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2Facultad de Biologı́a, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria,
Morelia, 58030 Michoacán, México
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Abstract. We explore the impact of habitat fragmentation on interactions between keystone resources of

forest trees—oaks, genus Quercus (Fagaceae)—and an associated radiation of specialist cynipid gall wasps.

Habitat fragmentation is predicted to have bottom-up impacts on cynipid communities through impacts on

host plant quality (plant vigor hypothesis). We explored the bottom-up impacts on cynipid communities of

habitat fragment size, fragment edge effects and presence of isolated oaks. We quantified temporal and

spatial variation of leaves produced in the canopy to quantify plant vigor, and surveyed cynipid gall species

abundance and richness over three years using 15 permanent forest patches and 25 isolated oaks in a

fragmented oak woodland landscape in central Mexico. Cynipid gall abundance and species richness were

higher in isolated oaks and small woodland fragments than in larger ones. Cynipid abundance and species

richness were also higher along fragment edges in comparison with fragment interiors. This contrasts with

patterns observed in other taxa. In addition, host plant quality was higher in isolated trees, in smaller

fragments and along fragment edges. We therefore hypothesize that observed patterns in cynipid abundance

and species richness are driven by changes in host plant quality due to forest fragmentation. Our data

represent a baseline for longer-term monitoring of fragmentation effects at a landscape scale. Further work is

required to explore alternative potential explanations for observed patterns, including the estimation of

potential top-down impacts of fragmentation mediated by natural enemies.
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INTRODUCTION

Oaks (Quercus species) are dominant late

successional species in a wide range of habitats

and offer key environmental services (i.e., carbon

sequestration, energy production and water cycle

regulation) (Faivre-Rampant et al. 2011). Oaks

support characteristic and species-rich assem-
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blages of associated organisms, particularly
herbivorous insects (Tews et al. 2004, Tovar-
Sánchez and Oyama 2006a, b). Of these, the most
specialized include the cynipid gall wasps
(Hymenoptera: Cynipidae: Cynipinae). Each gall
wasp is specific to a single oak species or higher
taxonomic section (Nieves-Aldrey 2001, Stone et
al. 2009). For example, very few cynipids that
induce galls on white oaks (Quercus section
Quercus) also induce galls in other taxonomic
sections (e.g., red oaks, section Lobatae) (Abra-
hamson et al. 2003) and evolutionary shifts of
gall wasps between oak sections are extremely
rare (Stone et al. 2009). Cynipids are a useful
model system in examining patterns of insect
herbivore species richness and distribution due
to their species richness and host specificity
(Hayward and Stone 2005). An important feature
of some oak-cynipid systems is the ability of
some oak species to support very rich commu-
nities, providing considerable resolution for
analysis of habitat-associated changes in assem-
blage structure. Examples include Quercus turbi-
nella in North America, which supports 20
species of cynipids wasps and Quercus robur
and Quercus petraea in Europe, which support
more than 70 species (Fernandes and Price 1988,
Csóka et al. 2005). Such host plant species have
been called ‘‘super-hosts’’ (Araùjo et al. 2013).
Here, we analyze oak cynipid assemblages
associated to ‘‘super-hosts’’ species to examine
the impact of habitat fragmentation on Mexican
oak communities.

In Mexico, oak forests have been highly
fragmented because of the great economic
importance of the trees (Valencia-Ávalos and
Nixon 2004). Masera et al. (1997) have estimated
that 167,000 ha/yr of temperate forests are lost,
resulting in an annual deforestation rate of 0.64%
in Mexico. An extreme consequence of habitat
fragmentation is the isolation of individual trees,
which may then represent refuges and keystone
resources to herbivorous insects (Hanski and
Gilpin 1997, Tews et al. 2004, Manning et al. 2006,
Müller and Goßner 2007, Fischer et al. 2010).
Such isolated trees enhance the connectivity
among forest fragments and aid their regenera-
tion (Manning et al. 2006).

