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Topological phases of condensed matter have attracted significant research interest
in recent decades. Some of these systems are postulated to support Majorana
zero modes, quasiparticle excitations with very attractive properties in terms of
topological quantum computing. One proposed system to realize Majorana zero
modes involves the interplay of superconductivity and ferromagnetism: when time-
reversal symmetry in a superconductor is broken by a magnetic field, the band
structure transitions to a non-trivial topological phase, which gives rise to exotic
edge states.

To this end, manganese diselenide (MnSes) islands were grown on a superconducting
niobium diselenide (NbSey) substrate by molecular beam epitaxy. Previous studies
have indicated that MnSe; is a van der Waals -layered material which retains
its magnetic properties even in the monolayer limit. Low temperature scanning
tunneling microscopy (STM) was used to verify the island growth and measure
lattice constants and island heights on the samples. Scanning tunneling spectroscopy
(STS) was used to probe the electronic structure of the grown islands.

The topography measurements revealed several distinct phases of MnSe, layers with
average lattice constants of 3.6 A, 3.8 A and 4.3 A, from which the 4.3 A phase was
the most abundant. The islands had collectively aligned atomically sharp edges and
exhibited a moiré pattern. No signs of edge states corresponding to Majorana zero
modes were observed in the spectroscopy measurements: spectroscopy performed
in an applied magnetic field showed that Abrikosov vortices were unaffected by
the islands. These results indicate that the grown MnSe, islands do not support
non-trivial topological phases and may not retain their magnetic behaviour in the
monolayer limit. In situ surface composition measurements and better control over
growth parameters would be required to investigate the island formation further.

Keywords: Scanning tunneling microscopy, tunneling spectroscopy, superconduc-
tivity, magnetism, Majorana zero mode
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Topologiset faasit ovat viime vuosikymmenten aikana herédttédneet runsaasti mie-
lenkiintoa tiiviin aineen tutkimuksessa. Tiettyjen topologisten hilojen on ennus-
tettu synnyttavian niin kutsuttuja Majorana-nollamoodeja: kvasihiukkasia, joilla
on erittain lupaavia ominaisuuksia topologisen kvanttilaskennan kannalta. N&ité
nollamoodeja on ennustettu syntyvan systeemeissa, joissa suprajohde ja ferromag-
neetti vuorovaikuttavat keskendan: kun magneettikentta rikkoo aikasymmetrian
suprajohteessa, hilan vyorakenne muuttuu ja topologisia reunatiloja odotetaan
syntyvan.

Tallaisten  systeemien  tutkimiseksi  téssd  diplomityossa  kasvatettiin
mangaanidiselenidi-saarekkeita (MnSe,;) suprajohtavalle niobiumdiselenidi-
substraatille (NbSez). Aiempien tutkimusten mukaan MnSe; muodostaa van
der Waals -voimilla sitoutuneita kerrosrakenteita ja pysyy magneettisena jopa
yksittaisena molekyylikerroksena. Matalan lampdotilan tunnelointimikroskopialla
vahvistettiin saarekkeiden suuntautunut kasvu ja selvitettiin naytteiden hilava-
kioita seké saarekkeiden korkeuksia. Lisdksi naytteiden elektronista rakennetta
tutkittiin tunnelointispektroskopialla.

Topografia-mittaukset paljastivat useita erillistd MnSe,-faaseja, joiden keskiméaa-
rdiset hilavakiot olivat 3.6 A, 3.8 A ja 4.3 A. Atomitasolla terdvireunaiset saa-
rekkeet muodostuivat suuntautuneesti suhteessa pintakerrokseen ja saarekkeilla
havaittiin moiré-kuvioita. Majorana-nollamoodeihin liittyvid reunatiloja ei havaittu
spektroskopia-mittauksissa. Lisdksi ulkoisessa magneettikentéssa tehty spektrosko-
pia paljasti, etteivat saarekkeet vaikuttaneet pinnan Abrikosov-pyorteisiin. Tulos-
ten perusteella kasvatetut MnSe,-saarekkeet eivit tue topologisia faaseja eivatké
valttaméatta pysy magneettisina yksittaisind molekyylikerroksina. Saarekkeiden
kasvun yksityiskohtaisempi tutkimus edellyttaisi pinnan kemiallisen koostumuksen
in situ-mittauksia sekd parempaa kasvatusparametrien hallintaa.

Avainsanat: Tunnelointimikroskopia, tunnelointispektroskopia, suprajohde, mag-
netismi, Majorana-nollamoodi
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1 Introduction

The introduction of novel forms of mathematics has been the driving force behind
many groundbreaking discoveries in physics. One relatively recent example is the
introduction of topological concepts in condensed matter physics. Berezinskii, Koster-
litz and Thouless applied the formalism of topology to explain a new type of phase
transition which did not involve spontaneous symmetry breaking [1, 2]. Topological
materials have received wide-spread research interest in recent decades, and their po-
tential applications range from quantum computing to spintronics and dissipationless
electronics [3, 4].

A particular type of topological excitations share characteristics with the elusive
Majorana fermion: these Majorana zero modes (MZMs) have been predicted to
obey a wider range of exchange statistics than conventional bosons and fermions.
MZMs are expected to emerge at the interstice of superconducting and ferromagnetic
systems: the competition between the mutually exclusive spin coupling types result
in the emergence of topological edge states. Access to MZMs would be a major
step towards topological quantum computing as well as enabling a host of novel
experiments on condensed matter physics. The short-range interactions between
superconductors and magnets are a recurring problem in experimental studies of
MZMs: placing a magnetic impurity into a superconducting lattice suppresses the
magnetism of the impurity, and vice versa. Recent advances in two-dimensional (2D)
materials offer a solution to this problem in the form of van der Waals (vdW) crystals,
some of which have been shown to support ferromagnetism and superconductivity
down to the monolayer limit [5]. These materials also have interesting properties in
their own right: 2D magnetic materials enable various experiments on fundamental
theories of magnetism and potential applications in spintronics.

This thesis is an experimental study on the epitaxial growth of magnetic manganese
diselenide (MnSe,) islands on a superconducting niobium diselenide (NbSey) substrate.
Molecular beam epitaxy (MBE) was used to grow samples, which were analysed with
low temperature scanning tunneling microscopy (STM). The electronic properties of
the island-surface systems were studied by scanning tunneling spectroscopy (STS).
Various phases of 2D MnSe, were identified and studied. Despite the absence of
edge states associated with MZMs, the obtained results included unexpected findings
(including a moiré pattern) and pave the way for computational studies of these
exotic materials.

The background chapter introduces the reader to the fundamentals of topology in
condensed matter, superconductivity in the presence of magnetic impurities and the
growing family of magnetic 2D vdW crystals. The experimental methods chapter
explains the physical principles and operation of STM and spectroscopy in addition
to summarizing the MBE setup. The results of topographic and spectroscopic
measurements are provided in the following chapter, highlighting the primary findings
in the various samples. Finally, a summary chapter closes the discussion and proposes
further experiments on the interplay of superconductivity and magnetism in 2D
systems.



2 Background

This section summarizes the essential theoretical and experimental background
regarding the coexistence of magnetism and superconductivity in 2D systems. The
background also provides motivation for the specific experiments performed in this
thesis. First, a short introduction to topology in condensed matter is provided from the
viewpoint of experimental physics. After this we proceed to discuss superconductivity
in the presence of magnetic impurities and how these systems relate to topological
phenomena. The section concludes with a discussion on how to test these theories
with novel 2D magnetic materials.

2.1 Topological phases in condensed matter

Topology as a branch of mathematics is the study geometrical objects and manifolds
that share some invariant properties under continuous deformations. The mathe-
matical formalisms developed in topology have also found their use in condensed
matter physics, where topological order can explain phase transitions which do not
involve spontaneous symmetry breaking [1, 2]. Although Landau’s symmetry-based
theory of phase transitions is widely applicable [6], recent research has unveiled a
host of phenomena that cannot be explained without the introduction of topological
concepts. These include the different varieties of quantum Hall effects (QHE), topo-
logical insulators, topological superconductors and various edge states. Materials
with topology-induced properties have also been proposed as potential platforms of
quantum computation, which has become a major research motivator [4].

