
Aalto University

School of Science

Master’s Programme in ICT Innovation

Pei Zhang

Performance Analysis of Cloud-Based
Stream Processing Pipelines for Real-
Time Vehicle Data

Master’s Thesis
Espoo, July 24, 2019

Supervisor: Professor Antti Ylä-Jääski, Aalto University
Advisor: Cheng Xu Ph.D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/227720865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in ICT Innovation

ABSTRACT OF
MASTER’S THESIS

Author: Pei Zhang

Title:
Performance Analysis of Cloud-Based Stream Processing Pipelines for Real-Time
Vehicle Data

Date: July 24, 2019 Pages: 62

Major: EIT Digital - Cloud Computing and
Services

Code: SCI3081

Supervisor: Professor Antti Ylä-Jääski

Advisor: Cheng Xu Ph.D.Sc. (Tech.)

The recent advancements in stream processing systems enabled applications to
exploit fast-changing data and provide real-time services to companies and users.
This kind of application requires high throughput and low latency to provide the
most value. This thesis work, in collaboration with Scania, provides fundamental
blocks for the efficient development of latency-optimized, cloud-based, real-time
processing pipelines.

With investigation and analysis of the real-time Scania pipeline, this thesis deliv-
ers three contributions, that can be employed to speed up the process of devel-
oping, testing and optimizing low-latency streaming pipelines in many different
contexts.

The first contribution is the design and implementation of a generic framework
for testing and benchmarking AWS based streaming pipelines. This framework
allows collecting latency statistics from every step of the pipeline. The insights
it produces can be used to quickly identify bottlenecks of the pipeline.

Employing this framework, the study then proceeds to analyze the behaviour
of Scania serverless streaming pipeline, which is AWS Kinesis and AWS Lambda
services. The results show the importance of optimizing configuration parameters
such as memory size and batch size. Several suggestions of best configurations
and optimization of the pipeline are discussed.

Finally, the thesis offers a survey of the main alternatives to Scania pipeline,
including Apache Spark Streaming and Apache Flink. With an analysis of the
benefits and drawbacks of each framework, We choose Flink as an alternative
solution. Scania pipeline is adapted to Flink with new design and implementation.
Benefits of Flink pipeline and performance comparison are discussed in detail.

Overall, this work can be used as an extensive guide to the design and implemen-
tation of efficient, low-latency pipelines to be deployed on the cloud.

Keywords: Stream Processing, AWS, Latency, Data Pipeline, Flink

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
ICT-Innovation maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Pei Zhang

Työn nimi:
Pilvipohjaisten prosessointiputkistojen suorituskykyanalyysi reaaliaikaista ajo-
neuvotietoa varten

Päiväys: 24. heinäkuu 2019 Sivumäärä: 62

Pääaine: EIT Digital - Cloud Computing
ja palvelut

Koodi: SCI3081

Valvoja: Professori Antti Ylä-Jääski

Ohjaaja: Cheng Xu Ph.D.Sc. (Tech.)

Äskettäiset edistykset stream-prosessointijärjestelmissä antoivat sovelluksille
mahdollisuuden hyödyntää nopeasti muuttuvaa tietoa ja tarjota reaaliaikaisia
palveluita yrityksille ja käyttäjille. Tällainen sovellus vaatii suurta suorituskykyä
ja matalaa latenssia, jotta saadaan suurin arvo. Tämä tutkielma tarjoaa yhteis-
työssä Scanian kanssa perustavanlaatuiset lohkot latenssiin optimoitujen, pilvi-
pohjaisten, reaaliaikaisten prosessointiputkien tehokkaalle kehittämiselle.

Tutkimalla ja analysoimalla reaaliaikaista Scania-putkilinjaa, tämä opinnäytetyö
antaa kolme kommenttia, joita voidaan käyttää nopeuttamaan pienviiveisten vir-
tausputkien kehittämis-, testaus- ja optimointiprosessia monissa eri yhteyksissä.

Ensimmäinen työ on AWS-pohjaisten suoratoistoputkien testaamista ja vertailua-
nalyysejä koskevan yleisen kehyksen suunnittelu ja toteutus. Tämä kehys mahdol-
listaa latenssitilastojen keräämisen jokaisesta vaiheesta. Sen tuottamia oivalluksia
voidaan käyttää nopeasti tunnistamaan putkilinjan pullonkaulat.

Tätä kehystä hyödyntäen tutkimus etenee sitten Scania-palvelimettoman suora-
toistoputken, joka on AWS Kinesis- ja AWS Lambda -palvelut, käyttäytymisen
analysointiin. Tulokset osoittavat konfiguraatioparametrien, kuten muistin koon
ja erän koon, optimoinnin tärkeyden. Keskustetaan useista ehdotuksista parhaim-
mista kokoonpanoista ja putkilinjan optimoinnista.

Lopuksi tutkielma tarjoaa tutkimuksen tärkeimmistä vaihtoehdoista Scania-
putkilinjalle, mukaan lukien Apache Spark Streaming ja Apache Flink. Analy-
soimalla kunkin kehyksen hyödyt ja haitat, valitsemme vaihtoehtoiseksi ratkai-
suksi Flinkin. Scania-putkisto on mukautettu Flinkille uudella suunnittelulla ja
toteutuksella. Flink-putkiston ja suorituskyvyn vertailun eduista keskustellaan
yksityiskohtaisesti.

Kaiken kaikkiaan tätä työtä voidaan käyttää kattavana oppaana pilveen asennet-
tavien tehokkaiden, pienen viiveellä putkistojen suunnittelussa ja toteutuksessa.

Asiasanat: Virran käsittely, AWS, latenssi, dataputki, Flink

Kieli: Englanti

3

Acknowledgements

This thesis was written at Scania Group, many thanks to Scania for giving
me this interesting thesis topic and all the resources I need to work on this
thesis.

I would like to thank my professor Antti Ylä-Jääski for giving me this
opportunity working on this topic and for all the suggestions and support
that help me finish my thesis properly. I am grateful to have Cheng Xu as
my thesis instructor who always gives me dedicated guidance and valuable
feedback during the whole thesis work.

Also I would like to express my gratitude to all the members of Sca-
nia ECCE department, expecially my manager Annika and CESI team for
supporting my thesis work and giving me instructions.

Last, I want to thank all my friends and family for being there for me.

Espoo, July 24, 2019

Pei Zhang

4

Abbreviations and Acronyms

AWS Amazon Web Services
CRISP CRoss Industry Standard Process
DBMS Database Processing Management System
DSMS Data Stream Management System
CQ Continuous Queries
protobuf Protocol Buffers
DB Database
SQL Structured Query Language
CSV Comma-Separated Values
Amazon KDS Amazon Kinesis Data Streams
Amazon KDA Amazon Kinesis Data Analytics
Amazon S3 Amazon Simple Storage Service
Amazon EC2 Amazon Elastic Compute Cloud
Amazon EMR Amazon Elastic MapReduce
Amazon SQS Amazon Simple Queue Service
RDD Resilient Distributed Dataset
Async Asynchronous

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Problem Statement . 9
1.2 Structure of the Thesis . 10

2 Background 12
2.1 Data Analysis . 12
2.2 Real-Time Stream Processing 14

2.2.1 Stream Processing Architectures 15
2.2.2 Continuous Query . 16
2.2.3 Processing Operators 17
2.2.4 Windowing . 18

2.3 Stream Processing Systems . 20
2.4 Cloud Computing . 20

3 Current Solution 21
3.1 Background . 21
3.2 Amazon Web Service . 21

3.2.1 Amazon Kinesis Data Streams 22
3.2.2 Amazon Lambda . 22
3.2.3 Amazon DynamoDB 23
3.2.4 Amazon CloudWatch 24
3.2.5 Amazon ElastiCache 25
3.2.6 Amazon EMR . 25

3.3 Protocol Buffers . 26
3.4 Current Data Pipeline . 26

4 Benchmarking Environment 29
4.1 Motivation . 29
4.2 Benchmarking Design . 30

6

4.3 Benchmarking Setup . 32

5 Pipeline Performance 33
5.1 Background . 33
5.2 Experiments . 34
5.3 Results Evaluation . 35
5.4 Latency Discussion . 40

6 Alternative Solution 41
6.1 Overview of Streaming Frameworks 42
6.2 Comparison of Streaming Frameworks 43

6.2.1 Dynamic Enrichment 43
6.2.2 Internal Caching . 43
6.2.3 Input/Output Format 44
6.2.4 Delivery Guarantees 44
6.2.5 Latency . 45
6.2.6 Throughput . 45

6.3 Alternative Solution Design 46
6.3.1 Overview . 46
6.3.2 Design Principles . 47

6.4 Prototype Implementation . 48
6.5 Result Evaluation and Discussion 49

7 Discussion 50
7.1 Performance Comparison . 50
7.2 Future Work . 51

7.2.1 Improve Benchmarking Environment 51
7.2.2 Current Pipeline Optimization 52
7.2.3 Complete New Flink Solution 53

8 Conclusions 55

A Structure of Flink Project Prototype 61

7

Chapter 1

Introduction

The development of hardware technology enables a large amount of real-time
data generated from a variety of devices everyday. For example, smart devices
send real-time position data to map services, connected devices continuously
send sensors data to monitoring or analyzing applications. These big vol-
ume data comes from different sources in real-time composing data streams.
Applications and services built on streaming data, on one hand, have to man-
age infinite data set since data items are produced continuously; on the other
hand, they require real-time processing to be able to response immediately
with detecting potential failures or making right decisions. Thus, the ability
to exploit fast-changing data and provide real-time services to companies and
users has become the competitive advantage of service providers.

Scania is one of the world’s leading manufacturers of trucks and buses for
heavy transports. Today, they have more than 400,000 connected vehicles
generating a huge amount of data in real time every day. In Scania connected
services and collaboration, a real-time stream processing pipeline is used to
collect and process hundreds of measurements every second, collected by the
smart sensors installed in modern trucks. The outputs of this streaming
pipeline are used by data analysis and machine learning teams as qualified
input data sources, to provide multiple different real-time services to their
customers. As in real-time applications, data value vanishes gradually with
time goes by. A streaming pipeline must have high throughput and low
latency in order to provide the most value. Therefore, this Scania data
streaming pipeline not only provides high quality of data to other data-driven
services but also needs to process data in a short time period.

In order to ensure the quality of data. Scania constructs its streaming
pipeline with following data pre-processing rules. In the data streaming area,
data pre-processing is one of the most critical components which is used to
provide good quality of data. The real-world raw data is most likely produced

8

CHAPTER 1. INTRODUCTION 9

with errors, out of order, and missing values. Data pre-processing transforms
raw data into an understandable format as well as correcting inconsistency
and incomplete. Generally, data pre-processing has several steps, including
data cleaning, data integration, data transformation, data reduction, and
data discretization. Considering the user cases of pre-processed data, a com-
mon data pre-processing procedure has some or all the steps. Data cleaning
is mainly for correcting consistency, such as data arriving time, and remov-
ing empty values. Data integration is also called data enrichment, which
joins multiple data sets together. Data transformation is normalizing data
to make sure all the values have the same units. Data reduction and data dis-
cretization are reducing the volume of data to produce similar results. Scania
pipeline chooses some steps from whole data pre-processing flow to ensure
data quality, which includes data enriching, data cleaning and normalizing
based on real industry requirements.

