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Abstract

In cellular communication systems, for example 4G and 5G, quite often data
packets (in user-plane payload) fail to successfully deliver to the user equipment (UE).
Because upon failure, a re-transmission of the data packet is required by the network,
these failed data packets introduce latency to the network. In some applications,
such latency might be tolerable by the UE, but in applications that require ultra
reliable low latency communication (URLCC), time latency becomes a critical issue.
In order to cope with this issue, typically wireless networks rely on re-transmissions
upon receiver request or use naïve approach like packet duplication to transmit data
packets more than once to ensure successful transmission of at least one data packet
without any error.

In this thesis, we explore the feasibility of designing an intelligent solution to this
issue by using network data with machine learning and neural networks to predict if a
data packet would fail to transmit in the next transmission time interval (TTI). Our
research includes a detailed systematic study on which radio parameters to choose
from the raw data (log files) and data preprocessing. From our experiments we also
determine how many past values of these radio parameters can be useful to predict
the packet failure in the next TTI. Moreover, we enlist the network parameters useful
to make such a prediction and compare their contribution in the model. Finally, we
show that an intelligent packet error prediction can be done using machine learning
that forecasts the packet failure in the next TTI with sufficient accuracy.

We compare the performance of different machine learning algorithms and show
that boosted decision trees (XGBoost) perform the best on the given dataset. Com-
pared to naïve approaches used in cellular communication to avoid packet failures, our
solution based on intelligent packet error prediction indicates promising practical ap-
plications in cellular network for enhanced radio network performance, particularly in
URLLC.

Keywords intelligent packet error prediction, packet error prediction with machine
learning, enhanced radio network performance with neural networks
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Symbols and Abbreviations

Symbols
b bias of the underlying model
Ct
˜ cell memory of LSTM at time t

δ error
eta shrinkage factor in tree boosting
f t forget gate vector in LSTM at time t
F set of all possible CARTs
g first order derivative of the loss function
g(.) smooth and bounded function such as the logistic sigmoid
h second order derivative of the loss function
ht recurrent hidden state in RNN at time t

h̃t new memory cell content in GRU at time t
it input gate vector in LSTM at time t
L(.) training loss function
O Output of neural network
O(.) Objective function
ot output gate vector in LSTM at time t
Ω(.) regularization function
φ(.) non-linear activation function
rt reset gate vector in GRU at time t
σ(.) sigmoid function
w weight vector of the underlying model
X feature vector
y ground truth vector
ŷ predicted labels
zt update gate vector in GRU at time t

Operators
A · B dot product of vectors A and B

d
dt

derivative with respect to variable t

∂

∂t
partial derivative with respect to variable t∑︁

i sum over index i
⊙ Hadamard product
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Abbreviations
2G Second-Generation Wireless
3G Third-Generation Wireless
5G Fifth-Generation Wireless
ACK Acknowledgement (of data packages)
AI Artificial Intellgience
ARQ Automatic Repeat Request
CART Classification and Regression Trees
CRC Cyclic Redundancy Check
CSV Comma Separated values
ELU Exponential Linear Unit
FEC Forward Error Correction
eNBs Evolved Node Bs
GRU Gated Recurrent Unit
HARQ Hybrid Automatic Repeat Request
LSTM Long Short-Term Memory
LTE Long-Term Evolution (4G mobile communication standard)
MAC Medium Access Layer
ML Machine Learning
MLP Multilayer Perceptron Model
NACK Non-acknowledgement (of data packages)
NN Neural Network
RNC Radio Network Controller
RNN Recurrent Neural Network
TTI Transmission Time Interval
UE User Equipment
URLCC Ultra Reliable Low Latency Communication



1 Introduction
In a cellular network, communication takes places between a base station and a user
equipment (UE) where data packets are transferred between the user and the network.
After receiving the data packets, UE sends a flag signal back to the network indicating
whether the transmission was successful or not. In LTE (long-term evolution) or 4G
for instance, data packets are sent to the user in the form of transport block (payload
of UE in user-plane) (Ali-Yahiya, 2011). These transport blocks are padded with
cyclic redundancy check (CRC, (Enns and O’Hare, 1991)) which helps the UE with
error detection. After receiving the transport block, the UE performs CRC check and
sends back the error detection result to the network. If data packet was delivered
successfully, the UE sends acknowledgement (ACK) to the network indicating that it
is ready to receive another transport block. On the contrary, if the receiver detects
an error while decoding the data packet, it sends non-acknowledgement (NACK)
to the network indicating that a re-transmission of the same transport block is
required. These data packet failures introduce latency to the network due to data
re-transmissions. Such delays, caused by data failures, can have fatal consequences to
applications that are sensitive to time latency, for example applications that require
ultra reliable low-latency communication (URLLC, (Johansson et al., 2015). In order
to cope with this latency, some naïve approaches have been adopted to solve the
issue for URLLC, for example, using packet duplication (Rao and Vrzic, 2018) where
the same transport block is transmitted more than once (usually twice or thrice)
to the receiver. Several bursts of the same data packet ensure that at least one
data packet will be successfully delivered to the receiver. All of the existing wireless
networks either rely on re-transmitting the data packet upon the UE request when it
fails to transmit or use packet duplication to avoid packet failures in advance when
time latency is critical. To the best of author’s knowledge, no intelligent solution
exists that utilizes network data and measurements from radio network to solve this
problem.

In wireless networks, transmission parameters are typically specified so that a
given success rate is obtained. For instance, the system might be configured so that
on average 1% of the data packets are lost due to noise or interference and must be
re-transmitted. Allowing some of the transmissions to fail results in a higher spectral
efficiency, at the cost of some additional latency and processing overhead. The main
reason for not being able to guarantee 100% success rate for radio transmissions is the
random nature of the wireless channels. If all foreseeable circumstances were to be
covered, the data rates would be very low due to the redundancy required. In most
of the cases, such extreme redundancy would not even be needed. Consequently, this
randomness is best addressed by accepting that some of the transmissions fail and
having a procedure for retransmitting them. However, some of the unpredictability of
the wireless channel simply stems from the lack of a proper model for the underlying
phenomena. In other words, by identifying these physical phenomena and modelling
them by some means, it is possible to further improve the efficiency of wireless
systems. For such problems, machine learning (ML, (Alpaydin, 2009)) is an excellent
tool as it does not necessarily require one to know the model of the underlying
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phenomenon. In this thesis, we aspire to design a solution that harnesses ML to make
the wireless channel more predictable and thereby alleviates some of the randomness.

Therefore, the main problem that we aim to solve in this thesis is how to predict
if the transmission of a given data packet is successful or not. This is a fundamental
problem in wireless communication and solving this problem will facilitate higher
spectral efficiency. It is clear that this type of a phenomenon cannot be perfectly
predicted, but by combining several different measurements, some of the failures are
likely to be predicted.

The problem we aim to solve is essentially a time series prediction problem.
Network parameters that we use as features and labels are indexed over time and
represent sequential data. Although traditionally, statistical forecasting methods
like auto-regressive moving average (ARMA), auto-regressive integrated moving
average (ARIMA), exponential smoothing (Hyndman and Athanasopoulos, 2019)
have proven to be quite effective, recently, machine learning and neural networks
have been remarkable in learning useful models using sequential data. From speech
recognition/generation (Deng et al., 2013) to language translation (Sutskever et al.,
2014), text summarization (Chuang and Yang, 2000), weather forecasting (Hong,
2008), product sales prediction (Sun et al., 2008) and so on, machine learning has
been extremely useful in sequence modeling. In this thesis, we use state-of-the-art
machine learning algorithms to predict data packet failures. For simplicity, one could
imagine underlying problem to be a classification problem where classification has to
be done in future with features and labels being time dependent.

The nature of available raw data and problem statement poses some challenges
for the research goals. Main research challenges have been summarized below:

1. In a typical cellular network, ratio of failed packets (NACKs) to successful
packets (ACKs) is quite low. For example, in the available dataset that we
use, ratio of ACK to NACK is 15 : 1, meaning that almost 93% of the time,
data packets are delivered to the receivers without any errors. Since the aim
is to predict data packet failures that happen almost 6% to 7% of the times,
the desired class label is highly underrepresented and has significantly fewer
training samples.

2. In the available dataset, there are 313 recorded network parameters (excluding
time) that can be used to predict the packet failures. In principle, in machine
learning, it is recommended to use only relevant features and exclude features
that might not be helpful. This is because extraneous features can increase
feature space, impede model learning, and increase the risk of over-fitting the
training data (Kohavi and Sommerfield, 1995). In the dataset, narrowing down
the list of parameters to the relevant parameters requires a lot of theoretical
domain knowledge, experimentation, and analysis.

3. Data processing part, in particular, is quite challenging because of how users
occupy timeslots in the cellular network. There are hundreds of unique users in
data files who occupy timeslots in the network for an arbitrary amount of time
in any order. Users can leave and occupy timeslots at any time in the network
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(offline and online modes) which leaves gaps between users’ time series data.
Since future predictions depend on the past values, one needs to come up with
a method for filling in the missing timeslots for each user and the corresponding
labels. These dummy values must then be accounted for in model training.

Keeping these concerns and challenges in sight, we explore the feasibility of
designing an intelligent solution for packet failure prediction based on the network
data. Moreover, we also aim to determine the relevant radio parameters and number
of optimal past values of these parameters for forecasting packets failures in the next
transmission time interval (TTI).
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2 Background
This chapter provides a brief overview of error handling in LTE and machine learning
algorithms employed for model training.

2.1 Error Handling in LTE
In the history of network evolution, three different forces have consistently driven
the architecture and evolution of telecommunications networks: traffic growth, de-
velopment of new services, and advances in technology (El-Sayed and Jaffe, 2002).
In the last four decades, the base stations in telecommunications have evolved from
2G to 3G, 4G and 5G. Base stations in 3G, called Node Bs (NB), are controlled
by a central radio network, called Radio Network Controller (RNC). In 4G, base
stations are no longer controlled by a central radio network and have individual
control to schedule and dynamically allocate the resources to user equipment (UE),
both in uplink and downlink. These independent base stations in 4G are called,
evolved Node Bs (eNBs). In eNBs, resources are scheduled and allocated every
1 ms TTI (transmission time interval). So, eNBs algorithm runs every 1 ms and
based on the radio and channel conditions, it allocates air interface resources to
UEs that are connected to it. The user plane (U-plane), which carries network user
traffic, protocol stack in LTE involves medium access layer (MAC). One of the
important functionalities of MAC layer is error handling through hybrid automatic
repeat request (HARQ).

HARQ is one of the core features that provides robustness in LTE (and advanced
LTE networks) and is a hybrid of two error handling techniques: forward error
correction (FEC) and automatic repeat request (ARQ) (Burton and Sullivan, 1972).
It combines the important features of both ARQ and FEC error control. In ARQ,
once the receiver receives the data packet, it performs cyclic redundancy check (CRC)
(Enns and O’Hare, 1991) and sends the results to the transmitter. If the transmitter
receives ACK, then the next packet is transmitted, whereas if NACK is received,
then the transmitter re-transmits the data packet.

FEC is a method to enhance data reliability by detecting and correcting errors
in the transmitted data (Davida and Reddy, 1972). In FEC, the sender sends a
redundant error-correcting code along with the actual data frame. The receiver
performs necessary checks on redundant bits and executes error-correcting code
to generate the actual frame if it finds that the data is free from errors. It then
removes the redundant bits before passing the message to the upper layers. The
main limitation of FEC is that if there are too many errors, the data frames need to
be re-transmitted.

