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Abstract
In this thesis, we consider the trajectory planning of an autonomous vehicle to cross
an intersection within a given time interval. The vehicle communicates its sensor
data to a central coordinator which then computes the trajectory for the given time
horizon and sends it back to the vehicle. We consider a realistic scenario in which
the communication links are unreliable, the evolution of the state has noise (e.g., due
to the model simplification and environmental disturbances), and the observation
is noisy (e.g., due to noisy sensing and/or delayed information). The intersection
crossing is modeled as a chance constraint problem and the stochastic noise evolution
is restricted by a terminal constraint. The communication impairments are modeled
as packet drop probabilities and Kalman estimation techniques are used for predicting
the states in the presence of state and observation noises. A robust sub-optimal
solution is obtained using convex optimization methods which ensures that the
intersection is crossed by the vehicle in the given time interval with very low chance
of failure.
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Notations

Symbols
N set of natural numbers
R set of real numbers
NT

0

{︂
0, 1, . . . , T

}︂
A ≻ 0 positive definite matrix (for a square matrix A ∈ Rn×n)
1 all-ones vector (of appropriate dimensions)
0 all-zeros vector (of appropriate dimensions)
I identity matrix (of appropriate dimensions)

Operators
diag{A} matrix with diagonal entries only
E{·} expectation of the argument
tr{·} trace of the argument
cov(·) covaraince of the argument
|| · || the 2-norm of the argument
blkdiag(A1, . . . , AN) the block diagonal matrix



1 Introduction
The expected advent of autonomous vehicles in the near future opens up a number
of possibilities for efficient driving through communication and coordination. This,
among others, can help mitigate the issues of road safety and traffic congestion as
well as boost fuel efficiency.

Road safety should be a high priority issue, since about 1.24 million people die
and 50 million are hurt in road accidents each year [1]. In addition, drivers and
passengers waste around 90 billion hours in traffic jams per year. Traffic conditions
in major cities have become an important issue, since congestion results in time
delays, carbon dioxide emissions, higher energy expenditure and higher accident risks
(see, for example, [2] and references therein). Furthermore, in some major cities, as
much as a third of the petrol used is burned by people looking for a space to park,
contributing to additional traffic congestion with all its consequences. The ultimate
goal of the European Union is to reduce greenhouse gases (in 2015 the target was to
reduce it by about 20% until 2020, as per the Paris Agreement), which means that
the transport efficiency has to be drastically improved.

Apart from improving the efficiency of vehicles, a promising approach to all these
issues is put forth by the foreseeable potential of automated vehicles to replace human
driving in the near future. Many new and established companies are pushing to bring
truly driverless cars to market as early as 2020. The first large-scale deployments will
be in fleets, where companies own the vehicles and provide revolutionary new services
like robot taxis and driverless delivery. The technology is still quite expensive, but
prices will fall quickly as economies of scale takeover. However, a lot is still needed
to be done to bring about the transformational changes we expect driverless cars to
bring to our society. The most important of these is to ensure that there are proper
protocols and rules to gain optimal efficiency from driverless cars while ensuring
near-perfect safety from them. The current work is a step towards this direction.

A significant proportion of accidents take place near road intersections, which are
among the most complex regulated traffic subsystems. The modeling of autonomous
vehicles crossing at intersections is a crucial problem in this area. With efficient and
effective algorithms in place, it is possible to completely do away with traffic signals
and fixed predefined schedules for vehicle crossings. Indeed, by developing intelligent
algorithms where crossing vehicles exchange information and mutually decide on a
safe schedule, one can improve the traffic flow, increase safety and save fuel [3–6].

This problem is usually broken down into three parts: 1) determining an optimal
priority list for the concerned vehicles around the intersection, 2) finding optimal
time intervals for each of these vehicles to cross the intersections, and 3) determining
an optimal trajectory for each vehicle to cross the intersection in its appointed time
interval.

In the current work, we consider the third sub-part of the intersection crossing
problem. Additionally, we introduce real life complexities of communication losses and
noise in state and observation. Communication losses can be modeled in several ways.
Two distinct considerations are: channels with and without temporal correlation
(memory). In channels without memory, the current state is an independent and
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identically distributed (i.i.d.) process. In channels with memory, the current state
of the channels depends on, and is influenced by the previous state(s). In modeling
channels with memory, various methods such as Markov chain model, Gilbert-Elliot
model and their variations are available; see, e.g., [7–9]. In this thesis, we show
the behavior of both channels with and without memory for the communication
losses in the system. The noise evolution is usually of a probabilistic nature, in
particular, a Gaussian distribution. For dealing with probabilistic noise, stochastic
model predictive control (SMPC) strategies are usually implemented. Their usage
and importance has been elaborated well in [10]. The history and development
of SMPC is documented extensively in [11, 12]. A good use of SMPC technique
for navigation of autonomous vehicle is detailed in [13]. In SMPC techniques, the
constraints are modeled either as chance constraints or be satisfied by the expectation
(see [14–17]) . For this thesis, we use chance constraints for the intersection crossing
objective.

