
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weighted network estimation by the use of topological graph
metrics

Citation for published version:
Spyrou, L & Escudero, J 2019, 'Weighted network estimation by the use of topological graph metrics', IEEE
Transactions on Network Science and Engineering, vol. 6, no. 3, pp. 576-586.
https://doi.org/10.1109/TNSE.2018.2849342

Digital Object Identifier (DOI):
10.1109/TNSE.2018.2849342

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Network Science and Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Sep. 2019

https://doi.org/10.1109/TNSE.2018.2849342
https://www.research.ed.ac.uk/portal/en/publications/weighted-network-estimation-by-the-use-of-topological-graph-metrics(c69e745e-bd93-43d2-8f5c-2201b49d4761).html


1

Weighted network estimation by the use of
topological graph metrics

Loukianos Spyrou and Javier Escudero

Abstract—Topological metrics of graphs provide a natural way to describe the prominent features of various types of networks. Graph
metrics describe the structure and interplay of graph edges and have found applications in many scientific fields. In this work, graph
metrics are used in network estimation by developing optimisation methods that incorporate prior knowledge of a network’s topology.
The derivatives of graph metrics are used in gradient descent schemes for weighted undirected network denoising, network completion
, and network decomposition. The successful performance of our methodology is shown in a number of toy examples and real-world
datasets. Most notably, our work establishes a new link between graph theory, network science and optimisation.

Index Terms—graph metric derivatives, graph theory, network completion, network denoising, network decomposition, optimisation

F

1 INTRODUCTION

G RAPH theory has found applications in many scientific
fields in an attempt to analyse interconnections be-

tween phenomena, measurements, and systems. It provides
a data structure that naturally express those interconnec-
tions and also provides a framework for further analysis
[1], [2]. A graph consists of a set of nodes and edges
describing the connections between the nodes. The edges
of binary graphs take the values of either 1 or 0 indicating
the presence or absence of a connection, while in weighted
graphs the edges are described by weights indicating the
strength of the connection. Graphs have been extensively
used in a variety of applications in network science such
as biological networks, brain networks, and social networks
[3]–[6].

Graph metrics are functions of a graph’s edges and
characterize one or several aspects of network connectivity
[7]–[9]. Local metrics deal with the relation of specific nodes
to the network structure while global metrics describe prop-
erties of the whole network. Graph metrics are largely used
to describe the functional integration or segregation of a
network, quantify the centrality of individual regions, detect
community structure, characterize patterns of interconnec-
tions, and test resilience of networks to abrupt changes.

Estimation of a network’s structure or properties has
been performed in a variety of contexts. Although a single
definition does not exist, network estimation can include
any algorithm or method that detects, enhances, generates,
or increases some quality measure of networks. Link pre-
diction and network completion deal with predicting the
existence of missing edges based on the observed links in
a binary graph [10]–[14]. Also, in [13] the prediction of
missing nodes was attempted. So far such methods have
dealt with detecting only whether a link (edge) exists or not,
not with the estimation of its weight. Typical applications
include predicting the appearance of future connections in
social [10], [15] or biological [16] networks. The network
reconstruction problem deals with composing networks that

This work was supported by EPSRC, UK, Grant No. EP/N014421/1
Loukianos Spyrou and Javier Escudero are with the School of Engineering,
University of Edinburgh, EH9 3FB, U.K.

satisfy specific properties [17]–[20]. This can be particularly
useful when building null models for hypothesis testing.
Network inference problem attempts to identify a network
structure where the edges have been corrupted by a diffu-
sion process through the network [21], [22]. More recently,
reducing the noise in social networks has been attempted in
[23]–[25].

In this work, we assume that prior information is avail-
able regarding an observed weighted undirected network.
This prior information comes in the form of estimates of
a number of topological graph metrics of the network.
We utilise these estimates in an optimisation framework
in order to adjust the weights of the observed network to
satisfy those properties. There are many real-world cases
where there is knowledge of a network’s structure but not
exact or reliable network information [17], e.g. strength of
connections between banks is known but exact connections
are hidden for privacy issues in bank networks [26], modu-
larity metrics of brain networks are similar between subjects
[27], properties of the constituent networks may be known
for mixed networks [24]. We demonstrate the utility of our
methodology in three schemes.

Firstly, a network denoising scheme, where an observed
network is a noisy version of an underlying noise-free
network. By considering the error between the observed net-
work’s graph metrics and the true network’s known metrics,
in an iterative gradient descent process on the network’s
weights, the resulting network is closer to the noise-free
one. Using the node degrees as priors has been performed
in binary networks in [24] and in terms of network recon-
struction the knowledge of degrees has been employed in
weighted networks in [17], [28]. In [23], the transitivity of a
network was used in a network diffusion scheme to change
a social network’s weights but without a specific stopping
point. In [25], denoising has been attempted in the context
of removing weak ties between users in a social networks.
Here, we provide analytical and empirical proofs on the util-
ity of denoising schemes that are based on the optimisation
of various graph metrics through gradient descent.

Secondly, we develop a weighted network completion



2

scheme where some of the weights of the network’s edges
are missing. Similarly to the two previous schemes, we
adapt the missing weights such that the whole network
obtains specific values for known graph metrics. Weighted
network completion has not been performed in the literature
per se, only the closely related matrix completion problem
[29] and matrix completion on graphs [30] where the com-
pletion is aided by assuming that the rows and columns of
the matrix form communities.

Finally, we develop a network decomposition scheme
for the cases where an observed network is an additive
mixture of two networks. Assuming that graph metrics
are known for the two constituent networks we derive an
algorithm that can estimate the networks by enforcing them
to have specific values for graph metrics while keeping
the reconstruction error between the original and estimated
mixture small. Network decomposition has been tradition-
ally applied in a different context, on decomposing graphs
with disjoint nodes [31]. For factored binary graphs untan-
gling has been performed by taking into account the degree
distribution of the constituent graphs [24]. Here, we not only
consider the degrees of a network and decomposing it into
subgraphs (i.e. multiple graphs with disjoint nodes) but we
use multiple graph metrics in additive graph mixtures.

Therefore, in this paper, we provide a comprehensive
description of theoretical and empirical results on the use
of optimisation of graph metrics for various problems in
network estimation. In section 2 we give some basic defini-
tions and a brief introduction to graph theory and graph
metrics. The network estimation methods are shown in
Section 3 with the details of the three schemes, denoising
3.1, completion 3.2, and decomposition 3.3. In section 3.4 we
derive the graph metrics derivatives that are used in the op-
timisation methods. In section 4 we apply our methodology
to a number of toy examples and real data and in section 5
we put the results into context and discuss the utility that
our method provides. Section 6 concludes the paper.

2 GRAPH METRICS

A weighted graph G = (V, E ,W) is defined by a finite set
of nodes (or vertices) V with |V| = n, a set of edges E of
the form (vi, vj) ∈ E with |E| = n2 − n and a weighted
adjacency matrix W with wii = 0∀ i. In this work, we
consider undirected graphs for which W is symmetric, i.e.
wij = wji or W = WT. The entries wij in the weighted
adjacency matrix W (weight matrix from now on) indicate
the strength of connection between nodes. We assume that
networks are normalised, i.e. wij ∈ [0, 1].

