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Abstract 16 

 This study evaluates the pore-scale distribution of silver nanoparticles during transport 17 

through a sandy porous medium via quantitative Synchrotron X-ray Computed 18 

MicroTomography (qSXCMT).  The associated distribution of nanoparticle flow velocities and 19 

mass flow rates were obtained by coupling these images with Computational Fluid Dynamic 20 

(CFD) simulations.  This allowed, for the first time, the comparison of nanoparticle mass flow 21 

with that assumed by the standard Colloid Filtration Theory (CFT) modelling approach.  It was 22 

found that (i) 25% of the pore space was further from the grain than assumed by the CFT model; 23 

(ii) Average pore velocity agreed well between results of the coupled qSXCMT/CFD approach 24 

and the CFT model within the model fluid envelope, however, the former were 2 times larger 25 
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than the latter in the centers of the larger pores and individual velocities were upwards of 20 26 

times those in the CFT model at identical distances from grain surfaces 27 

; and (iii) Approximately 30% of all nanoparticle mass and 38% of all nanoparticle mass flow 28 

occurred further away from the grain surface than expected by the CFT model.  This work 29 

suggests that a significantly lower fraction of nanoparticles will contact a grain surface by 30 

diffusion than expected by CFT models, likely contributing to inadequate CFT model 31 

nanoparticle transport predictions.  32 

Introduction 33 

 Predicting the transport of Engineered Nanoparticles (ENPs) through the subsurface is an 34 

important and unresolved topic. ENPs are widely used in both industrial processes and consumer 35 

products1; their prevalence suggests the likelihood of their presence in the subsurface and, if 36 

mobile, may pose risks to municipal drinking water supplies or surface water bodies. Engineered 37 

nanoparticles, such as nano-Zero-Valent-Iron (nZVI), are also being purposely injected into the 38 

subsurface at contaminated industrial sites to degrade contaminants 2. As a result, accurately 39 

predicting the transport of ENPs through soil is valuable for both groundwater source zone 40 

protection and designing efficient site-remediation schemes. 41 

 However, current modelling approaches cannot adequately simulate nanoparticle 42 

transport through soil3. The classic approach to continuum-scale modelling of nanoparticle 43 

transport employs the Advection-Dispersion Equation (ADE) with a first-order kinetic retention 44 

coefficient (katt)
4 , which predicts a symmetric breakthrough concentration curve and a log-linear 45 

concentration profile of retained nanoparticles4.  However, nanoparticle transport experiments 46 

generally exhibit non-symmetrical breakthrough curves with extended tailing behavior5, 6, 7, 8, 9, 10 47 
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and retention profiles that are either hyperexponential 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19 or non-48 

monotonic 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23.  The fundamental mechanisms driving these anomalous 49 

nanoparticle transport behaviours have not yet been definitively identified as there is a poor 50 

understanding of the pore-scale distribution and behavior of nanoparticles during transport in real 51 

porous media 4. This lack of pore-scale knowledge hinders the development of models that can 52 

accurately describe, and predict, nanoparticle transport through soil.  53 

The most common mechanistic model to predict katt, Colloid Filtration Theory (CFT), has 54 

been employed for a wide range of nanoparticles and environmental conditions15, 24, 25, 26, 27, 28, 29, 55 

30, 31, 32, 33, 34, 35. CFT’s mechanistic model employs a force/torque balance to calculate colloid 56 

trajectories and attachment in the presence of a collector (or assemblage of collectors) to 57 

determine the fraction of approaching colloids which contacts the collector surface: the ‘contact 58 

efficiency’, η. The specific forces and torques, and boundary conditions, employed by each CFT 59 

model is discussed in detail elsewhere 4. The CFT-predicted η is then upscaled into the 60 

continuum-scale katt by applying a colloid mass balance over a continuum control volume filled 61 

with identical collectors.  62 

 There are a number of different CFT mechanistic models that employ different 63 

force/torque balances, environmental conditions and model geometries 36, 37, 38, 39, 40, 41. A key 64 

consideration is the Derjaguin-Landau-Verwey-Overbeek (DLVO) condition: favorable DLVO 65 

conditions refer to scenarios with no repulsive energy barrier preventing attachment of the 66 

colloid onto the grain.  Under favorable DLVO conditions, CFT mechanistic models generally 67 

well describe micron-sized colloid retention4, but over-predict nanoparticle retention 8, 38.  It 68 

should be noted that this over-prediction is different from the phenomenon of CFT models 69 

predicting η values greater than 1 at very low fluid velocities, which a number of recent studies 70 
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have attempted to address 38, 42, 43. The over-prediction of nanoparticle attachment discussed in 71 

this study is an over-prediction relative to experimental observations which appears even in the 72 

CFT models and correlation equations that have been specifically modified to prevent η values 73 

greater than 138.  For unfavorable DLVO conditions, CFT models are unable to predict 74 

experimental retention rates for micron or nano-sized particles44 due to the presence of a 75 

repulsive DLVO energy barrier which prevents direct attachment of the colloid onto the collector 76 

surface. The most common approach to adapting CFT for use in unfavorable conditions is to fit 77 

katt to experimental results via an additional parameter:  α, ‘attachment efficiency’. The α 78 

parameter acts as a multiplier for η (which was derived assuming favorable conditions) to 79 

describe the fraction of nanoparticles contacting a collector surface that remain attached to the 80 

surface in unfavorable conditions.  This modified ‘αη’ parameter is adjusted until the model 81 

result matches up with the experimental observations. However, by employing α as a multiplier 82 

for η, studies that attempt to predict α or examine the influence of parameters on α are limited by 83 

the implicit assumption that CFT is able to accurately predict η.  84 

 It has been hypothesized that CFT’s over-prediction of η relative to experimental 85 

observations for nanoparticles is due, in part, to the mechanistic models’ assumptions about pore 86 

and grain geometry8, 45, 46. The typically assumed geometry is a perfectly spherical collector (i.e., 87 

grain) surrounded by a shell of fluid – termed the Happel Sphere-In-Cell (HSIC) 37, 38, 40, 47, 48. 88 

Recently, Molnar et al. 49 developed a quantitative-Synchrotron X-ray Computed 89 

MicroTomography technique (qSXCMT) to determine the pore-scale concentration distribution 90 

of nanoparticles in soil columns during transport experiments. The qSXCMT method was then 91 

used by Molnar et al. 8 to illustrate how CFT’s over-prediction of η for nanoparticles could be 92 

linked to regions of relatively low fluid velocity near grain-grain contacts, a feature not 93 
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accounted for within the HSIC geometry. The study also linked these low velocity regions to the 94 

extended tailing behavior often observed in nanoparticle experiments 8.  95 

 However, other simplifying assumptions within the HSIC geometry may be further 96 

preventing CFT models from accurately predicting nanoparticle transport.  For one, it assumes 97 

the average flow field through a realistic porous medium can be approximated by the analytical 98 

solution of creeping flow through the Happel fluid envelope.  As well, it approximates the pore-99 

space as a narrow shell of fluid through which all nanoparticles flow.  A number of studies have 100 

indicated that realistic flow fields may not be consistent with CFT8, 50, 51, 52. However, these pore-101 

scale assumptions, fundamental to the HSIC geometry and thus CFT predictions, have never had 102 

their validity tested for actual nanoparticle transport through real porous media. 103 