Phases that comply with Landau’s theory of phase transitions are called topo-
logically trivial, whereas other states of matter are called topologically non-trivial.
The quasiparticles associated with the latter, such as edge states, exhibit certain
distinctive features. Firstly, topological phases may exhibit anyonic exchange statis-
tics as opposed to fermionic or bosonic ones. This means that when quasiparticles
corresponding to a topological phase exchange positions, the resulting wave function
may change by an arbitrary phase 6 (for fermions § = 7 and for bosons 6 = 0, see
figure 1). The anyon statistics are called Abelian if the real part of the wave func-
tion remains unchanged by the exchange operation. For non-Abelian statistics, the
exchange operation moves the system from one degenerate ground state to another,
changing both the complex phase and the real part of the wave function [7]. This
property could theoretically be exploited to propagate quantum information in a
topological quantum computer.
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Figure 1: Exchange operations on Abelian anyons, bosons and fermions initially in
state 1y. Wave function phase is denoted by particle colour brightness. For bosons
and fermions, applying an even number of exchange operations results in the original
wave function. For Abelian anyonic quasiparticles the wave function phase changes
by 2n6. Image reproduced from [4].
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Because topological phases emerge from the properties of the bulk band structure,
local deformations of the lattice do not destroy the topological phase. This makes
topological phases intrinsically fault tolerant, or topologically protected, against
external perturbations, a property very well suited for quantum computation platforms
[8]. In other types of quantum computation decoherence causes information losses
and fault tolerance can only be achieved through corrective algorithms [9]. Despite
their promising features, a complete universal quantum computer cannot be built
with topological components alone [3].

Various topological phases can be classified based on the localization of the
topological states: some topological phases exist only as edge states, whereas others
permeate the bulk lattice. The latter are called intrinsic topological states, some ex-
amples being the states associated with various types of QHE. In intrinsic topological
states, the quasiparticles can remain correlated over a long distance, whereas in edge
states corresponding to so called symmetry protected topological (SPT) phases the
correlation range is smaller. Examples of SP'T phases include topological insulators,
topological superconductors and topological semi-metals [3]. These materials are
of particular interest in surface science, where the boundaries of bulk crystals are
exposed for investigation. Figure 2 lists the various SPT and intrinsic topological
phases of quantum matter.
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Figure 2: A tree-chart representing the various states of quantum matter, with SPT
phases on blue and intrinsic topological phases on red. Image reproduced from [3].

2.1.1 Topological invariants: Chern number and Z, invariant

In topology, shapes and objects are classified in terms of integer constants that remain
invariant under continuous deformations. For instance, a coffee cup and a doughnut
are topologically equivalent since they share a genus value one, whereas a pair of
pants (of finite thickness) has a genus value two (in layman terms, genus equals
the number of ’handles’ on an object). In condensed matter physics, topological
invariants acquire non-zero values for topologically non-trivial phases.

Topological phases of quantum matter can be classified in terms of two topological
invariants called the Chern number and the Z, invariant. These are defined in terms
of Berry connection and Berry curvature in k-space. By considering a crystalline solid
with translational symmetry, as discussed by Weng et al. [10, 11], the Schrodinger
equation in real space basis can be written as

H(r)ne(r) = enmcthne(r), (1)
where n is the band index. Translational symmetry makes the system k-dependent

in the first Brillouin zone. By applying Bloch’s theorem
7y@zk(r) = eik.runk(r)v (2)

the Schrodinger equation can be recast in terms of the periodic Bloch wave
functions u,(r) as

A

H(r)kunk<r) = Enkunk(r)7 (3)
where the Hamiltonian
H(r) = e T H(r)e*r. (4)

In this basis, an overlap of two eigenfunctions separated by an infinitesimal
k-space element Ak can be evaluated as

(U (K)|tp (k + Ak)) = 1 4+ Ak (1, (k)| Vi [t (k)) = e~ 1AkAnlk), (5)

where



A (k) = i (un (k)| Vic [un (k)) (6)

is the Berry connection, which is gauge dependent and as such non-observable.
Berry connection can be viewed as an effective vector potential in k-space, so the
curl

also known as Berry curvature corresponds to an effective magnetic field in k-
space. Berry curvature can in turn be integrated over a closed loop C' to obtain the
Berry phase v,, a magnetic flux analogue defined as

o = %An(k)-dk: /SQn(k)dS, (8)

where S is the surface enclosed by C' = 05. By imposing periodic boundary
conditions on the Bloch states u,(k) in k-space, the 2D Brillouin zone becomes
equivalent to a torus (complete rotations through the ’hole’ and along the edge of
the torus lead to the original k-space point). In such a geometry, Chern’s theorem
dictates that the Berry phase becomes an integer multiple of 27, where the integer

1
Z = / Q,(k)dS 9
g Ry 9
is the Chern number [12]. In the case of 2D Chern insulators, where the Hall
. S . 2 .
conductivity of the material is quantized as 0., = —%-Z, the Chern number is equal

to the number of edge states in the system [10].

The bulk symmetries of a system have direct implications on the Berry curvature
and consequently on the topological invariants. In particular, inversion symmetry
(IS) and time reversal symmetry (TRS) can be expressed in terms of the following
boundary conditions:

Qu(k) = Qu(=k)  for IS

(k) = —Q,(=k) for TRS (10)

Applying both of these relations at once results in 2, (k) = 0, and thus a trivial
topology of the band structure. This highlights the fact that topological phases are
typically localized to edges of domains where either TRS or IS is broken. Examples
of these include vortex cores in superconductors [13]|, where TRS breaks due to
spin-orbit coupling, and inversion asymmetric topological insulators [14].

The necessity of a second topological invariant besides the Chern number, namely
the Z, invariant, arises by considering 2D insulators with TRS. This results in a
vanishing Chern number, but not necessarily to trivial topological properties as shown
by Kane and Mele [15]. By considering only the positive half plane of the Brillouin
zone (B™T), the topological properties of a 2D band insulator can be characterized by

o= — %w A)-dk— [ Qz(k)d2k> mod 2, (11)



where A (k) is the Berry connection and €2,(k) is the Berry curvature. Several
alternative definitions for the Z, invariant can also be formulated [16]. The edge
states corresponding to a non-zero value of Z, always appear in counter-propagating
pairs due to the TRS [10]. The number of these edge state pairs modulo 2 corresponds
to the Zs value.

An exhaustive classification of topological insulators and topological supercon-
ductors is given by the 'ten-fold way’ described by Altland and Zirnbauer [17]. They
showed that systems involving time-reversal symmetry, particle-hole symmetry and/or
chiral symmetry can be classified into ten unique symmetry classes. The symmetries
can either be present, broken or, in the case of time-reversal and particle-hole sym-
metries, an antisymmetry may exist. Each symmetry class can be applied to bulk
band structures to predict whether or not non-trivial topology emerges and what is
the relevant topological invariant [18]. Table 1 illustrates the ten-fold way in three
dimensions. The symmetry classes are denoted according to the symmetric space
classification by Elie Cartan [19].

Table 1: The ’ten-fold way’ in three dimensions [20]. 7, C and S refer to time
reversal, particle-hole and chiral symmetries, respectively, and their values corre-
spond to absence (0), presence (1) and antisymmetry (—1). The symmetry groups
corresponding to non-trivial topology in 2D are highlighted.

Symmetries Dimension
Cartan label | 7 C S|1 2 3
A 0O 0 0|0 Z O
ATIT o 0 1|Z 0 Z
Al 1 0 0|0 0 O
BDI 11 1/Z 0 0
D 0 1 0|Zy Z O
DIII -1 1 1| Zs Zo Z
AIl -1 0 0|0 Zy Zo
CII -1 -1 1 1Z 0 Zy
C 0 -1 0|0 Z O
CI 1 -1 110 0 Z

2.2 Superconductivity and magnetic impurities

Three years after H. Kamerlingh Onnes successfully liquefied helium for the first
time in 1908, he found that mercury loses its electrical resistivity below a critical
temperature [21]. Later experiments by Meissner and Ochsenfeld found that in
this state of perfect conductivity no magnetic field permeates the conductor [22].
Materials with these two properties, namely perfect electrical conductance and perfect
diamagnetism, are called superconductors. During the past hundred years, intense
research effort has been directed into explaining the emergence of the superconducting
state and realising superconductivity in increasingly complex crystal structures. The
notion of topological phases has also been successfully applied to superconducting



systems.

Superconductors are primarily classified by their critical temperatures, their
magnetic field responses and their compliance with the Bardeen-Cooper-Schrieffer
(BCS) theory. If a material becomes superconducting at a temperature above 30 K, it
is considered a high-temperature superconductor. This was thought to be impossible
within the BCS framework until Bednorz and Miiller found a perovskite material
with a critical temperature above 30 K [23]. Another critical phase transition
in superconductors occurs when it is subjected to a magnetic field. In type I
superconductors, the superconductivity vanishes instantly when a material specific
critical field strength is exceeded. In a type II superconductor, the transition occurs
in two stages: localized vortices of normal conductivity appear when the field strength
lies between two critical values [24].