Graph metrics are scalar functions of the weight matrix,
i.e. f(W) : Rn2 → R. Global metrics map the weight matrix
into a single value and therefore attempt to simply quantify
a specific property of a network. Local metrics on the other
hand, quantify some property of the network separately for
each node i ∈ {1...n} with fi(W) ∈ Rn2 → R, potentially
resulting in n functions and n separate values.

Although graph metrics were originally defined on bi-
nary (unweighted) networks, the conversion to weighted
metrics is usually but not always straightforward [8], [32]–
[36]. The main motivation of this study can be recognised by
pointing out that a network can be adjusted by changing the

matrix W so that it obtains a certain value for some graph
measure. There are numerous graph metrics that describe
various features of networks [8], [9]. The main properties
that they measure are:

• Integration (ability of the network to combine infor-
mation from distributed nodes).

• Segregation (ability of the network for specialised
processing in densely interconnected node groups).

• Centrality (characteristic that describes the presence
of regions responsible for integrating total activity).

• Resilience (ability of a network to withstand weight
changes).

• Motifs (presence of specific network patterns).
• Community structure (separation of a network to

various functional groups).
• Small-worldness (highly segregated and integrated

nodes).

There are graph metrics that contain quantities which
are themselves a product of an optimisation procedure (e.g.
module structure, shortest path length). These quantities are
considered outside of the scope of this work.

2.1 Definitions

Here we show some definitions, notations and useful
matrices that are used in the following sections.

n : number of nodes

m : number of graph metrics

Sij = {1ij}, {0¬i‖¬j} : matrix of zeros except at (i, j)

{A}ij = aij = tr{ASji} : (i, j)th element of matrix A

tr{A} =
n∑

i=1
{A}ii : sum of diagonal elements

1n : column vector of ones

On = 1n1Tn : matrix of ones

Hn = On − In : all ones except at diagonal

Rj = {1ij∀i}, {0¬ij∀i} : matrix with ones at column j∑
ij
aij = tr{AOn} : sum of all matrix entries

A ◦ B : Hadamard (element-wise) product

3 NETWORK ESTIMATION

In this section we formulate the optimisation methodologies
for the three schemes considered in this work.



3

3.1 Denoising

Suppose that a weight matrix W of a network is corrupted
by additive noise:

We = W + E (1)

The error matrix E can be considered as a network
unrelated to the network structure being considered. For
example, E could be social calls when trying to detect
suspicious calls in social networks [24], the effect of volume
conduction in EEG based brain network connectivity, or
measurement noise. A different type of noise that occurs
in networks, the effect of missing values is treated in section
3.2.

If we assume that we have estimates of M differentiable
graph metrics of the original W, i.e. fm(W) = Km where
m ∈ {1, ...,M}, then we can formulate a cost function
that measures the deviation of the observed weight matrix’s
metrics fm(We) to the estimates Km as:

c(We) =
∑
m

e2m(We) =
∑
m

(fm(We)−Km)
2 (2)

The error is minimised with gradient descent updates on
We:

W(t+1)
e = Wt

e − µ
∑
m

em(Wt
e)
dfm(Wt

e)

dWt
e

(3)

where t is the iteration index and µ the learning rate. For
the case of m = 1, Equation (3) describes the traditional
single function gradient descent. For m > 1, it can be con-
sidered an equally weighted sum method of multiobjective
optimisation, motivated by the fact that the graph metrics
are in the same range due to normalisation. Multiobjective
optimisation enables the weighting of different metrics to
accommodate priorities on which are more important for a
specific task. Such weighting is considered above the scope
of this work. The full denoising procedure is described in
Algorithm 1. Note that values below 0 and above 1 are
truncated to zero and one respectively since we assume that
the networks are normalised.

In Appendix A we provide a proof that for convex cost
functions c(W), denoising guarantees error reduction. The
implication of that is that when a graph metric results
in a convex cost function, such as the degrees (kwi ) of
the network, then the optimisation of Algorithm 1 with
f(W) = 1

n

∑
i
kwi will always converge to a solution Ŵ that

is closer to the original network W than We is. For non
convex metrics, there is no such guarantee. In Section 3.1
we show empirical results on the extent of that effect. In the
Appendix C we show the proof that cost functions based
on graph metrics such as the degree are convex. In general,
linear functions of the weights of the adjacency matrix are
convex whereas nonlinear functions of the weights are not.

3.2 Completion

For the case that a setM of entries of the weight matrix are
missing, we can perform matrix completion by:

W
(t+1)
ic = Wt

ic − µ
∑
m

em(Wt
ic)

(
dfm(Wt

ic)

dWt
ic

◦ SM

)
(4)

Algorithm 1 Denoising of corrupted network We through
the use of graph measure estimates Km

OUTPUT: Ŵ
INPUTS: We, Km

1: Initialise t = 0,W0 = We,
2: E=

∑
m
e2m(W0) =

∑
m

(
fm(W0)−Km

)2
3: while E > ε do
4: W(t+1) = Wt − µ

∑
m
em(Wt)dfm(Wt)

dWt

5: if wij < 0 then wij = 0, wij > 1 then wij = 1

6: E=
∑
m
e2m(Wt+1) =

∑
m

(
fm(Wt+1)−Km

)2
7: t = t+ 1
8: end while
9: Denoised network: Ŵ = Wt

where SM is a matrix with ones at the set of missing entries
and zeroes everywhere else. Similar to the previous two
cases, the assumption is that if the true graph metrics are
known, gradient descent will adjust the missing weights
close to their true values. The missing entries of the in-
complete weight matrix Wic can be initialised to the most
likely value of the network (w). This can be considered as
a denoising procedure with the missing weights equal to
‘noisy’ weights of value w. In Algorithm 2 we describe the
network completion procedure.

Algorithm 2 Completing the missing entries of network Wic

through the use of graph measure estimates Km

OUTPUT: Ŵc

INPUTS: Wic, Km, set of missing entriesM
1: Initialise t = 0, {W0

ic}ij = w with (i, j) ∈M,
2: E=

∑
m
e2m(W0

ic) =
∑
m

(
fm(W0

ic)−Km

)2
3: while E > ε do
4: W

(t+1)
ic = Wt

ic − µ
∑
m
em(Wt

ic)
dfm(Wt

ic)
dWt

ic
◦ SM

5: if wij < 0 then wij = 0, wij > 1 then wij = 1

6: E=
∑
m
e2m(Wt+1

ic ) =
∑
m

(
fm(Wt+1

ic )−Km

)2
7: t = t+ 1
8: end while
9: Complete network estimate: Ŵc = Wt

ic

3.3 Decomposition
Suppose that we observe a mixed network that arises as a
combination of two networks:

Wf = W1 + W2 (5)

If we have estimates of some topological properties of the
two networks, i.e. {f1m(W1) = K1

m}, {f2m(W2) = K2
m},

then we can utilise these information to infer the networks
from their mixture. This could be accomplished separately
for each network using Algorithm 1. However, since we
know the mixture Wf , we utilise that in the following
optimisation problem:

argmin
W1,W2

∑
m

(
f1m(W1)−K1

m

)2
+
(
f2m(W2)−K2

m

)2
subject to ||Wf − (W1 + W2)||2F ≤ ξ



4

We solve this optimisation problem with alternating min-
imisation since it is a function of two matrices. We fix
one of the two weight matrices and solve the following
optimisation problem for the other one in an alternating
fashion:

argmin
W1

∑
m

(
f1m(W1)−K1

m

)2
+ λ||W1 − (Wf −W2)||2F

(6)
argmin

W2

∑
m

(
f2m(W2)−K2

m

)2
+ λ||W2 − (Wf −W1)||2F

(7)
where the constraint has been incorporated into the cost
function through the penalty parameter λ. Each separate
minimisation, Algorithm 3, resembles Algorithm 1 but in
this case deviations from Wf−W1 or Wf−W2 are penalised.
This whole procedure is shown in Algorithm 4.