Specialized biotic interactions associated with
keystone resources are seriously affected by
habitat fragmentation (Tews et al. 2004, Wang

et al. 2005, Rodrı́guez-Cabal et al. 2010). Forest
fragmentation can modify the composition,
abundance and distribution of herbivores such
as gall inducing insects (Didham et al. 1996,
Chust et al. 2007, Ruiz-Guerra et al. 2010,
Kaartinen and Roselin 2011). In general, habitat
fragmentation affects herbivore diversity through
their biotic interactions (Tscharntke 1992, Did-
ham et al. 1996, Fagan et al. 1999) with natural
enemies (top-down effects) (Holt 1996, Stone et
al. 2002, Askew et al. 2013) and host plants
(bottom-up effects) (Tscharntke et al. 2002). Holt
(1996) developed models showing that higher
trophic level species such as parasitoids should
be more vulnerable to the effects of habitat
fragmentation than herbivorous insects due to
their higher requirements of energy and area in
the forest (see also Tscharntke et al. 2007). The
release of herbivores from top-down control in
habitat fragments can thus benefit local popula-
tions (Kruess and Tscharntke 1994). Gall wasp
populations are strongly influenced by top-down
effects (Stone et al. 2002), with most studies
showing high mortality through attack by
chalcid parasitoids (Moriya et al. 1989, Stone et
al. 2002, Askew et al. 2013). If top-down effects
have a strong impact on gall wasp community
structure, habitat fragments could support rela-
tively enriched gall inducer communities by
providing relatively enemy-free space.

Habitat fragmentation may also influence gall
inducer population and community dynamics
through bottom-up effects on host plant prefer-
ence (Yamasaki and Kikuzawa 2003, Ruiz-Guerra
et al. 2010) and quality. Habitat fragments
experience a suit of environmental changes,
which are even stronger along the fragment
edges (Saunders et al. 1991, Murcia 1995).
Certain plants are adapted to the conditions
provided by continuous forest (i.e., higher
humidity, lower temperature, photosynthetically
active radiation and wind speed) (Young and
Mitchell 1994, Chen et al. 1995). However,
changes in abiotic conditions due to fragmenta-
tion may be stressful for these plants (Fernandes
and Price 1988), reducing plant vigor (i.e.,
reduction in growth rate, and production of
leaves, shoots and reproductive structures) (Price
1991, Saunders et al. 1991, Prada et al. 1995).
Some studies show that gall inducing insects
prefer vigorously growing plants or plant mod-
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ules (e.g., leaves or shoots) (Price 1991, Preszler
and Price 1995, Cornelissen et al. 2008), hence, it
is expected that gall inducing insects are less
abundant or diverse in small patches if plants are
more stressed.

The effects of habitat fragmentation on popu-
lations of gall inducing insects are poorly known
(but see Chust et al. 2007) and few long-term
studies have analyzed gall inducing insect
interactions (Santos et al. 2008). Studies to date
show no consistent response of gall inducing
insects to habitat fragmentation; in some cases,
gall abundance increases with habitat fragmen-
tation (Wang et al. 2005, Chust et al. 2007), but in
others, no relationship has been found (Julião et
al. 2004, Dunley 2009). High regional species
richness of oak gall wasps, combined with ease of
sampling make gall wasps a suitable taxon for
quantifying impacts of habitat fragmentation
(Kinsey 1937, Pujade-Villar et al. 2009, Nieves-
Aldrey et al. 2012). Our study documents biotic
interactions over three years. We studied the
spatial and temporal variation of gall wasp
diversity and plant vigor across oak fragmented
populations, to quantify the importance of
fragment size, edge effects and isolated oaks on
gall abundance and diversity in a fragmented
landscape in Mexico. We hypothesize that habitat
fragmentation will have a strong impact on gall
wasp community structure, where most frag-
mented habitats will support enriched gall wasps
communities. A second hypothesis proposes that
isolated oaks represent key resources for gall
wasps, having higher richness and abundance of
gall wasps in isolated trees than in forest
fragments. Finally, we expected that plant vigor
(canopy cover) will be negatively influenced by
habitat fragmentation affecting in turn gall wasps
diversity.

METHODS

Study location
This study was conducted in the Lake Cuitzeo

basin, a hydrological unit with an area of 4026
km2 located in Michoacán state, Mexico. It is
located in the physiographic province of the
Transmexican Volcanic Belt. The basin contains
the Lake of Cuitzeo with a wetland of approx-
imately 300 km2. The basin is representative of
the environmental and socioeconomic conditions

of central Mexico and has experienced strong
fragmentation resulting in a highly fragmented
landscape forming a mosaic of scrubland, forests
(mainly pine, oak and mixed forests) and
agricultural lands (López et al. 2006). The basin
includes Morelia, the state capital of Michoacán
state, for which urban area grew six-fold between
1975 and 2000 (López et al. 2001). Land cover
and land use change analyses indicate that the
period 1986–1996 was characterized by high
rates of deforestation and forest degradation
throughout the basin (Mendoza et al. 2011) due
to strong human pressures including urban
growth, expansion of the agricultural frontier
and the removal of trees for charcoal production
(López et al. 2006, Aguilar et al. 2012, Castillo-
Santiago et al. 2013). Consequently, large contin-
uous oak populations have been reduced to a
many small patches of variable size.