2.2 Supervised Machine Learning
Machine learning algorithm where an input-target pair is provided for training is
regarded as supervised machine learning method (Kotsiantis et al., 2007). Although
traditionally classical statistical methods (e.g., ARMA, ARIMA) were widely used
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for time series prediction, supervised machine learning methods have become really
popular for sequence modeling nowadays. Any time series prediction problem can be
transformed into supervised machine learning by shifting the labels forward in time.

yt+t0 = f(Xt) (1)

where Xt represents features at time t, f(.) is some function and yt+t0 is label shifted
forward in time by t0.

Concept illustrated in Equation (1) can be generalized for any supervised machine
learning method. Therefore, Naive Bayes (Rish et al., 2001), Logistic Regression
(Kleinbaum et al., 2002), Lasso Regression (Tibshirani, 1996), Random Decision
Trees (Ho, 1995) and XGBoost (Chen and Guestrin, 2016) can be used for time
series prediction. Among these methods, tree boosting is an effective and widely
used supervised machine learning method.

2.2.1 XGBoost: Boosting Decision Trees

XGBoost, a scalable tree boosting system, was introduced by Chen and Guestrin
(2016) and the algorithm has since been used in different classification and regression
problems and Kaggle competitions. In the year 2015, among 29 winners of Kaggle
competitions, 17 winners used XGBoost. Among these, 8 solely used XGBoost while
the rest 11 used XGBoost with neural networks in ensembles (Chen and Guestrin,
2016). This shows the power of XGBoost which is quite simple to implement with open
source library1. XGBoost works similar to boosted decision trees except that XGBoost
model has been developed taking into consideration systems optimization and to
push the limit of computational machine for scalability and parallel computations.
The details can be found in the original paper (Chen and Guestrin, 2016).

Decision trees are one of the popular choices for supervised machine learning
methods both for classification and regression (Vens et al., 2008; Chen and Liu, 2005).
Knowledge learned by decision trees is preserved in the form of hierarchical trees
where features represent the nodes and conditions on features are used for branching
the trees. Figure 1 shows a simple example of a decision tree.

Decision trees are built using recursive binary tree splitting. In this recursive
splitting, all features are considered and different splits are tried out. Splits with
minimum cost function are kept. Trees end in leaf (node with no children) which decide
the class of the input feature or some continuous value, depending on classification or
regression problem. The building process of a decision tree can be considered two step:
induction and pruning. During induction, features are represented as hierarchical
structure and a tree is built. While pruning is applied to remove redundant structure
from the trees. Pruning makes sure that decision tree does not overfit the training
data and is able to generalize the predictions (Sheppard, 2017).

Even after pruning, decision trees tend to overfit and small changes in the dataset
can lead to completely different trees generation, also known as variance. The bias
and variance of decision trees can be mitigated using boosting and by training on
multiple trees (ensemble technique) (Sheppard, 2017).

1https://github.com/dmlc/xgboost
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Figure 1: A simple example of a decision tree

Sometimes it is not sufficient to rely on just one machine learning method for
reliable results, therefore, multiple learners/models are trained and their predictive
power is combined into one aggregated output, like a voting system. Common
ensemble methods are bagging and boosting (Bauer and Kohavi, 1999). Both of
these ensemble methods use bootstrapping which is random selection of features
with replacement. Bagging (abbreviation of bootstrap aggregation), aggregates the
predictions of weak learners to predict the final output. Whereas in boosting, instead
of simple averaging, weighted averaging is calculated using the predictions of the
weak learners.

In XGBoost, trees are built sequentially and each subsequent tree aims to reduce
the error of the previous tree. The base learners in XGBoost are weak learners with
high bias. With weighted average of weak learner’s predictions, a strong learner is
obtained with low bias and variance (Sheppard, 2017).

Regression trees in XGBoost (also known as classification and regression trees,
CART) are built over time and an iterative process is used where model tries to fix
what it has learned and build a new tree. If we write predicted value at step t as
yî

(t) then

yî
(0) = 0

yî
(1) = f1(xi) = yî

(0) + f1(xi)
yî

(2) = f1(xi) + f2(xi) = yî
(1) + f2(xi)

...

yî
(t) =

t∑︂
k=1

fk(xi) = yî
(t−1) + ft(xi)

(2)

where K is the total number of trees built, fi is a function in the functional space
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F , the set of all possible CARTs. In other words, fi are functions that contain the
structure of the tree and the leaf scores.

As the additive training of trees continues and more trees are built, one needs to
determine the trees to keep at each step. XGBoost keeps the trees that optimize the
objective function. The general purpose equation for objective function in supervised
learning is composed of a training loss and regularization term

O(θ) = L(θ) + Ω(θ), (3)

where O(θ) is the objective function, L(θ) is the training loss function and Ω(θ)
denotes the regularization function.

Now the objective function for trees can be written as

O(t) =
n∑︂

i=1
l(yi, yî

(t)) + Ω(ft),

O(t) =
n∑︂

i=1
l(yi, yî

(t−1) + ft(xi)) + Ω(ft),
(4)

where l is a differentiable convex loss function that measures the difference between
the prediction and the target.

The above Equation (4) involves functions as parameters and can not be optimized
in Euclidean space as mentioned in the original paper by Chen and Guestrin (2016),
therefore second order Taylor approximation is used to optimize the function:

O(t) =
n∑︂

i=1
[l(yi, yî

(t−1)) + gift(xi) + 1
2hift

2(xi)] + Ω(ft). (5)

By dropping the constants:

O(t) =
n∑︂

i=1
[gift(xi) + 1

2hift
2(xi)] + Ω(ft), (6)

where gi and hi are the first and second order derivative of the loss function.
Finally, the regularization term is given by:

Ω(ft) = γT + 1
2λ∥ω∥2, (7)

where T is the number of leaves and w is the vector of scores on leaves. γ and λ
are the hyperparameters. There are other choices of regularization function as well
but above Equation 7 seems to work pretty well for practical problems (Chen and
Guestrin, 2016).

When using XGBoost for binary classification, l (differentiable loss function) is
the log likelihood of the Bernoulli distribution and expression can be summarized as
follows:

l = yi(yî
(t−1) + ft(xi)) − log(1 + exp(yî

(t−1) + ft(xi))). (8)



15

2.3 Neural Networks
Neural networks are computing systems comprised of highly interconnected neurons
capable of information processing due to their dynamic state response to external
inputs (Goodfellow et al., 2016). Neural networks essentially mimic the biological
nervous systems, which makes them great at solving problems without being explicitly
programmed. Due to their ability to solve problems generally, neural networks
have become the focus of prime research in 21st century. Neural networks have
transformed human lives and have countless applications, for example in computer
vision (Krizhevsky et al., 2012), natural language processing (Devlin et al., 2014; Lai
et al., 2015) and health care (Lisboa and Taktak, 2006).

Although there are many different types of neural network models, the following
section entails brief description of multilayer perceptron (MLP), long short-term
memory (LSTM) and gated recurrent units (GRU) types of neural networks, since
these are the only ones used in this thesis.

2.3.1 Multilayer Perceptron Model

Multilayer perceptron model is a network of simple perceptrons that were originally
introduced by Rosenblatt (1958). A single layer perceptron network consists of
weights wi applied to inputs xi and added with bias b followed by a non-linear
activation function φ.

f(x) = φ(
n∑︂

i=0
wixi + b) = φ(wT x + b) (9)

where w is the weight vector, x is the vector of inputs.
A single layer perceptron network can be used to learn linear functions but cannot

be used to perform complex tasks like learning a non-linear decision boundary in
classification. On the other hand, a multilayer percetron network (MLP), which
uses two or more layers of perceptrons, can be used to learn complex functions and
non-linear decision boundaries (Kriesel, 2007). One way of training MLP neural
networks is to use forward passes and backpropagation to learn the weights and bias.
Forward passes (from input to output) calculate the outputs, while backpropagation
calculates the error with respect to each weight and bias. The weights and biases
are then updated accordingly.

Forward and backward passes in MLP can be better understood with an example.
Figure 2 shows a simple MLP model with 2 hidden layers. In the figure, let wl

ij be
the weight that connects i-th neuron on (l − 1)-th layer and j-th neuron on l-th layer,
σ(.) be the activation function for l-th layer, oj

i be the output from the i-th neuron
of l-th layer and O be the output of the neural network. One can show that using
loss function L(W ; x, y) = 1

2(OW,x − y)2, the forward pass equation for output can
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Figure 2: A simple MLP network with two hidden layers. Network receives five
inputs and yields a single output.

be written as :

OW,x = σ3(o2
1w

3
11 + o2

2w
3
21 + b3)

= σ3(o2w3 + b3)
= σ3(Σ3

1)
(10)

where Σ3
1 = o2w3 + b3, o2 = [o2

1, o2
2] and w3 = [w3

11, w3
21]T .

Similarly, forward pass equations for outputs of first and second neurons (o2
1 and

o2
2) from layer 2 can be written as below:

o2
1 = σ2(o1

1w
2
11 + o1

2w
2
21 + o1

3w
2
31 + b2

1)
= σ2(Σ2

1)
o2

2 = σ2(o1
1w

2
12 + o1

2w
2
22 + o1

3w
2
32 + b2

2)
= σ2(Σ2

2)

(11)

One could follow the same process, as described in Equation (10) and (11) to derive
equations for forward passes for neurons in the first layer.

Backpropagation is at the heart of fine tuning an artificial neural network model
where losses are backpropagated from outputs to inputs and by recursively applying
derivative chain rule, gradients are computed. The concept can be better illustrated
using Figure 2 and calculating backpropagation error equation for weight w3

11.

∂L(W ; x, y)
∂w3

11
=

∂ 1
2(OW,x − y)2

∂w3
11

= (OW,x − y)OW,x

∂w3
11

= δo ∂σ3(Σ3
1)

∂Σ3
1

∂Σ3
1

∂w3
11

= δoσ′(Σ3
1)o2

1

= δ3o2
1

(12)



17

where δo = (OW,x − y) is the output error, σ′(.) denotes the derivative of sigmoid
function with respect to its argument and δ3 = δoσ′(Σ3

1).
Equation (12) calculates the error contribution towards the output because of the

weight value w3
11. Similarly one could write error equations for each weight following

the same procedure. The weight update equation depends on the choice of optimizer.
For instance with gradient descent, weight update equation for w3

11 is as follows:

w3
11 = w3

11 − α × ∂L(W ; x, y)
∂w3

11
(13)

where α is the learning rate of the optimizing algorithm.
Although MLP models are extensively used for binary and multiclass/multilabel

classification problems, they have also proved to be effective for time series prediction
(Tang and Fishwick, 1993; Haselsteiner and Pfurtscheller, 2000; Karunasinghe and
Liong, 2006).

2.3.2 Recurrent Neural Networks

Feedforward neural networks do not have the capability to store any information
since it has no feedback loop. Recurrent Neural Networks (RNNs), on the other
hand, have loops in them, allowing information to persist (Goodfellow et al., 2016).
Figure 3 shows the basic structure of a single RNN cell.

Figure 3: A single RNN Cell. The loop allows information to be passed onto the
next step.

In Figure 3, xt is the input at time t, A represents the basic cell structure of a
particular RNN type, and ht represents the output at time t. A recurrent network
represents multiple copies of such a single RNN cell where each cell has the ability
to store some information and pass it over to the next cell. More formally, given a
sequence x = (x1, x2, ..., xt), RNN updates its recurrent hidden state ht at time t
by:

ht =

⎧⎨⎩0, if t = 0,

φ(ht−1, xt), otherwise,
(14)

where φ is a nonlinear function.
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Traditionally, the update of the recurrent hidden state in Equation (14) is
implemented as follows:

ht = g(w[ht−1, xt] + b) (15)

where w and b are weights and biases, g is a smooth, bounded function such
as the logistic sigmoid function or hyperbolic tangent, and [ht−1, xt] denotes the
concatenation of prediction ht−1 at previous time step and current input xt.

