Atlantic/ibenchjs
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that are subsequently deployed and run in containers. A Docker
container runs directly within the host’s kernel, and only packages
the application, its related binaries and libraries. Thus, a separate
full OS is not required, which makes it lightweight and fast starting.
Docker containers are isolated from each other and are constrained
to only utilize the specified computing resources via Linux Group
Control (cgroups). Cgroups enable containers to share available
resources, optionally enforcing limits and constraints.

Docker Swarm is a container management software; it provides
native clustering functionality for Docker and turns a pool of multi-
ple Docker hosts to a single Docker cluster[3]. A Docker host is des-
ignated as the manager and is responsible for handling cluster man-
agement tasks, such as maintaining cluster states and scheduling
services. Multiple Docker worker nodes receive and execute tasks
dispatched from the manager node. Docker Swarm allows users
to package all the services of the application as a stack, referred
to as the service stack that runs in the container. The deployment
of a service stack can be automated via a YAML “docker-compose”
file. To achieve horizontal scaling, Docker Swarm users can specify
a number of replicated containers. Based on this, the application
is scaled out by creating Docker containers dispatched across the
cluster’s nodes. Docker Swarm maintains an overlay network that
facilitates communications among Docker daemons participating in
the swarm. The overlay network also allows users to attach Docker
containers to it and enables container-to-container communications
within the same or different swarm nodes. The ingress network is
a special overlay network that manages load balancing among con-
tainers. Load balancing is a mechanism that distributes incoming
loads from clients to servers in the cloud system [8]. Within the
ingress network, all swarm nodes participate in the ingress routing
mesh and enable load balancing. Thus, any swarm node can receive
requests on a published port, and then it routes them to published
ports on available nodes of an active container.

Scalable Node.js: Node.js is a framework for Javascript running
on Google’s V8 engine [4]. Node.js is most suited for I/O intensive
tasks and promises a fast running speed in the cloud, because of its
event-driven, asynchronous and non-blocking I/O nature. Node.js
leverages a single thread for Javascript execution. Therefore, it
cannot fully use CPU resources in a multicore system without
utilizing a module that supports multi-threaded functionality: A
Node.js application can be scaled up by adding more CPUs or other
hardware; however, its performance is not expected to improve
proportionally. We refer to a scaling strategy that provides more
CPUs to a Node.js instance as a UP strategy.

However, Node.js servers can be scaled via alternate scalability
strategies that divide the event loop. Cluster is a Node.js module
that spawns multiple Node.js processes [6], offering a pattern of
a master parent controlling a single or multiple children. When
Cluster is applied to a web server, these worker processes handle
requests in parallel—assuming execution on a multicore server—
with the master process, which is in charge of managing this system
by distributing incoming loads round-robin. We refer to Cluster’s
scaling strategy as CM strategy. Apart from using Node.js-specific
solutions, applications can be scaled via horizontal scaling offered
by PaaS clouds. In Docker Swarm, a service can be replicated on
multiple containers across the cluster. We refer to a scaling strategy
that leverages cloud-based horizontal scaling as an HS strategy.

Scalability: Scalability is a measure of a system’s capacity to
handle workloads, as hardware resources are added [20]. Relative
capacity as the ratio of the capacity with p processors to the capac-
ity with one processor [11]. From a web application’s perspective,
relative capacity is defined via the maximum throughput in terms
of the number of requests handled within a time-frame, while an
acceptable response time is maintained. Additionally, scalability
models express relative capacity as a function of the number of pro-
cessors. The intuitive best-case model is that of Linear-scalability:

CL(p) = p (1)

Linear scalability predicts a relative capacity equal to the processor
count: Doubling the number of CPUs, we should achieve twice
as much throughput. Also, linear scalability represents an ideal
situation, and a system rarely achieves it due to hardware limita-
tions, service restrictions, network speed, intra- and inter-processor
communications, etc.

Instead, scalability follows sub-linear trends, whereby relative
capacity increases slower than the number of added hardware.
Amdahl’s Law [10] is such a model: it states that the potential
maximum speedup of parallel processing is limited by the serial
portion of a computation, referred to the serial fraction σ . Amdahl’s
Law can be written based on relative capacity as follows:

CA(p) =
p

1 + σ (p − 1)
(2)

Extending Amdahl’s Law, Gunther’s Universal Scalability Law
(USL) [9] not only considers the serialization that is referred to
as contention, but also the interprocessor communication overhead
that is referred to as coherency cost. USL is defined as follows:

CU (p) =
p

1 + σ (p − 1) + λp(p − 1)
(3)

The USL model describes that systems follow sub-linear scalability
due to contention (σ ) and coherency (λ). Contention is caused due
to serialization (the workload cannot be processed in parallel, but in
serial) or queuing; coherency penalizes the system’s performance
because the system’s parts require to maintain a consistent state.
The independent variable p in Equation (2) and (3) can represent
the number of virtual users (workload). When the hardware config-
uration (e.g. number of processors) remains fixed and the workload
varies, it is referred to as software scalability. [9]

Load testing is involved in scalability evaluation to investigate
the system’s scaling capabilities under a specific load. Load test-
ing tools generate large numbers of traffic to a web application.
Apache JMeter [1] is such a tool; it executes user-provided test
plans, which describe a series of execution steps. In addition, users
can customize several load testing parameters, such as the number
and concurrency of requests, test duration and the server’s URL.