2.2.1 Macroscopic theory: London, Ginzburg-Landau

The theory of superconductivity has been formulated in both macroscopic and
microscopic contexts. The first theoretical treatise of superconducting phenomena
was given by London and London [25], who discussed the Meissner effect (i.e. perfect
diamagnetism) in superconductors. The London model is based on some electrons
moving freely in a superconductor, and the rest exhibiting the Ohmic resistance of
normal conductors [21]. They formulated a characteristic length scale called London
penetration depth, which defines the extent by which a magnetic field permeates a
superconductor. The penetration depth is shown to be temperature dependent by
approximately

A0)

V11— (T/T)*

where T is the critical temperature. A further macroscopic theory was developed
by Ginzburg and Landau in 1950, which is based on Landau’s earlier work on phase
transitions due to spontaneous symmetry breaking [26]. The theory is formulated
in terms of an order parameter v, which attains non-zero values in the broken
symmetry phase (i.e. the superconducting state). The free energy of the system can
be expressed in terms of the order parameter as

AL(T) = (12)

> Bl
2410
where F}, is the free energy of the normal state, a and 8 are phenomenological
constants and A is the magnetic vector potential. The order parameter v is a complex
quantity related to the number density of superconducting electrons. By minimizing
the free energy with respect to the order parameter and the vector potential we arrive
at the Ginzburg-Landau equations [27]

1 ) 2e A
Fur :Fn+ayw|2+§yw\4+2‘<—th—)w (13)
m C




b+ B + 5 (~ihY — 2eA) 3 =0 (14a)
V X B = paj = jio e Refy* (~ihV — 20A) v} (14b)

where * denotes complex conjugation. The spatial variation of the order parameter
introduces a new characteristic length scale called coherence length. For instance, in
a one-dimensional system without magnetic field equation 14a becomes
h2 a?w

— oo o+ By =0, (15)

In equilibrium the order parameter magnitude is defined by the coefficients «a

and [ as

ol = A, = ‘;‘ > 0. (16)

By assuming small perturbations from the equilibrium, the order parameter in
equation 15 can be expressed as 1) = ¥/'Agy, [26]. The recast equation becomes

h2 82¢/

o On2 +ay)’ + 5AéLW/‘2¢’ =0
h2 82¢/ 9 (17)

—5 oy Hlal (W =1) ¢ =0.

Thus we find the coherence length
h2

2= — 18
& = o (15)

which defines the spatial variation of the order parameter close to equilibrium.
Higher dimensional superconductors may exhibit different coherence lengths in dif-
ferent lattice directions. Analysing the sign of the coefficient o on both sides of the
superconducting phase boundary and deriving the penetration depth in terms of the
GL theory leads to the same temperature dependence for € and Ay [26]. Thus the

ratio
A1) mc\/7
T T 2en\ 2n (19)

called the Ginzburg-Landau parameter, is a dimensionless temperature invariant
constant.

2.2.2 Proximity effect

As discussed by London and London, there is a finite length scale over which magnetic
fields can penetrate a superconductor, resulting in regions of normal conductivity.
The inverse of this phenomenon also exists: the Cooper pairs of a superconductor



can permeate into normal conductors, leading to local superconductivity in materials
which do not support it intrinsically. This proximity effect was discovered in 1937 by
Holm and Meissner, who studied superconductor-normal conductor-superconductor
(SNS) junctions and found that the junction carries supercurrent when the normally
conducting layer is sufficiently thin [28]. The order parameter and thus the energy
gap of the proximity-induced superconductor decays exponentially with distance
from the superconductor, but for some materials, like copper, the Cooper pairs can
permeate thousands of Angstréms into the normal conductor [29]. The proximity

range of the Cooper pairs also depends on the Fermi velocity of the material: for
insulators the range is smaller than for normal conductors [26].

A proximity-induced gap can also exist in ferromagnetic materials [30], where the
mutually exclusive spin coupling of Cooper pairs and ferromagnetic lattices causes
oscillations in the order parameter. A schematic of the order parameter decay in
normal metals and ferromagnets in presented in figure 3. Recent research has also
suggested that Cooper pairs in proximity-induced superconductors can exhibit spin

triplet pairing (S = 1) as opposed to the conventional singlet pairing (S = 0) [31, 32].

v — — —Normal metal
Ferromagnet.
Y
\
[
II:"
A
|I "‘-
|II l\.
S o N/FM
I|I Ay '
|I ‘\
\ hY
|II “\
|I S,
\ “n,
\ S— X
Il'l _L__h"‘-::_-— —_
'.\ /

Figure 3: Schematic of the GL order parameter decay in a normal metal and a
ferromagnet [33]. 1y denotes the order parameter value close to the superconducting

junction and distance x is perpendicular to the junction. The spin-coupling of the
ferromagnet and Cooper pairs causes oscillations in the order parameter.
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2.2.3 Microscopic theory: BCS, Bogoliubov-de Gennes

After decades of work on the macroscopic description of superconductivity, a successful
microscopic theory was finally developed by Bardeen, Cooper and Schrieffer in 1957
[34]. For this contribution the authors were awarded the Nobel Prize in Physics in
1972. BCS theory presents the emergence of a superconducting state as the result
of an attractive potential between individual electrons. The attractive interaction
between these Cooper pairs of electrons is mediated by virtual phonons, which
dominate the electron-electron interactions close to the Fermi level below the critical
temperature. Once an attractive interaction between electrons is established, however
small it may be, the electrons will keep forming Cooper pairs until pair formation
becomes energetically unfavorable. Thus the electronic states close to the Fermi
level disappear within a certain energy gap inside which Cooper pairing is favorable.
The Cooper pairs condense like bosons to form a single macroscopically delocalized
quantum state spanning across the superconductor.

A key result of the BCS theory is the following expression for a superconducting
density of states (DOS)

o) = { 7w 14 20)
0, |E| <A,

where A is a material specific superconducting gap corresponding to the energy
required to break a Cooper pair. The real part of the Ginzburg-Landau order
parameter can be shown to correspond to the BCS energy gap, and expressions for
the phenomenological parameters a and 3 can also be derived. Superconductors
which exhibit an LDOS similar to equation 20 are called conventional, the others
being unconventional. Figure 4 shows a schematic of the BCS LDOS.
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Figure 4: A plot of the BCS LDOS as given in equation 20. The abrupt change in
LDOS close to the gap energy can be exploited in tunneling experiments requiring
high energy resolution.

The BCS theory can be extended to account for non-uniform superconductors
with impurities, boundary effects etc. as shown by Bogoliubov and de Gennes [35, 36].
A particularly important prediction of the theory is Bogoliubov quasiparticles, which
introduce electronic states with a finite lifetime inside the superconducting gap.
Various types of impurities can be accounted for by introducing the relevant terms
into the Bogoliubov-de Gennes Hamiltonian. In a general form the Bogoliubov-de
Gennes equations are given by

o (VA )+ U0) = () + A o(r) = B (r)
(VA k) [U0) — () + AGe) ) = B ()

2m

(21)

where U(r) is an external scalar potential, p is the chemical potential, A(r) is
the energy gap and uy(r) and vk (r) are creation operators for electron- and hole-like
quasiparticle states respectively. The operators uy(r) and vy (r) are symmetrically
normalized as

[use(1)|* + Jose(r)|* = 1. (22)

2.2.4 Magnetic impurities on a superconducting surface

Superconductors in the presence of magnetic impurities are of particular interest in
the context of topological phases. As discussed in the previous section, magnetism
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and superconductivity do not mix well: an increase in magnetic field brings the
superconductor closer to its normal state, or destroys the superconductivity entirely.
Magnetic impurities also cause a more subtle change in the band structure of the
superconductor by locally breaking the TRS. This leads to the possibility of non-
trivial topological phases in magnetic impurity lattices [37].

In the Bogoliubov-de Gennes formalism a magnetic impurity is expected to induce
quasiparticle states inside the superconducting gap. The properties of these states
were studied in detail by Yu, Shiba and Rusinov (YSR) [38, 39, 40] and recently
their presence has been experimentally verified in various systems [41, 42]. The
energies and lifetimes of the YSR states are strongly dependent on the exchange
coupling between the impurity and the superconducting substrate, which depends on
the specific adsorption configuration of the impurity [41]. Figure 5 shows tunneling
spectra of individual and coupled magnetic cobalt phthalocyanine (CoPC) molecules
measured with a superconducting tip.

didV (a.u.)

—

| . l [ T T [ T l I .|
-4 -2 0 2 4
Sample bias (mV)

Figure 5: Topography scan image of coupled CoPC molecules and tunneling spectra
of individual and coupled CoPc molecules. The spectra are measured on top of the
magnetic cobalt atom in the center of the molecule with a superconducting STM tip.
Image reproduced from [41].