The rest of this report is organized as follows. In Section 2, a detailed description
and analysis of the work done so far in this area is provided. In Section 3, the main
objective of this work is emphasized and all the methods and models, necessary for the
development of this work, are explained. The main results are presented in Section 4.
The performance of our proposed approach is evaluated in Section 5. Finally, in
Section 6, we draw conclusions and discuss possible future directions. Results of
this thesis work have been published at: (1) 57th Annual Allerton Conference
on Communication, Control, and Computing, hosted by the Coordinated Science
Laboratory at the University of Illinois at Urbana-Champaign, USA (Accepted), (2)
IEEE Transactions on Intelligent Transportation Systems (Submitted).
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2 Background
Various methods have been suggested for dealing with the first part of the problem
including approximation methods [18], heuristics-based methods [19] and other
algorithms [20, 21]. Similarly, a good amount of research has been carried out
where the first part is assumed to be known and the second part of the problem is
addressed [22–25]. In [26] and [27], a combination of the above problem are addressed
simultaneously. In most of these papers, two assumptions are common: perfect
communication and a deterministic system model. Both aforementioned assumptions
are far from reality and, hence, it is necessary to develop a framework where these
assumptions are lifted in order to model a more realistic scenario.

Coming to the current problem under consideration, i.e., determining a trajectory
for a single vehicle to cross the intersection within a predetermined time interval.
One of the earlier works in this regard is done in [28], where a chance constraint is
used for determining an optimal trajectory for a stochastic system. However, here
the problem is solved analytically using LQG model and hence no hard constraints
or communication impairments are considered. A more recent work [29], considers
the vehicle to be driven by human drivers instead of AVs and aims at computing
speed advice for each vehicle using convex optimization. It considers the driver’s
response speed and lag time as a Gaussian distribution and optimizes the best control
strategy over an ensemble. This can be considered as one of the first steps before
going towards complete autonomy. However, here also, the communication between
the vehicles is assumed to be perfect and all states are deterministic.

Okamoto et al. in [30] provide a theoretical framework for optimal control of
the covariance of stochastic finite discrete-time linear systems subject to chance
constraints. This is cast as an MPC problem and solved using convex optimization
techniques with the optimization variable being the control gain matrix. The usually
separable problems of mean and covariance problem are, in this case, linked together
by chance constraints. However, the observation is assumed to be noiseless, and
no communication impairments are considered. Nazari et al. in [31] take a step
in the direction of a stochastic system with imperfect communication links for a
single vehicle crossing the intersection. It uses chance-constrained MPC model and
gives the control input matrix using Gaussian approximation. However, the process
covariance is allowed to evolve unrestricted as per the system dynamics and the
observation covariance is zero (perfectly observable state). Moreover, the packet
drop probability is modeled as an independent and identically distributed (i.i.d.)
process, ignoring the temporal correlation of the channel variation. In [32], instead
of assuming known moments of the i.i.d., for the process and observation noise, they
are estimated through samples of the stochastic quantities, which is a step towards
more realistic considerations.

However, as rightly stated in [33], errors encountered in real communication
channels often appear in clusters rather than randomly. Hence, the previous state
of the channel greatly influences the next state. In order to take advantage of this
dependence to predict the packet drops more accurately, communication channels
are modeled to have memory. In [7], the channel is modeled as a Markov chain for
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establishing the dependency between adjacent states. A more complex modeling is
done using the Gilbert-Elliot model of communication channels as elaborated in [34]
and [35]. A comparison between Markov and Gilbert-Elliot modeling is given in [9],
which shows that the 3-state Markov chain and Gilbert-Elliot model reproduce the
packet losses and burst length of a real channel equally well. In this work, however,
we use the 2-state Markov chain to model channel with memory since it is sufficient
for the assumed packet losses in this system.
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3 Method and Modeling
In this work, we consider a stochastic, finite-horizon discrete-time linear vehicle
system with both process and observation noises, modeled as Gaussian distributions.
Moreover, we model communication impairments between the vehicle and central
coordinator using packet loss probability distribution for channels both with and
without temporal correlation (memory). Here, the packet drops from vehicle sensor
to central coordinator are taken into consideration. In case of packet drops from
controller to vehicle actuator, the previously communicated control input sequence
from the model predictive controller would be implemented. Hence, these packet
drops are not separately addressed. Kalman estimation method is used to predict the
evolution of the state taking into account the noise and packet drops. The objective
of crossing the intersection is modeled as a chance constraint. In addition, we have
a limit on the terminal covariance value in order to ensure efficient control input
requirements. While we follow the basic framework from [30] for model dynamics and
terminal covariance constraints, these are modified to account for communication
impairments and observation noises. In particular, we extend the current model to
account for estimating the state and also change the covariance propagation model
to allow for communication losses.

3.1 Dynamic Model
The stochastic, finite-horizon, discrete, linear dynamics of the vehicle is modeled as
follows:

xk+1 = Akxk + Bkuk + Dkwk, (1a)
yk+1 = Ck+1xk+1 + Gk+1rk+1, k ∈ NN−1

0 , (1b)

where xk ∈ Rnx , in this case nx = 3, since xk is a three dimensional vector representing
the position, velocity and acceleration of the vehicle, i.e., xk =

[︂
sk vk ak

]︂T
, uk ∈ R

is the control input, yk ∈ Rnx is the output observation of the system, and wk, rk ∈
Rnx are zero mean white Gaussian process and observation noise, respectively, with
unit covariance. The time step k ranges from 0 to N − 1, where N is the total
number of time steps considered. Matrices Ak and Bk are defined as in [36] as