Because of the ability of RNNs to preserve information, RNNs have been quite
popular in time series prediction and other sequential tasks like speech recognition,
language translation (Devlin et al., 2014), and text classification (Lai et al., 2015).
Below we discuss two popular RNN models: Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU).

2.3.3 Long Short-Term Memory (LSTM)

It was concluded by Bengio et al. (1994) that recurrent neural networks are not good
at learning long term dependencies using gradient optimization methods because
RNNs tend to suffer from vanishing (most of the time) and exploding (rarely but
with severe effects) gradient problems (Pascanu et al., 2012), which make gradient
optimization methods not useful for RNNs. In order to cope with this issue, LSTMs
were introduced by Hochreiter and Schmidhuber (1997), which are a special type of
RNNs and specialize in learning long-term dependencies.

Figure 4: A single LSTM unit consists of three gates (input, forget and output) and
a memory cell. Gates help LSTM cells to regulate flow of information and memory
cell tries to memorize useful information.

Figure 4 shows the structure of a typical LSTM unit. A single LSTM unit consists
of three gates and a memory cell. Gates act as regulators of information and help
LSTM units to remove old information or add new information.

It is useful for LSTM units to keep updating their memories and forget any
features that might not be useful anymore. The extent to which the existing memory
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is forgotten is controlled by the forget gate (f t).

f t = σ(wf [ht−1, xt] + bf ), (16)

where wf and bf represent the weights and biases of the forget gate f t, and σ
represents the sigmoid activation function.

After an LSTM unit has erased some part of its memory, the next step is to decide
which new information should be added to the cell memory. Input gate decides how
much updated values should be added to the cell memory Ct

˜ while tanh activation
function calculates the updated values.

it = σ(wi[ht−1, xt] + bi),
Ct
˜ = tanh(wc[ht−1, xt] + bc),

(17)

where wi and bi represent the weights and biases of the input gate it at time t, and
wc and bc represent the weights and biases of cell memory Ct

˜ at time t.
Now that forget gate has decided to erase some memory content from the past

and input gate has learned some useful information based on the new content, it is
time to update the cell memory accordingly. The extent to which past memory is
erased is controlled by the forget gate and the extent to which new content is added
is controlled by the input gate:

Ct = f t ⊙ C̃t−1 + it ⊙ Ct
˜ , (18)

where ⊙ represents the Hadamard product.
Finally, the output gate calculates the output and prediction at time t is calculated

using tanh over current cell memory (C̃t) regulated by output gate ot.

ot = σ(wo[ht−1, xt] + bo),
ht = ot tanh(Ct).

(19)

As compared to traditional RNNs where a cell consists of a logistic sigmoid or
hyperbolic tangent, one can see from Figure 4 that a single cell in LSTM is more
complicated and contains several gates and memory cell. Gates help LSTM cells to
filter out relevant information and memory cell helps to memorize that information.
So, if a cell detects an important feature, it will try to presist it thus capturing
long-term dependencies.

2.3.4 Gated Recurrent Units (GRUs)

GRUs, similar to LSTMs, also solve the problem of vanishing gradient of traditional
recurrent neural networks and they were introduced by Cho et al. (2014). As compared
to LSTMs, where we have three gates (input, output, and forget gate), there are
only two gates in GRUs, called reset and update gate; making GRUs simpler and
faster than LSTMs. Figure (5) shows the structure of a typical unit in GRU.

The reset gate rj
t of a jth GRU unit regulates whether or not to ignore the

previous hidden state while update gate zj
t decides whether the hidden state is to
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Figure 5: A single GRU unit consists of two gates, reset (rt ) and update gate (zt)
without having a separate memory cell as compared to LSTM.

be updated with a new hidden state h̃t. Mathematically both gates are calculated
similary as follows:

rj
t = σ(wr[ht−1, xt] + br)j,

zj
t = σ(wz[ht−1, xt] + bz)j.

(20)

A new memory cell content h̃t uses reset gate to preserve relevant information
from the past.

h̃
j

t = tanh(w[rt ⊙ ht−1, xt])j (21)

Final memory content ht at time step t uses update gate to regulate information
from the previous hidden state and the current new hidden state h̃t.

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t. (22)

Both LSTM and GRU model structures try to retain the past information, thus
allowing information to persist. This can be seen as stacking of information with time
with redundant or useless information being removed, allowing these models to learn
useful temporaral structures within the data. Contrary to this, traditional RNNs
replace the content of the previous hidden state by the new state, which inherently
prevents them from learning any useful long-distance dependencies (Chung et al.,
2014).
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3 Materials and Methods
This chapter describes in detail the datasets used for model training, feature engi-
neering, data processing, and visualization. Moreover, we also discuss the choice of
machine learning libraries, baseline models, metrics for scoring model performance
and available computational resources.

3.1 Dataset
For the purpose of thesis for research, dataset at hand has been provided by one
of the clients of Nokia, China Mobile Telecommunication Company (CMCC), in
comma-separated values (CSV). Several datafiles are at disposal where each file
consists of approximately 0.1 million datapoints and 314 columns/features including
time. Data inside the files represents the network data being utilized by different
users for a particular cellular base station. Features represent the values for different
network parameters. For this particular problem, domain expert knowledge suggests
that not all parameters are useful to predict packet failures. Therefore, with the
help of domain experts, 11 most relevant network parameters were selected out of
total 314 parameters. These are the parameters that were used subsequently in data
processing and model training. Brief description of each parameter is given below:

1. ETtiTraceDlParUe_crnti is the cell radio network temporary identifier (C-
RNTI) of the user equipment (UE) allocated by the base station (BS). C-RNTI
is unique within one cell controlled by the BS and can be reallocated when a
UE moves to a new cell. This is essentially the ID of the UE.

2. ETtiTraceDlParUe_wbCqiCompensateCw0 represents the channel qual-
ity indicator (CQI) (Love et al., 2008) of the network, meaning how strong the
received signal is compared to the noise and interference.

3. ETtiTraceDlParUe_rrmDeltaCqiCw0 is the correction factor to the CQI,
which is different for each UE and is changed in accordance with the observed
performance. This is needed because of the inherent biases in measuring the
CQI.

4. ETtiTraceDlParUe_rrmMimoCqi represents the combined CQI for both
of the received signals since the UE is receiving two signals at the same time
(multi-antenna transmissions).

5. ETtiTraceDlParUe_ModulationCw1 represents the modulation scheme
(Proakis, 2001) being used in the signal.

6. ETtiTraceDlParUe_mcsIndexCw1 represents a number corresponding to
the modulation (in this case represented by ETtiTraceDlParUe_ModulationCw1)
and coding rate, the latter of which defines how much redundancy there is in
the raw data.
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7. ETtiTraceDlParUe_averCirRgbCw0 provides information as to how str-
ong the signal is compared to interference. Basically, this is the average
carrier-to-interference ratio, averaged over radio bearer groups (RBGs) (Ku,
2011).

8. ETtiTraceDlParUe_dlrrmPdcchCqiShift represents the correction ap-
plied to the CQI for the control data (physical downlink control channel,
PDCCH).

9. ETtiTraceDlParUe_rrmPdschAvgUeTput is the average downlink (link
from base station to the receiver) throughput.

10. ETtiTraceDlParUe_rrmPdschAvgResAllocationUe is the average amo-
unt of resources allocated for the UE, that is providing information about the
bandwidth the UE is allowed to use.

11. EHarqParDl_rrmRecommendedMcsCw1 is the recommended modula-
tion and coding scheme for the possible retransmission of data packet in case
of transmission failure.

To train the models, two types of datasets have been used. Single datafile consists
of a single CSV file while combined dataset consists of 10 single datafiles. The idea
is to start simpler with one CSV file and then combine multiple datafiles to see
how model performance changes with bigger datasets. Python2 (version: 3.6.7) has
been used as the scripting language. Although there are many good frameworks
available for implementing machine learning algorithms in Python, Keras3 stands out
because it is convenient to use and facilitates quick prototyping. Keras functional
API provides an easy interface to implement RNNs and MLP in Python. For Python
implementation of XGBoost, official documentation4 provides details on Python
API references including Scikit-Learn API. Since our problem deals with binary
classification, Scikit-Learn API for XGBoost classification was used. Lastly, for
computational resources, NVIDIA R⃝ Tesla R⃝ V1005 was used which is a data center
GPU built to accelerate AI, high performance computing (HPC), data science, and
graphics.

3.1.1 Data Preprocessing

In order to prepare data for training, it is necessary to convert raw data into useful
structured dataset. Data preprocessing in our problem consists of two major tasks:

1. Extracting data for a particular UE.
2https://www.python.org/
3https://keras.io/
4https://xgboost.readthedocs.io
5https://www.nvidia.com/en-us/data-center/tesla-v100/
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2. Converting UE data to equal resolution (1 ms) by using filltype zeros or previous.
The filltype zeros means that 0s will be used for missing timestamps, while
filltype previous means that parameter value found in the last known timestamp
will be used for missing timestamps.
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Figure 6: Data preprocessing for users. Each file contains several users. Users’ data
is extracted separately, which leaves empty gaps between their timestamps. These
empty gaps are filled either using zeros or previous value as shown in Table 1.

Figure 6 shows data preprocessing more clearly. One can observe that users
occupy timeslots for variable amounts of time, that is, occupied timeslots of the users
are different. Moreover, the order in which users occupy timeslots does not follow
any deterministic pattern. Since data of a user has missing timestamps (a user can
go offline/online depending on the usage), it is necessary to fill certain values to
the missing timestamps depending on the parameter. Table 1 shows how values are
filled for missing timestamps. With filled values, we obtain user data Xuseri

which
is equally sampled at 1 ms frequency. Same process can be repeated for n different
users.

Theoretically, data of a user is independent from other users. Therefore, it is
necessary to extract the data for each individual user and then use the past data values
of that particular user to predict whether a packet failure would happen for the user.
In order to extract the data for a particular UE, one can use ETtiTraceDlParUe_crnti
parameter.
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Table 1: Scheme for filling missed timestamps. Second column in table shows which
filltype has been used for the corresponding parameter in first column.

Parameter Filltype
ETtiTraceDlParUe_wbCqiCompensateCw0 previous

ETtiTraceDlParUe_rrmDeltaCqiCw0 previous
ETtiTraceDlParUe_rrmMimoCqi previous
ETtiTraceDlParUe_mcsIndexCw1 previous

ETtiTraceDlParUe_ModulationCw1 previous
ETtiTraceDlParUe_averCirRgbCw0 previous

ETtiTraceDlParUe_dlrrmPdcchCqiShift previous
ETtiTraceDlParUe_rrmPdschAvgUeTput zeros

ETtiTraceDlParUe_rrmPdschAvgResAllocationUe zeros
EHarqParDl_rrmRecommendedMcsCw1 previous

3.1.2 Feature Engineering

��−1��−2��−� ��

Use last  lagged values of  at time � � � − 1

Predict output at time �

Figure 7: Feature engineering for time series prediction. Last l values of each feature
are used to predict next output.

In order to prepare features for time series prediction, it is a common practice to
use lagged values of both features and labels to predict the future values of features
and labels or just labels. In our case, we only use the lagged values of features to
predict the labels as per Equation (1). This can be understood as shifting the labels
by some constant timestamp tl and training the model to predict future values of
labels given features at current time t, as shown in Figure 7. A good question to ask
at this point is to how many past values of features should the model use to (referred
commonly as past window size) to predict how much in the future (commonly named
as future window size). In most of the applications, future window size is usually an
application requirement, rather than a value to be determined, whereas past windows
size needs to be experimented upon and chosen according to the best results (more
discussion on this will follow in Section 4.4).