 In this study, qSXCMT and Computational Fluid Dynamics (CFD) are employed to 104 

determine, for the first time, the averaged distribution of nanoparticle mass flux (mass flow per 105 

unit area, italicized to avoid confusion with mass flow) and flow rates within a soil’s pore spaces. 106 

qSXCMT was coupled with CFD to characterize the averaged pore-scale nanoparticle 107 

distribution and flow field during a nanoparticle column transport experiment. A silver 108 

nanoparticle solution was injected into a column packed with uniform quartz sand under 109 

unfavorable DLVO conditions and was imaged via qSXCMT at regular intervals during 110 

nanoparticle injection and elution. First, this study computationally characterized the distribution 111 

of pore space within the soil and examined how well experimentally determined, bulk-measured 112 

lab properties (i.e., soil sieve analysis) described the imaged pore and grain geometry. Then, the 113 

distribution of fluid velocity through the soil was estimated via CFD simulations and compared 114 

to analytical solutions for creeping flow in the HSIC geometry.  Next, the distribution of 115 

nanoparticle mass within the pore space was determined by qSXCMT and coupled with the 116 



6 
 

CFD-simulated velocity distribution to estimate silver nanoparticle mass flux and mass flow rate 117 

distributions. The findings provide some of the first experimental insights into how pore-scale 118 

nanoparticle behaviour impacts continuum-scale transport as well as yielding significant insight 119 

into why predicting nanoparticle transport remains a challenge for CFT.    120 

 121 

Materials and Methods 122 

 A silver nanoparticle (nAg) transport experiment was undertaken at the GeoSoilEnviro 123 

Center of Advanced Radiation Sources (GSECARS) 13-BM-D beamline at the Advanced Photon 124 

Source, Argonnne National Lab. The experimental method is described in detail in Molnar et al. 125 

8; a summary of the relevant details are provided here. Note that the nAg transport experiment 126 

and corresponding SXCMT datasets examined here were also used in Molnar et al. 8, there 127 

described as the ‘Uniform Quartz’ dataset. The analysis presented here is entirely new; this paper 128 

does not re-use or re-present any results from the Molnar et al. 8 study. 129 

Materials  130 

 Silver nanoparticles were synthesized by reducing silver nitrate (0.1N, Alfa Aesar) with 131 

sodium borohydride (Granulated, 97+%, Alfa Aesar) and electrosterically stabilized with a 1% 132 

solution of carboxymethylcellulose 90k (CMC90k). The synthesis procedure is discussed in 133 

detail elsewhere 8, 49.  CMC90k is a polymer that is typically employed to stabilize bi-metallic 134 

particles (i.e. nZVI) for site remediation due to its superior stabilization2, 53, 54. Previous studies 135 

have employed CMC90k as an nAg stabilizer and discuss its nAg-stabilization properties in 136 

greater detail 8, 49. It has been shown that CMC90k does not compete with nAg for deposition 137 
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sites and does not alter nAg deposition rates onto the quartz surface 8.  The synthesis procedure 138 

occurred at the GSECARS wet lab the day before the allotted synchrotron beam time. The 139 

synthesized silver nanoparticles were analyzed via Dynamic Light Scattering and were found to 140 

have an average hydrodynamic diameter (d50) of 29.8 nm and a zeta potential of -27.97 mV. The 141 

viscosity of the final CMC90k stabilized solution was 14 cP. An additional solution of silver 142 

nanoparticles was synthesized using an identical method for the purpose of TEM imaging. 143 

Approximately 24 hours elapsed between the second solution synthesis and creating the TEM 144 

grids to be consistent with the time between initial synthesis and qSXCMT imaging. The 145 

resulting TEM image is presented in Molnar et al 8. A size analysis of the particles within the 146 

TEM image was conducted using ImageJ which identified 85 nanoparticles with an average 147 

diameter of 13.8 nm (maximum: 61.9 nm, minimum: 1.6 nm) and a standard deviation of 12.3 148 

nm.  149 

 The porous medium employed for the transport experiment was a quartz sand (Unimin 150 

Accusand) that had been cleaned by rinsing with Nitric Acid (Environmental grade, Alfa Aesar) 151 

followed by rinsing with deionized water and left to dry overnight. The sand was sieved to 152 

achieve a specific grain size distribution (420 – 600 µm) and was then wet-packed into a small 153 

aluminum column (ID: 5.6 mm, length: 5 cm). Rigorous packing procedures (which included 154 

stirring, vibrating and tamping) were undertaken to ensure that the column was uniformly packed 155 

throughout and to avoid edge effects throughout the column. The solution used for wet packing 156 

contained no nanoparticles but was controlled to the same viscosity (i.e. 1% CMC90k solution at 157 

14 cP) and ionic strength (120 mM, achieved with Sodium Nitrate) as the nAg solution. The 158 

porosity of the column (33%) was determined by measuring the specific gravity of the sand (2.65 159 

g/cm3) and weighing the amount of sand packed into the column.  160 
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Standard DLVO theory was used to estimate the DLVO energy profile for the uniform 161 

quartz sand and is described in detail in Molnar et al.8. Briefly, the zeta potential for the quartz 162 

sand was taken from literature values to be -55 mV12 as it was found to have little impact on the 163 

DLVO profile. The calculated DLVO profile, presented in Molnar et al 8, indicated that the 164 

quartz sand was unfavorable to silver nanoparticle attachment in the experimental conditions and 165 

contained a small repulsive energy barrier with a magnitude of 8.5 kT. 166 

Silver nanoparticle transport experiment  167 

 The packed column was loaded into the imaging hutch and a pre-injection image was 168 

collected. Following pre-injection imaging, the silver nanoparticle solution was injected with a 169 

syringe pump at 0.11 mL/min. The flow direction was upwards through the column. A total of 3 170 

pore volumes (PV’s) of nAg solution was injected into the column and qSXCMT imaging 171 

occurred at 0.25, 0.5, 0.75, 1 and 2 PV’s of injection. The column was imaged at its midpoint, 172 

2.55 cm above the base of the porous medium. The length of column section imaged (referred to 173 

as the ‘SXCMT imaging window’) was 0.51 cm and extended from 2.55 cm to 3.06 cm above 174 

the base of the column. The concentration of silver nanoparticles in the injection solution was 175 

measured at the beginning and end of the nAg injection period via acid-digestion and ICP-OES 176 

analysis. The average silver nanoparticle concentration being injected into the column was 177 

determined to be 2.48 g/L (+/- 0.06 g/L). 178 

 After injecting 3 PV’s of the nAg solution, the input was switched to a 1% CMC90k 179 

solution with no silver nanoparticles – controlled to the same pH and ionic strength as the wet 180 

packing and nAg solutions – to flush the nanoparticles out of the column. The column was 181 

imaged after 1 and 2 PV’s of elution and elution continued for an additional 5 PV’s (7 PV’s of 182 
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elution total) with no additional qSXCMT imaging. During injection and elution, samples were 183 

collected from the column’s effluent and analyzed for total silver concentration via ICP-OES 184 

and, following the experiment the sand was acid-digested to test for retained nanoparticle 185 

concentration. The results from the effluent sampling and acid-digestion are presented elsewhere 186 