Fragmentation of oak forests and selection
of sampling sites

Michoacán state has a very high deforestation
rate of approximately 1.8% per year over 18 years
(Bocco et al. 2001). Remaining oak forests in the
Lake Cuitzeo basin have previously been char-
acterized into 1241 fragments of different sizes
(López et al. 2001). We selected 15 permanent
forest fragments which were divided equally
among three size categories: (1) five small (�4 ha)
forest fragments; (2) five medium-sized (4–12 ha)
forest fragments; and (3) five large (.12 ha)
forest fragments. We also selected 25 individual
oak trees isolated by distances of at least 400 m
from surrounding forest (see Appendix: Fig. A1).
The oak species present at each sampling site are
shown in Table A1.

Study system and sampling
Cynipid gall wasps induce structurally com-

plex galls on various oak tissues (Hayward and
Stone 2005). Most oak gall wasp life cycles
involve strict alternation between two genera-
tions: a sexual generation gall develops in the
spring or early summer, while an asexual
generation develops during the summer and
autumn, usually during the same year (Stone et
al. 2002). Oak gall wasp taxonomy is problemat-
ic, and adults of the two generations are so
different morphologically that they have some-
times been described as different species, occa-
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sionally even in separate genera (Pujade-Villar et
al. 2001). Nevertheless, galls from each genera-
tion can usually be identified unambiguously on
the basis of characteristic morphology, location
on the tree and oak host taxon (Stone et al. 2002,
Stone et al. 2009).

Gall surveys were conducted monthly from
September 2007 to October 2010. At each study
site, we established two parallel 5 3 50 m
transects, one located on the fragment edge and
one in the fragment interior (average distance of
115 m from forest border). In each transect, we
recorded oak density and oak species richness. To
determine the effects of habitat fragmentation on
these measures, we used a generalized linear
model (GLM) analysis for each response variable,
using a Poisson error distribution and log link
function. An LSMeans test was used for a
posteriori comparisons (SAS 2000).

We recorded monthly cynipid gall abundance
and species richness on each individual oak tree.
Gall sampling incorporated the full height of
each canopy, through collection of three branches
from each of top, intermediate and bottom strata
of each tree, following Cuevas-Reyes et al. (2004).
We verified that each distinct gall morphology
collected was induced by a different gall wasp
taxon by rearing galls in the laboratory and
identifying the adult to genus and to morpho-
species. For ecological studies of gall inducing
insects, morphospecies has become an acceptable
substitute for species, assuming that each gall
morphospecies is unique to a particular gall
inducing insect (Stone and Schönrogge 2003,
Cuevas-Reyes et al. 2004, Cuevas-Reyes et al.
2011). Gall wasps can then be identified on the
basis of their characteristic gall morphology,
location on the oak, and oak host taxon (Abra-
hamson et al. 1998, Stone et al. 2002, Stone et al.
2009). Samples of all gall species collected are
preserved in a dry collection at the Museo
Nacional de Ciencias Naturales, Madrid (Spain)
and the Laboratorio de Ecologı́a Genética y
Molecular, CIEco, UNAM (Mexico), awaiting
formal taxonomic identification.

The surveys and analyses were separated into
spring and autumn generations on the basis of
phenology and wasp morphology to reduce
issues of non-independence associated with
having one or both generations of a single species
in the same analysis (Bailey et al. 2009). We used

a GLM to test differences in gall richness between
all oak species. To determine the effects of
fragment size and distance to the edge on gall
wasp species richness and abundance, we per-
formed a GLM. The model used a Poisson error
distribution and log link function. An LSMeans
test was used for a posteriori comparisons (SAS
2000). We also analyzed overall changes in
community composition in response to the
fragment size and isolated oaks using a permu-
tational multivariate ANOVA (Permanova; An-
derson 2005) for oak and gall wasp community
composition using species richness, McIntosh
diversity index and oak abundance or gall
abundance. To examine whether differences in
species richness of gall wasps between fragment
sizes were driven by differences in gall abun-
dance, we constructed rarefaction curves for each
fragment size and estimated cumulative species
per tree using EstimateS 9.1.0 (Colwell 2011).