3.1.3 Data Visualization

For visualization in this part, we will focus on one CSV file (details about the file
will follow in Section 4.1). In one CSV file, there can be around 1000 different users.
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Each user can have different packet drop rate which depends upon different factors
like location of user, and distance from the base station. Since data packets drop at
different rates for different users, in order to provide a comprehensive understanding
of packets drop rates at extreme ends, one can find ACK/NACK plot graphs in
Figures 8 and 9 for two types of users: user u1 who had the most dropped packets,
and user u2 who had the least amount of packets dropped. Please note that green
dots represent ACK while red dots represents NACK.

With higher dimensional data, it can be difficult to visualize the data. In order to
cope with this, dimensionality reduction techniques are used. With reduced dimen-
sions one can easily plot the relation between X and y and infer useful information
about the data. Below list entails the dimensionality reduction techniques being
employed for data visualization. Please note that dimensionality methods use past
window size of 15 for feature engineering, and future window size of 1 for labels.

1. Principal Component Analysis (PCA)
PCA is one of the most common methods used for dimensionality reduction.
PCA tries to remove redundant information by finding the most relevant linear
combinations of variables. It finds the principal components (eigenvectors of
covariance matrix) of the original dataset. These components correspond to
the direction with greatest variance in dataset and are orthogonal to each other
(Jolliffe, 2011)

2. Independent Component Analysis (ICA)
As compared to PCA, where basis explain the variability of data, in ICA we
aim to find basis that construct vectors which are independent components
of the data. These independent components are assumed to be non-Gaussian,
mutually independent and their linear combinations tend to explain variables
of the data. As compared to PCA, where vectors are orthogonal, vectors in
ICA are not orthogonal (Langlois et al., 2010).

3. T-distributed Stochastic Neighbor Embedding (t-SNE)
t-SNE is a non-linear dimensionality reduction method, introduced by der
Maaten and Hinton (2008). t-SNE minimizes the Kullback-Leibler divergence
(Kullback and Leibler, 1951) of two probability distributions: a distribution
that measures pairwise similarity of input data points in the higher dimensional
space and the other distribution that measures similarities of embedded points
in the correspondig low dimensional space.

Figures 10, 11 and 12 show the graph for reduced dimensions of original dataset
using PCA, ICA, and t-SNE methods respectively. One can observe from PCA/ICA
graphs that it is difficult to get a clear decision boundary to separate labels into
two groups indicating that problem at hand overlaps the labels for given features of
dataset and a linear model will not be sufficient to achieve a good decision boundary.
Moreover, with non-linear dimensionality reduction method, t-SNE, we still do not
observe two distinct clusters. This indicates that problem at hand is highly non-linear
and a complex model is required to achieve a good binary classifier.
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Figure 8: User with most dropped packets. Dot plot graphs show the distribution of
labels against each feature (or radio parameter).
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Figure 9: User with least dropped packets. Dot plot graphs show the distribution of
labels against each feature (or radio parameter).
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Figure 10: Dimensionality reduction using PCA.

Figure 11: Dimensionality reduction using ICA.
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Figure 12: Dimensionality reduction using t-SNE.

3.2 Choosing the Right Metric
Metric in machine learning is defined as the measure of model performance. In order
to evaluate the performance of a model, it is imperative to choose the right metric
depending on the objective and dataset. Choice of the right metric can help to
realize the improvement in model training and identify best hyperparameters. For
example, choosing a mean squared prediction error (MSPE) or mean squared abolute
error (MSAE) to gauge the performance of a binary classifier is not helpful since
MSPE and MSAE are more helpful in regression; on the other hand, cross-entropy
(Goodfellow et al., 2016) is a useful metric in classification.

For our dataset, since the classes are highly imbalanced, it is necessary to use a
metric that takes into account class imbalance. Python Scikit-learn library6 provides
useful metrics for imbalanced classes. F1 score (Powers, 2011) is one of the most
popular choices for imbalanced datasets. Using F1 score for our dataset, changes in
accuracy of the trained model did not affect F1 score sufficiently making it difficult
to point out the improvement in model training. Among the alternate options that
were considered, balanced accuracy score (Brodersen et al., 2010), defined as the
average of recall obtained on each class, and area under the (Receiver Operating
Characteristics) curve (AUC) score (Fawcett, 2006) are better options.

In order to compare the performance of models, AUC is used as the decisive metric.
This is because balanced accuracy score can differ depending on the probability

6https://scikit-learn.org/
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threshold. This point can be best illustrated using Figures 13a and 13b. Confusion
matrix in Figure 13a shows predictions against a probability threshold of 0.50;
meaning if a data packet failure probability is equal to or greater than 50%, only
then it will be classified as NACK. Similar interpretation follows for confusion matrix
in Figure 13b with 0.07 probability threshold. Balanced accuracy score for both of
these confusion matrices evaluates to 54.20 and 73.20 respectively; but area under
the ROC curve is 0.82 for both confusion matrices. This is because balance accuracy
score can vary depending on the probability threshold while AUC score tells the
complete story regardless of what threshold is defined. AUC score varies from 0.50
to 1.0 where a higher score indicates a better classifier. In the following sections,
balanced accuracy score will be mentioned as an extra insight for predictions with
probability threshold of 0.50.

(a) (b)

Figure 13: Confusion matrix with different probability thresholds. Left Figure (a)
shows confusion matrix with 0.50 probability threshold while right Figure (b) shows
confusion matrix with 0.07 probability threshold.

3.3 Baseline Models
In order to gauge how well a trained model is performing, a baseline model accuracy
can help to set a benchmark. This benchmark can be quite useful in determining
how well a model is performing as compared to a dummy/non-trained model. This
also highlights the potential benefit of using extra hardware computations and
sophisticated algorithms for higher performance. If trained model’s accuracy is close
to or below the benchmark, there is no use of utilizing hardware resources for model
training and evaluation.

In time series prediction, persistence model (where predicted value at time t + 1
is same as the actual value at time t) is a common choice for benchmarking the
trained model for a continuous time series. Since in our case, labels are categorical
and classes are highly imabalanced, zero rule algorithm, where dominant class is
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always predicted by the dummy model, is a better choice. Table 2 shows the baseline
performance scores for both datasets (single and combined dataset).

Table 2: Benchmark scores for single and combined datasets.

Metric Benchmark score
Balanced accuracy score 50.00 %

AUC 0.50
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4 Results
In this chapter, we describe in detail the results of using different machine learning
models on the available dataset and benchmark their performances according to AUC
metric. Furthermore, we also show the results for feature selection and using different
window sizes (past values) of features. For model training and evaluation, following
machine learning algorithms are used: long short-term memory (LSTM), gated
recurrent units (GRU), multilayer perceptron model (MLP), and boosting decision
trees (XGBoost). For all neural networks, categorical cross entropy (Goodfellow
et al., 2016) is used as the loss function since it has been proven to be quite effective
in classification problems (Anthimopoulos et al., 2016). Please note that for all the
experiments on both single datafile and combined dataset, past window size of 15 is
used to predict next 1 ms unless stated otherwise.

4.1 Using Single Datafile
Initially, only one datafile (or one CSV file) with total 90,893 samples was used
to experiment with different models and evaluate their results and comparative
performance. For this datafile, Table 3 and 4 show class labels weight and data split
ratio for training, validation, and testing respectively. Please note that ACK and
NACK class labels correspond to class 0 and class 1 respectively.

Table 3: Class labels weight summary for single datafile. It can be seen that classes
are highly imbalanced and dataset is skewed.

Class label Weight
class 0 (ACK) 93.45 %

class 1 (NACK) 6.55 %

Table 4: Data split ratio for training, validation, and testing. 80% data is used for
training while the rest 20% is used for validation and testing.

Dataset Split ratio(%)
Training data 80.00

Validation data 12.00
Testing data 8.00

Next we will enlist the result of using each machine learning model on this dataset
in Sections 4.1.1, 4.1.2, 4.1.3, and 4.1.4.

4.1.1 Long Short-Term Memory (LSTM)

Table 5 shows the hyperparameter configuration and their results using single datafile
with LSTM. Below description includes explanation of parameters included in Table
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5. Similar description also follows for tables summarizing results for GRU and MLP
in Sections 4.1.2 and 4.1.3.

• LSTM/GRU Units: represents the dimensionality of hidden state (same as
output state).

• LSTM/GRU Layers: total number of stacked layers used in LSTM/GRU.
Please note that each stacked layer has same number of LSTM/GRU units.

• Epochs: total number of forward and backward passes completed in the neural
network for all training examples.

• ES : stands for early stopping; this is a useful criterion that can be used
to avoid overfitting of the model (Prechelt, 1998). A positive integer of ES
represents the number of epochs after which further training must be stopped
if model is not learning anymore.

• BS: stands for batch size; number of samples that are propagated through the
neural network.

• CW: stands for class weight; this parameter can be useful while training on
imbalanced dataset. More weight can be given to an under-represented class
to force model to penalize its false detection. The parameter is calculated as
total_samples/(n_classes ∗ count(classi)), where count represents the total
number of occurrence of a class i in the dataset.

• Dropouts: a regularization technique where certain number of units in a
neural network are dropped. Please note that in results of the following
sections, dropouts in LSTM and GRU refer to recurrent dropouts.

• Activation: represents the non-linear activation function used for LSTM layer.
For dense layer in LSTM and GRU, softmax activation is used.

• Optimizer: function used to learn best parameters (weights) of the model by
reducing given loss function.

• lr: stands for learning rate of an optimizer, that is how big/small steps an
optimizer needs to take in order to update model parameters (weights).

• Model Parameters: total number of trainable parameters in the model.

• Balanced Acc: balanced accuracy metric to score model performance.

• AUC: represents the area under the ROC curve score.

• Time(h): time, in hours, taken for model to train.

• Figures: reference to loss history and confusion matrix figures.
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Table 5: LSTM results summary on single datafile.

No. LSTM
Units

LSTM
Layers Epochs ES BS CW Dropout Optimizer lr Model

Parameters
Balanced

Acc AUC Time(h) Figures

1 200 1 500 NA 96 False NA RMSProp 0.001 168,800 68.49 0.77 3.9 14a, 14b
2 150 1 300 100 96 True NA RMSProp 0.001 966,00 55.77 0.75 1.42 14c, 14d
3 150 1 300 100 150 True NA RMSProp 0.01 966,00 0.50 0.50 0.5 14e, 14f
4 121 1 500 70 15 True NA Adam 0.001 261,000 53.38 0.72 6.09 14g, 14h
5 80 2 210 70 96 False 0.3 Adam 0.001 29,120 63.09 0.84 3 15a, 15b
6 80 2 448 70 96 True 0.3 Adam 0.001 29,120 60.33 0.82 6.3 15c, 15d
7 80 3 350 70 96 True 0.25 Adam 0.003 132,322 62.41 0.84 7.7 16a, 16b
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One can observe from the loss history of Figures 14a, 14c, 14e, and 14g that
without using dropouts in LSTM, model predominantly overfits the training data
and validation loss starts increasing after certain number of epochs. Moreover, from
Figures 14b, 14d, 14f, and 14h of confusion matrix, one can see that not a lot of failed
packets are predicted in the next TTI. This results in lower AUC score, indicating
that model does not learn well. In order to overcome this problem, number of LSTM
layers were increased; usually multilayered LSTMs are able to give better results for
complex tasks. One can see from experiments number 5, 6 and 7 in Table 5 that
increasing the number of stacked layers and reducing LSTM units helps with better
performance. It is always a good idea not to use too many LSTM units and LSTM
layers since model can become too complex resulting in overfitting and increased
training time. In order to expedite the training time and tune the model better,
different number of batch sizes were also tried out. Using 96 samples for batch size
gives better results because if batch size is increased further, model performance
decreases. Among different optimizers that were tried out, Adam (Kingma and Ba,
2014) optimizer comes out to be the best choice. Figures 15a, 15b, 16a, and 16b
show the loss history and confusion matrix for the best results with AUC score of
0.84.

