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Abstract 8 

Host behavioural changes following infection are common and could be important 9 

determinants of host behavioural competence to transmit pathogens. Identifying potential 10 

sources of variation in sickness behaviours is therefore central to our understanding of 11 

disease transmission. Here, we test how group social aggregation and individual locomotor 12 

activity vary between different genotypes of male and female fruit flies (Drosophila 13 

melanogaster) following septic infection with Drosophila C Virus (DCV). We find genetic-14 

based variation in both locomotor activity and social aggregation, but we did not detect 15 

an effect of DCV infection on fly activity or sleep patterns within the initial days following 16 

infection. However, DCV infection caused sex-specific effects on social aggregation, as 17 

male flies in most genetic backgrounds increased the distance to their nearest neighbour 18 

when infected. We discuss possible causes for these differences in the context of individual 19 

variation in immunity and their potential consequences for disease transmission. 20 

 21 

Key words:  Social aggregation, locomotor activity, Drosophila Activity Monitor, 22 

Drosophila, Drosophila C Virus, sexual dimorphism   23 



 3 

Introduction 24 

Infection-induced changes to host physiology, and immunity in particular, following 25 

infection are well known, but it is equally striking that many animals experience similar 26 

behavioural changes following infection [1,2]. Common behavioural responses to infection 27 

include eating and moving less, as well as foregoing social and sexual interactions [1,3–5]. 28 

Whether these behavioural changes in response to infection are evolved host responses, 29 

parasite manipulations, or a coincidental by-product of infection[6,7], they have potentially 30 

important consequences for disease transmission [8]. This is particularly clear for 31 

behaviours such as individual locomotor activity or group social aggregation, which will 32 

directly determine how frequently susceptible and infected individuals interact. Assessing 33 

how host behaviours that influence contact rates might change following infection is 34 

therefore central to understanding the spread of infectious disease.  35 

 36 

The extent to which host behaviours are modified during infection is likely to depend on 37 

genetic and environmental factors. Even in the absence of infection, individuals of some 38 

genetic backgrounds are more likely to aggregate than others [9,10], while males and 39 

females in a broad range of host species often exhibit distinct behavioural profiles [11,12]. 40 

How these different sources of variation influence infection-induced behavioural changes 41 



 4 

is relatively understudied [8]. Measuring how males and females of different genetic 42 

backgrounds modify their behaviour during infection may highlight groups of individuals 43 

with higher contact rates and offer insight into the potential causes of heterogeneity in 44 

pathogen spread.  45 

 46 

Testing if locomotor and aggregation behaviours change following infection, and if these 47 

changes differ between genetic backgrounds, is not straightforward for most host species. 48 

It requires knowledge of how individuals within a population differ in their genetic 49 

backgrounds and the ability to expose many individuals of the same background to 50 

infection in controlled conditions, while comparing their behavioural responses to infection 51 

with individuals of the same background that do not experience infection. For many animal 52 

species, and certainly in human populations, this type of intervention is either extremely 53 

challenging or not feasible. One alternative is to leverage the tools offered by model 54 

systems. Drosophila melanogaster, for example, has been widely used as a model system 55 

for behavioural genetics [13,14], and used specifically to study social aggregation and 56 

locomotor activity [9,15,16]. Further, D. melanogaster is a powerful model of immunity in 57 

response to a range of bacterial and viral pathogens [17]. Previous work has shown that 58 

D. melanogaster exhibits a range of behavioural changes following Drosophila C Virus 59 
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(DCV) infection, including pathogen avoidance during oviposition [18], foraging [19] and 60 

changes in locomotor [20–22]. Here, we test whether DCV infection changes social 61 

aggregation and locomotor activity in D. melanogaster, and if these effects vary with 62 

genetic background and sex.   63 
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Materials & Methods 64 

Flies and Rearing Conditions 65 

We used males and females from 10 lines sourced from the Drosophila Genetic Resource 66 

Panel (DGRP) [23], which are among the most and least susceptible genetic backgrounds 67 

to systemic Drosophila C Virus infection [24]. Genetic variation in DCV susceptibility was 68 

confirmed in a separate experiment where survival was measured following DCV infection 69 

in males and females from these lines (Figure S1; Table S3). Flies were reared in plastic 70 

vials on a standard diet of Lewis medium at 18±1˚C with a 12 hour light:dark cycle with 71 

stocks tipped into new vials every 14 days. One month before the experiment, flies were 72 

transferred to incubators and maintained at 25±1˚C with a 12 hour light:dark cycle at low 73 

density (~10 flies per vial) for two generations.  74 

 75 

Virus Culture and Infection 76 

The Drosophila C Virus (DCV) isolate was originally isolated in Charolles, France [25] and 77 

the stock used in this experiment was grown in Schneider Drosophila Line 2 (DL2) as 78 

previously described [20], diluted one hundred-fold (108 infectious units per ml) in TRIS-79 