3 RELATEDWORK
Lei et al. conducted benchmark and scenario tests to compare the
performance of Node.js, Python-web and PHP [12]. Their tests fol-
lowed a one-factor-at-a-time manner; they varied the number of
concurrent clients and fixed the number of requests. They utilized
test tools to make concurrent request loads on three test appli-
cations, Hello World, Fibonacci Calculation and Select Operation
of DB, and two scenarios, Login and Encryption. They measured
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response time and throughput, and concluded Node.js significantly
outperformed Python and PHP. We adapt this one-factor-at-a-time
experimental in our work but focus on scalability and cloud de-
ployment. Additionally, in a work that leveraged Node.js deployed
on Docker Swarm as a cloud service for a specific application, a
scalability test was conducted to investigate a satisfactory ratio of
Node.js vs. NGINX load-balancer instances [15]. However, testing
Node.js scalability was not the focus of that work and no theoretical
analysis, regression or resource-specific testing was conducted.

Aronis et al. developed a scalability benchmark suite for Er-
lang/OTP [7]. A set of synthetic benchmarks that measure the
scalability of a specific aspect of Erlang and three real-world bench-
marks were included. The architecture of the suite can be divided
into four components: the coordinator, the executor, the sanity
checker and the graph plotter. The coordinator finds out what and
how to execute by reading configuration files; the executor runs a
specific benchmark in a particular runtime environment; the sanity
checker verifies the output produced by the benchmarks; and the
graph plotter processes the scalability measurements and visualizes
the results. Our Ibenchjs was partially inspired by this design.

Patros et al. introduced Cloud Burners [17], a set of Java EE cloud
tenants that target specific hardware resources: CPU, cache, resident
memory, disk I/O, and network I/O. Cloud Burners were utilized
to propose a set of resource-slowdown and resource-intensiveness
metrics. Similarly, the sample benchmarks in this project are de-
signed to target and stress specific resources. However, unlike
Node.js, Java is multithreaded and can directly leverage multicores.

Williams and Smith [20] reviewed four models of scalability:
Linear, Amdahl’s Law, Super-Serial Model, and Gustafson’s Law.
They concluded that vertical scalability fitted best by Amdahl’s Law
or Super-Serial Model; horizontal scalability was best described by
Gustafson’s Law and Linear scalability. Further, Tsai et al. proposed
the following metrics for testing the scalability of Software as-a-
Service SaaS applications in the cloud [19]: 1) processing time, 2)
resource consumption, 3) performance resource ratio, and 4) metric
variance. Also, Schwartz [18] described an approach to measure
and model scalability with USL. Based on these works, we perform
regression analysis to theoretically model Node.js scalability.

A performance model of a system with a certain number of
clients firing repeating requests on a tight loop for a certain number
of processing elements has been proposed [16]. In that model, as
the workload increases, the response time remains stable until the
system is saturated, after which, starts degrading linearly. Instead,
according to the model, throughput increases until the system
becomes saturated and remains stable thereof. The predictions
made by this model generally corroborate with our results; however,
we measured increased degradation after the saturation point—
presumably due to Node.js instances competing for a fewer number
of CPUs, which that model did not consider.

4 NODE.JS SCALABILITY BENCHMARKING
To investigate Node.js scalability in PaaS clouds, we develop Ibenchjs,
a scalability-oriented benchmark framework, and a set of sample
test applications. Ibenchjs can evaluate and measure different scal-
ability strategies applied in Node.js. Overall, Ibenchjs follows a
two-tier architectural model, which consists of a client side and a

Figure 1: Ibenchjs Benchmark Suite Architecture

Table 1: Ibenchjs’s Scalability Variables

Variable Description

Number of nodes Independent variable for the number of hosts participating
in the cloud.

Concurrency Independent variable for the number of parallel requests
fired to the server.

Number of
Node.js instances

Independent variable for the number of Node.js instances
created by the different scalability strategies.

Running time
Independent variable for the total time spent running one
benchmark. It starts when users fire requests, and ends when
users receive all responses.

Response time Dependent variable for the time elapsed between a user
initially sending a request and receiving its response.

Throughput Dependent variable for the number of requests handled
within a time-frame.

Computing
resource usage

Dependent variable for the amount of computing resources
used during a benchmark run.

server side (Figure 1). Users can configure and launch a benchmark
run, post-process the captured raw data, and generate a final re-
port. The server side maintains images of the test applications and
collects the deployed containers’ resource consumption.

4.1 Scalability Variables
Table 1 shows the scalability variables of Ibenchjs; they can be clas-
sified into independent (configuration) and dependent (measured)
variables. The independent variables represent the scaling aspect
of the execution environment. They include number of nodes, work-
load concurrency, number of Node.js instances, and running time. The
dependent variables represent the aspects of the system behavior
that can be affected by changing independent variables, which can
be manipulated for a scalability analysis. The dependent variables
in the benchmark framework include throughput, response time and
computing resource usage. All these variables can be utilized to quan-
tify and evaluate scaling effects in different scalability strategies,
essentially defining a multi-variable configuration-outcome space.
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4.2 Benchmark Framework
The Ibenchjs benchmark framework consists of five components:
the executor, the RC, the analyzer, the register, and the image reg-
istry. This service-oriented design makes for a convenient choice
for deployment on PaaS clouds, even the client components can be
deployed as cloud services; the various parts of Ibenchjs communi-
cate asynchronously and, in future embodiments, could be scaled
out individually to scalability-stress-test larger deployments.

The executor runs on the client side and launches a complete
benchmark run. It is implemented using a set of bash scripts that
start various types of applications based on the user’s configura-
tions. The executor has the following responsibilities: 1) It controls
the entire benchmark process; 2) It maintains the service stack in
the PaaS cloud (Docker Swarm); 3) It generates and fires concurrent
requests to the server side using JMeter (a workload driving tool);
4) It triggers the RC (to be presented shortly) component, which
is running on the server side; and 5) It generates the final report.
The executor is configurable, receiving parameters, such as server’s
URLs, workload concurrency and number of instances, and passes
them to the necessary technology stacks such as, JMeter and the
underlying PaaS cloud.