Ak = A =

⎡⎢⎢⎢⎣
1 h 0
0 1 h

0 0 1 − h

τ

⎤⎥⎥⎥⎦ , Bk = B =

⎡⎢⎢⎢⎣
0
0
h

τ

⎤⎥⎥⎥⎦ ,

where h is the discrete-time interval and τ is a vehicle-specific parameter called the
acceleration-to-deceleration ratio. In this model, we assume all output states are
measurable i.e. Ck = I for all k. Process noise matrix Dk and observation noise
matrix Gk can be modeled according to the given scenario properties. Note that,
currently, we assume the position state to be just a one-dimensional value along the
length of the road. The lateral position is assumed to be constant.
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Our cost function to be minimized is given by:

J(x0, . . . , xN−1, u0, ....., uN−1) = E

[︄
N−1∑︂
k=0

(︂
x̃T

k Qkx̃k + uT
k Rkuk

)︂]︄
,

where x̃ is the deviation from the optimal trajectory, k ∈ NN−1
0 , Qk ⪰ 0 and Rk ≻ 0.

There is no terminal cost since the end state is constrained as explained in the
subsequent sections.

The initial state x0 is a random vector of Gaussian distribution given by known
mean and covariance matrices (µ0, Σ0) i.e., x0 ∼ N (µ0, Σ0). We assume that the end
state can be approximated by a Gaussian distribution of given mean and covariance
matrices (µN , ΣN), i.e., xN ∼ N (µN , ΣN).

3.2 Communication Model: Memoryless Channel
First, we consider channels which have no memory of their previous state, but are
only aware of their current state. Under such communication, the output observation
of the system, yk+1, is communicated to the central coordinator subject to a packet
drop probability pd. If pd = 0, there are no packet drops and all observations are
communicated from the vehicle to the central coordinator. If pd = 1, then all packets
get dropped and there is no observation being communicated by the vehicle. We
consider two ways of modeling this packet drop probability, as follows:

3.2.1 Sample of Probability Distribution

We introduce the success indicator term, δk, which is 1 if the observation data has
been communicated to the vehicle, and 0 otherwise. The value of δk is obtained
according to the packet drop probability pd. We consider several different packet
drop probabilities between and including 0 and 1. A sample of δ =

[︂
δ1, δ2, ....δN

]︂
is

generated based on the packet drop probability pd.

3.2.2 Direct Probability Distribution

In this case, instead of binary δk values, we consider the probability distribution
value itself to determine the amount of observation communicated back to the vehicle.
Hence the distribution pd itself is taken in the corresponding equations.

3.3 Communication Model: Channel with Memory
Here, we model the packet losses in channel with memory as a 2-state Markov chain
model. We consider two states of the channel: good(G) and bad (B); see Fig. 1.
In the good state (G), the packet is communicated successfully, whereas in the bad
state (B), the packet is lost. The probability of transitioning from the good state to
bad state is given by p and thus the probability of remaining in good state is 1 − p.
Similarly, the probability of transitioning from bad state to good state is given by q,
and thus the probability of remaining in the bad state is 1 − q.
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G B1− p 1− q

p

q

1

Figure 1: Two-state Markov chain model

In this paper, we assume that the probabilities p and q are known to us. This is
possible to obtain from the channel packet loss statistics over a long period of usage.
Knowing the above probabilities, we again derive an ensemble δ for packet drops
over the entire horizon, as it was the case in Section 3.2.1, but in this case of the
channel with memory.

3.4 Kalman State Estimation
The Kalman estimator is used to get the best estimation of the state taking into
account process noise, observation noise and packet drops. Let the Kalman gain
be denoted by Fk. The covariance prediction and update using Kalman estimation
based on [37] is calculated as follows:
The a priori covariance estimation is

Σk+1|k = AΣk|kA + DkDT
k . (2)

The Kalman gain update:

Fk+1 = Σk+1|k(Gk+1G
T
k+1 + Σk+1|k)−1.

The a posteriori covariance update is given by

Σk+1|k+1 = (I − γk+1Fk+1)Σk+1|k, (3)

where γk = δk in case of sampled distribution and γk = pd in case of direct probability
distribution. The a priori and a posteriori estimates of the state based are given as

x̂k+1|k = Ax̂k|k + Buk, k ∈ NN−1
0 ,

x̂k+1|k+1 = x̂k+1|k + γk+1Fk+1(yk+1 − Cx̂k+1|k),

respectively.
Let ek ≜ xk − x̂k|k, thus ek represents the state estimation error as a Gaussian

white noise. Then, the state equation can be rewritten as:

xk+1 = x̂k+1|k+1 + ek+1

= x̂k+1|k + γk+1Fk+1(yk+1 − Cx̂k+1|k) + ek+1

= x̂k+1|k + γk+1Fk+1(Cxk+1 + Gk+1rk+1 − Cx̂k+1|k) + ek+1.
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Hence,

(I − γk+1Fk+1C)(xk+1 − x̂k+1|k) = γk+1Fk+1Gk+1rk+1 + ek+1.

Rearranging and substituting for the a priori estimate,

xk+1 = A(xk − ek) + Buk + (I − γk+1Fk+1C)−1(γk+1Fk+1Gk+1rk+1 + ek+1). (4)

Thus, writing (4) in the form of (1a), we get

xk+1 = Axk + Buk + D′
kw′

k,

where

D′
k =

[︂
−A (I − γk+1CFk+1)−1 (I − γk+1CFk+1)−1(γk+1Fk+1Gk+1)

]︂
and

w′
k =

⎡⎢⎣ ek

ek+1
rk+1

⎤⎥⎦ , k ∈ NN−1
0 .