8.  187 

 It should be noted that the results of this study are presented in terms of SXCMT pore 188 

volumes (SXCMT-PV’s) injected, not total column pore volumes. An SXCMT-PV is defined as 189 

the pore space between the bottom of the column and the center of the imaging window 190 

(approximately 0.22 mL) whereas a total column pore volume (PV’s) refers to the pore volume 191 

of the entire column (approximately 0.4 mL). Thus ‘1 SXCMT-PV’s injected’ refers to when the 192 

advective front of the injected nAg solution reaches the center of the SXCMT imaging window. 193 

qSXCMT imaging occurred at 0.4, 0.9, 1.3, 1.8, 3.6, 7.2 and 8.9 SXCMT-PV’s corresponding to 194 

0.25, 0.5, 0.75, 1, 2, 4 and 5 total column pore volumes.  Incorporating these separate definitions 195 

of pore volumes allows for a comparison of the relative position of the advective front of the 196 

injected nAg solution to the SXCMT imaging window and the column’s effluent. 197 

SXCMT imaging, reconstruction and analysis 198 

 The specific imaging procedure required for qSXCMT imaging of silver nanoparticles in 199 

a porous medium is discussed in detail elsewhere 8, 49. Briefly, during qSXCMT imaging all flow 200 

through the column was stopped, approximately 40 min/dataset; this stoppage time has no impact 201 

on pore-scale nAg distribution8.The column was then imaged four times in a single location to 202 

collect four datasets of linear mass attenuation values at different x-ray energies above and below 203 

the silver K-edge of 25.514 keV. The voxel resolution of the collected images was determined to 204 
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be 9.87 μm/voxel. Image reconstruction produced a 3-dimensional dataset of x-ray linear mass 205 

attenuation values averaged over a 9.87×9.87×9.87 μm3 voxel.  206 

 Sub-volumes of 350×350×450 voxels were cropped from the reconstructed datasets at 207 

each time-step (40 minute imaging period) to remove edge effects and column material and 208 

underwent a segmentation into water and solid using an indicator kriging technique 55, 56. Grain 209 

characteristics and pore-network structure within each segmented image were then extracted and 210 

characterized using the method of Thompson et al. 57, 58. This method assigns a unique identifier 211 

to every pore and grain within the segmented sub-volumes as well as topological properties. The 212 

three-dimensional segmented sub-volume of the pre-injection dataset, as well as a two-213 

dimensional slice of raw reconstructed gray values, are presented in Figure S1 (supplementary 214 

information) to illustrate the structure of the porous medium within the SXCMT imaging 215 

window. In addition, an algorithm was employed for each imaged time-step to measure the 216 

distance between each pore space voxel and the closest grain surface voxel (see supplementary 217 

information).  218 

Quantifying silver nanoparticle concentrations within the SXCMT sub-219 

volumes 220 

 The method of Molnar et al. 49 was employed to calculate the qSXCMT-determined silver 221 

nanoparticle concentration for each pore-space voxel in the cropped sub-volume for the above-222 

mentioned time-steps. Briefly, for each time-step the below-edge dataset (25.414 keV) was 223 

subtracted from each of the 3 above-edge datasets (25.614, 25.714, 25.814 keV) to create 3 224 

difference datasets. Then, using the solid/pore segmented datasets created earlier, a modified 225 

form of the Beer-Lambert law 49 was applied to every single pore-space voxel in all 3 difference 226 

datasets to create 3 unique ‘SXCMT-determined concentration’ datasets for silver nanoparticles. 227 
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The 3 datasets were averaged together to create 1 final SXCMT-determined nanoparticle 228 

concentration dataset for each imaged time-step. Each of the qSXCMT-determined datasets 229 

(corresponding to each imaged time-step) were calibrated using a previously created calibration 230 

procedure described in Molnar et al. 8. This qSXCMT procedure does not accurately determine 231 

nanoparticle concentration on a voxel-by-voxel basis due to noise associated with qSXCMT 232 

imaging. However, averaging the approximately 16 million voxels with various techniques can 233 

accurately quantify average spatial and temporal changes in nanoparticle concentrations within 234 

the bulk pore space at a resolution similar to the imaged resolution (10.47 µm/voxel)8, 49.  235 

Moreover, this qSXCMT method is currently unable to accurately determine nanoparticle 236 

concentrations within 17.3 μm of the grain surface due to a ‘shadow zone’ effect caused by x-ray 237 

refraction at the grain/pore interface (this width is experiment specific and should not be taken as 238 

a general value) 49. Thus, all pore-space voxels within the ‘shadow zone’ in each qSXCMT-239 

determined concentration dataset are discarded during this quantification and calibration process.  240 

Fluid Dynamics Modeling within the Image-derived Pore Space 241 

 Computational Fluid Dynamics (CFD) modeling was employed to simulate fluid flow in 242 

a uniform quartz SXCMT dataset (referred to hereafter as the ‘image-derived pore space’ to 243 

avoid confusion with the qSXCMT datasets, see Figure S1). A single dataset was employed for 244 

CFD modeling (0 PV, i.e. pre-injection) as it can be assumed that the flow field did not change 245 

throughout the injection or elution period because the extracted pore network statistics were 246 

similar for all datasets.  247 

 First, unstructured tetrahedral meshes were generated using an in-house code59, 60. In 248 

order to assess if the simulated fluid flow was sensitive to mesh resolution, meshes of increasing 249 
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resolution were generated for a smaller domain (150 150 350 voxels) until flow rate and 250 

velocity profiles converged (i.e., no longer changed). Then, a resolution within the converged 251 

range that was also computationally feasible for the large domain (350 350 450 voxels) was 252 

used for the final mesh. 253 

CFD modeling was conducted using an in-house three-dimensional Finite Element 254 

Method (FEM) algorithm 60, 61 which solves the Stokes equation on the unstructured mesh. 255 

Constant traction (normal component) boundary conditions (BCs) were applied at the inlet and 256 

outlet (top and bottom). From the constant traction, the corresponding pressures and pressure 257 

gradient were calculated. On the other four faces of the domain as well as on the solid-void 258 

surfaces inside the porous medium, no-slip BCs were imposed (roughness was not accounted in 259 

the model as the resolution of the SXCMT images cannot capture such features). More details on 260 

the implementation of FEM and its BCs can be found in 59, 60. The FEM simulation reproduced 261 

the experimental conditions by matching all relevant experimental properties (e.g., viscosity) and 262 

by adjusting the inlet and outlet pressure BCs until the average velocity matched the average 263 

experimental pore water velocity of the column experiment.   264 

 In addition to flow rate and velocity profile convergence, confidence in the simulated 265 

flow field was developed by calculating soil permeability using Darcy’s law. The simulated 266 

permeability (1.3×10-6 cm2) is consistent with those experimentally determined for similarly 267 

sized sands (e.g., 6.4×10-7 cm2 62). However, it is important to note that this only ensures that the 268 

average simulated flow properties are approximately consistent with the average experimental 269 

flow. This was deemed sufficient as this study focuses on average behavior and does not 270 

compare concentrations and simulated flow on a voxel-by-voxel basis.  271 
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It should be noted that no particle transport modeling was conducted. All estimates of 272 

nanoparticle flux and flow in this paper are the result of combining the CFD modeled flow field 273 

with the experimentally derived qSXCMT datasets of nanoparticle distribution. 274 

