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Model selection and phonological argumentation

James Kirby and Morgan Sonderegger

August 6, 2016

Abstract

Statistical and empirical methods are in widespread use in present-day phonolog-

ical research. In particular, researchers are often interested in the problem of model

selection, or determining whether or not a particular term in a model is statisti-

cally significant, in order to make a judgement about whether or not that term is

theoretically significant. If a term is not significant, it is often tempting to conclude

that it is not relevant. However, such inferences require an assessment of statistical

power, a dimension independent from significance. Assessing power is more diffi-

cult than assessing significance because it depends on factors including the true (or

expected) effect size, sample size, and degree of noise. In this paper, we provide a

non-technical introduction to the issue of power, illustrated with simulations based

on experimental investigations of incomplete neutralization, to illustrate how not all

null results are equally informative. In particular, depending on the statistical power,

a non-significant result can either be uninformative or reasonably interpreted as pro-

viding evidence for the null hypothesis.

Keywords: power, model selection, significance, null result, effect size, incom-

plete neutralization

1 Introduction

A key theme that has run through much of John Goldsmith’s work over the past 20

years is that of model selection as a guiding principle for linguistic analysis. John’s

perspective on the issue of model selection is essentially information-theoretic, sug-

gesting that linguistic analysis is, at its core, a procedure in which the linguist chooses

a model which maximizes the probability of the observed data while at the same

time minimizing the overall description length of the grammar (Goldsmith 2001a,

2001b, 2011, 2015; Goldsmith & Riggle 2012). The objective function one might seek

to optimize can of course vary, but the fundamental goal remains the same: for some
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set of data, we should seek to assess the goodness of fit between our model and the

data, and select a model that minimizes some objective function.

As statistical methods have emerged as a standard element in the modern pho-

nologist’s toolbox, the theory and practice of model selection have become increas-

ingly important—both in experimental work, where statistical methods have always

been essential, as well as in theoretical work, where experimental results are more

and more frequently being used as evidence for advancing a particular theoretical

position. In daily practice, phonologists are frequently interested in assessing the im-

portance (either in a technical or non-technical sense) of a model parameter—does

the underlying [voice] status of a German coda obstruent affect its surface realiza-

tion, say, or does word frequency play a role in how likely trisyllabic shortening is

to occur in English? This result is used to decide between different theories of the

phenomenon: for example, is it necessary for phonological representations of English

words to include information about word frequency, or can the effects of frequency be

accounted for in other ways? In practice, this often ends up meaning: are there some

factors that are found to be significant in a statistical model? As such, the issues of

choosing between alternative statistical models and interpreting model parameters

are becoming increasingly important for research on sound structure, and for linguis-

tics as a whole.

Any model selection problem has two important aspects.1 Given any pair of

(nested) models in a set of candidate models, we want to assess (1) whether or not

a particular term is justified (“is there an effect?”); and (2) the value of the term (its

effect size: “how big is the effect?”)? Both issues play into linguistic argumentation;

here we focus on the first of them, which currently plays a larger role in the practical

application of statistical methods in linguistics. (We return briefly to the second in

the conclusion.) We also focus on the case of a single term, in a model which may

contain many terms. The issue is then: given the results of an experimental study,

do we conclude based on a statistical model that there is an effect of X (which would

support Theory A) or not (which would support Theory B)?

This choice is independent of whether there is, in reality, an effect of X or not.

This means that there are two types of errors the researcher can make: falsely con-

cluding there is an effect when none exists (Type I error), or falsely concluding there

is no effect when one in fact exists (Type II error). The first is arguably more famil-

iar, and much more common in everyday statistical practice. If a term is found to be

important (e.g. assessed via a p-value being below some cutoff, such as 0.05), in the

sense of a Type I error being unlikely, then we conclude there is a significant effect,

which supports Theory A. Although it is well known that a significant p-value does

not support Theory B, in many contexts researchers are understandably tempted
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to interpret the finding that a coefficient is not significantly different from zero, be-

cause ultimately the goal is to make a choice between two theories, with potentially

important linguistic ramifications.2 Null results can in fact be interpreted, but only

by taking power (Type II error) into account, in addition to significance. Power is

less commonly covered than significance in introductory courses, and is trickier to

think about, because it depends on considerations of sample size, effect size, and

noise. Intuitively, a significant result is less likely to be found for an experiment with

a smaller sample, where the effect is small, and/or where the variance is high, even

where a true effect exists.