When having the mechanism to keep data quality, improving the perfor-
mance of the streaming pipeline becomes more and more important. High
throughput and low latency are other key requirements of Scania streaming
pipeline. However, there are several challenges in finding better streaming
data processing solutions in terms of performance. The goal of this thesis
work is to design and implement an alternative data pre-processing pipeline,
and then do a performance comparison between different solutions as well as
different capacity configurations, in order to find the best solution or best
configuration which can achieve high throughput and low latency.

1.1 Problem Statement

Currently, Scania Connected Services has a cloud-based data pre-processing
pipeline where sensor raw data is collected from each connected vehicle and
then processed with other cloud services. Pre-processed data is used to feed
machine learning models for further analyzing, such as, failure detection and
transporting decisions making.

The goal of this thesis work is defined with considering the following
questions:

1. What is the performance of current Scania streaming pipeline?

Current Scania data pre-processing pipeline has four steps: decoding,
enriching, cleaning and normalizing. These four steps are connected to
each other with Amazon Kinesis Data Streams (KDS) and implemented
with AWS Lambda functions. The producer in this pipeline is incoming
sensor data, consumers in this pipeline are each component as well as

CHAPTER 1. INTRODUCTION 10

other storage readers. The performance we need to measure here is
latency and throughput. With measuring latency and throughput, its
easy for us to find the bottleneck of this pipeline and what factors
contribute to performance.

2. How to optimize current pipeline to achieve better performance?

The capability of AWS services based systems really depends on par-
ticular user cases with special configurations. For example, the number
of shards in Kinesis streams affects the whole throughput this pipeline
can manage. Moreover, the memory of Lambda function decides the
processing time of each trigger. We need to find optimizing solutions
as it is impossible to just increase shards and memory to infinite. The
challenge of this optimization is that it is better to have a stable bench-
marking environment which can easily tell us the different performance
results with corresponding configurations.

3. Considering the requirements of current data streaming pipeline, what
is the alternative solution of Scania data pre-processing pipeline?

Streaming data has its own characteristics and corresponding use cases.
It is important to understand how and why these data are constructed
as well as data transferring between pre-processing steps. Moreover,
there are many existing streaming frameworks such as Apache Spark
Streaming, or from other Cloud providers, such as Google Data Flow,
it is difficult to find one which is suitable for all requirements. In
the end, we have to design a new solution and compare it with the
current Scania pipeline to see the advantages and disadvantages of these
different approaches. Furthermore, we will implement the new solution
with basic features to show the performance in terms of throughput
and latency.

1.2 Structure of the Thesis

The rest of this thesis is organized with following parts:

• Chapter 2 presents a background knowledge with literature review,
such as data streaming systems and stream processing technologies

• Chapter 3 is an overview of developing environment, different services,
tools and an in-depth view of current data pipeline

• Chapter 4 is giving the performance measurement framework with de-
sign and implementation

CHAPTER 1. INTRODUCTION 11

• Chapter 5 is doing experiments of measuring performance, and analyz-
ing and discussing the results

• Chapter 6 presents a comparison of different streaming frameworks and
shows the design and implementation of the alternative solution

• Chapter 7 is comparing current Scania pipeline with new solution, dis-
cussing possible optimization and future work

• Chapter 8 presents the conclusions of this thesis work

Chapter 2

Background

This chapter presents the background of stream processing including what
stream processing is, techniques used in data streaming and stream process-
ing frameworks. As stream processing is a particular branch of data analysis,
an overview of big data analyzing is given first.

2.1 Data Analysis

Data analysis is a particular research field in big data, which applies the
advanced analytic techniques into large, multi-source and diverse data sets.
These datasets are high-volume, high-velocity, high-variety and requiring in-
novative and cost-effective processing [25]. Data analysis has been playing
an important role in the business world for a long time with helping a busi-
ness operate more competitively and efficiently, such as adapting customers,
making decisions and doing predictions [32]. With these given advantages,
currently, more and more areas embrace data analysis in their applications,
for example, public transportation in big cities, risk management in the in-
surance industry, efficient delivery in logistic companies, or city planning by
government [8].

The process of data analysis is obtaining raw data from real world and
converting them into valuable information. The strategy used in data anal-
ysis is called exploratory data analysis (EDA), which is also known as data
mining as an extension. Data mining defines a group of developed exploratory
techniques and methods employed for analyzing voluminous data sets [33].
In order to make independent data mining projects from different industries
with various used techniques being more repeatable, more manageable and
less costly, a standard process model in data mining has been developed
which is CRISP-DM (CRoss Industry Standard Process for Data Mining)

12

CHAPTER 2. BACKGROUND 13

[31]. This CRISP is breaking the whole data mining process into six phases
with respective tasks which can be seen in Figure 2.1.

Figure 2.1: Overview of CRISP and tasks[31]

In these six stages, business understanding and data understanding are
closely connected to each other, which aim to figure out the mission of data
mining projects and get familiar with data characteristics. Modeling, evalu-
ation and deploying work together to deliver final analyzing products. The
crucial phase among these process steps is data preparation. It covers all the
actions used to transform initial raw data into constructed final data which
can be used to serve the next step for modeling. Since the raw data gath-
ered from real world normally are out-of-range, missing values or erroneous
combinations, for example, a kid with age 66. Models and applications built
from these inaccurate data sets constantly have a number of different types
of issues, which particularly applies the natural law ”garbage in, garbage
out” [27]. That means the final analyzing is useless. Therefore, the higher
the quality of prepared data is, the more accurate models can be established,
the more value final products can create.

Data preparation consists of a set of operations converting low-quality
raw data into properly formatted data which can perfectly feed into mining
models subsequently. Techniques and methodologies employed in data pre-
processing are intended to resolve problems in natural data and then provide
high-quality data. As discussed in the book [22], data quality is composed of
many factors, including accuracy, completeness, consistency, timeless, believ-
ability and interpretability. For each type of data quality, data pre-processing
has a specific category of techniques can be used to guarantee final results.
Here we illustrate some pre-processing procedures.

CHAPTER 2. BACKGROUND 14

Data Integration

Data integration refers to the merging of data from multiple data stores [18].
This process usually performs to enrich current data sets with external data.
Typical operations include detecting missing fields in current data sets and
integrating data from different sources without conflicts.

Data Cleaning

Data cleaning refers to a group of operations that filter inaccurate data,
detect bad values, reduce unnecessary or duplicated data [18]. In general,
data cleaning detects defects in dirty data and clean them with certain rules.
For example, cleaning missing timestamps events, cleaning data items with
negative value when it represents age or year. Except for errors, cleaning
can also be used to remove useless data in order to reduce the data volume
a little bit.

Data Normalization

Data normalization refers to unifying the measurement units of all the at-
tributes in data sets. For example, normalizing all the distance-related fields
to meters instead of using miles and inches. Normalizing aims to let all
parameters have the same weight in the later analysis.

Noise Identification

Actually, noise identification is one step of data cleaning which helps data
transformation going smoothly. Diffing from removing errors, noise identifi-
cation corrects them with certain rules or concepts.

2.2 Real-Time Stream Processing

Stream processing is a technique adapted by real-time big data analyzing. It
aims to process data streams without accessing the whole data items which
actually are infinite and continuously arrive. A data stream refers to a group
of data points generated from different sources, such as GPS data from smart-
phones, IoT sensors data, and web application logs. These data points are
real-time, unordered, unlimited and full of errors, and independent from each
other even in the same stream [5]. However, more and more applications are
built with streaming data including network traffic analysis, weblogs analysis
for business recommendation and user location tracking. The value of these

CHAPTER 2. BACKGROUND 15

applications can provide is decreasing with time goes by, which means we can-
not use the traditional way to retrieve all the data, put data into databases
and then process them for other usages. Furthermore, unlike static and fixed
datasets, streaming data has its special characteristics, such as arriving con-
tinuously, rapid increasing, potentially infinite in size and coming out of order
from multiple sources. All of these make managing stream processing much
harder than normal datasets and it has already pushed the limitations of
using traditional database processing management systems (DBMSs).

The traditional DBMSs are designed to send a variety of queries on ex-
isted data sets. It loads all the data into the database first and then does
query whenever we want a result. That is, in DBMS, data is stored in
persistent relational data formats that only have small or infrequently up-
dates, but queries are changing based on various requirements of applications.
However, a data stream management system (DSMS) works in the opposite
way. In DSMS, data is moving, queries are fixed. Most DSMSs implement
and store the queries with known purposes before data arrives, new data
elements of streams arrive continuously to trigger these queries and then
compute new results constantly over time. Instead of using large shared
databases like DBMSs, stream processing only maintains part of processing
data, which reduces demanding infrastructure resources. Moreover, com-
pared with DBMSs, everything is fixed and static like data items, database
products, in stream processing, everything is flowing. For example, the re-
sults of one query cloud also be streams that can flow to another processing
program as incoming streams. Thus, a data streaming system takes one or
more streams of data as input and produces one or more streams of outputs,
streaming data keeps flowing in and out of the system without storing any
of them.

2.2.1 Stream Processing Architectures

Stream processing is a processing model that connects sequential computing
tasks with data streams. A simplest stream processing architecture looks
like this: in general, there are multiple sources producing data as incoming
data streams, such as IoT data, weblogs, transactions. There are several con-
sumers consuming or producing outgoing streams, such as databases, filesys-
tems or another stream processor. Between producers and consumers, there
are message brokers such as Kafka, Kinesis connecting them together, which
ensures data moving from producer to consumer smoothly. In detail, there
are also many computing operators between producers and consumers. Each
operator takes one or more input streams and produces one or more output
streams.

CHAPTER 2. BACKGROUND 16

Logically speaking, the general processing model exposed as above makes
no major differences among all DSMSs. However, internally, by adapting
different ways to perform these computations can make a big difference.

The significant internal architecture consideration which has been dis-
cussed in many existed studies is micro-batch processing versus one-record-
at-a-time stream processing. The former consists of buffering incoming events
in small batches and then perform bulk operations on these batches. It is
used, for example, by Spark Streaming which benefits from leveraging the
underlying extremely efficient bulk processing capabilities of the Spark en-
gine. The latter, which is used, for example, by Storm and Flink, consists
instead of processing one item at a time, as soon as it reaches an operator.

Another internal architecture implementation which also contributes to
computation difference is parallelism. There are three kinds of parallelism:
pipeline parallelism, where successive operators are scheduled on different
machines, task parallelism, where independent branches of the dataflow are
scheduled on different machines, and data parallelism, where the same oper-
ator is scheduled on more than one machine, with the events load-balanced
among them. These parallelism models are not mutually exclusive, but some
of them might be more effective on some architectures than others. For
example, data parallelism is a perfect match for Spark Streaming and its
mini-batch approach, as it is also the underlying principle in the Spark en-
gine. On the other hand, the streaming architecture of Flink, makes it better
suited for pipeline parallelism [21].

2.2.2 Continuous Query

Both DBMSs and DSMSs are mainly about operating data with queries. Dif-
ferent from traditional DBMS using a one-time query, data stream processing
systems process streams of data with continuous queries (CQs). A continu-
ous query is a query that is issued once in a data stream system and then
logically continuously runs over the data in the system until it is terminated
[14]. As data in DSMSs is moving with time, the results of query executions
are also changing over time.