In addition to the benchmark runtime environment configura-
tion, the executor deploys and removes benchmarks as a service
stack in and from the PaaS cloud. They are both implemented by
sending a remote CLI through SSH.

Once users complete the service stack maintenance (deletion or
deployment) on the PaaS cloud, the executor triggers the initial
data collection. Afterwards, the executor starts the load testing
tool, JMeter, to generate and fire several concurrent requests to the
server side. Finally, the executor finishes the load testing and the
second-time resource usage data collection, and triggers the ana-
lyzer component to parse and post-process the raw data, printing
out a benchmark-run final report.
The RC, implemented in Node.js, runs on the server side and it
takes a snapshot of resource usage before and after a benchmark
run. It runs in the manager node as a web server, publishing an
open port and waiting for requests. The executor can access it via
HTTP—as discussed in the previous paragraph. In turn, the RC
component measures the current resource usage and then trans-
mits it back to the executor component. The RC collects various
types of data from all worker nodes via remote SSH connections.
For example, the RC captures container runtime information and
resource usage of containers, measured by either access cgroups
(pseudo-filesystem) or executing the appropriate shell commands.

During the first-time data collection, the RC writes the captured
snapshots to a JSON file on the disk—a future embodiment could
outsource the storage of this data to a persistence PaaS service,
preferably one that offers object storage. When the RC is triggered
to perform the second-time data collection, it captures the required
data; retrieves the previously stored JSON file; converts the contents
in the JSON file to a JSON object; adds the newly captured data to
the JSON object; and transmits this object back the client.

The analyzer is responsible for post-processing collected data
and is implemented in Node.js. There are two data sources as inputs
that are passed by the executor component. Resource usage data
that are collected from the RC and load testing log files that are

generated from JMeter. The original resource usage data is JSON-
formatted and contains results of two data collections in a key-value
pair format. In addition, the total benchmark execution time, RSS
data collected in a period of 5 seconds, and container placement
among swarm nodes information are also attached. The analyzer
component parses such JSON files and extracts diverse types of
resource usage data from all worker nodes. JMeter’s log file is a CSV
with headers, each line representing a single request. We consider
the columns: 1) timestamp; 2) response code (e.g. 200 indicates a
successful request); and 3) response latency in our embodiment. The
extracted and parsed data from the log file are utilized to calculate
response time and throughput. Once the analyzer finishes parsing,
extracting and post-processing the various data sources, the final
metrics are determined, which include scalability related metrics
and container-placement information.

The register is a Node.js Express web server with a set of sample
and/or user-defined test applications associated with it. It acts as
an access point, accepting concurrent requests from the client side,
and calls the associated test applications to handle them. Express is
a Node.js web application framework that provides a set of features
for web applications [5]. The register handles HTTP requests from
the client, which is implemented via a method of the Expressmodule
app object that corresponds to HTTP methods.

The routing methods of the Express module have two arguments
passed, one is a defined endpoint, and the other one is a callback
function. When the benchmark server receives a request to a spe-
cific endpoint from clients, the callback function is executed. In
this case, the callback function corresponds to a specified test ap-
plication, and the test application runs once a request accesses
its associated endpoint. The register is containerized to package
all benchmarks and itself and form a service stack, running in a
container. Once the containerization is completed, an image of the
service stack is created and it can be stored in an image registry. It
should be stressed that when scaling out, the whole combination
of the register and the benchmarking applications is replicated.

Finally, the Image registry runs in the server side to store im-
ages and distribute them to any node in the PaaS cloud. Therefore,
users can push their customized images to it from any node as
a client, and in turn any node as a client can access it and pull
images. Consequently, containers can be distributed and created
based on pulled images in different nodes in the PaaS cloud. The pri-
vate image registry limits users’ images to their private PaaS cloud
for improved security and privacy, instead of pushing, potentially
sensitive, data in a public environment.

4.3 Sample Benchmarks
Ibenchjs comes with a number of preset test applications referred
to as benchmarks. They are resource-intensive, because such pro-
grams stress resource usage in systems and easily cause scaling
when reaching certain resource thresholds, for scalability evalua-
tion purposes. Furthermore, resource-intensive benchmarks can be
utilized to detect systems’ performance bottlenecks, caused by a
specific resource saturation. To this end, the sample benchmarks
are classified into CPU-intensive benchmark, disk-intensive bench-
mark, network-intensive benchmark and memory-intensive bench-
mark. They are designed to target and stress one resource type:
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Table 2: Resource Usage of Sample Benchmarks

Metric
Benchmark

CPU
(%)

Net. Thru.
Inc. (MB/s)

Net. Thru.
Out. (MB/s)

Disk Thru.
(MB/s)

RSS
(MB)

CPU int. 94.84 0.11 0.15 0.00 38.18
Net Int. In 45.04 2.76 0.44 0.00 42.50
Net Int. Out 48.80 0.27 25.20 0.00 43.37
Disk Int. 65.00 0.18 0.25 0.68 74.58
Mem. Int. 4.56 0.00 0.00 0.00 101.17
Baseline 77.56 0.19 0.26 0.00 38.94