The purpose of this paper is to provide a brief and accessible illustration of power

analysis for a case study of phonological interest, motivated by two questions:

(Q1) What are we licensed to conclude on the basis of an individual study?

(Q2) What are we licensed to conclude from a body of studies?

2 Background

2.1 Incomplete neutralization

As a case study, we consider the issue of so-called incomplete neutralization (IN) of

word-final voicing in languages like German, Catalan, or Dutch. An example from

German is given in (1): in final position, the voicing contrast in stops is neutralized,

leading to apparent homophony between Rat ‘council’ and Rad ‘wheel’.

(1) a. Rat /Ka:t/ > [Ka:t] ‘council’, Räte [KE:t5] ‘councils’

b. Rad /Ka:d/ > [Ka:t] ‘wheel’, Räder [KE:d5] ‘wheels’

Word-final neutralization of this type has often been used as a textbook example of

an exceptionless phonological rule. Beginning in the early 1980s, however, this pic-

ture was blurred by phonetic studies claiming to show a small but significant differ-

ence in the phonetic realizations of underlyingly voiced and voiceless obstruents, usu-

ally in terms of their effect on the durations of the burst, closure, and/or preceding

vowel (e.g. Mitleb 1981; Fourakis & Iverson 1984; Port & O’Dell 1985; Port & Craw-

ford 1989; Jassem & Richter 1989; Piroth & Janker 2004; Warner et al. 2004; Warner

et al. 2006; Roettger et al. 2014). Much of the subsequent debate has been about

methodological issues (see esp. Winter & Röttger 2011; Kohler 2012), but what has

primarily captured the interest of phonologists is the implications for phonological

theory. For some researchers, the existence of IN effects, if real, has important the-

oretical ramifications, entailing a major modification to the notion of contrast to

accommodate these small but consistent differences (Braver 2013; van Oostendorp
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2008; Yu 2011), or the incorporation of a large set of (possibly speaker-dependent)

articulatory features into phonology (Port & Crawford 1989). This stands in oppo-

sition to the traditional position that phonological contrasts are amenable to discov-

ery on the basis of native speaker and/or analyst intuitions (Manaster-Ramer 1996),

and that the phonetic differences attribute to IN are the result of orthographic con-

founds, task effects, hyperarticulation, or other factors outside the purview of the

phonology. Some have gone so far as to claim that the existence of IN would pose

“a threat to phonological theory” (Port & Crawford 1989:257) requiring that the

field “rethink the whole process of collecting and evaluating claims of fact about the

phonetics and phonology of the world’s languages and dialects” (Manaster-Ramer

1996:480), suggesting that the stakes for getting the model selection right are quite

high.

Here, our focus is not on whether or not incomplete neutralization is real, or the

theoretical implications in either case. Rather, we are interested in IN as a good

example of an instance where the absence of evidence has been repeatedly inter-

preted by researchers as relevant for phonological argumentation. In the IN litera-

ture, we find studies which find statistically significant evidence for acoustically in-

complete neutralization (Port & O’Dell 1985; Port & Crawford 1989; Roettger et al.

2014) alongside those that do not (Fourakis & Iverson 1984; Jassem & Richter 1989).

What may we conclude from a single study that fails to find an effect? And, how

should we interpret a body of results, some of which find an effect, and some which

do not?