Plant vigor.—Plant vigor was quantified as
numbers of leaves produced in the canopy
(Prada et al. 1995, Faria and Fernandes 2001).
This is probably an appropriate measure for gall
wasps, many of which induce their galls on these
organs or associated buds and shoots (Price 1991,
Fritz et al. 2003). In each transect, we marked the
adult trees of each species and in each survey we
classified leaf canopy cover according to the
proportion of trees in each of four production
categories: (1) 0%; (2) 1–25%; (3) 26–50% and (4)
51–100%, following Williams et al. (1997). We
used a GLM to determine the effect of fragment
size on plant vigor. The same analysis was
conducted to determine the differences in plant
vigor between transects. The analysis used a
binomial distribution and a logit link function. A
linear regression analysis was used to determine
the relationship between gall abundance and
percentage of canopy cover, for each fragment
size and isolated oaks.

RESULTS

General description of the oak-gall community
Over all fragment types (isolated oaks, small,

medium-sized and large fragments), we sampled
ten Quercus species. In total, our surveys incor-
porated 179 trees of five species in the white oak
section Quercus (Q. laeta, Q. obtusata, Q. desertico-
la, Q. magnoliifolia and Q. glaucoides) and 206 trees
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of five species in the red oak section Lobatae (Q.
castanea, Q. scythophylla, Q. candicans, Q. dyso-
phylla and Q. crassifolia). All except Q. crassifolia
hosted cynipid galls. Over three years, we
sampled a total of 5843 galls, comprising 1336
spring generation galls and 4507 autumn gener-
ation galls. We identified 105 distinct gall
morphotypes, of which 69 (65.7%) were induced
on leaves (14 spring and 55 autumn generations),
8 (7.6%) on leaf petioles (6 spring and 2 autumn
generations), 20 (19%) on stems (8 spring and 12
autumn generations), 7 (6.7%) on buds (all
autumn generation) and 1 (1%) on catkins (spring
generation).

Oaks species richness and host-plant density
Oak species richness did not differ significantly

among forest fragment size categories (v2 ¼ 0.4,
df ¼ 3, P ¼ 0.8) or between edge and internal
transects in each fragment (v2 ¼ 0.5, df ¼ 1, P ¼
0.9). Similarly, we found no differences in host
plant density among forest fragment size catego-
ries (v2 ¼ 0.04, df ¼ 3, P ¼ 0.9) or between edge
and internal transects in each fragment (v2¼ 0.08,
df¼ 1, P¼ 0.9). These results were supported by
Permanova analysis of oak communities, which
showed diversity, richness and density to be
similar between all fragments (Permanova: den-
sity: F ¼ 0.47, P ¼ 0.6; richness: F ¼ 0.8, P ¼ 0.4;
McIntosh diversity index: F ¼ 0.1, P ¼ 0.9).

Oak gall wasp diversity patterns
Oak gall wasp species richness differed among

oak species. Quercus obtusata, Q. castanea and Q.
deserticola may be considered ‘‘super-hosts’’
because they supported most of the gall species
richness (Table 1) and abundance (Table 2). Oak
gall wasp richness was significantly higher in Q.
obtusata (40 gall species), Q. deserticola (25) and Q.
castanea (33), in comparison with Q. candicans (8),
Q. scythophylla (8), Q. magnoliifolia (7), Q. glau-
coides (7), Q. dysophylla (2) and Q. laeta (2) (v2 ¼
46.1, df ¼ 8, P ¼ 0.0001).

We found a similar pattern of oak gall wasp
species richness in both gall generations (Fig. 1).
Isolated trees had higher gall wasp species
richness (spring: 2.7 6 0.3; autumn: 3.1 6 0.4)
than trees in small (spring: 1.7 6 0.2; autumn: 2 6

0.1), medium-sized (spring: 1.56 0.11; autumn: 2.1
6 0.2) and large (spring: 1.3 6 0.1; autumn: 1.58 6

0.1) forest fragments (spring: v2¼ 19.8, df¼ 3, P¼
0.0002; autumn: v2¼ 13.3, df¼ 3, P¼ 0.004). There
were no significant differences in gall species
richness between generations in each fragment
size (v2¼12.7, df¼1, P¼0.3) (Fig. 1A). Gall species
richness was higher in fragment edges (spring: 1.6
6 0.1; autumn: 1.73 6 0.08) than in fragment
interiors (spring: 1.9 6 0.16; autumn: 1.43 6 0.1)
(spring: v2¼ 16.43, df¼ 1, P¼ 0.013; autumn: v2¼
11.21, df ¼ 1, P ¼ 0.02). Both gall generations
showed similar contrasts between fragment edge
and interior (v2¼ 0.98, df¼ 1, P¼ 0.4) (Fig. 1B).

Table 1. Differences in oak gall wasp species richness in oak ‘‘super-hosts’’ species. GENMOD procedure (SAS

2000) was applied for modelling log function to each plant species. Different superscript letters after values

indicate significantly different means. Values in boldface show the maximum for each oak species and metric.

