

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Age vectors vs. axes of intraspeaker variation for North American and Scottish English vowel formants

Citation for published version:

Mielke, J, Fruehwald, J, Thomas, E, McAulliffe, M, Sonderegger, M & Dodsworth, R 2018, 'Age vectors vs. axes of intraspeaker variation for North American and Scottish English vowel formants' Paper presented at New Ways of Analyzing Variation 47, New York City, United States, 19/10/18 - 21/07/19, .

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Other version

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

There is a large and ever growing collections of annotated speech data, improving automated analysis techniques, and a cultural shift towards greater data sharing.

But...

- These corpora are not all formatted in the same way.
- Many collections cannot ethically allow the raw audio to be shared.
- Even for the solo researcher, data structuring feels like reinventing the wheel every time.
- Lacking a common corpus analysis framework can make comparability across research groups challenging.

Vowels

It has been suggested that when a vowel is involved in a phonetic change in a speech community, this will be reflected in individuals' phonetic distributions, as they will spread out along the same axis as the change (Labov 1994).

Let's see if it pans out. We'll look at the "axis of variation" of speakers' vowel distributions.

Vowels

- The vowel formant data was extracted using a FAVE-like system.
 - Dialect specific initial prototypes based on hand measurements.
 - F1, F2 and F3 chosen from all formants at 5 candidate pole settings.
 - Speaker-specific re-estimation, iterating until results were identical between iterations.
 - Measured at 1/3 of duration.
- We only used words where there is shared lexical incidence across the varieties examined (Unisyn).

Vowels					
Corpus	ICECAN	Buckeye	SOTC	SCOTS	
Dialect	Canada	Columbus	Glasgow	Scotland	
N Vowels	11.6k	115.3k	105k	87.1k	
Corpus	Raleigh	Santa Ba	rbara		
Dialect	Raleigh	West N	Northern Cit	ies	
N Vowels	162.8k	16.9k	6.	1k	

Why these axes?

For most vowels, the axis of variation is vertical. This could be understood in terms of variation in jaw opening.

The fact that GOOSE (and sometimes FLEECE) are more horizontally angled requires more investigation.

Conclusion

Weak evidence for individuals reflecting the trajectory of change within their own phonetic distributions. For the most part, their axis and spread seem to be a product of where in the vowel space they are located.

But, there is some evidence of dialect specificity with respect to both angle and spread.

Conclusion

A unified corpus analysis strategy, in combination with utilizing proper database methods, can help us investigate open conjectures about sound change.

Corpora Citations

Buckeye	Pitt, Mark A., Laura Dilley, Keith Johnson, Scott Kiesling, William Raymond, Elizabeth Hume, and Eric Fosler-Lussier. 2007. Buckeye Corpus of conversational speech (2nd release) [www.buckeyecorpus.osu.edu]. Columbus, OH.
ICECAN	Greenbaum, S., and G. Nelson. 1996. The international corpus of English (ICE) project. World Englishes 15:3–15.
Raleigh	Dodsworth, Robin, and Mary Kohn. 2012. Urban rejection of the vernacular: The SVS undone. Language Variation and Change 24:221–245.
Santa Barbara	Du Bois, J. W., W. L. Chafe, C. Meyer, S. A. Thompson, and N. Martey. 2000. Santa Barbara Corpus of Spoken American English. <i>Linguistic Data Consortium</i> CD-ROM.
SOTC	Stuart-Smith, Jane. 2014. Fine phonetic variation and sound change: A real-time study of Glaswegian. Final Report: RPG-142 (Sounds of the City).
SCOTS	Anderson, J., D. Beavan, and C. Kay. 2007. SCOTS: Scottish corpus of texts and speech. In <i>Creating and digitizing language corpora</i> , 17–34. Palgrave Macmillan UK.