2.2 Power

Interpreting a significant result requires consideration of one hypothetical scenario:

if there were in reality no effect (the “true effect size” is zero), how likely would the

result be? Interpreting the lack of a significant effect requires the researcher to con-

sider a different hypothetical scenario: if there were a real effect of a given size, for a

dataset like this one, how likely would we be to detect it? This is statistical power,

which is conceptually independent from significance. Power is the probability of com-

mitting a Type II error (falsely concluding that there is no effect when in fact one

exists); thus, we can describe an experimental design where there is a low probability

of committing a Type II error as having high power, and one with a high probability

of committing a Type II error has having low power. Although the concept of power

is amply covered elsewhere (for a recent overview from a linguistic standpoint, see

Vasishth & Nicenboim 2016a), we give a motivating example here in the context of

IN to provide some intuition.
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Fourakis & Iverson (1984) examined production of German word-final stops for 4

speakers for 6 repetitions of 5 voiced/voiceless pairs, and found that while the mean

value of acoustic parameters for voiced and voiceless stops were in the expected di-

rection (e.g. vowel duration preceding voiced stops was 3.8 msec longer on average),

this difference was not significant (assessed via t-tests). They conclude that “...the

traditional position that German devoicing constitutes phonologically irrecoverable

merger is supported.”3 This conclusion, however, depends on how surprising it is to

have not found a real effect if it exists—the power—which is quite low in this case

(see Sec. 4.1). Why is the conclusion not surprising, and what would change this?

Intuitively, not detecting a 3.8 msec difference is less surprising than not detecting a

30 msec difference (as in e.g. English); not finding a significant result would be more

surprising with 20 subjects instead of 4; and finding the effect would be less surpris-

ing in natural versus in read speech. These three factors—the true effect size, sample

size, and the amount of noise—all affect an experiment’s power. (A further factor,

the data analysis method used, is discussed further below.)

The dependence of power on these factors is often illustrated in the context of

relatively simple examples, such as t-tests, and it is not necessarily obvious how

power analysis should proceed in the more complex scenarios in which researchers

now typically find themselves, such as nested model comparison between general-

ized linear mixed models with large numbers of interactions (see Matuschek et al.

2015; Vasishth & Nicenboim 2016a for related illustrations from the perspective of

psycholinguistics). Our aim here is to provide an illustration of power analysis in a

mixed-model setting, for a relatively simple case (one term of interest); in doing so,

we illustrate how considerations of power interact with model selection strategies,

and the impact this has on the interpretation of both single studies and bodies of

studies.

3 Methods

We proceed via a simulation study, using a dataset from a relatively high-powered

study of IN in German where a significant effect was found. We use the results of

this study to simulate datasets where two factors are varied—the sample size, the

true effect size—while holding all others constant; we also vary the criterion used

to decide if there is IN. By doing so, we wish to understand how power would be

affected if the same experiment had been run, but with less data; if the true effect

size were different; or if the data were analyzed differently.
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3.1 Dataset

The case we consider is Experiment 1 of Roettger et al. (2014), using the dataset

from this study.4 Roettger et al. recorded 16 native speakers of German producing

singular forms of nonwords (e.g., [go:p]) in which the target consonant was in final

position in response to auditory primes containing a voiced variant (e.g., [go:b@]).

Each speaker produced one repetition of 24 critical items (a pair such as [go:b@]/[go:p@]).

The statistical analysis, using a linear mixed-effects model, modeled duration of the

vowel preceding the stop as a function of the stop’s underlying voicing, as well as a

number of control predictors. By-subject and by-item random intercepts and random

slopes for voicing were included. The key result for our purposes is that speakers

produced longer vowels before underlyingly voiced stops: the difference (correspond-

ing to the voicing fixed-effect coefficient) is highly significant (p < 0.0002, as assessed

by a likelihood-ratio test), and estimated to be 8.6 msec (SE = 2.03 msec).

Since we do not know if the incomplete neutralization effect is “real”, by defi-

nition we also do not know its true size. However, since a number of studies of this

effect have now been conducted, we have some basis for guessing what the true size

of the effect might be. For German, published estimates have ranged from around 4

msec (Port & Crawford 1989) to over 20 msec (Mitleb 1981). For present purposes,

these estimates will suffice to give us a range in which to explore the ramifications of

effect size on power in a mixed-model setting.

