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Abstract Morphogenesis emerges from complex multiscale interactions between genetic and

mechanical processes. To understand these processes, the evolution of cell shape, proliferation

and gene expression must be quantified. This quantification is usually performed either in full 3D,

which is computationally expensive and technically challenging, or on 2D planar projections,

which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX

(www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface

images extracted from 3D data. In addition to traditional 3D image analysis, we have developed

algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and

fluorescence signal quantification. The software’s modular design makes it easy to include existing

libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be

exported and used as templates for simulation models, providing a powerful platform to investigate

the interactions between shape, genes and growth.

DOI: 10.7554/eLife.05864.001

Introduction
Morphogenesis of multicellular organisms occurs through multiscale interactions of genetic networks,

cell-to-cell signaling, growth and cell division. Because of the complexity of temporal and spatial

interactions involved, computer simulations are becoming widely used (Dumais and Steele, 2000;

Jönsson et al., 2006; Sick et al., 2006; Lecuit and Lenne, 2007;Merks et al., 2007; Stoma et al., 2008;
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Kondo and Miura, 2010; Varner et al., 2010; Kennaway et al., 2011; Santuari et al., 2011;

Aegerter-Wilmsen et al., 2012; Kierzkowski et al., 2012; Bassel et al., 2014; Milde et al., 2014;

Sampathkumar et al., 2014; Yoshida et al., 2014) in what is now being called Computational

Morphodynamics (Chickarmane et al., 2010). Key to this methodology is the combination of time-

lapse microscopy to quantify changes in cell geometry and gene expression with dynamic spatial

modeling (Jönsson et al., 2012). Confocal microscopy is frequently the tool of choice for data

collection, as the proliferation of fluorescence markers and variations in the method make it possible

to visualize proteins, organelles, cell boundaries, and even protein–protein interaction and protein

movement in vivo. Other technologies such as serial block-face scanning electron microscopy (SEM)

(Denk and Horstmann, 2004) make it possible to study sub-cellular structures at a much higher

resolution on fixed samples. However, despite the rapid advancement of 3D imaging technologies,

there is a lack of methods and software to process and quantify these data and to integrate them

within simulation environments.

Most simulation models of morphogenesis operate on 2D templates (Dumais and Steele, 2000;

Jönsson et al., 2006; Sick et al., 2006; Merks et al., 2007; Stoma et al., 2008; Kondo and Miura,

2010; Varner et al., 2010; Kennaway et al., 2011; Santuari et al., 2011; Aegerter-Wilmsen et al.,

2012; Kierzkowski et al., 2012; Sampathkumar et al., 2014). This is not surprising since many key

biological processes occur on surfaces, for example in epithelial layers (Lecuit and Lenne, 2007;

Savaldi-Goldstein et al., 2007; Heller et al., 2014). Morphogenesis involves complex 3D deformation,

such as folding during gastrulation in animal systems or bulging out of new lateral organs in plants,

causing significant curvature in the tissues controlling these events. It is therefore essential to

be able to quantify cell shapes and fluorescence-based reporters on curved surface layers of cells.

The simplest method to achieve this is to take several image slices and project them onto a single

plane (Butler et al., 2009; Chickarmane et al., 2010; Kuchen et al., 2012). However, when trying

to quantify cell shape change, division orientations, or growth, distortions due to the projection

quickly become too large as the angle between the surface and the projection plane increases.

eLife digest Animals, plants and other multicellular organisms develop their distinctive three-

dimensional shapes as they grow. This process—called morphogenesis—is influenced by many genes

and involves communication between cells to control the ability of individual cells to divide and grow.

The precise timing and location of events in particular cells is very important in determining the final

shape of the organism.

Common techniques for studying morphogenesis use microscopes to take 2-dimensional (2D) and

3-dimensional (3D) time-lapse videos of living cells. Fluorescent tags allow scientists to observe

specific proteins, cell boundaries, and interactions between individual cells. These imaging

techniques can produce large sets of data that need to be analyzed using a computer and

incorporated into computer simulations that predict how a tissue or organ within an organism grows

to form its final shape.

Currently, most computational models of morphogenesis work on 2D templates and focus on how

tissues and organs form. However, many patterning events occur on surfaces that are curved or

folded, so 2D models may lose important details. Developing 3D models would provide a more

accurate picture, but these models are expensive and technically challenging to make.

To address this problem, Barbier de Reuille, Routier-Kierzkowska et al. present an open-source,

customizable software platform called MorphoGraphX. This software extracts images from 3D data

to recreate curved 2D surfaces. Barbier de Reuille, Routier-Kierkowska et al. have also developed

algorithms to help analyze growth and gene activity in these curved images, and the data can be

exported and used in computer simulations.

Several scientists have already used this software in their studies, but Barbier de Reuille, Routier-

Kierzkowska et al. have now made the software more widely available and have provided a full

explanation of how it works. How scientists can extend and customize MorphoGraphX to answer

their own unique research questions is also described. It is anticipated that MorphoGraphX will

become a popular platform for the open sharing of computational tools to study morphogenesis.

DOI: 10.7554/eLife.05864.002
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Even small amounts of tissue curvature can hinder the accurate imaging of a single cell layer over an

entire sample. To alleviate some of these issues, methods have been developed to determine the

3D position of cell junctions on the surface, while the segmentation into cells is still performed on

flat 2D images (Dumais and Kwiatkowska, 2002; de Reuille et al., 2005; Routier-Kierzkowska

and Kwiatkowska, 2008). However these approaches are labor intensive, limited to tissues that can

be visualized as a flat 2D image, and are not accurate when the angle of the tissue with the

projection plane becomes too large. Furthermore, methods based on tissue casts combined with

stereo reconstruction of SEM images (Dumais and Kwiatkowska, 2002; Routier-Kierzkowska and

Kwiatkowska, 2008) need to be combined with methods using fluorescent markers (Uyttewaal

et al., 2012) if gene expression is to be monitored.

Here we present a method and the open-source software MorphoGraphX (www.MorphoGraphX.org,

Box 1) to quantify the temporal evolution of cellular geometry and fluorescence signal on curved 2D

surface layers of cells over multiple time points in both plants and animals. In addition to 2D curved

surfaces, MorphoGraphX also possesses a rich set of tools for full 3D image processing and cell

segmentation, and can be used to easily transfer realistic cell geometries and fluorescent marker data

into computational modeling environments. MorphoGraphX is built from a collection of loadable

modules (shared libraries), centered around an interactive visualization core that exploits the latest

features of modern Graphics Processing Units (GPUs). This design allows the software to be easily

adapted to changing research needs, and facilitates the integration of algorithms from other open-

source imaging processing libraries into a custom work flow. The software is the first of its kind

specialized to process curved surface layers of cells, and here we demonstrate its capabilities both in

plant and animal systems.