The CPU-intensive benchmark decides if a large integer is a
prime. It executes a tight loop to process the calculation conducting
any other non-CPU intensive operations, such as I/O. Users can
specify an integer to be tested. By changing the examined value,
the number of loop iterations execution can be varied accordingly.
In other words, this affects how much a single request stresses
the CPU. The disk-intensive benchmark writes a number, in
terms of current milliseconds, to a file. This file is stored on disk
when writing operations complete and the file is closed, which
produces disk I/O operations to target disk resources. There are
no other operations involved, excluding disk I/O operations. The
network-intensive benchmark targets incoming and outgoing
network traffic. The incoming network-intensive test application
receives a graph from the client via POST without conducting any
processing. Essentially, it works as a network drain, consuming any
incoming network bandwidth. A JMeter test plan for POST method
is created in the executor component, which is similar with the GET
method test plan, excluding the HTTP method change and a file
path to the graph added. Once the benchmark server receives the
graph, a callback function referenced from the network-intensive
test application is called to respond to the client. The network-
intensive test application targeting the outgoing network traffic
sends fixed-size text to the client side. The memory-intensive
benchmark keeps inserting a number of objects in an array, which
consequently causes the memory size to grow to a large size but
without exceeding the total memory size allocated to the container.
We use a sleep function, requesting the OS assigning CPU to another
processes, such that the CPU is stressed less. The reason is the
memory-intensive benchmark should not target the CPU, only the
memory. Furthermore, each request creates a unique array and
cannot be shared, thus it avoids any CPU cache coherence and
contention effects. Finally, the baseline benchmark immediately
responds back to the client, utilizing only the application server.

We initialized Ibenchjs with our resource-intensive benchmarks
to verify their resource targeting as well as to test our benchmarking
framework and cluster/cloud setup. We utilized Ibenchjs in Docker
Swarm to perform the benchmark runs. This verification is neither
a stress test nor a scalability analysis, thus we did not launch heavy
workloads, but fired two parallel requests to one Node.js instance
for 100 seconds.

Each benchmark was effective in targeting its designated re-
source. The CPU-intensive application scored the highest CPU
utilization, approximately 95%, which is expected since it executes
a tight loop. The two network-intensive applications caused the
highest network throughput, for both incoming and outgoing traffic
respectively: both types send and receive large amounts of data
over the network. The disk-intensive benchmark test application

obtained the highest disk I/O throughput; Node.js applications nor-
mally do not involve disk I/O operations. The memory-intensive
benchmark test application consumed much more resident memory
than others, as it stores multiple objects on the heap. Finally, the
baseline test scored moderately high CPU utilization, which can be
attributed to the application server having to complete smaller and
thus, more frequent requests.

5 EXPERIMENTAL INVESTIGATION
To investigate Node.js scalability issues, we experimented in a
private and isolated cloud, and collected scalability metrics using
Ibenchjs with its sample benchmarks. Node.js is heavily applied in
server development and the network I/O and computational tasks
are often involved in Node.js servers. Therefore, We mainly utilize
the baseline, CPU- and network-intensive test application with
Ibenchjs to conduct several scalability experiments. We built our
private cloud, which provides a scalable, distributed and multicore
cloud environment, using Docker Swarm. To obtain a clean, iso-
lated and consistent experimental environment, we installed one
Oracle VirtualBox VM, managed by Vagrant, on each of the six
physical servers. All installed VMs ran Ubuntu 16.04.3 LTS OS, and
allocated the same number of CPU cores and amount of memory as
their host machines. Static IP addresses were assigned on each VM.
Docker engine was installed on each VM and Docker Swarm was
then enabled on the manager and each of the five worker nodes.

5.1 Methodology
We define two scalability patterns: 1) Single/Multiple Instance
on Single Node (S/MISN) Pattern: refers to single or multiple
instances of a Node.js application deployed in one Docker Swarm
node. In this scalability pattern, we compare three scalability strate-
gies, UP, HS and CM is conducted; 2)Multiple Instances on Mul-
tiple Nodes (MIMN) Pattern: is referred to as multiple instances
of Node.js application deployed in multiple swarm nodes participat-
ing in the Docker swarm. This pattern extends the single node to
multiple nodes, up to five, in swarm. In this scalability pattern, we
evaluate only the HS strategy—CM cannot leverage multiple nodes
and UP proved (as the reader will see shortly) to be ineffective in
producing any speedups on a single node.

We define the following scalability strategies: UP allows the VM
to utilize more of the CPUs of the bare-metal host, mapping one
virtual CPU (vCPU) to one CPU. HS applies both the S/MISN and
MIMN scalability patterns. Each Docker container is constrained
to run only one Node.js instance; its resource is limited to one
vCPU and sufficient memory, which enables one instance to run in
one process, taking only one CPU core and partial memory from
the underlying VM level. CM uses only the S/MISN scalability
pattern. The CM does not allow a worker process to be forked
in a separate node; instead, the master process and the worker
process must run together in the same node, which limits the CM
to run in a single node. For this reason, the MIMN pattern that
involves multiple nodes is not suitable to be applied to the CM
strategy. In this group, a larger Docker container with an equal
number of CPU cores and memory size equal to the underlying VM
is created, in which single or multiple worker processes are forked.
When we conduct scalability experiments, we runs the executor
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Table 3: Experimental Conditions and Conducted Tests

S/MISN MIMN
HS Baseline, CPU-Int., Net-Int. Baseline, CPU-Int., Net-Int.
CM Baseline
UP CPU-Int., Net-Int.

Figure 2: Baseline App. Throughput (S/MISN)

Figure 3: Baseline App. 95% Resp. Time (S/MISN)

in a client host isolated from the server cluster to ensure JMeter
is not a bottleneck impacting the validity of experimental results.
Within the server cluster, the RC runs in the manager node; and the
benchmark service stack is only deployed and run in worker nodes.
When the executor performs the load testing, it lasts 100 seconds
and the thinking time is set to zero to significantly stress the system.
Each experimental condition (Table 3) was repeated 15 times; the
following graphs display averages with standard deviations as error
bars.