We can, therefore, represent both the state estimation error and observation noise
within a single noise quantity. This representation will be useful in the subsequent
analysis.

3.5 Preliminary Equations
For a given intersection to be crossed, say at position sexit, a vehicle modeled with
(1a)-(1b) needs a number of time steps, say N . The compact system model containing
the equations at every time instant, from time step 0 until time step N , stacked
together can be written as:

χ = Ax0 + Bυ + Dω, (5)

where

χ =
[︂
xT

0 xT
1 . . . xT

N

]︂T
∈ R(N+1)nx ,

υ =
[︂
uT

0 uT
1 . . . uT

N−1

]︂T
∈ RNnu ,

ω =
[︂
w

′T
0 w

′T
1 . . . w

′T
N−1

]︂T
∈ RNnw ,

and the matrices A ∈ R(N+1)nx×nx , B ∈ R(N+1)nx×Nnu , D ∈ R(N+1)nx×Nnw are defined
as A =

[︂
I Ā1 Ā2 · · · ĀN

]︂T
, where Āk = Ak−1,0 = Ak−1Ak−2 . . . A0,

B =
[︂
0 B1̄ · · · B̄N−1

]︂T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
B0 0 0 . . . 0
B1,0 B1 0 . . . 0
B2,0 B2,1 B2,1 . . . 0

... . . .
BN−1,0 BN−2,1 BN−3,1 . . . BN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Bk1,k0 = Ak1,k0+1Bk0, thus,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
B0 0 0 . . . 0

AB0 B1 0 . . . 0
A2B0 AB1 B2 . . . 0

... . . .
AN−1B0 AN−2B1 AN−3B2 . . . BN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and,

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
D′

0 0 0 . . . 0
AD′

0 D′
1 0 ... 0

A2D′
0 AD′

1 D′
2 . . . 0

... . . .
AN−1D′

0 AN−2D′
1 AN−3D′

2 . . . D′
N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, the objective function can be rewritten as

J(χ, υ) = E
[︂
(χ − χ̄)T Q̄(χ − χ̄) + υT R̄υ

]︂
, (6)

where χ̄ is the desired trajectory of the vehicle, Q̄ = blkdiag(Q1, Q2, . . . , QN−1, 0)
and R̄ = blkdiag(R1, R2, . . . , RN−1).

We assume, for now, that the observation gives the true state, i.e., the observation
noise, rk = 0. Thus, the state feedback controller can be defined in the form

υk = lk
[︂
1

T , xT
0 , , xT

1 , ...., xT
k

]︂T
,

where lk ∈ Rnu×nx(k+2). Thus, the relationship between χ and υ can be written as

υ = Lχ,

where χ = [1T , χT ]T ∈ Rnx(N+2) is the augmented state sequence until step N ,
υ ∈ RNnu is the control matrix until step N − 1 and L ∈ RNnu×(N+2)nx is the
control gain matrix. L matrix is required to be causal and hence takes the form
L =

[︂
L1, Lχ

]︂
, where L1 ∈ RNnu×nx and Lχ ∈ RNnu×(N+1)nx is a lower triangular

block matrix. From (5), we can write the new state equation as:

χ =
[︄
I 0

0 A

]︄
χ0 +

[︄
0

B

]︄
Lχ +

[︄
0

D

]︄
ω, (7)

where χ0 = [1T , xT
0 ]T and ω = [0T , ωT ]T . Rewriting (7) we get,

χ = (I − BL)−1(Aχ0 + Dω), (8)

where A = blkdiag(I, A) , B = [0, B]T and D = [0, D]T .
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We define a new variable K ≜ L(I − BL)−1, where K =
[︂
K1, Kχ

]︂
, with K1 ∈

RNnu×nx and Kχ ∈ RNnu×(N+1)nx , is a lower triangular block matrix. Substituting
K into (8), we get the following equations for state and control matrices:

χ = (I + BK)(Aχ0 + Dω), (9)
υ = K(Aχ0 + Dω). (10)

The variable to be optimized and tuned in this problem is K or equivalently, L.
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4 Main Results

4.1 Cost function
Redefining the initial state mean and covariance as

µ0 =
[︄
1

µ0

]︄
, Σ0 =

[︄
0 0

0 Σ0

]︄
, (11)

respectively, we can now define the desired trajectory (i.e., the trajectory that is
followed when there are no uncertainties and the initial state is given by the initial
state mean), denoted by χ̄ as,

χ̄ = (I + BK)Aµ0. (12)

Substituting (9), (10) and (12) in objective function (6) and knowing that E[χ0] =
µ0, E[χ0χ

T
0 ] = µ0µ

T
0 +Σ0 and E[χ0ω

T ] = 0, the objective function can be re-written
as

J(K) = tr(((I+BK)T Q̄(I+BK)+KT R̄K)(AΣ0AT +DDT )+KT R̄KAµ0µ
T
0 AT ).

This is a quadratic expression in K.

4.2 Covariance Matrix
The covariance of the closed loop state matrix χ is by definition given as

Σχ = E
[︂
(χ − χ̄)(χ − χ̄)T

]︂
.

Substituting (9) and (12), we get

Σχ = E
[︂
((I + BK)(A(χ0 − µ0) + Dω))((I + BK)(A(χ0 − µ0) + Dω))T

]︂
.