Results

3D visualization of voxels and meshes
Modern imaging technologies today provide us with an abundance of data from a variety of sources:

Confocal Laser Scanning Microscopy, Magnetic Resonance Imaging and block-face SEM all provide

full 3D volumetric data that can be rendered in MorphoGraphX (Figure 1, Video 1). Our software can

also process surfaces, which can be imported from 3D scanners, reconstructions from Stereo-SEM

images (Routier-Kierzkowska and Kwiatkowska, 2008), focus stacking microscopes and scanning

probe methods such as Cellular Force Microscopy (Routier-Kierzkowska et al., 2012) (CFM), or

extracted within MorphoGraphX from full 3D data sets (Figure 1). MorphoGraphX contains a highly

optimized rendering engine that is capable of accurate rendering of both semi-transparent surfaces

and volumetric data simultaneously. Surfaces are represented by an oriented triangular mesh, which

is typically extracted from the surface of an object, and thus represents the outermost tissue layer

(Figure 1A,C,D), or the boundaries of individual 3D objects (e.g., cells) in the case of full 3D

segmentation (Figure 1B). Once processed, surfaces and associated data can be exported in a variety

of file formats suitable for loading into modeling or analysis softwares, allowing the direct use of sample

Box 1. All resources for MorphoGraphX, including the
user manual, the latest software downloads and the

source code, can be found on www.MorphoGraphX.org.

The latest version of the documentation is also distributed with MorphoGraphX itself, and is

available from the ‘Help’ menu (see also Supplementary file 1). We encourage users to

develop their own plugins to extend MorphoGraphX for new research tasks. If you develop

a plugin you think would be of general use, please contact us so that we can include it in the

next release of MorphoGraphX. Contact information along with example plugins is provided on

the ‘Community’ tab on the MorphoGraphX website www.MorphoGraphX.org.

DOI: 10.7554/eLife.05864.003
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geometry in computer simulations (Santuari et al., 2011; Kierzkowski et al., 2012; Bassel et al., 2014;

Sampathkumar et al., 2014; Yoshida et al., 2014).

Feature extraction on curved surfaces
A key strength of MorphoGraphX is the ability to summarize 3D data as a curved surface image.

After extracting the shape of an organ, 3D data just below the surface can be projected onto it, creating

a curved image of the outer layer of cells (Figure 2). This enables the extraction of precise cell outlines

without the distortions associated with a flat 2D

projection (Figure 2—figure supplement 1). We

have found that many algorithms designed for 2

and 3D image processing can be adapted to

our curved surface images. Feature extraction

in MorphoGraphX typically follows a pattern:

(i) volumetric data (often a cell outline marker) is

pre-processed to remove noise or obstructions;

(ii) the object of interest is turned into a mask

(binary image); (iii) the object is extracted as

a surface mesh; (iv) volumetric data is projected

onto the surface; (v) the projection is used for

segmentation of the surface into cells (Figure 2,

Video 2). The segmentation can be fully auto-

matic (Video 3) or directed by manually placed

Figure 1. MorphoGraphX renderings of 3D image data and surfaces. (A) Extraction of a brain surface (gray, semi-

transparent surface colored by signal intensity) from a Magnetic Resonance Angiography scan of an adult patient

(IXI dataset, http://www.brain-development.org/). Surrounding skull and skin (green) have been digitally removed

prior to segmentation. Voxels from the brain blood vessels are colored in purple. (B) Serial block-face scanning

electron microscopy (SEM) images of mouse neocortex (Whole Brain Catalog, http://ccdb.ucsd.edu/index.shtm,

microscopy product ID: 8244). Cutaway view (gray) shows segmented blood vessels (dark purple) and five pyramidal

neurons colored according to cell label number. (C) Topographic scan of onion epidermal cells using Cellular Force

Microscopy (Routier-Kierzkowska et al., 2012), colored by height. (D) 3D reconstruction of Arabidopsis thaliana

leaf from stereoscopic SEM images (Routier-Kierzkowska and Kwiatkowska, 2008), colored by cell size. Scale

bars: (A) 2 cm, (B and C) 20 μm, (D) 30 μm.

DOI: 10.7554/eLife.05864.004

Video 1. User interface and rendering in

MorphoGraphX.

DOI: 10.7554/eLife.05864.005
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Figure 2. Feature extraction and 3D editing of confocal image stacks. A sample workflow from raw data to segmented cells is presented for an

A. thaliana flower (A–F). (A and B) After removing noise with 3D filters, the stack (green) is converted into a mask using edge detection (yellow).

(C) A coarse representation of the surface is extracted with marching cubes, then smoothed and subdivided. (D) After subdivision, a thin band of

signal representing the epidermal layer (purple) is projected onto the mesh, giving a clear outline of the cells. Note that the projection is

perpendicular to the curved surface and its depth is user-defined (in this case, from 2 to 5 μm). (E) The surface is then segmented with the

watershed algorithm, which we adapted to work on unstructured triangular meshes. (F) Closeup of adaptive subdivision, with finer resolution near

cell boundaries. A similar process flow was used to segment shoot apical meristem in tomato (Kierzkowski et al., 2012; Nakayama et al., 2012)

and A. thaliana (Kierzkowski et al., 2013), as well as Cardamine hirsuta leaves (Vlad et al., 2014). (G) 3D editing tools can be used to expose

internal cell layers prior to surface extraction. Cell shapes extracted from the curved pouch of a Drosophila melanogaster wing disc, after

removing signal from the overlying peripodial membrane (Aegerter-Wilmsen et al., 2012). Alternatively, the stack can be cleaned by removing

voxel data above an extracted mesh or conserving only the signal at a defined distance from the mesh, as shown in purple in (D) and

Figure 2—figure supplement 2. (H) MorphoGraphX also provides tools to project signal on arbitrary curved surfaces defined interactively by

Figure 2. continued on next page
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seeds. Steps (i–iii) can be repeated as surfaces of interest will often be used to help pre-processing the

volumetric data. For example, surfaces can be used to trim the 3D image (Figure 2—figure

supplement 2), or to select regions of interest for data analysis.