It is also possible to couple several neighboring magnetic impurities to form
so-called YSR bands. These hybridized YSR states have been shown to exhibit
topological behaviour when arranged into specific lattice configurations [43, 44].
Various 2D geometries have been predicted to host topological phases [37], whereas
certain 1D systems have even been realized experimentally [45].

2.2.5 Majorana zero mode (MZM)

In 1937 Ettore Majorana proposed a purely real solution to the Dirac equation, which
results in a spin-1/2 fermionic particle that is identical to its own antiparticle [46].
These Majorana fermions have been researched vigorously in high-energy physics
and astronomy, but so far Majorana fermions have not been definitively found in
nature. Neutrinos have been suggested as examples of Majorana fermions [47], but
definitive proof is still lacking [48].
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Majorana fermions have also received wide interest in condensed matter physics.
Theoretical studies of certain topologically non-trivial systems revealed creation and
destruction operators that could produce Majorana-like quasiparticles. In particular,
Moore and Read demonstrated a model Hamiltonian for so-called half-quantum
vortices which involved Majorana quasiparticle wave functions and hosted non-
Abelian exchange statistics [49]. Later the treatise was extended to generalized BCS
theory by Ivanov, who showed that Majorana quasiparticles could emerge in vortices of
a p-wave superconductor [13]. Kitaev then showed that such Majorana quasiparticles
would localize to the ends of a 1D conductor with a single spin direction in proximity
of a p-wave superconductor [50]. In Kitaev’s theory, the Majorana quasiparticles
emerge as zero-energy modes, which is why the quasiparticles are typically referred to
as Majorana zero modes (MZMs). This also highlights the distinction to elementary
Majorana fermions, which obey standard fermionic exchange statistics instead of
non-Abelian ones.

A significant leap closer to experimentally available systems with MZMs was
provided by Fu and Kane. They discussed a strong topological insulator with a
proximity-induced gap from an s-wave superconductor, and showed that MZMs
would be supported by vortices in such a system [51]. Removing the necessity of
p-wave superconductivity greatly increases the number of potential materials capable
of supporting topologically non-trivial states. Finally, Choy et. al proposed that a
chain of magnetic nanoparticles on an s-wave superconductor would be sufficient to
produce MZMs at the ends of the chain [52]. This result has been generalized for 2D
magnetic lattices as well [53, 54].

It should be noted that observing edge states in magnetic islands on a supercon-
ducting surface is not necessarily evidence of MZMs [55]. There is no single "smoking
gun" -experiment to distinguish MZMs from other quasiparticle excitations, but some
expected properties of MZMs can be tested experimentally. For instance, the edge
states corresponding to MZMs should exist at zero bias within the superconducting
gap [4]. Secondly, the zero-bias conductance resulting from a MZM should be quan-
tized in multiples of e?/k [56]. Direct evidence for a MZM could be obtained with a
direct measurement of the edge state exchange statistics, but a measurement setup
required for this remains an unresolved issue.

A particularly hard experimental problem lies in the coupling between magnets
and superconductors: if either one is strongly coupled to the other via covalent
bonds, for instance, one of the opposing spin coupling types becomes dominant.
This destroys either the magnetic or superconducting order, and thus no MZMs are
observed. This limitation can be avoided by minimizing the coupling between the
magnetic and superconducting layers of a system: the long-range orders of both can
be maintained if other types of interactions are kept at a minimum. This can be
achieved by using layered materials in which monolayers are bound to each other
by weak vdW forces. These vdW -crystals include materials like graphene, and
recently superconducting and ferromagnetic monolayer materials have been identified.
These provide an ideal platform in the search of MZMs without unnecessary forms
of coupling between the constituents.
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2.3 Magnetism in 2D van der Waals crystals

After the peculiar electrical properties of graphene were discovered [57], a surge
of research activity on 2D materials has emerged. Planar metals, semiconductors
and superconductors were discovered in quick succession, and the effects of various
perturbations such as strain and optical response have been investigated [58]. Among
the latest developments is the discovery of materials that retain magnetic properties
down to the monolayer limit, which we will discuss in this chapter. A brief introduction
to models of 2D magnetism is followed by discussions of notable example materials:
chromium triiodide (Crl3) and magnetic transition metal dichalcogenides (TMDs).

2.3.1 Magnetic phenomena in 2D

Magnetism in two dimensions has been investigated theoretically for over a century,
but only recent advances in surface science have made free-standing magnetic surfaces
experimentally available in the monolayer limit. These systems make for ideal testing
environments for old and new theoretical predictions on magnetism in 2D systems.
Different forms of 2D magnetism with various coupling mechanisms and related
phenomena are presented in figure 6.
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Figure 6: 2D magnetic vdW materials exhibit a rich tapestry of physics. The Ising,
XY and Heisenberg models of 2D magnetism are highlighted by red, blue and green
arrows, respectively. The magnetic ground states can be perturbed by strain, gating,
proximity effects etc. Optical response, K-valley coupling and edge states can also
provide insight into 2D magnetism. Image reproduced from [58].
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The starting point for modelling 2D magnetism is determining the spin dimen-
sionality of a particular system, or in other words the presence of easy and hard
axes with respect to the lattice. In a system with a single preferred magnetisation
axis, the possible spin values at a particular atom are binary, and thus the total
magnetisation of the system is one-dimensional. Systems like these can be analyzed
in the framework of the Ising model, which was analytically solved in 2D by Onsager
[59]. The transition from an ordered to a disordered phase occurs through a second
order phase transition at a critical temperature.

The spin vectors can also be confined to a particular plane, in which case the spin
vectors are 2D at each lattice point. These systems are described by the XY-model,
in which the spins are represented in terms of lattice vectors. The 2D XY-model
does not exhibit a first- or second order phase transition at any finite temperatures
[60]. However, correlations between spins decay differently over distance in the
low- and high-temperature limits [1, 2|. This transition, discussed by Berezinskii,
Kosterlitz and Thouless, is the first example of a phase transition described in terms
of topological order.

A further generalization of the XY model is the Heisenberg model, in which
the spins have components in three dimensions. A 2D lattice with freely orienting
spins does not transition into a long range ordered phase at any temperature [61]. If
an easy axis or an easy plane exists in a 2D lattice, a generalized Heisenberg spin
Hamiltonian is given by

i— —;Z (JSi- 85+ AS:87) = S A(S:), (23)
ij ¢

where J is the exchange coupling between neighbouring spins, A is the inter-site
magnetic anisotropy, A is the on-site magnetic anisotropy and z denotes the spin
component in the easy axis direction. The Ising- and XY models can be derived
from this Hamiltonian by setting A to +oo, respectively [61]. Tuning the coupling
parameters results in a wide range of magnetic phenomena.
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Figure 7: Magnetic susceptibilities (x) and magnetisations (M) as functions of
temperature for 2D lattices with Ising, XY and Heisenberg spin orientations. Image
reproduced from [61].

Since the dimensionalities of both the lattice and spin orientations play a critical
role in magnetic phenomena, the coupling between individual molecular layers must
be minimized in order to experiment on 2D magnetism. The weakest form of
interlayer bonding is mediated by vdW forces, which emerge due to temporary charge
fluctuations between atoms and molecules. Crystals bound by vdW forces are easily
exfoliated and cleaved due to the weak interlayer coupling, which makes them suitable
for analysis with STM and other methods.

2.3.2 Ferromagnetic Crlg

We shall now discuss the properties of some well-known vdW crystals with magnetic
order. Chromium triiodide (Crls) is a notable example, being the first material
in which 2D magnetism was observed in the monolayer limit [62]. The number of
layers was shown to have a significant influence on the magnetic behaviour of Crlj:
a bilayer exhibits antiferromagnetic order as opposed to mono- and trilayers, which
are ferromagnetic (see figure 8 for details). These changes in magnetic ordering are
of particular interest in spintronics applications, where controlling the spin degree of
freedom through electric fields has been a long-standing goal [63].
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Figure 8: The magneto-optic Kerr effect (MOKE) in Crl3 layers of varying thicknesses
(1 to 3 monolayers in a, b and c, respectively). The Kerr angle 6 refers to the phase
difference between an incident and reflected laser beam, which depends on the
magnetic order of the sample surface. The anisotropy associated with ferromagnetic
order vanishes in the bilayer system. Image reproduced from [62].

In room temperature Crls is a paramagnetic semiconductor [64]. The transition
to a ferromagnetic (or antiferromagnetic) phase occurs at the Curie temperature 61
K for bulk and 45 K for monolayer samples. The layer structure also undergoes a
transition from monoclinic to rhombohedral at a temperature range extending from
200 K to 150 K [64]. Figure 9 shows the rhombohedral structure and stacking of
Crls.
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Figure 9: In-plane and out-of-plane structure of Crlz in low temperatures. In a
rhombohedral structure the chromium atoms of consecutive layers overlap, which
influences the average magnetization of the system. Image reproduced from [65].

