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A burst is a set of subsequent action potentials that are fired at a high frequency. Although bursts 
are a fundamental part of electrical activity of neuronal networks in vitro, no standardized method 
exists for burst detection. Visual identification of bursts is a widely accepted method, but it is not 
objective nor time-efficient. Therefore, various algorithms have been developed for burst detection. 
Burst detection algorithms are typically developed and verified only on one specific type of data. 
This can be problematic because the bursting activity is highly variable between different cell types. 
Consequently, the applicability of the algorithms is restricted to a narrow range of activity types. 
Especially applicability to human neuronal networks is questionable because the algorithms are 
often developed on rodent neuronal networks, which display distinct activity patterns in comparison 
to human networks. The aim of this thesis was to produce a test data set, which would well represent 
bursting and non-bursting activity observed in human pluripotent stem cell (hPSC)-derived 
neuronal networks, and to identify a single algorithm with optimal parameters that would 
successfully detect the bursts in this test data set. As rodent neuronal networks are also widely used 
in neuroscience, the algorithm was desired to function also on activity derived from rodent cultures. 
To achieve these goals, hESCs were differentiated into functional neuronal networks and cultured 
on microelectrode array (MEA). Primary rat cortical neurons were similarly cultured on MEA. 
Electrical activity of the developing networks was recorded twice a week until synchronized bursting 
emerged. At this point, pharmacological assays were performed in order to record modulated 
activity. On the MEA recordings, distinct activity patterns were identified, and short recordings 
representative of the distinct patterns were included to the test data set. The performance of four 
contemporary burst detection algorithms was evaluated on the test data set. The evaluation was 
based on visual identification of bursts from the raw MEA signal. For each algorithm, a performance 
score was determined and sensitivity and specificity were computed. The evaluation was performed 
in two runs using either 3 or 5 as minimum number of spikes required for a burst. Other algorithm 
parameters were set to default values suggested by the original authors. The optimization 
possibilities were not encouraging for other algorithms but logISI, which also provided the highest 
performance and the most balanced sensitivity and specificity values. Parameters of logISI were 
optimized for the test data set, which significantly improved its performance. As a result, logISI 
displayed good or excellent performance on the test data obtained from human and rat neuronal 
networks during spontaneous and pharmacologically modulated activity. Based on these results, 
logISI could have the potential to become a standard burst detection algorithm in the field. 
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Bursti (engl. burst) on peräkkäisten korkealla taajuudella esiintyvien toimintapotentiaalien ryhmä. 
Vaikka burstit ovat olennainen osa maljalla kasvatettujen hermosoluverkostojen sähköistä 
aktiivisuutta, ei niiden tunnistukseen ole standardimenetelmää. Visuaalinen bursti-tunnistus on 
laajasti hyväksytty menetelmä, mutta se ei ole objektiivinen eikä ajallisesti tehokas. Tästä syystä 
bursti-tunnistukseen on kehitetty useita algoritmeja. Tyypillisesti nämä algoritmit on kehitetty ja 
niiden toiminta on varmennettu vain tietyn tyyppisellä datalla. Tämä voi olla ongelmallista, koska 
bursti-aktiivisuus eri solutyyppien välillä on vaihtelevaa. Näin ollen algoritmien soveltaminen on 
rajoitettu vain pieneen osaan aktiivisuustyyppejä. Erityisesti algoritmien soveltaminen 
ihmisperäisiin hermosoluverkostoihin on kyseenalaista, sillä algoritmit on usein kehitetty 
jyrsijäperäisillä hermosoluverkostoilla, joiden aktiivisuustyypit eroavat ihmisperäisisten 
hermosoluverkostojen aktiivisuustyypeistä. Tämän työn tavoitteena oli kerätä testiaineisto, joka 
sisältäisi monikykyisistä ihmisen kantasoluista erilaistetuissa hermosoluverkostoissa havaittavat 
burstaavat ja ei-burstaavat aktiviisuustyypit, sekä löytää tällä testiaineistolla toimiva algoritmi ja 
optimaaliset arvot sen muuttujille. Koska jyrsijäperäiset hermosoluverkostot ovat neurotieteissä 
paljon käytettyjä, valitun algoritmin haluttiin toimivan myös niistä peräisin olevalla aineistolla. 
Tavoitteen saavuttamiseksi ihmisperäisistä alkion kantasoluista erilaistettiin toiminnallisia 
hermosoluverkostoja, joita viljeltiin mikroelektrodihilan (engl. microelectrode array, MEA) päällä. 
Rotan eristettyjä aivokuoren hermosoluja viljeltiin samoin MEA:lla. Hermosoluverkostojen 
sähköistä aktiivisuutta mitattiin niiden kehityksen aikana kahdesti viikossa, kunnes havaittiin 
synkronista bursti-aktiivisuutta. Synkronisen bursti-aktiivisuuden ilmaannuttua suoritettiin 
farmakologiset testit ja mitattiin näin muunneltua aktiivisuutta. Saaduista MEA-mittauksista 
etsittiin erilaisia aktiivisuustyyppejä, joista muodostettiin testiaineisto. Neljän nykyaikaisen 
algoritmin toimintaa arvioitiin tässä testiaineistossa. Arviointi tehtiin vertailemalla algoritmien 
tuloksia raakasignaalista tehdyn visuaalisen bursti-tunnistuksen tuloksiin. Jokaisen algoritmin 
suoritus pisteytettiin ja niiden herkkyys ja tarkkuus laskettiin. Suoritusta arvioitiin kahdesti siten, 
että burstin vähimmäispiikkimäärä asetettiin ensin kolmeen ja sitten viiteen. Muiden muuttujien 
arvot asetettiin algoritmien kehittäjien alkuperäisten suositusten mukaisesti. Optimointi-
mahdollisuudet olivat lupaavat vain logISI-algoritmille, joka myös suoriutui parhaiten ja jonka 
herkkyys ja tarkkuus olivat parhaassa tasapainossa. LogISI:n muuttujat optimoitiin testiaineistolle, 
mikä huomattavasti paransi sen suoritusta kyseisessä aineistossa. Optimoidulla logISI:llä saatiin 
joko hyvä tai erinomainen tulos koko testiaineistolla, joka oli saatu mittaamalla spontaania ja 
farmakologisesti muunneltua aktiivisuutta sekä ihmisperäisistä kantasoluista erilaistetuista että 
rotan aivokuoresta eristetyistä hermosolu-verkostoista. Näiden tulosten perusteella logISI on 
potentiaalinen vaihtoehto bursti-tunnistuksen standardimetodiksi. 
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α  α-factor 
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1. Introduction 

Neurons of the brain are the cells responsible for the cognitive functions, such as 

thinking and learning. These functions require interaction between the neurons and, 

as such, the neurons form complex networks. In the neuronal networks, signals are 

transferred in the form of electrical impulses, called action potentials. A burst is a set 

of subsequent action potentials that are generated at a high frequency. In vivo, bursts 

have a significant role in brain function for being information carriers in the brain 

(Obien et al. 2015). Also neuronal networks in vitro display bursting activity. In these 

networks, bursts are considered to be an indicator of mature electrical activity (Weick 

2016). Analysis of the bursting activity and changes in it has been used to study for 

example the impact of genetic variations and chemical manipulations (Cotterill et al. 

2016; Weick 2016). 

Even though burst analysis is a fundamental part when evaluating the development 

and properties of electrical activity, no standard method exists for burst detection. 

Bursts can be identified visually by a human observer, but this is not an objective nor 

efficient method. Consequently, various burst detection algorithms have been 

developed. Burst detection algorithms have typically been developed and verified on 

specific type of neuronal network or activity. Unfortunately, this can restrict their 

application on a wider range of data (Cotterill et al. 2016; Pasquale et al. 2010; 

Kapucu et al. 2012). Especially applicability to human neuronal networks, typically 

derived from human pluripotent stem cells (hPSCs), is questionable as majority of the 

burst detection methods have been developed on rat networks (Cotterill et al. 2016). 

Furthermore, many of the burst detection algorithms used on hPSC-derived networks 

are outdated because the recent progress in culture and neuronal differentiation 

methods has enhanced the development of electrical activity and bursting behavior 

of these networks. 

There is utmost need for a standard contemporary burst detection method (Cotterill 

et al. 2016). The fact that many algorithms are developed for specific type of data is 

problematic because the bursting activity is widely variable (Wagenaar 2006; Heikkilä 

et al. 2009). The lack of a standard burst detection algorithm is a huge disadvantage 

for researchers because it prevents comparison of results between laboratories. It 

can even prevent comparison of results within a single laboratory if the method used 

is not suitable for neuronal networks derived from distinct cell lines. Standardization 

would be important also for the characterization of electrophysiological properties 

of hPSC-derived neuronal cells to be utilized in applications such as disease 
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modelling, pharmacological tests and regenerative medicine. A good, constant 

quality is a basic requirement in these applications and cannot be validated without 

a standardized method. 

Recently, the performances of different burst detection algorithms have been 

evaluated on synthetic data and on biological data from spontaneously firing human 

induced pluripotent stem cell (hiPSC)-derived neuronal networks (Cotterill et al. 