Values shown are means with 1 SE in parentheses.

Host plant Isolated trees Small fragments Medium-sized fragments Larger fragments v2 P

Q. obtusata 13.3A (60.8) 5.1B (60.9) 2.4C (60.9) 1.6C (60.7) 8.1 ,0.04
Q. castanea 12.7A (61.2) 5.2B (60.5) 3.5C (60.5) 1.1C (60.5) 28.3 ,0.001
Q. deserticola 10.8A (60.8) 4.8B (60.6) 4.1B (60.7) 1.8C (60.5) 11.9 ,0.007

Table 2. Differences in oak gall wasp abundance in oak ‘‘super-hosts’’ species. GENMOD procedure (SAS 2000)

was applied for modelling log function to each plant species. Different superscript letters after values indicate

significantly different means. Values in boldface show the maximum for each oak species and metric. Values

shown are means with 1 SE in parentheses.

Host plant Isolated trees Small fragments Medium-sized fragments Larger fragments v2 P

Q. obtusata 26.8A(64) 8.1B (61.3) 8.1B (61.3) 5.1C (61.6) 16.2 ,0.005
Q. castanea 21.3A (65) 17.1B (63.0) 5.1C (64.0) 4.9C (63.0) 21.1 ,0.0001
Q. deserticola 23.3C (69) 45.3B (66.0) 9.8C (63.0) 5.3D (67.0) 4.2 ,0.03
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Gall abundance (Fig. 2) was higher in isolated
oaks (spring: 21.39 6 25; autumn: 41.0 6 5) than
on trees in small (spring: 14.0 6 6; autumn: 7.45
6 2.6), medium-sized (spring: 7.1 6 2.0; autumn:
14.25 6 3.5) and large forest fragments (spring:
4.8 6 2.1; autumn: 7.7 6 2.6) (spring: v2 ¼ 1567,
df¼ 3, P¼ 0.0001; autumn:v2¼ 174.6, df¼ 3, P¼
0.0001). Isolated trees also showed higher abun-
dance of autumn generation than spring gener-
ation galls (v2 ¼ 9.4, df ¼ 1, P ¼ 0.003) (Fig. 2A).
As for species richness, gall abundance was
higher in fragment edges (spring: 10.77 6 1.7;
autumn: 13.19 6 1.6) than in fragment interiors
(spring: 6.6 6 2; autumn: 7.8 6 1.4) (spring: v2¼
31.6, df¼1, P¼ 0.0001; autumn: v2¼359.3, df¼1,
P ¼ 0.0001), again with no difference in pattern
between gall generations (v2¼ 5.5, df¼ 1, P¼ 0.5)
(Fig. 2B).

These results were supported by Permanova
analysis, which showed gall community diversi-

ty, abundance and richness in each generation to
be higher in isolated oaks and small fragments
than in larger forest fragments (Abundance:
spring: F ¼ 4.7, P ¼ 0.004, autumn: F ¼ 8.5, P ¼
0.001. Richness: spring: F¼ 3.2, P¼ 0.05, autumn:
F ¼ 11.3, P ¼ 0.03. McIntosh diversity index:
spring: F ¼ 6.8, P ¼ 0.01, autumn: F ¼ 11.6, P ¼
0.001). Rarefaction curves showed that the
observed differences in cumulative species rich-
ness persisted even when samples were rarefied
to similar abundances of individuals (Fig. 3).

Plant vigor
We found significant differences in oak tree

vigor (as measured by leaf canopy cover) among
fragment size classes. Leaf production was
significantly higher in isolated oaks (69.7 6 3.5)
in comparison with small (48.3 6 1.2) medium-
sized (45.9 6 1.4) and large fragments (44.1 6

1.1) (F ¼ 21.3, df ¼ 3, P ¼ 0.0001). We also found

Fig. 1. Impacts of fragment size and interior/exterior transect location on gall species richness, by generation.

(A) Effects of fragment size, including isolated oaks. (B) Comparison between interior and edge transects in each

fragment. Untransformed data are shown.
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Fig. 2. Impacts of fragment size and interior/exterior transect location on gall abundance, by generation. (A)

Effects of fragment size, including isolated oaks. (B) Comparison between interior and edge transects in each

fragment. Untransformed data are shown.