3.2 Simulations

In the simulations, we varied three factors to understand their effect on power:5 the

sample size, the effect size, and the model selection criteria (Table 1).6 In terms

of sample size, we altered the number of subjects, items, and repetitions, as these

differences are the primary difference between studies of nominally the same phe-

nomenon, both in the IN literature and in experimental phonetics more generally.

These parameters were varied in a range of values corresponding to previous work.

Sweeping the effect size is important as well, because in a real-world study, we never

know a priori the size of the effect we are looking for; we can only make an inference

about likely effect size based on related work (see discussion in Vasishth & Nicen-

boim 2016a). The effect size was swept from values corresponding to no effect (β=0)

to a moderate IN effect (10 ms). Finally, we considered power under three different

model selection criteria (discussed below), to show how different choices about data

analysis might also effect a researcher’s ability to detect an effect.

[Table 1 about here.]
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3.2.1 Simulation procedure

For a given set of parameter values, a single simulation run was performed as fol-

lows.7 A random subset of the original dataset was taken corresponding to ns sub-

jects and ni items; this data was concatenated nr times, making a “resampled” dataset.

The fixed-effect coefficients of the original model were used to predict a vowel dura-

tion for each point, excluding the effect of voicing. The random-effect parameters

(variance components) of the original model were used to sample new intercept and

slope offsets for each subset and item in the resampled dataset. These, together with

the desired true effect size (β), were used to adjust predicted vowel durations for

each subject and item—including the effect of voicing. Finally, the estimated resid-

ual error was used to add observation-level noise to each prediction. The resulting

dataset can be thought of as one possible “smaller” version of the original dataset,

accounting for by-speaker and by-item variability, and with an adjusted effect size

for voicing. Two statistical models were fitted to this new dataset: the original sta-

tistical model (the superset model), and this model with the fixed effect of voicing

removed (the subset model).

Given these two models, three model selection criteria were applied to decide

whether the a model with the voicing term was justified by the data:

1. Likelihood-ratio test (LR): Assess the significance (p) of the difference in log-

likelihood between the two models, using a χ2-test. Choose the superset model

if p < 0.05, and the subset model otherwise.

2. Akaike Information Criterion (AIC): Assess the tradeoff between the log-likelihood

of the observed data under a proposed model (L), and the number of parame-

ters in the model (Q), as −2L+ 2Q. Choose the model with the lower AIC.

3. Bayesian Information Criterion (BIC): Assess a similar tradeoff, taking into

account as well the number of observations in the dataset N , as −2L+ ln(N)Q.

Choose the model with the lower BIC.8

All three methods measure the tradeoff between model complexity and fit to the

data in some way. As N increases, BIC tends to favor simpler models than AIC, due

to the ln(N) term which imposes a higher penality for each additional model param-

eter. In practice, BIC is expected to often be more conservative than AIC or LR: it

will have lower Type I error, but also lower power (Type II error). Both LR and AIC

are widely used in practice (in linguistic research in particular) as model selection

criteria (AIC, for example, is often used in “stepwise” methods); we include BIC as

well to help illustrate the effect of model selection criterion on power.

Thus, for each simulation run, we have three decisions on whether the voicing

term is justified or not; concluding it is not would be a Type II error (unless β =
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0). By performing nsim runs and computing the fraction in which the subset model

is chosen, we obtain an estimate of the power under each model selection strategy,

for a given set of parameter settings. We performed simulations with nsim = 500.

Although our results show the curves resulting from sweeping several parameters,

note that a common cutoff for a “high power result”, corresponding to the common

0.05 cutoff for a “significant” result, is 0.80 (i.e., at least an 80% chance of detecting

the effect).

4 Results

[Figure 1 about here.]