2016). No ideal burst detection algorithm has been found for hPSC-derived neuronal 

networks but use of different algorithms, and even different parameters within a 

single algorithm, are still recommended for different types of activity (Cotterill et al. 

2016). This is not practical, however, as use of different algorithms and parameters 

requires an investigation of the activity types prior to burst detection. A single 

experiment can include various activity types due to different states of maturation or 

modulation of electrical activity. Moreover, use of different algorithms prevents the 

comparison of results. Further evaluation and comparison of algorithm performances 

is needed on a wider range of biological data to find a single algorithm that could be 

utilized for all activity types observed on hPSC-derived neuronal networks. 

The aims of this thesis were to assemble a test data set, which would well represent 

the variety of bursting and non-bursting activity on hPSC-derived neuronal networks, 

and to identify the most promising algorithm with optimal parameters that could be 

applied for the wide range of electrical activity types included in the test data set. As 

rodent neurons are still widely used in the neuroscience, it was additionally desirable 

that the algorithm would similarly function on rodent neuronal networks. To achieve 

the goals, functional neuronal networks were derived from hPSCs and embryonic rat 

cortical neurons. Spontaneous electrical activity of developing networks was 

recorded to identify different activity types present during the network 

development. Additionally, responses to pharmacological reagents were recorded on 

bursting neuronal networks, and different activity patterns were identified amongst 

this modulated activity. Based on this information, a data set was assembled for 

performance analysis of four promising burst detection algorithms. The four 

algorithms included MaxInterval (MI) (Nex Technologies 2014), Poisson surprise (PS) 

(Legendy, Salcman 1985), logISI (Pasquale et al. 2010) and Cumulative moving 

average (CMA) (Kapucu et al. 2012) methods. The algorithm with the highest 

performance was chosen for further analysis and parameter optimization to enhance 

its performance and to achieve a high, or at least satisfactory, performance on all 

identified activity types. 
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2. Background 

2.1. Neurons in vivo 

Neurons are cells specific to the nervous system of the body. The nervous system 

receives information about the changes within the body and about the changes in 

the environment outside of the body. The brain, which is a part of the central nervous 

system (CNS), is the site of cognitive functions, such as thinking, memorizing and 

learning. Thus, all the information received by the nervous system is processed in the 

brain. Based on the results of the information processing, the brain generates an 

appropriate response, which ultimately alters the functions of the body, e.g. the 

function of muscles and glands. In other words, the system receives an input, 

processes the information, and generates an output. The function of the nervous 

system translates well to the function of a single neuron, which handles information 

in a similar manner. 

2.1.1. Neuronal networks 

In an adult human brain, there are approximately 85 billion neurons (Bear et al. 

2015). Neurons have many different subtypes, which are distinguishable by their 

localization in the brain, morphology, connectivity, electrophysiological properties 

and protein expression, e.g. neurotransmitter expression (Mertens et al. 2016). 

Nevertheless, all types of neurons share certain morphological and functional 

characteristics (Bear et al. 2015). A neuron consists of a soma, an axon, and one or, 

more often, multiple dendrites. A soma is the body of a neuron that contains the 

nucleus and most of the cell organelles. An axon is a process of a neuron, which 

carries information in a form of an electrical impulse to other neurons or to a target 

cell in the peripheral nervous system (PNS). The electrical impulse is called an action 

potential. A dendrite is also a process of a neuron, but it carries information received 

from other neurons to the soma of the cell. The neurons form connections to each 

other to enable information transfer from one to another. As a single neuron can 

have multiple connections, together the neurons construct a complex network of 

connections. These connections are called synapses. In the human brain, there are 

more than 1014 synaptic connections (Eroglu, Barres 2010). Typically, the synapses 

are established between the axon of the presynaptic neuron, and the dendrite or the 

soma of the postsynaptic neuron. 
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2.1.2. Electrophysiology of neurons 

The cell membrane potential is an important feature for the information transfer 

within a neuron. The membrane potential is defined as the electrical potential 

difference across the cell membrane. At rest, this potential difference is 

approximately -65 mV (Bear et al. 2015). If the resting state is disturbed, the 

membrane potential changes. Ions crossing the cell membrane via ion pumps or open 

ion channels alter the membrane potential (Bear et al. 2015). When positive ions 

cross the membrane from the extracellular space to the cytosol, the potential 

changes to the positive direction and the membrane is said to depolarize. On the 

contrary, when positive ions cross the membrane from the cytosol to the 

extracellular space, the potential becomes more negative and the membrane is said 

to polarize. Polarization can also result from an influx of negative Cl- ions from the 

extracellular space to the cytosol. If the polarization takes the membrane potential 

below the resting potential, the process is called hyperpolarization (Bear et al. 2015). 

The main reason for the opening of ion channels and, consequently, for the 

membrane potential changes are signals from other neurons. 

A neuron can simultaneously receive multiple signals, inputs, from other neurons via 

synapses (Figure 1). The inputs are mediated by neurotransmitters, such as glutamate 

or -aminobutyric acid (GABA) (Bear et al. 2015). The neurotransmitters are released 

from the axon terminal of the presynaptic neuron, when an action potential reaches 

the terminal. The neurotransmitters cross the synaptic cleft and bind to their specific 

receptor at the cell membrane of the postsynaptic neuron. As such, the information 

is transferred in a chemical form across the synapse. The input can be either 

excitatory or inhibitory. Glutamate is an excitatory neurotransmitter, the receptors 

of which include α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) 

receptors, N-methyl-D-aspartate (NMDA) receptors and kainate receptors, whereas 

GABA is an inhibitory neurotransmitter that binds to GABAA and GABAB receptors 

(Bear et al. 2015). The binding of the neurotransmitter or a signaling cascade initiated 

by the binding leads to a change in ion channel function, which in turn causes a 

change in the ion fluxes. As a result, the membrane potential changes. An excitatory 

input causes the membrane to depolarize as the channels permeable to Na+ and Ca2+ 

are opened (Bear et al. 2015). An inhibitory input causes the membrane to polarize 

or hyperpolarize due to the opening of Cl- channels (Bear et al. 2015). The resulting 

potentials are called excitatory postsynaptic potential (EPSP) and inhibitory 

postsynaptic potential (IPSP), respectively. 
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Figure 1. Illustration of a chemical synapse. A synapse typically forms between the axon of a 
presynaptic neuron and the dendrite of a postsynaptic neuron. Information is transferred across 
the synapse by neurotransmitters (purple). Neurotransmitters are released into the synaptic cleft 
from the vesicles (blue) located in the axon terminal in a response to an arrival of an action 
potential. The neurotransmitters diffuse across the synaptic cleft and bind to the receptors 
(green) of the postsynaptic neuron. 

On some occasions, the information between two neurons is not transferred in a 

chemical form across a synapse but is transferred via gap junctions. A gap junction 

between two neurons can also be called an electrical synapse. Through the gap 

junctions, ions can be transferred to both directions unlike in chemical synapses (Bear 

et al. 2015). The ion transfer generates a postsynaptic potential (PSP) in the ion-

receiving neuron. Electrical synapses are rare in comparison to chemical synapses but 

are common particularly during development (Bear et al. 2015). 

The effects of multiple inputs are superimposed. The summation is both spatial and 

temporal. This means that the inputs are superimposed from different dendrites and 

that a higher input frequency leads to a larger effect. The summation applies to both 

excitatory and inhibitory inputs, which signifies that the number of inputs does not 

necessarily correlate to the scale of depolarization as there are polarizing inputs 

involved as well (Bear et al. 2015). If the resulting superimposed depolarization at the 

proximal end of the axon, called the axon hillock, exceeds a threshold potential, an 

action potential is generated, or fired, as an output (Bear et al. 2015). A single, weak 

input might not be enough to generate an action potential but due to summation 

multiple weak inputs together can result in depolarization that exceeds the 

threshold. 

When generating an action potential, the local Na+ channels of the cell membrane 

open resulting in an influx of Na+ ions and depolarization of the membrane. The 

membrane potential typically reaches approximately 40 mV (Bear et al. 2015). The 

depolarization causes the nearby, more distal voltage-gated Na+ channels to open 
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and, in this way, the action potential proceeds all the way to the axon terminal, where 

it causes the release of the neurotransmitters enabling them to bind the receptor of 

the connected neuron (Bear et al. 2015). Right after the depolarization, the local Na+ 

channels close and K+ channels open (Bear et al. 2015). As K+ ions flow out, the 

membrane repolarizes, meaning that the resting potential is recovered. Additionally, 

Na+ ions are actively pumped out of the cell, and this contributes to the repolarization 

(Bear et al. 2015). Before returning to the resting potential, the membrane potential 

dives slightly below it (Bear et al. 2015). This sink is referred to as 

afterhyperpolarization (Bear et al. 2015). As a result, the action potential can be seen 

as a sharp, positive spike followed by a small, negative sink. 

2.1.3. Glial cells 

Even though the neurons are the most important cells regarding the information 

transfer and other cognitive functions of the brain, they could not function without 

other cells supporting them. These supporting cells are glial cells. In the brain, the 

number of glial cells is approximately equal to the number of neurons (Bear et al. 