With considering the registering time of queries in DSMSs, queries are
categorized into two types: predefined queries and ad-hoc queries [13]. A
predefined query is created before seeing the streams of data and the value
of the expected results of this query are the same every time. In contrast, an
ad-hoc query is scheduled after data streams starting for a particular demand
from the user. In general, an ad-hoc query is a dynamical and short-time
execution. However, as ad-hoc queries require history data elements that
have already been processed or discard in DSMSs, in order to answer these

CHAPTER 2. BACKGROUND 17

queries, the system has to keep a period of time of data.
Therefore, another core concept in stream processing is having approx-

imate results. An approximate result can be done with bounded memory,
limited time and incomplete data items from a stream. Compared with tradi-
tional DBMSs which can always give accurate answers to queries. The ability
of DSMSs to give precise answers are different, as there are some challenges
coming with continuous queries processing:

• Unbounded arriving data with bounded memory and other computa-
tion resources

• Processing streams of data probably needs extra statistics data or other
streams

• Data streams are often burst, lost and data characteristics are varying
with time

However, it is good to know that a well-behaved stream processing framework
can compute approximate results almost as same as precise results.

2.2.3 Processing Operators

The process of stream data can be described as directed trees, as you can
see the example in Figure 2.2. Source data is root. Final consumers or
applications are leaves. In between, there are many nodes that could either
be intermediate data or operators. Intermediate data can be directed to
storage or other operators. Operators perform operations to transform input
streaming data flow to outputs.

Figure 2.2: A Simple Dataflow Model (Source: [16])

There are two varieties of operators, stateless and stateful [28]. In the
stream processing, the state represents the ability of operators to preserving

CHAPTER 2. BACKGROUND 18

past information in memory that can be used to compute results during future
processing. Stateless operations are simple functions that only use current
incoming data items to perform the outputs, without complying with past
knowledge or future information. Common stateless operators include map
which applies to each element in a stream and returns the same amount of
new elements after transformation, and filter which similar applies to each
element but only returns elements that fulfill the predefined requirements.
For example, if we want to add execution timestamp into each element, we
can use a map operation, and if we want to retrieve items with only positive
values, we can use a filter function. All in all, these operations do not rely
on what they have already seen in the past and what will receive in the
future. In contrast, stateful operations are functions which require operators
remember data value from past event to perform the outputs. Examples are
sort, average and relational joins where the computing results are depend on
history data.

2.2.4 Windowing

Windowing is one of the most important implementations in stream pro-
cessing which groups infinite streaming data into smaller finite chunks. As
stream processing loads all computing data into memory instead of accessing
resident data from disks, the usage of memory is going to be unbounded if
it stores the entire history data streams. In the previous section, we briefly
introduced operators in stream processing. We know that in terms of state-
less operations, including filter and map, they can be processed one by one
without asking other dependencies. However, for stateful operators, such as
avg, sort which require historical data, and the results are heavily related
to the length of history data. For example, the average running speed in an
hour is totally different from average speed in 12 hours as perhaps there are
only 4 hours valid running time within these 12 hours. In this situation, a
windowing configuration can let operators know that the size of data that
they should maintain for each execution.

There are two main types of windows employed in the stream processing
system. They are sliding windows and tumbling windows. They both store
data items as they received but differ in triggers and evictions policies [19].

A tumbling window is a window storing data items with pre-defined size.
Data is ready for processing when the window is full. After data processing
completes, the window evicts all data in it to prepare an empty window for
the next processing.

A sliding window is a window maintaining the most recent data records.
A window is moving as a fixed length of the queue. When a new data item

CHAPTER 2. BACKGROUND 19

arrives, it is put into the window, once the window is full, the oldest data
elements are evicted to make up room for new arriving ones. Similar to
the Tumbling window, data is ready for processing when the window is full.
Unlike a tumbling window removes all data items, sliding windows evict old
items for new arrives.

The eviction policies of windowing decide how and when data is being
processed in the window. Both tumbling window and sliding window can be
count-based, time-based and punctuation-based.

• Count-based. A count-based window is defined by the number of data
tuples.

• Time-based. A time-based window is determined by a period of clock
time.

• Punctuation-based. Punctuation represents boundaries in a stream
which divide an infinite stream into finite pieces. Punctuation-based
eviction policy is only suitable for a tumbling window, which stores all
the data items until seeing a punctuation.

Operations with windowing can be a combination of window type and evic-
tion policy. For example, using a count-based tumbling window to process
100 data items at a time, or using a time-based tumbling window to com-
pute results with one-minute messages without counting the number of items.
Similarly, it could also have a time-based sliding window or count-based slid-
ing window.

In addition to time-based windowing, it has more complicated scenarios
as the time here represents three different types of time:

• Event time. Event time is the logic time embedded inside the data
item itself when the data item is created.

• Processing Time. The clock time when the data item is processed.

• Ingestion time. Ingestion time is the timestamp assigned when data
item ingests into the data streaming system.

Event time in one given data item never changes, in contrast, processing
time changes constantly when events flow through different processing proce-
dures. Ingestion time is normally assigned by the streaming system which is
system bound. Different streaming systems have different support for these
three notions of time. For example, Flink supports all these three-time do-
mains to provide a flexible way for programmers to define the correlations

CHAPTER 2. BACKGROUND 20

among events [15]. As discussed in [6], there is a dynamically changing skew
between event time and processing time. This skew represents the arbitrary
delay for having processing results based on event time. Hence, some systems
introduce watermark which is a global process metric to visualize this skew.

2.3 Stream Processing Systems

Stream processing has rich prior work including academic research and com-
mercial applies. For example, the STREAM streaming prototype from Stan-
ford [7], which aims at building a model to solve the problem that traditional
databases can not be applied to real-time applications. STREAM prototype
creates a bunch of queries over continuous unbounded streams. In STREAM
project, they designed continuous query language (CQL) which is a con-
crete declarative query language that implements streams and relations of
time-based items. However, this prototype still needs several improvements
to complete the project, such as STREAM is a centralized model, instead,
modern applications produce distrusted data stream source.

There also exists several stream processing frameworks designed for low-
latency real-time data processing. such as Apache Storm, Spark Streaming
and Flink, which will be discussed in the following chapters.

2.4 Cloud Computing

Cloud computing has been widely used in hundreds and thousands of busi-
nesses as it can replace a big amount of upfront infrastructure expenses into
smaller various payments. United States National Institute of Standard and
Technology (NIST) [26] defines cloud computing as a model which enables
convenient delivery in a shared pool of computer resources such as storage,
networks, databases, application services through network accessing, cus-
tomers can reserve and release these resources with little management effort
and a ”pay-as-you-go” price. With using cloud computing, applications can
be easily developed, deployed and distributed with low costs and automati-
cally scale up / down with real-time requirements.

Cloud providers like Google and Amazon, both provide cloud-based stream
processing services, for example, Google Cloud Dataflow and Amazon Kine-
sis. In the later chapters, we present the Amazon cloud-based stream pro-
cessing solutions.

Chapter 3

Current Solution

In this chapter, we present the company case this thesis is working on, and
explain how the current stream processing system works with detailed expla-
nations about used services.

3.1 Background

Scania provides transport solutions to users with a wide range of applications,
which aim to help customers efficiently manage their vehicles, in the end,
to improve profitability. These applications include for example real-time
position tracking, driver performance coaching, and remote diagnostics which
are all driven by live data collected from connected vehicles. Scania has
more than 500,000 connected vehicles that send real-time data to the data
processing platform everyday. With collecting and analyzing these data,
Scania gives unprecedented insight into the status and performance of each
individual vehicle. In order to have high-quality data for later processing such
as downtime prediction, autonomous driving, Scania has a real-time data pre-
processing product that converts raw data received from vehicles to internal
cleaned, easily to be processed data. The whole data pre-processing system
runs on AWS. In the following section, we will have a brief introduction about
AWS and AWS services we use to build data pre-processing system.

3.2 Amazon Web Service

Amazon Web Service(AWS) is a cloud provider who offers IT infrastructures
in the cloud with high reliability, scalability, and cost-effective to businesses
around the world. AWS provides many cloud services that we can use in

21

CHAPTER 3. CURRENT SOLUTION 22

combinations tailored to business requirements. This section introduces the
majors AWS services used in our stream processing system.

3.2.1 Amazon Kinesis Data Streams

Amazon Kinesis Data Streams (KDS) is a massively scalable and durable
real-time data streaming service [12]. KDS can continuously capture various
types of data from hundreds and thousands of different data sources. These
data can be available for other AWS services to read and process within
seconds. Amazon KDS will help users manage basic infrastructures such as
network, storage, deployment, or other needed services. Additionally, KDS
synchronously replicates data across three availability zones to provide high
availability and durability [9]. In the stream processing systems, KDS works
in this way: data producers continuously write data into KDS, consumers
read data from KDS and process them. Producers and consumers could be
any other AWS services or services calling API but running outside of AWS.

There are some key concepts we have to understand about KDS. First
of all, shard, Shard is the base throughout unit of a Kinesis data stream
[9]. A shard is a sequence of unique data records in a KDS. The number of
shards in KDS decides the level of data processor parallelism. For example, if
you use lambda function as the consumer which processes data from a KDS
with 4 shards, actually, there are 4 lambda functions running in parallel,
each lambda reads data records from one shard and process. Secondly, data
record, a data record is the base data set unit in a data stream, a data
record is composed of a partition key, a sequence number, and data payload.
Kinesis uses partition key to group received records to different shards which
they belong to. Additionally, Kinesis adds a sequence number in each record
which is uniquely identify a record in one shard. The data payload in a record
contains the real data produced by data producer. The third is retention
period, which represents how long the records can still be accessible after
adding into KDS.

3.2.2 Amazon Lambda

Amazon lambda is called serverless computing or event-driven computing
service. It is serverless as we do not need to reserve or setup any servers.
We submit the code and depended on external libraries, Amazon will help
manage to run it on servers. Lambda is event-driven as it needs an event to
trigger it to run the functions. This trigger could be a S3 PutRecord event,
or Kinesis data stream event. With using lambda, AWS will take care of all

CHAPTER 3. CURRENT SOLUTION 23

the other resources if it is needed and automatically scale lambda code with
high availability.

Lambda, as a computing service, has its own advantages and disadvan-
tages. Compared with using EC2 instance, which allows you retain the own-
ership and have full control of underlying deployment including network,
security and operating system, lambda makes it easier for you to execute
code without managing instance provision and operational activities such as
reserve compute resources, code deployment, security maintenance. However,
these benefits also bring limitations. First of all, lambda is stateless. It means
the code runs in lambda must be written in a stateless way which is basically
no relay on the underlying infrastructure. For example, established connec-
tions accessing the local file system and databases, child processes might not
extend beyond execution time. Moreover, the persistent state used among
several lambda executions should be stored in S3 or DynamoDB which are
permanent storage services. Secondly, only memory size of lambda is config-
urable. Different memory size settings affect CPU and network availability.
CPU and network determine the duration of each lambda execution. Third,
lambda may run in a different instance for each trigger. AWS lambda might
reuse old function instance to avoid frequently creating a new copy of code.
However, it cannot guarantee this will always happen. Lambda cold start
in a new instance takes much longer duration time and it impacts system
performance.

3.2.3 Amazon DynamoDB

Amazon DynamoDB is a non-relational, key-value database where data de-
livers fast and flexibly at any scale. DynamoDB is fully managed by AWS.
There are no hardware provisioning, setup or capacity planning. DynamoDB
is a composite of tables, items, and attributes. A table is composed of zero
or several data items, each data item consists of one or more attributes. An
item in one table has its unique identifier which is called the primary key.
A primary key could be one or more item attributes that are required when
putting or retrieving the data item from the table. Apart from the primary
key, DynamoDB also provides secondary indexes to have query flexibility.