Algorithm 3 Constrained network optimisation based on
graph metrics Km and a constraint that penalises devia-
tions from a reference network Y. The penalty is adjustable
through the parameter λ.

OUTPUT: Ŵ
INPUTS: Y, Km, λ

1: Initialise t = 0, W0 = Y
2: E=

∑
m
e2m(W0) =

∑
m

(
fm(W0)−Km

)2
3: while E > ε do
4: W(t+1) = Wt −
µ

(∑
m
em(Wt)dfm(Wt)

dWt + λ(W −Y)||W −Y||2F
)

5: if wij < 0 then wij = 0, wij > 1 then wij = 1

6: E=
∑
m
e2m(Wt+1) =

∑
m

(
fm(Wt+1)−Km

)2
7: t = t+ 1
8: end while
9: Constrained estimate: Ŵ = Wt

Algorithm 4 Alternating minimisation procedure for net-
work decomposition of a mixed network Wf through
known graph metrics for the individual networks K1

m,K
2
m.

OUTPUT: Ŵ1, Ŵ2

INPUTS: Wf , K1
m, K2

m, λ
1: Initialise t = 0,
2: W0

1 = Algorithm1{Wf ,K
1
m}

3: W0
2 = Algorithm1{Wf ,K

2
m}

4: R = ||Wm − (W0
1 + W0

2)||2F
5: while R > ε do
6: Wt+1

1 = Algorithm3{Wf −Wt
2, K1

m, λ}
7: if w1

ij < 0 then w1
ij = 0, w1

ij > 1 then w1
ij = 1

8: Wt+1
2 = Algorithm3{Wf −Wt+1

1 ,K2
m, λ}

9: if w2
ij < 0 then w2

ij = 0, w2
ij > 1 then w2

ij = 1

10: R = ||Wf − (Wt+1
1 + Wt+1

2 )||2F
11: t = t+ 1
12: end while
13: Optimised estimates: W1,W2

The motivation for the procedure in Algorithm 4 is the
following. Consider estimating the two weight matrices
only by using the denoising algorithm for each one sepa-
rately. The estimate of W1 can be written as Ŵ1 = W1 + E1

where E1 indicates the error from the true weight matrix W1.
Similarly for W2 resulting in Ŵf = W1 + W2 + E1 + E2 =
Wf + E. Therefore, it is evident that the estimates of the
weight matrices are not ideal whenever ||E||F > 0. Note that
if ||E||F = 0 it does not necessarily imply that the estimates
of the weight matrices are optimal since it is possible that
E1 = −E2. It would be optimal if we could constraint the
estimate e.g. Ŵ1 as:

argmin
W1

∑
m

(
f1m(W1)−K1

m

)2
subject to ||E1||2F = 0

However that would require knowledge of the true weight
matrix W1. Instead, note that:
Ŵ1−(Wf−Ŵ2) = W1+E1−(W1+W2−W2−E2) = E1+E2.
Therefore by reducing ||W1 − (Wf −W2)||F in Eq. (6), we
are reducing the total error. In other words we are solving
the following constrained optimisation problem:

argmin
W1

∑
m

(
f1m(W1)−K1

m

)2
subject to ||E1 + E2||2F ≤ ξ

(8)

The inequality is incorporated such that ||E2||F ≥ 0 when
optimising W1 and vice versa. Consider the extreme cases.
Firstly, when ξ = 0. That would imply that λ = ∞ which
would render the graph measure optimisation ineffective.
On the other hand, a large ξ implies small λ which would
render the constraint ineffective. In our implementation we
adjust the λ parameter such that the reconstruction error,
i.e. Wf − Ŵf slowly decreases over the iterations of the
alternating minimisation algorithm. Note the well known
fact that there is a one-to-one correspondence between ξ in
Eq. 8 and λ in Eq. 6.

3.4 Derivatives of graph metrics

In this section we derive the expressions for the derivatives
of popular graph metrics that describe some important
properties of networks. We deal with: degree, average
neighbour degree, transitivity, clustering coefficient,
modularity. More details can be found in Appendix B.

3.4.1 Degree
The degree of a node i describes the connection strength of
that node to all other nodes:

kwi =
∑
j

wij = tr{WRi} (9)

with the degree derivative being:

∂kwi
∂W

= RT
i (10)

Since Ri is non-zero only for column i it can be computed
efficiently as:

∂kwi
∂wi

= 1nT (11)

where wi is the ith column of W.



5

3.4.2 Average neighbour degree - resilience
The average neighbour degree for node i is given by:

NDi =

∑
j
wijk

w
j

kwi
=
tr{W2Ri}
tr{WRi}

=
ρ

τ
(12)

The derivative of the average neighbour degree is:

∂NDi

∂W
=
τ(WRi + RiW)T − ρRT

i

τ2
(13)

3.4.3 Transitivity - segregation
The transitivity is a global measure of the segregation of a
network and here we defined it as (see also [23]):

T =

∑
ijh
wijwihwjh∑

ij

∑
h
wihwjh

=
tr{W3}

tr{WHnW}
=
α

β
(14)

The transitivity derivative is:

∂T

∂W
=

(
3βW2 − α(WHn + HnW)

β2

)
(15)

3.4.4 Clustering coefficient - segregation
The clustering coefficient for node i is a local measure of
the clustering of a network. It is defined as:

Ci =

∑
jh
wijwihwjh∑
jh
wijwih

=
{W3}ii

{WHnW}ii
=

tr{SiiW3}
tr{SiiWHnW}

=
γi
ζi

(16)

The derivative of the clustering coefficient is:

∂Ci

∂W
=3ζi
2∑
r

(
WrSiiW2−r)− γi(ST

iiW
T HT + HT WT ST

ii)

ζ2i



3.4.5 Modularity - community structure
Modularity metrics the tendency of a network to be divided
into modules. Here we deal with optimising the modularity
in terms of the network weights, not in terms grouping
nodes into modules. Modularity can be written as (see also
[37]):

M =
1

lw

∑
ij

(
wij −

kwi k
w
j

lw

)
δij (17)

where δij = 1 whenever nodes i and j belong to the same
module and zero otherwise.