2015). The three types of glial cells are astrocytes, oligodendrocytes, and microglia, 

and each type supports neurons in different ways. Astrocytes are especially 

important to the electrical activity as they regulate the formation, maturation, and 

pruning of synapses (Clarke, Barres 2013). Astrocytes also maintain the homeostasis 

of the brain and have a role in the function of the blood-brain barrier (Abbott et al. 

2006). Oligodendrocytes wrap around the axons of the neurons forming a myelin 

sheath. Almost the whole axon is insulated and protected by myelin. Only small 

periodical areas between the sheaths, called the nodes of Ranvier, are exposed and 

allow transmembrane ion current. Owing to the myelin, the action potential 

propagation is saltatory, which allows very rapid information transfer (Bear et al. 

2015). The axons of the neurons are myelinated only in the inner parts of the brain, 

which are accordingly referred to as white matter. On the brain cortex, the axons are 

not myelinated, and that part of the brain is called gray matter. Finally, microglia are 

responsible for the immune defenses of the brain. They are phagocytic and mediate 

the inflammation response. They also appear to be involved in remodeling of synaptic 

connections (Bear et al. 2015). In fact, microglia are resident macrophages of the 

neural tissue and are not of neuroectodermal origin like neurons and other glial cells. 

Microglia are derived from primitive macrophages of the yolk sac (Ginhoux et al. 

2010). 
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2.2. Human pluripotent stem cell-derived neurons 

Stem cells are cells that have a potential to differentiate to other cell types and a 

capacity for self-renewal. Different stem cells have different levels of differentiation 

potential and of self-renewal capacity. Pluripotent stem cells can differentiate to any 

cell type except trophoblasts of the placenta. In other words, pluripotent stem cells 

can produce cells from all the three germ layers: endoderm, mesoderm and 

ectoderm. They also have the highest self-renewal capacity. hPSCs include human 

embryonic stem cells (hESCs) and hiPSCs (Figure 2). hESCs are derived from the inner 

cell mass (ICM) of a blastocyst 5-6 days after fertilization. hiPSCs are derived from 

somatic cells, such as fibroblasts, by introduction of a few defined transcription 

factors which induce conversion to pluripotent state (Takahashi et al. 2007). hPSCs 

provide an inexhaustible source for different cell types including neurons. 

2.2.1. Neuronal differentiation of human pluripotent stem cells 

hPSCs differentiate into neurons due to specific environmental cues. Differentiation 

is defined by changes in gene expression and its regulation. When a stem cell 

differentiates into a neuron, specific genes are activated or permanently silenced. 

Environmental cues mediate these changes by stimulating or inhibiting specific 

signaling pathways. The signaling pathways involved in neuronal differentiation are 

similar in vivo and in vitro (Vieira et al. 2018). In vivo, the activity of each pathway is 

naturally controlled by the environmental cues. In vitro, the stimulation or inhibition 

of a specific pathway is initiated artificially. This involves timed introduction and 

retrieval of combinations of mitogens and morphogens, which mimic the 

environmental cues in vivo (Mertens et al. 2016). For example, Noggin and a small 

molecule called SB431542 are added to inhibit bone morphogenetic protein (BMP) 

and transforming growth factor β (TGFβ) pathways, respectively (Chambers et al. 

2009). Inhibition of these pathways trigger conversion from pluripotent state to 

neural lineage commitment (Chambers et al. 2009). In contrast, fibroblast growth 

factor 2 (FGF2) is frequently used to stimulate FGF pathway, which promotes the 

proliferation of neural progenitor cells (NPCs) while also allowing neuronal 

differentiation (Vieira et al. 2018; Shi et al. 2012). Besides soluble signaling molecules, 

components of neural extracellular matrix (ECM), such as laminin, can be utilized in 

the culture system to promote neuronal differentiation (Vieira et al. 2018). There are 

various protocols for neuronal differentiation that differ in respect to the choice of 

inducer molecules. Additionally, distinct protocols can utilize either a 2D or 3D 

platform. In a 2D platform, the cells can be cultured in aggregates called embryoid 

bodies (EBs) or in an adherent culture system (Mertens et al. 2016). In 3D platform, 
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the cells are cultured on a 3D scaffold that aims to mimic the mechanical and 

chemical properties of neural ECM (Vieira et al. 2018). 

 
 
Figure 2. Generation of neurons and glial cells from hPSCs. Neurons and glial cells can be 
differentiated from hPSCs, which include hESCs and hiPSCs. hESCs are derived from the ICM of a 
blastocyst whereas hiPSCs are reprogrammed from somatic cells. The differentiation process of 
hPSCs into neurons or glial cells often includes an interphase of NPCs. The study of the 
differentiation provides insights to human neurodevelopment. Neurons and glial cells derived 
from hPSCs are utilized to model neurological diseases. The disease models can be further applied 
in phenotypic and drug screening, which provide ways to develop novel tools for early diagnostics 
as well as novel treatments. The figure is modified from Mertens et al. (Mertens et al. 2016). 

The first step of the neuronal differentiation is initiating neural commitment and 

regionalization, which results in the generation of NPCs (Mertens et al. 2016). 

Commitment refers to the reduction of differentiation potential to neural lineage. 

Regionalization refers to the specification of the positional identity to a certain region 

along the anterior-posterior axis and the dorsal-ventral axis of the developing CNS 

(Mertens et al. 2016). Different subtypes of NPCs differ in respect of differentiation 

potential and positional identity (Mertens et al. 2016) and, thus, the generation of 

NPCs already guides the final composition of the fully differentiated neurons. The 

NPCs are further differentiated into neurons by alterations to the cocktail of the 

mitogens and morphogens together with extended maturation time (Mertens et al. 

2016). Altogether, the generation of functional neurons from hPSCs takes typically 5 



 

 

9 

weeks or more (Weick 2016). The desired end-product of differentiation is a mature 

neuron that mimics the morphology, electrophysiology and other properties of a 

neuron in vivo. These properties are evaluated with a combination of light or electron 

microscopy, immunostaining, fluorescence microscopy, gene expression, patch 

clamp technique, calcium imaging, and microelectrode array (MEA) technology 

(Obien et al. 2015). Light and electron microscopy display the morphology of the 

neuron. Immunostaining and fluorescence microscopy aim to demonstrate the 

presence of molecules specific for mature neurons and synapses, whereas patch 

clamp, calcium imaging and MEA provide data of the electrophysiological events of a 

neuronal culture. A wide spectrum of different neuronal subtypes has been 

generated from hPSCs, including excitatory cortical neurons, cortical interneurons 

and motor neurons (Mertens et al. 2016). Protocols to enrich astrocyte and 

oligodendrocyte differentiation from hPSCs have also been developed (Mertens et 

al. 2016). Nevertheless, a co-culture of neurons and astrocytes is often desired as 

astrocytes have a crucial role in the development of functional neuronal networks 

(Fukushima et al. 2016; Odawara et al. 2016). 

2.2.2. Applications of human pluripotent stem cell-derived neurons 

hPSC-derived neurons have many applications. The neurons and their differentiation 

are studied to gain basic knowledge about human neural development and function 

(Mertens et al. 2016). Moreover, hPSC-derived neurons can be applied within drug 

discovery and neurotoxicology assays (Ylä-Outinen et al. 2010; Odawara et al. 2016). 

They are also widely used to model neurological and neurodegenerative diseases 

such as amyotrophic lateral sclerosis (ALS) (Di Giorgio et al. 2008), Parkinson’s disease 

(Monti et al. 2016) and schizophrenia (Brennand et al. 2011). Some of the diseases 

affect specific subtypes of neurons and, therefore, good characterization methods 

are needed to analyze the fate of the generated neurons (Weick 2016). Once a 

disease model has been established, it can be applied for drug discovery and 

development of novel diagnostic tools that exploit the distinguishable properties of 

the disease cell phenotype (Weick 2016; Mertens et al. 2016). Furthermore, both 

hPSC-derived neurons and NPCs are of great interest in regenerative medicine. 

Although the brain hosts neural stem cells, the regenerative capacity of adult human 

neural tissue is poor (Gage 2000). hPSC-derived neurons and glial cells could 

potentially be used to replace damaged cells or activate endogenous cells to repair 

the damage (Gage 2000). 
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2.2.3. Advantages of human pluripotent stem-cell derived neurons 

Besides hPSCs, there are other sources of human neurons. Adult and fetal brain host 

neural stem cells, which are multipotent. Multipotent stem cells can give rise to 

several specific cell types. Neural stem cells have the potential to differentiate into 

neurons, astrocytes and oligodendrocytes. Adult neural stem cells are found for 

example in the subventricular zone and the hippocampus whereas fetal neural stem 

cells are more abundant and found in several more structures of the developing brain 

(Gage 2000). The advantage of the neural stem cells is that they have naturally 

developed in vivo. The availability of neural stem cells for research is, however, very 

limited. Their derivation is an invasive process, which is why they cannot be harvested 

freely from the human brain. Neuronal tumors are yet another source of neurons 

(Biedler et al. 1978). Cancer cell lines are immortal but have limited use outside of 

cancer research due to their pathophysiological state (Ylä-Outinen et al. 2010). In 

conclusion, hPSCs are a superior source of neurons as they possess healthy 

physiology and provide unlimited material for research due to their accessibility and 

capacity for self-renewal. 