5.2 S/MISN Pattern Analysis
We applied the S/MISN pattern on the CPU-intensive, network-
intensive and baseline test applications, using the HS scaling strat-
egy. A single worker node was utilized for these experiments with
4 vCPUs and 4GB of RAM; the network-intensive application was
tested with 8 vCPUs to further exclude CPU being the bottleneck.

Baseline: Figure 2 illustrates the baseline benchmark’s through-
put as a function of the number of isolated Node.js instances when
workloads of 5, 15, 25, and 35 parallel clients were launched; sim-
ilarly, Figure 3 presents this benchmark’s response time. As the
workload increased, so did the response time for any number of
Node.js instances. However, throughput behaved differently: it rose
as more instances and more workload was added, reached a peak

Figure 4: Baseline App. CPU Utilization (S/MISN)

and then started degrading. According to Little’s Law, L = λW
under a steady state, the number of queued requests (L) is equal
to the rate at which requests arrive (λ) multiplied by the time a
request takes to process (W ) [13]. Essentially, for a given number
of clients (L), throughput (λ) and response time (W ) are inversely
proportional, which is consistent with our results. In terms of vary-
ing the number of instances, the best performance was attained
by four instances, which exactly matches the number of available
CPUs. With fewer instances, the system remains underutilized;
whereas with more, the Node.js processes compete against each
other—consider OS-related delays due to scheduling and context
switching as well as CPU-related delays due to cache misses.

Figure 4 demonstrates the baseline benchmark’s CPU utilization,
which corroborates with our previous observations: When there
are four instances spawned, the CPU utilization reaches the peak
(approximately 366% of 400%) and then starts to decrease. The
baseline benchmark run is CPU-intensive as it runs a full application
server. With more than four instances, the four CPUs are saturated
and the CPU resource becomes a bottleneck.

We alsomeasured the baseline application’s network bandwidth—
we skip plotting the results for brevity as they are similar to the CPU
utilization graph. Similarly to the previous metrics, when the num-
ber of instances exceeds four, limited CPU resources cannot support
any more requests in parallel. Furthermore, increased contention
further degrades the application’s network bandwidth. Because, the
baseline test application does not involve large data transmissions,
the overall network bandwidth is less than 1.5 MBps; the network
bandwidth is not a performance bottleneck in this case.

CPU-intensive: Figure 5 and Figure 6 illustrate the throughput
and response time of the CPU-intensive test application. Through-
put reaches the maximum and response time the minimum when
four Node.js instances are spawned, which is equal to the number
of available hardware processors. Figure 7 show CPU-utilization
resource usage results for the CPU-intensive test application—
network traffic data were also collected but are not plotted for
brevity as they look similar with the throughput results. It can be
seen that the CPU utilization reaches the peak (370% out of 400%)
when there are four Node.js instances created and then it keeps a
flat trend. Moreover, the CPU utilization diagram becomes a cluster
when launching workload of 15, 25, and 35. This indicates the CPU
resource has been saturated and cannot support more workloads;
therefore, the CPU resource is the bottleneck. In turn, this causes
retrograde throughput, response time and network traffic at the
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Figure 5: CPU-intensive App. Throughput (S/MISN)

Figure 6: CPU-intensive App. 95% Resp. Time (S/MISN)

Figure 7: CPU-intensive App. CPU Utilization (S/MISN)

point that a specified number of Node.js instances saturate the
CPU resource. In addition, the CPU-intensive test application’s
CPU utilization is slightly higher than the baseline benchmark’s.
The reason is the CPU-intensive test application processes more
computation, running a greater number of loops, than the base-
line test application. The response time of the CPU-intensive test
application is longer than that of baseline benchmark run due to
the CPU-intensive test application taking longer time to process a
single request, consequently, it results in lower levels of throughput
in comparison to the baseline.

Network-intensive: Figures 8, 9 and 10 display throughput,
response time and resource usage for the network-intensive test
application—we skipped plotting the application’s network through-
put since the results look similar to those of the throughput graph.
This time, we utilized a VM with 8 vCPUs and 4GB of RAM to
run the Docker containers. The network-intensive test application

Figure 8: Network-intensive App. Throughput (S/MISN)

Figure 9: Network-intensive App. 95% Resp. Time (S/MISN)

stresses and targets the outgoing network bandwidth by respond-
ing to clients with a large data size. Network bandwidth is a critical
resource in this case. The host VM has more CPU resources, elim-
inating any CPU-related bottlenecks and targeting the network
bandwidth resource. Throughput is maximized when the workload
is 15 parallel clients, whereas, workloads of 25 and 35 degrade the
throughput. Additionally, throughput starts to degrade when there
are three instances within the workload of 15, 25 and 35. In con-
trast, at the workload of 5 parallel clients, throughput becomes
retrograde at the point where two instances are spawned, because
the low workload does not significantly stress the network band-
width. On the other hand, response time becomes longer with a
greater workload. We find that there is a directly proportional rela-
tionship between throughput and response time and is consistent
with Little’s Law, when the workload increased from 5 to 15 parallel
clients. Afterwards, the relationship of throughput and response
time becomes inversely proportional. The reason is that workloads
that exceed 15 client, overload the server and make it unsteady,
which causes hardware in the network, such as switches, to become
congested, resulting in the server accepting fewer requests. In addi-
tion, we find that this case violates Little’s Law as the system does
not keep a steady condition when it is overloaded.