The modularity derivative is expressed as:

∂M

∂W
=
∂m1

∂W
− ∂m2

∂W
(18)

with:

∂m1

∂W
=
lw∆− θOT

n

(lw)2
(19)

and:

∂m2

∂W
=

n∑
r=1

lw(CrW∆T + CT
r W∆)− 2ξrO

T
n

(lw)3
(20)

where Cr is a circular shift matrix that shifts down the rows
of the matrix on the right by r − 1 and ξr = WTCrW∆T.
See Appendix B.B for more details.

3.4.6 Local and global metrics
Any graph measure fi that operates locally on node i can
be cast into its global (full network) form by evaluating the
gradient as the average of the nodes’ derivatives:

∂f

∂W
=

1

n

∑
i

∂fi
∂W

(21)

4 RESULTS

4.1 Denoising
4.1.1 Synthetic Networks
In this section we show results of applying the denoising
algorithm for various cases. We create synthetic undirected
networks of three types:

• Random complete network , wij ∼ U [0, 1]
• Scale free weighted network where the degrees are

distributed with the power law and the non zero
edges are given weights wij ∼ U [0, 1]. The network
was created according to [38] with average degree of
5.

• A modular network where the weights exhibit com-
munity structure in a number of modules. The net-
work was created with the BCT toolbox [8]. The
network consists of 8 modules and 90% of the non-
zero weights in the modules.

For each case we add a noise matrix where each entry of
E, eij ∼ N (0, 1) is normally distributed with mean 0 and
standard deviation 1:

We = W + σE (22)

Weights of We that go below 0 are set to zero, and
subsequently the weight matrix is normalised by dividing
by its maximum value. In that way we guarantee that all
elements of We are between 0 and 1.

Firstly, we show the error reduction of the scheme for
various noise levels and networks of 128 nodes. We define
error reduction as the ratio of the error of the denoised
network Ŵ to the error of the noisy network We:

er = 1− ||Ŵ−W||F
||We −W||F

(23)



6

Error reduction is measure in the domain (−∞, 1] where 1
indicates perfect denoising. Negative values indicate larger
error after applying the denoising algorithm.

In Figures 1, 2 and 3 we show the error reduction for
an increasing noise level and different graph metrics for the
random, scale-free and modular network respectively. Each
noise level considers the average of 50 noise matrix realisa-
tions. Note that even though the error reduction increases
as the noise increases, in absolute terms the error always
increases.

<

0.05 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 

er
ro

r 
re

du
ct

io
n

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

clu
deg
trans
avndeg
all

Fig. 1. Denoising of a random complete network with 128 nodes. We
show the error reduction for an increasing noise level and various graph
metrics. Note that the degree coincides with the combination of graph
metrics in this figure. This indicates that for the cases that the degree is
known no other network metrics are necessary.

c

<

0.05 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 

er
ro

r 
re

du
ct

io
n

-0.05

0

0.05

0.1

0.15

0.2
clu
deg
trans
avndeg
all

Fig. 2. Denoising of a scale-free network with 128 nodes. We show the
error reduction for an increasing noise level and various graph metrics.
Clustering based measures suffer in this type of network due to the
decreased magnitude of those measures in scale-free networks.

Next, we show the error reduction in terms of the num-
ber of nodes in the network and a noise level of σ = .5, see
Figure 4.

4.1.2 Real EEG data
The denoising algorithm was applied on two electroen-
cephalography (EEG) datasets on a memory task from
Alzheimer’s patients and control subjects [39]. In dataset-
1, there were 128-channel recordings from 13 patients with

<

0.05 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 

er
ro

r 
re

du
ct

io
n

-0.1

-0.05

0

0.05

0.1

0.15

0.2

mod
clu
deg
trans
avndeg
all

Fig. 3. Denoising of a modular network with 128 nodes and 8 modules
and 90% of the weights in the modules. We show the error reduction
for an increasing noise level and various graph metrics. Note that for
the transitivity and clustering coefficient the estimated network had a
larger error than without applying the denoising algorithm. This can be
explained by noting that the weights are clustered in modules whereas
the denoising algorithm is free to adapt any weight.

n
16 32 64 128 256

er
ro

r 
re

du
ct

io
n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

clu
deg
trans
avndeg
all

Fig. 4. Effect of the number of nodes on the error reduction and a
constant σ = .5. Although the error reduction increases with the number
of nodes there is an increase in absolute error as well.

mild cognitive impairment (MCI) and 19 control subjects
while for dataset-2 there were 64-channel recordings from
10 patients with familial Alzheimer’s disease (FAD) and 10
control subjects. For both datasets we selected the common
subset of 28 electrodes that have the exact same locations
on the scalp. For each subject we split the recording into
1 second epochs and computed the connectivity network
matrix of the first 50 epochs and of each epoch separately.
We used the imaginary part of coherence as connectivity
metric and considered the alpha (8-12Hz) spectral band.

We tested two settings. Firstly, a train-test scheme where
connectivity matrices are obtained for the two datasets
separately and the weight matrices of the test set (dataset-
1, MCI) are denoised according to the graph metrics of
the training dataset (dataset-2). Secondly, a within-subject
denoising setting where the connectivity matrix of the first
50 epochs of a subject (from dataset-2, FAD) is considered
as the training weight matrix Wtr, and each of the other



7

TABLE 1
Denoising of noisy EEG networks of 28 channels. For each of the 32
test subjects (19 controls - 13 patients from dataset-1) we denoised

each trial of the subject’s weight matrix based on the graph metrics of
the mean weight matrices of the two groups from the training set

(dataset-1) and its own weight matrix. We show the average MSE over
all subjects for the three denoising schemes and the original noisy

network. Error is computed is against Wtr .

Same Group Opposite Group Self Noisy original
5.31± 0.79 5.33± 0.88 4.51± 0.66 6.26± 1.21

matrices is a test matrix Wi to be denoised. Here, we used
the transitivity and degree as graph metrics combining both
the global and local properties of brain activity.

In Table I we show the results of the denoising algorithm
when using as target values the graph metrics of a) the same
subject, b) the same group (patient/control), c) the opposite
group. The mean square error (MSE) is computed against
the training network Wtr. Differences between subjects were
significant under a unpaired ttest, p < 0.01, for all pairwise
comparisons except between the same group and opposite
group. In Figure 5 we show an example of denoised net-
works for one trial of a subject.

average connectivity

5 10 15 20 25

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1
self denoising

5 10 15 20 25

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

control group denoising

5 10 15 20 25

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1
patient group denoising

5 10 15 20 25

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Fig. 5. Example of obtained denoised networks for one a trial of a single
subject. The network denoised based on the subject specific graph
metrics retained the basic characteristics of the true network.

4.1.3 Macaque connectivity
In order to further demonstrate the potential applicability of
the algorithm, we obtained the connectivity matrices from
the brains of two Macaques [40] with similar values for the
transitivity metric. In Figure 6 we show the result of the
denoising where the first Macaque’s (M1) brain was used
to estimate the transitivity and drive the denoising for the
second Macaque (M2).