Monolayer samples of Crlz have been produced by exfoliation from bulk crystals,
since elemental iodine poses significant challenges for MBE and chemical vapor
deposition (CVD) techniques. Bulk Crl; crystals can be synthesized from chromium
powder and anhydrous iodine beads in sealed silica tubes where the center is kept at
650°C and the ends at 500 to 550°C [64]. Clean single crystals of Crlz degrade when
subjected to moisture and light [65].

2.3.3 Magnetic transition metal dichalcogenides (TMDs)

TMDs are a class of materials with the structural formula MXs,, where M is a transition
metal (V, Mn etc.) and X is a chalcogen (Se, Te etc.). TMDs form hexagonal lattices
in monolayers bound to each other by vdW forces and have been shown to host a
variety of long-range ordered phases. These include the superconducting niobium
diselenide (NbSe;) and magnetic materials such as vanadium diselenide (VSey) and
manganese diselenide (MnSe,).

TMDs typically exhibit one of three stable structural phases called trigonal
prismatic (2H) and octahedral (1T, 1T”) coordinations, see figure 10 for ball-and-
stick visualizations. In the 2H phase the transition metal and chalcogen atoms are
stacked in an ABA sequence with chalcogen atoms overlapping each other in the
vertical direction, whereas in 1T and 1T’ none of the atomic layers overlap.
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Figure 10: Ball-and-stick models of the structural phases of TMDs. Image reproduced
from [66].

A key feature of TMDs is strong spin-orbit coupling: the individual spins of the
lattice electrons interact strongly with their combined orbital angular momentum,
resulting in otherwise degenerate states splitting in energy. This coupling can be
exploited to create spintronic devices, where information can be encoded into the
spin degree of freedom with electric fields only [63]. Spin-orbit coupling is influenced
by IS breaking: bulk-induced asymmetry is called Dresselhaus coupling whereas
interface- or surface-induced asymmetry is referred to as Rashba coupling. Strong
spin-orbit coupling can also open finite band gaps, which can generate topological
insulators of the Zs type [66].

Several TMDs that retain magnetic properties in the monolayer limit have been
identified through simulations [67] and experiments [5]. These include vanadium
diselenide (VSez) and manganese diselenide (MnSes), both of which have a 1T-
structure. Monolayers of VSe, and MnSe; can be mechanically exfoliated from bulk
crystals or grown directly by MBE. Recent publications have caused dispute on
whether pure VSe; monolayers remain intrinsically ferromagnetic: experiments by
Bonilla et. al suggests that the monolayers remain ferromagnetic even in room
temperature [5], whereas a computational study by Kim et al resulted in a Curie
temperature of ~ 250 K [68]. Further ab initio calculations by Fumega and Pardo
show that the ferromagnetic ground state is destabilized by the influence of charge
density waves (CDW) [69], which has been confirmed experimentally by Coelho et al
[70].

O’Hara et al found evidence of room-temperature magnetism in MBE-grown
MnSe, thin films, and attributed the magnetic properties of the system to MnSe,
monolayers [71]. The surface layers of their samples, however, consisted of bulk
a-MnSe with a lattice constant of 3.9 A, so their claim was not substantiated by
direct STM measurements. Density functional theory (DFT) calculations by Kan et
al estimate the lattice constant of 1T-MnSe, to be 3.6 A [72], whereas a preceding
DFT calculation by Ataca et al results in a lateral lattice constant of 3.27 A [73].
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Bulk MnSe; also exhibits a 3D cubic structure with a lattice constant of 6.4 A [67].
Growth attempts of MnSe, could result in various phases of manganese selenide
(MnSe), with a stable phase predicted to have a lattice constant of 4.2 A [74] and
unstable phases with lattice constants 3.6 A and 3.85 A [75, 76].

Since several phases of the grown compounds may coexist in the samples, con-
ventional surface analysis techniques may not have sufficient spatial resolution to
distinguish the electronic and magnetic properties of individual islands. An alternative
to exhaustive growth parameter optimisation lies in atomic resolution measurement
techniques, which will be discussed in the next section.
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3 Experimental Methods

In this section we provide introductions to the essential measurement techniques
and specific setups applied in the experiments. The quantum mechanical basis and
practical operation of the STM is described, followed by a discussion on STS. The
chapter concludes with a description of the MBE setup used in the experiments.

3.1 Scanning tunneling microscopy (STM)

Developed by Binnig and Rohrer in 1981 [77], the scanning tunneling microscope has
enabled a host of experiments and advances in surface science. The device is operated
by placing an atomically sharp tip close to a sample surface and measuring tunneling
current at a given bias voltage and tip-sample distance. As opposed to the preceding
surface measurement devices used to extract average quantities, STM allows for
local measurements on the atomic scale. In addition to topographic imaging and
spectroscopy measurements, STM setups are routinely used for atomic manipulation
to form artificial nanostructures.

3.1.1 Principles of operation

To explain the electric current between an STM tip and a sample surface separated by
a vacuum gap (in the absence of spark discharges), a classical model will not suffice:
at small voltages the total energy of an electron in a solid is much smaller than the
energy required to cross the vacuum gap. One must turn to quantum mechanics and
the notion of non-local wave-functions to understand the behaviour of the system.
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Figure 11: A tunneling junction at zero bias voltage (a) and a small applied bias
voltage (b). The wave function in figure a) corresponds to an electron initially in
area I (the tip). Image reproduced from [78].

Consider a one-dimensional system of two potential wells separated by an energy
barrier of height ¢ and spatial width W as in figure 11. The Hamiltonian for a single
electron in the system is given by

A h? o2
H=T+V((z)=———+V 24
FV() =~ +V(2), (24)
where

(25)

0<z<W
V(Z) — Qb, S 2>
0 elsewhere.

Under these conditions the time-independent solution for the Schrédinger equation
Hy(z) = Ev(z) becomes a sinusoidal function on both sides of the potential barrier
for £ > ¢. At lower energies one also finds a solution within the barrier

B(z) = v(0)e ™, (26)

where the decay coefficient

K= 4+— (27)
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for a nearly constant ¢(z). Thus the probability of observing an electron at a
distance z in the barrier, given by Wj(z)\Q, is proportional to e~2#?, which assumes
non-zero values even for large barrier energies and distances in the z-direction.

A symmetric solution for inverted values of z also exists, which makes tunneling
bidirectional. This symmetry can be broken by introducing a potential difference V'
across the barrier. Thus the total tunneling current observed will be proportional to
the transmission coefficient

WEE _ e _ [y, V(6= eV)
= 15oE = - p( 2 5 ) (28)

In the context of STM, the potential barrier height ¢ corresponds to the work
function of the surface material, i.e. the energy required to move an electron from
Fermi energy to vacuum. At small bias voltages the transmission coefficient reduces
to

2
T =~ exp (—22 m¢> .

h

With typical metals the work function is of the order 5 eV, which leads to a
r of ~ 10 nm~'. Thus an increase of 1 A in tunneling distance z decreases the
transmission coefficient, and consequently the tunneling current, by an order of
magnitude. This exponential dependence on tunneling barrier width results in the
extreme current sensitivity of an STM tip, allowing for topography measurements at
atomic resolution. Figure 12 shows a simplified schematic of an STM measurement
setup.

(29)
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Figure 12: A simplified schematic of an STM setup. The tunneling current typically
ranges from 10 pA to ~ 1 — 2 nA, so high-quality electronics are needed to keep the
noise levels sufficiently low. Image reproduced from [79].

The primary adjustable variables in an STM measurement are tip position and
bias voltage between the tip and the sample. A specific tunneling current can be
obtained by adjusting the tip height at a certain bias voltage. By controlling the
tip height in a feedback loop, a specified tunneling current can be maintained while
keeping the bias voltage constant. By scanning the surface with the tip while using
the height control feedback one obtains a constant current map, where the height
signal corresponds to differences in the local density of electron states (LDOS) close
to the Fermi level. With sufficiently high current setpoints (~ 1 nA) and low bias
voltages (~ 100 mV) an atomic resolution height contour emerges. This operation
mode is referred to as constant current mode.

To probe the LDOS at a certain bias and height, one can also measure the current
signal directly without applying a height control feedback. This operation mode
is called constant height mode and is used to probe the local electronic structure
of a sample surface at specific energies. Constant height maps can be used to
investigate the molecular orbitals of a sample molecule or surface, since different
orbitals contribute to the tunneling current at different energies.
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3.2 Scanning tunneling spectroscopy (STS)

The tunneling current over a junction depends on the availability and occupation
probabilities of different electronic states. Thus measuring tunneling current through
an STM tip at varying bias voltages provides information about the local electronic
structure of a sample. This method, referred to as scanning tunneling spectroscopy
(STS), has been utilized in various surface-adsorbate systems, such as magnetic
molecules on superconducting surfaces [41]. STS can also be used to characterize
the structure of an STM tip apex, which is a variable of paramount importance for
performing reproducible measurements.