Interaction with Bezier surfaces
MorphoGraphX allows user-defined surfaces to interact with volumetric data both for visualization and

feature extraction. The researcher can interactively define Bezier surfaces to visualize curved slices

through an object. By manipulating the Bezier control points it is possible to fit almost any shape to

a surface of interest within the sample. An extreme example of this is shown in Figure 2H where the

surface has been shaped to display the cortical cells of a mature Arabidopsis embryo. The Bezier

surface can be converted to a triangular mesh, and segmented into cells with the same procedure

used for Figure 2A–E. The extracted tissue geometry can be then used, for example, as template for

simulations (Santuari et al., 2011).

Signal quantification
Once a surface is segmented into cells, data collected simultaneously on a different channel,

such as a GFP fusion to a protein of interest, can then be projected onto the segmented

surface (Figure 3). This allows the quantification of genetic expression and protein localization at

the cellular, or sub-cellular scale. As with the cell outlines, the projection creates a curved image

of the data that can be processed in a similar way as a planar 2D image. Many tools commonly

used for the analysis of flat images (for example in softwares such as Adobe Photoshop,

Gimp and ImageJ) have been adapted for use on curved surfaces in MorphoGraphX. This

includes Gaussian blur, erosion, dilation, morphological closing, local minima detection,

normalization, etc. The flexibility of this approach is demonstrated by our implementation of

more complex algorithms, such as the watershed transform for cell segmentation and our

adaptation of an algorithm based on signal gradients to compute the orientation of

microtubules (Figure 3A, Figure 3—figure supplement 3) that was previously implemented

in 2D (Boudaoud et al., 2014).

Signal coming from different tissue layers can be visualized and quantified by adjusting the depth

of projection (Figure 3B–E). This is particularly useful to distinguish protein expression levels at

different depths within an organ. As an illustra-

tion, in the shoot apical meristem of Arabidopsis

thaliana we can observe that the auxin efflux

carrier PINFORMED1 (PIN1) is first upregulated

in the epidermis at the site of incipient primor-

dium initiation before being activated in deeper

layers (Bayer et al., 2009; Kierzkowski et al.,

2013) (Figure 3C,D and Figure 3—figure

supplement 1).

Quantification can also be performed at the

sub-cellular scale (Pound et al., 2012). The amount

of fluorescence signal projected onto the tri-

angle mesh can be divided into a membrane

localized portion and a cell interior portion

(Figure 3E and Figure 3—figure supplement 2).

Figure 2. Continued

moving control points (red). A Bezier surface is highly bent to cut through the cortical cells of a mature A. thaliana embryo. Scale bars: 2 μm in (F),

20 μm in all other panels.

DOI: 10.7554/eLife.05864.006

The following figure supplements are available for figure 2:

Figure supplement 1. Maximal projection vs projection of signal on curved surface.

DOI: 10.7554/eLife.05864.007

Figure supplement 2. Mesh-volume interaction.

DOI: 10.7554/eLife.05864.008

Video 2. Manual segmentation of a tomato shoot

apex.

DOI: 10.7554/eLife.05864.009
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This is accomplished by summing all the signal

within a fixed distance from a cell border and

considering it as being associated with the

membrane, while all the signal further away from

the cell outline is called internal. The process can

be used to quantify what portion of a tagged

protein, for example, the auxin efflux carrier

PIN1, is localized to the plasma membrane or

internalized (Nakayama et al., 2012).

Projection of the signal on the surface allows

to summarize essential information from several

channels of a large confocal data set into a very

compact form. For example, the global shape of

the sample can be extracted from an autofluor-

escence signal, while the cell wall or membrane

marker collected in another channel is used to segment cells and obtain their geometry. The expression

level of a protein from a third channel may then be quantified at the cellular level based on the

segmentation. Finally, several samples in a time lapse experiment can be compared to obtain

information about the temporal evolution of shape and gene expression.

Time lapse analysis
In addition to data from single image stacks, MorphoGraphX is able to process and compare multiple

time points. This enables the analysis of stacks before and after experimental treatments, or time-

lapse data. This capability relies on an efficient method to co-segment samples from two time points.

One approach is to segment both stacks separately and then to use an automated algorithm to match

the points (Fernandez et al., 2010). However, automatic segmentation and matching can be prone to

errors that have to be checked and corrected by hand, which can be very time-consuming depending

on the error rate. For this we have developed a user-friendly interface in MorphoGraphX to manually

identify cell lineages on curved surfaces representing the tissue at different time points (Video 4).

Errors in lineage are detected automatically by comparing the neighborhoods of daughter cells

and their parents. Once the co-segmentation is complete, changes in cell area or gene expression

over the interval between two time points can be computed and visualized as a heatmap (Figure 4).

Cell proliferation can also be visualized as a colormap (Vlad et al., 2014), along with marking of the

new walls (Figure 4). Pairwise correspondence between time points can be combined in longer time

series (Figure 4—figure supplement 3), for example to perform clonal analysis over several days

(Vlad et al., 2014). The data can be output in various formats for further processing, such as the

comparison of growth rates with protein expression levels or microtubule orientations.

Growth directions and anisotropy
In addition to extracting areal growth rates from time-lapse data, MorphoGraphX can also be used

to quantify growth directions and anisotropy. The cell junctions (Figure 4—figure supplement 1)

are used as landmarks to compute the two dimensional Principal Directions of Growth (PDGs) of the

surface associated with each cell (Dumais and Kwiatkowska, 2002; Kwiatkowska and Dumais,

2003; Routier-Kierzkowska and Kwiatkowska, 2008). The cell lineage information is used to

account for cell division and identify only the junctions that are conserved in between time points

(Figure 4—figure supplement 2). Principal growth directions and their associated magnitudes can be

displayed on the surface of the simplified mesh used for the computation, or stored to be later

displayed on the original mesh. The growth anisotropy is computed from the magnitudes of the growth

directions (Figure 4—figure supplement 2). For visual clarity, growth directions can optionally be

displayed only in cells in which the anisotropy is above a user-defined threshold (Figure 4D).

Other directional quantities can also be computed, stored and displayed in MorphoGraphX

on a cellular basis. For example, the local tissue curvature (Goldfeather and Interrante, 2004)

can be calculated based on the position of the neighbors closer than a given radius and

displayed in a manner similar to the growth directions (Figure 4B and Figure 4—figure

supplement 3), making it a convenient tool for precise staging of fast growing organs such at

the shoot apical meristem (Kwiatkowska and Dumais, 2003; Kwiatkowska, 2004).

Video 3. Automatic segmentation of a tomato shoot

apex.