According to the resource usage diagrams, the CPU utilization
of the network-intensive test application is lower than that of base-
line and CPU-intensive test applications and does not even exceed
half of the maximum possible (800%), while its outgoing network
bandwidth is greater. Thus, CPU is not the performance bottleneck
in this case: CPU utilization keeps increasing with greater num-
ber of instances; there is little CPU resource contention and the
CPU resource is not saturated when adding more instances in this
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Figure 10: Network-intensive App. CPU utilization

system. In addition, performance does not start to degrade when
eight instances are created in the system, even though all CPU
cores are utilized by a number of instances. This implies the CPU
resource suffices to support more than eight instances. However,
the network is the performance bottleneck in this case. The network
resource is saturated by instances and makes hardware in the net-
work congested. The network congestion limits the data transferred
to the client side, which results in retrograde overall performance.
The network-intensive test application consumes much more net-
work bandwidth and reaches the peak when approximately three
instances are spawned. Afterwards, it accordingly keeps constant,
which matches the trend of throughput and also verifies the net-
work being the performance bottleneck. We checked other resource
usage data collected by the Ibenchjs’s RC component, such as disk
I/O throughput and RSS, and found none of them was a bottleneck.

5.2.1 HS vs. CM. Next, we performed a comparison between the
HS and CM scalability strategies on a VM with 4 vCPUs and 4GB
of RAM, utilizing the baseline test application. We collected perfor-
mance and resource usage metrics within different workloads while
scaling out to four instances/worker processes–equal to the num-
ber of vCPUs, which resulted in the best performance as discussed
earlier. Figures 11, 12, and 13 demonstrate a histogram of maximum
throughput, response time and CPU utilization as a function of the
various workloads. The red bar represents the CM strategy and
blue bar denotes the HS strategy. Our results indicate that when the
underlying CPU resource has been fully utilized by multiple Node.js
processes, the HS strategy registers significantly higher throughput
and shorter response time, outperforming CM. Moreover, the CM
strategy utilizes more CPU resources to support its performance
than the HS strategy. CM uses Node.js’ Cluster module, which uses
a master process for managing a set of worker Node.js processes
as well as load balancing requests to the round-robin. These tasks
are intensive, which apparently caused the additional CPU utiliza-
tion for CM. Apart from these tasks, the master process also works
in parallel with other worker processes to handle the workload.
However, the master process handles less workload than worker
processes due to its additional task overheads, which degrades the
overall performance. In contrast, under the HS strategy, all the in-
stances of the Node.js application do not process the load balancing
task and the worker process maintenance as the master process
does. A specialized load balancer is installed by Docker Swarm and
utilized in the manager node, which does not compete for CPU

Figure 11: Baseline App. Throughput of HS vs. CM

Figure 12: Baseline App. 95% Resp. Time of HS vs. CM

Figure 13: Baseline App. CPU Utilization of HS vs. CM

resources with instances deployed in worker nodes. Consequently,
it ensures all instances deployed in worker nodes focus on handling
concurrent workload from clients without processing additional
tasks. Therefore, the native cloud scaling HS scaling strategy—in the
embodiment of Docker Swarm and its load balancer—outperforms
the CM scaling strategy of Cluster, i.e. forking more Node.js in-
stances and using one of them as a manager. Nevertheless, CM does
improve the system’s performance, albeit not as well as HS.

5.2.2 UP Strategy. To investigate the common hypothesis that
Node.js does not scale up well by adding resources to a fixed number
of instances, we applied the UP strategy on the CPU-intensive
and network-intensive test applications. A single worker node was
utilized for these experiments with 8 CPUs and 8GB of RAM; exactly
one Node.js instance was started and was progressively given from
1 to 8 vCPUs.

We display the results of the CPU-intensive application in Fig-
ure 14 and of the Network-intensive application in Figure 15, both as
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Figure 14: UP Results of CPU-Intensive Application
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Figure 15: UP Results of Net-Intensive Application

ratios over the 1-vCPU case. As expected, throughput and response
time of both applications remained the same—or even deteriorated
due to increased OS and CPU contention—as more vCPUs were
added. The single-threaded nature of Node.js was not able to uti-
lize the presence of extra cores; the CPU utilization floated around
100%, i.e. exactly one core fully utilized, for all cases. Consequently,
scaling Node.js by adding more cores is not an effective strategy.

5.3 MIMN Pattern Analysis
We extend the number of hosts from a single to multiple nodes
to conduct a set of experiments using the CPU-intensive and the
network-intensive test applications. We collected throughput, re-
sponse time and resource usage to investigate the scalability effects
and determine the performance bottleneck on each case.

CPU-intensive: Figure 16 illustrates throughput of the CPU-
intensive test application for different workloads when experiments
ran on various numbers of nodes (one to four). The results demon-
strate that throughput scales according to the varying number
of nodes. However, it does not scale linearly with respect to the
workloads, according to the different cluster sizes. For example, con-
sidering when running within one-node cluster, 2275 requests per
second were satisfied, but within four nodes, 7527 requests/second.
Throughput within four nodes under linear scaling would be four-
time that of one node, and the expected value should had been
9100 requests/second. However, the measured value is 7527 re-
quests/second, which is approximately only three times greater
than that of one node. Table 4 lists the maximum throughput for
different cluster sizes from one to four nodes under a maximum sup-
ported workload, and accordingly, the number of instances created.
Non-linear scalability effects are revealed from these results.