Fluid Dynamics within the HSIC Geometry 275 

 An analytical solution was employed to solve for the fluid flow through the HSIC 276 

geometry. The flow regime through this geometry is assumed to be creeping flow and is 277 

described via the continuity and Stokes flow equations. The solution to the velocity vectors in the 278 

HSIC geometry are not explicitly published in any of the mechanistic model papers 37, 38, 40, 48, 63. 279 

However, the general stream function and HSIC-specific coefficients published in Elimelech 63 280 

can be used to solve for fluid velocities in the HSIC geometry. 281 

Results 282 

 The results are divided into three sections. The first compares the HSIC geometry to the 283 

pore and grain network extracted from the image-derived pore space. The second compares the 284 

analytical solutions of fluid flow through the HSIC geometry to the CFD-simulated flow field in 285 

the image-derived pore space. The third examines the distributions of nAg mass, mass flux and 286 

mass flow in the SXCMT datasets. Throughout, the discussion considers whether the HSIC 287 

geometry is appropriate for approximating nanoparticle transport through a realistic porous 288 

medium.  289 

HSIC vs. SXCMT pore and grain geometry   290 
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 The computationally-determined porosity of the image-derived pore space (29%) is lower 291 

than the experimentally-determined packed column porosity (33%), however the values are 292 

similar enough that the computationally-determined SXCMT pore and grain statistics can be 293 

taken as approximately equivalent to the experimental column’s pore and grain network. The 294 

computational grain and pore network statistics were compiled by examining 329 uniquely 295 

identified grains, 2,139 pore bodies and 26,362 pore throats (the narrow region connecting two 296 

pore bodies). The total number of grains and pores within the dataset is significantly larger (619 297 

grains and 3,802 pores), however the extra grains and pores were excluded from the analysis as 298 

they intersected the dataset edges. The aspect ratio of each grain was determined computationally 299 

from the image-derived pore space by measuring the average ratio between the length of each 300 

grain’s longest axis to its shortest. The average grain aspect ratio was 1.64 suggesting that the 301 

grains within the dataset were non-spherical which is qualitatively consistent with the images of 302 

the SCXMT dataset in Figure S1 and with previously published literature 64 of typical sandy 303 

media. The average pore inscribed radius is 59.4 μm and the average throat inscribed radius is 304 

39.9 μm.  305 

 As mentioned, employing a CFT-HSIC mechanistic model (or η-correlation equation) to 306 

describe nanoparticle transport assumes that all fluid flow occurs within the envelope 307 

surrounding a spherical collector (illustrated in Figure S2 in the supplementary information).  308 

The width of this fluid envelope ( , Figure S2) is defined so that the porosity of the HSIC 309 

geometry (the volume ratio of fluid envelope volume/spherical collector volume) is equivalent to 310 

the macroscopic porosity of the porous medium and is calculated from eq. 1: 311 

 
 

Eq. 1 
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where  is the radius of the spherical collector and  is the porosity. This definition of the fluid 312 

envelope, along with eq. 1, is used throughout the CFT literature 37, 38, 40, 48, 63 as it is a relatively 313 

simple method for accounting for porosity as well as the influence of neighbouring collectors on 314 

the fluid velocity.  Sieve analysis of the uniform quartz sand mixture determined the average 315 

radius of the sand (as = 255 μm).  Thus the HSIC geometry, applied to this experiment via eq. 1, 316 

approximates all the pore space as being within a 36 μm-thick fluid envelop around the grain. 317 

  The HSIC envelope width (36 μm) is, in fact, more similar to the average pore throat 318 

radius (39.9 μm) than the average pore body radius (59.4 μm). This suggests that a majority of 319 

the uniquely identified pore bodies have some pore fluid volume that is at least 23 μm further 320 

away from a grain surface than considered by HSIC. The difference between average pore body 321 

width and HSIC fluid envelope width is illustrated by Figure 1.  322 
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 323 

 324 

Figure 1: A depiction of how a pore body surrounded by a four circular collectors has a portion of pore 325 

space that is within the region considered by the HSIC’s fluid envelope and a portion of pore space that 326 

is outside of the region considered by the HSIC fluid envelope.  327 

 The difference between the image-derived pore space’s pore geometry and the HSIC is 328 

further highlighted by plotting the pore network and grain statistics as a cumulative percentage in 329 

Figure 2. The average Grain Effective Radius, 250 μm, was determined computationally from 330 

the image-derived pore space (defined as the average of the grain’s short and long axis radii) and 331 

is consistent with the mean radius of sieved sand, 255 μm.  It is also consistent, by extension, 332 

with the radius of the spherical collector in the HSIC geometry because the latter is set equal to 333 

the  mean radius of sieved sand.  The consistency between the HSIC collector radius and the 334 

average Grain Effective Radius suggests that (1) the image segmentation routine accurately 335 



17 
 

identified the boundary of the water/grain interface, and (2) the grains within the image-derived 336 

pore space are representative of the overall experimental column. In addition, the distribution of 337 

Grain Effective Radii within the image-derived pore space ranges from 200 – 300 μm (i.e., grain 338 

effective diameter = 400 – 600 μm) and is consistent with the sieved grain size distribution (420 339 

– 600 µm). The Grain Effective Radius tailing towards 0 μm in Figure 2 is likely due to the fact 340 

that the cropping procedure for the network analysis could not remove all partial grains from the 341 

statistics analysis.  342 

 The distribution of pore bodies in Figure 2 suggests that of the identified 2,139 pores, 343 

approximately 80% have a radius equal to, or larger than, the width of the HSIC fluid envelope. 344 

Thus within 80% of pores, some fraction of nanoparticles will be further away from the grain 345 

surface than expected by CFT-HSIC models. The largest pore within the dataset has an inscribed 346 

radii of 160 μm, therefore nanoparticles can be upwards of 124μm further away from a grain 347 

surface than expected by CFT-HSIC. This trend is consistent with pore throats as well; of the 348 

26,362 identified pore throats, approximately 50% are larger than the HSIC fluid envelope and 349 

can range up to 130 μm in radius.  350 
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 351 

Figure 2: Cumulative size distributions of the grains (black), pores (blue) and pore throats (red) 352 

within the pore network of the image-derived pore space. Inscribed radius refers to the radius of the 353 

largest sphere that can be drawn entirely within the body. Effective radius is an average of the 354 

inscribed radius and the length of the grain’s longest axis.  355 

 Figure 3 (top) illustrates how the volume of pore space in the image-derived pore space 356 

and HSIC geometry changes as a function of distance from the nearest grain surface. For the 357 

image-derived pore space, after determining the distance between each pore space voxel and the 358 

closest surface voxel, the distances were then sorted into bins representing 9.87 μm intervals 359 

from the grain surface (corresponding to the length of 1 voxel).  The number of voxels in each 360 

bin was divided by the total number of pore space voxels to determine the percentage of pore 361 

space within each bin. To determine the distribution of pore space in the HSIC geometry, the 362 

volume of thin fluid shells were calculated in 9 μm intervals using the geometric equation for 363 

volume of a sphere (9 μm intervals were used instead of 9.87 so that 4 data points would not 364 

