

Edinburgh Research Explorer

Explicit Auditing

Citation for published version:
Ricciotti, W & Cheney, J 2018, Explicit Auditing. in B Fischer & T Uustalu (eds), International Colloquium on
Theoretical Aspects of Computing. Lecture Notes in Computer Science, vol. 11187, Springer, Cham, pp.
376-395, 15th International Colloquium on Theoretical Aspects of Computing, Stellenbosch, South Africa,
12/10/18. https://doi.org/10.1007/978-3-030-02508-3_20

Digital Object Identifier (DOI):
10.1007/978-3-030-02508-3_20

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Colloquium on Theoretical Aspects of Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Sep. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/227721176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-02508-3_20
https://www.research.ed.ac.uk/portal/en/publications/explicit-auditing(4c662dc7-3f3a-4335-981e-956a470f2813).html

ar
X

iv
:1

80
8.

00
48

6v
1

 [
cs

.L
O

]
 1

 A
ug

 2
01

8

Explicit Auditing

Wilmer Ricciotti and James Cheney

LFCS, University of Edinburgh
research@wilmer-ricciotti.net

jcheney@inf.ed.ac.uk

Abstract. The Calculus of Audited Units (CAU) is a typed lambda cal-
culus resulting from a computational interpretation of Artemov’s Justifi-
cation Logic under the Curry-Howard isomorphism; it extends the simply
typed lambda calculus by providing audited types, inhabited by expres-
sions carrying a trail of their past computation history. Unlike most other
auditing techniques, CAU allows the inspection of trails at runtime as a
first-class operation, with applications in security, debugging, and trans-
parency of scientific computation.
An efficient implementation of CAU is challenging: not only do the sizes
of trails grow rapidly, but they also need to be normalized after every beta
reduction. In this paper, we study how to reduce terms more efficiently in
an untyped variant of CAU by means of explicit substitutions and explicit
auditing operations, finally deriving a call-by-value abstract machine.

1 Introduction

Transparency is an increasing concern in computer systems: for complex systems,
whose desired behavior may be difficult to formally specify, auditing is an impor-
tant complement to traditional techniques for verification and static analysis for
security [2,6,12,27,19,16], program slicing [22,26], and provenance [21,24]. How-
ever, formal foundations of auditing as a programming language primitive are
not yet well-established: most approaches view auditing as an extra-linguistic
operation, rather than a first-class construct. Recently, however, Bavera and
Bonelli [14] introduced a calculus in which recording and analyzing audit trails
are first-class operations. They proposed a λ-calculus based on a Curry-Howard
correspondence with Justification Logic [9,10,8,7] called calculus of audited units,
or CAU. In recent work, we developed a simplified form of CAU and proved
strong normalization [25].

The type system of CAU is based on modal logic, following Pfenning and
Davies [23]: it provides a type JsKA of audited units, where s is “evidence”, or
the expression that was evaluated to produce the result of type A. Expressions
of this type !qM contain a value of type A along with a “trail” q explaining
how M was obtained by evaluating s. Trails are essentially (skeletons of) proofs
of reduction of terms, which can be inspected by structural recursion using a
special language construct.

To date, most work on foundations of auditing has focused on design, se-
mantics, and correctness properties, and relatively little attention has been paid

http://arxiv.org/abs/1808.00486v1

2 W. Ricciotti and J. Cheney

to efficient execution, while most work on auditing systems has neglected these
foundational aspects. Some work on tracing and slicing has investigated the use
of “lazy” tracing [22]; however, to the best of our knowledge there is no prior
work on how to efficiently evaluate a language such as CAU in which auditing
is a built-in operation. This is the problem studied in this paper.

A näıve approach to implementing the semantics of CAU as given by Bavera
and Bonelli runs immediately into the following problem: a CAU reduction first
performs a principal contraction (e.g. beta reduction), which typically introduces
a local trail annotation describing the reduction, that can block further beta-
reductions. The local trail annotations are then moved up to the nearest enclosing
audited unit constructor using one or more permutation reductions. For example:

!qF [(λx.M) N]
β
−−→ !qF [β ⊲ M {N/x}]

τ
−−−։ !t(q,Q[β])F [M {N/x}]

where F [] is a bang-free evaluation context and Q[β] is a subtrail that indicates
where in context F the β-step was performed. As the size of the term being
executed (and distance between an audited unit constructor and the redexes)
grows, this evaluation strategy slows down quadratically in the worst case; ea-
gerly materializing the traces likewise imposes additional storage cost.

While some computational overhead seems inevitable to accommodate au-
diting, both of these costs can in principle be mitigated. Trail permutations are
computationally expensive and can often be delayed without any impact on the
final outcome. Pushing trails to the closest outer bang does not serve any real
purpose: it would be more efficient to keep the trail where it was created and
perform normalization only if and when the trail must be inspected (and this
operation does not even actually require an actual pushout of trails, because we
can reuse term structure to compute the trail structure on-the-fly).

This situation has a well-studied analogue: in the λ-calculus, it is not nec-
essarily efficient to eagerly perform all substitutions as soon as a β-reduction
happens. Instead, calculi of explicit substitutions such as Abadi et al.’s λσ [1]
have been developed in which substitutions are explicitly tracked and rewritten.
Explicit substitution calculi have been studied extensively as a bridge between
the declarative rewriting rules of λ-calculi and efficient implementations. Inspired
by this work, we hypothesize that calculi with auditing can be implemented more
efficiently by delaying the operations of trail extraction and erasure, using ex-
plicit symbolic representations for these operations instead of performing them
eagerly.

Particular care must be placed in making sure that the trails we produce still
correctly describe the order in which operations were actually performed (e.g.
respecting call-by-name or call-by-value reduction): when we perform a princi-
pal contraction, pre-existing trail annotations must be recorded as history that
happened before the contraction, and not after. In the original eager reduction
style, this is trivial because we never contract terms containing trails; however,
we will show that, thanks to the explicit trail operations, correctness can be
achieved even when adopting a lazy normalization of trails. Accordingly, we will

Explicit Auditing 3

introduce explicit terms for delayed trail erasure ⌊M⌋ and delayed trail extrac-

tion ⌈M⌉. We can use these features to decrease the cost of normalization: for
instance, the β-reduction above can be replaced by a rule with delayed treatment
of substitution and trails, denoted by Beta:

F [(λ.M) N]
Beta
−−−−→

!qF [t(app(lam(⌈M⌉), ⌈N⌉),β) ⊲ ⌊M⌋ [⌊N⌋]]

Here, we use de Bruijn notation [15] (as in λσ, and anticipating Sections 3
and 4), and write M [N] for the explicit substitution of N for the outermost
bound variable of λ.M . The trail constructor t stands for transitive composi-
tion of trails, while app and lam are congruence rules on trails, so the trail
t(app(lam(⌈M⌉), ⌈N⌉),β) says that the redex’s trail is constructed by extract-
ing the latent trail information from M and N , combining it appropriately, and
then performing a β step. The usual contractum itself is obtained by substitut-
ing the erased argument ⌊N⌋ into the erased function body ⌊M⌋. Although this
may look a bit more verbose than the earlier beta-reduction, the additional work
done to create the trail t(app(lam(⌈M⌉), ⌈N⌉),β) is all work that would have
been done anyway using the eager system, while the use of lazy trail-extraction
and trail-erasure operations gives us many more ways to do the remaining work
efficiently — for example, if the trail is never subsequently used, we can just
discard it without doing any more work.

Contributions We study an extension of Abadi et al.’s calculus λσ [1] with ex-
plicit auditing operations. We consider a simplified, untyped variant CAU−

of the Calculus of Audited Units (Section 2); this simplifies our presentation
because type information is not needed during execution. We revisit λσ in Sec-
tion 3, extend it to include auditing and trail inspection features, and discuss
problems with this initial, näıve approach. We address these problems by de-
veloping a new calculus CAU−

σ with explicit versions of the “trail extraction”
and “trail erasure” operations (Section 4), and we show that it correctly refines
CAU− (subject to an obvious translation). In Section 5, we build on CAU−

σ to
define an abstract machine for audited computation and prove its correctness.
Details of the proofs are included in the appendix.

2 The Untyped Calculus of Audited Units

The language CAU− presented here is an untyped version of the calculi λh [14]
and Ricciotti and Cheney’s λhc [25] obtained by erasing all typing information
and a few other related technicalities: this will allow us to address all the in-
teresting issues related to the reduction of CAU terms, but with a much less
pedantic syntax. To help us explain the details of the calculus, we adapt some
examples from our previous paper [25]; other examples are described by Bavera
and Bonelli [14].

Unlike the typed variant of the calculus, we only need one sort of variables,
denoted by the letters x, y, z The syntax of CAU− is as follows:

4 W. Ricciotti and J. Cheney

Terms M,N ::= x | λx.M |M N | let!(x := M,N) | !qM | q ⊲ M | ι(ϑ)
Trails q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q

′) | tb(ζ)

CAU− extends the pure lambda calculus with audited units !qM (colloqui-
ally, “bang M”), whose purpose is to decorate the term M with a log q of its
computation history, called trail in our terminology: when M evolves as a result
of computation, q will be updated by adding information about the reduction
rules that have been applied. The form !qM is in general not intended for use
in source programs: instead, we will write ! M for !rM , where r represents the
empty execution history (reflexivity trail).