Fig. 3. Rarefaction curves plotting the number of species of gall wasps vs. the number of galls sampled.
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differences in oak organ production between the
interior and the edge of the fragments. Leaf
production was higher at fragment edges than
interiors (F¼ 10.67, df¼ 3, P¼ 0.001). Finally, we
found a positive relationship between gall
abundance and percentage of canopy cover only
for isolated trees (F¼ 37.4, R2¼ 0.61, P¼ 0.0001).
No relationship between gall abundance and
percentage of canopy cover was observed in
small fragments (F ¼ 3.2, R2 ¼ 0.12, P . 0.05),
medium-sized fragments (F¼ 4.8, R2¼ 0.04, P .

0.05) and large fragments (F¼ 2.2, R2¼ 0.06, P .

0.05).

DISCUSSION

We found that both gall wasp species richness
and abundance increased with habitat fragmen-
tation. Gall wasp species richness and abundance
were also higher along fragment edges that in the
interior. Most strikingly, isolated oaks supported
high gall wasp richness and abundance, and can
thus be seen as key resources for cynipid survival
and reproduction in a fragmented landscape
(Chust et al. 2007, Müller and Goßner 2007).

Our results are initially counterintuitive, and
contrast with the predictions of Holt’s (1996)
model and patterns observed in other herbivore
systems (e.g., Ruiz-Guerra et al. 2010). Landscape
fragmentation reduces the connectivity between
patches, diminishing richness of organisms living
in smaller patches due to higher rates of
extinction, and reducing occupancy in the most
isolated sites through low rates of recolonization
(Hanski 1999). However, the extent and spatial
scale of predicted fragmentation effects depend
not only on structural connectivity, but also on
the dispersal ability of the study species (Hanski
1999, Driscoll and Weir 2005). Species with low
dispersal ability are more severely affected by
fragmentation, and are the first to lose the ability
to recolonize as habitat fragments become
smaller and more isolated (Thomas 1995). Gall
wasps, however, include highly dispersing spe-
cies, and can spread a long way very quickly in
air currents, even across unfavourable habitats
(Hough 1951, Stone and Sunnucks 1993, Nieves-
Aldrey 1995, Schönrogge et al. 2011). In this way,
isolated oaks analyzed in our study, can promote
the persistence of different gall wasp species
along a fragmented landscape. For these reasons,

we propose that oak gall wasps may have
relatively high probability of locating isolated
habitat fragments and isolated trees (Dauber et
al. 2005). Higher frequency of encounter may
also explain the high gall wasp abundance and
richness at fragment edges in comparison with
their interiors.

Studies that have analyzed the importance of
isolated oaks on insect diversity consider them
islands because they increase the survival of
herbivore specialists (Chust et al. 2007, Müller
and Goßner 2007). In general, isolated trees are
considered keystone resources because of their
ecological importance relative to their low
abundance and the small area occupied (Man-
ning et al. 2006). In tropical and temperate
systems, isolated trees provide numerous eco-
logical functions across fragmented landscapes
(Ozanne et al. 2000, Manning et al. 2004). For
example, canopy invertebrate arthropods, birds
and mammals can all depend on isolated trees as
a food resource, shelter or nesting site (Tews et al.
2004, Manning et al. 2006). Our study found
isolated oaks to maintain the highest gall wasp
diversity, suggesting that these trees represent
keystone resources for gall wasps that contribute
to their survival and reproduction in the frag-
mented landscape of the Lake Cuitzeo basin.

Fragmentation and host plant quality
An important finding of our study is that

habitat fragmentation strongly influences host
plant quality. Host quality, in terms of abundance
of gall induction sites (leaves, and inference
associated buds and petioles), was highest in
isolated trees and in smaller forest fragments
relative to larger fragments and along fragment
edges relative to their interiors. We observed a
similar pattern, though unquantified, for oak
stems, which are also gall induction sites. We also
found a positive relationship between gall
abundance and canopy cover in isolated oaks.
These patterns in host plant quality are entirely
concordant with the observed patterns in gall
wasp abundance and species richness. Even
though we have not demonstrated the cause
and effect relationship, the patterns observed
across this set of fragments are consistent with
strong bottom-up effects of host plant quality on
cynipid wasp abundance and species richness
(Price 1991, Preszler and Price 1995). One
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possible explanation for the observed variation in
plant quality may be the effect of environmental
stress resulting from habitat fragmentation (Fer-
nandes and Price 1988). Changes in abiotic
conditions in forest fragments are particularly
pronounced at forest edges (i.e., increased solar
radiation, increased air temperature, decreased
air humidity and increased wind speed) (Young
and Mitchell 1994, Chen et al. 1995, Kapos et al.
1997). These changes could physiologically stress
arboreal species in fragmented habitats, and
cause trees to promote more frequent flowering,
fruiting (Aldrich and Hamrick 1998), leaf pro-
duction (Lovejoy et al. 1986, Sundarapandian
and Swamy 1999) and leaf shedding (Sizer and
Tanner 1999). For example, Magrach et al. (2014)
indicated that some plant species show compen-
satory responses to habitat fragmentation involv-
ing demographic effects, and changes in plant
defenses and regrowth rates. Alternatively, frag-
mentation may confer benefits; for example,
isolated trees are free of competition from
neighboring conspecifics or other species. Plant
vigor may increase after disturbance because the
timing of leaf abscission, leaf expansion and
production is altered in these environmental
conditions (Trombulak and Frissell 2000, Karban
2007).