Simplifying and rewriting, we get,

Σχ = (I + BK)(AΣ0AT + DDT )(I + BK)T . (13)

Let Σop ≜ AΣ0AT + DDT , be the matrix denoting open loop covariance dynamics.
Hence,

Σop =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
A1̄
A2̄
...

AN̄

⎤⎥⎥⎥⎥⎥⎥⎥⎦ Σ0
[︂
I A1̄

′
A2̄

′
. . . AN̄

′]︂ + DDT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IΣ0I
′ IΣ0A

′
1 IΣ0A

′
2 IΣ0A

′
3 . . . IΣ0A

′
N

A1Σ0I
′ A1Σ0A

′
1 A1Σ0A

′
2 A1Σ0A

′
3 . . . A1Σ0A

′
N

A2Σ0I
′ A2Σ0A

′
1 A2Σ0A

′
2 A2Σ0A

′
3 . . . A2Σ0A

′
N

A3Σ0I
′ A3Σ0A

′
1 A3Σ0A

′
2 A3Σ0A

′
3 . . . A3Σ0A

′
N

... . . .
ANΣ0I

′ ANΣ0A
′
1 ANΣ0A

′
2 ANΣ0A

′
3 . . . ANΣ0A

′
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ DDT .
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For no communication losses, this can be written in terms of covariance evolution at
each step given as defined in equation (2) given by a new variable,

Σnl
op =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ0 Σ0A
′ Σ0A

′
2 Σ0A

′
3 . . . Σ0A

′
N

AΣ0 Σ1 Σ1A
′
1 Σ1A

′
2 . . . Σ0A

′
N−1

A2Σ0 A1Σ1 Σ2 Σ2A
′
1 . . . Σ2A

′
N−2

A3Σ0 A2Σ1 A1Σ2 Σ3 . . . Σ3A
′
N−3

... . . .
ANΣ0 AN−1Σ1 AN−2Σ2 AN−3Σ3 . . . ΣN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now consider the case with communication packet losses. The value of each of the
Σk in the above equation changes to that given by equation (3). Thus, we can define
a new variable,

Σl
op =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ0 Σ0A
′ Σ0A

′
2 Σ0A

′
3 . . . Σ0A

′
N

AΣ0 Σ1 Σ1A
′
1 Σ1A

′
2 . . . Σ0A

′
N−1

A2Σ0 A1Σ1 Σ2 Σ2A
′
1 . . . Σ2A

′
N−2

A3Σ0 A2Σ1 A1Σ2 Σ3 . . . Σ3A
′
N−3

... . . .
ANΣ0 AN−1Σ1 AN−2Σ2 AN−3Σ3 . . . ΣN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

where the Σk values are given by (3). Thus, we can write the covariance of state
matrix χ in the presence of packet losses as:

Σχ ≜ (I + BK)Σl
op(I + BK)T . (15)

4.3 Chance constraints for intersection crossing
Due to the stochastic nature of the system, putting hard constraints on the intersection
crossing within a given time might result in infeasible solutions. Hence we model
this as a chance constraint with very low probability of failure. The required chance
constraint is given by

Pr(sN ≤ sexit) ≤ pf ,

where pf is a predefined low probability of failure. Rewriting this constraint in terms
of χ and using appropriate multiplicative matrices α and β, we get,

Pr(αT χ̄ ≤ β) = Φ
⎛⎝ β − αT χ̄√︂

αT Σχα

⎞⎠ ≤ pf , (16)

where Φ is the cumulative distribution function of the standard Gaussian distribution.
Now, let

Σp = αT Σχα = αT (I + BK)Σl
op(I + BK)T α.

From (14), we know that Σl
op is symmetric, although not necessarily positive definite.

We define M such that M ≜ (Σl
op) 1

2 . If Σl
op is positive definite, M is real, otherwise

M is complex. However in both cases, M is symmetric. Thus, we can rewrite,

Σp = αT Σχα = αT (I + BK)MT M(I + BK)T α.
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Now, M(I + BK)T α is a vector. Let us denote it by ū. Thus Σp = ūT ū. Rewriting
(16), we get,

β − αT χ̄ −
√︂

ΣpΦ−1(pf ) ≤ 0.

Substituting for Σp,
β − αT χ̄ −

√
ūT ūΦ−1(pf ) ≤ 0.

Now, ūT ū = λmax(ūT ū) since ūT ū is a 1x1 matrix. Hence,

β − αT χ̄ −
√︂

λmax(ūT ū)Φ−1(pf ) ≤ 0.

Now, λmax(ūT ū) ≤ λmax(ūH ū) where the equality holds for real matrices. Since
Φ−1(pf ) < 0 for pf < 0.5, the following inequality holds:

β − αT χ̄ −
√︂

λmaxūT ūΦ−1(pf ) ≤ β − αT χ̄ −
√︂

λmaxūH ūΦ−1(pf ) ≤ 0. (17)

By definition of 2-norm for matrices,

β − αT χ̄ − ||ū||Φ−1(pf ) ≤ 0.