4.2 Completion
4.2.1 Synthetic Networks
Here we show the results of the network completion Al-
gorithm 2 for an increasing number of missing entries and
number of nodes. Each separate case considers the average
of 50 noise matrix realisations.Here we deal with a random
network withwij ∼ U [0, 1]. For each case, we optimise three
graph metrics (transitivity, degree, clustering coefficient)
and show the error reduction of the completion procedure.

M1 - t:0.24

20 40 60 80

20

40

60

80

M2 - t:0.22

20 40 60 80

20

40

60

80

M2n - t:0.13

20 40 60 80

20

40

60

80

M2est - t:0.24

20 40 60 80

20

40

60

80

Fig. 6. Example of obtained denoised networks when using M1’s data
to estimate the transitivity and apply that to the network of M2. It is
observed that the denoised network is close to the true network even
though the transitivity was set to that of M1.

The missing values are initialised to 0.5 since this is the
mean of the uniform U [0, 1] distribution. This initialisation
produces the smallest distance to the true network from
all possible initialisations. Error reduction is calculated the
same way as in Eq. 24 with We being the initialised network.
Results are shown in Figure 7.

number of nodes
16 32 64 128

er
ro

r 
re

du
ct

io
n

0

0.2

0.4

0.6

0.8

1

1.2

5%
10%
15%
20%
25%
50%

Fig. 7. Error reduction of the completion procedure for different number
of nodes and percentage of missing entries. We use here three graph
metrics (degree, transitivity, clustering).

4.2.2 Real Networks
4.2.2.1 Known metrics: We applied the completion

algorithm on the following datasets. 1) USAir: a 330 node
network of US air transportation, where the weight of a
link is the frequency of flights between two airports [41].
2) Baywet: a 128 node network which contains the carbon
exchanges in the cypress wetlands of south Florida during
the wet season [42]. The weights indicate the feeding levels
between taxons. 3) Celegans: the neural network of the
worm C. elegans. Nodes indicate neurons and the edges are
weighted by the number of synapses between the neurons



8

TABLE 2
Further error reduction of Algorithm 4 compared to only denoising the

separate networks. In this case we have mixed a modular with a
scale-free network. With this figure we illustrate that the optimisation
problem of Eq. 6 results in reducing the error between the estimates

and the true networks as would happen from problem in Eq. 8.

Nodes 16 32 64 128
Reduction 0.35± 0.07 0.30± 0.24 0.24± 0.30 0.22± 0.22

[43]. In Figure 8 we show the results of the completion algo-
rithm 2 for all three networks and different graph metrics.

4.2.2.2 Uncertain metrics: In this section we demon-
strate the performance when the network metrics come from
different datasets. This showcases a realistic scenario when
a similar type of network is utilised in order to complete
the missing values. In Figure 9 we show the results of
the completion (a) on the Baywet dataset with the metric
obtained in the Baydry dataset which contains the carbon
exchanges in the dry season [40] and (b) on two enzyme
network with the metrics estimated from the g355 enzyme
and the completion performed on the g504 enzyme [40].

4.3 Decomposition

4.3.1 Synthetic Networks
In this section we show example results of the decom-
position scheme by considering by mixing (as their sum)
a modular and scale-free network. The modular network
consists of 8 modules. For the modular network we use
the modularity and for the scale free network we use the
transitivity as graph metrics to optimise. In Table II we
show the average error reduction of the two networks of
Algorithm 4 as compared with only denoising the two
networks separately. In this cases error reduction for a single
network is defined as:

er = 1− ||Wdec −W||F
||Wden −W||F

(24)

For all cases the penalty parameter λ is adjusted such that
the reconstruction error is reduced w.r.t. iterations of the
alternating minimisation procedure.

4.3.2 Airline data
The dataset is a binary network that contains the networks
for 37 airlines and 1000 airports [44]. We converted each
airline’s binary network to a weighted network by adjusting
any existing edge between two airports to the total number
of edges for all airlines. The mixed network consists of two
networks of different airlines mixed together (Lufthansa,
Ryanair) for a subset of 50 nodes (airports). In Figure 10 we
show the decomposition result by using only global graph
metrics (transitivity and global clustering coefficient).

5 DISCUSSION

The optimisation schemes described in this work enable the
adjustment of a network’s weight matrix to fulfil specific
properties. The utility of the denoising scheme (Section

3.1) was evaluated on a number of cases including real-
world data. It has to be pointed out that for convex graph
metrics, the denoising scheme is guaranteed to converge to
a network that is closer to the true underlying network than
the noisy observed network. In Figure 1 it is observed that
considering the degrees of the nodes overshadows any other
global metric’s performance. For non convex graph metrics
there is no guarantee but as shown in Figures 1 and 2, the
estimated network is a better estimate of the underlying
network than the original noisy version, even for increasing
noise and different network types. The only exceptions to
this can be observed for the clustering metrics (transitivity,
clustering coefficient) of the modular network in Figure 3.
This can be explained by noting that in our example most
of the weights (90%) are clustered in modules while the
denoising algorithm operates on all the weights. Constrain-
ing the weight updates only in the modules alleviates that
problem. The utility of this scheme is also displayed in
Figure 4 where an increase in the number of nodes does
not affect the performance. We point out that although the
error reduction increases as the number of nodes increases,
the error actually increases in absolute terms.

We also tested the efficacy of the scheme in a real world
EEG connectivity dataset of Alzheimers patients and con-
trol subjects. When performed in a within subject fashion,
and splitting each subject’s data into a train set to obtain
estimates of the graph metrics, and a test set to apply the
denoising algorithm, we successfully reduced the variability
of the network regarding background EEG activity. More
importantly, though, in a leave-subject-out procedure; us-
ing other subject’s graph metrics as prior knowledge the
algorithm was able to decrease the noise of the network,
albeit not as much as in the within subject paradigm
as expected. This has important implications in the EEG
and related fields (e.g. BCI, fMRI, DTI) where subject in-
dependent paradigms are necessary to obtain practically
usable and consistent performance [45]. This is supported
by the Macaque example where the transitivity metric of
one Macaque was used to drive the denoising procedure
for the connectivity matrix of another Macaque, see Figure
6. Furthermore, such an approach can be useful in any
application that can obtain prior knowledge of the structure
of the network under consideration. Our work extends prior
work in the network denoising field [23]–[25] by providing
theoretical proofs and empirical evidence that it is viable
for a variety of network types. We also provide the strong
proof that the degree of a network, resulting in a convex cost
function, is very important in network estimation.

Weighted network completion has not been attempted
in the literature and here we employed graph metrics as
the driving force behind estimating the missing weights.
For modest sizes of missing entries we showed that there
is significant benefit of using the completion Algorithm 2
up to 128 node networks and using three graph metrics.
Similarly, for real networks, we show that the knowledge
of graph metrics can aid in completing the network. More
importantly, there is a benefit from the knowledge of global
metrics as seen in Figure 8. For the cases that the metrics
are not completely known we show the efficacy of the
completion algorithm in two cases where we use similar
datasets to drive the completion procedure, see Figure 9.