Figure 1 shows the results of these simulations: how power (on the y-axis) varies

as a function of the true effect size β (on the x-axis) as a function of sample size and

model selection criteria. Each curve in the figure thus represents a different study

design—with different choices for the number of subjects, items, and repetitions—for

a given model selection criterion, and can be used to determine the power of the ex-

periment as a function of the true effect size (which, in general, is not known to the

analyst). The general pattern is quite clear: as the sample size and the true size of

the effect increase, so too does power. The model selection criterion used also makes

a difference; in general, using AIC will lead to greater power, followed by LR, and

finally BIC. As noted above, this is expected based on the properties of these cri-

teria: the AIC tends to favor predictive accuracy over model complexity, while the

BIC more heavily penalizes model parameters, particular as the number of observa-

tions increase. The greater power of AIC leads it to have the highest Type I error

(wrongly conclude there is an effect, when there is none), as can be seen by examin-

ing the power curves as the true effect size approaches zero.

Recall that we are interested in two main questions: (Q1) What are we licensed

to conclude on the basis of an individual study? and (Q2) What are we licensed to

conclude from a body of studies? To gain some intuition for the patterns in this

figure with respect to these two questions, we will consider three regimes in detail

(low, mid, and high-power), roughly corresponding to three studies from the exist-

ing IN literature. In each case, we pose the following question: suppose we re-ran the

Roettger et al. study with a different sample size; what should we conclude in case

of different outcomes (Q1)? We then we consider some examples of how to interpret

results from several studies together (Q2), assuming they are from different regimes.

In particular, we offer one interpretation of the German incomplete neutralization

literature.

[Figure 2 about here.]
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4.1 Low-power regime

To illustrate a low-power regime, we select the power curves from simulations with 6

subjects, 8 items, and 2 repetitions per item. In this regime, power is always below

80%, regardless of model selection criteria or effect size (assuming of course that the

effect is ≤ 10 ms), and is below 50% for most values of β. The logic of interpreta-

tion is different in different cases (keeping in mind that, in an experimental setting,

we don’t know what the true size of the effect is; it could be zero). If we find a sig-

nificant result (e.g., p < 0.05, say), this was unlikely to happen by chance (this is

the meaning of a p-value), so we can conclude that the true contribution/size of the

effect is not equal to zero. If we don’t find a significant result, on the other hand,

we should not be surprised; but we cannot interpret this lack of effect as evidence in

favor of anything: a non-significant result would have been likely to occur whether

there is in reality a true effect of ≤10 msec (low power) or not (high p-value). In a

low-powered study, then, a null result is not informative.

In terms of the IN literature, a possible analog is the “elicitation condition” study

of Fourakis & Iverson (1984), with 4 subjects and 6 repetitions; t-tests are reported

for subsets corresponding in our terms to 1–2 items, and all tests are not significant.9

Approximate power calculations for these t-tests can be carried out using the infor-

mation in their Table 2; even assuming a 10 msec true effect size (much larger than

that reported), power is below 0.35 for all tests. Given what we might reasonably

assume about the true size of the effect, the null result does not provide evidence

to “falsify the claim that final obstruent devoicing is not neutralizing in German”,

neither can it be claimed that “the traditional position that German devoicing con-

stitutes phonologically irrecoverable merger is fully supported” (Fourakis & Iverson

1984, p. 149). When power is this low, a null result does not by itself contribute one

way or the other to our understanding of the phenomenon under study.

4.2 Mid-power regime

The mid-power regime is illustrated by power curves for simulations with 8 subjects

and 3 repetitions each of 12 items (Figure 2B). In this regime, power is above the

80% mark for a sufficiently large effect size using the less conservative model selec-

tion criteria (LR or AIC), but only for the upper range of effect size. Again, a signifi-

cant result can be interpreted as meaningful (i.e., unlikely to happen by chance); but

the interpretation of a null result is less straightforward. If we have reason to believe

the true β is, say, 10 msec or higher, we may reasonably expect to have detected it.

Therefore, not finding a significant effect can be interpreted as evidence that if an

incomplete neutralization effect exists, it is going to be smaller than 10 ms. Note

that this is not the same as saying we have evidence that there is no effect; rather,
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this is a statement about our ability to detect an effect of a given size.