One can observe from the results in Table 5 that recurrent dropouts help with
regularization and to close down the gap between validation and training loss.
Moreover, one can see that stacked LSTMs perform better than single layer LSTM,
reason being that stacked LSTMs can learn more complex functions. A common
understanding in deep learning is that deep RNNs work better than shallower ones
on some tasks (Goldberg, 2016).
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

Figure 14: Training and validation loss history for single layer LSTMs. Without
using dropouts, LSTM overfits the training data and validation loss increases after
some epochs.
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

Figure 15: Loss history and confusion matrix for two layer stacked LSTMs. Using
two layered LSTMs helps with better performance. Dropouts and early stopping are
used to make sure that model does not overfit.

(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

Figure 16: Loss history and confusion matrix for three layer stacked LSTMs. Three
layered LSTMs give comparable performance as compared to two layered LSTMs
except training time increases significantly.
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4.1.2 Gated Recurrent Units (GRUs)

As mentioned earlier in chapter 2, GRUs are really useful in sequential tasks like
LSTMs, but only faster and simpler. Table 6 summarizes the best results obtained
with GRUs in Keras using single datafile.

Table 6: GRU results summary on single datafile

No. GRU
Units

GRU
Layers Epochs ES BS CW Recurrent

dropouts Optimizer lr Model
Parameters

Balanced
Acc. AUC Time(h) Figures

1 150 2 284 70 96 True 0.25 Adam 0.001 208202 60.03 0.86 3.36 17a, 17b
2 100 4 125 70 200 False 0.3 Adam 0.001 33502 50.48 0.70 0.32 18a, 18b

Using hyperparmeter values in experiment 1 in Table 6, an AUC score of 0.86 is
obtained which is slightly better than the best result obtained with LSTMs. Figure
17a shows that both training and validation loss decrease slowly as the epochs increase.
From Figure 17b, one can see that 99 packets failures are predicted successfully with
total 6 false predictions of failed packets. On the contrary, experiment 2 in Table
6 shows poor GRU performance using the mentioned hyperparameters. Although
training loss decreases, validation loss starts increasing as shown in Figure 18a.
Confusion matrix in Figure 18b shows that only 5 NACKs are predicted successfully
out of almost 500 total NACKs.

(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

Figure 17: Loss history and confusion matrix for two layer stacked GRUs. Using
simple two layered GRU gives even better results than LSTMs.
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

Figure 18: Loss history and confusion matrix for four layer stacked GRUs. Using
too many stacked layers overfits the data and model does not learn as can be seen
from both left (a) and right (b) figures.
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4.1.3 Multilayer Perceptron (MLP)

Table 7 shows the results obtained with MLP with two hidden layers using single
datafile. For each of the experiment listed in Table 7, one can find corresponding loss
history for training and validation data in Figures 19a, 19c, 19e, 19g, 19i, 19k, and
19m. As can be seen from Figure 19a, using ReLU (Glorot et al., 2011) activation,
validation data loss starts to increase after 50 epochs. Compared to this, using tanh
activation, validation loss decreases smoothly over number of epochs and also follows
training loss closely. Moreover, using tanh activation, slightly better AUC score is
obtained as compared to ReLU activation. Therefore, in the rest of the experiments,
tanh activation function was used.

From the experiments in Table 7, one can observe that increasing number of
neurons in hidden layers slightly helps with better performance. In experiment 3,
by doubling the number of neurons as compared to experiment 2, better model
performance is achieved, with 0.02 increase in AUC score. Similarly, in experiment
7, one can observe that if the number of neurons is decreased as compared to
experiment 6, then AUC score decreases slightly (although the difference is not
noticeable). Experiment 4 in Table 7 lists the hyperparameters that gives the best
results with 2 hidden layered MLP using 512 and 256 neurons in the first and second
layer respectively. While tuning number of layers and neurons in MLP, it is always
preferable to get good model accuracy using a simpler model since a complex model
will learn the training data too well and will not be able to deal with the unseen
dataset. Therefore, it is always preferable to use a simple model; and if simple model
does not work then one needs to find a balance between a slightly complex model
that barely gets the job done and a complicated model that might lead to overfitting.
While tuning number of neurons in Table 7, this principle was strictly adhered to.

Moreover, among different batch sizes that were tried out, using a batch size
of 256 gives better results. If batch size is increased more, for instance 400, model
performance drops (although model takes less time to train). Lastly, using Adamax
optimizer (Kingma and Ba, 2014), a variant of Adam based on the infinity norm,
model performance increases.

Table 7: MLP with two hidden layers results summary on single datafile.

No. H1
units

H2
units Epochs ES BS Activation Optimizer lr Model

Parameters
Balanced

Acc. AUC Time(h) Figures

1 512 256 214 150 256 relu Adam 0.0009 209,154 51.73 0.78 0.10 19a, 19b
2 512 256 398 150 256 tanh Adam 0.0009 209,154 53.60 0.79 0.25 19c, 19d
3 1024 512 485 150 256 tanh Adam 0.0009 680,450 56.81 0.81 0.30 19e, 19f
4 512 256 1420 150 256 tanh Adamax 0.001 209,154 56.05 0.82 0.76 19g, 19h
5 512 256 1494 150 400 tanh Adamax 0.001 209,154 53.67 0.80 0.56 19i, 19j
6 1024 512 811 150 256 tanh Adamax 0.001 680,450 54.69 0.80 0.39 19k, 19l
7 256 128 1500 150 400 tanh Adamax 0.001 71,810 52.47 0.79 0.63 19m, 19n

Table 8 shows the results obtained with MLP with three hidden layers using single
datafile. Similar hyperparameter cofigurations were tried out as compared to two
layered MLP neural network. Experiment 3 in Table 8 lists down hyperparameters
that provide the best model performance. These hyperparameter configurations are
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similar to the hyperpameter configurations that provided the best result for two
layered MLP (experiment 4 in Table 7). The only difference is that three layered
MLP model takes less time to train since a bigger batch size is being used. Finally,
loss history in Figures 20a, 20c, and 20e for training and validation shows that adding
an extra hidden layer on two layered MLP does not lead to overfitting (as long as
number of neurons is not increased too much) and provides similar or better results,
as shown in Table 8.

Table 8: MLP with three hidden layers results summary on single datafile.

No. H1
units

H2
units

H3
units Epochs ES BS Activation Optimizer lr Model

Parameters
Balanced

Acc. AUC Time Figures

1 1024 512 256 737 150 300 tanh Adam 0.001 811256 57.75 0.81 0.41 20a, 20b
2 512 256 128 689 150 256 tanh Adamax 0.001 241794 57.31 0.81 0.40 20c, 20d
3 512 256 128 877 150 400 tanh Adamax 0.001 241794 55.78 0.82 0.35 20e, 20d
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5



43

(k) Loss history for experiment 6 (l) Confusion matrix for experiment 6

(m) Loss history for experiment 7 (n) Confusion matrix for experiment 7

Figure 19: Loss history and confusion matrix for MLP with two hidden layers.
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

Figure 20: Loss history and confusion matrix for MLP with three hidden layers.
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4.1.4 XGBoost

After recurrent neural netrworks and artificial neural network, boosted decision trees
were trained using single datafile. Table 9 summarizes the results using different
hyperparameter values in XGBoost. A short description of hyperparameters in Table
9 is given below:

• n_estimator: total number of subtrees (base learners) to grow.

• max_depth: maximum depth of each subtree. In other words, this defines
the maximum number of features used in each tree.

• learning rate: this represents the boosting learning rate which is used to
avoid overfitting. This was originally referred to as shrinkage η by Friedman
(2002). Shrinkage basically scales newly added weights by a factor η after each
step of tree boosting (Chen and Guestrin, 2016).

• min_child_weight: minimum sum of instance weight (Hessian) needed in a
child. If the tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, then the building process will give up
further partitioning.

• scale_pos_weight: this can be particularly useful for imbalanced datasets
and generally represents the ratio of positive classes to negative classes.

• gamma: helps to control regularization in gradient boosting.

In Table 9, experiment 1 uses the default values provided by Scikit-Learn API
for XGBoost classification and one can observer that results are very poor using the
default values. Increasing the number of trees and depth of each tree helps with
better model performance. Using simpler models (first three experiments), one can
see from Figures 21a, 21c, and 21e that validation loss follows training loss very
closely. But if depth and number of trees are increase too much (experiment 4 of
Table 9), there is a chance of overfitting the training data as can be seen from Figure
21g, where validation loss starts increasing while training loss continues to decrease.

In order to optimize hyperparameter values, grid search was used which is one of
the popular methods for hyperparameters optimization. Grid search is an exhaustive
searching through a manually specified subset of hyperparameter space for a learning
algorithm. For implementing grid search for XGBoost, GridSearchCV7 by scikit-learn
was used with scoring method as ’auc’ and ’roc_auc’. Table 10 shows the range of
values used for grid search and the optimal values found in the range. Experiment 5
in Table 9 shows the results obtained with these optimal values; one can observe the
significant increase in the accuracy from the results.

7https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Table 9: XGBoost results summary using single datafile.

No. n_estimators max_depth min_
child_weight lr scale_

pos_weight gamma Balanced
Acc. AUC Time(h) Figures

1 100 3 1 0.1 1 0 50.28 0.77 0.003 21a, 21b
2 500 3 1 0.1 1 0 52.65 0.81 0.18 21c, 21d
3 500 10 1 0.1 1 0 52.62 0.82 0.20 21e, 21f
4 500 20 1 0.1 1 0 62.36 0.87 0.24 21g, 21h
5 1331 10 1 0.1 1 0 70.92 0.91 0.16 21i, 21j

Table 10: XGBoost hyperparameters optimization using grid search. Using combina-
tion of hyperparameters in the specified range, optimal values of each hyperparameter
is found as shown in the last column.

Hyperparameter Search range Optimal value
n_estimaor [1, 2000] 1331
max_depth [5, 30] 10

min_child_weight [1, 6] 1
gamma [0, 10] 0

scale_pos_weight [7.5, 14] 9.6
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5

Figure 21: Loss history and confusion matrix for XGBoost.
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4.2 Using Combined Dataset
After experimenting with one datafile, the next step was to use data from multiple
files and evaluate how models perform on bigger dataset. For this purpose, total of
10 CSV files were chosen. Table 11 shows a comprehensive summary of the sources
files used to merge the data. One can observe from Table 11 that weight (%) of ACK
and NACK remains almost the same through all the files. For training, validation,
and testing, data split ratio was 85%, 9%, and 6% respectively as shown in Table 12.

Table 11: Summary of combined dataset. First 10 rows represent the single datafiles
that have been processed individually and then merged to create a bigger dataset as
shown in the last row of the table.