Direct conversion is a method that converts somatic cells into neurons or NPCs 

without first converting them all the way to the pluripotent state. Direct conversion 

is induced by overexpression of cell type-specific transcription factors (Mertens et al. 

2016; Pang et al. 2011). Direct conversion shares a major advantage of hiPSCs as the 

neurons derived by these methods are specific to the donor. This is highly useful 

when setting up disease models as the hiPSC-derived neurons and directly converted 

neurons originating from patients naturally possess their mutations or genetic 

instabilities underlying the emergence of disease. Unlike hiPSCs, direct conversion 

also conserves transcriptomic and functional signatures of ageing, which could 

provide additional information when studying late-on-set diseases (Mertens et al. 

2016). Only hPSCs can be used to study the full course of CNS development though, 

because the direct conversion skips most developmental steps. Consequently, hPSCs 

are often a better option when modelling diseases that involve neurodevelopmental 

defects (Mertens et al. 2016). In further comparison to hPSCs, major disadvantages 

of direct conversion are limited expansion capacity and lower competence for 

synaptogenesis (Zhang et al. 2013; Mertens et al. 2016; Weick 2016). 

2.3. Human and rodent cell models in vitro 

Many ground-breaking discoveries in biology and biotechnology have first been 

described on rodent cell models. For example, induced pluripotent stem cell (iPSC) 
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technology and the direct conversion method were first demonstrated with mice 

fibroblasts (Takahashi, Yamanaka 2006; Vierbuchen et al. 2010). Rodent cells are 

popular because they are well-characterized, cheap, and easy to produce. Rodent 

models are also required in pre-clinical studies in drug discovery. Although rodent 

models are the golden standard in the field, their use has raised ethical concerns. 

Furthermore, translatability of the results from rodent studies to human physiology 

is dubious. Alternative methods for rodent models are actively investigated. 

Rodent neural stem cells and neurons are harvested from prenatal, postnatal or adult 

brain of a rodent. Currently, they are widely used for research in neuroscience, more 

so than hPSC-derived NPCs and neurons. Therefore, many of the methods used to 

characterize stem cell-derived neurons and glial cells are mostly developed on rodent 

cell models. These methods include antibodies used in immunostaining (Mertens et 

al. 2016) as well as burst detection methods for MEA data analysis (Cotterill et al. 

2016). However, significant species differences raise a major concern for the 

generalization of rodent-based discoveries to human cell physiology, diseases, and 

drug development (Fukushima et al. 2016). The species differences make it 

impossible to satisfyingly predict human drug responses on rodent models 

(Cummings 2018). Due to this, numerous drugs fail in clinical trials. hPSC-derived cells 

provide a human-based platform to study cell physiology and pathology as well as to 

screen drugs and study toxicological effects. Naturally, rodent cells cannot be applied 

in clinical applications either whereas hPSC-derived cells have wide potential in this 

area. 

2.4. Measurement techniques for electrical activity of neurons 

As described in the previous chapters, the electrophysiological events of neuronal 

networks comprise all ion currents across the cell membrane. This electrical activity 

can be measured with different techniques. MEA technology, intracellular recording 

techniques, and optical methods are used to measure the electrical activity of 

neurons in vitro and in vivo (Obien et al. 2015; Homma et al. 2009). MEA and 

intracellular recording techniques record potential changes with electrodes whereas 

optical methods utilize for example dyes to visualize electrical activity-related events 

in different ways. All these techniques record real-time activity. 

MEA records extracellular field potentials generated by electrical activity of the 

neurons. The major advantage of MEAs is allowing simultaneous, non-invasive, and 

long-term recordings of neuronal populations (Spira, Hai 2013; Odawara et al. 2016). 

A disadvantage of MEAs is that they attenuate and temporally filter electrical signals 
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(Spira, Hai 2013). As various events from multiple neurons contribute to the MEA 

signal, the interpretation of the whole signal can be challenging. Often only 

information about action potentials is extracted and analyzed whereas other 

electrical activity is excluded from the scope of study. In comparison, intracellular 

recording performed by sharp or patch electrodes provide precise and accurate 

information about all the electrophysiological events of a neuron (Spira, Hai 2013). 

However, intracellular methods are invasive and only individual neurons can be 

measured. Therefore, these methods are not suitable for population-level or long-

term studies. Optical methods utilizing fluorescent calcium indicators or genetic 

markers are similarly used at cellular resolution (Obien et al. 2015). Calcium imaging 

with fluorescent calcium indicators is an especially common method. An indicator 

binding to Ca2+ ion results in a fluorescent signal. Arrival of an action potential to the 

axon terminal causes Ca2+ ion channels to open, which leads to influx of Ca2+ ions 

(Bear et al. 2015). Increased Ca2+ concentration stimulates the release of 

neurotransmitters into the synaptic cleft (Bear et al. 2015). Thus, synaptic events are 

indicated by Ca2+ changes, which are detectable with calcium imaging. Similar to MEA 

technology, calcium imaging can be used to record the activity of neuronal networks. 

However, the temporal resolution is not as accurate as that of electrical potential 

recording techniques (Homma et al. 2009). Similar to MEA signal, multiple factors can 

affect the optical signal making the analysis more challenging (Obien et al. 2015). 

Besides MEA, intracellular recording technologies, and optical methods, there are 

other methods to measure electrical activity of neuronal networks. Magnetic 

resonance imaging (fMRI), electroencephalography (EEG), electrocorticography 

(ECoG), positron emission tomography (PET), and magnetoencephalography are 

utilized to measure neural populations in macroscale, such as large regions of the 

brain (Spira, Hai 2013; Obien et al. 2015). 

2.5. Microelectrode array technology 

MEA technology is applied to monitor, record, and stimulate electrical activity of 

neurons both in vitro and in vivo. As mentioned in the previous chapter, electrical 

activity of the neurons generates extracellular field potentials, which are recorded by 

the electrodes of a MEA device. The multiplicity of electrodes makes it possible to 

study the neurons at a population level. In vitro MEAs can include up to 10,000 

electrodes and in vivo over a hundred electrodes (Spira, Hai 2013). MEA recordings 

are used to study neuronal circuit-connectivity, physiology and pathology (Spira, Hai 

2013; Buzsáki et al. 2012). The possibility of electrical stimulation can help research 

that aims to develop implants, control limbs, and treat disorders via stimulation 
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(Obien et al. 2015; Ghane-Motlagh, Sawan 2013). MEAs are also exploited in 

pharmacological tests and diagnostics (Obien et al. 2015). Similar to neurons, the 

electrical activity of cardiomyocytes has been studied with MEAs (Navarrete et al. 

2013; Ryynänen, Kujala et al. 2011). 

It is notable that the information obtained by MEAs is limited and cannot actually 

reveal what mechanism triggers the observed firing (Spira, Hai 2013). Nevertheless, 

the electrical activity patterns and features of distinct neuronal populations can be 

studied and compared. The activity patterns are spatially and temporally variable in 

the brain. Both in vivo and in vitro, distinct neuronal subtypes, e.g. GABAergic and 

glutamatergic neurons, have their own characteristic activity patterns and the 

pattern recorded by MEA is a combination of these individual patterns, an average 

activity pattern (Gelfman et al. 2018). Some drugs, such as certain anti-psychotics, 

can selectively target neuronal subtypes but their effect can be undetectable if the 

change in the average activity is not notable (Gelfman et al. 2018). Besides chemical 

stimulation, factors altering the electrical activity include electrical stimulation, 

mutations and maturation state of neuronal networks. 

2.5.1. Microelectrode array devices 

The first electrophysiological studies with MEAs were made in 1970s (Thomas Jr. et 

al. 1972; Pine 1980). Since then, many different MEA devices have been developed. 

The devices can differ in design, materials and fabrication techniques. Regarding in 

vitro experiments, the electrodes can be divided into two types. The most commonly 

used type is a substrate-integrated planar electrode (Figure 3). The electrode 

diameters vary between 5 and 50 m (Obien et al. 2015). The other type is a 3D 

structured electrode such as a silicon nanowire (Robinson et al. 2013) and an Au 

mushroom (Hai et al. 2009). The 3D structured electrodes have been developed in 

hopes of decreasing the attenuation of the signal. This aim is pursued by the small 

electrodes being engulfed by the neurons (Spira, Hai 2013). Also, some designs have 

used electroporation to enable intracellular recording with these electrodes (Spira, 

Hai 2013). 

For the materials, the most important aspect is their biocompatibility (Toivanen et al. 

2017; Obien et al. 2015). The electrodes are typically made with metallic conductors 

but there are also non-metallic electrodes combined with field-effect transistor-

based transducers (Obien et al. 2015). For the electrode fabrication, a major focus is 

obtaining a low impedance in order to achieve a higher signal-to-noise ratio (SNR) 

(Obien et al. 2015; Ghane-Motlagh, Sawan 2013). The objective is to have a SNR of 

5:1 or higher (Obien et al. 2015). It is notable that the requirements for SNR limit the 
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reduction of electrode surface area. This is because the smaller the surface area the 

higher its impedance and, consecutively, the lower the SNR (Obien et al. 2015; Spira, 

Hai 2013). The limitation to the reduction of electrode surface area restricts the 

electrode density and spatial resolution of a MEA (Obien et al. 2015). 