Resubstituting for ū, the final form of the chance constraint is,

β − αT (I + BK)Aµ0 − ||M(I + BK)T α||Φ−1
(︂
pf ) ≤ 0. (18)

Remark 1 Inequality (17) holds under the assumption that the failure probability,
pf < 0.5, i.e., the term Φ−1(pf) is negative. At pf = 0.5, Φ−1(pf) = 0, which
eliminates the nonlinear part (i.e., the covariance term) from the equation and only
the mean value is left. For pf > 0.5, Φ−1(pf ) becomes positive and this inequality no
longer holds. However, in real life scenarios, the system is designed such that the
failure probability is much smaller than 0.5, and, hence, our assumption is reasonable.
⌟

4.4 Constraint on terminal covariance
We constrain the evolution of the process covariance to be less than a predefined
value Σlim. It provides a narrow distribution of the end state and thus the predicted
states are closer to the mean µN . This ensures that the µN required for the success
of the chance constraint is not too far away from the required sexit. The constraint is
modeled as follows:

ENΣχET
N ≤ Σlim,

where EN ≜ [0, 0, 0, . . . , I] ∈ Rnx×(N+2)nx is the appropriate multiplying matrix to
get the N th time step covariance.
Hence the constraint becomes,

EN(I + BK)Σl
op(I + BK)T ET

N ≤ Σlim.

Since by assumption, Σlim ≥ 0, the above inequality can be rewritten as:

I − (Σ−1/2
lim )T EN(I + BK)Σl

op(I + BK)T ET
NΣ−1/2

lim ≥ 0.
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Substituting for Σl
op,

I − (Σ−1/2
lim )T EN(I + BK)MT M(I + BK)T ET

NΣ−1/2
lim ≥ 0.

Being symmetric, the matrix

Ξ ≜ (Σ−1/2
lim )T EN(I + BK)MT M(I + BK)T ET

NΣ−1/2
lim

is diagonalizable via the orthogonal matrix S ∈ Rnx×nx . Thus, S(I−diag(λ1, . . . , λnx)ST ≥
0 where λ1, . . . , λnx are the eigenvalues of Ξ. The last inequality is implied by
1 − λmax(Ξ) ≥ 0. Again, since λmax(MT M) ≤ λmax(MHM), we get,

λmax(Ξ) ≤ λmax((Σ−1/2
lim )T EN(I + BK)MHM(I + BK)T ET

NΣ−1/2
lim ).

Hence a stronger constraint on the covariance is:

1 − λmax((Σ−1/2
lim )T EN(I + BK)MHM(I + BK)T ET

NΣ−1/2
lim ) ≥ 0. (19)

By definition of 2-norm, we can rewrite constraint (19) as:

1 −
⃦⃦⃦
M(I + BK)T ET

NΣ−1/2
lim

⃦⃦⃦2
≥ 0. (20)

This is the final form of the constraint on the terminal covariance of the state.

4.5 Input constraints
In any real vehicle scenario, the power input from the engine and consequently, the
available acceleration to the vehicle is limited. This needs to be accounted while
designing the solution. To this end, in this paper, we restrict the available input
acceleration to the vehicle based on generic car acceleration limits as follows:

umin ≤ u ≤ umax. (21)

4.6 Optimization problem
Based on the system model and all the constraint considerations, the final optimization
problem can be defined as follows:

min
K

J(K)

s.t. (18), (20), (21).
(22)

The result of this optimization gives a robust control input for each step in
the given horizon to cross the intersection successfully in the presence of all the
aforementioned constraints. The control input of the first step can be implemented
by the vehicle and the entire process can be repeated at the next time step, as per the
MPC methodology. This control input is communicated by the central coordinator
back to the vehicle. In case of communication loss or infeasibility at a particular
step, the previously computed input scheme can be implemented till a new version is
available. For the proof of convexity of the above optimization problem, see [30].
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5 Numerical Examples
In this section, we demonstrate the performance of the proposed algorithm through
numerical examples and, thereby, quantify its advantages over previous methods.
Problem (22) is coded in MATLAB and run using the CVX toolset for disciplined
convex optimization [38].

A horizon of N = 20 time steps with time period, h = 0.2s is considered. A
vehicle starts from s0 = 0 m with velocity v = 5m/s and acceleration a = 0 m/s2.
This is taken as the initial mean of the state u0 =

[︂
0 5 0

]︂
. It is required that

it crosses the intersection given by sexit = 30m in the given time horizon. Since
sexit = 30m, the vehicle needs to accelerate from its current speed to a higher value
to cross the intersection in the given horizon. The initial covariance of the state
is assumed to be Σ0 = diag

{︂
1 0.1 0.1

}︂
. The noise matrices for state, is taken

as D = diag
{︂
0.5 0.05 0.05

}︂
and for observer noise, G = 0.5D. Vehicle specific

parameters are taken as τ = 10 and input acceleration limits are
[︂
−5, 3

]︂
m/s2. The

cost matrices for state and input costs are considered are Q = diag
{︂
1 0.01 5

}︂
and

R = 5, respectively.

5.1 Memoryless Channel Results
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Figure 2: Control input demand with comparison between sampled (δk) distribution and
direct probability (pd) distribution with pd = 0.5 and pf = 0.0005.

In this scenario, we have considered two methods of modeling the impairments:
(i) one by taking an ensemble of the packet drop probability distribution, and (ii)
another by taking the probability distribution values themselves. It is observed that
the method with the ensemble of the packet drop probability distribution warrants a
more stringent demand for control and is also closer to the real scenario (a comparison
is given in Fig. 2.) As a result, for all the subsequent simulation we will be using an
ensemble of the packet drop probability distribution.
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5.1.1 Open-loop control

In what follows, the trajectory is predicted for N = 20 time steps by the convex
optimization problem (22) and the corresponding control sequence is generated
(open-loop control).
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Figure 3: Vehicle position evolution wrt time step k as predicted at k = 0 until k = N
with varying pf and constant pd = 0.5. The length of the errorbar above and below the
mean, as depicted in the figure, is the standard deviation 1σk =

√
Σk.
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Figure 4: Evolution wrt time step k as predicted at k = 0 until k = N with varying pf

and constant pd = 0.5.