Index Number of Samples Total ACKs Total NACKs ACK % NACK % Total users
1 90902 84797 6105 93.28 6.72 1121
2 99416 92637 6779 93.18 6.82 1104
3 107017 100639 6378 94.04 5.96 959
4 97143 91288 5855 93.97 6.03 1129
5 92629 87279 5350 94.22 5.78 1067
6 100665 92487 8178 91.88 8.12 755
7 88238 83344 4894 94.45 5.55 963
8 88363 82298 6065 93.14 6.86 725
9 100068 93121 6947 93.06 6.94 769
10 89948 83633 6315 92.98 7.02 544

Combined 954389 891494 62894 93.41 6.59 9136

Table 12: Data split ratio for training, validation and testing. 85% data is used for
training while the rest 15% is used for validation and testing.

Dataset Split ratio(%)
Training data 85.00

Validation data 9.00
Testing data 6.00

The following subsections show the results of using LSTM, GRU, MLP, and
XGBoost on combined dataset.

4.2.1 Long Short-Term Memory (LSTM)

The section enlists the results of different hyperparameters configuration using LSTM
on combined dataset. Table 13 indicates the hyperparameter values and Figure 22
shows the corresponding figures for loss history and confusion matrix. For detailed
description of hyperparameters used in Table 13, one can refer to Section 4.1.1.

From the results in Table 13, one can notice that experiment 1 gives an AUC
score of 0.86 which is quite good. But if one looks at loss history for this experiment
in Figure 22a, after certain number of epochs the gap between training and validation
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loss increases. This is not an indicative of model overfitting since early stopping is
used to stop such a behavior, but it does indicate that underlying model is a bit
complex; therefore reduced complexity might help to over come such a gap between
training and validation loss. One can observe from hyperparameters configuration
in experiment 2 till experiment 7 that number of LSTM units and LSTM layers
were reduced to decrease the model complexity. Loss history plots in Figures 22c,
22e, 22g, 22i, 22k, and 22m show that validation loss curve starts following training
loss more closely as compared to Figure 22a. But with reduced complexity, model
performance also decreases (as shown by AUC scores). Finally, this problem was
solved using class weights parameter in LSTM model. Experiment number 8 and 9
show that class weights parameter can be really useful to overcome the gap with no
impact on model accuracy. One can notice from Figures 22o and 22q that validation
loss decreases as training loss decreases and also the gap between two loss curves
has decreased significantly as compared to Figures 22a and 22c where except class
weights, same hyperparameters were used.

Table 13: LSTM experiments on combined dataset.

No. LSTM
Units

LSTM
Layers Epochs ES BS CW Recurrent

Dropout Optimizer lr Model
Parameters

Balanced
Acc AUC Time Figures

1 256 3 206 100 8192 False 0.30 Adam 0.001 1,324,546 68.22 0.86 1.34 22a, 22b
2 128 3 330 100 8192 False 0.30 Adam 0.001 334,594 66.88 0.85 1.204 22c, 22d
3 64 3 490 100 8192 False 0.30 Adam 0.001 85,378 61.34 0.84 1.59 22e, 22f
4 64 3 512 100 16384 False 0.30 Adam 0.001 85,378 62.20 0.84 1.729 22g, 22h
5 64 3 482 100 8192 False 0.50 Adam 0.001 85,378 61.47 0.84 1.62 22i, 22j
6 64 2 940 100 8192 False 0.30 Adam 0.001 52,354 60.18 0.84 2.25 22k, 22l
7 64 2 1235 100 16384 False 0.30 Adam 0.001 52,354 59.81 0.83 3.65 22m, 22n
8 256 3 321 100 8192 True 0.30 Adam 0.001 1,324,546 76.69 0.86 2.09 22o, 22p
9 128 3 455 100 8192 True 0.30 Adam 0.001 334,594 75.63 0.85 1.78 22q, 22r
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5
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(k) Loss history for experiment 6 (l) Confusion matrix for experiment 6

(m) Loss history for experiment 7 (n) Confusion matrix for experiment 7

(o) Loss history for experiment 8 (p) Confusion matrix for experiment 8

(q) Loss history for experiment 9 (r) Confusion matrix for experiment 9

Figure 22: Loss history and confusion matrix for LSTM on combined dataset.
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4.2.2 Gated Recurrent Units (GRUs)

As compared to results on single dataset, GRU model performance on combined
dataset was quite poor. Different combination of hyperparameter values were tried
out, from different layers to number of GRU units, batch size and so on. But still
GRU performance remained poor as can be seen from AUC score in Table 14. Similar
to LSTMs, using class weights helped with better model performance in GRU as
well.

One can observe from Figures 23a, 23c, 23g, and 23i that training and validation
loss do not decrease continuously rather abrupt behavior is observed with decrease
in loss followed by sudden increase and the pattern continues. In Figure 23e though,
sudden decrease in loss is observed at the start of training and then the model stops
learning for the rest of epochs.

Table 14: GRU results summary on combined dataset.

No. GRU
Units

GRU
Layers Epochs ES BS CW Recurrent

dropouts Optimizer lr Model
Parameters

Balanced
Acc. AUC Time(h) Figures

1 128 3 450 100 8192 False 0.30 Adam 0.001 251,010 49.00 0.26 1.36 23a, 23b
2 128 3 117 100 8192 True 0.30 Adam 0.001 251,010 69.17 0.75 0.37 23c, 23d
3 256 3 188 100 8192 True 0.30 Adam 0.001 993,538 32.18 0.26 1.48 23e, 23f
4 256 3 233 100 20000 True 0.30 Adam 0.001 993,538 66.49 0.73 1.42 23g, 23h
5 128 2 638 100 8192 True 0.30 Adam 0.001 152,322 63.58 0.67 1.39 23i, 23j



53

(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 1

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5

Figure 23: Loss history and confusion matrix for GRU on combined dataset.
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4.2.3 Multilayer Perceptron (MLP)

After experimenting with LSTM and GRU, the next step was to implement MLP
on combined dataset. Table 15, 16, and 17 show the results of trained MLP model
using two, three and four hidden layers respectively.

One can see from experiments 1 till 6 in Table 16 that different batch sizes were
used to determine the batch size that gives the best performance. Among different
activation functions that were used, tanh and ELU (exponential linear units) (Clevert
et al., 2015) provided better results, although ELU activation function was slightly
better than tanh. Moreover, among Adam, Adamax, SGD, and RMSProp optimizers,
Adam and Adamax were better choices in terms of accuracy. Finally, one can see
from experiment 12 and 13 in Table 16 that decreasing number of neurons in hidden
layers reduces model accuracy slightly while too much increase in number of neurons
impedes model training as is evident from Figures 25y and 25z.

In order to properly tune the model, MLP model with three hidden layers was
explored in quite detail with different values of batch sizes, activation and number of
units. From the experiments, it seems that an MLP model with three hidden layers
is sufficient to learn the model complexity. Using two layered MLP model, model
performance decreases slightly as shown in Table 15. With four layered MLP, results
similar to three layered MLP were obtained. With increased number of hidden layers,
model usually overfits the training data and does not generalize well (Goodfellow
et al., 2016). Therefore, it is always preferable to settle for a less complex model as
compared to a complex model when there is no increase in accuracy.

One important thing to observe from loss history of two, three and four layered
MLP models is that validation loss curve follows very closely the training loss curve.
This can be seen from all loss curves in Figures 24, 25, and 26 (except Figure 25y
where model never learned). This is quite noticeable as compared to loss history
obtained from LSTMs, GRUs, and XGBoost models where after certain epochs, gap
between training and validation loss starts to increase.

Table 15: MLP with two hidden layers on combined dataset.

No. H1
units

H2
units Epochs BS Activation Optimizer lr Model

Parameters
Balanced

Acc. AUC Time Figures

1 1024 256 2178 20000 elu Adam 0.001 680450 53.55 0.80 1.62 24a, 24b
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Table 16: MLP with three hidden layers on combined dataset.

No. H1
units

H2
units

H3
units Epochs BS Activation Optimizer lr Model

Parameters
Balanced

Acc. AUC Time Fig CM

1 1024 512 256 910 600 tanh Adam 0.001 811266 50.12 0.75 2.86 25a 25b
2 1024 512 256 564 1000 tanh Adam 0.001 811266 50.45 0.77 1.17 25c 25d
3 1024 512 256 636 10000 tanh Adam 0.001 811266 52.76 0.80 0.55 25e 25f
4 1024 512 256 1003 20000 tanh Adam 0.001 811266 52.75 0.81 0.77 25g 25h
5 1024 512 256 825 40000 tanh Adam 0.001 811266 52.38 0.80 0.88 25i 25j
6 1024 512 256 930 50000 tanh Adam 0.001 811266 52.30 0.80 0.81 25k 25l
7 1024 512 256 573 20000 relu Adam 0.001 811266 53.15 0.79 0.47 25m 25n
8 1024 512 256 1899 20000 elu Adam 0.001 811266 56.35 0.83 1.56 25o 25p
9 1024 512 256 2092 20000 elu Adamax 0.001 811266 54.03 0.82 1.72 25q 25r
10 1024 512 256 3000 20000 elu SGD 0.001 811266 50.00 0.67 2.43 25s 25t
11 1024 512 256 2101 20000 elu RMSprop 0.001 811266 55.16 0.82 1.72 25u 25v
12 512 256 128 1293 20000 elu Adam 0.001 241794 51.93 0.80 0.38 25w 25x
13 2048 1024 512 101 20000 elu Adam 0.001 2933250 50.00 0.50 0.068 25y 25z

Table 17: MLP with four hidden layers on combined dataset.

No. H1
units

H2
units

H3
units

H4
units Epochs BS Activation Optimizer lr Model

Parameters
Balanced

Acc. AUC Time Figures

1 256 128 64 32 2495 20000 elu Adam 0.001 81954 51.31 0.79 0.64 26a, 26b
2 1024 512 256 128 2168 20000 elu Adam 0.001 843906 57.42 0.83 1.83 26c, 26d

(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

Figure 24: Loss history and confusion matrix for MLP with 2 hidden layers.
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5
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(k) Loss history for experiment 6 (l) Confusion matrix for experiment 6

(m) Loss history for experiment 7 (n) Confusion matrix for experiment 7

(o) Loss history for experiment 8 (p) Confusion matrix for experiment 8

(q) Loss history for experiment 9 (r) Confusion matrix for experiment 9

(s) Loss history for experiment 10 (t) Confusion matrix for experiment 10
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(u) Loss history for experiment 11 (v) Confusion matrix for experiment 11

(w) Loss history for experiment 12 (x) Confusion matrix for experiment 12

(y) Loss history for experiment 13 (z) Confusion matrix for experiment 13

Figure 25: Loss history and confusion matrix for MLP with 3 hidden layers.
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

Figure 26: Loss history and confusion matrix for MLP with 4 hidden layers.
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4.2.4 XGBoost

Finally, in this section, one can find the results obtained with XGBoost on combined
dataset summarized in Table 18. Similar to Section 4.1.4, different hyperparameter
values were experimented with. One can refer to the same Section 4.1.4 for detailed
description of each hyperparameter in Table 18.

Experiment 1 in Table 18 uses the same hyperparameters that gave the best results
using single datafile. Using these configurations, quite good model performance was
achieved. In order to tune the XGBoost model even better, parameters related to
number of trees and maximum depth of each tree were experimented with. From
the experiments, it seems that one needs to find a balance between these two
hyperparameters. This can be seen from the results of experiment 2 and experiment
5 where same model performance is achieved. In experiment 2, fewer decision trees
with more depth are used whereas in experiment 5, more decision trees with less
depth are used. Generally, it is a good idea not to increase both number of trees and
tree depth too much since it will results in a very complex model. Figures 27a, 27c,
27e, 27g, and 27i correspond to loss history for each of the experiment in Table 18;
whereas Figures 27b, 27d, 27f, 27h, and 27j correspond to confusion matrix for the
binary XGBoost classifier for each of the experiment in Table 18.

Table 18: XGBoost experiments on combined dataset.