DOI: 10.7554/eLife.05864.010
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Growth dynamics of the stem cell niche in the tomato shoot apex
We demonstrate the capabilities of MorphoGraphX by quantifying growth of the stem cell niche

and surrounding tissue in the shoot apex of tomato with time lapse imaging over several days

(Kierzkowski et al., 2012) (Figure 4 and Figure 4—figure supplement 3). The shoot apex is the

source of all the aerial structure of the plant. At the summit, a slow growing central zone harbors

the stem cell niche, surrounded by a fast growing peripheral zone where organ initiation occurs

(Steeves and Sussex, 1989; Dumais and Kwiatkowska, 2002). The analysis in MorphoGraphX

starts with surface extraction followed by manual or automatic segmentation (Videos 2, 3), and

lineage matching (Video 4) of all of the time points in the series. We observed similar patterns of

Figure 3. Quantification of signal projected on the mesh surface. (A) Microtubule orientation (red line) determined in epidermal cells of C. hirsuta fruits.

Signal for TUA6-GFP (green) at a maximal depth of 1.5 μm was projected on the curved surface and processed with a modified version of a 2D image

analysis algorithm (Boudaoud et al., 2014) to compute fiber orientation. Line length indicates strength of orientation. (B) Quantification of vestigial (left)

and wingless (right) transcription in the wing disc of D. melanogaster at 0–20 μm depth. Data from (Aegerter-Wilmsen et al., 2012). (C and D)

Quantification of PIN1::GFP signal in Arabidopsis shoot apical meristem at different depths. A projection between 0 and 6 μm away from the surface

corresponds to the epidermal (L1) layer (C), while a depth of 6–12 μm reflects the sub-epidermal (L2) layer. (E) Sub-cellular localization of PINFORMED1

(PIN1) in the L1 is assessed by quantification of the projected signal for each cell wall, as in (Nakayama et al., 2012). The projected PIN1 signal can be

compared with other markers of organ initiation, such as the curvature. While projected PIN1 signal from the L1 (C and E) shows a clear accumulation of

signal at the incipient primordium (star), there is no sign of up-regulation in the deeper layer (D) nor visible bulge yet (see Figure 3—figure supplement 1).

(C–E) Data from (Kierzkowski et al., 2013). Scale bars: 20 μm.

DOI: 10.7554/eLife.05864.011

The following figure supplements are available for figure 3:

Figure supplement 1. PIN1 expression levels in L1 and L2 vs curvature in Arabidopsis inflorescence meristem.

DOI: 10.7554/eLife.05864.012

Figure supplement 2. Quantification of PIN1-GFP signal localized to close to the membrane vs internal signal.

DOI: 10.7554/eLife.05864.013

Figure supplement 3. Quantification of microtubule orientation.

DOI: 10.7554/eLife.05864.014
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growth, cell proliferation and organ geometry

in the tomato shoot apex as those reported in

other species (Kwiatkowska and Dumais,

2003; Grandjean et al., 2004; Kwiatkowska,

2004; Reddy et al., 2004; Kwiatkowska and

Routier-Kierzkowska, 2009). The first geo-

metrical indicator of primordium initiation we

noted was a slightly elevated curvature at the

corner of the meristem (Kwiatkowska and

Dumais, 2003; Kwiatkowska, 2004). This early

change in shape coincided with increased growth

in the peripheral zone. The peripheral zone itself

displayed differential growth dependent on the

dynamics of primordium initiation. Regions adja-

cent to older primordia exhibited fast, highly

anisotropic expansion (Figure 4 and Figure 4—figure supplement 3). In contrast, the part of the

meristem closest to the newly separated primordium (P1 in Figure 4) was not distinguishable based on

growth rates. As previously observed in Anagallis arvensis (Kwiatkowska and Dumais, 2003;

Kwiatkowska and Routier-Kierzkowska, 2009), this accelerating growth of the peripheral zone

progressively pushed away newly formed organs as they differentiated, making more space available on

the meristem for further initiation and suggesting a possible feedback between lateral organ growth

and meristem expansion.

In addition to changes in geometry and growth, we used an activity reporter of the growth

hormone auxin, pDR5::3xVENUS-N7 (Heisler et al., 2005), to follow primordium development.

Interestingly, while auxin activity is already visible at the first sign of primordium initiation, DR5

expression does not strictly correlate with growth. In particular, no DR5 signal is detected in the fast

expanding regions close to older primordia. We also found that DR5 expression is present in the

crease separating young primordia from the meristem, an area where the cells exhibited a slight

decrease in surface area (Figure 4D). As shown in previous studies (Kwiatkowska and Dumais, 2003;

Kwiatkowska, 2004; Kwiatkowska and Routier-Kierzkowska, 2009), the quantification of growth

anisotropy shows that cells in the boundary displayed a small increase in length only in the direction

parallel to the border between meristem and primordium, suggesting compression by the growing

organ (Hamant et al., 2008) (Figure 4D and Figure 4—figure supplements 2, 3).

3D cell segmentation and analysis
The extraction of cellular 3D shape is of paramount importance for different purposes, such as to

study volumetric deformation, quantify fluorescence expression in 3D, or generate cellular templates

for 3D simulation models (Bassel et al., 2014; Yoshida et al., 2014) (Figure 5D). However, volumetric

segmentation requires very high quality of signals, since the cell outlines must be visible from all

angles. For plant tissues, which often display autofluorescence, 3D segmentation of cells from

confocal images is therefore mainly used in the case of cleared, fixed samples (Bassel et al., 2014;

Yoshida et al., 2014) (Figure 5B–D) or limited to the outermost layers of cells (Figures 5A, 6D).

The penetration of confocal images for 3D segmentation of live samples could be improved by using

multi-photon confocal microscopy. Another possibility is to combine confocal stacks acquired from

different angles (Fernandez et al., 2010). Currently it is possible to assemble data from multiple angle

acquisition within MorphoGraphX.

MorphoGraphX uses the auto-seeded, morphological watershed algorithm available in the

Insight Segmentation and Registration Toolkit (Yoo et al., 2002) (ITK) for 3D segmentation.

We have developed a collection of user-friendly 3D voxel editing tools allowing the researcher to

correct segmentation errors. Alternatively, cells and other objects which are not in contact with

each other can be segmented by extracting the surface of the individual objects (Figure 1B,

Video1). As with 2D surfaces of cells, geometrical properties (surface area, wall length, volume)

and fluorescent signal (e.g., total signal per cell, membrane localization) of the 3D cells can be

quantified (Figure 5) and exported to spreadsheet files for further analysis (Bassel et al., 2014).