First, the packet drop probability is kept constant at pd = 0.5 and the probability
of failure is varied from pf =

[︂
0.49, 0.05, 0.005, 0.0005

]︂
. From the plot of vehicle

position (see Fig. 3), we can see that, at pf = 0.49 (blue curve), the position mean is
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very close to s = 30 m and the covariance (errorbar) is distributed such that there is
approximately 50% chance that the vehicle crosses the intersection.

As we keep decreasing the probability of failure, the mean and the corresponding
covariance bar move further away from the sexit position, thereby ensuring that
the vehicle crosses the intersection with more and more certainty. For all practical
purposes, we will assume pf = 0.0005, thereby ensuring that the vehicle crosses
the intersection with a very high level of certainty. The control input requirement
(see Fig. 4a) increases as we decrease the probability of failure and this is expected,
since control becomes increasingly conservative. However, since we cannot risk the
failure of the vehicle to cross the intersection, we allow the higher input requirement.
The velocity and acceleration of the vehicle (see Fig. 4b) also increases as failure
probability decreases. However, for the current noise matrix and initial covariance,
the acceleration is well within the constraint bounds.
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Figure 5: Vehicle position evolution wrt time step k as predicted at k = 0 until k = N
with varying pd and constant pf = 0.0005.

In the next set of results, the failure probability is kept constant at pf = 0.0005 and
packet drop probabilities considered are pd =

[︂
0.0, 0.2, 0.4, 0.6, 0.8

]︂
. Beyond

pd = 0.8, the optimization becomes infeasible because of the high packet drops since
the covariance cannot be kept within the required limits. Consider Fig. 5 which gives
the position of the vehicle. As the packet drop probability increases, the noise in the
system increases and hence the covariance gets bigger.

The difference between the covariance when pd = 0 (green bars) and pd = 0.8 (blue
bars) is starkly visible. As the covariance gets bigger, the mean position also moves
further upward from sexit so as to ensure that the probability of failure stays within
the bounds. As it is shown in Fig. 6a, the control input also increases as the packet
drop probability increases. This is because, packet losses mean that the covariance
evolves as an open loop without any feedback from the sensors. Hence the input
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(b) Velocity and acceleration
Figure 6: Evolution wrt time step k as predicted at k = 0 until k = N with varying pd and
constant pf = 0.0005.

has to be made increasingly conservative to account for this higher covariance. The
velocity and acceleration of the vehicle also increase with the packet drop probability,
as illustrated in Fig. 6b. Here, at pd = 0.8, the acceleration touches the upper bound;
however, the vehicle is under control.
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(a) pd = 0.8 and pf = 0.05.
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(b) pd = 0.8 and pf = 0.0005.
Figure 7: Vehicle position evolution with and without the terminal covariance constraints
with different pf

Next, the advantage of having the terminal constraint on the covariance evolution
is illustrated. This is done by considering two cases and comparing the results with
and without the terminal constraint. In both cases, the packet drop probability is
taken as pd = 0.8 because that’s where the effect of the terminal constraint is most
apparent. In first case, a high probability of failure pf = 0.05 is taken to emphasize
the difference in the mean value of the final position. Fig. 7a shows that the presence
of the terminal constraint forces the end constraint to be within a certain limit
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and hence the mean position is closer to sexit compared to no constraint case. This
constraint also affects all the previous evolution of the covariance and hence the
overall control demand is reduced by this (see Fig. 8a).

In the second case, the practical failure probability pf = 0.0005 is taken. In this
case, the position difference is not as high (Fig. 7b), but the effect on control input
is clearly seen (Fig. 8b). We observe that in the case with no terminal constraint,
the control input is high in the beginning, reaches the limit and gets saturated. On
the other hand, with terminal constraint in effect, the control input gets adjusted
from the beginning itself to ensure smooth input and thus maintain acceleration
within the limits. However, it is noted that, at higher noise levels, when the terminal
covariance constraint cannot be satisfied, an infeasibility is generated, whereas the
case with no constraint still gives a feasible solution. A way to work around this
problem would be to check for infeasibility with the constrained solution and if it is
infeasible, re-solve the problem without the terminal constraint.
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(a) pd = 0.8 and pf = 0.05.
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(b) pd = 0.8 and pf = 0.0005.
Figure 8: Control input evolution with and without the terminal covariance constraints
with different pf

Remark 2 It is observed that the terminal covariance constraint does not get acti-
vated for most of the simulated numerical values. It is reached only in the case of
some extreme initial state values and very high packet drop probabilities. Similarly,
the input constraints also get activated only in extreme cases. Hence it is reasonable
to approximate the end state with a Gaussian distribution. ⌟

In formulating the convex constraints as in (17), we see that the transpose
product of the vectors is replaced by the hermitian product whose norm always has
an equal or higher value. It means that we are using a more stringent condition in
the constraint. Hence, the corresponding solution is sub-optimal. We can quantify
this deviation from the optimal value by comparing the value used in the constraint
(||M(I + BK)T α||) and the actual standard deviation of the noise at the N th time
step. For example, in the standard case with pf = 0.0005 and pd = 0.5, this constraint
value is 0.8531 whereas the standard deviation of the noise is 0.3754. Hence, the
solution is approximately 2.3 times more conservative, in this case.
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5.1.2 Close-loop control
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(a) Direct probability distribution.
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(b) Same ensemble for each loop.
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Figure 9: Control sequence generated at each time step of the receding horizon with
pd = 0.5 and pf = 0.0005

A aforementioned, in Section 5.1.1, results have been run with N = 20, i.e.,
the trajectory is predicted for 20 time steps using optimization problem (22) and
the corresponding control sequence is generated (open-loop control). Following the
MPC method, however, the control at one time step is to be executed and the entire
problem should be re-evaluated for the next step. This is how the vehicle would run
the algorithm in practice.