over-estimate the volume of HSIC pore space).  365 
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 Figure 3 reveals that the volume of pore space in the image-derived pore space decreases 366 

with distance from a grain surface, indicating that there is more pore space near the grain surface 367 

than at the centers of the pores (qualitatively illustrated in Figure 1). This decreasing trend in the 368 

real porous media is the opposite of what is encountered within the HSIC geometry.  The trend 369 

of increasing pore space volume with distance arises from the HSIC conceptual model; since the 370 

volume of a sphere is a cubed function of its radius, the pore space volume in the HSIC geometry 371 

is greatest at the outer edge of the fluid envelope.  In Figure 3 (bottom), these trends are plotted 372 

as a cumulative percentage of total pore space (total percentage of pore space closer to the grain 373 

surface than a certain distance).  It demonstrates that the cumulative distribution of the near-grain 374 

pore space is similar between the image-derived pore space and the HSIC geometry. In fact, 50% 375 

of all pore space in both the porous media and HSIC model is approximately 20-25 μm from a 376 

grain surface. Figure 3 (bottom) highlights that 25% of the entire pore space is further away from 377 

the grain than expected by the HSIC geometry. The difference in maximum pore size between 378 

Figure 2 (maximum radius of pore body ~160 μm) and Figure 3 (distance to nearest grain surface 379 

~180 μm) is due to the fact that no cropping was performed for Figure 3. 380 

  381 
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 382 

 383 
Figure 3 (top): The percentage of pore space as a function of distance from the nearest grain surface for 384 

the Happel sphere geometry (HSIC) (black squares) and the image-derived pore space (blue circle). 385 
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Figure 3 (bottom): The cumulative percentage of pore space as a function of distance from the nearest 386 

grain surface. Cumulative percentage refers to the sum of the geometries’ pore space that is between 387 

the grain surface and a certain distance.  388 

HSIC vs. SXCMT flow field 389 

  Averaging techniques were employed to analyze the CFD-simulated velocities in the 390 

image-derived pore space (see Figure 4 for a representative cross-section of velocity magnitude 391 

contours). The average pore water velocity around every grain in the image-derived pore space 392 

was plotted in Figure 4 (middle) as a function of distance from the nearest grain surface and 393 

angle from the downstream side of a grain (i.e. θ in Figure S2, measured from an axis parallel to 394 

the flow direction which passes through each grain’s centroid). All voxels were sorted into 9.87 395 

μm×1º bins and averaged to calculate an average velocity for every definable distance and angle 396 

bin around a grain. Therefore, the colour mapped in each bin represents the average velocity 397 

within the image-derived pore space at that particular distance and angle.  For the analytical 398 

solution for flow through the HSIC model, a similar process was used, the analytical solution 399 

was solved in increments of 9.87 μm and 1º and a nearest neighbor interpolation routine was 400 

used to generate a radial surface plot (Figure 4, right). The white spaces at the center of the 401 

graphs are not meant to represent the collector surface, but appear because distances are 402 

measured between voxel centroids and cannot be smaller than half a voxel length (representing 403 

the distance from a voxel face to the closest voxel centroid). 404 



22 
 

405 
Figure 4 left: Contour plot of CFD-simulated pore water velocity magnitude overlain with black 406 

streamlines from a representative image-derived pore space cross-section. The direction of flow is 407 

upwards.  408 

Figure 4 middle: Pore water velocity magnitude around the image-derived pore space. The direction of 409 

flow is upwards. Further details on this figure are discussed in text.   410 

Figure 4 right: Pore water velocity magnitude around the HSIC geometry (right). The direction of flow is 411 

upwards. Further details on this figure are discussed in text.  412 

 The CFD-simulated flow field in the image-derived pore space illustrated in Figure 4 has 413 

a number of important features. Average velocity in the image-derived pore space is observed to 414 

be a function of angle with the highest velocities observed near the midpoint of the grain (θ = 415 

90º) and relatively low velocity regions near the upstream (bottom) and downstream (top) sides 416 

of the grain. The velocity distribution around the grain is also symmetric: the distribution on the 417 

upstream and downstream sides of the grains are similar for all distances. This indicates that 418 

there is little to no flow separation occurring on the downstream sides of the grains, which is 419 

consistent with the typical definition of creeping flow. The average velocity increases with 420 

distance from a grain surface with the highest velocities occurring in the centers of pores.    421 
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 The flow field around the HSIC model (Figure 4, right) is in excellent qualitative 422 

agreement with the CFD-simulated flow field in the image-derived pore space (Figure 4, middle) 423 

within 36 μm of a grain’s surface. The major velocity features in the image-derived pore space 424 

are captured by the HSIC flow field, including the relatively low-velocity regions on the 425 

upstream and downstream sides of the grains as well as the increase in velocity at θ = 90º and the 426 

symmetric flow behavior.  However, the HSIC model under-estimates velocities in the upstream 427 

and downstream regions (illustrated in Figure S3 and Figure 4); the velocities in the image-428 

derived pore space at 0º and 180º near 20 μm are higher than the velocities in the HSIC fluid 429 

envelope. It is important to note that the above discussion compared the average flow velocity as 430 

a function of distance irrespective of pore size. It has been previously shown that a range of fluid 431 

velocities will occur even among similarly sized pores65. Thus the distribution of flow velocity at 432 

a certain distance from a grain surface may vary between pores based on factors such as pore 433 

connectivity, pore size, throat size and distribution of pore sizes 65. The results in Figures 4 434 

illustrate how these different flow distributions within each pore average out to yield a 435 

distribution that is similar to a simple analytical flow solution. However, previous studies have 436 

suggested that averaging flow fields in this manner may lose information vital to nanoparticle 437 

transport such as immobile zones in soil 8, 65 or preferential flow pathways in size distributed 438 

media65.  439 

To more quantitatively examine the distribution of velocities within the CFD-simulated 440 

image-derived pore space, Figure 5 plots the velocity distribution in Figure 4 as a one-441 

dimensional function of distance to the nearest grain where the velocity was averaged over all 442 

angles for each particular distance interval with error bars representing the maximum and 443 

minimum values of velocity at each distance. Confirming the trend observed in Figure 4, the 444 
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average CFD-simulated and HSIC analytical velocities are very similar within the region 445 

encompassed by the HSIC. Outside of the HSIC region, the average pore water velocities within 446 

the centers of the largest pores (~100 μm) may be as large as 2× the overall average pore water 447 

velocity (1.38 cm/min). This trend is qualitatively consistent with the velocity contour plot 448 

illustrated in Figure 4 (left). Even within the HSIC region, the box and whisker plot in Figure 5 449 

show that the individual values of CFD-simulated velocity can be upwards of 20 times larger 450 

than within the HSIC model at identical distances from grain surfaces. Overall, these results 451 

suggest that nanoparticles may be experiencing significantly higher fluid velocities than expected 452 

within the CFT-HSIC model. These larger-than-expected velocities will yield forces and torques 453 

on the nanoparticles that are outside the range considered by the CFT-HSIC mechanistic model.   454 

To the best of the authors’ knowledge this represents one of the first comparisons between CFD-455 

simulated velocities in a real sand and the HSIC model.  456 

 457 
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 458 

Figure 5: The average pore water velocity magnitude as a function of distance from the nearest grain 459 

surface for both the HSIC geometry (black squares) and the image-derived pore space (blue circles with 460 

a black dot). The velocity contours presented in Figure 4 were employed to create this plot; at each 9.87 461 