DynamoDB lets users manage throughput capacity by providing two
read/write capacity modes. They are on-demand and provisioned separately.
In on-demand mode, there is no specified read/write capacities. DynamoDB
can instantly accommodate the workloads going up and down in any previ-
ous traffic level. Additionally, it can adapt a new traffic peak immediately
without causing extra latency. On the contrary, in provisioned mode, users
have to specify read and write capacity when creating the table based on the

CHAPTER 3. CURRENT SOLUTION 24

needs. Use can add auto-scaling rules to change provisioned capacity up and
down corresponding to traffic changes.

3.2.4 Amazon CloudWatch

Amazon CloudWatch is a monitoring service that gives insights to monitor-
ing data such as application logs, system performance, and AWS resources
usages. CloudWatch can also configure resolution alarms, create a monitor-
ing dashboard, visualize logs and metrics, troubleshoot issues. The impor-
tant feature of CloudWatch for other services or in this thesis work is using
CloudWatch metrics. CloudWatch enables users to collect default metrics
from other AWS services, such as KDS, Lambda, and EC2 instances and
customer-defined metrics for any other applications.

KDS CloudWatch metrics

As a default, KDS sends metrics to CloudWatch with detailed monitoring
data from each single data stream. With the view and analyze these metrics,
it is easy to know the usage of KDS such as the shard usage, the number
of messages in bytes or received messages in records. KDS sends metrics to
CloudWatch at two levels, stream level which is the default configuration and
enhanced shard level. There are some important stream-level KDS metrics
to know in understanding system performance.

IncomingRecords

IncomingRecords represents the number of records successfully putting into
KDS in a period of time in one data stream. In the stream processing sys-
tem, it can be used as Throughput to show the data volume that system is
managing to process.

GetRecords.IteratorAgeMilliseconds

Age represents the time difference between current time and the last record
in GetRecords call was written into the stream. If age is bigger than zero,
it indicates that records are queuing in the stream, consumers are not fast
enough to process records. When age goes to zero, it means that consumers
are completely caught up with the stream.

Lambda CloudWatch metrics

AWS Lambda automatically reports several metrics to CloudWatch such as
durations, errors, Iterator Age for stream invocations. With monitoring these
metrics, users can have a deep view of performance and resource usage for

CHAPTER 3. CURRENT SOLUTION 25

each lambda function. It is worth know the following lambda metrics.

Duration

Duration refers to the clock time for a lambda function from start point to
end execution. The maximum value is when the lambda function is timeout.
In the stream processing system, duration contributes most of the latency if
no other execution delay or data transferring delay.

IteratorAge

IteratorAge is only validated for stream-based invocations including Kinesis
Data Streams and DynamoDB streams. When the trigger is KDS, the Iter-
atorAge of lambda has the same meaning as KDS GetRecords.IteratorAge.
It measures the time between when the lambda receives the batch and the
last record of the batch was put into Kinesis data streams. The best config-
uration of lambda is trying to make sure iterator age is as close to zero as
possible.

Errors

Errors measure invocation failure because of lambda function errors. Their
errors could be a timeout, not enough memory or permission denied. Errors
might cause lambda function retrying until successful.

3.2.5 Amazon ElastiCache

Amazon ElastiCache is a fully managed in-memory data store or cache. The
in-memory cache system is designed to improve the performance of appli-
cations by allowing a program to read and write information from and to
memory in a fast way instead of exchanging data with slow disk-based stor-
age. Amazon ElastiCache provides a distributed cache environment with
multiple nodes, which guarantees that there is no data loss. Additionally, it
supports Redis and Memcached two engines to give more flexibility for users
to choose. ElastiCache is a good choice if a product needs a cache-layer to
support better performance.

3.2.6 Amazon EMR

Amazon EMR is a hosted Hadoop framework running on Amazon Elastic
Compute Cloud(EC2) and Simple Storage Service(S3). Amazon EMR allows
users to set up Apache Spark and Hadoop, Flink or other open-source bid
data processing frameworks in an easy and managed way. Additionally, EMR
provides a quickly, cost-effectively process and can analyze vast amounts of

CHAPTER 3. CURRENT SOLUTION 26

data [1].

3.3 Protocol Buffers

Protocol Buffers are a flexible, efficient, automated mechanism way of seri-
alizing structured data [20]. There are several ways to serialize structured
data, such as JSON, XML, however, protocol buffers are much smaller, faster
and simpler. The advantages of protocol buffers could be, for example, 3 to
10 times smaller, but 20 to 100 times faster compared with XML, easier to
programmatically access generated data classes via a variety of languages.
Moreover, protocol buffers are explicitly designed to solve the complexity
of rolling out new protocols among all server, as with protocol buffers, new
fields can be introduced easily without letting all intermediate servers inspect
all fields.

By using protocol Buffers, we should define the schema first. The schema
represents how the data should be structured. The schema is written in a
.proto file organized with messages. Each message is a logic record of the
information we want to serialize and composed with a series of name-value
pairs. After compiling this schema file and generating special source code, we
can easily read and write structured data from and to various data streams.

3.4 Current Data Pipeline

Currently, Scania already has a data pre-processing pipeline working in pro-
duction which is shown in Figure 3.1. This pipeline is constructed with Ki-
nesis data streams and lambda functions. Messages generated from vehicles
sent into pipeline through Kinesis data streams, in the pipeline, data will go
through Decoder, Enricher, Cleaner and Normalizer four components, every
step connected with each other also with data streams.

Figure 3.1: Current Data Pre-processing Pipeline

CHAPTER 3. CURRENT SOLUTION 27

Decoder

Decoder is converting messages with various data schema to a fixed internal
data schema used in the pipeline. As we mentioned before, Scania has a
large number of connected vehicles, different versions of vehicles have dif-
ferent sensor systems. For example, old trucks have fewer sensors installed
and fewer data collected, however, new generation trucks have up to date
controlling system with much more sensor data collected. Hench, the data
schema of generated real-time sensor data is varying based on the version
of vehicle. Decoder reads messages with vehicle-related schema and produce
messages with the unified internal schema. After decoding, other components
can process messages with only using one type of data schema.

Enricher

Enricher is enriching external information into currently received messages.
When Enricher receives a batch of messages, It looks up if needed informa-
tion already stored in the local cache. This local cache mechanism relays on
that lambda might reuse function instance. If Enricher cannot find need-to-
enrich data in the local cache, it does a batch fetch from DynamoDB tables
which are used as an external cache. If there is still missing external data
for some messages, it will go to the original API and fetch from there one
by one. In the meanwhile, Enricher writes fetched data into DynamoDB to
complete the external cache.

Cleaner

Cleaner is cleaning dirty data. The raw data pipeline received from vehi-
cles could be no timestamps, out of order, broken messages with error value
inside. Cleaner uses predefined cleaning rules to clean errors in received mes-
sages. For example, when Cleaner detects duplicated messages and messages
without timestamps, it will throw them away as this kind of messages are
invaluable. When receiving out of order messages, Cleaner would keep this
message and reorder with the next coming message, if the expected unordered
message arriving too late, Cleaner will throw them away. Moreover, Cleaner
also corrects data inconsistency. From a single vehicle, there exist data fields
which suppose to be monotonically increasing. By checking the previous and
following value in surrounded messages, Cleaner can detect wrong value or
spikes in the stream data items. As lambda is stateless, persistent states
required by lambda should be stored in external storage. Cleaner uses Dy-
namoDB tables to manage states and a count-based sliding windowing for

CHAPTER 3. CURRENT SOLUTION 28

data consistency.

Normalizer

Normalizer is normalizing data unit. For example, normalizing all the non-
seconds unit to seconds, or changing meters to kilometers. Normalizer makes
sure all the data fields can have the same unit for further analyzing.

Chapter 4

Benchmarking Environment

In order to compare the performance of different solutions. It is necessary
to have a standard test environment that can easily change the main com-
ponents of different implementations and measure the results, keeping other
external components the same. In this chapter, we will introduce a bench-
marking test environment designed for our pipeline.

4.1 Motivation

Considering the enormous development of stream processing frameworks, is-
suing clear guidelines for choosing an appropriate framework to meet product
needs has been becoming challenging. Researchers have invested lots of ef-
fort into a comparison of different streaming frameworks with different focus
[24] [29]. Study [24] presents a StreamBench with a wide range of operators
as metrics to evaluate stream frameworks such as Apache Spark and Storm.
The result it concludes is that Spark has higher throughput with fewer node
failures. On the other hand, the study [29] presents a setup that allows mea-
suring the latency of each separate stage of the pipeline. Yahoo conducts
another benchmarking framework [17] for Spark, Storm, and Flink. It uses
Apache Kafka for event data transfer and Redis as external storage to mea-
sure the performance of example data sets going through some operations
such as join, filter, and windowing.

The performance measurement of Scania pipeline is even more compli-
cated as there are several unchangeable requirements.

• setup a running pipeline without changing core components

• producing a controllable amount of streaming data to feed current
pipeline

29

CHAPTER 4. BENCHMARKING ENVIRONMENT 30

• keep the consistency of data schema and using protobuf

• latency measurement for each stage of the pipeline

In existing DEV or TEST environment, there is no high volume of real-time
data source. In a production environment where it has a data source, how-
ever, first of all, it is difficult to share the same data source without causing
issues in the current running product, which might also increase the complex-
ity in debugging and tracking product problems. Secondly, data volume in
the production environment is stable, in performance testing, one important
step is stress testing, which can guide us to design a robust system to handle
any occurring peaks. As the number of connected vehicles is becoming more
widespread, and thus more data needs to be processed through our pipeline
with time pass by. Apart from that, when testing performance, it is necessary
to change the configuration of pipeline, for example, the memory of lambda
functions, the batch size for each execution, to see how pipeline behaves.
These cost effort to manage because of limitations and permissions in the
production environment. Considering all these concerns, we design a bench-
marking test environment which can produce as much data as we want for
stress testing and also have the flexibility of changing configurations without
affecting the current product, such as memory resources.

The performance of our pipeline benchmarking focuses on throughput
and latency. Throughput can be measured by using Amazon CloudWatch
with KDS stream-level metrics with incoming records. Latency is a little
complicated as there is no straightforward way of measuring it. It is necessary
to design a latency measurement service for this pipeline.

4.2 Benchmarking Design

The idea of this Benchmarking test environment is having a component as
a data producer, which continuously writes data into our pipeline, and then
building a latency measurement service at the end of the pipeline, which can
easily measure latency in each component and end-to-end latency. By using
this way, the workload, pipeline configuration, and latency monitoring are
under the control. The whole architecture can be seen in Figure 4.1.

There are two main components in this Benchmarking environment. One
is a message generator. This generator works for:

• Simulating a big amount of trucks with initial values in messages fol-
lowing the internal data schema

CHAPTER 4. BENCHMARKING ENVIRONMENT 31

Figure 4.1: Benchmarking test environment

• Generating needed external enriching information associated with each
truck and storing them into DynamoDB tables

• Continuously updating some fields of initial truck messages and writing
them to Kinesis data streams

The message generator is a Python program. The number of vehicles and
the frequency of updating and sending messages is configurable parameters.
With changing values in the configure file, it is easy to make up any work-
loads as needed. As we test it local, one thread runs full time without any
sleeping delay between updating messages. This generator can push more
than 60k messages per minute into Kinesis stream, which is the maximum
amount of records Kinesis stream can manage in one minute without losing
any data. Compare Figure 3.1 with Figure 4.1, you can see that we use
message generator to produce data into decoded KDS, there is no Decoder
component in this benchmarking environment. The reason why we remove
Decoder is that Decoder here is transforming incoming data with different
schema into unified schema used inside of pipeline. The types of data schema
depend on the types of system running on vehicles. Our message generator
only generates messages with internal schema, which is the result of Decoder.