No. n_estimators max_depth min_
child_weight lr scale_

pos_weight gamma Balanced
Acc. AUC Time(h) Figures

1 1331 10 1 0.1 9.6 0 70.92 0.87 1.93 27a, 27b
2 700 20 1 0.1 9.6 0 63.97 0.88 2.37 27c, 27d
3 500 20 1 0.05 9.6 0 64.14 0.86 2.38 27e, 27f
4 1000 10 1 0.05 9.6 0 72.37 0.86 1.81 27g, 27h
5 1000 15 1 0.1 9.6 0 66.81 0.88 2.99 27i, 27j
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(a) Loss history for experiment 1 (b) Confusion matrix for experiment 1

(c) Loss history for experiment 2 (d) Confusion matrix for experiment 2

(e) Loss history for experiment 3 (f) Confusion matrix for experiment 3

(g) Loss history for experiment 4 (h) Confusion matrix for experiment 4

(i) Loss history for experiment 5 (j) Confusion matrix for experiment 5

Figure 27: Loss history and confusion matrix for XGBoost.
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4.3 Feature Selection
Feature selection (Guyon and Elisseeff, 2003) is a method in machine learning to
reduce redundant data and noise by selecting features that contribute the most to
model learning and discarding irrelevant features that might have either zero or
negative impact on model learning. The motivation is to reduce model complexity
by using relevant features only, thereby avoiding the risk of overfitting and reducing
training time. For the research problem at hand, as mentioned in Section 3.1,
originally the dataset contained around 314 features which were narrowed down
to 10 features by the domain experts. The motivation behind feature selection in
this scenario is to identify possible features that domain experts think as useful
but machine learning identifies them as redundant or bad features. Although there
are numerous ways to perform and implement feature selection in Python, we have
primarily used the following two methods:

1. By using feature_importances_ property of the trained XGBoost model.

2. By dropping individual features, or combination of features to evaluate the
impact on model performance. For this part, we only use XGBoost and MLP
models since LSTM/GRU take significantly longer time for training.

feature_importances_ property in XGBoost model lists down the features that it
found useful (during learning phase) for classification/regression depending upon the
importance_type. Importance_type is a method to filter the features according to
certain criterias, namely as gain, coverage, and frequency. Details of these criteria
follow as below:

1. Gain: This represents the relative importance of corresponding feature to
the model calculated by taking each feature’s contribution for each tree. The
higher the gain number, the more important the feature is for generating the
prediction.

2. Coverage: This represents the relative number of observations related to the
corresponding feature. For example, let us say that we had 100 observations
with K features and we constructed a model with 3 trees. Now if a feature
fi was used to decide the leaf node for m different observations in all trees
combined, then coverage will be calculated as m expressed as percentage of
sum of all K features’ coverages.

3. Frequency/Weight: This represents the relative number of times a particular
feature occurs in the trees of the model.

Since we are interested in finding features that help the model with prediction, we
will use only gain as importance type.

Experiments followed in this section for XGBoost use the same hyperparameter
values as described in experiment no. 5 in Table 9. However we will use different
past window sizes to observe if varying window sizes affect the feature importance.
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Figure 28: Feature importance plot

Figure 28 shows the results of feature importance plot generated by XGBoost
inbuilt function, using window size of 15 and selecting the top 50 features only. The
plot is not really useful in visualizing the feature importance and gets cluttered if more
top n features are visualized. In order to overcome this issue, a solution was designed
to score each feature according to the scores obtained using feature_importances_
property in trained XGBoost model. In order to explain this better, let us assume
that we are using a window size of 15 and have total of 10 features, then we have
150 indices with different scores. Each feature contributes 15 different values over
the past (hence window size = 15). In order to get contribution from a feature fi,
one needs to iterate over 150 indices and find the indices that belong to feature fi

and sum their scores. Now, it is also important how one sums these scores. Since in
our research problem, it is desirable to use as less values from the past as possible, a
penalty parameter is introduced which penalizes the past values more as compared
to recent values. The idea is to weigh recent contributions (in terms of time lapse)
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from features more than contributions that happened long time ago. Equation (23)
shows the mathematical expression for the function used to penalize values from the
past while Figure 29 shows the function plot for window size of 15.

f(x) = 1
exp( x

s1.5 ) (23)

where s denotes the window size, that is total number of past values used and x
denotes the index of features listed in descending order with respect to importance
score.
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Figure 29: Line plot for penalty function with window size of 15.

Using the penalty function and score of features (as shown in Figure 28), one can
generate a bar plot for all features with their respective scores. Figure 30, 31, 32 ,33,
34, and 35 show the results for window size of 5, 10, 15, 20, 25, and 50 respectively.

It can be observed from the results that ETtiTraceDlParUe_rrmDeltaCqiCw0
is the most important radio parameter regardless of the window size being used.
On the other hand, ETtiTraceDlParUe_wbCqiCompensateCw0 and ETtiTraceDl-
ParUe_averCirRgbCw0 seem to be least important. Moreover, it can be seen that
for some features, their importance vary with varying window sizes.

In order to verify the findings and to explore further the importance of features,
experiments were conducted with MLP and XGBoost where individual features or
subset of features were dropped to observe their relative contribution towards the
model performance. Table 19, 20, and 21 show a brief summary where experiments
were conducted 3 times and results were averaged.

Table 19 shows the results of dropping individual features and their impact
on the model performance. The most significant drop in performance, for both
XGBoost and MLP, is observed when ETtiTraceDlParUe_wbCqiCompensateCw0
feature is dropped. This is also corroborated by the feature_importances_ anal-
ysis using XGBoost that ETtiTraceDlParUe_wbCqiCompensateCw0 seems to be
the most relevant feature. On the other hand, ETtiTraceDlParUe_mcsIndexCw1,
ETtiTraceDlParUe_ModulationCw1 and EHarqParDl_rrmRecommendedMcsCw1
seem to be have the least effect on model learning when dropped.
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Figure 30: Feature importance plot with window size 5.
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Figure 31: Feature importance plot with window size 10.
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Figure 32: Feature importance plot with window size 15.
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Figure 33: Feature importance plot with window size 20.
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Figure 34: Feature importance plot with window size 25.
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Figure 35: Feature importance plot with window size 50.
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Table 19: Experiments with dropped features. Each individual feature is dropped
and its impact on model performance is evaluated.

Index. Dropped features XGBoost MLP
Balanced Accuracy (%) AUC Balanced Accuracy (%) AUC

Reference 70 0.91 57.42 0.82
1 ETtiTraceDlParUe_wbCqiCompensateCw0 69.95 0.90 55 0.81
2 ETtiTraceDlParUe_rrmDeltaCqiCw0 66.88 0.87 53.24 0.75
3 ETtiTraceDlParUe_rrmMimoCqi 68.34 0.88 54.72 0.81
4 ETtiTraceDlParUe_mcsIndexCw1 69.63 0.91 57.03 0.81
5 ETtiTraceDlParUe_ModulationCw1 69.89 0.91 56.15 0.81
6 ETtiTraceDlParUe_averCirRgbCw0 70.61 0.89 56.90 0.82
7 ETtiTraceDlParUe_dlrrmPdcchCqiShift 69.63 0.89 54.37 0.79
8 ETtiTraceDlParUe_rrmPdschAvgUeTput 68.75 0.89 55.70 0.81
9 ETtiTraceDlParUe_rrmPdschAvgResAllocationUe 70.15 0.90 57.80 0.80
10 EHarqParDl_rrmRecommendedMcsCw1 68.89 0.90 55.56 0.81

The next step was to try different combinations of the weak contributors and
evaluate their performance, as shown in Table 20. Any feature that decreases the
model AUC score, when dropped, by no more than 0.01 can be considered as a weak
feature. Experiments 11, 12, 13 and 15 in Table 20 show that such combination
of features (under column 1) could be dropped with a minimum impact on model
performance. The rest of the experiments in Table 20 (in particular experiment 22
and 24) show that if too many weak features are dropped at once, it might have
some impact on model learning.

Finally, Table 21 shows the results of retaining the features that seem the
most important so far: ETtiTraceDlParUe_wbCqiCompensateCw0, ETtiTraceDl-
ParUe_dlrrmPdcchCqiShift and ETtiTraceDlParUe_rrmPdschAvgUeTput. One can
observe from experiment 27 in Table 21 that for XGBoost it seems that only
these two features ETtiTraceDlParUe_wbCqiCompensateCw0 and ETtiTraceDl-
ParUe_dlrrmPdcchCqiShift are enough to mount up the model performance to an
AUC of 0.89 as compared to the AUC reference of 0.91. On the contrary, same
cannot be said about MLP. MLP model does not learn well without the rest of the
features and AUC drops significantly.

To summarize, the section described in detail the process and experiments that
were undertaken to analyze the features importance. Some features came out to
be more important as compared to others and help the model to train better. But
experiments show that no feature has negative impact on model performance.
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Table 20: Experiments with dropped features. Different combination of weak features
were dropped and the collective impact on model performance was evaluated.

Index. Dropped features XGBoost MLP
Balanced Accuracy (%) AUC Balanced Accuracy (%) AUC

Reference 70 0.91 57.42 0.82

11 ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_ModulationCw1 68.77 0.90 55.75 0.81

12
ETtiTraceDlParUe_mcsIndexCw1

ETtiTraceDlParUe_ModulationCw1
ETtiTraceDlParUe_rrmPdschAvgResAllocationUe

68.86 0.90 55.00 0.81

13
ETtiTraceDlParUe_mcsIndexCw1

ETtiTraceDlParUe_ModulationCw1
ETtiTraceDlParUe_dlrrmPdcchCqiShift

68.86 0.90 55.00 0.81

14
ETtiTraceDlParUe_mcsIndexCw1

ETtiTraceDlParUe_ModulationCw1
ETtiTraceDlParUe_rrmDeltaCqiCw0

68.90 0.89 54.63 0.80

15
ETtiTraceDlParUe_mcsIndexCw1

ETtiTraceDlParUe_ModulationCw1
EHarqParDl_rrmRecommendedMcsCw1

69.31 0.90 55.55 0.82

16 ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_rrmPdschAvgResAllocationUe 69.91 0.89 56.49 0.81

17 ETtiTraceDlParUe_ModulationCw1
ETtiTraceDlParUe_rrmPdschAvgResAllocationUe 69.02 0.89 56.67 0.82

18 ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_dlrrmPdcchCqiShift 67.59 0.88 54.86 0.81

19 ETtiTraceDlParUe_ModulationCw1
ETtiTraceDlParUe_dlrrmPdcchCqiShift 67.84 0.89 54.26 0.80

20

ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_ModulationCw1

ETtiTraceDlParUe_rrmPdschAvgResAllocationUe
ETtiTraceDlParUe_dlrrmPdcchCqiShift

68.08 0.89 54.29 0.78

21

ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_ModulationCw1

ETtiTraceDlParUe_rrmPdschAvgResAllocationUe
ETtiTraceDlParUe_wbCqiCompensateCw0

69.68 0.89 54.75 0.80

22

ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_ModulationCw1

ETtiTraceDlParUe_rrmPdschAvgResAllocationUe
EHarqParDl_rrmRecommendedMcsCw1

67.95 0.89 53.91 0.81

23
ETtiTraceDlParUe_wbCqiCompensateCw0

ETtiTraceDlParUe_averCirRgbCw0
EHarqParDl_rrmRecommendedMcsCw1

70.67 0.89 53.79 0.78

24

ETtiTraceDlParUe_mcsIndexCw1
ETtiTraceDlParUe_ModulationCw1

ETtiTraceDlParUe_wbCqiCompensateCw0
EHarqParDl_rrmRecommendedMcsCw1

ETtiTraceDlParUe_averCirRgbCw0

71.94 0.88 52.51 0.76

Table 21: Experiments with retained features. All features were dropped except few
strongs features to evaluate how good a model can perform with only strong features.