Taken together, these host plant changes result
in a greater abundance of gall induction sites for
oak cynipids in isolated oaks, small fragments
and forest edges. In addition, gall inducing insect
radiation is expected to happen in harsh envi-
ronments (e.g., xeric conditions) (Price et al. 1998,
Cuevas-Reyes et al. 2004) since dry condition is
known to be associated with gall richness (Price
et al. 1998). Specifically, edge effect can reproduce
similar conditions to those found in more xeric
habitats (Fernandes and Price 1988) explaining
the higher gall inducing insect richness (Murcia
1995, Araùjo et al. 2011). Stressed plants can also
produce higher concentrations of chemical de-
fense (e.g., tannins) (Müller et al. 1987, Stone et
al. 2002), which decreases the frequency of other
herbivores, predators and fungi and creates an
enemy-free space for gall inducing insects (Fer-
nandes and Price 1988, Fleck and Fonseca 2007).

Therefore, habitat fragmentation can favor the
colonization and maintenance of gall inducing
insects in comparison with other insect guilds
(Ruiz-Guerra et al. 2010, Kaartinen and Roselin

2011). Some studies have shown a ‘‘crowding
effect’’ that is a relatively positive effect of
fragmentation on insect population density (De-
binski and Holt 2000). After habitat fragmenta-
tion, insect populations may disperse to adjacent
fragments, resulting in a local increase in
population density (Debinski and Holt 2000,
Grez et al. 2010) in small fragments that have a
larger edge proportion (Fagan et al. 1999, Grez et
al. 2010). Our results suggest a ‘‘crowding effect’’
of gall wasp community, in the remaining habitat
as small fragments and isolated oaks.

Two further points need to be made. First,
alternative correlated factors may have caused
the observed patterns in gall communities. For
example, habitat fragmentation may have influ-
enced cynipid diversity through top-down effects
mediated by natural enemies such as parasitoids
or lethal inquilines, which can inflict high
mortality on gall wasp populations (Stone et al.
2002). In small or isolated habitat fragments,
phytophagous insects increase population densi-
ties when they are released from top-down
control (Kruess and Tscharntke 1994, Roland
and Taylor 1997). High trophic levels such as
parasitoids are more affected by habitat frag-
mentation than herbivores (Kruess and
Tscharntke 1994, Davies et al. 2000). According
to theoretical (Holt et al. 1999) and empirical
studies (Kruess and Tscharntke 1994, Thies and
Tscharntke 1999), the main factors are that: (1)
Parasitoids are more sensitive to habitat frag-
mentation than their hosts, because they can only
colonize patches already occupied by their hosts
(Weisser 2000, van Nouhuys 2005); (2) Parasit-
oids have smaller population sizes and depend
more on recolonization processes because they
suffer more from frequent disturbances and their
populations are more likely to become extinct
(Pimm 1991, Lawton 1995, Holt et al. 1999); (3)
Habitat isolation will negatively affect parasit-
oids even on small spatial scales because they can
disperse less well than second-trophic-level
insects (Roland 1993). In this way, enemy-
imposed mortality falls in smaller or more
isolated fragments, resulting in ecological release
of oak gall wasp populations (Holt 1996, Chust et
al. 2007). If top-down forces have a strong impact
on gall wasp community structure, habitat
fragments could support relatively enriched gall
inducer communities by providing relatively
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enemy-free space. One testable explanation for
our results is that habitat fragmentation indirect-
ly affects cynipid diversity due to the decrease or
disappearance of natural enemy populations
(such as parasitoids and inquilines). Second, the
effects of habitat fragmentation on local patterns
of cynipid communities are likely to be indepen-
dent of patterns at larger regional scales (e.g.,
Cornell 1985), paralleling patterns that have been
seen in other galling herbivore communities
(Araùjo et al. 2013). It remains to be seen whether
the patterns described for gall inducers differ
from those observed in other herbivore guilds
because of specific properties of gall-associated
communities (Ruiz-Guerra et al. 2010).