 
 
Figure 3. A) A 12-well MEA plate with cell culture. The electrodes are located within the circular 
area inside a square at them bottom of each well. The plate in the image is a commercial product 
from Axion BioSystems (Atlanta, GA, USA). B) A phase-contrast microscope image of hPSC-derived 
neurons on MEA. The black dots are substrate-integrated electrodes, which are in contact with 
the cell culture. The black lines connected to the electrodes are conductive wires. Cells can be 
seen around the electrodes. There are cells also on top of the electrodes but this cannot be seen 
in a phase-contrast microscope image. Neuronal processes are visible for example in the vicinity 
of the upper-leftmost electrode. 

2.5.2. Origin of microelectrode array signal 

As mentioned earlier, MEAs measure the extracellular field potentials generated by 

the electrical activity of the neurons. The potentials are measured at a sub-

millisecond time scale (Buzsáki et al. 2012). Electrical activity of neurons comprises 

all transmembrane currents, but for the extracellular field potential the most 

significant events are action potentials, EPSPs, and IPSPs. Electrical synapses do not 

directly contribute to the extracellular field potential but can affect the generation of 

transmembrane currents (Buzsáki et al. 2012). Extracellular signals caused by action 

potentials range between 500 to 1000 Hz (Spira, Hai 2013). These high frequency 

signals are called extracellular action potentials (EAPs). The low frequency signal 

below 500 Hz is called a local field potential (LFP) and it is caused by joined activity of 

various electrophysiological events. PSPs are the main component of LFP (Buzsáki et 

al. 2012). Other contributors include membrane oscillations, glial potentials, and any 

ion fluxes through voltage- and ligand-gated channels. PSPs cause extracellular 

signals of 100 Hz, membrane oscillations cause extracellular signals between 1 and 

50 Hz (Spira, Hai 2013), and slow glial potentials cause signals of < 0.1 Hz (Einevoll et 
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al. 2013; Buzsáki et al. 2012). The LFP signals are more difficult to interpret than EAPs 

due to the multitude of potential sources (Einevoll et al. 2013). Consequently, 

analysis of EAPs is more common than analysis of LFPs. 

A single EAP is considered to present a putative action potential (Obien et al. 2015). 

An EAP can be detected from a distance of ~100 m, and its duration is < 2 ms (Obien 

et al. 2015). In MEA data analysis, an EAP is often called a spike referring to the shape 

of an EAP (Figure 4A). A typical spike form is a mirror image of an intracellular action 

potential. Accordingly, a spike in a MEA recording actually consists of two spikes. A 

sharp negative spike of high amplitude is followed by a more curved positive spike of 

low amplitude (Obien et al. 2015). The negative spike is caused by influx of Na+ and 

is sharp due to the rapidness of the influx, whereas the curved positive spike results 

from the slow efflux of K+ (Obien et al. 2015). 

It is important to understand, that the extracellular field potential measured by the 

electrode is a superposition of separate transmembrane currents of the neurons in 

the proximity of the electrode. The effect of an individual transmembrane current on 

the detected potential depends on its magnitude, sign and distance from the 

electrode (Obien et al. 2015) (Figure 4B). Temporal synchrony and favorable spatial 

alignment of neurons strengthen the signal from these neurons (Obien et al. 2015). 

Additionally, there are multiple noise sources in MEA system that contribute to and 

modify the signal (Figure 5). Relevant noise sources at the interface of metal and 

culture medium include thermal noise and hum from the power lines (Obien et al. 

2015). Noise from the device itself arises from amplification and digitalization of the 

signal (Obien et al. 2015). Biological noise comprises signals from those 

electrophysiological events that are not of interest. Consequently, LFP is also 

considered biological noise when investigating only action potentials (Obien et al. 

2015). Overall, the biophysics related to the extracellular field potential 

measurements are well understood (Buzsáki et al. 2012). 
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Figure 4. A) A single spike with a typical waveform in raw MEA signal. The spike in fact consists of 
two spikes as a sharp negative spike is followed by a more curved positive spike. B) The location 
of an electrophysiological event in respect to the recording electrode affects the sign, shape and 
magnitude of the recorded extracellular field potential. The amplitude of a spike decreases 
rapidly with increasing distance as seen in the lower figure. In the upper figure, the magnitudes 
of the spikes are normalized, and the color indicates the voltage range. Figure B has been 
modified from Buzsaki et al. (Buzsáki et al. 2012). 
 

 
 
Figure 5. A diagram of a MEA system and its noise sources. MEA system is used to record and 
stimulate the electrical activity of a neuron. The properties of the volume conductor, e.g. culture 
medium, and the electrode affect the signal transmission. The hardware processes the recorded 
signal and generates the stimuli. The noise contributing to the signal and modifying the signal 
arises from biological sources, the electrode-electrolyte interface, and the device. The figure has 
been modified from Obien et al. (Obien et al. 2015). 
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2.5.3. Analysis of microelectrode array signal 

MEA signal processing requires high computational power due to a great amount of 

data. The signal processing comprises of filtering the raw MEA data, spike detection, 

and spike sorting (Obien et al. 2015). The objective of the filtering is to achieve a 

higher SNR and also to decrease the occurrence of false positives in spike detection 

(Obien et al. 2015). Typically, a band-pass filter with a band of 300-3000 Hz is applied 

(Obien et al. 2015) and the rest of the signal is discarded. Spike detection is the 

process of extracting spikes from the signal. The most common and perhaps simplest 

method is to set a threshold for the amplitude of a spike. Typically, the threshold is 

set as a multiple of the baseline noise level (Obien et al. 2015). Less common spike 

detection methods include two-point procedure and template-matching (Obien et al. 

2015) Finally, spike sorting is the process of assigning spikes to groups according to 

their shapes (Obien et al. 2015). Spike sorting can utilize different methods, such as 

principal component analysis (PCA) or wavelet transform (Obien et al. 2015). It should 

be noted that the filtering can alter the shape of a spike (Obien et al. 2015) and, 

therefore, the filtered signal should not be used for spike sorting. The spike timing 

information obtained in spike detection can be exploited to retrieve the shapes of 

the detected spikes from the original raw signal (Obien et al. 2015). 

From the spike timing information, different features such as spike frequency can be 

calculated to describe and evaluate the electrical activity of the subject neuronal 

population. Spike timing information is also utilized in burst detection (Pasquale et 

al. 2010; Legendy, Salcman 1985; Kapucu et al. 2012). Bursts and burst detection 

algorithms are discussed in the following chapters. Spiking and bursting features, 

including total counts, are considered to constitute the foundation for the evaluation 

of electrical activity of a neuronal population (Kapucu et al. 2012). Additional and 

more complex activity features can be calculated to describe the network 

synchronization. The network synchronization features include network spikes, 

network bursts, cross-correlation and entropy (Gelfman et al. 2018). 

2.6. Bursts 

A burst is a set of subsequent spikes that are fired in close temporal proximity of each 

other. In other words, the burst spikes are fired at a relatively high frequency. Often 

a quiet period is observed after a burst (Obien et al. 2015). In vivo, spontaneous 

bursting is observed during development and bursts are associated with synapse 

formation and long-term potentiation (Kirwan et al. 2015; Cotterill et al. 2016). 

Postnatally, bursting generally does not occur spontaneously (Kirwan et al. 2015). 
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Bursts are considered to be information carriers of the brain, and are related to 

neural processes, such as motor pattern generation (Obien et al. 2015). In vitro, 

spontaneous bursting has been shown to increase during the development of 

synapses in cultured neuronal networks (Muramoto et al. 1993). Synchronized 

bursting is considered mature activity (Weick 2016). Bursts are preceded by simple 

spiking (Weick 2016; Heikkilä et al. 2009) and, provided with prolonged maturation 

time, followed by more complex activity patterns (Kirwan et al. 2015). 

Bursts are a prominent component of the electrical activity patterns in vitro. Yet, 

there is no formal, global definition for a burst. Despite this, bursts are rather easily 

identified from a spike train by human eye. Bursts stand out as the spike frequency 

within a burst is typically higher than the overall spike frequency of the spike train. 

When trying to describe the essence of a burst more precisely, different parameters 

have been used. These parameters include maximum inter-spike interval within a 

burst (maxISI), minimum number of spikes in a burst (minSpikes), minimum duration 

of a burst (minDur), and minimum inter-burst interval (minIBI) (Figure 6). Still, use of 

parameters to define a burst is challenging due to the variability of bursting activity. 

Variability is displayed in neuronal networks derived from primary rat cortical 

neurons (Wagenaar et al. 2006) and even more so in networks derived from hPSCs 

(Kapucu et al. 2012; Heikkilä et al. 2009). Furthermore, the inter-spike intervals (ISIs) 

within a single burst vary as well. The spikes at the core of the burst have typically 

short ISIs whereas the spikes at the boundaries of a burst, also called burst-related 

spikes, have higher ISIs (Kapucu et al. 2012; Pasquale et al. 2010). 