Audited units can then be employed in larger terms by means of the “let-
bang” operator, which unpacks an audited unit and thus allows us to access
its contents. The variable declared by a let! is bound in its second argument: in
essence let!(x := !qM,N) will reduce to N , where free occurrences of x have been
replaced by M ; the trail q will not be discarded, but will be used to produce a
new trail explaining this reduction.

The expression form q ⊲ M is an auxiliary, intermediate annotation of M
with partial history information which is produced during execution and will
eventually stored in the closest surrounding bang.

Example 1. In CAU− we can express history-carrying terms explicitly: for in-
stance, if we use n̄ to denote the Church encoding of a natural number n, and
plus or fact for lambda terms computing addition and factorial on said repre-
sentation, we can write audited units like

!q2̄ !q′ 6̄

where q is a trail representing the history of 2̄ i.e., for instance, a witness for the
computation that produced 2̄ by reducing plus 1̄ 1̄; likewise, q′ might describe
how computing fact 3̄ produced 6̄. Supposing we wish to add these two numbers
together, at the same time retaining their history, we will use the let! construct
to look inside them:

let!(x := !q 2̄, let!(y := !q′ 6̄, plus x y)) −−։ q′′ ⊲ 8̄

where the final trail q′′ is produced by composing q and q′; if this reduction
happens inside an external bang, q′′ will eventually be captured by it.

Trails, representing sequences of reduction steps, encode the (possibly partial)
computation history of a given subterm. The main building blocks of trails are
β (representing standard beta reduction), β! (contraction of a let-bang redex)
and ti (denoting the execution of a trail inspection). For every class of terms
we have a corresponding congruence trail (lam, app, let!, tb, the last of which
is associated with trail inspections), with the only exception of bangs, which do
not need a congruence rule because they capture all the computation happening
inside them. The syntax of trails is completed by reflexivity r (representing a
null computation history, i.e. a term that has not reduced yet) and transitivity
t (i.e. sequential composition of execution steps). As discussed by our earlier
paper [25], we omit Bavera and Bonelli’s symmetry trail form.

Explicit Auditing 5

Example 2. We build a pair of natural numbers using Church’s encoding:

! ((λx, y, p.p x y) 2) 6 −→ !t(r,app(β,r)) (λy, p.p 2 y) 6

−→ !t(t(r,app(β,r)),β) λp.p 2 6

The trail for the first computation step is obtained by transitivity (trail con-
structor t) from the original trivial trail (r, i.e. reflexivity) composed with β,
which describes the reduction of the applied lambda: this subtrail is wrapped in
a congruence app because the reduction takes place deep inside the left-hand
subterm of an application (the other argument of app is reflexivity, because no
reduction takes place in the right-hand subterm).

The second beta-reduction happens at the top level and is thus not wrapped
in a congruence. It is combined with the previous trail by means of transitivity.

The last term form ι(ϑ), called trail inspection, will perform primitive recur-
sion on the computation history of the current audited unit. The metavariables
ϑ and ζ associated with trail inspections are trail replacements, i.e. maps asso-
ciating to each possible trail constructor, respectively, a term or a trail:

ϑ ::={M1/r,M2/t,M3/β,M4/β!,M5/ti,M6/lam,M7/app,M8/let!,M9/tb}

ζ ::={q1/r, q2/t, q3/β, q4/β!, q5/ti, q6/lam, q7/app, q8/let!, q9/tb}

When the trail constructors are irrelevant for a certain ϑ or ζ, we will omit them,

using the notations {
−→
M} or {−→q }. These constructs represent (or describe) the

nine cases of a structural recursion operator over trails, which we write as qϑ.

Definition 1. The operation qϑ, which produces a term by structural recursion

on q applying the inspection branches ϑ, is defined as follows:

rϑ , ϑ(r) t(q, q′)ϑ , ϑ(t) (qϑ) (q′ϑ) βϑ , ϑ(β) β!ϑ , ϑ(β!)

tiϑ , ϑ(ti) lam(q)ϑ , ϑ(lam) (qϑ) tb({−→q })ϑ , ϑ(tb)
−−→
(qϑ)

app(q, q′)ϑ , ϑ(app) (qϑ) (q′ϑ) let!(q, q
′)ϑ , ϑ(let!) (qϑ) (q

′ϑ)

where the sequence
−−→
(qϑ) is obtained from −→q by pointwise recursion.

Example 3. Trail inspection can be used to count all of the contraction steps in
the history of an audited unit, by means of the following trail replacement:

ϑ+ ::={0̄/r, plus/t, 1̄/β, 1̄/β!, 1̄/ti, λx.x/lam, plus/app, plus/let!, sum/tb}

where sum is a variant of plus taking nine arguments, as required by the arity
of tb. For example, we can count the contractions in q = t(let!(β, r),β!) as:

qϑ+ = plus (plus 1̄ 0̄) 1̄

6 W. Ricciotti and J. Cheney

2.1 Reduction

Reduction in CAU− includes rules to contract the usual beta redexes (applied
lambda abstractions), “beta-bang” redexes, which unpack the bang term ap-
pearing as the definiens of a let!, and trail inspections. These rules, which we
call principal contractions, are defined as follows:

(λx.M) N
β
−−→ β ⊲ M {N/x} let!(x := !qM,N)

β
−−→ β! ⊲ N {q ⊲ M/x}

!qF [ι(ϑ)]
β
−−→ !qF [ti ⊲ qϑ]

Substitution M {N/x} is defined in the traditional way, avoiding variable cap-
ture. The first contraction is familiar, except for the fact that the reductM {N/x}
has been annotated with a β trail. The second one deals with unpacking a bang:
from !qM we obtain q ⊲ M , which is then substituted for x in the target term N ;
the resulting term is annotated with a β! trail. The third contraction defines the
result of a trail inspection ι(ϑ). Trail inspection will be contracted by captur-
ing the current history, as stored in the nearest enclosing bang, and performing
structural recursion on it according to the branches defined by ϑ. The concept of
“nearest enclosing bang” is made formal by contexts F in which the hole cannot
appear inside a bang (or bang-free contexts, for short):

F ::= � | λx.F | F M |M F | let!(F ,M) | let!(M,F) | q ⊲ F | ι({
−→
M,F ,

−→
N })

The definition of the principal contractions is completed, as usual, by a contex-
tual closure rule stating that they can appear in any context E :

E ::= � | λx.E | E M |M E | let!(E ,M) | let!(M, E) | !qE | q ⊲ E | ι({
−→
M, E ,

−→
N})

M
β
−−→ N

E [M]
β
−−→ E [N]

The principal contractions introduce local trail subterms q′ ⊲ M , which can
block other reductions. Furthermore, the rule for trail inspection assumes that
the q annotating the enclosing bang really is a complete log of the history of the
audited unit; but at the same time, it violates this invariant, because the ti trail
created after the contraction is not merged with the original history q.

For these reasons, we only want to perform principal contractions on terms
not containing local trails: after each principal contraction, we apply the follow-
ing rewrite rules, called permutation reductions, to ensure that the local trail is
moved to the nearest enclosing bang:

r ⊲ M
τ
−−→M q ⊲ (q′ ⊲ M)

τ
−−→ t(q, q′) ⊲ M

!q(q
′ ⊲ M)

τ
−−→ !t(q,q′)M λx.(q ⊲ M)

τ
−−→ lam(q) ⊲ λx.M

(q ⊲ M) N
τ
−−→ app(q, r) ⊲ M N M (q ⊲ N)

τ
−−→ app(r, q) ⊲ M N

let!(x := q ⊲ M,N)
τ
−−→ let!(q, r) ⊲ let!(x := M,N)

let!(x := M, q ⊲ N)
τ
−−→ let!(r, q) ⊲ let!(x := M,N)

ι({M1, . . . , q ⊲ Mi, . . . ,M9})
τ
−−→ tb({r, . . . , q, . . . , r}) ⊲ ι({M1, . . . ,M9})

Explicit Auditing 7

Moreover, the following rules are added to the
τ
−−→ relation to ensure confluence:

t(q, r)
τ
−−→ q t(r, q)

τ
−−→ q tb({−→r })

τ
−−→ r

app(r, r)
τ
−−→ r lam(r)

τ
−−→ r let!(r, r)

τ
−−→ r

t(t(q1, q2), q3)
τ
−−→ t(q1, t(q2, q3))

t(lam(q), lam(q′))
τ
−−→ lam(t(q, q′))

t(lam(q1), t(lam(q′1), q))
τ
−−→ t(lam(t(q1, q

′
1)), q)

t(app(q1, q2), app(q
′
1, q

′
2))

τ
−−→ app(t(q1, q

′
1), t(q2, q

′
2))

t(app(q1, q2), t(app(q
′
1, q

′
2)), q)

τ
−−→ t(app(t(q1, q

′
1), t(q2, q

′
2)), q)

t(let!(q1, q2), let!(q
′
1, q

′
2))

τ
−−→ let!(t(q1, q

′
1), t(q2, q

′
2))

t(let!(q1, q2), t(let!(q
′
1, q

′
2)), q)

τ
−−→ t(let!(t(q1, q

′
1), t(q2, q

′
2)), q)

t(tb(−→q1), tb(
−→q2))

τ
−−→ tb(

−−−−−→
t(q1, q2))

t(tb(−→q1), t(tb(
−→q2), q))

τ
−−→ t(tb(

−−−−−→
t(q1, q2)), q)

As usual,
τ
−−→ is completed by a contextual closure rule. We prove

Lemma 1 ([14]).
τ
−−→ is terminating and confluent.