The other important component is the latency measurement function.
When messages go through our pipeline, each component adds message meta-
data into them including the timestamp when messages arrive and leave this
component. This function attaches in the end of this pipeline. It works for:

CHAPTER 4. BENCHMARKING ENVIRONMENT 32

• Reading messages from Normalized Kinesis stream and deserializing
them

• Extracting message metadata from each received message

• Calculating latency based on message metadata. Such as
enricherLatency = enriched timestamp - decoded timestamp

• Creating Customer CloudWatch metrics and pushing the results into
them

4.3 Benchmarking Setup

In order to keep the consistency of pipeline behaviours, we set up this bench-
marking testing environment with forked pipeline Lambda functions, which
are exactly as same as what used in the production environment. We deploy
these components in AWS DEV environment with two modifications includ-
ing the number of shards and tables required by Enricher. First of all, as
current PROD environment is overscale with KDS shards in order to handle
unexpected peaks, which cause a problem that lambda functions do not have
a full batch of records in executions sometimes. Hence, we reduce all shards
configuration to 1 to make sure every execution processes a full batch. In
this way, we can have a better view of the relation between throughput and
latency. Second, we replace the table names configured in Enricher to table
names written in message generator. Ideally, after a cold start, most of the
external data elements should be stored in DynamoDB tables locally, only a
few of them still need to go external API to fetch. Here we assume that all
require external information is already in DynamoDB. This is not a perfect
design for the testing environment as it should cause the modification of the
original program which needs to be measured, we will discuss a better solu-
tion in the next chapter. In the end, the message generator runs locally and
continuously producing data to this forked pipeline.

Chapter 5

Pipeline Performance

In this chapter, we are going to have an investigation of our current pipeline,
in order to understand the performance of pipeline as well as which parts
of our pipeline contribute to the latency. The investigation contains several
different types of experiments by changing settings such as batch size or
memory to see how pipeline behaviors change. In the end, we give some
suggestions regarding the best configuration of our current pipeline based on
our analyzing results.

5.1 Background

The performance we concern about this pipeline is throughput and latency.
There is no experiments of throughput as throughput can be easily detected
from CloudWatch and the number of throughput can be scaled with adjusting
the number of KDS shards. However, latency is the difficult part to measure.
From previous sections we know that when a message comes into our pipeline
has to go through KDSs and Lambdas, ideally, the latency of one message
should be the accumulation of queuing time in KDS, transmitting time from
KDS to Lambda function, and time usage inside of Lambda function. Among
all these time usages, the lambda time is the most important value we should
measure as it decides how fast this pipeline could be, which also affects
the number of messages it can process or throughput in other words. We
already know that AWS helps measure lambda running time with Duration
metric in CloudWatch. Time consumption in KDS and transferring between
components is not as straightforward as lambda execution time which will
be measured with our latency function service.

In the following sections, we show how we evaluate duration changes
with various combinations of batch sizes and memory which are key aspects

33

CHAPTER 5. PIPELINE PERFORMANCE 34

affecting duration, and generally how components latency behaves.

5.2 Experiments

It is important to understand that in our lambda functions, which parts con-
tribute to execution time. According to AWS official documentation [10],
the given memory of Lambda function influences lambda execution perfor-
mance. As the memory size decides the CPU core and network bandwidth
this lambda function can use in running time. For example, as AWS says,
giving 1792 MB memory is equivalent of assigning 1 full vCPU, and lambda
with 512 MB memory allocates approximately twice CPU power compared
with lambda with 256 MB memory. Meanwhile, besides memory, batch size
contributes a lot to duration, since batch size defines the number of mes-
sages lambda needs to process in each round. The bigger batch size we give,
the more messages we process per execution, the higher throughput we can
achieve. But it is also so obvious that processing 400 records take more time
compared with processing 200 items. However, it is difficult to calculate in
theory how much execution time we can save with increasing memory or re-
duce batch size. Moreover, for a high volume data streaming with a large
amount of throughput, if it is worth trading latency with throughput is an-
other hard question. In detail, insides of lambda functions, the main tasks
are reading and writing from and to DynamoDB, internal processing records
from KDS. The speed of communications with DynamoDB is determined by
the number of items to send and retrieve which is related to batch size, and
network bandwidth which is related to memory allocation. Time usage of
internal records processing changes from function to function which depends
on weather functions are CPU-intensive or not. Therefore, we assume that
both memory and batch size are dedicated to running time and we have done
the following experiments to make them clear. For each component, we test

• fixed memory settings with incremental batch size(such as 100, 200,
300, 400)

• fixed batch size with changed memory(such as 512, 640, 1024, 1792)

For each configuration, we run thousands of tests. We also enable logging
in lambda functions which can tell us the number receiving records in each
execution and time consuming for each step including DynamoDB time and
main tasks time. An example experiment logging table can be see in Table
5.1.

CHAPTER 5. PIPELINE PERFORMANCE 35

Memory Size Batch Size process records Duration Read from DB Cleaning Write to DB
1024 MB 200 200 0.968 ms 0.088 ms 0.560 ms 0.137 ms

Table 5.1: Example Experiment Table

5.3 Results Evaluation

With having thousands of running results as Table 5.1, it is easy to analyze
the time-consuming tasks in each pipeline component. First of all, it is
better to know, in general, for each component, which task contributes most
processing time. As you can see from the Figure 5.1, Enricher duration is
mainly contributed by DynamoDB time usage. In contrast, the duration
of Cleaner is composed of cleaning time and DynamoDB time and cleaning
time is much higher than DB time. Normalizer is a light process which
unifies standard units of every parameter, therefore, it has no DB time. The
interesting thing in Normalizer is the real records processing time is just
around half of the duration.

Figure 5.1: Components Breakdown

CHAPTER 5. PIPELINE PERFORMANCE 36

With understanding core parts result in latency in each component, it
is time to show how memory and batch size change the latency. Here we
use the results of Cleaner lambda function to demonstrate how memory and
batch size dominate execution time. We do not put all test results here, as
Enricher and Normalizer have similar behaviours.

Changing Batch Size with Same Memory

Figure 5.2: Cleaner Duration Breakdown

Figure 5.2 illustrates that how batch size affects the Lambda duration
when it is under the same memory configuration. The results you can see
from Figure 5.2 confirm that a larger batch size increases the overall exe-
cution time of the Lambda, but decreases the ratio between running time
and a number of items processed. Meanwhile, the overall throughput of the
function increases with the number of items in the batch.

It is interesting to know how the execution time changes among different
sub-tasks of the Cleaner. To ease this analysis, Figure 5.3 shows the percent-
age increase of the per-item execution time, for instance, the execution time
divided by the number of items in the batch, for the three sub-tasks of the
function.

The cleaning time, which is the time spent processing each item one by
one to perform the actual logic of the Cleaner Lambda, increases more or

CHAPTER 5. PIPELINE PERFORMANCE 37

Figure 5.3: Cleaner Per-Item Duration Comparison

less linearly with the number of items, with the per-item duration fluctuating
around the same value for all batch sizes. This is expected, as the same
number of calculations needs to be performed sequentially on each item. On
the other hand, the time spent reading from and writing to the DynamoDB
table, which holds the cleaning windows, grows quite slowly with the number
of items. This happens because the reads and writes to the database are
not sent one by one, but in batch or groups. Bigger batch sizes can better
exploit the capacity of the chunks, and thus incur lower per-item duration.
But the execution overhead is the part of the Lambda that shows the greatest
decrease in per-item duration as the batch size is increased. This overhead
task collects all time spent in the initialization and teardown of the lambda,
along with any other time lost outside of the other two tasks. As almost all
of this overhead is incurred once per Lambda call, it grows very slowly with
the number of items and is thus better amortized by bigger batch sizes.

While the results shown in the figures refer to the Cleaner Lambda, sim-
ilar patterns have emerged from all functions: processing time grows linearly
with the number of items, database access time grows quite slowly, thanks to
batching, while overheads show only a tiny increase. Thus, overall, increasing
batch sizes is a useful optimization for functions whose duration is dominated
by database accesses, or for functions that are so quick that overhead times
represent a significant portion of their execution.

CHAPTER 5. PIPELINE PERFORMANCE 38

According to these results, increasing the batch size of the Cleaner Lambda
would only achieve marginal throughput increases, as its execution time is
dominated by actual computations. On the other hand, the Enricher func-
tion would benefit from a large number of items, as it spends most of its
time performing database reads. The Normalizer Lambda does not access
any database, but processes items so quickly that an increase in batch size
might have a visible positive effect, by greatly reducing the function call
overhead.

Changing Memory Size with Same Batch Size

Figure 5.4: Cleaner Memory Analysis

From the results in Figure 5.4, it can be seen that, as expected, a higher
memory allocation has a positive effect on the overall runtime of the Cleaner
Lambda, thanks to the higher CPU power available. One small fluctuation
aside, all activities within the function benefit from more computational re-
sources, but they show very different speedups, as highlighted in Figure 5.5.

The cleaning time, being a computationally-intensive task, shows the
greatest speedups, as more CPU power directly translates to more items
processed per unit of time. The database access also speeds up, but by a
much smaller margin, as it can be assumed that most of the time is spent
waiting, due to network latencies and due to the processing time required

CHAPTER 5. PIPELINE PERFORMANCE 39

Figure 5.5: Cleaner Per-Item Duration Comparison with Different Memory

by the DynamoDB server. It is interesting to note that the overhead time
does not seem to be affected so much by the increase in CPU power. This
goes against the assumption that more computational power would provide
better startup times. A possible explanation might be that these overheads
are not entirely managed by the Lambda container itself, but by some other
component in the Lambda server, which does not scale with the container
resources.

As for the analysis of batch sizes, the results obtained for the Enricher
and Normalizer mirror the ones for the Cleaner, that was reported here. The
findings support the idea that the memory size should be increased for those
functions whose execution is dominated by CPU-intensive processing tasks.
On the other hand, it should be kept low for network-intensive or lightweight
functions, in order to reduce costs.

To summarize these findings, in our pipeline, Cleaner is CPU-bound,
increasing the memory of cleaning Lambda can speed up execution time and
also increase throughput. Enricher is IO-bound, increasing memory has little
help with Enricher, however, increasing batch size to better utilize the batch
read capabilities of DynamoDB. Normalizer is a light function which has no
strict actions needed. It is better to keep it as now or increase the batch size
to reduce overheads and optimize costs.

CHAPTER 5. PIPELINE PERFORMANCE 40

5.4 Latency Discussion

Apart from Lambda duration, there is another significant effect contributing
to pipeline latency. That is the relationship between KDS shard and Lambda
batch size. Our pipeline uses Kinesis Data Streams and Lambda functions.
From AWS official documents [11], it says that lambda polls each KDS shard
at a base rate of once per second. If more records in KDS are available,
Lambda keeps processing batches until it receives a batch that is smaller
than the configured batch size. It means if we oversize the batch size, it will
cause one second polling delay as the incoming records cannot keep feeding
the lambda as it needs. In the current Scania pipeline, it has three Lambdas
connected with KDS. The best setting of KDS shard and Lambda batch size
should be like Figure 5.6.