μm distance interval the velocities were averaged over all 1º bins (i.e., each datapoint represents 462 

velocity averaged over 0 – 180 º) and weighted by the fraction of pore volume in each 1 º bin. The 463 

SXCMT-CFD simulated velocity distribution is presented as a box-and-whisker plot where the bounds of 464 

the boxes represent the 25% and 75% quartile at each distance and the length of the whiskers 465 

represents the minimum and maximum velocity at each distance. The error bars on the Happel Sphere 466 

Analytical Velocity profile represents the maximum and minimum velocities at each distance from the 467 

grain surface.   468 

 469 

 470 

 471 

472 
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Nanoparticle mass distribution in qSXCMT datasets 473 

 Figure 6 presents the distribution of nanoparticle mass within the qSXCMT dataset as a 474 

function of distance to the nearest grain surface for each imaged time-step. The mass distribution 475 

curves were calculated by first determining the nanoparticle mass in each voxel, calculated by 476 

multiplying each voxel’s qSXCMT-determined concentration by the volume of the voxel 477 

(approximately 961.5 µm3).  This calculation was repeated for every voxel > 17.3µm from a grain 478 

surface (i.e., outside the shadow zone). The distance between every pore space voxel and the 479 

nearest grain surface in each qSXCMT dataset was measured and sorted into 9.87 μm intervals. 480 

The nanoparticle mass in each interval was plotted as a function of mass versus distance to the 481 

nearest surface (Figure 6, top).  482 

 As illustrated in Figure 6 (top), most nanoparticle mass is located near the grain surface; 483 

this is expected as the near surface regions possess the largest volume of pore space (shown in 484 

Figure 3). While the qSXCMT method is currently unable to quantify nanoparticle mass closer 485 

than 17.3 μm (25% of the total pore space, Figure 3), based on the trend in Figure 3, it is 486 

hypothesized that, in general, the total mass of nanoparticles continues increasing with 487 

decreasing distance to the grain surface. The term ‘quantifiable mass’ is used throughout this 488 

section to refer to mass, or mass flow, outside of the ‘shadow zone’ that can be quantified via the 489 

qSXCMT procedure.  490 

 The general shape of the mass distribution curve in Figure 6 (top) approximates the shape 491 

of the pore space volume curve in Figure 3 (top). To quantitatively compare the distributions of 492 

mass and volume, Figure 6 (bottom) plots the cumulative percentage of quantifiable nanoparticle 493 

mass as a function of distance to the nearest grain surface. This represents the total percentage of 494 
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quantifiable nanoparticle mass that is closer to the grain surface than a certain distance. Figure 6 495 

suggests that, at every time-step, only approximately 60% of all quantifiable nanoparticle mass is 496 

within the fluid region encompassed by the HSIC fluid envelope.  497 

 Figure 3 can be employed to estimate the nanoparticle mass distribution in the ‘shadow 498 

zone’ region, which accounts for 25% of all pore space voxels. Assuming a strictly per-volume 499 

ratio, 75% of the total nanoparticle mass can be quantified via qSXCMT at each time step. 500 

Incorporating this into the cumulative percentages in Figure 6 (bottom) yields an adjusted 501 

estimate of approximately 70% of total nanoparticle mass within the HSIC fluid envelope region 502 

with 30% of nanoparticle mass outside of the envelope. The percentage of nanoparticle mass 503 

outside the envelope is greater than the percentage of pore volume outside the envelope. This 504 

indicates that nanoparticles are not uniformly distributed throughout the pore space and that the 505 

pore-scale concentration gradients identified by Molnar et al. 8 significantly affect the overall 506 

mass distribution through the pore space. It should be noted that while this distribution is for 507 

nanoparticle mass in an ‘unfavorable’ deposition scenario, a previous study conducted on this 508 

same dataset concluded that the presence of a repulsive energy barrier had no observable impact 509 

on the pore-scale distribution of nanoparticle concentration at the scale examined in Figure 68. 510 

511 
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 512 

 513 

 514 
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Figure 6 (top): The qSXCMT-determined nAg mass plotted as a function of distance from the nearest 515 

grain surface (top) for each imaged time-step. The gray box represents the thickness r of the HSIC fluid 516 

envelope. To avoid cluttering the figure, ‘PV’ is used instead of ‘SXCMT-PV’s’. The error bars on the 517 

qSXCMT dataset lines represent 95% confidence intervals calculated at each datapoint. Every datapoint 518 

in the qSXCMT dataset has an error bar, however the error bars may be smaller than the size of the data 519 

point marker and not visible.  520 

Figure 6 (bottom): The cumulative percentage of qSXCMT-determined nAg mass for each imaged time-521 

step as a function of distance from the nearest grain surface. Cumulative percentage refers to the total 522 

percentage of nAg mass that is between the grain surface and a certain distance from the surface.  523 

 The 1-dimensional (1-D) CFD flow field and the 1-D distribution of nanoparticle mass 524 

were combined to estimate the 1-D averaged nanoparticle advective mass flux rates (mass flow 525 

of nAg per unit area). This analysis was conducted to develop an understanding of how close 526 

advective flow through a realistic 3-dimensional porous media domain will bring nanoparticles 527 

to a collector surface, as such no diffusive flux was considered in this analysis. Calculations of 528 

the maximum possible change in concentration due to diffusive flux indicates that diffusive flux 529 

is negligible compared to the estimated advective flux rates.  The estimated 1-D nanoparticle 530 

mass flux are plotted as a function of distance to the nearest grain surface.  The 1-D 531 

concentration distribution was calculated by dividing the mass distribution in Figure 6 by the 532 

distribution of pore space in Figure 3, which yields an average concentration value for each 533 

binned distance from a grain surface. The 1-D CFD velocity magnitude plot in Figure 5 was 534 

separated into its component velocities (vx, vy and vz), each of these 1-D distributions of 535 

component velocities was multiplied by the 1-D concentration distribution to estimate mass flux 536 

distributions in the x, y and z directions (qx, qy and qz). These component mass flux distributions 537 

were summed to determine an overall mass flux distribution (q = qx + qy + qz) as a function of 538 

distance to the nearest grain surface. This mass flux distribution is illustrated in the supporting 539 

material (Figure S4).  540 
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 Due to the high velocities and higher concentrations in the centers of the larger pores, 541 

mass flux rates were the highest at the centers of the pores for the time-steps between 0.9 and 3.6 542 

SXCMT-PV’s and, to a lesser extent, 7.2 SXCMT-PV. The mass flux rates do not appreciably 543 

change with distance from the grain surface for the early time-step 0.4 SXCMT-PV and the last 544 

time-step 8.9 SXCMT-PV; this is likely due to the minimal concentration gradients noted by 545 

Molnar et al. 8 at these times.  546 

 The average mass flux distributions were employed to estimate the total quantifiable 547 

nanoparticle mass flow rate distribution. Component mass flow rates in the x, y and z directions 548 