 
 
Figure 6. Parameters used to determine a burst in vitro. These parameters include maximum 
inter-spike interval in a burst (maxISI), minimum number of spikes in burst (minSpikes), minimum 
burst duration (minDur), and minimum inter-burst interval (minIBI). MaxISI in a burst is used to 
determine, which spikes could be included in a burst. MinSpikes and minDur set additional 
requirements for a burst. MinIBI is used to define, when two bursts should be detected as one. 
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Identification and characterization of bursting activity are crucial for the evaluation 

of neuronal network activity in vitro (Cotterill et al. 2016; Kapucu et al. 2012). The 

bursting activity has been described to emerge 1-2 months after the onset of 

neurogenesis on hPSC-derived neuronal networks (Kirwan et al. 2015; Heikkilä et al. 

2009). On neuronal networks derived from primary rat neurons, the activity develops 

approximately after one week in vitro (Charlesworth et al. 2015). Burst features, such 

as burst duration or intra-burst ISI, have been reported to vary according to the 

maturation state of the networks (Heikkilä et al. 2009; Charlesworth et al. 2015). 

Analysis of bursting activity has been used in assessment of neuronal network 

development and maturation, impact of genetic variations, and influence of chemical 

manipulations (Cotterill et al. 2016; Weick 2016). As the subtypes of neurons differ 

in respect to electrical activity patterns, characterization of these patterns using burst 

features could also be used to identify subtypes in a culture (Mertens et al. 2016). 

2.7. Burst detection algorithms 

Although the analysis of bursting activity is a fundamental part when evaluating the 

neuronal network activity in vitro, there is no standard method or algorithm for 

bursts detection (Cotterill et al. 2016). The lack of a standard method could be partly 

due to the lack of a formal definition of a burst. Typically, burst detection algorithms 

have been developed and verified on an ad hoc basis for a certain type of data 

(Cotterill et al. 2016). This can be problematic because the bursting activity is widely 

variable. While a standardized burst detection algorithm is non-existent, visual 

identification of bursts is still used as a widely accepted method for burst detection 

despite the fact that it is not an objective nor an optimal method. 

2.7.1. General principles of burst detection algorithms 

Majority of burst detection algorithms utilize spike timing information to calculate 

bursts. These algorithms can typically be divided into three categories based on their 

mode of function (Cotterill et al. 2016). Two of these modes of function are based on 

use of parameters that define a burst, such as maxISI or a minSpikes. The algorithm 

can either use predefined, fixed parameters that are constant for all spike trains (Nex 

Technologies 2014; Chiappalone et al. 2005), or it can use parameters that are 

individually adjusted according to the properties of each spike train, such as 

distribution of ISIs (Pasquale et al. 2010; Kapucu et al. 2012). The adjustments to 

parameters are computed within the algorithm. The third mode of function is 

drastically different as it is surprise-based. The algorithm does not rely on burst-

defining parameters but calculates a surprise statistic for a set of spikes (Legendy, 
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Salcman 1985). If the surprise statistic is above a predefined threshold, the spike set 

is considered a burst. More precisely, the algorithm searches for deviations from an 

assumed underlying spike frequency distribution (Cotterill et al. 2016). 

Each of these modes of function have their advantages and disadvantages. 

Algorithms using predefined parameters are very consistent as identical parameters 

are used for all spike trains. However, the variability of bursting activity is a challenge 

for them (Pasquale et al. 2010; Kapucu et al. 2012). Burst features such as spike 

frequency in burst are variable (Pasquale et al. 2010) and can also be very different 

between cultures derived from different species. To solve this issue, self-adaptable 

methods have been developed (Pasquale et al. 2010; Kapucu et al. 2012). Adjusting 

the parameters individually for each spike train can allow detection of a wider variety 

of bursts. However, these methods are not as consistent. A spike set of a specific 

spike frequency can be detected as individual spikes or as a burst depending on the 

mean spike frequency or other properties of the spike train. This is often desirable 

but can also cause problems in some types of data. Nevertheless, self-adapting 

methods are typically deterministic as the same bursts are detected on repeated runs 

on the same data (Cotterill et al. 2016). Use of parameters, whether pre-defined or 

adjusted, could be considered artificial or excessively restricting though, especially 

when there is no formal definition for a burst. Although surprise-based methods 

might also utilize some parameters, they rely more strongly on statistics for burst 

detection. Assuming that the activity follows a fixed statistical distribution, however, 

can be considered erroneous as the bursting and even non-bursting activity is very 

variable and thus the underlying distributions are also variable. There is no consensus 

on a single statistical distribution that would best represent the whole of the variety 

of spiking and bursting activity (Cotterill et al. 2016). A similarly erroneous idea 

encountered in parameter-based and surprise-based algorithms alike is to presume 

a limit for the maximum proportion of spikes in a spike train that can be included in 

bursts (Cotterill et al. 2016; Hennig et al. 2011; Gourévitch, Eggermont 2007). This 

restricts the application of the algorithm to specific type of data because in some 

spike trains practically all spikes can be located within bursts. 

Many of the burst detection algorithms are more or less variations of each other 

(Cotterill et al. 2016). Nevertheless, other modes of function exist along the three 

modes described above. One interesting example is utilizing hidden semi-Markov 

model (HSMM) (Tokdar et al. 2010), which is a statistical model for stochastic 

processes and is also used to find genes from DNA sequences. A nucleotide in a DNA 

sequence can be located either in or out of a gene and similarly a spike in a spike train 

can be located either in or out of a burst. The performance of HSMM method is, 

however, not deterministic in burst detection (Cotterill et al. 2016). Another example 
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is to use channel synchrony to detect bursts (Wagenaar et al. 2006). This method only 

allows detection of bursts after the emergence of synchronicity however. 

2.7.2. Comparison of burst detection algorithms 

When evaluating and comparing the performance of burst detection algorithms, 

visually identified bursts have been used as a standard (Cotterill et al. 2016; Pasquale 

et al. 2010). Due to the lack of a formal burst definition and a standard burst 

detection method, there are no better alternatives for the evaluation of algorithm 

performance. Besides biological data burst detection algorithms have been tested on 

synthetic data (Cotterill et al. 2016). Synthetic bursts and parameters defining them 

are determined by the designer and thus also the synthetic bursts are a man-made 

standard. Use of synthetic data is an efficient way to validate algorithm function. 

Distinct synthetic spike trains with known activity and bursting properties can be 

designed to test specific aspects of the algorithm performance and a large data set 

can be constructed in a relatively short time (Cotterill et al. 2016). Nevertheless, 

designing synthetic spike trains that would well represent the biological activity 

patterns requires expert knowledge of the properties, such as an ISI distribution of a 

spike train or a typical intra-burst ISI, of distinct activity patterns. 

In their study in 2016, Cotterill et al. (Cotterill et al. 2016) suggested a list of desired 

features for an ideal burst detection algorithm. These features included 1) good 

performance in different activity patterns, 2) deterministic behavior, 3) small number 

of adjustable parameters, 4) having no assumption of spike train distribution, and 5) 

reasonable computational time. Good performance in different activity patterns is a 

basic requirement. Deterministic behavior was required so that same bursts would 

be identically detected on repeated runs. A small number of adjustable parameters 

was preferred because this reduces variability of results introduced through 

parameter choice. Assumption of a distribution was deemed disadvantageous as it 

restricts applicability to a limited range of activity patterns. Reasonable 

computational time was desirable because MEA applications often produce great 

amounts of data. 

Based on these evaluation criteria, Cotterill et al. (Cotterill et al. 2016) compared the 

performances of eight burst detection algorithms. The eight algorithms were selected 

as representatives of the major contemporary approaches to detect bursts. The 

performance of the algorithms was tested on synthetic data and biological data. The 

performance on biological data was evaluated based on the coherence between the 

algorithm results and the bursts detected by human eye. First, the algorithm 

performances were evaluated on synthetic data and MEA data from spontaneously 
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firing mouse retinal ganglion cells. Four most promising algorithms, namely MI, PS, 

logISI and CMA methods, were further tested using MEA data from spontaneously 

firing hiPSC-derived neuronal networks. Although no ideal algorithm was found, MI 

and logISI showed the most promise. Both had an overall high performance on 

different activity patterns. In regard to other four desirable features, MI possessed 

three and logISI all four of them. MI did not possess feature 3 as it has five adjustable 

parameters. Of the two algorithms, MI was reported to have a better average 

correspondence to visually identified bursts on hiPSC-derived neuronal networks. 

Consequently, MI was recommended as a first choice when selecting a burst 

detection algorithm. LogISI, PS and CMA were recommended in case that appropriate 

parameters for MI could not be determined. LogISI was suggested to be used when 

the lengths of intra-burst ISIs were clearly distinct from the lengths of inter-burst 

intervals (IBIs). PS and CMA were recommended if there was no such distinction. All 

in all, utilization of multiple burst detection methods and comparison of their results 

was considered to be the most robust approach. 

2.7.3. Principles of MaxInterval, Poisson surprise, logISI and Cumulative moving 

average methods 

The four burst detection algorithms that provided highest performance in the 

comparative study by Cotterill et al. (Cotterill et al. 2016) were MI, PS, logISI and CMA. 

In this chapter, principles of these algorithms are explained in detail.  