9

5% 10% 20% 30% 40% 50%

e
r
r
o

r
 r

e
d

u
c
ti
o

n

0

0.2

0.4

0.6

0.8

1
Baywet

5% 10% 20% 30% 40% 50%

e
r
r
o

r
 r

e
d

u
c
ti
o

n

0

0.2

0.4

0.6

0.8

1
Celegans

degree
trans

5% 10% 20% 30% 40% 50%

e
r
r
o

r
 r

e
d

u
c
ti
o

n

0

0.2

0.4

0.6

0.8

1
USAir97

Fig. 8. Error reduction of the completion procedure for the three networks in terms of the percentage of missing entries. The estimated network was
closer to the true network for both global (transitivity) and local (degree) metrics.

5% 10% 20% 30% 40% 50%

e
rr

o
r 

re
d

u
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Baydry to Baywet

5% 10% 20% 30% 40% 50%

e
rr

o
r 

re
d

u
ct

io
n

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Enzyme 355 to 504

Fig. 9. Error reduction of the completion procedure when using network
metrics from different sources. For the Baywet dataset, the estimated
network was closer to the true network for both global (transitivity) and
local (degree) metrics. On the other hand, for the enzyme networks only
the global metric resulted in a decrease in the error due to the large
individual differences.

When utilising graph metrics in the network decompo-
sition scheme (Section 3.3) the first observation is that the
error reduction is greater by using information from both
networks that combine to produce the mixed network. As
shown in Table II the resulting estimates from the alter-
nating minimisation procedure of Algorithm 4 confirm the
intuition behind that methodology. It has to be noted that
this is expected since more information is used as compared
to only denoising. Namely, that the constraints employed in
the optimisation problems of (6) and (7) can result in the
behaviour of optimisation problem (8). Also in Table II, we
show the error reduction as a function of the number of
nodes. The choice of global graph metrics, modularity and
transitivity, further demonstrates the utility of the method-
ology in setting where local information would be difficult
to obtain.

The decomposition algorithm was tested on real data
on mixed airline networks for both global and local only
metrics. Assuming prior information on the structure of

Wm

10 20 30 40 50

10

30

50

W1

10 20 30 40 50

10

30

50

W2

10 20 30 40 50

10

30

50

Ŵ
init

1

10 20 30 40 50

10

30

50

Ŵ
init

2

10 20 30 40 50

10

30

50

Ŵ1

10 20 30 40 50

10

30

50

Ŵ2

10 20 30 40 50

10

30

50

Fig. 10. Decomposition of a mixed airline network Wf of 50 nodes into
estimates Ŵ1 and Ŵ2. The true networks are shown as W1 and W2.
The initial estimates of the denoising algorithm for the two networks
are shown as Winit

1 and Winit
2 . In this case we have used only global

metrics (transitivity and clustering coefficient).

the networks, the algorithm was able to produce reliable
estimates for the underlying networks, see Figure 10. Net-
work decomposition for mixed networks has been rarely
attempted in the literature. Our work provides a new for-
mulation that takes account prior knowledge and the use
of the reconstruction error in the estimation process. This
is in contrast with [24], [31] where only factor graphs are
considered.

The choice of which graph measure should be used
depends on the application and on which may be available.



10

Local metrics assume knowledge of individual nodes’ prop-
erties as is typical for e.g EEG applications (Figure 5) but
may not be the case for the airport data (Figure 10). There are
two limitations of this study that will be addressed in future
work. Computational complexity and scaling the efficacy
to large networks. Although many real world networks
(e.g. EEG, Social Networks, Weather Networks, Airline Net-
works) are of the size that we consider in this work (100s
of nodes) there exist networks that consist of very large
number of nodes (>> 1000s of nodes). The calculation
of the derivatives increases in the order of O(n2) making
the computation slow and inefficient. As also discussed in
[46], this is an open issue in graph based metrics. For large
computational operations on graphs, polynomial approxi-
mations have been proposed [47]. Similarly, as a network
increases in size, the number of graph metrics should be
increased in order to produce comparable performance to
the medium sized networks considered here. This is because
the number of unknown parameters to estimate increases
therefore more graph metrics are necessary. In order to
complement the popular graph metrics that we used in this
work, we are considering other potential candidates such as
ones based on graph spectral methods, and statistical graph
analysis.

6 CONCLUSIONS

In this work we developed three mathematical optimisa-
tion frameworks that were utilised in network denoising,
decomposition and completion. The basis of the methodol-
ogy lies in adjusting a network’s weights to conform with
known graph measure estimates. We derived expressions
for the derivatives of popular graph metrics and designed
algorithms that use those derivatives in gradient descent
schemes. We tested our proposed methods in toy examples
as well as real world datasets.

The work performed here has the following implications
for network estimation. Firstly, we showed that the use of
graph metrics for network denoising reliably reduces the
noise in an observed network for both convex and non-
convex graph metrics. Also, by combining multiple graph
metrics, further reduction is ensued. Depending on the
type of network, some metrics may be more appropriate
than others. Modularity works well for modular networks
while degree seems to perform well for both random and
scale free networks. For network decomposition, the use
of global information as prior knowledge was sufficient to
separate the underlying networks from their mixture. Such
a framework can be the basis for constrained matrix or
tensor decomposition of dynamic networks or multilayer
networks. Finally, we provide a new weighted network
completion paradigm that can complement existing matrix
completion algorithms.

Other applications of our methodology can be weighted
network reconstruction; the field that designs networks
from scratch fullfilling specific criteria (e.g. a specific value
for transitivity). The design of such network from scratch
can be performed by transversing the level sets of a graph
measure through the graph measure derivatives. Link pre-
diction can also be incorporated by considering not only

the weight similarities between different nodes but also the
similarity between their derivatives.

ACKNOWLEDGMENT

We would like to thank Dr Mario Parra Rodriguez (Heriot-
Watt University) for making the EEGs available to us.

REFERENCES

[1] B. Bollobas, Graph theory: an introductory course. Springer Science
& Business Media, 2012.

[2] J. L. Gross and J. Yellen, Graph theory and its applications. CRC
press, 2005.

[3] N. Deo, Graph theory with applications to engineering and computer
science. Courier Dover Publications, 2016.

[4] A.-L. Barabási, “Network science: Luck or reason,” Nature, vol.
489, no. 7417, pp. 507–508, 2012.

[5] N. M. Tichy, M. L. Tushman, and C. Fombrun, “Social network
analysis for organizations,” Academy of management review, vol. 4,
no. 4, pp. 507–519, 1979.

[6] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proceedings of the national academy of
sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[7] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks.” Proceedings of
the National Academy of Sciences of the United States of America, vol.
101, no. 11, pp. 3747–3752, 2004.

[8] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity,” NeuroImage, vol. 52, pp. 1059–1069, 2010.

[9] A. Laita, J. S. Kotiaho, and M. Mönkkönen, “Graph-theoretic
connectivity measures: What do they tell us about connectivity?”
Landscape Ecology, vol. 26, no. 7, pp. 951–967, 2011.

[10] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. May 2007, pp. 1019–1031, 2007.