HCl solution (pH=7.3), aliquoted and frozen at -70˚C until required. Given the extensive 80 

dilution of DL2 cells in TRIS buffer, 100% TRIS buffer was used as a control for the infection 81 
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solution. It is important to note that while our laboratory stocks are routinely screened for 82 

viruses and contaminants, unknown contaminants may be harboured by the DL2 cells. 83 

However, given the many orders of magnitude in the titers of possible contaminants 84 

compared to the titre of DCV, it is unlikely that these would cause effects confounded with 85 

the effect of DCV. To infect with DCV, 3-5-day old flies were pricked in the thorax in the 86 

mesopleura with a 0.15mm diameter pin, bent at 90º ~0.5mm from the tip, dipped in DCV 87 

(or TRIS-HCl for controls). Using this infection protocol establishes a systemic infection that 88 

results in increased viral titres within the first 3 days of infection [22,26–28].  89 

 90 

Measuring Drosophila social aggregation 91 

Social aggregation was measured in a separate experiment, by calculating the nearest 92 

neighbour distance (NND) between individuals within a 12-fly group of the same sex and 93 

genetic background that were contained within a Petri dish for 30 minutes [10,16,29]. The 94 

experiment was conducted over five experimental blocks, each carried out over a single 95 

day, where each genetic background, sex and infection treatment was measured. Flies in 96 

infected treatment groups, were pricked with DCV 72 hours before their NND was 97 

measured. The NND was calculated by image analysis of pictures recorded of each group 98 

using the ‘NND’ package in ImageJ [30]. In total, we measured social aggregation in 580 99 
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groups of flies, with n=14-16 replicate groups of 12 flies for each genetic background, sex 100 

and infection status combination. To consider the effect of body size on social aggregation, 101 

we also measured the body length of a subset of individuals from each treatment group 102 

(Figure S1). NND measures were converted from millimetres to body lengths by dividing 103 

values by the average body length of individuals from treatment groups (Figure S2). A 104 

more detailed description of the experimental setup and analysis can be found in electronic 105 

supplementary material.  106 

 107 

Measuring Drosophila activity  108 

The activity of single flies was measured during 4 continuous days using a Drosophila 109 

Activity Monitor (DAM2 System, TRIKinetics), in an incubator maintained at 25°C in a 12:12 110 

light:dark cycle [15]. Over the course of the experiment, we measured the activity of 872 111 

flies, with n=18-28 flies for each combination of sex and genetic background (Table S1). 112 

Raw activity data was processed using the DAM System File Scan Software [15], and the 113 

resulting data was manipulated using Microsoft Excel. We analysed fly activity data using 114 

three metrics: total locomotor activity, proportion of time spent asleep and the average 115 

activity when awake, as described previously [20]. A more detailed description of the 116 

experimental setup and analysis can be found in electronic supplementary material. 117 
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 118 

Statistical Analysis 119 

We tested if differences in locomotor activity and social aggregation could be attributed 120 

to fly genetic background or sex using Generalized Linear Models (GLMs). Models used a 121 

full factorial 3-way interaction between infection status (control/infected), sex 122 

(male/female) and DGRP line (10 lines), all modelled as fixed effects.  Analysis of social 123 

aggregation used a model listing only the median nearest neighbour distance of each dish 124 

as its response variable. To assess locomotor activity, we analysed 3 response variables in 125 

separate GLMs (total activity, proportion of time asleep, awake activity), adjusting the 126 

significance threshold to 0.01667 using Bonferroni correction to account for multiple-127 

testing. All statistical analyses and graphics were carried out and produced in R 3.3.0 [31] 128 

using the ggplot2 [32] and lme4 [33] packages.  129 
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Results 130 

Social aggregation 131 

We found a significant effect of genetic background on the median nearest neighbour 132 

distances (NND) (Figure 1; Table 1).  We found no evidence of sexual dimorphism in social 133 

aggregation across multiple genetic backgrounds, with no significant interaction between 134 

sex and genetic background. However, we observed that while female aggregation was 135 

not affected by infection, infected males aggregated further apart from each other 136 

compared to uninfected males (Figure 1; Table 1). This increase in the NND following 137 

infection was generally observed in males, regardless their genetic background (Figure 1; 138 