MaxInterval. MaxInterval (MI) method was developed by Nex Technologies in 2014 

(Nex Technologies 2014). The method utilizes ISIs of a spike train to detect bursts. A 

burst is determined by five predefined parameters: maximum beginning ISI (begISI), 

maximum ending ISI (endISI), minIBI, minSpikes, and minDur. A burst must fulfill all 

five conditions. First, the algorithm scans a spike train until an ISI ≤ begISI is found. 

This marks the beginning of a burst. Each following ISI < endISI is included in the burst. 

If an ISI ≥ endISI is encountered, the burst is ended. After going through all ISIs, the 

bursts with a distance smaller than minIBI are merged. Finally, the bursts, for which 

duration is smaller than minDur or a spike number is smaller than minSpikes, are 

discarded. 

Poisson surprise. Poisson surprise (PS) method was introduced by Legendy et al. 

already in 1985 (Legendy, Salcman 1985). It was developed on in vivo data recorded 

from cat striate cortex. PS is a statistic method, which evaluates the probability of a 

burst being a chance occurrence. Thus, it is a surprise-based method. PS assumes that 

the baseline spike frequency in a spike train follows a Poisson distribution with spike 

frequency f, which is set equal to the mean spike frequency over the spike train. First, 
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the algorithm scans a spike train for three sequential spikes with ISIs that are both 

smaller than ISImean/2. The found three spikes are considered as an initial burst. The 

following spikes are added to the initial burst until an ISI > 2*ISImean is found. Next, a 

Poisson surprise statistic S is calculated for bursts containing different number of 

spikes starting from three spikes and terminating to the total number of spikes within 

the initial burst. The Poisson surprise statistic is defined as 

𝑆 = −log⁡(𝑝) 

where p is the probability of n or more spikes randomly occurring in a time interval 

of length T in the underlying Poisson distribution. The p is defined by Poisson formula 

as 

𝑝 = e−fT∑(𝑓𝑇)𝑖/𝑖!

∞

𝑖=𝑛

 

where f is the mean spike frequency in a spike train, T is a length of a time interval, 

and n is a number of spikes occurring in this time interval. 

S is calculated for every possible sequential set of spikes. The burst with the highest 

surprise is selected, and if the surprise and the number of spikes in the burst are both 

greater than the respective threshold values, the burst is added to the burst list. 

LogISI. LogISI method was developed by Pasquale et al. in 2010 on rat cortical 

neuronal networks (Pasquale et al. 2010). The algorithm was based on earlier 

methods, which utilize two predefined parameters for burst detection, namely 

maxISI and minSpikes (Chiappalone et al. 2005; Turnbull et al. 2005). LogISI algorithm 

combined this methodology with a method developed by Selinger et al. (Selinger et 

al. 2007), which resulted in a self-adaptable method. The algorithm utilizes log-

adjusted ISI histogram to compute ISI threshold (ISIth) for intra-burst ISI and detects 

bursts based on this threshold. First, the algorithm computes a histogram of log-

adjusted ISIs of a spike train. Peaks in the histogram are detected. If the value of a 

point is higher than both of its neighbors, it is considered a peak. Minimum distance 

of two peaks has to be more than two points. A peak corresponding to the maximum 

frequency within a defined time window is found and selected to represent the most 

probable ISI intra-burst ISI. Typically, the cutoff for the time window is 100 ms, which 

is an empirical value determined by the authors. The intra-burst peak is paired with 

all the following peaks, the minimum between each peak pair is found, and a void 

parameter is calculated for each pair. The void parameter describes the level of 

separation of a peak pair. The void parameter is defined as 
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𝑣𝑜𝑖𝑑 = 1 −
𝑔(𝑚𝑖𝑛𝑖𝑚𝑢𝑚)

√𝑔(𝑝𝑒𝑎𝑘1)𝑔(𝑝𝑒𝑎𝑘2)
 

where g(x) is the distribution of 𝑥 = log⁡(𝐼𝑆𝐼). When g(minimum) = 0, the void 

parameter is 1 and the peaks are well separated. When 𝑔(𝑚𝑖𝑛𝑖𝑚𝑢𝑚) =

√𝑔(𝑝𝑒𝑎𝑘1)𝑔(𝑝𝑒𝑎𝑘2), the void parameter is 0 and the peaks are not separated. 

Next, the algorithm checks whether any of the calculated void parameters exceeds 

the threshold, which is typically set to 0.70, an empirical value determined by the 

author. If a void parameter greater than the threshold is found, the ISI corresponding 

to the minimum between the peak pair is chosen as the ISIth. 

Finally, the algorithm uses the ISIth to define bursts in the spike train. There are three 

possible paths for burst detection and the selection of a path depends on the 

calculated value of ISIth. Path 1 is selected if ISIth is smaller than 100 ms. In this case, 

subsequent spikes with ISI < ISIth are assigned into a burst. 

Path 2 is selected if ISIth is greater than 100 ms. Here, more steps are needed for 

burst detection. Besides the calculated ISIth, a predefined default maxISI is used. 

First, the subsequent spikes with ISI < maxISI are assigned into a burst. After finding 

all the bursts with this condition, the spikes at the boundaries with ISI < ISIth are 

added to the bursts. Additionally, the algorithm merges bursts if the time between 

them is smaller than ISIth. 

Path 3 is selected if the algorithm fails to find a void parameter or if the derived ISIth 

is higher than acceptable (> 1 s). In this case, the predefined default maxISI is used to 

detect bursts. The subsequent spikes with ISI < maxISI are assigned into a burst. This 

backup strategy is not very elegant but is necessary to provide some tolerable burst 

detection with challenging data and in case of failure of the more precise algorithm. 

If even an intra-burst peak is not found, the spike train is considered non-bursting 

and burst detection is not performed. 

Cumulative moving average. Cumulative moving average (CMA) method was 

developed by Kapucu et al. in 2012 on developing hESC-derived neuronal networks 

(Kapucu et al. 2012). The algorithm utilizes CMA of an ISI histogram to determine 

separate ISIths for burst cores and burst-related spikes. CMA of an ISI histogram 

presents the cumulative average spike count up to a particular ISI. It highlights long-

term trends while suppressing short-term fluctuations. Majority of the intra-burst ISIs 

are expected to be located at the proximity of the maximum value of the CMA, CMAm. 

To find this maximum, CMA is calculated for each bin of the ISI histogram. CMA of Ith 

ISI bin is defined as 
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𝐶𝑀𝐴𝐼 =
1

𝐼
∑𝑛𝑖

𝐼

𝑖=1

 

where 𝑛𝑖  is the number of spikes in the ith ISI bin. CMAm is reached at the mth ISI bin, 

which is calculated as 

𝑚 = argmax
𝑘=1,…,𝑁

⁡(
1

𝑘
∑𝑛𝑖

𝑘

𝑖=1

) 

where N is the total number of ISI bins and 𝑛𝑖  is the number of spikes in the ith ISI 

bin. 

Next, skewness of the ISI distribution is calculated to determine factors α1 and α2. 

The skewness intervals and corresponding α-factors were empirically determined by 

the authors. The longer the tail of the distribution is, the further intra-burst ISIs can 

be expected to be from the peak value of the histogram. Therefore, large skewness 

results in larger ISIths. The ISI bin which is located after mth ISI bin and for which the 

value of CMA curve is closest to α1*CMAm is identified, and the mid time point of this 

ISI bin is set as ISIth for burst cores, ISI1. Similarly, α2*CMAm is applied to find ISIth for 

burst-related spikes, ISI2. Now, subsequent spikes with ISI < ISI1 are defined as burst 

cores. Burst-related spikes with an ISI < ISI2 are added to the burst. Also, two bursts 

are merged if the time between them is less than ISI2.  
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3. Materials and Methods 

3.1. Ethical issues 

The hESCs used in this work were derived at BioMediTech, Tampere University, 

Finland. BioMediTech has received approval from the Finnish Medicines Agency 

(FIMEA) for use of human embryos in research (Dnro 1426/32/300/05). Supportive 

statements for the derivation, culture and differentiation of hESCs (R05116) have 

been received from the regional ethics committee of Pirkanmaa Hospital District. 

The experiments using primary rat cortical neurons were carried out according to 

institutional guidelines (University of Helsinki internal license number: KEK17-016). 

3.2. Human stem cell culture and cortical neuronal differentiation 

3.2.1. Human embryonic stem cell culture 

hESC line Regea 08/023 (feeder-free passage 6) was used to produce human neuronal 

networks. The hESC line has been characterized earlier (Skottman 2010). To maintain 

the hESC line, hESCs were cultured on top of human foreskin fibroblast feeder cell 

layer in Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific), 

which contained 20% KnockOut Serum Replacement (Thermo Fisher Scientific). This 

maintenance protocol has been described previously by Rajala et al. (Rajala et al. 

2007). To expand the hESCs before neuronal differentiation, the hESCs were 

transferred to a feeder-free system where they were cultured on recombinant 

human laminin-521 (LN521, Biolamina, Sweden) in E8 medium (Thermo Fisher 

Scientific). The expansion culture has been described previously by Hongisto et al. 