When a binary relation
R
−→ on terms is terminating and confluent, we will write

R(M) for the unique R-normal form of M . Since principal contractions must
be performed on τ -normal terms, it is convenient to merge contraction and τ -

normalization in a single operation, which we will denote by
CAU−

−−−−−→:

M
β
−−→ N

M
CAU−

−−−−−→ τ(N)

Example 4. We take again the term from Example 1 and reduce the outer let!
as follows:

! let!(x := !q2, let!(y := !q′6, plus x y))
β
−−→ ! (β! ⊲ let!(y := !q′6, plus (q ⊲ 2) y))

τ
−−−։ !t(β!,let!(r,app(app(r,q),r))) let!(y := !q′6, plus 2 y)

This let!-reduction substitutes q ⊲ 2 for x; a β! trail is produced immediately
inside the bang, in the same position as the redex. Then, we τ -normalize the re-
sulting term, which results in the two trails being combined and used to annotate
the enclosing bang.

3 Näıve explicit substitutions

We seek to adapt the existing abstract machines for the efficient normalization
of lambda terms to CAU−. Generally speaking, most abstract machines act on
nameless terms, using de Bruijn’s indices [15], thus avoiding the need to perform
renaming to avoid variable capture when substituting a term into another.

8 W. Ricciotti and J. Cheney

Moreover, since a substitution M {N/x} requires to scan the whole term M
and is thus not a constant time operation, it is usually not executed immediately
in an eager way. The abstract machine actually manipulates closures, or pairs
of a term M and an environment s declaring lazy substitutions for each of the
free variables in M : this allows s to be applied in an incremental way, while
scanning the term M in search for a redex. In the λσ-calculus of Abadi et
al. [1], lazy substitutions and closures are manipulated explicitly, providing an
elegant bridge between the classical λ-calculus and its concrete implementation
in abstract machines. Their calculus expresses beta reduction as the rule

(λ.M) N −→M [N]

where λ.M is a nameless abstraction à la de Bruijn, and [N] is a (suspended) ex-
plicit substitution mapping the variable corresponding to the first dangling index
in M to N , and all the other variables to themselves. Terms in the form M [s],
representing closures, are syntactically part of λσ, as opposed to substitutions
M {N/x}, which are meta-operations that compute a term. In this section we
formulate a first attempt at adding explicit substitutions to CAU−. We will not
prove any formal result for the moment, as our purpose is to elicit the difficulties
of such a task. An immediate adaptation of λσ-like explicit substitutions yields
the following syntax:

Terms M,N ::= 1 | λ.M |M N | let!(M,N) | !qM | q ⊲ M | ι(ϑ) |M [s]
Substitutions s, t ::= 〈〉 | ↑ | s ◦ t |M · s

where 1 is the first de Bruijn index, the nameless λ binds the first free index of its
argument, and similarly the nameless let! binds the first free index of its second
argument. Substitutions include the identity (or empty) substitution 〈〉, lift ↑
(which reinterprets all free indices n as their successor n + 1), the composition
s ◦ t (equivalent to the sequencing of s and t) and finally M · s (indicating a
substitution that will replace the first free index with M , and other indices n
with their predecessor n− 1 under substitution s). Trails are unchanged.

We write M [N1 · · ·Nk] as syntactic sugar for M [N1 · · ·Nk · 〈〉]. Then, CAU−

reductions can be expressed as follows:

(λ.M) N
β
−−→ β ⊲ M [N] let!(!qM,N)

β
−−→ β! ⊲ N [q ⊲ M]

!qF [ι(ϑ)]
β
−−→ !qF [ti ⊲ qϑ]

(trail inspection, which does not use substitutions, is unchanged). The idea is
that explicit substitutions make reduction more efficient because their evalua-
tion does not need to be performed all at once, but can be delayed, partially
or completely; delayed explicit substitutions applied to the same term can be
merged, so that the term does not need to be scanned twice. The evaluation of

Explicit Auditing 9

(λ.M 1 1) (q ⊲ N)
τ

//

β

��

app(r, q) ⊲ (λ.M 1 1) N

β

��

β ⊲ (M 1 1)[q ⊲ N]

στ

��
��

app(r, q) ⊲ β ⊲ (M 1 1)[N]

στ

��
��

t(β,app(app(r, q), q)) ⊲ M N N t(app(r, q),β) ⊲ M N N

Fig. 1. Non-joinable reduction in CAU− with näıve explicit substitutions

explicit substitution can be defined by the following σ-rules:

1[〈〉]
σ
−−→ 1 〈〉 ◦ s

σ
−−→ s

1[M · s]
σ
−−→M ↑ ◦ 〈〉

σ
−−→ ↑

(λM)[s]
σ
−−→ λ(M [1 · (s ◦ ↑)]) ↑ ◦ (M · s)

σ
−−→ s

(M N)[s]
σ
−−→M [s] N [s] (M · s) ◦ t

σ
−−→M [t] · (s ◦ t)

(!qM)[s]
σ
−−→ !q(M [s]) (s1 ◦ s2) ◦ s3

σ
−−→ s1 ◦ (s2 ◦ s3)

let!(M,N)[s]
σ
−−→ let!(M,N [1 · (s ◦ ↑)]) (q ⊲ M)[s]

σ
−−→ q ⊲ (M [s])

ι({
−→
M})[s]

σ
−−→ ι({

−−→
M [s]}) M [s][t]

σ
−−→M [s ◦ t]

These rules are a relatively minor adaptation from those of λσ: as in that lan-
guage, σ-normal forms do not contain explicit substitutions, save for the case of
the index 1, which may be lifted multiple times, e.g.:

1[↑n] = 1[↑ ◦ · · · ◦ ↑
︸ ︷︷ ︸

n times

]

If we take 1[↑n] to represent the de Bruijn index n+1, as in λσ, σ-normal terms
coincide with a nameless representation of CAU−.

The σ-rules are deferrable, in that we can perform β-reductions even if a
term is not in σ-normal form. We would like to treat the τ -rules in the same
way, perhaps performing τ -normalization only before trail inspection; however,
we can see that changing the order of τ -rules destroys confluence even when β-
redexes are triggered in the same order. Consider for example the reductions in
Figure 1: performing a τ -step before the beta-reduction, as in the right branch,
yields the expected result. If instead we delay the τ -step, the trail q decorating
N is duplicated by beta reduction; furthermore, the order of q and β gets mixed
up: even though q records computation that happened (once) before β, the final
trail asserts that q happened (twice) after β.1 As expected, the two trails (and
consequently the terms they decorate) are not joinable.

The example shows that β-reduction on terms whose trails have not been
normalized is anachronistic. If we separated the trails stored in a term from the

1 Although the right branch describes an unfaithful account of history, it is still a
coherent one: we will explain this in more detail in the conclusions.

10 W. Ricciotti and J. Cheney

underlying, trail-less term, we might be able to define a catachronistic, or time-
honoring version of β-reduction. For instance, if we write ⌊M⌋ for trail-erasure
and ⌈M⌉ for the trail-extraction of a term M , catachronistic beta reduction
could be written as follows:

(λ.M) N
β
−−→ t(⌈(λ.M) N⌉ ,β) ⊲ ⌊M⌋ [⌊N⌋]

let!(!qM,N)
β
−−→ t(⌈let!(!qM,N)⌉ ,β!) ⊲ ⌊N⌋ [q ⊲ M]

!qF [ι(ϑ)]
β
−−→ !qF [ti ⊲ q′ϑ] (where q′ = τ(t(q, ⌈F [ι(ϑ)]⌉)))

Without any pretense of being formal, we can give a partial definition of trail-
erasure ⌊·⌋ and trail-extraction ⌈·⌉, which we collectively refer to as trail projec-
tions, as follows:

⌊1⌋ = 1 ⌈1⌉ = r

⌊1[↑n]⌋ = 1[↑n] ⌈1[↑n]⌉ = r

⌊λ.M⌋ = λ. ⌊M⌋ ⌈λ.M⌉ = lam(⌈M⌉)

⌊M N⌋ = ⌊M⌋ ⌊N⌋ ⌈M N⌉ = app(⌈M⌉ , ⌈N⌉)

⌊!qM⌋ = !qM ⌈!qM⌉ = r

⌊let!(M,N)⌋ = let!(⌊M⌋ , ⌊N⌋) ⌈let!(M,N)⌉ = let!(⌈M⌉ , ⌈N⌉)

⌊q ⊲ M⌋ = ⌊M⌋ ⌈q ⊲ M⌉ = t(q, ⌈M⌉)
⌊

ι({
−→
M})

⌋

= ι({
−−→
⌊M⌋})

⌈

ι({
−→
M})

⌉

= tb({
−−→
⌈M⌉})

This definition is only partial: we do not say what to do when the term contains
explicit substitutions. When computing, say, ⌈M [s]⌉, the best course of action
we can think of is to obtain the σ-normal form of M [s], which is a pure CAU−

term with no explicit substitutions, and then proceed with its trail-extraction.
But the whole approach is clumsy: trail-erasure and trail-extraction are multi-

step operations that need to scan their entire argument, even when it does not
contain any explicit substitution. We would achieve greater efficiency if they
could be broken up into sub-steps, much like we did with substitution.