Table 1). We also detected an expected sexual dimorphism in body size, as female D. 139 

melanogaster are typically larger than males (Figure S1, Table S3). Incorporating this size 140 

difference into measures of social aggregation, by measuring body lengths between 141 

individuals did not alter the results qualitatively (Figure S2, Table S4).  142 

 143 

Locomotor activity 144 

All three parameters of total locomotor activity, the proportion of time spent asleep and 145 

the average activity when awake, were affected by a combination of sex and genetic 146 

background (Figures 2 and S3; Table 2). However, there was no detectable difference in 147 



 11 

how much infected and healthy flies moved or slept, and hence no evidence that infection 148 

impacted on any parameter of fly locomotor activity (Figures 2 and S3; Table 2).  149 

 150 

 151 

Discussion 152 

Identifying changes in host behaviour following infection is important to understand 153 

heterogeneity in disease transmission. Overall, our results indicate a significant sex 154 

difference in the effect of infection on social aggregation but no effect of infection on 155 

locomotor activity in either sex.  156 

 157 

We observed that how closely flies aggregate with one another differs with their genetic 158 

background. The genetic variation we observed is similar to other studies that have 159 

measured nearest neighbour distance [10], as well as other aspects of Drosophila social 160 

behaviour, such as group size preference [9] and group composition [34]. Group 161 

composition is affected by the natural foraging gene polymorphism, where larvae are either 162 

sitters, which aggregate toward conspecifics at food sources or rovers, who are more prone 163 

to independent food searching behaviour. Larger groups of larvae on food patches are 164 

more likely to be comprised of sitters, as rovers leave food patches after overcrowding 165 
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[34]. Genetic components of social behaviour have also been identified in a number of 166 

mammal species, including humans [35]. In a number of vole species, variation in oxytocin 167 

[36] and arginine vasopressin [37] receptor density is associated with between-species 168 

variation in pair-bonding and monogamy.  169 

 170 

While aggregation between healthy males and females did not differ, once infected, males 171 

moved further apart from one another, while female aggregation did not change. One 172 

possible explanation for why males aggregate further apart following infection is a sex 173 

difference in immunity and the costs of social aggregation [38]. Sexually dimorphic 174 

immunity may be particularly relevant as male D. melanogaster exhibit a stereotyped suite 175 

of aggressive behaviours [39–41]. While fighting can gain males access to valuable 176 

resources, it often incurs substantial costs [42,43]. DCV infection could exacerbate the cost 177 

of male aggregation, as resources would also need to be spent on fighting infection, which 178 

could lead to males aggregating less. Despite females also fighting one another, this 179 

aggression is generally less costly [44,45]. Females may therefore still be able to aggregate 180 

relatively closely while fighting DCV infection. 181 

 182 
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Irrespective of the metric used, we found no measurable effect of DCV infection on 183 

locomotor activity. Other work has shown decreases in Drosophila daily movement 184 

following injection with DCV, where a marked reduction is seen after 4 days of infection 185 

[21]. Reduced daily locomotor activity has also been observed in Drosophila after 3 days 186 

of infection with the DNA virus Kalithea virus [46]. Injecting, rather than pricking, flies with 187 

viral suspension, allows more precise control of infectious dosage, which could also 188 

increase infection severity [47]. Another potential explanation is that we infected flies via 189 

thoracic pricking, as opposed to abdominal injection which has been shown to reduce 190 

resistance to infection in Drosophila [48]. The injury produced by thoracic pricking may 191 

obscure subtler changes to activity produced by DCV infection. Orally infecting flies shows 192 

a range of sex-specific behavioural symptoms, with sub-lethal doses reducing daily 193 

locomotor activity in males after 3-6 days of infection [22]. Conversely, following oral 194 

infection with larger doses of DCV, females, but not males, have been shown to sleep 195 

more [20]. These studies suggest we may not have seen an effect of DCV infection on 196 

activity, because infections were not severe enough to elicit behavioural symptoms. 197 

Measuring the activity of flies later in infection might address these explanations, as this 198 

will enable flies to heal from thoracic injury and accrue a greater viral burden. 199 