Oaks species as ‘‘super-hosts’’
In the literature, there is a lack of studies

showing that oak species can support many gall
wasp species (Fernandes and Price 1988, Csóka et
al. 2005). In our study, we found that three oak
species (Quercus obtusata, Quercus castanea and
Quercus deserticola) hosted 80 oak gall wasp
species between them, which have been called
‘‘super-hosts’’ (Araùjo et al. 2013). The difference
in species richness among oak species is striking,
and the cause(s) of this variation require further
study. It remains to be seen whether high
diversity in these Mexican species reflects high
net rates of speciation by specialist lineages
associated with each oak, high rates of coloniza-
tion by independent lineages, or a combination of
both of these (Cook et al. 2002, Joy and Crespi
2007).

Given ongoing deforestation in the Lake
Cuitzeo basin, it is therefore crucial to determine
the critical fragmentation level (minimum frag-
ment size, maximum fragment separation) be-
yond which populations of component species
will collapse (Olson and Andow 2008). In
recently fragmented habitats, local diversity
may remain higher than the sustainable equilib-
rium value (supersaturation) (Boudjemadi et al.
1999), showing gradual decline in species rich-
ness with fragment age until this equilibrium is
reached (Eliason and Potter 2000, Ribas et al.
2005). Our study provides a 3-year baseline of
data collected using systematic and standardized
sampling, on which future sampling can build to
explore longer term changes in the oak gall wasp
community.

Our study shows the variety of effects that
habitat fragmentation exerts on remnant native
populations of oak gall wasp and their host
plants. We concluded that habitat fragmentation
affects gall wasp diversity and plant vigor, with
higher species richness, abundance and canopy
cover in small fragments and isolated oaks of the
Lake Cuitzeo basin, in comparison with larger
fragments. Similarly, we found a positive effect of
forest edge on gall richness and abundance and
plant vigor. Isolated oaks can be considered
keystone resources for maintaining of gall wasp
species diversity in a fragmented landscape in
Mexican temperate forests. Finally, in future
studies, it will be important to evaluate the
impact of ‘‘super-hosts’’ species in the insect
community associated in fragmented landscapes.
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113–136 in Comité Organizador del VI Congreso
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. Oak species present at each sampling site.

Size fragments Site Oak species

Smaller fragments (�4 ha) San José de las Torres Q. castanea
La Concepción Q. deserticola, Q. obtusata, Q. castanea
Jesús del Monte Q. obtusata, Q. deserticola, Q. laeta
Cuanajo Q. castanea, Q. deserticola
Autopista Q. castanea, Q. magnoliifolia

Medium-sized fragments
(4–12 ha)

Canoas Q. deserticola, Q. castanea
San José del Rincón Q. castanea, Q. deserticola
Cepamisa Q. castanea, Q. obtusata, Q. deserticola
Teremendo Q. castanea, Q. deserticola
Acuitzio Q. castanea, Q. obtusata, Q. deserticola

Continuous forests (.12 ha) Umécuaro Q. castanea, Q. glaucoides
Atécuaro Q. castanea, Q. candicans, Q. magnoliifolia
Lagunillas Q. castanea, Q. deserticola, Q. laeta
San Miguel del Monte Q. laeta, Q. crassifolia, Q. scythophylla, Q. castanea, Q. obtusata
Chiquimitio Q. castanea, Q. obtusata, Q. deserticola

Isolated oaks Isolated oaks Q. deserticola, Q. castanea, Q. obtusata, Q. magnoliifolia, Q. dysophylla

Fig. A1. Field sampling sites. The study was conducted at 15 permanent sites within the Cuitzeo basin. We

selected the study sites accord to size fragments: (1) five smaller fragments (�4 ha): San José de las Torres

(19.69745,�101.060133), La Concepción (19.70943,�101.320383), Jesús del Monte (19.6506,�101.168267), Cuanajo
(19.464917,�101.494733), Autopista (19.63082,�101.274083); (2) five medium-sized fragments (between 4 and 12

ha): Canoas (19.8593055, �101.2508333), San José del Rincón (19.867617, �100.779417), Cepamisa (19.63487,

�101.2683), Teremendo (19.74455, �101.395217), Acuitzio ( 19.498786, �101.343967); and (3) five continuous

forests (.12 ha): Umécuaro (1954872, �101.260333), Atécuaro (19.6423, �101.2012), Lagunillas (19.62823,

�101.430917), San Miguel del Monte (19.63211, �101.431752) Chiquimitio (19.76583, �101.27531).
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