STS is performed by fixing the STM tip at a specific height above a surface or
adsorbate of interest. Instead of determining an absolute height between the tip
apex and the feature, the height can be adjusted by employing a feedback loop to set
the height according to a specific tunneling current setpoint at a chosen bias voltage.
When the tip position is fixed, the tunneling current is measured as a function of bias
voltage over a specified range. The process can be repeated at any number of points
to see changes in tunneling conductivity over a specified line segment or surface.

A variable of particular interest in STS measurements is the differential conduc-
tance (dI/dV) of a sample, since this can be directly related to the LDOS as shown in
the following subsection. A direct numerical differentiation of the tunneling current
typically leads to low signal-to-noise ratios, so in practice the dI/dV is measured
directly using lock-in amplifiers and a sinusoidal voltage modulation. When the
bias voltage is modulated sinusoidally with constant amplitude and frequency, the
corresponding tunneling current amplitude at the modulation frequency is directly
proportional to the dI/dV [80] (see figure 13 for a visualisation of this principle). A
lock-in amplifier removes all other frequency components from the current signal,
resulting in decreased noise contribution to the dI /dV-spectra. The energy resolution
of a spectroscopy measurement is determined by the voltage modulation amplitude,
the noise level at the chosen modulation frequency and various experimental factors
such as electron temperature and tip DOS.
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Figure 13: When the bias voltage V7 is sinusoidally modulated, the resulting tunneling

current amplitude I is proportional to %‘v o The voltage resolution of the dI /dV
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is limited by the voltage modulation amplitude. Image reproduced from [80].

3.2.1 Relation between dI/dV and LDOS

The density of states of a material is defined as the number of available states per
unit volume within a narrow energy window E + dF. At atomic length scales the
density of electron states has a spatial dependence on the atom positions, which is
why STM literature typically makes the distinction between a local density of states
on a surface (LDOS) and a bulk density of states (DOS). The LDOS is defined as

p(I‘, E) = Z |¢V(r)|25 (E - EV) ) (30)

where §(F) is the Dirac delta. The tunneling current from an STM tip to sample
depends on the tip DOS p;(E), the sample LDOS ps(F), the occupation probabilities
of the states (given by the Fermi-Dirac distribution) and finally the wave function
overlap between the tip and the sample. Figure 14 illustrates the LDOSes and
Fermi-Dirac distributions in a metallic tunneling junction. By applying the tunneling
Hamiltonian formalism developed by Bardeen [81], the tunneling current from tip to
sample becomes

4rre [

s === | p(E—eV)ps(E)f(E —eV) (1= f(B)) IM(E —eV, E)*dE, (31)

where V is the applied bias voltage, ¥ = 0 corresponds to the Fermi energy of
the sample and

(32)
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is the Fermi-Dirac distribution. The tunneling matrix element term describing
the overlap of wave functions at specific energies can be written in one dimension as

IM(E — eV, E)|? = exp (—22\/7;6 () + Py — eV + 2E)> : (33)

where z is the tip height and ®; and ®, are the work functions of the tip and the
sample, respectively. Another approximate expression of M was derived by Tersoff
and Hamann by assuming a constant tip DOS and a point-like tip apex [82].
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Figure 14: A metallic tunnel junction at 4 K. The LDOS of metals can be assumed
constant close to the Fermi level. The vacancies generated by thermal excitations

and bias voltage are highlighted with green, whereas occupied electron states are
highlighted with red.

To derive the total observed tunneling current, the tunneling events from sample
to tip must also be accounted for due to the thermal broadening of the Fermi-Dirac
distributions (even when the sample is at lower bias, there are bound to be some
electrons at sufficiently high energy states to tunnel into the tip). The total tunneling
current thus becomes

=TT =50 [~ p(B=eV)pu(B) ((E ~ V) ~ f(B))|M(E~V, E)PdE.

(34)

A series of approximations can be applied to equation 34 to interpret the relation

between dI/dV spectra and the sample LDOS. Firstly, the tunneling matrix element

can be considered constant in the low bias limit (eV << ®;, + ®,). With this
assumption the bias derivative of equation 34 becomes
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o0 o [ B (= (B = V(B - V)

— (B = eV)J(E —eV) (35)
+ o (B —eV)f(E))dE,

where p}, = % and
, Of(E) 1 2( E ) T—0
k) = = - h? (— ) — —4(E).
FE) =5y kT \kpT oE) (36)

By assuming a constant tip DOS, the low temperature limit of equation 35
becomes

O oo [ puB)S(E — V)IE = pipu(E — V), (37)

To summarize, dI/dV is proportional to the sample LDOS at low temperatures
and small bias voltages when the tip DOS is constant. The final assumption is
typically the hardest to confirm experimentally since the atomic configuration of
the STM tip apex is prone to change due to voltage changes, interactions with the
sample surface etc.

It should be noted that an optimal tip DOS for spectroscopy is not necessarily
optimal for topography measurements: a Dirac delta -like DOS around Fermi energy
would result in perfect energy resolution, whereas with a constant DOS the energy
resolution is always limited by the broadening of the Fermi-Dirac distribution [80].
Practical analogues of these extremes are superconducting and metallic STM tips,
respectively. Superconducting tips provide increased energy resolution due to the
sharp increase in tip DOS at the edges of the superconducting gap, although the
measured spectra must be deconvolved to obtain the surface LDOS.

3.3 Molecular beam epitaxy (MBE) setup

Molecular beam epitaxy is a synthesis process in which beams of evaporated atoms or
molecules are directed on a sample substrate, where they self-assemble to form various
structures [83]. MBE is routinely used to synthesize compounds and heterostructures
with atomic precision, although the necessity of ultra-high vacuum (UHV) conditions
makes the technique slightly less accessible than chemical vapour deposition (CVD),
for instance.

Different materials require different types of evaporators: selenium, for instance,
can be evaporated in a Knudsen-type thermal effusion cell, whereas metals with
high melting points require electron beam evaporators. The Knudsen cell evaporator
consists of a crucible which is heated by a filament to produce a flux of evaporated
atoms or molecules. The evaporated materials may form clusters of various sizes,
which can be broken down further with a cracker cell.

The electron beam evaporator is used to evaporate materials with high melting
points. Typically the evaporant is a solid rod which is bombarded by an electron
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beam generated by a high voltage filament. When the energy of the electron beam is
sufficiently high, atoms start evaporating from the rod. The electron beam generates
substantial heating power, so water cooling is typically required for stable operation.

The MBE setup used in the experiments involved a Createc OLED Knudsen cell
evaporator for selenium and a Focus EFM 3 e-beam evaporator for manganese. The
flux of evaporated selenium was monitored indirectly through the cell temperature
and preparation chamber pressure, whereas the manganese flux was monitored with
a flux monitor built into the e-beam evaporator. Previous syntheses of MnSey [71]
have not shown significant sensitivity to the selenium flux, and thus more accurate
flux measurements were not deemed necessary.

The substrate temperature is a critical variable dictating the possible reactions
routes and reaction thresholds on the surface. The substrate was heated with direct
current heating through the sample holder and also by electron beam heating. The
heating power of the latter method is very sensitive to the acceleration bias of
the electron beam, which was used to fine-tune and stabilize the temperature. A
SensorTherm Metis MP25 pyrometer was used to measure the substrate temperature,
since a thermocouple connection was not available in the system.
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4 Results and discussion

In this section we present and discuss the results of topography and spectroscopy.
The measurements were performed in a Unisoku USM-1300 low temperature STM
with a gold-coated platinum-iridium tip. Gwyddion and WSXM software were used
to analyze and process the topography data [84, 85], whereas spectroscopic data was
analysed with SpectraFox [86] and Matlab.

A short description of the failed growth experiments on highly oriented pyrolytic
graphite (HOPG) is followed by topography measurements on successfully grown
MnSe, islands on a NbSe, substrate. The growth parameters of certain exemplary
samples are also presented. The topography results are followed by spectroscopic
measurements on the various samples. The topography scan images are corrected by
linear background removal unless otherwise stated.

4.1 Sample growth and characterization by STM
4.1.1 Growth on HOPG substrate

To optimize the growth parameters of MnSe, in a cost-efficient manner, the initial
growth experiments were performed on a HOPG substrate instead of the super-
conducting NbSe,. Both substrate materials are vdW-crystals with a hexagonal
lattice structure and these commonalities were expected to result in similar growth
conditions for MnSe,. This assumption was supported by previous experiments with
vanadium diselenide (VSey), where epitaxial growth was achieved in roughly the
same conditions for both substrates [87].