In this regime, power is particularly sensitive to both the true effect size as well

as the data analysis method. One practical consequence of this is that replications

of the same experiment (or subsets of data from the same experiment) could well

return a mix of significant and non-significant effects even if there is a true effect.

Similarly, different results may obtain depending on the particulars of the data anal-

ysis method. A possible example in the literature is the study of Piroth & Janker

(2004), who analyze data from 3 repetitions of 9 pairs uttered by 6 German speak-

ers from different dialect areas. They find that the 2 Southern German speakers

in their sample preserve acoustic differences in coda duration between underlyingly

voiced/voiceless pairs, but that speakers from the other dialect regions do not. Given

the power of the study, however, we should not necessarily be surprised that we do

not detect a (small) effect that is in fact present. If the IN effect for the Southern

German speakers is in reality larger than for speakers from other dialect areas, it will

be easier to detect, all else being equal. So while we are licensed to conclude some-

thing about the Southern German speakers in this study, we have not really learned

anything about other speakers, or about the ensemble of speakers as a whole.

4.3 High-power regime

Finally, we consider a design with 16 speakers, 24 items, and 6 repetitions (i.e., the

design of Roettger et al. 2014, but with 6 repetitions instead of just one). As seen

in Figure 2C, power is above the 80% mark for the majority of the range of possible

effect sizes, at least for the AIC and LR model selection criteria. As always, a signifi-

cant result can again be interpreted as evidence for incomplete neutralization—if the

true effect size were zero, such a result would be unlikely to occur (modulo of course

the possibility of Type I error). Unlike the low and medium-power regimes, however,

here a null result is also meaningful: if there were a true effect in this range of effect

sizes, we would be surprised to not detect it, while if the true effect size were zero,

we would not be surprised if we failed to find it. Therefore, in a high-powered design,

we are licensed to interpret a null result as evidence for complete neutralization—at

least in the sense of, if there is an effect, it has to be quite small.

In the incomplete neutralization literature, the studies of Warner et al. (2004);

Warner et al. (2006) are illustrative in this regard. Warner et al. (2004) found that

the Dutch word-final voicing contrast was incompletely neutralized, with vowels pre-

ceding voiced stops 3.5 msec longer than those preceding voiceless stops. However, in

their follow-on study (Warner et al. 2006), in which they carefully control for possi-

ble orthographic effects, they fail to find a significant effect. Because the 2006 study

was sufficiently high-powered (as calculated by the authors, using the effect size from
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the 2004 study), the authors are able to (correctly) interpret their findings as indi-

cating that “the current manipulation does not produce an incomplete neutralization

effect, at least not one comparable in size to the 3.5 msec differences found in the

previous work” (2006: p. 290, emphasis added). Because of the high power of the

design, they are able to interpret the null result in a theoretically meaningful way.

5 Discussion

As the preceding discussion illustrates, the type of conclusion that can be drawn

on the basis of a null result, with respect to deciding between different theoretical

stances, is heavily dependent on the power regime. This, in turn, is dependent on

factors including the true effect size, the sample size, and the particulars of the data

analysis method. This contrasts sharply with what may be inferred from a significant

result, which (at least to a reasonably good first approximation) does not depend on

sample size or model selection criteria.10 This does not mean that only significant

results are meaningful: if a high-powered study returns a null result, as in the case

of Warner et al. (2006) (Sec. 4.3), it can be interpreted as evidence “for the null”,

in the sense of supporting the selection of a simpler (less parameterized) statistical

model.

Given what we have reviewed, what can we conclude from a collection of studies

of (more or less) the same phenomenon, in which some studies find significant effects

and others do not (or equivalently, select a model containing a term T versus reject

a model containing T on the basis of some model selection criterion)? In such a sce-

nario, do we have evidence for theory A, theory B, or truly conflicting evidence?

As the above discussion suggests, the answer depends on the power of the stud-

ies involved. If all of the studies concerned have high power, then those which find

significant results provide us with evidence favoring/consistent with Theory A, while

those that find null results can be interpreted as favoring/consistent with Theory B.