Surely, to obtain this result we need a language in which terms and trails can
mention trail-erasure and trail-extraction explicitly. This is the language that
we will introduce in the next section.

4 The calculus CAU−

σ

We define the untyped Calculus of Audited Units with explicit substitutions, or
CAU−

σ , as the following extension of the syntax ofCAU− presented in Section 2:
M,N ::= 1 | λ.M |M N | let!(M,N) | !qM | q ⊲ M | ι(ϑ) |M [s] | ⌊M⌋
q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q

′) | tb(ζ) | ⌈M⌉
s, t ::= 〈〉 | ↑ |M · s | s ◦ t

CAU−
σ builds on the observations about explicit substitutions we made in

the previous section: in addition to closures M [s], it provides syntactic trail

Explicit Auditing 11

erasures denoted by ⌊M⌋; dually, the syntax of trails is extended with the explicit
trail-extraction of a term, written ⌈M⌉. In the näıve presentation, we gave a
satisfactory set of σ-rules defining the semantics of explicit substitutions, which
we keep as part of CAU−

σ . To express the semantics of explicit projections,
we provide in Figure 2 rules stating that ⌊·⌋ and ⌈·⌉ commute with most term
constructors (but not with !) and are blocked by explicit substitutions. These
rules are completed by congruence rules asserting that they can be used in any
subterm or subtrail of a given term or trail.

⌊1⌋
σ

−−→ 1 ⌈1⌉
σ

−−→ r

⌊1[↑n]⌋
σ

−−→ 1[↑n] ⌈1[↑n]⌉
σ

−−→ r

⌊λ.M⌋
σ

−−→ λ. ⌊M⌋ ⌈λ.M⌉
σ

−−→ lam(⌈M⌉)

⌊M N⌋
σ

−−→ ⌊M⌋ ⌊N⌋ ⌈M N⌉
σ

−−→ app(⌈M⌉ , ⌈N⌉)

⌊!qM⌋
σ

−−→ !qM ⌈!qM⌉
σ

−−→ r

⌊let!(M,N)⌋
σ

−−→ let!(⌊M⌋ , ⌊N⌋) ⌈let!(M,N)⌉
σ

−−→ let!(⌈M⌉ , ⌈N⌉)

⌊q ⊲ M⌋
σ

−−→ ⌊M⌋ ⌈q ⊲ M⌉
σ

−−→ t(q, ⌈M⌉)
⌊

ι({
−→
M})

⌋

σ
−−→ ι({

−−→
⌊M⌋})

⌈

ι({
−→
M})

⌉

σ
−−→ tb({

−−→
⌈M⌉})

Fig. 2. σ-reduction for explicit trail projections

The τ rules from Section 2 are added toCAU−
σ with the obvious adaptations.

We prove that σ and τ , together, yield a terminating and confluent rewriting
system.

Theorem 1. (
σ
−−→ ∪

τ
−−→) is terminating and confluent.

Proof. Tools like AProVE [17] are able to prove termination automatically. Local
confluence can be proved easily by considering all possible pairs of rules: full
confluence follows as a corollary of these two results.

4.1 Beta reduction

We replace the definition of β-reduction by the following lazy rules that use
trail-extraction and trail-erasure to ensure that the correct trails are eventually
produced:

(λ.M) N
Beta
−−−−→ t(app(lam(⌈M⌉), ⌈N⌉),β) ⊲ ⌊M⌋ [⌊N⌋]

let!(!qM,N)
Beta
−−−−→ t(let!(r, ⌈N⌉),β!) ⊲ ⌊N⌋ [q ⊲ M]

!qF [ι(ϑ)]
Beta
−−−−→ !qF [ti ⊲ q′ϑ] (where q′ = στ(t(q, ⌈F [ι(ϑ)]⌉)))

where F specifies that the reduction cannot take place within a bang, a substi-
tution, or a trail erasure:

F ::= � | λ.F | (F N) | (M F) | let!(F , N) | let!(M,F) | q ⊲ F | ι(
−→
M,F ,

−→
N) | F [s]

12 W. Ricciotti and J. Cheney

As usual, the relation is extended to inner subterms by means of congruence
rules. However, we need to be careful: we cannot reduce within a trail-erasure,
because if we did, the newly created trail would be erroneously erased:

wrong: ⌊(λ.M) N⌋
Beta
−−−−→ ⌊t(app(lam(⌈M⌉), ⌈N⌉),β) ⊲ ⌊M⌋ [⌊N⌋]⌋

σ
−−→ ⌊⌊M⌋ [⌊N⌋]⌋

correct: ⌊(λ.M) N⌋
σ
−−−։ (λ. ⌊M⌋) ⌊N⌋
Beta
−−−−→ t(app(lam(⌈⌊M⌋⌉), ⌈⌊N⌋⌉),β) ⊲ ⌊M⌋ [⌊N⌋]

This is why we express the congruence rule by means of contexts Eσ such that
holes cannot appear within erasures (the definition also employs substitution
contexts Sσ to allow reduction within substitutions):

M
Beta
−−−−→ N

Eσ[M]
Beta
−−−−→ Eσ[N]

Formally, evaluation contexts are defined as follows:

Definition 2 (evaluation context).

Eσ ::= � | λ.Eσ | (Eσ N) | (M Eσ) | let!(Eσ, N) | let!(M, Eσ) | !qEσ | q ⊲ Eσ

| ι({
−→
M, Eσ,

−→
N }) | Eσ[s] |M [Sσ]

Sσ ::= Sσ ◦ t | s ◦ Sσ | Eσ · s |M · Sσ

We denote στ -equivalence (the reflexive, symmetric, and transitive closure of
στ
−−→) by means of

στ
←−−→. As we will prove, στ -equivalent CAU−

σ terms can be
interpreted as the same CAU− term: for this reason, we define reduction in

CAU−
σ as the union of

Beta
−−−−→ and

στ
←−−→:

CAU−

σ−−−−−→ :=
Beta
−−−−→∪

στ
←−−→

4.2 Properties of the rewriting system

The main results we prove concern the relationship between CAU− and CAU−
σ :

firstly, every CAU− reduction must still be a legal reduction within CAU−
σ ; in

addition, it should be possible to interpret every CAU−
σ reduction as a CAU−

reduction over suitable στ -normal terms.

Theorem 2. If M
CAU

−

−−−−−−։ N , then M
CAU

−

σ

−−−−−−։ N .

Explicit Auditing 13

M

CAU
−

σ

zzzztt
tt
tt
tt
tt
t

CAU
−

σ

$$ $$❏
❏❏

❏❏
❏❏

❏❏
❏❏

στ

��
��

N

στ

��
��

στ (M)

CAU
−

zzzz✉✉
✉✉
✉✉
✉✉
✉

CAU
−

$$ $$■
■■

■■
■■

■■
R

στ

��
��

στ (N)

CAU
−

$$ $$❏
❏❏

❏❏
❏❏

❏❏
❏

στ (R)

CAU
−

zzzztt
tt
tt
tt
tt

S

Fig. 3. Relativized confluence for CAU−
σ .

Theorem 3. If M
CAU

−

σ

−−−−−−։ N , then στ(M)
CAU

−

−−−−−−։ στ(N).

Although CAU−
σ , just like CAU−, is not confluent (different reduction

strategies produce different trails, and trail inspection can be used to compute
on them, yielding different terms as well), the previous results allow us to use
Hardin’s interpretation technique [18] to prove a relativized confluence theorem:

Theorem 4. If M
CAU

−

σ

−−−−−−։ N and M
CAU

−

σ

−−−−−−։ R, and furthermore στ(N)
and στ(R) are joinable in CAU

−, then N and R are joinable in CAU
−
σ .

Proof. See Figure 3.

While the proof of Theorem 2 is not overly different from the similar proof for
the λσ-calculus, Theorem 3 is more interesting. The main challenge is to prove

that whenever M
Beta
−−−−→ N , we have στ(M)

CAU−

−−−−−−−։ στ(N). However, when

proceeding by induction on M
Beta
−−−−→ N , the terms στ(M) and στ(N) are too

normalized to provide us with a good enough induction hypothesis: in particular,
we would want them to be in the form q ⊲ R even when q is reflexivity. We call
terms in this quasi-normal form focused, and prove the theorem by reasoning on
them. The appendix contains the details of the proof.

5 A call-by-value abstract machine

In this section, we derive an abstract machine implementing a weak call-by-
value strategy. More precisely, the machine will consider subterms shaped like
q ⊲

⌊
M [e]

⌋
, whereM is a pureCAU− term with no explicit operators, and e is an

environment, i.e. an explicit substitution containing only values. In the tradition
of lazy abstract machines, values are closures (typically pairing a lambda and

14 W. Ricciotti and J. Cheney

an environment binding its free variables); in our case, the most natural notion
of closure also involves trail erasures and bangs:

Closures C ::=
⌊
(λM)[e]

⌋
| !qC

Values V,W ::= q ⊲ C
Environments e ::= 〈〉 | V · e

According to this definition, the most general case of closure is a telescope of
bangs, each equipped with a complete history, terminated at the innermost level
by a lambda abstraction applied to an environment and enclosed in an erasure.