Cells segmented in 3D can also be exported for use in simulation models, where highly realistic

geometries are required (Figure 5D).

Video 4. Lineage tracking and growth analysis of time

lapse data on tomato shoot apex.

DOI: 10.7554/eLife.05864.015
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Figure 4. Growth in the tomato shoot apex over 22 hr. (A) Expression of the auxin activity reporter pDR5::VENUS

visualized underneath the semi-transparent mesh. (B) Average curvature (μm−1) for a neighborhood of 20 μm, with

positive values in red, and negative values in blue. (C) Shoot apex surface colored by cell proliferation rate as in

(Vlad et al., 2014). New cell walls are indicated in dark red. (D) Top and side views of the heat map of areal

Figure 4. continued on next page
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Validation of the method
When projecting data onto surface meshes several sources of error should be considered. Since the Z

dimension in confocal images is typically considerably lower in resolution than in XY, it is possible that

the view angle affects the results. To estimate the error introduced by this effect, we imaged the same

sample twice from different angles (Kierzkowski et al., 2012). Co-segmentation with approximately

30˚ difference in view angle lead to small segmentation differences, averaging to less than 2%

(Figure 6A,B). Note that there is no obvious bias from the view angle.

Another potential source of error comes from representing 3D cells as a 2D surface. To estimate

the error introduced by this abstraction, we co-segmented two time points of growth in the same

tomato shoot apex as that shown in Figure 4. The cells were segmented on the curved 2D surface,

and the process was repeated from the same sample by segmenting the surface layer of cells in full

3D. The heat maps of volume increase in 3D show the same areas of slow and fast growth as the

surface segmentation. In cases when the tissue thickness is preserved over growth, as in the epidermal

layer of the shoot apex, tracking cell expansion on the surface is therefore a reasonable approximation

for volumetric cell expansion (Figure 6C,D).

MorphoGraphX offers the possibility to segment cells automatically (Video 3) or to place the seeds

for watershed segmentation manually (Video 2). While automatic segmentation is faster in the case of

high quality data, manual seeding is recommended in regions where part of the signal is too faint or

blurry, partially masking the cell outline. To estimate the error in our auto-segmentation method, we

compared the number of cells segmented automatically vs manually on the same region of two high

quality samples. For a tomato shoot apex sample, the auto-segmentation error rate was about 2%,

with only 12 cells under-segmented (fused) and 1 cell over-segmented (split) over a total of 576 cells

(Figure 6E). Once detected, segmentation errors can be easily fixed by the researcher (Video 3).

Automatic seeding considerably shortens the time needed to segment large samples, such as a

Drosophila wing disc (Figure 6F). The total number of cells varied by about 3% (6304 autosegmented

vs 6510 manually seeded cells).

Discussion
A key strength of our MorphoGraphX software is the ability to accurately extract curved surface

meshes from 3D volumetric data and perform image processing on the resulting curved (2.5D) surface

images. This has wide application, since many biological processes happen on surfaces, and the

method has been proven in both animal (Aegerter-Wilmsen et al., 2012) and plant (Santuari et al.,

2011; Chitwood et al., 2012; Kierzkowski et al., 2012; Nakayama et al., 2012; De Rybel et al.,

2013; Kierzkowski et al., 2013; Wabnik et al., 2013; Sampathkumar et al., 2014; Vlad et al., 2014;

Yoshida et al., 2014) systems, in embryonic as well as mature tissues. The method is especially

powerful for time-lapse confocal imaging, where laser exposure has to be kept to a minimum, limiting

penetration to the outermost layers of the sample. In addition to curved surface image processing,

MorphoGraphX provides an intuitive and user-friendly interface for the visualization and editing of

3D volumetric data, making it possible to digitally remove obstructing objects from the surface of

Figure 4. Continued

expansion over the first 11 hr interval. Principal directions of growth (PDGs) are indicated for cells displaying an

anisotropy above 15%, with expansion in white and shrinkage in red. Note the rapid anisotropic expansion of the

developing primordium P1 and of the peripheral zone close to the incipient primordium I1, while cells in the

boundary between P1 and the meristem contract in one direction (red lines). Arrows indicate the correspondence

between top and side views. Raw confocal data from (Kierzkowski et al., 2012). Scale bars 50 μm.

DOI: 10.7554/eLife.05864.016

The following figure supplements are available for figure 4:

Figure supplement 1. Simplification of mesh.

DOI: 10.7554/eLife.05864.017

Figure supplement 2. Computation of PDGs in case of anisotropic deformation.

DOI: 10.7554/eLife.05864.018

Figure supplement 3. Analysis of time lapse series of tomato shoot apical growth over 48 hr (5 time points, 12 hr

intervals).

DOI: 10.7554/eLife.05864.019
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interest, such as the peripodial membrane overlying the Drosophila wing disc (Aegerter-Wilmsen

et al., 2012). We have also included a range of standard 3D image processing tools, similar to those

available in many other softwares (Fernandez et al., 2010; Peng et al., 2010; Sommer et al., 2011;

Federici et al., 2012; Mosaliganti et al., 2012; Schmidt et al., 2014). These can be used for 3D

segmentation (De Rybel et al., 2013; Bassel et al., 2014; Yoshida et al., 2014), or to pre-process

data before surface extraction.

The modular design of MorphoGraphX allows the integration of existing libraries and the creation

of custom processing ‘pipelines’, going from the raw microscopy image to feature extraction and

fluorescence quantification. MorphoGraphX is implemented as a collection of shared libraries, and

new libraries can be added or removed without recompiling MorphoGraphX. This combines the

functionality of plugins with the computational efficiency of C++. The most common operations for 3D

visualization, filtering and editing have been written to exploit the massively parallel architecture of

modern graphics cards, which can have thousands of processing cores. As a result, 3D operations that

would normally be very slow to run on a common PC take seconds to perform, making use of the

computational power of inexpensive consumer graphics cards. Many of the more complex operations

use the multi-core capabilities of the CPU. This makes most operations interactive and user-friendly,

allowing the researcher to easily experiment with new work flows, algorithms and parameters.

The flexibility of MorphoGraphX also simplifies the development of modules to import 3D voxel data

Figure 5. 3D segmentation for growth tracking and modeling templates. (A) Volume segmentation of trichomes

from time-lapse confocal imaging in Capsella rubella leaf colored by cell label number. (B) Full 3D segmentation of

developing Arabidopsis embryos, colored by cell label number. Data from (Yoshida et al., 2014). (C) False colored

projection of the average growth rate along the main axis of an Arabidopsis embryo. Data from (Bassel et al., 2014).