Figure 16: CPU-intensive App. Throughput (MIMN)

Figure 17: CPU-intensive App. 95% Resp. Time (MIMN)

Table 4: Maximum throughput of CPU-intensive test appli-
cation achieved for various cluster sizes

#Nodes Max Thr. (reqs/s) #Inst. at Max Thr.
1 2274.73±1.64 4
2 4522.90±5.53 8
3 6615.73±1.36 12
4 7527.21±157.26 14

Figure 17 illustrates the response time of the CPU-intensive test
application. These results indicate that response time keeps con-
stant with varying workloads until increasing towards exponential
trend at a particular workload due to the system overloading. Addi-
tionally, response time starts to increase at the same point where
throughput begins to become retrograde—as expected by Little’s
Law. In addition, when we add more nodes to the cluster, response
time becomes shorter within a fixed workload. However, response
time also follows a non-linear scalability pattern, because the ben-
efits of achieving short response time become smaller, instead of
accordingly bigger, with adding more nodes in the cluster.

We also measured and collected CPU resource usage (Figure 18),
and incoming/outgoing network bandwidth (omitted for brevity
as it looks similar to the throughput and CPU% graphs) to iden-
tify performance bottlenecks. Considering the characteristics of
the CPU-intensive test application, the CPU resource is the perfor-
mance bottleneck, which is verified by Figure 16. The CPU utiliza-
tion grows until reaching a peak under a particular workload. From
Table 4, we can see the number of instances created to support
the maximum workload and achievable throughput. For example,
when we create 12 instances running on the three-node cluster,
we can see the system achieves the maximum throughput (6615.73
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Figure 18: CPU-intensiveApp. Total Cluster CPUUtilization
(MIMN)

requests/second on average). The three-node cluster was equipped
with 12 vCPUs; therefore, all these 12 instances saturate the CPU
and the utilization reaches the maximum capacity of computation.
Consequently, it achieves the best performance. For this reason,
the network incoming and outgoing bandwidth begins to decline
at the same point where the CPU utilization begins to decrease.

Network-intensive: Figure 19 illustrates themaximum through-
put of the network-intensive benchmark for workloads varying
from 5 to 45 parallel clients, within different sizes of the cluster.
Studying Figure 19 reveals that throughput does not scale well
with a greater number of nodes for each launched workload. Thus,
the benefits of obtaining a maximum throughput are smaller with
extending the cluster size—scaling out. The system achieves its
maximum throughput with a workload of 15 parallel clients. When
workloads that exceeded 15 were launched, throughput became ret-
rograde. Figure 20 shows the minimum response time as a function
of workloads. From Figure 20, no obvious scalability effect of re-
sponse time with a greater number of nodes for different launched
workloads emerges; the relationship between throughput, response
time, and the workload is similar with that of S/MIMN scalability
pattern. For smaller workloads, throughput and response time are
consistent with Little’s Law being directly proportional to the work-
load: when workloads increase, both throughput and response time
are greater. Once the workload exceeded 15 clients, throughput was
inversely proportional to response time with greater workloads.
The reason is the system becomes saturated with more than 15
clients, which leads into performance bottlenecks.

Figure 22 shows the maximum CPU utilization as a function of
various workloads when running in varying sizes of our Docker
Swarm cluster-cloud. Figure 22 indicates that the CPU resource is
not the performance bottleneck, because this system has a rather
low CPU utilization for each launched workload, when it runs in dif-
ferent cluster sizes—themaximumCPU utilization was at most 200%
out of 2000%. Figure 23 presents the maximum network bandwidth
and reveals a similar scalability effect with that of throughput. We
find a network bandwidth bottleneck at the workload of 15 clients,
which matches the throughput trend. Beyond the workload of 15,
the network bandwidth starts to decline. We also checked other
computing resource usage data and the result is the same as the
S/MIMN scalability pattern: disk I/O and RAM are not performance
bottlenecks. Node.js itself cannot be the performance bottleneck
either. Moreover, we have confirmed that this test application does

Figure 19: Network-intensive App. Throughput (MIMN)

Figure 20: Network-intensive App. 95% Resp. Time (MIMN)

Correlations Thr. Std RelStd Thr. Std RelStd Thr. Std RelStd

Nodes (1--4) 0.58 0.40 0.45 0.40 0.38 0.36 0.61 0.50 0.40

Instances (1--20) 0.89 0.39 0.23 0.15 0.10 0.08 0.87 0.78 0.70

CPU-Intensive Net-Intensive Baseline

Figure 21: Color-Coded Throughput Correlations (MIMN)

not have contention of the CPU resources, but network-related
contention. This observation is crucial as Node.js is best suited for
handling network I/O due to its non-blocking and asynchronous
nature—this design pattern allows other requests from clients to be
served while waiting for an I/O operation to complete.

On Bottlenecks: We present the correlations per testing appli-
cation between the number of nodes and instances, and the average,
standard deviation and relative standard deviation of throughput
(Figure 21). The results show that the CPU-intensive and base-
line applications benefited more by adding instances; whereas,
the network-intensive, by adding cluster nodes. Furthermore, the
network-intensive application was virtually not affected by adding
instances, as the near-zero correlations indicate. Regarding the sys-
tem’s quality of service, which is best highlighted by lower absolute
and relative standard deviation values, strong connections appear
particularly for the baseline application by adding more instances.

Considering all of our experimental data, we make the following
predictions regarding causes of Node.js performance bottlenecks: 1)
A poor network configuration of Linux TCP/IP connection in nodes
has a significant influence on network performance and in turn
affects the scalability of the whole system. 2) Concurrent requests
from clients are dispatched by a built-in load balancer to different
Docker containers hosting web servers over the overlay network.



Node.js Scalability Investigation in the Cloud CASCON’18, October 29-31, Markham, ON, Canada

Figure 22: Network-intensive App. Cluster CPU% (MIMN)

Figure 23: Network-intensive App. Total Cluster Outgoing
Network Throughput (MIMN)

The internal load balancer can be a bottleneck and will not be able
to serve beyond those concurrent requests from clients. We use
the load balancer that is integrated in the manager node. When
creating more Docker containers, extending the cluster size, or
increasing workloads, the load balancer will be overloaded and
degrade the network performance. 3) Hardware in the network,
such as switches, network interface cards (NICs) and links can affect
the network performance with a greater workload. For example,
transferring the data consumes much network bandwidth and in
turn leads to exceeding the maximum capacity of links between
the client and the server. The NIC and the multi-port switch can
also overload and produce congestion with an increased workload,
which results in retrograde network performance.