!q1 · · · !qn
⌊
(λM)[e]

⌋

The environment e contains values with dangling trails, which may be captured
by bangs contained in M ; however, the erasure makes sure that none of these
trails may reach the external bangs; thus, along with giving meaning to free
variables contained in lambdas, closures serve the additional purpose of making
sure the history described by the q1, . . . , qn is complete for each bang.

The machine we describe is a variant of the SECD machine. To simplify the
description, the code and environment are not separate elements of the machine
state, but they are combined, together with a trail, as the top item of the stack.
Another major difference is that a code κ can be not only a normal term without
explicit operations, but also be a fragment of abstract syntax tree. The stack π is
a list of tuples containing a trail, a code, and an environment, and represents the
subterm currently being evaluated (the top of the stack) and the unevaluated
context, i.e. subterms whose evaluation has been deferred (the remainder of the
stack). As a pleasant side-effect of allowing fragments of the AST into the stack,
we never need to set aside the current stack into the dump: D is just a list of
values representing the evaluated context (i.e. the subterms whose evaluation
has already been completed).

Codes κ ::= M |@ | ! | let!(M) | ι
Tuples τ ::= (q|κ|e)
Stack π ::= −→τ

Dumps D ::=
−→
V

Configurations ς ::= (π,D)

The AST fragments allowed in codes include application nodes @, bang nodes
!, incomplete let bindings let!(M), and inspection nodes ι. A tuple (q|M |e) in
which the code happens to be a term can be easily interpreted as q ⊲

⌊
M [e]

⌋
;

however, tuples whose code is an AST fragment only make sense within a certain
machine state. The machine state is described by a configuration ς consisting of
a stack and a dump.

A meaningful state cannot contain just any stack and dump, but must have
a certain internal coherence, which we express by means of the two judgments
in Figure 4: in particular, the machine state must be a term configuration; this
notion is defined by the judgment ς tm, which employs a separate notion of
context configuration, described by the judgment ς ctx.

We can define the denotation of configurations by recursion on their well-
formedness judgment:

Explicit Auditing 15

(ǫ, ǫ) ctx

(π,D) ctx

((q|M |e) :: (q′|@|〈〉) :: π,D) ctx

(π,D) ctx

((q|@|〈〉) :: π, V :: D) ctx

(π,D) ctx

((q| let!(M)|e) :: π,D) ctx

(π,D) ctx

((q|!|〈〉) :: π,D) ctx

(π,D) ctx

−−−−−−−−−−−−−−→
(qi|Mi|ei)i=k+1,...,9 ::

(q′|ι|〈〉) :: π,
−−−−−−−−−→
V{j=1,...,k−1} :: D

ctx

(ǫ, V :: ǫ) tm

(π,D) ctx

((q|M |e) :: π,D) tm

(π,D) ctx

((q|@|〈〉) :: π,W :: V :: D) tm

(π,D) ctx

((q| let!(M)|e) :: π, V :: D) tm

(π,D) ctx

((q|!|〈〉) :: π, V :: D) tm

(π,D) ctx

((q|ι|〈〉) :: π,
−→
V9 :: D) ctx

Fig. 4. Term and context configurations

Definition 3.

1. The denotation of a context configuration is defined as follows:

(ǫ, ǫ) , �

((q|M |e) :: (q′|@|〈〉) :: π,D) , (π,D)[q′ ⊲ (� (q ⊲
⌊
M [e]

⌋
))]

((q|@|〈〉) :: π, V :: D) , (π,D)[q ⊲ (V �)]

((q| let!(M)|e) :: π,D) , (π,D)[q ⊲ let!(�,
⌊
M [1 · (e◦ ↑)]

⌋
)]

((q|!|〈〉) :: π,D) , (π,D)[q ⊲ !�]

(
−−−−−−→
(qi|Mi|ei) :: (q

′|ι|〈〉) :: π,
−→
Vj :: D) , (π,D)[q′ ⊲ ι(

−→
Vj ,�,

−−−−−−−−−−→
(qi ⊲

⌊
Mi[ei]

⌋
))]

where in the last line i + j + 1 = 9.

16 W. Ricciotti and J. Cheney

source 7→ target

1 (q|M N |e) :: π D (r|M|e) :: (r|N |e) :: (q|@|〈〉) :: π D

2 (q|@|〈〉) :: π (q′ ⊲ C) :: (q′′ ⊲
⌊

(λM)[e]
⌋

) :: D (q; app(q′′, q′);β|M |(r ⊲ C) · e) :: π D

3 (q|λM|e) :: π D π (q ⊲
⌊

(λM)[e]
⌋

) :: D

4 (q| let!(M,N)|e) :: π D (r|M|e) :: (q| let!(N)|e) :: π D

5 (q| let!(N)|e) :: π (q′ ⊲ !V) :: D (q; let!(q
′, r);β!; qN,e,V |N|V · e) :: π D

6 (q|!q′M|e) :: π D (q′;
⌈

M [e]
⌉

|M|e) :: (q|!|〈〉) :: π D

7 (q|!|〈〉) :: π V :: D π (q ⊲ !V) :: D

8 (q|ι(
−→
M9)|e) :: π D

−−−−−−−−−−−→
(r|Mi|e)i=1,...,9 :: (q|ι|〈〉) :: π D

9 (q|ι|〈〉) :: π
−−−−−−−−−−−−→
(qi ⊲ Ci)i=1,...,9 :: D (q; tb(−→qi); ti|Jq,−→qi,π,D |[

−−−−−→
(r ⊲ Ci)]) :: π D

10 (q|n|e) :: π D π (q ⊲ e(n)) :: D

q
N,e,V

,
⌈⌊

N [1 · (e◦ ↑)]
⌋

[V]
⌉

Jq,−→qi,π,D , I((q; tb(−→qi)), π,D)

e(n) ,

{

C if e = (q ⊲ C) · e′ and n = 1
e′(m) if e = V · e′ and n = m + 1

Fig. 5. Call-by-value abstract machine

2. The denotation of a term configuration is defined as follows:

T (ǫ, V :: ǫ) , V

T ((q|M |e) :: π,D) , (π,D)[q ⊲
⌊
M [e]

⌋
]

T ((q|@|〈〉) :: π,W :: V :: D) , (π,D)[q ⊲ (V W)]

T ((q| let!(M)|e) :: π, V :: D) , (π,D)[q ⊲ let!(V,
⌊
M [1 · (e◦ ↑)])]

⌋

T ((q|!|〈〉) :: π, V :: D) , (π,D)[q ⊲ !V]

T ((q|ι|〈〉) :: π,
−→
V9 :: D) , (π,D)[q ⊲ ι(

−→
V9)]

We see immediately that the denotation of a term configuration is a CAU−
σ

term, while that of a context configuration is a CAU−
σ context (Definition 2).

The call-by-value abstract machine for CAU− is shown in Figure 5: in this
definition we use semi-colons as a compact notation for sequences of transitivity
trails. The evaluation of a pure, closed term M , starts with an empty dump and
a stack made of a single tuple (r,M, 〈〉): this is a term configuration denoting
r ⊲

⌊
M [〈〉]

⌋
, which is στ -equivalent to M . Final states are in the form ǫ, V :: ǫ,

I(qϑ, (q
′|!|ǫ) :: π,D) =στ (qϑ)

I(qϑ, (q
′|M |e) :: (q′′|@|ǫ) :: π,D) =I((q′′;app(qϑ, q

′)), π,D)

I(qϑ, (q
′|@|〈〉) :: π, (q′′ ⊲ C) :: D) =I((q′, app(q′′, qϑ)), π,D)

I(qϑ, (q
′| let!(M)|e) :: π,D) =I((q′; let!(qϑ, r)), π,D)

I(qϑ,
−−−−−−→
(qi|Mi|ei) :: (q

′|ι|〈〉) :: π,
−−−−−−→
(qj ⊲ Cj) :: D) =I((q′; tb(−→qj , qϑ,

−→qi)), π,D)

Fig. 6. Materialization of trails for inspection

Explicit Auditing 17

which simply denotes the value V . When evaluating certain erroneous terms (e.g.
(! M) V , where function application is used on a term that is not a function),
the machine may get stuck in a non-final state; these terms are rejected by the
typed CAU. The advantage of our machine, compared to a naive evaluation
strategy, is that in our case all the principal reductions can be performed in
constant time, except for trail inspection which must examine a full trail, and
thus will always require a time proportional to the size of the trail.

Let us now examine the transition rules briefly. Rules 1-3 and 10 closely match
the “Split CEK” machine [3] (a simplified presentation of the SECD machine),
save for the use of the @ code to represent application nodes, while in the Split
CEK machine they are expressed implicitly by the stack structure.

Rule 1 evaluates an application by decomposing it, placing two new tuples on
the stack for the subterms, along with a third tuple for the application node; the
topmost trail remains at the application node level, and two reflexivity trails are
created for the subterms; the environment is propagated to the subterm tuples.

The idea is that when the machine reaches a state in which the term at
the top of the stack is a value (e.g. a lambda abstraction, as in rule 3), the
value is moved to the dump, and evaluation continues on the rest of the stack.
Thus when in rule 2 we evaluate an application node, the dump will contain
two items resulting from the evaluation of the two subterms of the application;
for the application to be meaningful, the left-hand subterm must have evaluated
to a term of the form λM , whereas the form of the right-hand subterm is not
important: the evaluation will then continue as usual on M under an extended
environment; the new trail will be obtained by combining the three trails from
the application node and its subexpressions, followed by a β trail representing
beta reduction.