The initial growth parameters were chosen based on the VSe, experiments due
to the structural similarity of VSe; and MnSe,. The primary growth variables were

e Sample temperature

Deposition time
e Manganese flux

e Pressure increase due to selenium evaporation

Annealing temperature

Annealing time.

A number of depositions were made in various growth conditions and the resulting
samples were analyzed at 77 K. No MnSe, islands were found despite extensive
variations in sample temperature (20 °C to 300 °C) and manganese flux. The most
notable surface features were identified as amorphous manganese clusters: selenium
was expected to desorb quickly due to its high partial pressure. Figure 15 shows a
large area scan and an atomic resolution image after a growth attempt. Samples with
only manganese evaporated on them were mostly indistinguishable from samples
subjected to both manganese and selenium.



Figure 15: a) A large scale scan showing only mobile manganese clusters after
deposition. Bias 1 V, current 50 pA. b) Atomic resolution image of the substrate
showing a lattice constant of 2.431 A, consistent with graphite. Bias 100 mV, current
1.5 nA. Scans performed at 77 K.

Definitive reasons behind the failed synthesis of MnSe, were not identified, but
various explanations can be postulated. A heuristic used in other MBE syntheses
suggests that materials with high lattice mismatches refuse to form stable islands
epitaxially due to various strain effects [83]. The mismatch for MnSe; and HOPG is
approximately 50%, whereas for VSe, the mismatch is slightly smaller (~ 40%). The
fact that interlayer coupling between vdW-crystals should be negligible contradicts
this explanation, although it is possible that the vdW monolayers form around more
tightly bound nucleation centers. Another possibility is that substantial amounts of
manganese intercalates into the HOPG via step edges and lattice defects, hindering
island growth. Intercalation probability is temperature dependent [88], and for
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HOPG the onset temperature of significant intercalation might be lower than the
temperature required for MnSe, island formation. Further experiments on HOPG
were not deemed necessary, since HOPG was only meant to serve as a test platform
for growth on NbSe,.

4.1.2 Growth on NbSe; substrate

After the growth experiments on HOPG, the substrate was switched to the supercon-
ducting NbSe,. The bulk crystal was attached to the sample holder with a two-part
silver epoxy adhesive and cleaved in high vacuum (~ 2- 107" mbar) with Scotch tape.
The growth process was kept the same as with HOPG: the sample was heated to a
desired temperature, after which Mn and Se were codeposited on the sample. After
the deposition the sample was annealed while there was still excess selenium in the
preparation chamber. Table 2 summarizes the growth parameters of the successfully
synthesised samples: the following sections will apply the same notation to refer to
individual samples.

Table 2: Growth parameters of samples with successfully deposited MnSe,, islands,
where T is the substrate temperature, t; is the deposition time, Iy, is the Mn flux,
pq is the deposition pressure, T, is the annealing temperature and t, is the annealing
time.

Sample | T, (°C) t4 (min) Iy, (nA)  pg (mbar) T, (°C) ¢, (min)
A 240 ) ) 1.0-107% 230 )

B 240 ) 5.5 1.4-107% 240 12

C 215 10 10 1.0-107% 225 10

D 215 ) 10 3.0-107% 220 21

E 215 ) ) 2.0-107% 215 16

The initial growth parameters used on HOPG were kept constant for the first
growth attempt on NbSes, which immediately produced islands with diameters over
~ 20 nm as shown in figure 16. Large scale and atomic resolution STM images were
taken in 77 K. The measured lattice constants for the substrate and the islands were
3.3 A and 4.25 A respectively, corresponding to 2H-NbSe, and bulk MnSe [74].



Figure 16: a) A large scale scan of sample A showing large islands with aligned
edges. Bias 1.8 V, current 10 pA. b) Atomic resolution image on the island with a
lattice constant of 4.25 A, consistent with bulk MnSe. Bias 1.8 V, current 1 nA. c)
Atomic resolution image of the substrate with a lattice constant matching NbSe,
(~ 3.3 A). Bias 157.5 mV, current 1 nA. Scans performed at 77 K.

After the initial growth attempt the microscope was cooled down to 4 K to see
whether the NbSe,; would retain its superconductivity in the presence of the islands.
For this purpose, sample B was prepared with the same growth parameters as sample
A. The characteristic CDWs of NbSe; were not found in the atomic resolution images.
As shown in figure 17, the substrate exhibited significant disordered contrast changes
at atomic resolution, suggesting manganese intercalation into the substrate [89]. To
prevent this in subsequent samples, the growth temperature was lowered from 240
°C to ~ 215 °C. Figure 18 shows the large area structure and atomic resolution
images on the islands and the substrate. The islands on sample B had a lattice
constant of 3.56 A, corresponding to MnSe, or an unstable phase of MnSe [75].



Figure 17: a) Atomic resolution image of the NbSe, surface of sample B. Bias —50
mV, current 300 pA. b) A pristine NbSe, surface, bias 20 mV, current 1 nA. The
CDW is absent in image a), suggesting Mn intercalation into the NbSey layers. Both
scans performed at 4 K temperature.



Figure 18: a) Large area scan of sample B with multiple layers of MnSe,. Bias 1
V, current 10 pA. b) Atomic resolution scan of the top layer, lattice constant 3.6
A. Bias 100 mV, current 1 nA. c) Atomic resolution on the bottom layer, lattice
constant 3.4 A. Bias —50 mV, current 1 nA. Scans performed at 4 K.

After adjustments to the experimental setup and a few iterations of depositions
with different growth parameters, samples with atomically sharp island edges were
obtained. Most of the sharp edges were similarly aligned with respect to the substrate,
but whether the edge terminations were atomically identical was not definitively
confirmed. In sample C the island coverage exceeded one monolayer and the NbSe,
surface could not be identified. Large scale and atomic resolution images of this
sample are presented in figure 19. The first and second layers of MnSe, islands
showed different lattice constants. The larger measured lattice constants (4.3 A
and 3.8 A) are consistent with bulk MnSe formation, whereas the 3.56 A phase is
either MnSe, or an unstable phase of MnSe. In some scans the lattice constants
were not uniform in all directions, suggesting drift issues, noise or too high scanning
speeds. The 3.8 A phase, corresponding to a—MnSe [71], could not be reproduced in
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subsequent samples. No significant differences in island heights were observed in the
samples, suggesting similar stacking between the atomic layers of the compounds.
Histograms of measured lattice constants and island heights are given in appendix B.

Spectroscopy on the islands showed the superconducting energy gap of NbSes due
to the proximity effect. Interestingly the gap was more prominent on the second layer
of islands, suggesting a decreased net magnetisation due to the magnetic coupling
between layers (see figure 21 for details).

Figure 19: a) Large area scan of sample C with multiple layers of MnSe, and different
lattice constants. Bias 1 V, current 20 pA. b) Bottom layer, lattice constant 3.56 A
Bias —551.2 mV, current 1 nA. c¢) First island layer, lattice constant 3.8 A. Bias
100 mV, current 1 nA. d) Second island layer, lattice constant 4.3 A. Bias 500 mV,
current 500 pA. Scans a) to c¢) performed at 4 K, whereas d) was performed at 300
mK.

Finally samples with sub-monolayer coverage and aligned islands were synthesized.
Samples D and E had large islands up to ~ 100 nm in diameter with trace amounts
of (presumably) selenium adatoms on the NbSes surface and the islands. Atomic
resolution images at 300 mK, such as the ones presented in figure 20, show a moiré
pattern which coincides with the preferred adsorption sites of the adatoms. The
relative angle between the NbSe, and MnSe lattices was estimated to be 0.797° with
a lattice mismatch of 29.17%. The moiré pattern had a wavelength of 18.1 A at a
2.73° angle with respect to the NbSe, lattice shown in figure 20 b. [90]. The Fourier
filtered components of figure 20 ¢) corresponding to the island lattice and the moiré
pattern are given in appendix A.



Figure 20: a) Large area scan of an island on sample E. Bias 1 V, current 10 pA. b)
Atomic resolution image of the substrate, lattice constant 3.497 A. Bias —78.74 mV,
current 500 pA. c¢) Atomic resolution image on the island showing a moiré pattern
and impurity atoms with preferred adsorption sites. Lattice constant 4.571 A, bias
—157.5 mV, current 500 pA. All scans performed at 300 mK.