Figure 5.6: Best Settings of KDS Shard and Lambda Batch Size

As it is shown in Figure 5.6, data goes through two Lambda functions,
here we can call them as upstream lambda and downstream lambda. The
best configuration is, for example, if we have 3 KDS shards(each shard has
one corresponding Lambda function) and Lambda batch size is 4 in upstream,
then when the downstream has 4 KDS shards / Lambda functions, we should
let the Lambda batch size change to 3. The equation can be:

downstream Lambda batch size * downstream KDS shards = upstream
Lambda batch size * upstream KDS shards - dropped error messages

Chapter 6

Alternative Solution

There are several stream processing frameworks appearing in the past few
years aiming for different purposes and a variety of use cases. Such as
STREAM and Aurora coming out of university labs in earlier ages, open-
source frameworks from Apache foundation and services build by cloud providers.
These streaming frameworks internally implemented with its own advanced
technologies to manage increased challenges in stream processing. However,
it is hard to say, in general, which framework outperforms the others as
each of them can become the desirable choice in certain circumstances with
designed constraints.

Several existing studies have already provided comparative results of com-
mon frameworks with chosen metrics such as latency, throughput and re-
source usages. For example, study [23] compares the performance of three
main streaming frameworks including Storm, Spark and Flink with Yahoo
Streaming Benchmark (YSB). These frameworks are evaluated with satura-
tion level which is the maximum streaming workload they can handle with-
out creating extra delay. The study concludes that with saturation levels of
event processing per second, Flink has the best performance compared with
the other two, it is able to process much more events with less resource usage
(worker nodes). Spark is able to outperform the left by increasing batching
interval to achieve highest throughput per second, however, it also means
the latency compromise. Another thesis study [30] uses a tool to bench-
mark performance of Spark Streaming, Flink and Storm. This tool produces
workloads designed to evaluate performance of frameworks with processing
basic operators as well as Join and Iterator operators. The study shows that
Spark Streaming and Flink achieves significantly higher throughput than
Storm. however, because of micro-batch computation, Spark Streaming has
a trade-off between latency and throughput. Therefore, as the author said,
in practice, Flink can achieve both low latency and high throughput in most

41

CHAPTER 6. ALTERNATIVE SOLUTION 42

stream processing cases.
Our stream processing system uses AWS Lambda functions. As we talked

before, these components of our system have some special requirements. For
example, the input data format is protocol buffers, the Enricher component
has to enrich streaming data with external dynamic data. Therefore, apart
from latency and throughput, we should also take into consideration such as
data format, fetch external data when we compare these frameworks.

In the following sections, we will first introduce some data streaming
systems we selected, and give a comparison with selected features.

6.1 Overview of Streaming Frameworks

Apache Spark streaming is an extension of Spark which is designed for build-
ing scalable fault-tolerant streaming applications. Spark streaming system
divides incoming data streams into micro-batches and stores them in mem-
ory. It takes each batch of input data as Resilient Distributed Datasets
(RDDs) and processes these batches by using scheduled spark job with RDD
operations. It also output processed results as streams of batches and push
them into database or file systems [4].

Apache Flink is a distributed processing engine for stateful computations
over data streams. Instead of using micro-batching, Flink is treating streams
as streams with considering the nature of streaming data. Processed data
can be any kind of data, bounded and unbounded which are generated as
streams of events [2]. Flink is designed to unify a stream processing model
for real-time analysis, continuous streams and batch processing in a single
execution engine, in order to reduce high latency imposed by traditional
batch processing as well as high complexity in multiple paths of computation
systems.

Cloud providers such as Google Cloud and Amazon AWS also have their
stream processing services as Google Cloud Dataflow and Amazon Kinesis
Data Analytics. Here we are mainly focusing on Kinesis Data Analytics.

Kinesis Data Analytics (KDA) is a AWS service which can analyze stream-
ing data, give real-time response to customers. KDA reduces the complexity
of building and managing stream applications. With using KDA, we can
easily build SQL queries or JAVA applications integrated with other AWS
services. AWS will help manage other resources required to run these real-
time applications continuously and scale automatically to match the amount
of incoming data.

CHAPTER 6. ALTERNATIVE SOLUTION 43

6.2 Comparison of Streaming Frameworks

In order to find the proper framework as the alternative solution of our
streaming pipeline, we did a literature comparison of current major stream
processing frameworks, with features we concern such as dynamic enrich-
ment, internal caching as well as performance, which can be seen in Table
6.1

Spark Flink KDA Lambda
Dynamic Enrichment Buck single, Async None Buck

Internal Caching Yes Yes None Yes
Input/Output Format Any Any JSON, CSV Any
Delivery Guarantees Exactly once Exactly once Exactly once At least once

Latency Medium Low Low High
Throughput High Medium High Medium-High

Table 6.1: Comparison of Streaming Frameworks

6.2.1 Dynamic Enrichment

Dynamic enrichment refers to the ability to enrich the incoming data stream
based on an external, dynamically changing source. Given that their opera-
tors receive items in batches, Spark and Lambda can perform bulk lookups
to the data source, thus minimizing the number of network calls. On the
other hand, Flink, given that its operators only receive one item at a time,
has to perform a separate call for each record to be enriched. These calls can
be performed asynchronously by Flink, meaning that multiple calls can be
on-flight at the same time. Furthermore, Flink can optionally preserve the
order of the items in the stream, even if their enrichments are performed in
parallel and take different times. Finally, Kinesis Data Analytics SQL syntax
does not provide any constructs to interface with external data sources, thus
preventing any dynamic enrichment. It is only possible to enrich the data
based on static tables that KDA reads from S3 on startup. These tables can
only be updated by deploying a new version of the pipeline.

6.2.2 Internal Caching

Internal caching refers to the ability to keep some of the dynamic enrichment
data within the operators, in order to avoid subsequent network calls. This
is possible in Spark and Flink when writing custom operators, using caching
libraries such as Guava. Lambda functions can be considered some sort

CHAPTER 6. ALTERNATIVE SOLUTION 44

of custom operators themselves, and caching can be coded in them, too.
However, the way used caching in Lambda is not as stable as Spark and
Flink, it really depends on how AWS manages to run Lambda, as the cache
will be cleaned if lambda starts in a new container. Kinesis Data Analytics
SQL syntax does not provide any caching solution, but this would be useless
given that there is no dynamic data to cache. Note that the availability
of aggressive internal caching reduces the number of network calls to be
performed, and thus reduces the performance difference between bulk and
single enrichment by a great amount.

6.2.3 Input/Output Format

Input/Output format refers to the kind of data that can be accepted by
the system, and that can be output as it. Spark, Flink and Lambda can
operate on any sort of data with writing the correct serialization and de-
serialization routines. On the other hand, Kinesis Data Analytics SQL syntax
only supports CSV and JSON inputs and outputs.

6.2.4 Delivery Guarantees

Delivery Guarantees refers to the guarantees regarding the processing and
output of messages in the presence of partial or total failures of the pipeline.
All systems will restart the affected components and retry any ongoing pro-
cessing in case of failure. But while Spark, Flink and Kinesis Data Analytics
have internal safeguard mechanisms that can ensure exactly-once delivery,
the failure behaviour of Kinesis Data Streams, paired with the programming
model of lambdas, can only provide at-least-once delivery. Exactly-once de-
livery means that, even in case of failure, every message will be fully processed
and output once. On the other hand, at-least-once delivery means that, in
case of failure, all messages will be processed, but some messages might be
processed and output twice.

As an example, consider the case where a Lambda function fails after
having output some messages to the next Kinesis Data Stream, but before
returning. The Lambda execution engine will interpret this as a failed func-
tion, and will have no knowledge of what results has already been written.
Thus, the input Kinesis Data Stream will re-trigger the lambda with exactly
the same batch as in the previous call. If this time the Lambda succeeds,
the part of the batch that was already output will appear twice in the next
Kinesis Data Stream.

CHAPTER 6. ALTERNATIVE SOLUTION 45

6.2.5 Latency

Latency refers to the time that passes between the instant a record enters
the system and the instant that the relevant output exits the system. Lower
latency means that the system is “more real-time”, as the results are more
in-sync with the actual status of the events. In general, one-item-at-a-time
frameworks, such as Flink and Kinesis Data Analytics, provide lower latency,
as each item is processed as soon as it enters the system. On the other hand,
batch-based frameworks, such as Spark and Lambda, suffer higher average
latency, as early items need to wait in buffers until a specific batch size is
reached (Lambda) or a specific batch time is passed (Spark). Furthermore,
while batch operators may have a lower per-item processing time, their per-
batch processing time is typically higher than the per-item processing time
of single-item operators, a fact that further increases the latency difference
between the two classes of frameworks. In addition to this, the latency of
Lambda is further increased by the presence of many sources of overheads,
such as the intermediate Kinesis Data Streams and the management of sep-
arate execution environments, one per function.

6.2.6 Throughput

Throughput refers to the amount of items that a framework can process in
a fixed amount of time, given the same hardware resources. Unfortunately,
most of the time, optimizing for high throughput implies introducing more
latency, while optimizing for low latency implies a reduced throughput. As
noted in the latency section, batch operators often present a lower per-item
processing time than single-item operators, thanks to internal optimization
and reduced overheads. This is the main reason why certain throughput-
optimized Spark systems may perform better than Flink ones from the per-
spective of this statistic, at the cost of higher latency. It must be noted,
though, that this is not always the case: studies have shown that Flink may
match and even outperform the throughput of Spark for many workloads.
Kinesis Data Analytics, despite being internally based on Flink (the highest
level abstraction of Flink), should present a very high throughput, due to the
fact that its SQL syntax limits the available operators to some very fast ones,
and due to the fact that the internal architecture is managed and optimized
by AWS for this specific workloads. Lambda, despite being batch-based, as
Spark is, should be expected to present a slightly lower throughput, mainly
due to the additional overheads discussed in the latency section.

The main goal of our new solution is to achieve lower latency with a
certain number of high throughput. According to what we find from the

CHAPTER 6. ALTERNATIVE SOLUTION 46

existed studies and literature analysis, Flink is the best choice as it has
overall low latency and high throughput, and it is able to handle all the
special needs we concern.

6.3 Alternative Solution Design

6.3.1 Overview

Considering given concerns listed above, a new solution for our streaming
pipeline is designed as shown in Figure 6.1, it keeps similar structure to ease
understanding and doing transition.

Figure 6.1: Stream Pipeline with Flink

The key component is a Flink streaming processing program setting up
on EMR, it reads from a Kinesis input stream and writes to a Kinesis output
stream. Inside of Flink, it has three separate processing procedures includ-
ing Enricher, Cleaner and Normalizer. The external data that Enricher
requires stores in Redis on Amazon ElastiCache. Errors during processing
send to SQS. Each processor internally has its own operators handling stream
records. The common used operators are Map which applies a stream of input
records with pre-defined function and produce a stream of output records.
asynchronous Map is a special kind of Map which uses asynchronous requests
instead of sending requests and waiting for responses one by one. Re-order

CHAPTER 6. ALTERNATIVE SOLUTION 47

operator works with time domains. Programmer can define how data items
should be reordered based on three time notions: event time, processing
time or ingesting time. Windowing operator is used in Cleaner for clarifying
cleaning range.

6.3.2 Design Principles

This new design and implementation prototype following four core principles:
modularity, extensibility, scalability, and maintainability.

Modularity: Overall, Flink has a modular design which makes it easier
to plug to any input and add any output. Moreover, Flink has a variety of
pluggable modules such as serialization, storage, and interfaces. Internally,
the modularity is an aspect of another two characteristics: Extensibility and
Maintainability which will be given as follows.