The evaluation of let! works similarly to that of applications; however, a term
let!(M,N) is split intro M and let!(N) (rule 4), so that N is never evaluated
independently from the corresponding let! node. When in rule 5 we evaluate the
let!(N) node, the dump will contain a value corresponding to the evaluation ofM
(which must have resulted in a value of the form !V): we then proceed to evaluate
N in an environment extended with V ; this step corresponds to a principal
contraction, so we update the trail accordingly, by adding β!; additionally, we
need to take into account the trails from V after substitution into N : we do this
by extending the trail with

⌈⌊
N [1 · (e◦ ↑)]

⌋
[V]

⌉
.

Bangs are managed by rules 6 and 7. To evaluate !q′M , we split it into M
and a ! node, placing the corresponding tuples on top of the stack; the original
external trail q remains with the ! node, whereas the internal trail q′ is placed
in the tuple with M ; the environment e is propagated to the body of the bang
but, since it may contain trails, we need to extend q′ with the trails resulting
from substitution into M . When in rule 7 we evaluate the ! node, the top of the
dump contains the value V resulting from the evaluation of its body: we update
the dump by combining V with the bang and proceed to evaluate the rest of the
stack.

18 W. Ricciotti and J. Cheney

The evaluation of trail inspections (rules 8 and 9) follows the same principle as
that of applications, with the obvious differences due to the fact that inspections
have nine subterms. The principal contraction happens in rule 9, which assumes
that the inspection branches have been evaluated to q1 ⊲ C1, . . . , q9 ⊲ C9 and put
on the dump: at this point we have to reconstruct and normalize the inspection
trail and apply the inspection branches. To reconstruct the inspection trail, we
combine q and the −→qi into the trail for the current subterm (q; tb(−→qi)); then we
must collect the trails in the context of the current bang, which are scattered in
the stack and dump: this is performed by the auxiliary operator I of Figure 6,
defined by recursion on the well-formedness of the context configuration π,D;
the definition is partial, as it lacks the case for ǫ, ǫ, corresponding to an inspection
appearing outside all bangs: such terms are considered “inspection-locked” and
cannot be reduced. Due to the operator I, rule 9 is the only rule that cannot be
performed in constant time.
I returns a στ -normalized trail, which we need to apply to the branches

C1, . . . , C9; from the implementation point of view, this operation is analogous
to a substitution replacing the trail nodes (r, t,β, app, lam, . . .) with the respec-
tive Mi. Suppose that trails are represented as nested applications of dangling
de Bruijn indices from 1 to 9 (e.g. the trail app(r,β) can be represented as (1 2 3)
for app = 1, r = 2 and β = 3); then trail inspection reduction amounts to the
evaluation of a trail in an environment composed of the trail inspection branches.
To sum it up, rule 9 produces a state in which the current tuple contains:

– a trail (q; tb(−→qi); ti) (combining the trail of the inspection node, the trails
of the branches, and the trail ti denoting trail inspection

– the στ -reduced inspection “trail” (operationally, an open term with nine
dangling indices) which results from I((q; tb(−→qi)), π,D)

– an environment [
−−−−−→
(r ⊲ Ci)] which implements trail inspection by substituting

the inspection branches for the dangling indices in the trail.

The machine is completed by rule 10, which evaluates de Bruijn indices by
looking them up in the environment. Notice that the lookup operation e(n),
defined when the de Bruijn index n is closed by the environment e, simply
returns the n-th closure in e, but not the associated trail; the invariants of our
machine ensure that this trail is considered elsewhere (particularly in rules 5 and
6).

The following theorem states that the machine correctly implements reduc-
tion.

Theorem 5. For all valid ς, ς 7→ ς ′ implies T (ς)
CAU

−

σ

−−−−−−։ T (ς ′).

6 Conclusions and Future Directions

The calculus CAU−
σ which we introduced in this paper provides a finer-grained

view over the reduction of history-carrying terms, and proved an effective tool
in the study of the smarter evaluation techniques which we implemented in

Explicit Auditing 19

an abstract machine. CAU−
σ is not limited to the call-by-value strategy used

by our machine, and in future work we plan to further our investigation of
efficient auditing to call-by-name and call-by-need. Another intriguing direction
we are exploring is to combine our approach with recent advances in explicit
substitutions, such as the linear substitution calculus of Accattoli and Kesner [5],
and apply the distillation technique of Accattoli et al. [3]

In our discussion, we showed that the original definition of beta-reduction,
when applied to terms that are not in trail-normal form, creates temporally
unsound trails. We might wonder whether these anachronistic trails carry any
meaning: let us take, as an example, the reduction on the left branch of Figure 1:

(λ.M 1 1) (q ⊲ N) −−։ t(β, app(app(r, q), q)) ⊲ M N N

We know that q is the trace left behind by the reduction that led to N from the
original term, say R:

R −→ q ⊲ N

We can see that the anachronistic trail is actually consistent with the reduction
of (λ.M 1 1) R under a leftmost-outermost strategy:

(λ.M 1 1) R −→ β ⊲ M R R −−։ β ⊲ M (q ⊲ N) (q ⊲ N)

−−։ t(β, app(app(r, q), q)) ⊲ M N N

Under the anachronistic reduction, q acts as the witness of an original inner
redex. Through substitution within M , we get evidence that the contraction of
an inner redex can be swapped with a subsequent head reduction: this is a key
result in the proof of standardization that is usually obtained using the notion
of residual ([13], Lemma 11.4.5). Based on this remark, we conjecture that trails
might be used to provide a more insightful proof: it would thus be interesting to
see how trails relate to recent advancements in standardization ([4,11,28,20]).

Acknowledgments. Effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant number FA8655-13-
1-3006. The U.S. Government and University of Edinburgh are authorised to
reproduce and distribute reprints for their purposes notwithstanding any copy-
right notation thereon. Cheney was also supported by ERC Consolidator Grant
Skye (grant number 682315). We are grateful to James McKinna and the anony-
mous reviewers for comments.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit sub-
stitutions. J. Functional Programming 1(4), 375–416 (Oct 1991).
https://doi.org/10.1017/S0956796800000186

2. Abadi, M., Fournet, C.: Access control based on execution history. In: NDSS (2003)
3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP.

pp. 363–376. ACM (2014). https://doi.org/10.1145/2628136.2628154

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/2628136.2628154

20 W. Ricciotti and J. Cheney

4. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard
standardization theorem. In: POPL ’14. pp. 659–670. ACM (2014).
https://doi.org/10.1145/2535838.2535886

5. Accattoli, B., Kesner, D.: The structural λ-calculus. In: CSL’10/EACSL’10. pp.
381–395. Springer-Verlag (2010)

6. Amir-Mohammadian, S., Chong, S., Skalka, C.: Correct audit logging: Theory and
practice. In: POST. pp. 139–162 (2016)

7. Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
Logics in Artificial Intelligence: 11th European Conference, JELIA 2008. pp. 1–4.
Springer Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-87803-2 1

8. Artemov, S.: The logic of justification. Review of Symbolic Logic 1(4), 477–513
(2008)

9. Artëmov, S.N.: Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic 7(1), 1–36 (2001)

10. Artëmov, S.N., Bonelli, E.: The intensional lambda calculus. In: Logical Founda-
tions of Computer Science. pp. 12–25 (2007)

11. Asperti, A., Levy, J.J.: The cost of usage in the λ-calculus. In: Proceedings of
the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
pp. 293–300. LICS ’13, IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/LICS.2013.35

12. Banerjee, A., Naumann, D.A.: History-based access control and secure information
flow. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.) CAS-
SIS 2004, Revised Selected Papers. pp. 27–48. Springer Berlin Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30569-9 2

13. Barendregt, H.P.: The Lambda Calculus : its Syntax and Semantics. Studies in
logic and the foundations of mathematics, North-Holland, Amsterdam, New-York,
Oxford (1981)

14. Bavera, F., Bonelli, E.: Justification logic and audited computation. J. Logic and
Computation (2015), published online, June 19, 2015

15. de Bruijn, N.: Lambda-calculus notation with nameless dummies: a tool
for automatic formula manipulation with application to the Church-
Rosser theorem. Indagationes Mathematicae 34(5), 381–392 (1972).
https://doi.org/10.1016/1385-7258(72)90034-0

16. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, im-
plementation and applications. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011. pp. 151–162 (2011).
https://doi.org/10.1145/2046707.2046726

17. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker,
M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termi-
nation of programs automatically with AProVE. In: Demri, S., Kapur, D., Wei-
denbach, C. (eds.) IJCAR 2014, pp. 184–191. Springer International Publishing
(2014). https://doi.org/10.1007/978-3-319-08587-6 13

18. Hardin, T.: Confluence results for the pure strong categorical combinatory logic
ccl: λ-calculi as subsystems of ccl. Theoretical Computer Science 65(3) (1989)

19. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.:
Aura: a programming language for authorization and audit. In: ICFP. pp. 27–38
(2008). https://doi.org/10.1145/1411204.1411212

20. Kashima, R.: A proof of the standardization theorem in lambda-calculus. Tech.
Rep. Research Reports on Mathematical and Computing Science, Tokyo Institute
of Technology (2000)

https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1007/978-3-540-87803-2_1
https://doi.org/10.1109/LICS.2013.35
https://doi.org/10.1007/978-3-540-30569-9_2
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/2046707.2046726
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1145/1411204.1411212