[11] D. S. Goldberg and F. P. Roth, “Assessing experimentally derived
interactions in a small world.” Proceedings of the National Academy
of Sciences of the United States of America, vol. 100, no. 8, pp. 4372–
4376, 2003.

[12] L. Lu and T. Zhou, “Link prediction in complex networks: a
survey,” Physica A: Statistical Mechanics and its Applications, vol.
390, no. 6, pp. 1150–1170, 2010.

[13] M. Kim and J. Leskovec, “The Network Completion Problem:
Inferring Missing Nodes and Edges in Networks,” SIAM Inter-
national Conference on Data Mining, pp. 47–58, 2011.

[14] S. Hanneke and E. P. Xing, “Network Completion and Survey
Sampling,” Aistats, vol. 5, pp. 209–215, 2009.

[15] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction
using supervised learning,” in SDM06: workshop on link analysis,
counter-terrorism and security, 2006.

[16] P. Symeonidis, N. Iakovidou, N. Mantas, and Y. Manolopoulos,
“From biological to social networks: Link prediction based on
multi-way spectral clustering,” Data & Knowledge Engineering,
vol. 87, pp. 226–242, 2013.

[17] R. Mastrandrea, T. Squartini, G. Fagiolo, and D. Garlaschelli,
“Enhanced reconstruction of weighted networks from strengths
and degrees,” New Journal of Physics, vol. 16, 2014.

[18] T. Squartini and D. Garlaschelli, “Analytical maximum-likelihood
method to detect patterns in real networks,” New Journal of Physics,
vol. 13, 2011.

[19] K. Bleakley, G. Biau, and J.-P. Vert, “Supervised reconstruction
of biological networks with local models,” Bioinformatics, vol. 23,
no. 13, pp. 57–65, 2007.

[20] M. Filosi, R. Visintainer, S. Riccadonna, G. Jurman, and
C. Furlanello, “Stability indicators in network reconstruction,”
PLoS ONE, vol. 9, no. 2, 2014.

[21] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring
networks of diffusion and influence,” Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’10, vol. 5, no. 4, pp. 1019–1028, 2010.

[22] S. Myers and J. Leskovec, “On the convexity of latent social
network inference,” in Advances in Neural Information Processing
Systems, 2010, pp. 1741–1749.



11

[23] M. Aghagolzadeh, M. Al-Qizwini, and H. Radha, “Denoising of
network graphs using topology diffusion,” Conference Record -
Asilomar Conference on Signals, Systems and Computers, vol. 2015-
April, no. 1, pp. 728–732, 2015.

[24] Q. D. Morris and B. J. Frey, “Denoising and Untangling Graphs
Using Degree Priors,” Advances in Neural Information Processing
Systems 16, pp. 385–392, 2004.

[25] H. Gao, X. Wang, J. Tang, and H. Liu, “Network denoising in social
media,” Proceedings of the 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining - ASONAM ’13,
pp. 564–571, 2013.

[26] G. Caldarelli, A. Chessa, F. Pammolli, A. Gabrielli, and M. Puliga,
“Reconstructing a credit network,” Nature Physics, vol. 9, no. 3, pp.
125–126, 2013.

[27] O. Sporns and R. F. Betzel, “Modular Brain Networks,” Annual
Review Psychology, vol. 67, pp. 613–640, 2016.

[28] B. Huang and T. Jebara, “Exact graph structure estimation with
degree priors,” 8th International Conference on Machine Learning and
Applications, ICMLA 2009, pp. 111–118, 2009.

[29] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion
from a few entries,” IEEE Transactions on Information Theory, vol. 56,
no. 6, pp. 2980–2998, 2010.

[30] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst,
“Matrix Completion on Graphs,” arXiv, p. 10, 2014. [Online].
Available: http://arxiv.org/abs/1408.1717

[31] C. Nash-Williams, “Decomposition of finite graphs into forests,”
Journal of the London Mathematical Society, vol. 39, no. 12, pp. 157–
166, 1964.

[32] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani,
“Characterization and modeling of weighted networks,” Physica
A: Statistical Mechanics and its Applications, vol. 346, no. 1-2 SPEC.
ISS., pp. 34–43, 2005.

[33] Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
2004.

[34] G. Fagiolo, “Clustering in Complex Directed Networks,” Reason,
vol. 162, no. August, pp. 139– 162, 2004.

[35] J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski, “Intensity
and coherence of motifs in weighted complex networks,” Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 71,
no. 6, pp. 1–4, 2005.

[36] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,”
Social Networks, vol. 31, no. 2, pp. 155–163, 2009.

[37] Y.-T. Chang and D. Pantazis, “Modularity Gradients: Measuring
the contribution of edges to the community Structure of a brain
network,” IEEE 10th International Symposium on Biomedical Imaging,
pp. 536–539, 2013.

[38] B. J. Prettejohn, M. J. Berryman, and M. D. McDonnell, “Methods
for generating complex networks with selected structural prop-
erties for simulations: a review and tutorial for neuroscientists.”
Frontiers in computational neuroscience, vol. 5, no. March, p. 11, 2011.

[39] M. Pietto, M. A. Parra, T. N., F. F., G. A.M., B. J., R. P., M. F., L. F. I.
A., and B. S., “Behavioral and Electrophysiological Correlates of
Memory Binding Deficits in Patients at Different Risk Levels for
Alzheimers Disease,” Journal of Alzheimer’s Disease, vol. 53, pp.
1325–1340, 2016.

[40] R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[Online]. Available: http://networkrepository.com

[41] “Pajek dataset; 2006. available: http://vlado.fmf.uni-
lj.si/pub/networks/data/.”

[42] “The koblenz network collection; 2015. available:
http://konect.uni-koblenz.de/.”

[43] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-
world’ networks.” Nature, vol. 393, no. 6684, pp. 440–2, 1998.

[44] A. Cardillo, J. Gómez-Gardenes, M. Zanin, M. Romance, D. Papo,
F. del Pozo, and S. Boccaletti, “Emergence of network features
from multiplexity,” arXiv preprint arXiv:1212.2153, 2012.

[45] L. Spyrou, Y. Blokland, J. Farquhar, and J. Bruhn, “Optimal
multitrial prediction combination and subject-specific adaptation
for minimal training brain switch designs,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. PP, no. 99, 2015.

[46] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other

irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3,
pp. 83–98, 2013.

[47] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129 – 150, 2011.

L oukianos Spyrou is a Research Associate at
the Institute for Digital Communications, Univer-
sity of Edinburgh’s School of Engineering. He is
currently working on the MASNET project with
Prof. John Thompson. His primary research in-
terests are in machine learning and signal pro-
cessing methodologies with focus on biomedical
applications. Loukianos received the M.Eng. de-
grees from the University of York, Department of
Electronics in 2004, the M.Sc. degree from the
King’s College London in 2005. His PhD was

awarded in 2009 from Cardiff University. He has been working as a
postdoctoral researcher since 2012 with previous posts in Radboud
University and in the University of Surrey.