Extensibility: Considering in our current pipeline, for each step, it has
multiple consumers and intermediate storage to backup data. In addition,
as mainstream is moving, errors go to another message queue. With using
Flink, it is still necessary to keep the system to be extendable whenever it
needs to add consumers, storage and error handlers. Flink has good support
for middle consumers. For example, we can add a Kinesis stream as a new
sink at any stage of processing. Moreover, Flink has a service called side
output, except the mainstream, programmers can produce any number of
side streams which is diff from mainstream and also each other. This side
out is quite useful, for example, when we need to replicate streams and do
filter out part of needed data. In this design, you can see we can put errors
in sideout, and in the end, a SQS gets all these errors from sideout.

Scalability: As it uses AWS EMR to setup Flink, and ElastiCache for
Redis caching. Both of these two Amazon services are easy to scale out and
based on the real-time requirements. EMR can scale the main nodes and task
nodes in the cluster with defined auto-scaling policies. ElastiCache works in
a similar way.

Maintainability: The current Kinesis and Lambda pipeline is easy to
maintain as every component completely independent from each other by
using its own CloudFormation and Lambda function. However, it still has
one limitation that the Kinesis streams between lambdas result unchange-
able dataflow in development and testing. The CloudFormations used to
deploy these components decide that Cleaner has to read from Enricher and

CHAPTER 6. ALTERNATIVE SOLUTION 48

output to Normalizer, which means, for example, if we want to test how En-
richer and Normalizer work without Cleaner, we have to modify the input
and output Kinesis streams in each component and re-deploy them. In Flink
design, different components are located in separated folders or files. Every
procedure is isolated from each other from the source code level, and there
is a main function file that connects them together. Incoming and outgo-
ing streams are parameters in the main function and connections between
components are Flink internally defined, it is easy to comment on one pro-
cessing step and submit the job to Flink cluster in developing and testing.
The details of how we organize files of the project can be seen in Appendix
A.

6.4 Prototype Implementation

In order to get some comparable results between current Scania pipeline and
alternative solution. We implement part of new solution, and connect it to
the Benchmarking framework we introduced in Chapter 4 to make sure they
have the same message producer as well as the same way of latency measure-
ment. An overview of new implementation together with the benchmarking
environment can be seen in figure6.2.

Figure 6.2: Testing Stream Pipeline with Flink

In this prototype implementation, Cleaner is temporarily removed from
the whole implementation as it is complicated to rewriting all cleaning algo-
rithms. Additionally, there is no other consumers and middle storage for data

CHAPTER 6. ALTERNATIVE SOLUTION 49

backup as well as error message queue when concerning the consistency with
the current forked pipeline. The input/output Kinesis Data Stream has only
one Shard. Flink is set up on Amazon EMR with three m5.xlarge instances
that one master node and two slaves. External information is stored in Redis
Cache with two cache.r5.large nodes instead of using DynamoDB. Message
generator and latency measurement have almost the same configuration and
implementation which are used in testing current Scania pipeline.

6.5 Result Evaluation and Discussion

With the configuration given in previous section, we have done several exper-
iments on it. This new solution can support at least 16k messages per minute
on one Kinesis Shard without queuing any records. The average Enricher
latency keeps at a stable value which is around 154 milliseconds. The aver-
age Normalizer latency is always around 0.5 milliseconds. The average total
latency without Cleaner is around 154 milliseconds. Moreover, this new so-
lution only consumes less than 5% of CPU power of these EMR nodes, which
means it can easily support Cleaner without making any issue.

With using Flink, Enricher can reach a very low latency which is what we
expect. According to the results we get from Chapter 5, Enricher is IO-bound
as it has to retrieve external information from database. In the new Flink so-
lution, we replace DynamoDB with Redis which is a low-latency, in-memory
database designed for caching. Based on users’ comments about DynamoDB
and Redis collected by TrustRadius [3], the feature rating comparison says
Redis has much better performance than DynamoDB. Additionally, we opti-
mize Enricher from synchronous to asynchronous which is instead of sending
one request to DB and waiting for a response, asynchronous version allows us
to have multiple requests and responses on the fly. By using asynchronous, it
can reduce the waiting time of fetching from DB during message enrichment.

Normalizer has almost zero latency with Flink solution. As it was men-
tioned in Chapter 3. Normalizer is a light process that is used to standardize
all the units. In Flink implementation, it can be simplified as a map func-
tion. Therefore, even though we have Normalizer after Enricher as a separate
module. Flink itself helps optimize all the operations internally, which means
perhaps there is no data transfer between Enricher and Normalizer, Flink
put them together. In the end, it results in a very low latency as it basically
only contains map operation time.

Chapter 7

Discussion

This chapter discusses some key points and significant findings of the thesis
with detailed evaluations and possible improvements. Furthermore, we also
list required future work that should be done in order to have a completely
developed and tested approach.

7.1 Performance Comparison

Comparing the throughput and latency between current Scania pipeline and
the new Flink solution is quite complicated. Since they are using totally
different streaming frameworks and caching databases. However, as both of
them use Kinesis Data Stream with only one shard as input data streams,
what we can try to compare the performance of these two solutions is when
the pipeline is fast enough to process all the messages produced by message
generator without queuing records. We already have experiments with forked
current Scania pipeline which has as same configuration as their production
environment regarding memory and batch size settings of lambda, and we
have done the Flink experiments in previous chapter. By comparing the
results of those test experiments under the special constraint, we can see the
different abilities of these two approaches. Detailed values can be seen in
Table 7.1.

Throughput Latency(ms)
messages/min/ KDS shard Average P90 P50

Current Scania Pipeline 8400
Enricher 840 1.15k 740

Normalizer 1.23k 1.45 944

New Flink Solution 16700
Enricher 154 237 152

Normalizer 0.5 1.05 0

Table 7.1: Performance comparison of Streaming pipeline

50

CHAPTER 7. DISCUSSION 51

As you can see that with the new Flink solution, it can process almost
double amount of messages per minute per KDS shard without queuing.
The Enricher is 8 times faster compared with current Scania pipeline. The
Normalizer is 1000 times faster. We also calculate the cost of the new Flink
solution, the test EMR and ElastiCache setup costs around 10 kr per hour
which is slightly higher than the cost of current Scania pipeline.

7.2 Future Work

Because of the time limitation of working at Scania. In this thesis work,
there are still many parts that can be improved and implemented in future
research. Here we summarize all improvements and implementations that
should be done before moving to a real production environment.

7.2.1 Improve Benchmarking Environment

In Benchmarking environment Chapter 4, we discussed that it is better to
have some improvements. Since in the real pipeline, our Enricher fetches
enrichment information from external API first, then put into the cache. In
the benchmarking environment, the message generator creates these cache
tables first. Enricher just read everything from cached DB tables. This will
cause different behaviors as no cache missing in the test environment. In
addition to fetching from API, it sends a request to destination server one
by one, hence, the more data it needs to fetch, the longer duration Enricher
lambda has. Another concern is that the generator tightly coupled to En-
richer. As it is shown in Figure 4.1, the Enricher has to replace DynamoDB
table names if generator has modifications. All these concerns instruct us
to have a better designed benchmarking environment which can also test
fetching from external API and decouple message generator without touch-
ing other main components in pipeline. An improved Benchmarking test
environment is shown in. In this improved benchmarking environment, the
message generator generates external data into DynamoDB, there is an Ama-
zon API Gateway on top of DynamoDB tables which is used to mock the
external API Enricher needs to fetch from. In this way, Enricher can keep
its logic with creating its own tables for caching and fetch missing data from
API.

CHAPTER 7. DISCUSSION 52

Figure 7.1: Benchmarking test environment with external API

7.2.2 Current Pipeline Optimization

During the investigation of current Scania pipeline, we find that there are
some implementations in current Scania pipeline that can be optimized to
achieve better performance and accuracy. In current Scania pipeline, En-
richer has different policies to enrich two types of external data. For static
external information, Enricher fetch them during execution and put into the
local cache for late usage. However, there exists some external data which
is not static but with low-frequency updates, Enricher applies a completely
different way to fetch them and build local cache, as it is shown in Figure
7.2.

This is how Enricher gets and cache equipment information. Enricher
receives messages to process, it reads from DynamoDB first, if need-to-enrich
equipment information is not in DynamoDB tables, Enricher will skip these
messages without enriching them. In the meantime, Enricher sends a noti-
fication to SQS, this SQS will trigger a lambda function to fetch data from
external API and write fetch data into DynamoDB with TTL. Additionally,
these DynamoDB tables enable the REMOVE item event, which is when an
item reaches its TTL and removed from DynamoDB by AWS, it will send
this item DELETE event to trigger another lambda function which will also
send a notification to SQS and then do the same logic to fetch and cache
again.

The production results show that there are several problems with this
approach. First of all, the DynamoDB event lambda and fetch API lambda
run independently from Enricher lambda. This results in some messages that

CHAPTER 7. DISCUSSION 53

Figure 7.2: Enrich External Item Current Solution

cannot be enriched if they are not cached in DynamoDB. Secondly, data is
synchronized among these different lambdas which might cause inaccurate
results for this final data analysis. Last but not least, it is expensive to
use so many components. Considering all potential issues, we give a new
proposal for enriching infrequently updated messages which can be seen in
Figure 7.3

The simpler solution could be, remove lambda functions running in the
background, let Enricher go external API fetch needed information directly,
and add Time To Leave (TTL) to each element before put them into Dy-
namoDB. With this solution, it guarantees to enrich all the messages En-
richer received and it is cost-effective with using less AWS resources. The
TTL we add should be smaller than the frequency of updating data to en-
sure it always enriches new data. For example, if external data is updated
everyday. The TTL can be set with the period of time from now to one
hour before midnight. Another thing to consider is, it is better to set slight
different expired time, which can make Enricher less stressful with fetching
new data gradually, instead if a big chunk of data expires at the same time,
which kind of makes Enricher have a cold start to cache everything from 0,
and this will increase execution time a lot.

7.2.3 Complete New Flink Solution

As we talked in Flink solution 6, because of time limitation, we did not
implement all the required feathers with Flink, which includes Cleaner com-

CHAPTER 7. DISCUSSION 54

Figure 7.3: Enrich External Item New Proposal

ponent with all cleaning algorithms, error messages queue with AWS SQS
and message backup storage with S3.

Besides completing the implementation, we should also consider system
robustness. As the new Flink solution uses EMR which is a distributed sys-
tem. It is critical to consider the processing failure recovery and node failure.
The former one can be done with adding checkpoints in Flink implementa-
tion which makes sure Flink can recover from snapshot automatically. The
later one can be done by adding a standby master node in case the original
master node crashes.

The last thing to consider is cost optimization. As we mentioned before,
the new Flink solution costs more than current Scania pipeline. The reason
is we use powerful instance in EMR and ElastiCache. It is better to have
instance types evaluation by running all the tasks to find out the cost-effective
type.

Chapter 8

Conclusions

This thesis shows a way to test and benchmark cloud-based streaming pipeline,
and also analyzes the performance of AWS Kinesis plus Lambda pipeline, in
the end it compares existing streaming frameworks to find the right alterna-
tive solution.

To have a recap, the research questions were set for this thesis in Section
1.1 as following:

• What is the performance of current data pipeline

• How to optimize current pipeline to achieve the better performance

• Considering the requirements of current data streaming pipeline, what
is the alternative solution of Scania data pre-processing pipeline

In this thesis work, we managed to achieve these goals we set.
We designed and implemented a generic framework for testing and bench-

marking AWS cloud-based data streaming pipelines. This framework is de-
signed based on AWS Services, which can produce data source at any rate,
and it allows to collect latency statistics from each step of data streaming
pipeline. The results it produces can be used to evaluate connected pipeline
and quickly identify bottlenecks.