(D) Mechanical model of embryo based on a 3D mesh showing cell wall expansion due to turgor pressure, as

published in (Bassel et al., 2014). Scale bars: 20 μm.

DOI: 10.7554/eLife.05864.020
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Figure 6. Validation of the method. (A and B) Control for viewing angle. (A) A shoot apex imaged from different

directions. A first image stack (in red) was acquired before tilting the Z axis (dashed lines) by approximately 30˚ and

acquiring a second stack (in green). Cells were then segmented on both stacks and their areas compared (B). Note that

the pairwise cell size differences are random, with no obvious trend related to the viewing angle. Average error per cell is

less than 2%. Colorbar: relative surface area increase in percent. Panels (A) and (B) adapted from Figure 5 of Kierzkowski

et al. (2012). (C andD) Comparison between projected areas and actual 3D volumes. (C) The epidermal cells of the apex

were projected on the surface and segmented. Heatmap shows percent increase in area over 11 hr of growth. (D) The

same data was segmented in 3D. Heatmap shows the percent increase in volume of cells, same color scale as in (C). Note

the close correspondence in cell expansion extracted from surface and volumetric segmentations. (E) Difference in size

between automatically and manually segmented cells on a tomato shoot apex. Cells fused by auto-segmentation are in

bright red, split cells are in dark blue. (F) Cell sizes (in μm2) from manual (top) and automatic (bottom) segmentation on

a fragment of Drosophila wing disc. Scale bars: 40 μm.

DOI: 10.7554/eLife.05864.021
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and cellular or surfaces meshes from other custom imaging platforms. Such bridges have been

created to import data from recently published growth tracking softwares including the MARS-ALT

multi angle reconstruction pipeline (Fernandez et al., 2010), and the stereo SEM reconstruction

software (Routier-Kierzkowska and Kwiatkowska, 2008).

MorphoGraphX has been used to quantify cell size (Aegerter-Wilmsen et al., 2012), growth and

proliferation (Kierzkowski et al., 2012; Vlad et al., 2014), mechanical properties (Kierzkowski et al.,

2012) and protein localization (Nakayama et al., 2012; Kierzkowski et al., 2013), as well as 3D cell

geometry (De Rybel et al., 2013; Bassel et al., 2014; Yoshida et al., 2014). In addition to

quantification, a current challenge in understanding development is to integrate these new data with

computational models. Cellular geometry extracted from biological samples can be easily exchanged

with modeling tools, such as Organism (Sampathkumar et al., 2014) and VVe (Bassel et al., 2014).

Meshes extracted in MorphoGraphX can be used directly for realistic simulation templates (Bassel

et al., 2014), or simplified depending on modeling requirements (Santuari et al., 2011; Wabnik

et al., 2013; Sampathkumar et al., 2014). Examples include simulation models of hormone transport

(Santuari et al., 2011; De Rybel et al., 2013; Wabnik et al., 2013), cell division plane analysis

(Yoshida et al., 2014) and 3D cellular models of tissue mechanics (Bassel et al., 2014; Sampathkumar

et al., 2014).

MorphoGraphX was developed by researchers and designed to be easily adaptable to new

research requirements. Its user interface was built in close collaboration with experimentalists, with

features and techniques added to address research problems and bottlenecks in work flows as they

have arisen. Fully automatic tools are complemented with intuitive methods for interactive correction

(Peng et al., 2011) and validation, greatly increasing the utility of new and existing algorithms.

Streamlined data exchange with modeling tools allows cell geometry and gene expression data to

be used as model inputs, and facilitates the validation of simulation results. These features combine to

make MorphoGraphX a significant step towards an interdisciplinary computational morphodynamics

platform to study the interactions between growth, mechanics and gene expression.

Materials and methods

Raw data acquisition
Live confocal time-lapse series of developing flower of A. thaliana Col-0 (Figure 2A–F and

Figure 2—figure supplement 2), shoot apical meristem of tomato (Solanum lycopersicum) DR5

reporter line (Shani et al., 2010) (Figure 4—figure supplement 3) and leaf trichomes of Capsella

rubella (Figure 5A) were acquired using SP8 or SP5 Leica confocal microscopes, as described

previously (Kierzkowski et al., 2012; Vlad et al., 2014). After dissection samples were stained with

0.1% propidium iodide (PI) and grown in vitro on medium (Bayer et al., 2009). Confocal imaging was

performed with a 63× long distance water immersion objective and an argon laser emitting at the

wavelength of 488 nm. PI signal was collected at 600–665 nm. In the case of tomato shoot apex,

pDR5::3xVENUS-N7 signal was also collected, at 505–545 nm. Distance between stacks was 0.5 μm.

Time intervals were 11 hr for tomato and 24 hr for A. thaliana and C. rubella time lapse series.

Mature A. thaliana embryos (Figure 2H) were fixed and stained as previously described (Bassel

et al., 2014) and imaged using a Zeiss LSM710 confocal microscope with a 25× oil immersion lens.

Confocal stacks of microtubule marker line TUA6-GFP (Ueda et al., 1999) in live Cardamine hirsuta

fruits (Figure 3A) were acquired using a SP2 Leica microscope, with a 40× long working distance

water immersion objective and an argon laser emitting at 488 nm. GFP signal was collected at

495–545 nm. The z step between stack slices was 0.2 μm.

The sequential replica method (Williams and Green, 1988) was used to acquire a stereopair of

SEM images from an Arabidospsis leaf surface (Figure 1D) as described in (Elsner et al., 2012).

Stereoscopic reconstruction (Routier-Kierzkowska and Kwiatkowska, 2008) was then performed for

the stereo pair and converted into a triangular mesh using a custom MorphoGraphX module. All other

data presented in this manuscript were acquired for previously published work or available through

on-line catalogs.

Software design and data representation
MorphoGraphX is written in C++ and has been developed on GNU/Linux. For GPU processing,

MorphoGraphX uses CUDA (https://developer.nvidia.com/cuda-zone) via the Thrust template library
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(http://thrust.github.io). Multi-threaded host processing is done using OpenMP (http://openmp.org/wp/).

CUDA requires a compatible nVidia (http://www.nvidia.com) graphics card. The user interface is designed

in Qt4 (http://qt-project.org/), and OpenGL is used for 3D rendering (http://www.opengl.org).