Explicit Auditing 21

21. Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science 2(2–3) (2010)

22. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs that explain
their work. In: ICFP. pp. 365–376. ACM (2012)

23. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical Structures in Computer Science 11(4), 511–540 (2001)

24. Ricciotti, W.: A core calculus for provenance inspection. In: PPDP ’17. pp. 187–
198. ACM (2017). https://doi.org/10.1145/3131851.3131871

25. Ricciotti, W., Cheney, J.: Strongly Normalizing Audited Computation. In:
Goranko, V., Dam, M. (eds.) CSL 2017. Leibniz International Proceedings in In-
formatics (LIPIcs), vol. 82, pp. 36:1–36:21. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2017). https://doi.org/10.4230/LIPIcs.CSL.2017.36

26. Ricciotti, W., Stolarek, J., Perera, R., Cheney, J.: Imperative functional programs
that explain their work. Proc. ACM Program. Lang. 1(ICFP), 14:1–14:28 (Aug
2017). https://doi.org/10.1145/3110258

27. Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In: CSF.
pp. 177–191 (2008)

28. Xi, H.: Upper bounds for standardizations and an application. J. Symbolic Logic
64(1), 291–303 (03 1999), http://projecteuclid.org/euclid.jsl/1183745706

https://doi.org/10.1145/3131851.3131871
https://doi.org/10.4230/LIPIcs.CSL.2017.36
https://doi.org/10.1145/3110258
http://projecteuclid.org/euclid.jsl/1183745706

22 W. Ricciotti and J. Cheney

A Proofs about CAU−

σ

In this appendix, we provide more detail about the proofs mentioned in Sec-
tion 4.2. A first useful result, expressed by the following lemma, shows that
σ-normal terms coincide with the nameless variant of CAU− outlined in Sec-
tion 3:

Lemma 2. The σ-normal terms, trails and substitutions of CAU
−
σ are ex-

pressed by the following grammar:

M,N ::= 1 | 1[↑n] | λ.M |M N | let!(M,N) | !qM | q ⊲ M | ι(ϑ)
q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q

′) | tb(ζ)
s, t ::= 〈〉 | ↑n |M · s

From this result, we extract a definition of σ-normal contexts E and S:

E ::= � | λ.E | (E N) | (M E) | let!(E , N) | let!(M, E) | !qE | q ⊲ E | ι({
−→
M, E ,

−→
N})

S ::= E · s |M · S

where all the terms M,N , trails q and substitutions s appearing in these defini-
tions are σ-normal.

We define meta-level projections and focused forms, and then we prove some
theorems about them.

Definition 4. The meta-level projections TMU and VMW are defined as follows:

TMU =

{

M ′ if στ(M) = q ⊲ M ′

στ(M) else
VMW =

{

q if στ(M) = q ⊲ M ′

r else

Definition 5. The focused form of a term M , denoted by ‖M‖, is defined by:

‖M‖ = VMW ⊲ TMU

The focused form of a σ-normal substitution s =
−→
N · ↑p is defined by:

‖s‖ =
−−→
‖N‖ · ↑p

This definition is extended to all substitutions by taking ‖s‖ = ‖σ(s)‖.

Lemma 3. For all M and s, we have στ(M) = στ(‖M‖) and στ(s) = στ(‖s‖).

Lemma 4. For all M , ⌊M⌋
στ
−−−−։ TMU and ⌈M⌉

στ
−−−−։ VMW.

Proof. After unfolding the definitions, the proof is by induction on στ(M).

We also define a meta-level operation corresponding to explicit substitutions,
and prove the correspondence:

Explicit Auditing 23

Definition 6. For σ-normal M and
−→
N = N1, . . . , Nk, the meta-level substitu-

tion M
{−→
N
}

p
is defined by recursion on σ-normal terms as follows:

m
{−→
N
}

p
= Nm n

{−→
N
}

p
= n+ p

(λ.M)
{−→
N
}

p
= λ.(M

{

1,
−−−−→
lift(N)

}

p+1
) (R S)

{−→
N
}

p
= R

{−→
N
}

p
S
{−→
N
}

p

let!(R,S)
{−→
N
}

p
= let!

(

R
{−→
N
}

p
, (!qM)

{−→
N
}

p
= !q(M

{−→
N
}

p
)

S
{

1,
−−−−→
lift(N)

}

p+1

)

ι({
−→
M})

{−→
N
}

p
= ι({

−−−−−−→
M

{−→
N
}

p
})

(q ⊲ M)
{−→
N
}

p
= q ⊲ (M

{−→
N
}

p
)

where m ≤ k < p and
−−−−→
lift(N) lifts by one all of the free indices in each Ni.

We will write M
{−→
N
}

as syntactic sugar for M
{−→
N
}

0
.

Lemma 5. For all M,
−→
N in στ-normal form, M [

−→
N · ↑p]

στ
−−−−։ M

{−→
N
}

p
. In

particular, M [R]
στ
−−−−։ M {R}.

Proof. Routine induction on σ-normal forms M .

We can use meta-substitution to define β-reduction for σ-normal terms in
the same style as in CAU−, and lift it to eager β̄-reduction acting on focused
terms:

(λ.M) N
β
−−→ β ⊲ M {N} let!(!qM,N)

β
−−→ β! ⊲ N {q ⊲ M}

!qF [ι(ϑ)]
β
−−→ !qF [ti ⊲ qϑ]

M
β
−−→ N

E [M]
β
−−→ E [N]

M
β
−−→ N

S[M]
β
−−→ S[N]

M
β
−−→ N

‖M‖
β̄
−−→ ‖N‖

s
β
−−→ t

‖s‖
β̄
−−→ ‖t‖

The last two rules, defining β̄-reduction in terms of β-reduction, are not suf-
ficiently compositional for our proofs, but we can prove a version where the
premise is also a β̄-reduction:

Lemma 6. If M
β̄
−−→ N , then ‖E [M]‖

β̄
−−→ ‖E [N]‖ and ‖S[M]‖

β̄
−−→ ‖S[N]‖.

Proof. From the hypothesis M
β̄
−−→ N we obtain M ′, N ′ such that M = ‖M ′‖,

N = ‖N ′‖ and M ′ β
−−→ N ′. We proceed by induction on this reduction: in the

congruence case we obtain a context E ′ that we need to merge with E to obtain
the thesis. The substitution case follows similarly.

24 W. Ricciotti and J. Cheney

Then we prove that β-reduction can be simulated in CAU−
σ :

Lemma 7. If M
β
−−→ N , then M

Beta
−−−→

στ
−−−−։ N

Proof. By induction on the hypothesis, using Lemma 5.

Proof of Theorem 2. If M
CAU

−

−−−−−−։ N , then M
CAU

−

σ

−−−−−−։ N .

M
CAU−

−−−−−→ N implies M
β
−−→ R

τ
−−−։ τ(R) = N for some R; then M

CAU−

σ

−−−−−−−։
N is an immediate consequence of Lemma 7.

We are also interested in proving the dual statement: for every CAU−
σ Beta-

reduction there should be a CAU− reduction on the corresponding στ -normal
forms. To prove this theorem, we need a suitable version of the usual substitu-
tivity property of β-reduction, which is proved in the standard way:

Lemma 8.

If M
β
−−→M ′, then M

{−→
N
}

k

β
−−→M ′

{−→
N
}

k
.

If Ni
β
−−→ N ′

i , then M {N1 · · ·Ni−1, Ni, Ni+1 · · ·Np}k
β
−−−։

M {N1 · · ·Ni−1, N
′
i , Ni+1 · · ·Np}k.

We can now prove that Beta-reductions can be mimicked by β̄-reductions on
the corresponding focused forms:

Lemma 9. If M
Beta
−−−→ N then ‖M‖

β̄
−−−։ ‖N‖.

If s
Beta
−−−→ t then ‖s‖

β̄
−−−։ ‖t‖.

Proof. By mutual induction on the derivations of M
Beta
−−−−→ N and s

Beta
−−−−→ t.

We consider two base cases, the applied explicit substitution case, and one of
the other inductive cases (reduction in the first subterm of an application); the
remaining cases can be proved similarly.