J avier Escudero (S07M10) received the MEng
and PhD degrees in telecommunications engi-
neering from the University of Valladolid, Spain,
in 2005 and 2010, respectively. Afterwards, he
held a post-doctoral position at Plymouth Univer-
sity, UK, until 2013. He is currently a tenured fac-
ulty member (Chancellor’s Fellow) at the School
of Engineering of the University of Edinburgh,
UK, where he leads a research group in biomed-
ical signal processing with particular interests in
non-linear analysis, network theory, and multi-

way decompositions. He is author of over 45 scientific articles. Dr Escud-
ero received the Third Prize of the EMBS Student Paper Competition in
2007 and the award to the best PhD thesis in healthcare technologies by
the Spanish Organization of Telecommunications Engineers in 2010. In
2016, he was elected member of the Young Academy of Scotland. He is
president of the society of Spanish Researchers in the United Kingdom
during the 2018/19 term.



1

APPENDIX A

Theorem 1. Let x, y, z ∈ Rn and f(x) =M with f : Rn → R.
Suppose z = x + y. If the cost function c(z) = (f(z) −M)2 is
convex, then gradient descent with iteration index k ∈ (0...K):

zk+1 = zk − λ∇c(zk) (1)

will converge to a point zK such that:

||x− zK ||2 ≤ ||x− z||2 (2)

for any z and small enough λ.

Proof. The vectors x, y, z denote the vectorised versions of
the adjacency matrices W. This theorem describes the situa-
tion that a network (x) is corrupted by noise (y) resulting in
a noisy network (z = x + y). The purpose of this proof is to
show that gradient descent with convex c(.) will converge
to zK which is a better, in terms of distance, estimate of
x than z. The proof does not try to show that gradient
descent on convex functions achieves a global minimum;
instead that the minimum achieved is a better estimate of
the network than the original noisy network z. Note that for
graph metrics in general, there are infinite solutions for a
matrix W that achieves a minumum point.

For strictly convex functions, the proof is trivial since
there is a unique minimum which corresponds to x only
and gradient descent will converge to that value.

For both convex and strictly convex functions the
proof is as follows. The sublevel sets, Ls(c) =
{z ∈ Rn | c(z) < s} of a convex function are convex sets.
Furthermore, La(c) ⊆ Lb(c) for any a ≤ b. For any point
zk with c(zk) = Lk, the negative gradient −∇c(zk) forms a
right angle with the level set at Lk (by definition). Since the
level sets are convex sets, the gradient update zk − λ∇c(zk)
leads to a point zk+1 such that the angle between zk+1zk

and zkz∗ is acute in the triangle (zk)(zk+1)(z∗) for any
z∗ ∈ Lk(c) (see Figure ??) and small enough step size.
Since the optimum point x is also contained in Lk(c) and
the relation between the distances ||z∗− zk+1|| < ||z∗− zk||,
this implies that ||x − zk+1|| < ||x − zk|| for any z and k
provided that the step size is small enough. Small enough
in the sense that the gradient step must not cross the level
set of z∗.

Fig. 1. Triangle formed between zk, zk+1 and z∗. z∗ is any point inside
the sublevel set at f(zk) = Kk. For such a triangle the distance ||z∗ −
zk+1|| is always smaller than ||z∗ − zk||. The closed curve denotes the
boundary of the level set at k.

APPENDIX B
B.1 Derivatives of scalar functions of matrices

Differentiating a scalar function f(W) w.r.t. a matrix W,
∂f
∂W , is essentially a collection of derivatives w.r.t. the sep-
arate matrix elements placed at the corresponding indices,
i.e.:

∂f

∂W
=


∂f

∂w11

∂f
∂w12

· · · ∂f
∂w1n

∂f
∂w21

∂f
∂w22

· · · ∂f
∂w2n

...
...

. . .
...

∂f
∂wn1

∂f
∂wn2

· · · ∂f
∂wnn

 (3)

Expressing the derivatives in matrix form allows easy and
scalable formulation of the derivatives irrespective of the
number of entries. If the derivative of a specific element of
W, indexed by (i, j), is required to be processed separately,
this can be performed by selecting the same index of the
derivative matrix. For example { df

dW}ij =
df

dwij
.

In the case of undirected networks, where the weight
matrices are symmetric, the following adjustment needs
to be made to ensure that the derivatives are themselves
symmetric:

df

dW
=

∂f

∂W
+

(
∂f

∂W

)T

− diag
(
∂f

∂W

)
(4)

The formulations in the text are in terms of the partial
derivatives for simplicity.

B.2 Modularity derivative

The modularity is written as:

M =
1

lw

∑
ij

(
wij −

kwi k
w
j

lw

)
δij (5)

where δij = 1 whenever nodes i and j belong to the same
module and zero otherwise. The term 1

lw
∑
ij
(wijδij) can be

written as:

m1 =
1

lw

∑
ij

(wijδij) =
tr{W∆T}
tr{WOn}

=
θ

lw
(6)

where ∆ is the matrix that contains the δij . The gradient is
given by:

∂m1

∂W
=
lw∆− θOT

n

(lw)2
(7)

The other term can be written as:

m2 =
1

(lw)2

∑
ij

kwi k
w
j δij =

1

(lw)2

∑
ijkl

wikwjlδij = (8)

1

(lw)2

n∑
r=1

tr{WTCrW∆T} = 1

(lw)2

n∑
r=1

ξr (9)

where Cr is a circular shift matrix that shifts down the rows
of the matrix on the right by r − 1.



2

APPENDIX C
Theorem 2. For any weighted network with a graph measure of
the type f(W) = tr{WA} the function g(W) = (f(W)−K)

2

is convex for any matrix A.

Proof. In order to show that g(W) is convex it suffices to
show that the Hessian of g is positive semidefinite. We will
use differential notation [?] to calculate the Hessian which
is defined as:

{Hg}ij ≡
∂2g

∂xi∂xj
(10)

where xi is an element of the vectorized weight matrix W.
The first differential of g(W) is:

dg(W) = 2 (tr{WA} −K) tr{dWA} (11)

The second differential is:

d2g(W) = 2tr{dWA}tr{dWA} (12)

Using the relation between the trace and the vec operator,
i.e. tr{AT B} = vec(A)T vec(B) and the circular property of
the trace, i.e. tr{dWA} = tr{AdW}:

d2g(W) = 2vec(dWT )T vec(A)vec(AT )T vec(dW) (13)
= 2vec(dW)T Knnvec(A)vec(AT )T vec(dW) (14)

= vec(dW)T 2vec(AT )vec(AT )T vec(dW) (15)

where Knn is the commutation matrix satisfying vec(XT ) =
Knnvec(X). Note that we have ‘commuted’ Knn from
vec(dWT ) to vec(AT ). The second differential was brought
to the form d2g = vec(dW)T Zvec(dW) which means that
the Hessian is [?]:

Hg =
1

2
(Z + ZT ) (16)

The matrix Z is of the type Z = ccT . Since c is a vector the
product ccT is rank-one producing a single nonzero positive
eigenvalue. Therefore Z is positive semi-definite and hence
the Hessian is positive semi-definite.


	GraphOpt_new_submission
	GraphOpt_appendix