5.4 Regression Analysis
Finally, we perform a regression analysis to fit USL and Amdahl’s
Law scalability models in the term of software scalability for the
CPU- and network-intensive test applications. We calculate model
coefficients, which can identify scalability characteristics. Figure 24
and Figure 25 respectively illustrate fitting the USL and Amdahl’s
Law model on the maximum throughput of the CPU- and network-
intensive applications against workloads under a fixed hardware
configuration. Dots denote measured data points; solid lines denote
the USL and Amdahl’s Law model fitted to sample data. Both plots
demonstrate the effects of diminishing returns in terms of achieving
better performance for greater numbers of workloads.We calculated
their associated coefficient values of the USL and Amdahl’s Law
model by performing regression and summarize them in Table 5.

Figure 24: USL Model of CPU- and Network-intensive App.
Max Throughput

Figure 25: Amdahl’s Law Model of CPU- and Network-
intensive App. Max Throughput

Table 5: Coefficient Values of Scalability Models

CPU-intensive Network-intensive
Coefficients σc λc R2

c σn λn R2
n

USL 0.017 0.0012 98.76% 0.0282 0.002 99.24%
Amdahl’ Law 0.0614 N/A 93.15% 0.1023 N/A 93.43%

Figures 24 and 25 denote that performance scales not linearly
but sub-linearly, when higher workloads are launched. This is de-
termined by the non-zero coefficient values; in other words the
contention (referred to as σ ) and the coherency (referred to as λ)
affect the scalability of the system. Moreover, USL provides a good
fit for both types of test applications due to a high value of R-square,
whereas the Amdahl’s Law model has a worse fit. Both types of
test applications create multiple instances to support maximum
throughput, causing significant communication overheads within
the system. However, Amdahl’s Law does not consider the interpro-
cess communication overhead, which results in worse fitting than
the USL model. Furthermore, all coefficient values of both models
for the network-intensive test application are greater than those
of the CPU-intensive test application. Thus, the network-intensive
test application has had a higher contention and coherency than
the CPU-intensive application.

6 CONCLUSION
We introduced Ibenchjs, a scalability-oriented benchmark frame-
work for Node.js, and a set of sample resource-intensive test ap-
plications. These applications stress different types of computing
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resources, which we confirmed experimentally. Ibenchjs leverages
them—although, it can be easily extended to include any Node.js
application—to perform scalability benchmarks. Several suitable
metrics, throughput, response time, and resource consumptionwere
measured to enable a scalability analysis by investigating their ef-
fect depending on the system’s configurations.

To eliminate performance interference present in multitenant
clouds, we built locally a private and isolated cloud with six physical
hosts using Docker Swarm and Vagrant stacks, which provided a
scalable, distributed and multicore environment for our scalability
experiments.We defined two types of scalability patterns depending
on the deployment of containerized applications: S/MISN refers
to deploying single or multiple application instances in a single
node; MIMN refers to deploying multiple instances in multiple
nodes. Based on these scalability patterns, we initialized Ibenchjs
and conducted scalability experiments using the CPU-, network-
intensive and baseline test applications in our private cloud.

We find: 1) Scaling up Node.js by increasing the number of CPUs
is ineffective. 2) For CPU-intensive and baseline test applications,
the CPU resource is critical; adding more application server in-
stances does not necessarily improve the performance, because
these additional instances saturate the CPU. When we scaled the
cluster by adding more nodes, we observed sub-linear effects; there-
fore, the benefit of adding a greater number of nodes becomes
smaller due to a heavy network communication overhead between
nodes. 3) Regarding network-intensive test applications, we found
the network resource is critical. With launched workloads and the
number of instances increasing in a single node, more network
bandwidth was consumed until reaching a maximum capacity and
becoming a bottleneck. When we performed the scalability analysis
based on the MIMN scalability pattern, we found the performance
of the whole cluster does not have a proportional improvement
by adding more nodes. Based on these, we made several predic-
tions in aspects of hardware in the network, Docker Swarm overlay
network, and network configuration of nodes. We concluded that
building a good network environment—including hardware, topol-
ogy configuration of TCP/IP connection—is necessary to achieve a
performance improvement, instead of just adding more nodes or
instances of applications. 4) We compared our CPU- and network-
intensive applications via a scalability-model regression analysis.
We obtained non-zero coefficients and concluded that the scalability
of both test applications is sub-linear as the workload increases due
to contention and coherency. Finally, 5) we compared two scala-
bility strategies applied to Node.js, native cloud horizontal scaling
(HS) and Node.js Cluster module forking (CM) on the S/MISN pat-
tern: when the underlying CPU resource has been fully utilized by
multiple Node.js processes, HS significantly outperformedCM. Clus-
ter’s master process performs load balancing and worker-process
maintenance, tasks that fine-tuned PaaS-based solutions of HS are
explicitly designed to perform.

Future work includes extending our scalability investigation to
the remaining resource-intensive applications. Moreover, several
more complicated real-world Node.js test applications will also
work with Ibenchjs to investigate scalability in the cloud. Addition-
ally, our predictions on the scaling failure of network-intensive test
applications and narrow down network bottlenecks can be further

experimentally tested. Finally, Ibenchjs can be extended to run in
other PaaS clouds, such as Cloud Foundry.
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