(Qx, Qy and Qz) were estimated by multiplying the distribution of component mass flux rates (qx, 549 

qy and qz) by the number of voxels within each 9.87 μm distance interval and by the area of a 550 

voxel face (9.87×9.87 μm). The component mass flow rates were then summed to yield the 551 

nanoparticle mass flow rate distribution (Q = Qx + Qy + Qz) in Figure 7.   552 

 Figure 7 (top) represents the quantifiable mass flow as a function of distance from the 553 

grain surface and is qualitatively different from the distribution of pore space.  The nanoparticle 554 

mass flow rate exhibits a bi-modal distribution with one peak near the grain surface and a second 555 

peak at a distance of 40 μm. The location of this second peak mass flow rate was unexpected as 556 

it does not occur at a region of peak nanoparticle mass, mass flux or fluid velocity. This second 557 

peak is likely due to a combination of several factors including nanoparticle concentration 558 

distribution, fluid velocity distribution, the distribution of small, medium and large pores 559 

illustrated in Figure 2 and the overall distribution of pore space illustrated in Figure 3. This bi-560 

modal peak is not attributed to the presence of a repulsive energy barrier as it was previously 561 

shown that unfavorable conditions do not impact the distribution of pore-scale nanoparticle 562 

concentrations at the scales examined here8. 563 
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 Figure 7 (bottom) plots the cumulative percentage of quantifiable nanoparticle mass flow 564 

as a function of distance to the nearest grain surface. The cumulative percentage at the edge of 565 

the HSIC fluid envelope can be used to compare the distributions of pore space volume, 566 

nanoparticle mass and mass flow.  Accounting for the pore space volume within the ‘shadow 567 

zone’ in the same manner as the mass distribution (Figure 6) discussed above, approximately 568 

37% of total nanoparticle mass flow is occurring further away from the grain surface than 569 

considered by the HSIC model. Moreover, more mass flow is occurring further away from the 570 

grain surface than would be expected by either the proportion of pore space (25%) or 571 

nanoparticle mass (30%) outside of the envelope. The distribution of velocity in Figure 5 is 572 

responsible for the mass flow that favours the centers of pores.   573 

 574 

 575 

 576 
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 577 

 578 

Figure 7 (top): The estimated nAg mass flow rate as a function of distance from the nearest grain 579 

surface for each imaged time-step. The gray box represents the thickness r of the HSIC fluid envelope. 580 

To avoid cluttering the figure, ‘PV’ is used instead of ‘SXCMT-PV’s’. 581 

Figure 7 (bottom): The cumulative percentage of estimated nAg nanoparticle mass flow for each imaged 582 

time-step as a function of distance from the nearest grain surface. Cumulative percentage refers to the 583 

total percentage of nAg mass flow occurring between the grain surface and a certain distance from the 584 

surface.  585 

Discussion 586 

 These results indicate that the HSIC geometry results in a ‘compression’ of the actual 587 

pore space; it is hypothesized that this may be impacting the accuracy of CFT-HSIC’s 588 

predictions for nanoparticle transport. The trends in pore size and pore space highlighted in 589 

Figures 4 and 5 suggest that the HSIC model, purely on the basis of pore geometry, will treat 590 

flow and transport processes as being closer to the grain surface than they would be within 591 

medium-to-larger pores in the qSXCMT dataset. Thus flow and transport processes such as the 592 
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diffusive flux of nanoparticles towards a grain surface, which could be occurring upwards of 197 593 

μm away, the maximum distance from a grain surface identified within the qSXCMT datasets, 594 

will be treated by HSIC as being within 36 μm of a grain surface. Approximately 80% of all 595 

uniquely identified pore bodies are affected by this pore space compression, and 25% of the total 596 

pore space in the qSXCMT-dataset is treated by the HSIC geometry as being closer to a grain 597 

surface than it actually is. Given the similarities in grain shape between this study and a previous 598 

study 64, this trend is likely widely present in sandy media.   599 

 Figures 6 and 7 indicate that large percentages of nanoparticle mass (30%) and mass flow 600 

(37%) are further away from the grain surface than is considered by the HSIC model. These 601 

percentages remain consistent for all time-steps through the transport experiment. The degree to 602 

which CFT’s prediction of colloid retention is affected by these percentages depends on the 603 

process governing colloid transport. Micron-sized colloids rely on interception (commonly 604 

denoted by ηI) to contact the grain surface e.g. 36, 37. Interception is when colloids are flowing 605 

along a streamline which passes within 1 colloid radius of the collector surface and contact the 606 

surface by virtue of their size. The micron-sized colloids exhibit a minimal degree of Brownian 607 

motion – diffusion of particles arising from collisions with surrounding molecules – and are not 608 

expected to diffuse across a significant number of streamlines. This strong interception behavior, 609 

coupled with weak diffusive transport, suggests that in the absence of gravitational settling only 610 

colloids on specific trajectories will be contacting and attaching to the collector; the ‘critical 611 

trajectory’ refers to the trajectory beyond which colloids will no longer intercept the grain 612 

surface. Rajagopalan and Tien 37 employ this concept to simplify their calculations by only 613 

considering colloids within the critical trajectory. As a result, the accuracy of CFT for micron-614 

size colloid transport and retention will depend on how well the modeled geometry captures the 615 
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streamlines within a realistic medium. Geometry simplifications will adversely impact the 616 

accuracy of streamlines within CFT models. However, the good agreement between the 617 

analytical HSIC and CFD-simulated flow fields (Figure 4) suggests that, on average, the near-618 

surface flow field through the image derived pore space (<36 μm from a collector surface) is 619 

approximated reasonably well by the HSIC model. This result, in combination with the strong 620 

interception and weak diffusive behaviour of micron-sized colloids, suggests that this geometry 621 

can be appropriate for predicting micron-sized colloid retention rates.  This may be a reason for 622 

why micron-sized particle behaviour has been shown to be accurately modelled by CFT-HSIC 623 

models38, however trajectory simulations of micron-sized colloids are needed to confirm this 624 

hypothesis. 625 

 However, interception is not a dominant mechanism for nanoparticles. Due to 626 

nanoparticles’ small radii there are only a small number of trajectories which will bring 627 

nanoparticles within 1 colloid radius of the collector. For nanoparticles, diffusion is the main 628 

mechanism for contacting collector surfaces (commonly denoted by ηD)46. The fraction of 629 

nanoparticles diffusing distances of 0 – 36 μm across the HSIC envelope will be much larger 630 

than in the porous medium where diffusive distance can range from 0 – 197 μm (the maximum 631 

distance from a grain surface in the image-derived pore space) . Given these results showing a 632 

substantial mass flow of nanoparticles is further away from the grain surface than expected by 633 