In this scenario, the results are truly conflicting, because we have evidence that sup-

ports different, presumably incompatible theoretical positions. If, on the other hand,

the high-powered studies find significant results, but the low-powered studies find

null results, we only have evidence that supports Theory A; the null results are not

evidence for or against anything.

What consequences does this have for our interpretation of the German IN litera-

ture? The existence of a high-powered study on German IN similar to Warner et al.

(2006)—which found a null effect, or a significant effect in the wrong direction—

would indeed conflict with earlier findings. At least in the German case, however,

the mostly highly powered study of which we are aware (Roettger et al. 2014) finds

a small but significant IN effect in the expected direction, in spite of numerous ex-
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perimental controls. Previous low- to medium-powered studies have either similarly

found small but significant effects in this direction, or have returned null results.

Thus, because null results are only informative in a high-power regime, it is not the

case that there is conflicting evidence; rather, a reasonable interpretation of the ex-

isting literature is that there is, in fact, a small but real effect of IN in German, and

the inconsistency between studies is due to lack of statistical power.

5.1 Further issues

Our discussion has focused on interpreting the results of an experiment, or a set of

experiments, with respect to whether or not an effect is zero, corresponding to a

choice between two linguistic theories. We have not considered several further con-

siderations that enter into interpreting experimental results, and which might suggest

that our concerns are unwarranted (at least for the IN case): prior belief in one lin-

guistic theory versus another, and (estimated) effect size. We discuss these briefly

here.

First: isn’t a null result informative if it agrees with (or fails to contradict) a

more plausible theory? A researcher may have significant evidence (e.g. decades of

agreement among phoneticians, or of an assumption about phonological representa-

tion working well in daily practice) that leads them to think Theory A (e.g. complete

neutralization) is more plausible than Theory B (e.g. incomplete neutralization).

When an experiment then searches for evidence in favor of Theory B, and finds a

null result, it is tempting to conclude that this supports the researcher’s strong prior

belief in Theory A. This is an implicitly Bayesian view of the scientific world: a re-

searcher (or the field as a whole) has degrees of belief in different hypotheses, which

are updated based on new information. This view makes intuitive sense, but is not

consistent with the null hypothesis significance testing (NHST) statistical framework

used almost exclusively in experimental studies in linguistics (including all studies of

IN cited here). The NHST framework does not take prior beliefs into account, and a

null result from an NHST statistical method cannot be interpreted as supporting the

null—regardless of its plausibility. There are ways to explicitly combine prior beliefs

with new evidence in performing statistical analysis, using Bayesian data analysis

methods (e.g. Jaynes 2003; Gelman et al. 2014), the main alternative to NHST. Us-

ing these methods, a null result from a low-powered study tends to offer evidence

both for and against a researcher’s prior belief, since the observed outcome would

be fairly likely under a number of different priors (Vasishth & Nicenboim 2016b).

However, even within this framework, a null result from a low-powered study is still

uninformative—as demonstrated in our simulation study.

Second, even if an effect can be demonstrated, it may not be of sufficient mag-
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nitude to warrant attention. For example, IN effects have often been suggested to

arise from orthographic, hypercorrection and/or task effects (e.g. Fourakis & Iverson

1984; Warner et al. 2006; Kharmalov 2014), and in any event to be too small to be

of any communicative relevance (Kohler 2012). This gets at a broader issue in inter-

preting experimental results: the estimated size of an effect is just as important as

whether it is significantly different from zero or not, and these two things are inde-

pendent. It is possible to have a tiny but significant effect (as in the Roettger et al.

2014 study) in a high-powered study, or a large but non-significant effect (in a low-

powered study)—where ‘small’ and ‘large’ are always assessed relative to a particu-

lar domain (e.g. vowel duration differences between voiced and voiceless obstruents

cross-linguistically). Thus, it is crucial to consider both the estimated size of effects

and their significances when interpreting experimental data, as emphasized in mod-

ern approaches to data analysis across fields (e.g. Baayen 2008; Gelman & Hill 2007).