Employing the benchmarking framework, we have done thousands of ex-
periments. Based on the results the framework collects, we analyzed the
behaviour of current Scania serverless streaming pipeline. The results show
that in current Scania pipeline, memory and batch size are two important
parameters can be used to optimize streaming pipeline. Configured memory
of Lambda affects the execution time of Cleaner, increasing the memory of
Cleaner Lambda can reduce CPU time and increase throughput. Batch size
affects efficiency of Enricher and Normalizer. Additionally, we found that

55

CHAPTER 8. CONCLUSIONS 56

the AWS Kinesis and Lambda pipeline has polling delay if we set Lambda
batch size with a too large value. Therefore, it is critical to find the balance
in setting batch size and Kinesis shard. With experiments, we concluded
that with more than one component in a pipeline, which should have the
equation: downstream lambda batch size * shards = upstream lambda batch
size * shards - dropped error messages.

In the end, after having a deep understanding of current Scania pipeline
and the data characteristics. We did a survey of other alternatives to AWS
based Scania pipeline including Apache Spark Stream, Apache Flink, and
AWS KDA. We had a careful analysis of the advantages and disadvantages of
each framework based on pipeline retirements. Finally, we chose Flink as the
alternate solution after comparing the benefits and suitableness. We designed
a Flink pipeline using AWS EMR for setting up Flink and ElastiCache as
external cache databases. The Flink solution also follows design principals
such as modularity, scalability, and extensibility. In order to have some
comparable results with the current Scania pipeline, we implemented part of
our Flink solution with Enricher and Normalizer two components. We did
many experiments on the new Flink solution together with our benchmarking
framework. The results show that the new Flink-based streaming pipeline
has higher throughput and much lower latency.

This thesis has three major contributions, first of all, it gives a generic
framework for testing and benchmarking AWS-based streaming pipeline.
Then it shows the analysis of how memory and batch size affect Kinesis with
Lambda pipeline. Finally, it presents the comparison of different streaming
frameworks and the alternative solution design as well as implementations.
Overall, this work can be used as an extensive guide to the design and im-
plementation of efficient, low-latency pipelines to be deployed on the cloud.

Bibliography

[1] Aws documentation, . URL https://aws.amazon.com/.

[2] Apache flink: What is apache flink? URL https://flink.apache.org/

flink-architecture.html.

[3] Amazon dynamodb vs redis. URL https://www.trustradius.com/

compare-products/amazon-dynamodb-vs-redis.

[4] Spark streaming - spark 2.4.0 documentation. URL https://spark.

apache.org/docs/latest/streaming-programming-guide.html.

[5] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. Aurora: a new model and architecture for data stream
management. VLDB Journal, 12(2):12039, 2007.

[6] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, et al. The dataflow model: a practi-
cal approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proceedings of the VLDB En-
dowment, 8(12):1792–1803, 2015.

[7] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. Stream: The stanford data stream management system. In
Data Stream Management, pages 317–336. Springer, 2016.

[8] Sahil Arora. Top 14 areas for data analytics application, May 2017. URL
https://www.digitalvidya.com/blog/data-analytics-applications/.

[9] AWS. Amazon kinesis data streams fqas, . URL https://aws.amazon.

com/kinesis/data-streams/faqs/.

57

https://aws.amazon.com/
https://flink.apache.org/flink-architecture.html
https://flink.apache.org/flink-architecture.html
https://www.trustradius.com/compare-products/amazon-dynamodb-vs-redis
https://www.trustradius.com/compare-products/amazon-dynamodb-vs-redis
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.digitalvidya.com/blog/data-analytics-applications/
https://aws.amazon.com/kinesis/data-streams/faqs/
https://aws.amazon.com/kinesis/data-streams/faqs/

BIBLIOGRAPHY 58

[10] AWS. Aws lambda function configuration, . URL https://docs.aws.

amazon.com/lambda/latest/dg/resource-model.html.

[11] AWS. Using aws lambda with amazon kinesis, . URL https://docs.

aws.amazon.com/lambda/latest/dg/with-kinesis.html.

[12] AWS. Overview of amazon web services, dec 2018. URL https://d1.

awsstatic.com/whitepapers/aws-overview.pdf.

[13] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, pages 1–16.
ACM. ISBN 978-1-58113-507-7. doi: 10.1145/543613.543615. URL
http://doi.acm.org/10.1145/543613.543615.

[14] Shivnath Babu. Continuous Query, pages 492–493. Springer US, Boston,
MA, 2009. ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9 85.
URL https://doi.org/10.1007/978-0-387-39940-9_85.

[15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache flink: Stream and batch
processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[16] Ufuc Celebi. Stream & batch processing in one sys-
tem. URL https://www.slideshare.net/FlinkForward/

ufuc-celebi-stream-batch-processing-in-one-system.

[17] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar
Patil, Boyang Jerry Peng, et al. Benchmarking streaming computation
engines: Storm, flink and spark streaming. In 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW),
pages 1789–1792. IEEE, 2016.

[18] Salvador Garćıa, Julián Luengo, and Francisco Herrera. Introduction,
pages 1–17. Springer International Publishing, Cham, 2015. ISBN 978-
3-319-10247-4. doi: 10.1007/978-3-319-10247-4 1. URL https://doi.

org/10.1007/978-3-319-10247-4_1.

[19] Buğra Gedik. Generic windowing support for extensible stream pro-
cessing systems. Software: Practice and Experience, 44(9):1105–1128,

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
https://d1.awsstatic.com/whitepapers/aws-overview.pdf
https://d1.awsstatic.com/whitepapers/aws-overview.pdf
http://doi.acm.org/10.1145/543613.543615
https://doi.org/10.1007/978-0-387-39940-9_85
https://www.slideshare.net/FlinkForward/ufuc-celebi-stream-batch-processing-in-one-system
https://www.slideshare.net/FlinkForward/ufuc-celebi-stream-batch-processing-in-one-system
https://doi.org/10.1007/978-3-319-10247-4_1
https://doi.org/10.1007/978-3-319-10247-4_1

BIBLIOGRAPHY 59

September 2014. ISSN 00380644. doi: 10.1002/spe.2194. URL http:

//doi.wiley.com/10.1002/spe.2194.

[20] Google. Protocol buffers developer guide, May 2019. URL https://

developers.google.com/protocol-buffers/docs/overview.

[21] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit-
ing coarse-grained task, data, and pipeline parallelism in stream pro-
grams. In Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 151–162, New York, NY, USA, 2006. ACM. ISBN
1-59593-451-0. doi: 10.1145/1168857.1168877. URL http://doi.acm.

org/10.1145/1168857.1168877.

[22] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. Elsevier, 2011.

[23] Z. Karakaya, A. Yazici, and M. Alayyoub. A comparison of stream
processing frameworks. In 2017 International Conference on Computer
and Applications (ICCA), pages 1–12. doi: 10.1109/COMAPP.2017.
8079733.

[24] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. Stream bench: Towards
benchmarking modern distributed stream computing frameworks. In
2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, pages 69–78. IEEE, 2014.

[25] Douglas Laney Mark Beyer. The importance of ’big data’: A def-
inition”, gartner, June 2012. URL https://www.gartner.com/doc/

2057415/importance-big-data-definition.

[26] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.
2011.

[27] Dorian Pyle. Data preparation for data mining. morgan kaufmann, 1999.

[28] Quoc-Cuong To, Juan Soto, and Volker Markl. A survey of state man-
agement in big data processing systems. The VLDB Journal—The In-
ternational Journal on Very Large Data Bases, 27(6):847–872, 2018.

[29] Giselle van Dongen, Bram Steurtewagen, and Dirk Van den Poel. La-
tency measurement of fine-grained operations in benchmarking dis-
tributed stream processing frameworks. In 2018 IEEE International
Congress on Big Data (BigData Congress), pages 247–250. IEEE, 2018.

http://doi.wiley.com/10.1002/spe.2194
http://doi.wiley.com/10.1002/spe.2194
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://doi.acm.org/10.1145/1168857.1168877
http://doi.acm.org/10.1145/1168857.1168877
https://www.gartner.com/doc/2057415/importance-big-data-definition
https://www.gartner.com/doc/2057415/importance-big-data-definition

BIBLIOGRAPHY 60

[30] Yangjun Wang. Stream processing systems benchmark: Streambench.
G2 pro gradu, diplomityö, 2016-06-13. URL http://urn.fi/URN:NBN:

fi:aalto-201606172599.

[31] Rüdiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process
model for data mining. In Proceedings of the 4th international conference
on the practical applications of knowledge discovery and data mining,
pages 29–39. Citeseer, 2000.

[32] Belle Selene Xia and Peng Gong. Review of business intelligence through
data analysis. Benchmarking: An International Journal, 21(2):300–311,
2014. doi: 10.1108/BIJ-08-2012-0050. URL https://doi.org/10.1108/

BIJ-08-2012-0050.

[33] Chong Ho Yu. Exploratory data analysis. Methods, 2:131–160, 1977.
doi: 10.1093/OBO/9780199828340-0200.

http://urn.fi/URN:NBN:fi:aalto-201606172599
http://urn.fi/URN:NBN:fi:aalto-201606172599
https://doi.org/10.1108/BIJ-08-2012-0050
https://doi.org/10.1108/BIJ-08-2012-0050

Appendix A

Structure of Flink Project Pro-
totype

In the new Flink prototype, we isolate each component at source code level
to achieve easier maintainance. The way how we oorganize it is shown in
Figure A.1

61

APPENDIX A. STRUCTURE OF FLINK PROJECT PROTOTYPE 62

Figure A.1: Structure of Flink Project

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Data Analysis
	2.2 Real-Time Stream Processing
	2.2.1 Stream Processing Architectures
	2.2.2 Continuous Query
	2.2.3 Processing Operators
	2.2.4 Windowing

	2.3 Stream Processing Systems
	2.4 Cloud Computing

	3 Current Solution
	3.1 Background
	3.2 Amazon Web Service
	3.2.1 Amazon Kinesis Data Streams
	3.2.2 Amazon Lambda
	3.2.3 Amazon DynamoDB
	3.2.4 Amazon CloudWatch
	3.2.5 Amazon ElastiCache
	3.2.6 Amazon EMR

	3.3 Protocol Buffers
	3.4 Current Data Pipeline

	4 Benchmarking Environment
	4.1 Motivation
	4.2 Benchmarking Design
	4.3 Benchmarking Setup

	5 Pipeline Performance
	5.1 Background
	5.2 Experiments
	5.3 Results Evaluation
	5.4 Latency Discussion

	6 Alternative Solution
	6.1 Overview of Streaming Frameworks
	6.2 Comparison of Streaming Frameworks
	6.2.1 Dynamic Enrichment
	6.2.2 Internal Caching
	6.2.3 Input/Output Format
	6.2.4 Delivery Guarantees
	6.2.5 Latency
	6.2.6 Throughput

	6.3 Alternative Solution Design
	6.3.1 Overview
	6.3.2 Design Principles

	6.4 Prototype Implementation
	6.5 Result Evaluation and Discussion

	7 Discussion
	7.1 Performance Comparison
	7.2 Future Work
	7.2.1 Improve Benchmarking Environment
	7.2.2 Current Pipeline Optimization
	7.2.3 Complete New Flink Solution

	8 Conclusions
	A Structure of Flink Project Prototype