HSIC, approximating all nanoparticles as being within the 36μm HSIC envelope is expected to 634 

cause the model to over-estimate η and nanoparticle retention rates.  This is hypothesized to be a 635 

reason that HSIC-CFT models typically over-predict η and katt 
8, 38, 46. 636 

 The results presented in Figure 2, 5, 6 and 7 suggest that nanoparticle transport studies 637 

which employ η-correlation equations from CFT to estimate η e.g., 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 638 
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are over-predicting η due to the CFT-HSIC geometry’s inability to consider nanoparticle mass 639 

flow outside the fluid envelope. It should be noted that, as this study does not employ a 640 

mechanistic particle tracking model for trajectory analysis, the proposed link between 641 

nanoparticle mass flow outside the Happel envelope and CFT over-prediction remains a 642 

hypothesis and should be considered an open research question. CFT models are starting to 643 

employ alternative geometries such as the Hemisphere-in-Cell model 66, cylindrical pore model67 644 

and the randomly packed collector model 46, 68, however it is unknown if these geometries will 645 

overcome the limitations of the HSIC geometry in predicting nanoparticle retention. Many of 646 

these alternative geometries are highly tunable and, as such, are promising potential avenues for 647 

trajectory analysis and exploring the link between compressed pore space and CFT over-648 

prediction of nanoparticle attachment.  649 

 For nanoparticle transport, it is expected that the accuracy of a mechanistic CFT model is 650 

linked to how well its geometry mimics the distribution of pore space, and the range of diffusive 651 

distances required to reach a grain surface, found in realistic porous media. Nelson and Ginn 38 652 

examined this link; they compared the relative accuracy of 5 different mechanistic CFT models 653 

with different geometries of which 3 employed the HSIC37, 38, 40, 1 employed a random sphere 654 

packing46, 1 employed a ‘Hemisphere-in-Cell’ model 41, 43, 69, 70, 71. While their results suggested 655 

no observable correlation between geometry realism and accuracy, the 5 models incorporated 656 

different flow fields, force-torque balances and different treatments of Brownian motion 4 which 657 

makes it impossible to compare the accuracy of those models solely on the basis of geometry. 658 

Further study is required to examine the link between geometry realism and model accuracy. Of 659 

note is the ‘Hemisphere-in-Cell’ model which includes concentric fluid envelopes around each 660 

hemisphere in a manner similar to the HSIC model, but also incorporates a simplified force 661 
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balance for colloids outside of the fluid envelope 70 and a pendular ring 43 for the express purpose 662 

of adding a small volume of pore space at slightly further distances from the grain surface. While 663 

these additions are unlikely to encapsulate the full range of diffusive distances observed in 664 

Figure 7, they do bring a degree of increased realism to a unit-cell model and could thereby 665 

potentially improve predictions for nanoparticle attachment. 666 

 In favorable DLVO conditions where α = 1 (i.e., attachment efficiency = 1) this over-667 

prediction of η will result in over-predictions of the nanoparticle kinetic retention rate coefficient 668 

katt and over-predictions of the overall rate of nanoparticle retention. This may result in under-669 

predictions of nanoparticle mobility and risk to nearby drinking water supplies. In unfavorable 670 

DLVO conditions where α < 1, a-priori estimations of η are required to accurately determine α. 671 

CFT-HSIC over-predictions of η will then result in under-estimations of α. Numerous studies 672 

have tried to identify trends in nanoparticle α 1, 29, 32, 72, 73, 74, 75 but with generally limited success. 673 

This limited success in describing α for nanoparticle transport may be due, in part, to the 674 

inability to accurately predict η with CFT-HSIC mechanistic models and correlation equations. 675 

 The pore-scale distribution and behavior of nanoparticles within real porous media is 676 

currently poorly understood 4, so it is unclear the degree to which the extended diffusive 677 

distances (0–36 μm vs 0–197 μm) contribute to over-predicted retention rates as opposed to other 678 

proposed mechanisms (e.g., immobile zones) 8. Further research is required to determine how 679 

fluid and nanoparticle parameters (e.g., particle size, viscosity), as well as different types of 680 

porous media (e.g., geometry, surface properties) influence the ‘diffusive error’ arising from 681 

compressing larger pore bodies into thin HSIC fluid envelopes.   682 

Summary and Conclusions 683 
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 Pore-scale silver nanoparticle distributions were imaged via quantitative Synchrotron X-684 

ray Computed MicroTomography (qSXCMT) and linked with Computational Fluid Dynamics 685 

simulations of fluid flow through the imaged pore space. This examination yielded some of the 686 

first ever quantitative evaluation of pore-scale nanoparticle transport through a real porous 687 

medium.  Summarized findings include: (1) The pore space ranged from 0 – 197 μm from a grain 688 

surface, of which 25% was further from the grain than the 36 μm fluid envelope assumed by the 689 

HSIC model; (2) Average pore velocity, which is a function of distance from the grain surface, 690 

agreed well between the experiment and HSIC model within the HSIC fluid envelope; however, 691 

the former were 2 times larger than the latter in the centers of the larger pores; (3) The individual 692 

values of CFD-simulated velocity were upwards of 20 times those of the HSIC model at identical 693 

distances from grain surfaces; and (4) Approximately 30% of all nanoparticle mass and 37% of 694 

all nanoparticle mass flow occur further away from the grain surface than expected by the HSIC 695 

geometry. While it is generally widely acknowledged that the Happel Sphere model is a 696 

simplification of real porous media systems, this paper is one of the first studies that provides a 697 

detailed examination of which components of real porous media are simplified specifically with 698 

respect to nanoparticle transport. Overall, this work suggests that the HSIC geometry 699 

assumptions are unnaturally compressing the pore space around the Happel sphere.  It is 700 

therefore hypothesized that a significantly lower fraction of nanoparticles will contact a grain 701 

surface by diffusion than expected by HSIC geometry.  Moreover, it is hypothesized that this 702 

difference between reality and model, termed ‘diffusive error’, is likely contributing to CFT-703 

HSIC’s typical over-predictions of η for nanoparticles. This study also confirms that, despite 704 

these simplifications, the average pore space distribution and the average velocity distribution 705 

within 36μm of a grain surface are well represented by the HSIC geometry. 706 
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 We acknowledge that we only examined nanoparticle transport through one soil sample 707 

(a relatively uniform quartz sand), so the results from this study – such as the percentages of 708 

nanoparticles outside the HSIC fluid envelope –are specific to the grain and pore distribution in 709 

the examined qSXCMT datasets as well as the experimental fluid velocity. In addition, this study 710 

only examined unfavorable conditions. However, these results are not expected to be sensitive to 711 

grain surface chemistry/DLVO interactions as the distances examined within this study are 712 

orders of magnitude larger than the scale at which DLVO interactions are significant. In addition, 713 

Molnar et al. 8 noted that the concentration gradients within a pore did not change between 714 

unfavorable and favorable deposition conditions.  These limitations do not alter the findings of 715 

this study, that a significant fraction of nanoparticles are further away from the grain surface than 716 

considered by standard CFT models. It should be noted that the implications of this finding, a 717 

proposed link between the compressed pore space in HSIC and over-prediction of nanoparticle 718 

attachment by CFT, remains a hypothesis and should be considered a valuable avenue for future 719 

research. Future work on this topic should include modifying existing CFT geometries such as 720 

the HSIC or Hemisphere geometry, or developing new geometries, and employing trajectory 721 

analysis with a mechanistic model to further evaluate the hypothesis and quantify the impact of 722 

the compressed pore space on CFT predictions of collector efficiency . In addition, future work 723 

should pay specific attention to developing CFT geometries and models that are appropriate for 724 

nanoparticle transport and consider the full range of pore sizes that are present. Future work on 725 

this topic should also examine the results presented in this study for a range of porous media and 726 

nanoparticle types. Research on nanoparticle-specific CFT geometries has begun (see 46, 68) and 727 

further developing these models and concepts should be considered a promising avenue of 728 

research. 729 
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