The first base case consists of lambda-application redexes:

(λM) N
Beta
−−−−→ t(app(lam(⌈M⌉), ⌈N⌉),β) ⊲ ⌊M⌋ [⌊N⌋]

We need to prove that:

‖(λM) N‖
β̄
−−→ ‖t(app(lam(⌈M⌉), ⌈N⌉),β)) ⊲ ⌊M⌋ [⌊N⌋]‖

By confluence of στ , we rewrite the left-hand side of the thesis with a στ -
equivalent focused term:

‖(λM) N)‖ = ‖app(lam(VMW), VNW) ⊲ (λTMU) TNU‖

Now we perform a
β̄
−−→ step to obtain:

‖app(lam(VMW), VNW) ⊲ β ⊲ TMU {TNU}‖

= ‖t(app(lam(VMW), VNW),β) ⊲ TMU {TNU}‖

Explicit Auditing 25

We prove that the rhs of the thesis equals the result of the β̄-reduction:

‖t(app(lam(⌈M⌉), ⌈N⌉),β) ⊲ ⌊M⌋ [⌊N⌋]‖

= ‖t(app(lam(VMW), VNW),β) ⊲ TMU[TNU]‖

= ‖t(app(lam(VMW), VNW),β) ⊲ TMU {TNU}‖

The case of let-box redexes is similar. In CAU−
σ , we have:

let!(!qM,N)
Beta
−−−−→ t(let!(r, ⌈N⌉),β!) ⊲ ⌊N⌋ [q ⊲ M]

We need to prove that:

‖let!(!qM,N)‖
β
−−→ ‖t(let!(r, ⌈N⌉),β!) ⊲ ⌊N⌋ [q ⊲ M]‖

We rewrite the lhs of the thesis:

‖let!(!qM,N)‖ = ‖let!(r, VNW) ⊲ let!(!qM, TNU)‖

then perform a β̄-step to obtain:

‖let!(r, VNW) ⊲ β! ⊲ TNU {q ⊲ M}‖

= ‖t(let!(r, VNW),β!) ⊲ TNU {q ⊲ M}‖

= ‖t(t(let!(r, VNW),β!), VTNU {q ⊲ M}W) ⊲ TTNU {q ⊲ M}U‖

We prove that the rhs of the thesis equals the result of the β̄-reduction:

‖t(let!(r, ⌈N⌉),β!) ⊲ ⌊N⌋ [q ⊲ M]‖

= ‖t(let!(r, VNW),β!) ⊲ TNU[q ⊲ M])‖

= ‖t(let!(r, VNW),β!) ⊲ TNU {q ⊲ M}‖

= ‖t(t(let!(r, VNW),β!), VTNU {q ⊲ M}W) ⊲ TTNU {q ⊲ M}U‖

In the application case, we need to prove ‖M N‖
β̄
−−→ ‖M ′ N‖ under the

induction hypothesis that ‖M‖
β̄
−−→ ‖M ′‖. By Lemma 6 we prove

‖‖M‖ N‖
β̄
−−→ ‖‖M ′‖ N‖

which equals the thesis by substitution for στ -equivalent subterms.
For applied explicit substitution, we have the following cases:

‖M‖
β̄
−−−։ ‖M ′‖ =⇒ ‖M [s]‖

β̄
−−−։ ‖M ′[s]‖

‖s‖
β̄
−−−։ ‖s′‖ =⇒ ‖M [s]‖

β̄
−−−։ ‖M [s′]‖

They are both consequences of Lemma 8.

26 W. Ricciotti and J. Cheney

In the following results, we write
CAU−

−−−−−→ for the reduction relation in CAU−,

i.e. a
β
−−→-step followed by τ -normalization, and

CAU−

σ−−−−−→ for the full rewriting
system of CAU−

σ .

Lemma 10. If M
β̄
−−→ N then στ(M)

CAU
−

−−−−→ στ(N).

Proof. By the definition of β̄-reduction, we obtain M = ‖M ′‖ , N = ‖N ′‖ such

that M ′ β
−−→ N ′, then we prove στ(‖M ′‖) = M ′ and στ(‖N ′‖) = τ(N ′).

Lemma 11. If M
Beta
−−−→ N , then στ(M)

CAU
−

−−−−−−։ στ(N)

Proof. By Lemma 9 we get ‖M‖
β̄
−−−։ ‖N‖. By Lemma 10 and Lemma 3, we

prove the thesis.

Lemma 12. If M
στ
←−−→ N then στ(M) = στ(N)

We can finally give the proof of the main theorem.

Proof of Theorem 3. If M
CAU

−

σ

−−−−−−։ N , then στ(M)
CAU

−

−−−−−−։ στ(N).
We rewrite the hypothesis as

M
Beta
−−−−−−։

στ
←−−→

Beta
−−−−−−։

στ
←−−→ · · ·N

Then the proof is a diagram chase based on Lemma 11 and Lemma 12.

B Proofs about the abstract machine

This section is devoted to the correctness proof for the abstract machine pre-
sented in Section 5. Before proceeding to the main theorem, we need some aux-
iliary definitions and lemmas.

Definition 7. A machine state (π,D) is valid if (π,D) tm and:

– for all (q|M |e) in π, M [e] is closed and all values in e are also closed

– all values in D are closed

Lemma 13. If ς is valid and ς 7→ ς ′, then ς ′ is also valid.

Corollary 1. All reachable states are valid.

Lemma 14. Suppose n[e] is closed: then ⌊n[e]⌋
CAU

−

σ

−−−−−−։ e(n).

Lemma 15. If π,D ctx, then for all V we have π, V :: D tm and T (π, V ::
D) = π,D[V].

Explicit Auditing 27

Lemma 16. If I((q; tb(
−−−−→
qi ⊲ Ci)), π,D) is defined, then (π,D)[q ⊲ ι(

−−−−→
qi ⊲ Ci)] =

Eσ[!q∗F [q ⊲ ι(
−−−−→
qi ⊲ Ci)] and I((q; tb(

−−−−→
qi ⊲ Ci)), π,D) = στ(q∗;

⌈

F [q ⊲ ι(
−−−−→
qi ⊲ Ci)]

⌉

)

for some Eσ, F , q
∗.

Proof. By induction on the derivation of π,D ctx.

Lemma 17. The following rules are admissible:

1. (q ⊲
⌊
(λM [e])

⌋
) (q′ ⊲ C)

CAU
−

σ

−−−−−−։ app(q, q′);β ⊲
⌊
M [(r ⊲ C) · e]

⌋

2. let!(q ⊲ ! V,
⌊
N [1 · (e◦ ↑)]

⌋
)

CAU
−

σ

−−−−−−։ let!(q, r);β!;
⌈⌊
N [1 · (e◦ ↑)]

⌋
[V]

⌉
⊲

⌊
N [V · e]

⌋

3. q ⊲ ι(
−−−−→
qi ⊲ Ci)

CAU
−

σ

−−−−−−։ q; tb(−→qi); ti ⊲
⌊

I((q; tb(
−−−−→
qi ⊲ Ci)), π,D)[

−−−→
r ⊲ Ci]

⌋

Proof. By induction, also using Lemma 16 for the third rule.

We can now prove that the abstract machine is correct.

Proof of Theorem 5. For all valid ς, ς 7→ ς ′ implies T (ς)
CAU

−

σ

−−−−−−։ T (ς ′).
We proceed by cases on the transition ς 7→ ς ′, knowing that ς is valid by

hypothesis and ς ′ by Lemma 13. In rules 3, 7, 10 we also use Lemma 15 to infer
the shape of the denotation of the target state. We need to prove the following
statements:

1. (π,D)[q ⊲
⌊
(M N)[e]

⌋
]

CAU−

σ

−−−−−−−։ (π,D)[q ⊲ ((r ⊲
⌊
M [e]

⌋
) (r ⊲

⌊
N [e]

⌋
))]

2. (π,D)[q ⊲ ((q′′ ⊲
⌊
(λM)[e]

⌋
) (q′ ⊲ C))]

CAU−

σ

−−−−−−−։

(π,D)[q; app(q′′, q′);β ⊲
⌊
M [(r ⊲ C) · e]

⌋
]

3. (π,D)[q ⊲
⌊
(λM)[e]

⌋
]

CAU−

σ

−−−−−−−։ (π,D)[q ⊲
⌊
(λM)[e]

⌋
]

4. (π,D)[q ⊲ ⌊let!(M,N)[e]⌋]
CAU−

σ

−−−−−−−։

(π,D)[q ⊲ let!(r ⊲
⌊
M [e]

⌋
,
⌊
N [1 · (e◦ ↑)]

⌋
)]

5. (π,D)[q ⊲ let!(q
′ ⊲ !V,

⌊
N [1 · (e◦ ↑)]

⌋
)]

CAU−

σ

−−−−−−−։

(π,D)[q; let!(q
′, r);β!;

⌈⌊
N [1 · (e◦ ↑)]

⌋
[V]

⌉
⊲
⌊
N [V · e]

⌋
]

6. (π,D)[q ⊲
⌊
(!q′M)[e]

⌋
]

CAU−

σ

−−−−−−−։ (π,D)[q ⊲ !
q′;⌈M [e]⌉

⌊
M [e]

⌋
]

7. (π,D)[q ⊲ !V]
CAU−

σ

−−−−−−−։ (π,D)[q ⊲ !V]

8. (π,D)[q ⊲
⌊

ι(
−→
M9)[e]

⌋

]
CAU−

σ

−−−−−−−։ (π,D)[q ⊲ ι(r ⊲ ⌊M1[e]⌋ , . . . , r ⊲ ⌊M9[e]⌋)]

9. (π,D)[q ⊲ ι(
−−−−−→
(qi ⊲ Ci)i=1,...,9)]

CAU−

σ

−−−−−−−։

(π,D)[q; tb(−→qi); ti ⊲
⌊

I((q; tb(−→qi), π,D)[
−−−→
r ⊲ Ci]

⌋

]

28 W. Ricciotti and J. Cheney

10. (π,D)[q ⊲ ⌊n[e]⌋]
CAU−

σ

−−−−−−−։ (π,D)[q ⊲ e(n)]

The statements number 2, 5, and 9 follow from Lemma 17; statement 10 is im-
plied by Lemma 14; the other statements follow immediately from the definition
of

σ
−−→ and

τ
−−→.

	Explicit Auditing