An effect’s estimated size (as for whether it is zero or not) is subject to error, and it

is important to take into account in interpreting either a single experimental result

or a body of studies. A thorough exposition is beyond the scope of this paper (see

Vasishth & Nicenboim 2016a for a discussion in the context of linguistic data), but

power turns out to again be crucial: for low-powered studies, estimated effect sizes

are likely to have the wrong magnitude or sign, even for a significant result ; for high-

powered studies, estimated effect sizes are likely to be reliable, even for null results.

Thus, effect sizes from a low-powered study should be trusted less than effect sizes

from appropriately-powered studies, which is important when interpreting experi-

mental results in order to decide between competing theoretical models. In the IN

literature, for example, a surprisingly large IN effect found in a low-powered study

(such as the 20 msec reported in Mitleb 1981) should be given little weight, while a

near-zero (and not significant) effect found in a high-powered study (such as Warner

et al. 2006, for Dutch) should be taken seriously.

6 Conclusion

Model selection is a powerful tool for linguistics and provides a rigorous basis for

scientific understanding, but it must be approached with cautious respect. In the

preceding, we have tried to demonstrate how a failure to take statistical power into

account can potentially lead to unlicensed inference with respect to the theoretical is-

sue(s) at stake. Similarly, we have tried to illustrate how choices about data analysis,

such as model selection criteria, can impact our results and our subsequent reasoning

about them.

This may all have been obvious to some readers; but as we often find it useful for

ourselves to write these things down, we hope it may prove helpful for others as well.
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Notes

1We set aside here the equally important aspect of deciding on an appropriate set of candi-

date models; for more on this issue see Anderson (2008).
2This issue is widespread both in linguistics and beyond; see e.g. Vasishth & Nicenboim (2016a);

Haller & Krauss (2002).
3We are considering Fourakis & Iverson’s “elicitation task”. For a second experiment, they

do find a significant IN effect, but attribute it to the less communicatively-natural setting, and

conclude that neutralization is complete in natural settings.
4We thank Timo Roettger and Bodo Winter for sharing this dataset with us.
5We also explored varying the “noise”—the residual variance, and amount of variability among

subjects and items—which also affects power, but hold it constant in the simulations we report

here in the interest of expositional clarity.
6For discussion of how these factors effect Type I error, see Barr et al. 2013; Matuschek et al.

2015; Winter 2015.
7Our methodology is a simplified version of the simulation-based power calculation method

for mixed models described in Chapter 20 of Gelman & Hill (2007). Our simulation script is avail-

able upon request.
8Note that both the AIC and BIC are related to the notion of minimum description length

(Rissanen 1978), a principle advocated by Goldsmith in much of his work (e.g. Goldsmith 2001b).
9The words in this study are not organized into pairs, but the corresponding power calcula-

tion is very similar. Note that we are considering only t-tests conducted across all speakers—which

Fourakis & Iverson (1984) focus on—and not those conducted within individual speakers.
10Note that this statement applies to the binary “is the effect zero?” question considered here,

but not to the actual estimate of the effect size, which is affected by factors similar to those in-

fluencing power (see below).
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Figure 1: Power curves resulting from different sweeps simulated from the Roettger et al.
data for three different model selection criteria. Columns show simulated number of sub-
jects; rows show number of repetitions of each item per subject. Darker colored lines are
for runs with fewer items, lighter colored lines for runs with more items.
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Figure 2: Left: Low power regime (6 subjects, 8 items, 2 repetitions). Center: Medium
power regime (8 subjects, 12 items, 3 repetitions). Right: High power regime (16 speakers,
24 items, 6 repetitions).
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Table 1: Parameters swept in simulation study.

parameter range step
number of subjects (ns) 6-16 2
number of items (ni) 8-24 4
number of repetitions (nr) 1-6 1
true effect size (β) 0-10 0.5
model selection criterion likelihood ratio, AIC, BIC