 200 
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We measured social aggregation in groups of individuals composed of the same genetic 201 

background, sex and infection status in order to dissect their influence on social 202 

aggregation. However, in more heterogenous wild populations these characteristics can 203 

produce population structure that could affect contact between individuals. Individuals 204 

with shared genotypes can be more likely to interact due to predispositions to traits such 205 

as group size preference [34,49] and aggression [50]. Similarly, sexual interactions between 206 

males and females, as well as fighting and other forms of sexual competition, further alter 207 

contact networks within populations [51,52]. When present together, healthy hosts might 208 

also be able to avoid infected conspecifics by detecting the pathogen or cues of its 209 

pathology [53]. Future work aiming to characterise the influence of these sources of 210 

variation on heterogeneity in contact rate should consider how they change with, and are 211 

changed by, population structure.  212 

 213 

The contrasting ways social aggregation and locomotor activity change following infection 214 

highlight the complexity of sources determining between-individual variation in disease 215 

transmission. This is complicated further by sex differences across and within these genetic 216 

backgrounds. The change induced by DCV infection on social aggregation but not 217 

locomotor activity also demonstrates the importance of considering multiple host 218 
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behaviours. Central to understanding the effect of this genetic and sex-specific variation 219 

in social aggregation and locomotor activity on heterogeneity in disease transmission is 220 

characterising their effect on contact rates. Additionally, future work should consider how 221 

these traits interact with other key determinants of transmission, such as infectiousness 222 

and infection duration, as these three components ultimately define disease transmission 223 

in conjunction with one another. 224 
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Figure 1 – Mean±SE median nearest neighbour distance (NND) in millimetres (mm). (a) 252 

Uninfected female-only arenas shown in blue, and infected female-only bars in pale blue. 253 

(b) Uninfected male-only arenas are shown in red, and infected male-only arenas in pink. 254 

The x-axis of both panels is ordered from the lowest to highest mean median NND of 255 

female flies. 256 

 257 

 258 

Figure 2 – Mean±SE (A) total locomotor activity, (B) proportion of time flies spent 259 

sleeping and (C) mean activity while flies were awake, during the first 96 hours following 260 

DCV infection. Across all panels, sex and infection status are represented by colour with 261 

uninfected females shown in blue, infected females in pale blue, uninfected males in red, 262 

and infected males in pink. The order of genetic backgrounds on the x-axis of each of 263 

panel follows the ascending order of female flies.  264 
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Tables 265 

Response Predictor Df F p 

Median NND 

Genetic Background 9 5.0249 <0.0001*** 

Sex 1 2.7870 0.13 

Infection 1 21.1301 <0.0001*** 

Genetic Background 

 Sex 
9 1.4112 0.19 

Genetic Background 

 Infection 
9 0.9654 0.49 

Sex  Infection 1 19.6600 <0.0001*** 

Genetic Background 

 Sex  Infection 
9 1.6729 0.12 

 266 

Table 1 - Model outputs for statistical tests performed on social aggregation, testing the 267 

causes of variation in sociality in males and females of 10 D. melanogaster genetic 268 

backgrounds. Significant predictors are marked with asterisks (p<0.05=*, p<0.01=** and 269 

p<0.001=***). 270 

  271 
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Response Predictor Df F p 

Total Activity 

Genetic Background 9 14.83 <0.0001*** 

Sex 1 1.537 0.21 

Infection 1 0.117 0.73 

Genetic Background  Sex 9 3.0485 0.0013* 

Genetic Background  

Infection 
9 1.4125 0.18 

Sex  Infection 1 3.9707 0.047 

Genetic Background  Sex 

 Infection 
9 1.9471 0.043 

Proportion of Time 

Spent Asleep 

Genetic Background 9 25.1759 <0.0001*** 

Sex 1 77.9823 <0.0001*** 

Infection 1 0.6939 0.41 

Genetic Background  Sex 9 3.444 <0.001** 

Genetic Background  

Infection 
9 0.8021 0.61 

Sex  Infection 1 0.7513 0.39 

Genetic Background  Sex 

 Infection 
9 1.4612 0.16 

Awake Activity 

Genetic Background 9 8.1673 <0.0001*** 

Sex 1 0.6641 0.54 

Infection 1 0.0008 0.86 

Genetic Background  Sex 9 5.2153 0.0013* 

Genetic Background  

Infection 
9 0.8716 0.58 

Sex  Infection 1 0.8430 0.44 

Genetic Background  Sex 

 Infection 
9 1.2998 0.61 
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 272 

Table 2 – Model outputs for statistical tests performed on host activity data, testing the 273 

causes of variation in locomotor activity, sleep patterns and average awake activity in males 274 

and females of 10 D. melanogaster genetic backgrounds. Significance thresholds are 275 

corrected for multiple testing using Bonferroni correction, with significant predictors are 276 

marked with asterisks (p<0.01667=*, p<0.001=** and p<0.0001=***).  277 
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