Index. Retained features XGBoost MLP
Balanced Accuracy (%) AUC Balanced Accuracy (%) AUC

Reference 70 0.91 57.42 0.82

26 ETtiTraceDlParUe_wbCqiCompensateCw0
ETtiTraceDlParUe_rrmPdschAvgUeTput 63.86 0.79 50.00 0.72

27 ETtiTraceDlParUe_wbCqiCompensateCw0
ETtiTraceDlParUe_dlrrmPdcchCqiShift 76.88 0.89 50.00 0.725

28
ETtiTraceDlParUe_wbCqiCompensateCw0

ETtiTraceDlParUe_dlrrmPdcchCqiShift
ETtiTraceDlParUe_rrmPdschAvgUeTput

69.47 0.87 51.30 0.75
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4.4 Optimum Window Size
In time series prediction, it is important to know how many past values (past window
size) are sufficient to use in order to make a prediction in the future. Choosing the
right window size can help significantly with model learning in terms of performance
and speed. Using too many past values of features can increase the feature space, risk
of overfitting and training time. In this section, we explore briefly how many past
values are important to use for decision trees and neural networks for our dataset.
In order to find the optimum window size, we will use two methods. First by using
the feature_importances_ property of trained XGBoost model, we can categorize
features of highest scores into their relevant windows. Secondly we vary the window
size and evaluate the model performance.

In order to categorize the important features into their relevant windows, we can
use the same methodology we employed in Section 4.3. In order to explain in detail,
let us assume that we are using a window size of 15. Since we have 10 features, we
end up with total of 150 feature length. Let us say that feature ’f101’ (feature at
101th index) gets a score of l. Now since we know feature length and window size,
we can easily determine that this feature belongs to a time window at index 11,
meaning the feature values belongs to a time frame that happened (t − 11) ms ago.
We can simply add the score of this feature (f101) to score of time window at (t − 11).
This way, we can keep track of scores of each window for the last 15 ms. Moreover,
for scoring, we also employ a penalty function, Equation (23), similar to Section
4.3. Although it may seem that penalizing past values will effectively make recent
past values more useful and make the whole experiment biased, but results show
that it does not affect the windows’ contribution scores, with or without the penalty
function, except making the bar graph more conspicuous. Figures 36, 37, 38, 39, 40,
and 41 show the importance of windows when trained with XGBoost with window
sizes of 5, 10, 15, 20, 25, and 50 respectively. In the figures, a given index i shows
past window of t − i ms, while the score simply shows their relative importance to
XGBoost while making predictions. One can observe that recent feature values in
the near past are more important as compared to feature values that happened long
time ago. Although, we do observe some peaks in the far past too; this indicates
that few contributions from feature values in the far past can be potentially useful
for the classifier.

In order to verify the results from the graphs further, XGBoost and MLP were
trained with varying window sizes, from 5 to 50. A summary of results can be
seen in Table 22. One can observe from Table 22 that smaller windows result in
small decrease in AUC while bigger windows help to increase performance. For
research question at hand, it is practical to use smaller windows instead of bigger
ones. The reason being that in LTE and 5G, communication takes place at 1ms
interval (transmission time interval) and time latency is crucial. Therefore, relying
too much on past values (one also needs to take into account the time taken for
preprocessing) can become impractical. From Table 22, window size of 10 and 15
seem practical options.
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Figure 36: Windows importance with window size of 5. Using a small past window
size, we observe that all 5 past values of features are important for XGBoost.
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Figure 37: Windows importance with window size of 10. Last 4 values of features
from the past are the most important. Feature values at t < (t − 4) ms are relatively
less important.
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Figure 38: Windows importance with window size of 15. Not only last 4 values of
features are important for XGBoost but also feature values from t − 12 to t − 14 ms
are important.

20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
Previous Windows

0

10

20

30

40

50

Sc
or

e

Time Windows (in Past) Importance

Figure 39: Windows importance with window size of 20. Recent past values of
features upto t − 5 ms are the most important.
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Figure 40: Windows importance with window size of 25. Not only the feature values
upto t − 4 ms are important but also some feature values that happened 12 to 14 ms
ago are important. This is similar to the bar graph obtained with window size of 15.

Table 22: AUC score with different window sizes.

Model Window Size
5 10 15 20 25 50

XGBoost 0.88 0.90 0.91 0.92 0.91 0.91
MLP 0.79 0.82 0.82 0.81 0.82 0.85
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Figure 41: Windows importance with window size of 50. Again, recent 4 contribution
from feature values are really important. Some peaks are observed in the far past
(t < (t − 30)) which indicates that it might be useful to use some feature values from
the far past.
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5 Conclusion and Discussion
In this thesis, we explored in detail if it is possible to predict successful transmission
of a given data packet in cellular networks. Our aim was to build an intelligent
predictor for packet failures based on the network data as opposed to naïve approaches
commonly used in wireless networks. In order to solve this problem, we used machine
learning and deep learning algorithms to train models on the sequential data. Machine
learning algorithm that we use for training are: long short-term memory (LSTM),
gated recurrent units (GRU), multilayer perceptrons (MLP), and boosting decision
trees (XGBoost). All of these algorithms are state-of-the-art and have been proven
to be really useful in solving sequential tasks and time series prediction problems.

The dataset available for training was highly skewed, meaning class labels were
imbalanced. Moreover, the class label of interest was highly under-represented and
had significantly fewer samples. In order to deal with this issue, while training neural
networks and boosting decision trees, class weights were used. This was to make sure
that model penalizes false detection of under-represented class labels more than the
dominant class. Our results in chapter 4 show that class weights parameter was quite
useful, both in neural networks and XGBoost, in improving model performance.

In deep learning, tuning neural networks can be really difficult problem since it
involves a lot of hyperparameters configuration. In order to get optimal values of
hyperparameters, a systematic approach was adopted, where each parameter was
changed and its impact on the model performance was evaluated. Among different
activation functions used in MLP, tanh and ELU (exponential linear units) provided
the best results. In LSTM and GRU recurrent networks, tanh activation function is
used by default as per their architectures, so it was not changed. Regarding optimal
optimizer, Adam and Adamax performed the best. It was no surprise since many of
the deep learning research problems use Adam these days. RMSProp also provided
decent results while SGD performed the worst and model did not learn with SGD
optimizer.

Learning rate of the optimizing algorithm is usually one of the most experimented
with hyperparameter while training neural networks. In deep learning, one needs to
decrease learning rate of optimizing algorithm to make sure that model converges
properly. If larger learning rate is used, model might have difficulty in convergence
since optimizer will start taking bigger steps and might never find a minimum. One
of the fundamental issues that comes with decreasing learning rate is significant
increase in training time. In our results, we do not change learning rate much, rather
we tune batch size as mentioned in this research paper by Smith et al. (2017). The
idea is instead of decreasing the learning rate, one could increase the batch size and
get similar model performance with far less training time. While adhering to this
principle, different batch sizes were experimented with. Using single datafile, 96 and
256 were found out to be good batch sizes for LSTM/GRU and MLP; whereas with
combined dataset, 8192 and 20000 were the optimal batch size for LSTM/GRU and
MLP (according to our results).

Model overfitting is one of the main causes of poor model performance and must
be accounted for while training machine learning algorithms. There can be several
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causes of model overfitting; using increased feature space and complex models for
training are one of the known causes, described below briefly:

1. In order to avoid overfitting by features, several features were dropped to
evaluate the impact of each feature on the model performance. Section 4.3
described in detail the process and experiments that were undertaken to analyze
the features importance. Some features came out to be more important as
compared to others and helped the model to learn better. But it is difficult to
draw a line between weak and strong features; some features might be more
helpful for decision trees while others for neural networks. For our particular
problem, since no feature had a negative impact on model performance and the
focus is more towards a better model performance instead of reducing training
time, it was decided to retain all the features.

2. While training a machine learning model, it is always preferable to get good
model accuracy using a simpler model since a complex model will learn the
training data too well and will not be able to generalize its learning to the
unseen dataset. Therefore, it is always preferable to use a simple model; and if
simple model does not work then one needs to find a balance between a slightly
complex model that barely gets the job done and a complicated model that
might lead to overfitting. While tuning number of neurons/units/trees, layers or
depth in MLP, LSTM/GRU and XGBoost, this principle was strictly adhered
to. Moreover, early stopping and dropouts were used in neural networks to
make sure that model does not overfit. In XGBoost, min_child_weight and
gamma parameters were used for regularization. Results in chapter 4 show in
detail that these methods were extremely useful to ensure that model learning
is not biased towards training data and is able to generalize on test data.

Figure 42: Comparison of models’ accuracy and training time on single datafile.
XGBoost clearly outperforms neural networks both in AUC score and training time.

Figure 42 and 43 shows the comparison of best results obtained from each model
on single dataset and combined dataset respectively. One can note that using smaller
dataset (single datafile), XGBoost outperforms neural networks both in accuracy and
training time. But as the dataset size becomes ten times larger, XGBoost accuracy
drops and takes longer time to train. Contrary to this, if we analyze LSTM results,
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Figure 43: Comparison of models’ accuracy and training time on combined dataset.
XGBoost model performance provides the highest AUC score although it takes
significantly longer time to train on combined dataset.
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we see that LSTMs accuracy increases and training time decreases as the dataset gets
10x larger. This is because neural networks train better when the training samples
increase (Sun et al., 2017). Decrease in training time of LSTM on bigger dataset is
associated with increased batch size. Using a bigger batch size on smaller dataset did
not result in good accuracy score, therefore we had to use smaller batch size of 96
and it resulted in 3 to 7 hours of training time. Compared to this, on bigger dataset,
using a bigger batch size did not cause any problems and we opted for a batch size
of 20K, even 50K batch size provided good results. On the other hand, Multilayer
perceptron model performance increased slightly on bigger dataset and training time
increased too. Lastly, GRUs performance significantly decreased when it was trained
on bigger dataset, which is quite odd. Different hyperparameter configurations were
experimented, but GRU performance remained poor for bigger dataset.

From Figure 42 and 43, one can note that given the dataset at hand, XGBoost
is the best performing ML algorithm, on both single and combined dataset. The
results indicate that data packet failures in wireless networks are not random and
can be predicted with sufficient accuracy. For example, using XGBoost, 42% of
packet failures can be predicted at the expense of 0.67% false alarms. Compared
to naïve approaches used in cellular communication to avoid packet failures (like
packet duplication), our solution based on intelligent packet error prediction indicates
promising practical applications in cellular network for enhanced radio network
performance.

Although our research shows very promising results for predicting packet failures,
there is plenty of room for future work in this research problem. In this thesis, using
previous values of parameters, we only determine the packet failures in the next
transmission time interval (TTI). It would be useful to conduct further experiments
to analyze if packets in the second, third (and so on) TTIs can be predicted or not.
Moreover, in this thesis, only limited machine learning algorithms were experimented
with on the given dataset. Potential state-of-the-art machine learning algorithms that
can be used for this task include Transformer (Vaswani et al., 2017), 2D convolutional
based neural network with causal convolution (Elbayad et al., 2018), and temporal
convolutional networks (TCN) (Bai et al., 2018). Attention based sequence models
and simple convolutional architecture for sequence modeling have been reported to
perform better than traditional recurrent neural networks on machine translation
(Vaswani et al., 2017; Bai et al., 2018). One could try these relatively more advanced
algorithms and benchmark their performance against RNNs and XGBoost.
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