MorphoGraphX can be extended using either C++ modules or Python scripts. C++ modules can

be loaded at the start of MorphoGraphX through a plug-in system, inspired by the shared library

loading architecture of Lpfg in VLab (Federl and Prusinkiewicz, 1999). C++ processes can access all

the internal data structures used in MorphoGraphX and modify them as needed. They can also call

other processes or query for their existence, and get parameter values in a uniform way from the

graphical user interface. The last parameter values used for each process are stored in the project

(.mgxv) file for future reference. All process calls and their parameters are logged to a re-playable

python script log file created in the current directory. Each process is represented as a light C++
object defining the name, parameters and code of the process and is bundled in shared libraries

for easy distribution. The shared library is placed into a system or user process folder, and the processes

it contains are loaded upon startup.

Python scripts can also be written and executed within MorphoGraphX using the Python Script

process. This option offers a more limited interaction with MorphoGraphX as a script is only able to

launch other processes and not directly interact with the data structure. However, it allows use of the

wealth of modules existing for Python 2.7 for file interactions and data analysis. Most data analysis

processes import/export their data as CSV files to facilitate the writing of Python modules for complex

or ad-hoc data analysis.

Surfaces are represented by vertex–vertex systems (Smith et al., 2004), which implement graph

rotation systems. Properties can be stored in the mesh, such as the label attributed to an individual

vertex, the normal associated to it or a value for the projected signal. The rendering uses a modified

front-to-back depth peeling technique (Everitt, 2001) interweaving the volumetric rendering between

peels of translucent surfaces. The volumetric rendering itself is done using volume ray casting (Levoy,

1990), using the depth of the successive pair of peels to limit the ray casting to the region currently

being rendered. This method allows for correct polygon–polygon and polygon-volume intersections.

Combined with occlusion detection, we implemented early ray termination when the total opacity of the

current fragment becomes too high for subsequent peels to be visible.

MorphoGraphX can be easily extended to import and export voxel and triangle mesh data in

various formats. For voxel data, MorphoGraphX can read and write the tiff format compatible with

ImageJ or Fiji (Schindelin et al., 2012). 3D data can also be loaded from series of 2D images using any

of the various image formats supported by the C++ Template Image Processing Toolkit (CImg)

(Tschumperlé, 2012). The Visualization Toolkit (VTK) (Wills, 2012) is used to import and export VTK

triangle meshes. Various other formats, such as the Stanford Polygon File format (.ply), Wavefront’s

Object format (.obj) or 3D Systems StereoLithography format (.stl), are also supported directly.

For many of the mesh imports, polygons with be converted to triangles upon loading by generating

a center point and making a triangle fan.

Feature extraction from volumetric data
The first step in processing the data stacks is to remove noise and then identify the which voxels

belong inside of the organ (Figure 2A,B). 3D image processing filters for noise reduction are followed

by edge detection combined with feature filling. Once the inside of the organ is identified it is

represented as a binary image (Figure 2B). Next the surface is extracted using a variant of the

marching cubes algorithm (Bloomenthal, 1988). Fairly large cubes are used, creating a relatively

coarse mesh and avoiding the extraction of very small features due to surface noise (Figure 2C). Once

a coarse surface mesh is extracted, it is uniformly subdivided. The resolution of this initial mesh has to

be sufficient for a first segmentation, which can be subsequently refined.

After the surface is extracted and subdivided, a column of signal normal to the surface is projected

onto the mesh at every vertex, creating a 2D curved image of the cell outlines on the surface layer

(see Figure 2D, Video 2). The image is segmented into cells using a seeded watershed segmentation

algorithm. After blurring the image, auto-seeding is performed by finding local minima of signal within

a given radius. Seeds are then propagated with watershed. Depending on the radius used for detecting

the local minima, several seeds can be placed within a single cell, resulting in over-segmentation. The

cells are later merged, based on the relative strength of signal on the walls separating them (Video 3).

Normalization of the signal with a radius greater than that of the largest cell typically improves
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merging results. For convenience, the processes are chained together in a single auto-segmentation

process. The final segmentation is then manually corrected. The amount of manual correction

required can vary depending on signal quality, and in some cases it can be more efficient to perform

some or all of the seeding manually.

We have placed emphasis on designing the user interface for MorphoGraphX to streamline the

process of manual seeding and segmentation correction (Videos 2, 3).

After the initial segmentation, the edges of the cells will often look rough, as there are not enough

points to describe them correctly. To extract the geometry more precisely, the mesh can be

subdivided specifically at the interfaces between cells (Figure 2F) or in areas of high signal intensity.

After subdivision the signal is re-projected, and the surface segmented again. The seeds are retained

during this process so that re-seeding is not required. Several steps of subdivision and re-

segmentation can be applied until the desired precision is achieved (Video 2). The resulting mesh will

be dense around the areas of interest (e.g., the interface between cells), while keeping the areas of

low interest (the inside of cells) coarse, thus limiting the total size of the mesh file.

Cell growth and geometry analysis
Once the cells have been segmented from two different time points, the cells and their progeny can

be identified manually. Each mesh is loaded in a separate channel and roughly aligned manually so

that the cells outlines match. For each cell in the second time point, the user identify a mother cell with

a mouse click (Video 4). The lineage information is then used to compare cell size (areal growth) or the

projected signal intensity in the original cells and their daughters.

A segmented mesh contains information about the cells neighborhood, that is, which are the cell

walls shared by two cells and where do the cell walls intersect. The mesh can be simplified to contain

only vertices necessary to describe each cell contour and the connections between neighbor cells

(Figure 4—figure supplement 1). Plant cells do not slide with respect to each other, therefore the

junction between cell walls can be used as landmarks to track tissue deformation over time series

(Green et al., 1991). Combined with the cell lineage information, the simplified cellular mesh

(Figure 4—figure supplement 1) is used to find the correspondence between cell junctions in meshes

extracted from different time points (Figure 4—figure supplement 2). After identifying pairs of junctions

conserved in both meshes using the lineage information, we project for each cell the junctions on the

average cell plane and compute a best fit of the 2D transformation (translation, rotation, anisotropic

scaling) that will minimize the squared distance between pairs of junctions (Goodall and Green, 1986;

Routier-Kierzkowska and Kwiatkowska, 2008). Decomposing the transformation into singular vectors

and values gives the PDGs and associated scaling values (PDGmax, PDGmin), that describe anisotropic

growth. Anisotropy values used in (Figure 4 and Figure 4—figure supplements 2, 3) were computed

according to the following definition: anisotropy = PDGmax/PDGmin.