4.2 STS measurements

STS was performed on successfully synthesized samples in 4 K and 300 mK tem-
peratures. Although multiple samples with atomically sharp MnSe, island edges
were synthesized, no evidence of edge states was found through spectroscopy. The
most prominent signs of magnetic order were observed in the high coverage sample
C shown in figure 19, where the superconducting gap magnitude increased on the
second layer island. This could be interpreted as the same kind of layer-dependent
magnetic order as observed in Crls, but the effect could not be replicated in the
following samples. This was also the only sample with a 3.8 A phase, suggesting that
this particular phase could support magnetism in the monolayer limit. The absence
of edge states contradicts this interpretation, although it is not clear whether this
phase formed as a vdW layer. Line spectroscopy and averaged spectra on the top
layer islands are presented in figure 21.
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Figure 21: Line spectra on the highest island layers of sample C exhibit a change in
the superconducting gap. Voltage modulation 0.2 mV in the spectra, scan bias 800
mV, current 800 pA. The line trajectory (length 50 nm) is centered on the island
edge with the point x = 0 nm on the second layer. The average spectrum on the
second layer is distorted by tip events in the negative bias range. Topography and
spectra measured at 300 mK.

Figure 22 shows dI /dV maps of islands with a lattice constant of 4.3 A on sample
D. Although individual points with higher zero bias conductance are visible on
some of the island corners, the conduction difference with respect to the background
is minimal and no continuous zero bias conductance channels were found. The
island edges are indistinguishable in dI/dV maps at bias voltages smaller than the
superconducting gap.
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Figure 22: a) Plane corrected large scale image of MnSe islands on sample D. Bias
—1V, current 5 pA. b) —3 mV conductance map of the same area as a) with visible
island edges. Modulation voltage 0.2 mV. ¢) Zero bias conductance map of the same
area. The island edges exhibit only faint conductance peaks at individual points.
Scan and spectra measured at 300 mK temperature.
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Figure 23 shows a line spectroscopy scan crossing an island layer on sample D.
The superconducting gap of NbSe, permeated onto the island layers and remained
almost constant throughout the line, indicating that no magnetic moment or other
impurities were interfering with the order parameter magnitude. The uniformity of
the spectra on top of the island also confirmed the atomic scale uniformity of the
island.

Bias, mV

Figure 23: Line spectrum along the red line in the large area scan of an island.
Modulation voltage 0.2 mV in the spectra, scan bias 1 V, current 20 pA. The zero
bias excitation at 25 nm is located almost 10 nm away from the island edge. It did
not reappear in the following spectra, which means it was probably caused by a tip
event. Scan and spectra measured on sample D at 300 mK temperature.

Further evidence against ferromagnetic order in the islands with a 4.3 A lattice
constant was obtained by performing spectroscopy in an applied magnetic field.
As shown in figure 24, the Abrikosov vortices induced by the magnetic field were
largely unperturbed in proximity of the islands, suggesting their influence on the
local magnetic field was negligible. The vortices were prone to move during scans
and spectroscopy.



Figure 24: Lock-in amplified dI/dV maps of islands on sample D. a) Bias 15 mV,
current 50 pA, applied magnetic field —1 T, temperature 2 K. b) Bias —20 mV,
current 50 pA, applied magnetic field strength 1 T, temperature 300 mK. The
Abrikosov vortices are largely unaffected by the presence of the islands, although
they are easily moved by the STM tip.

Figure 25 shows a topologically trivial zero-bias conductance peak in a vortex core
on sample D. The peak splits into two bias-symmetric quasiparticle states close to the
vortex core before disappearing outside the vortex. The spectroscopy measurements
taken in applied magnetic fields exhibited an oscillation of the superconducting gap
width over a 2 nm length scale. This length scale does not directly correspond to
the in-plane or out-of-plane coherence lengths of bulk NbSe, (7.8 nm and 2.8 nm,
respectively [91, 92]).
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Figure 25: Line spectroscopy of an Abrikosov vortex core over a MnSe island on
sample D. a) Line spectra along the red line shown in b). At 15 nm the vortex moved
away from the scan line, exposing the background spectrum on the island. Voltage
modulation 0.2 mV, colour scale normalized by current signal at 6 mV. b) Lock-in
amplified dI/dV map. Bias 100 mV, current 500 pA. c) Averaged spectra from a)
at different parts of the line. Spectra in the vortex are averaged over 10 spectra,
the background spectrum is averaged over 70 spectra. d) Spectra in ¢) normalized
with the averaged background spectrum. The measurements were performed in 1 T
applied magnetic field and 300 mK temperature.
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Despite the general lack of evidence for non-trivial topology and 2D magnetism,
wide energy range spectra were averaged for eventual comparison against simulated
band structure data. As shown in figure 26, the spectral features especially in the
negative bias regime are dominated by the surface features. A background removal
by dividing the spectra reveal bias-asymmetric features, a local minimum at around
100 mV and a shoulder-like feature at 200 mV.
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Figure 26: Large energy range spectra on top of a MnSe island and the NbSe, surface
of sample D. The island and surface spectra are normalized to the positive bias ends
of the curves. Note that the magenta-coloured curve corresponds to the right-hand
side y-axis. The spectra were measured at 300 mK.
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5 Summary and outlook

Manganese selenide/diselenide islands were grown on a niobium diselenide substrate.
One particular sample exhibited signs of several phases of MnSe and possibly MnSes,.
The islands were successfully grown with several combinations of growth parameters,
indicating that the conditions required for island formation are not insurmountably
specific. The opposite conclusion was reached for growth on HOPG: no island
formation was observed in any of the attempted growth conditions. Reasons for this
difference can be speculated by analysing the effects of strain and the reaction paths
of the MnSe, island formation. One possibility is that island formation requires
nucleation centers or precursors with a non-vdW bond to the substrate: such a strong
coupling could be influenced by the lattice constant mismatch between MnSe, and
graphite.

STM was used to analyze the atomic scale topography of the sample surfaces.
Four distinct populations of lattice constants could be identified from the samples:
a 3.4 A phase corresponding to NbSe, at various levels of intercalation, a 3.6 A
corresponding to MnSe, or intercalated NbSe,, a 3.8 A phase observed in a single
high-coverage sample and finally a 4.2 — 4.5 A phase of MnSe islands. The apparent
island heights obtained from the topography data averaged at ~ 5.5 A (see appendix
B for histograms of lattice constants and island heights). STM topography measured
at 300 mK temperature revealed moiré patterns on the islands, with impurity atoms
preferring adsorption sites coinciding with the pattern.

STS was performed on the successfully grown samples to investigate possible
traces of magnetic order and non-trivial topological behaviour. Despite reasonable
expectations, no edge states or zero bias conductance modes were observed in any of
the samples. This cannot be explained with experimental limitations alone, since
the island edges were atomically sharp and the spectroscopic energy resolution was
maximised by cooling the sample to 300 mK. Moreover, zero bias conductance
mapping showed that Abrikosov vortices induced by an applied magnetic field were
unaffected by the islands: this would indicate that the islands had negligible effect
on the local magnetic field on the surface. On the other hand, the superconducting
gap on the previously mentioned high coverage sample appeared to magnify when
measured on a secondary island layer. This tentatively indicates that the 3.8 A
phase might host magnetic phenomena, but unfortunately this phase could not be
reproduced in subsequent samples.

Various further experiments and improvements can be suggested based on the
obtained results. Firstly, the growth conditions and mechanisms could be investigated
more thoroughly with an improved MBE setup. Adding a flux monitor into the
selenium evaporator would give more accurate estimates of the relative fluxes of
manganese and selenium. A cracker cell would make sure that the selenium comes out
as individual atoms as opposed clusters of unknown sizes (a mass spectrometer could
be utilized to analyze the cluster size distribution of the selenium flux with or without
the cracker). Verifying and controlling Mn intercalation would enable investigations
of various intercalation compounds [88]. Cleaving the NbSey substrates without
breaking the UHV conditions could also result in cleaner samples. These additions
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could have substantial impacts on the reliability of MnSe, growth, and would also
enable more controlled growth studies on HOPG and other substrates of interest.
Measurement techniques like X-ray photoemission spectroscopy and magneto-optic
Kerr effect systems could also be applied to access the average chemical and magnetic
properties of the samples.

Modelling the MnSe and MnSe, islands on a NbSe, substrate with density func-
tional theory and other methods would be instrumental in interpreting the obtained
results. For instance, the island heights obtained in the topography measurements
can correspond to either free-standing vdW monolayers or a five-layer complex with
a Se-Nb-Se-Mn-Se stacking. Comparing the simulated properties of these compounds
and their different structural phases to the obtained experimental data would provide
deeper insight into the magnetic properties of the islands. Further research may
reveal new ways to realize topological behaviour in these systems.
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B Island height and lattice constant histograms
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Figure B1: Histogram of the average lattice constants measured from atomic resolu-
tion STM scans. N = 41, bin width 0.05 A.
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Figure B2: Histogram of the apparent island heights measured from large scale STM
scans. N = 23, bin width 0.25 A.
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