We simulate this closed loop modeling in MATLAB by taking the first predicted
state in the previous loop as the initial condition for the next loop in which the
horizon is for N − 1 steps. Simulations using both the direct probability distribution
and an ensemble of the distribution were done. In the direct distribution system
(Fig. 9a), we see that the control changes significantly at each step. This is because,
for the same probability distribution, the algorithm calculates a very different strategy
depending on the number of steps available. In using the ensemble, we can either
use the same ensemble for every loop so that the control strategy remains the same
(Fig. 9b) or take a new sample for each loop and have a varying control strategy
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(Fig. 9c). The latter may result in higher costs since the previously planned control
strategy may need to be changed completely for the new ensemble. The above
mentioned plots (Figs. 9a, 9b, 9c) show that our algorithm can be used recursively
in the entire MPC horizon and hence is executable in the practical setup. Note
that sometimes, at lower values of N, the optimization becomes infeasible and the
previously calculated control input can be applied at that time step.

5.2 Channel with Memory Results
5.2.1 Open-loop control

Here, we take the probability of transition from good state to bad state, p, as 0.3
and from bad state to good state, q, as 0.6. This corresponds to a steady state
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Figure 10: Vehicle position evolution with comparison between channels without memory
(pd = 0.33) and channels with memory (Markov model, p = 0.3, q = 0.6).

packet drop probability of 0.33. With these probabilities, we again get an ensemble
of δ. Using pf = 0.0005, we compare the results (see Figs. 10, 11a, 11b ) obtained
through this modeling with that obtained through memoryless channel with a packet
drop probability pd = 0.33 for N=20 time steps, keeping all other variables at their
default values. We can see that, using the memory channel based Markov model,
the input requirement and subsequent position and velocity are lesser than those
with memoryless channels. Hence, channels with memory not only provide a more
realistic modeling of packet drops, but also decreases the control demand as a result.

Remark 3 A number of runs with different values of p, q were simulated and it
was observed that this method shows better results than memoryless channels with
corresponding steady state probabilities. ⌟
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Figure 11: Evolution with comparison between channels without memory (pd = 0.33) and
channels with memory (Markov model, p = 0.3, q = 0.6).

5.2.2 Close-loop control

Like the closed loop control in memoryless channels, here also, we take the two
different cases of ensemble prediction. We can either use the same ensemble for every
loop so that the control strategy remains the same (Fig. 12a), or take a new sample
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(a) same ensemble for each loop.
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(b) different ensemble for each loop.
Figure 12: Control sequence generated at each time step of the receding horizon with
p = 0.3 and q = 0.6 for channels with memory.

for each loop and have a varying control strategy. The run with same ensemble gives
similar results as channels without memory. However, for different ensembles case,
the memoryless channels, (Fig. 9c) gave an larger spread in control strategy. However,
in the case of channels with memory, (Fig. 12b), the control strategy remained more
or less the same. This might be because there is relation and dependencies between
the adjacent packets and hence the overall pattern tends to be similar in each run.
This provides a model closer to the real scenario and hence more efficient trajectory
planning.
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6 Conclusions and Future Directions

6.1 Conclusions
This work has addressed the problem of determining a robust trajectory for vehicles
to cross an intersection within a given time-slot in the presence of communication
impairments. It was solved as a convex optimization problem with intersection
crossing requirement as a chance constraint and terminal covariance constraint as a
deterministic constraint. We note that the constraints used are rather conservative
and, as a result, the final trajectory is a feasible one, but not (necessarily) optimal.

This work has provided a theoretical framework to include the real world scenarios
of communication losses as well as noisy observations in the path planning for
automated vehicles, which were in most cases so far, taken to be perfect due to
difficulty in modeling the same. An algorithm is obtained, which can work with
varying degrees of packet loss and noise levels to provide a feasible, sub-optimal
solution with very low probability of failure in crossing the intersection within a
given time frame.

6.2 Future Directions
The first future course of action would be to make the current setup even more closer
to real world scenario. One way would be to introduce delays in the control action
execution and find the corresponding stable control strategy. Another improvement
would be to have communication channels with memory which includes the losses of
individual bits in the packet (Gilbert-Elliot Models) for better estimation and real
time updating of the packet drop probability.

It would also be attempted to find an optimal solution to the given problem
rather than the current conservative solution. It is expected that this will require a
change in the way the problem is formulated as well as a different method to solve
the optimization problem.

Secondly, it is envisioned to extend the solution to find the optimal path for
multiple vehicles simultaneously. A further step in this direction would be to consider
the time-slots for vehicle as optimization variables and solve for the optimal crossing
time for each vehicle, given a predetermined priority order. Once the above objectives
have been achieved and a solid framework has been developed for them, the problem
of determining the priority list for vehicles to cross the intersection can be addressed.
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