The cellular mesh can also be used to compute other quantities, such as the tissue curvature

(Figure 3—figure supplement 1 and Figure 4—figure supplement 3). In that case the vertices

belonging to the cell outline are used to compute the principal curvatures for each cell center, within a

given periphery. Color maps resulting from the computation of growth, curvature, signal quantification,

etc. can be written to a spreadsheet giving easy access for further processing. Similarly, cell axis vectors

can also be exported to be either re-rendered in MorphoGraphX or loaded for further analysis using

other software, such as Matlab or Python.

Volumetric (3D) segmentation
The ITK (Yoo et al., 2002) auto-seeded watershed segmentation algorithm implemented in

MorphoGraphX was used to segment the cells in 3D in Figures 5, 6D. After segmentation the cell

surface is extracted using marching cubes and labeled. In some cases individual cells can also be

segmented using a custom edge detect function from multiple angles (Figure 1B, Video 1).

MorphoGraphX also provides the possibility to stitch stacks or combine multi angle stacks in 3D.

However, this is not a pre-requisite for 3D segmentation in MorphoGraphX.

Acknowledgements
This work was funded by the SystemsX.ch RTDs Plant Growth 1 & 2 (RSS and CK), the SystemsX.ch

RTD WingX (PK and KB), the SystemsX.ch RTD SyBIT (IX), the Swiss National Science Foundation

Barbier de Reuille et al. eLife 2015;4:e05864. DOI: 10.7554/eLife.05864 16 of 20

Tools and resources Computational and systems biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.05864


interdisciplinary project grants CR32I3_132586 and CR32I3_143833 (RSS), the Swiss National Science

Foundation international short research visit (AB and RSS), Human Frontier Science Program grant

RGP0008/2013 (AHKR and RSS), European Research Council Advanced grant (PK), the Biotechnology

and Biological Sciences Research Council grant BB/L010232/1 (GWB), University of Birmingham

Research Fellowship (GWB), Forschungskredit of UZH (TA-W), the Polish National Science Centre

MAESTRO research grant No 2011/02/A/NZ3/00079 (DK), Deutsche Forschungsgemeinschaft grant

SFB 680 (MT), Human Frontier Science Program grant RGY0087/2011 (AH), and Max Planck Society

W2 Minerva program grant (AH).

Additional information

Funding

Funder Grant reference Author

Schweizerische
Nationalfonds zur
Förderung der
Wissenschaftlichen
Forschung

international short
research visit

Agata Burian, Richard S
Smith

Human Frontier Science
Program (HFSP)

RGP0008/2013 Adrienne HK Roeder,
Richard S Smith

European Research
Council (ERC)

Advanced grant Petros Koumoutsakos

Biotechnology and
Biological Sciences
Research Council (BBSRC)

BB/L010232/1 George W Bassel

University Of Birmingham Research Fellowship George W Bassel

Universitat Zurich Forschungskredit Tinri Aegerter-Wilmsen

Narodowe Centrum Nauki MAESTRO research grant
No 2011/02/A/NZ3/00079

Dorota Kwiatkowska

Deutsche
Forschungsgemeinschaft

SFB 680 Miltos Tsiantis

Human Frontier Science
Program (HFSP)

RGY0087/2011 Angela Hay

Max-Planck-Gesellschaft W2 Minerva program grant Angela Hay

Schweizerische
Nationalfonds zur
Förderung der
Wissenschaftlichen
Forschung

CR32I3_132586 Richard S Smith

Schweizerische
Nationalfonds zur
Förderung der
Wissenschaftlichen
Forschung

CR32I3_143833 Richard S Smith

The Swiss Initiative in
Systems Biology

RTDs Plant Growth 1 & 2 Cris Kuhlemeier, Richard S
Smith

The Swiss Initiative in
Systems Biology

RTD WingX Konrad Basler, Petros
Koumoutsakos

The Swiss Initiative in
Systems Biology

RTD SyBIT Ioannis Xenarios

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

PBR, PK, CK, RSS, Conception and design, Analysis and interpretation of data, Drafting or revising

the article; A-LR-K, Conception and design, Acquisition of data, Analysis and interpretation of data,

Drafting or revising the article; DK, AB, HH, MBH, KB, TA-W, Analysis and interpretation of data,

Barbier de Reuille et al. eLife 2015;4:e05864. DOI: 10.7554/eLife.05864 17 of 20

Tools and resources Computational and systems biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.05864


Contributed unpublished essential data or reagents; GWB, Drafting or revising the article,

Contributed unpublished essential data or reagents; TS, GT, NB, SS, AW, AK, Contributed program

code, Conception and design; AS, Acquisition of data, Analysis and interpretation of data; ML,

Contributed program code, Analysis and interpretation of data; SR, Analysis and interpretation of

data; EMB, NN, IX, Conception and design, Analysis and interpretation of data; AHKR, Conception

and design, Analysis and interpretation of data, Contributed unpublished essential data or reagents;

MT, AH, DK, Analysis and interpretation of data, Drafting or revising the article, Contributed

unpublished essential data or reagents

Author ORCIDs
Adrienne HK Roeder, http://orcid.org/0000-0001-6685-2984

Additional files

Supplementary file

·Supplementary file 1. MorphoGraphX User Manual. The MorphoGraphX user manual is written in

a tutorial style, and the accompanying data sets are available for download on the MorphoGraphX

website (www.MorphoGraphX.org). Installation instructions for MorphoGraphX and troubleshooting

tips are in Section 16 towards the end of the manual.
DOI: 10.7554/eLife.05864.022

References
Aegerter-Wilmsen T, Heimlicher MB, Smith AC, de Reuille PB, Smith RS, Aegerter CM, Basler K. 2012. Integrating
force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size. Development 139:
3221–3231. doi: 10.1242/dev.082800.

Bassel GW, Stamm P, Mosca G, Barbier de Reuille P, Gibbs DJ, Winter R, Janka A, Holdsworth MJ, Smith RS. 2014.
Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the
Arabidopsis embryo. Proceedings of the National Academy of Sciences of USA 111:8685–8690. doi: 10.1073/
pnas.1404616111.

Bayer E, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C. 2009. Integration of
transport-based models for phyllotaxis and midvein formation. Genes & Development 23:373–384. doi: 10.
1101/gad.497009.

Bloomenthal J. 1988. Polygonization of implicit surfaces. Computer Aided Geometric Design 5:341–355. doi: 10.
1016/0167-8396(88)90013-1.
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