(Hongisto et al. 2017). The pluripotency of the hESC line was monitored regularly. The 

hESCs were stained for pluripotency markers Nanog, Oct-3/4, SSEA-4, TRA-1-81 and 

TRA-1-60, and the capacity to produce different germ layers was examined in EB 

assay by staining for α-smooth muscle actin, α-fetoprotein and Nestin. 

3.2.2. Cortical neuronal differentiation 

hESCs were detached using TrypLE Select (Thermo Fisher Scientific). The detached 

cells were plated at density of 5x105 cells/cm2 on plates coated with poly-L-ornithine 

(PO, Sigma-Aldrich) and LN521 in E8 medium, which contained 10 M ROCK Inhibitor 

(Y-27632, Sigma-Aldrich). After 24 hours, medium was changed to plain E8 medium. 
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The next day, neuronal differentiation was started. The following cortical neuronal 

differentiation was performed with a protocol modified from Shi et al. (Shi et al. 

2012). The protocol included periods of induction, proliferation and final maturation. 

For each stage, a distinct medium was used. In these mediums, neural maintenance 

medium (NMM) was used as a basal medium. NMM consisted of 1:1 DMEM/F12 with 

Glutamax and Neurobasal, 0.5% N2, 1% B27 with Retinoic Acid, 0.5 mM GlutaMAX, 

0.5% NEEA, 50 µM 2-mercaptoethanol (all from Thermo Fisher Scientific), 2.5 µg/ml 

Insulin (Sigma-Aldrich) and 0.1% penicillin/streptomycin (Thermo Fisher Scientific). 

During the following cultures, the cells were passaged using StemPro Accutase 

(Thermo Fisher Scientific), and 10 µM ROCK Inhibitor was added to the medium when 

plating and removed after 24 hours. Otherwise, the medium was changed every day 

during neural induction period and every two to three days during proliferation and 

final maturation periods. At all times, 100% of the medium was changed. The cells 

were kept at 37 °C in 5 % CO2
 atmosphere and 95 % humidity. 

During a 12-day neural induction, NMM supplemented with 100 nM LDN193189 and 

10 µM SB431542 (both from Sigma-Aldrich). On day 12, the cells were passaged and 

plated at density of 2.6x105 cells/cm2 on plates coated with PO and LN521. After 24 

hours, the neural proliferation was started and the medium was switched to NMM 

supplemented with 20 ng/ml fibroblast growth factor-2 (FGF2, Thermo Fisher 

Scientific). Cells were passaged on day 17. On day 21, the cells used in this work were 

cryopreserved in the neural proliferation medium containing 10% dimethyl sulfoxide 

(DMSO, Sigma-Aldrich) and 10 M ROCK Inhibitor. The cells were thawed and plated 

at density of 3.1x105 cells/cm2 on plates coated with PO and LN521. The cells were 

passaged on day 25 and plated at density of 2.6x105 cells/cm2 on plates coated with 

PO and LN521. On day 26, the final maturation was started and the medium was 

switched to NMM, which was supplemented with 20 ng/ml brain-derived 

neurotrophic factor (BDNF, R&D Systems), 10 ng/ml glial-derived neurotrophic factor 

(GDNF, R&D Systems), 500 µM dibutyryl cyclic adenosine monophosphate (db-cAMP, 

Sigma-Aldrich) and 200 µM ascorbic acid (AA, Sigma-Aldrich). On day 32, the cells 

were plated for experiments on ⌀ 13 mm glass coverslips, which were placed on 24-

well plate, or on CytoView MEA 48-well plate. The coverslips were coated with PO 

and LN521, and the cells were plated at density of 5.4x104 cells/cm2. The MEA plate 

was coated with poly-ethylene-imine (PEI) and LN521, and the cells were plated at 

1x106 cells/cm2. 
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3.3. Primary rat cortical neuronal culture 

Cortex tissue was harvested from Wistar rat embryos on embryonic day 17-18 as 

described earlier by Sahu et al. (Sahu et al. 2019). The cells were plated on ⌀ 13 mm 

glass coverslips, which were placed on 24-well plate, or on CytoView MEA 48-well 

plate. Both the coverslips and the MEA plate were coated with poly-D-lysine (PDL, 

Sigma-Aldrich). The cells were plated at density of 7.53x104 cells/cm2 on the 

coverslips and at 2.9x105 cells/cm2 on the MEA plate. The culture medium consisted 

of Neurobasal, 2% B27, 2 mM GlutaMAX, and 1% penicillin/streptomycin (all from 

Thermo Fisher Scientific). 50% of the medium was changed every two to three days 

until the day before pharmacological assays. 

3.4. Microscopy and immunocytochemistry 

3.4.1. Phase-contrast microscopy 

During culturing, the cells were imaged with phase-contrast microscope to evaluate 

the morphology of the cells and to monitor the adherence of cells. Imaging was 

performed once a week using either Nikon Eclipse Ti with Nikon digital sight DS-Fi2 

camera and NIS-Elements F 4.30.00 64-bit software (Nikon, Tokyo, Japan) or Zeiss 

Axion Observer.A1 with Axiocam 506 color camera and ZEN2 software (blue edition) 

(Carl Zeiss, Jena, Germany). 

3.4.2. Immunocytochemical staining 

Human neuronal cultures on the coverslips were fixed four weeks after final plating 

(61 days after the onset of neurogenesis) and rat neuronal cultures on the coverslips 

after three weeks (22 days) in vitro. The protocol has been described earlier 

(Lappalainen et al. 2010). The cells were washed with Dulbecco’s phosphate-buffered 

saline (DPBS, Lonza), after which they were fixed in 4% paraformaldehyde (PFA, 

Sigma-Aldrich) for 15 minutes at room temperature (RT). The cells were again washed 

with DPBS. The fixed cells were stored at 4 °C in DPBS until stainings. For stainings, 

the cells were first incubated in a blocking solution containing 10 % normal donkey 

serum (NDS, Biowest), 0.1 % Triton-X Sigma-Aldrich and 1% bovine serum albumin 

(BSA, Sigma-Aldrich) in DPBS for 45 minutes. The cells were washed with primary 

solution containing 1% NDS, 0.1 % Triton-X and 1 % BSA in DPBS. Next, the cells were 

incubated with primary antibodies in the primary solution at 4 °C overnight. The 

primary antibodies comprised βIII-tubulin (chicken, 1:100, Abcam: ab107216), 
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microtubule-associated protein 2 (MAP2, rabbit, 1:100, Millipore: AB5622), PSD95 

(mouse, 1:50, Abcam: ab2723), S100β (mouse, 1:100, Abcam: ab11178), and 

synaptophysin (rabbit, 1:100, Abcam: ab32127). On the following day, the cells were 

washed twice with secondary solution consisting of 1% BSA in DPBS. The cells were 

then incubated with secondary antibodies in the secondary solution for one hour at 

RT. The secondary antibodies comprised of Alexa Fluor 488 (1:200), Alexa Fluor 568 

(1:200) or Alexa Fluor 647 (1:200) dyes (all from Thermo Fisher Scientific). Next, the 

cells were incubated with 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, 

1:1000, Thermo Fisher Scientific) in DPBS for five minutes. The cells were washed first 

with DPBS and then with phosphate buffer (PB). After drying, the cells were mounted 

with ProLong™ Gold Antifade Mountant with DAPI (Invitrogen) and stored at 4 °C 

until imaging. The cells were imaged using Olympus IX51 microscope with Olympus 

DP30BW camera (Olympus Corporation, Hamburg, Germany) and LSM780 Laser 

Scanning Confocal Microscope with Quasar spectral GaAsP detector (Carl Zeiss, Jena, 

Germany). 

3.5. Microelectrode array recordings 

MEA data was recorded with Axion Maestro system that is controlled by AxIS 

Software (Axion Biosystems, Atlanta, GA, USA). The sampling rate used in all MEA 

recordings was 12.5 kHz. Temperature was set to 37°C for all recordings. For 

pharmacological assays, also 5% CO2 atmosphere was set due to a long recording 

time. 

Ten-minute recordings of the spontaneous electrical activity of the cell cultures were 

recorded twice a week until cultures were used for pharmacological assays. The 

pharmacological assays for the human culture were performed after four weeks on 

MEA (61 days after the onset of neurogenesis). For the rat culture, the 

pharmacological assays were performed after three weeks (22 days) on MEA. Day 

prior to the assays, 100% of the medium was removed and an identical amount of 

fresh medium was added to each well. In the pharmacological assays, electrical 

activity patterns were altered by treatment with reagents including GABAergic 

agonist GABA (10 M, Sigma-Aldrich), AMPA/kainate receptor antagonist 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX, 50 M, Abcam), NMDA receptor antagonist D-(-)-

2-amino-5-phosphonopentanoic acid (D-AP5, 50 M, Sigma-Aldrich), GABAA 

antagonist gabazine, also known as SR95531 (30 M, Sigma-Aldrich), and kainate 

receptor agonist kainic acid (KA, 5 M, Sigma-Aldrich). All neuromodulators were 

added into distinct wells in identical amount of final maturation medium. On control 

wells, an identical amount of final maturation medium was added without any 



 

 

30 

reagent. On human culture, four wells were treated by each reagent and four wells 

were used as control. On rat culture, seven wells were treated by each agent and six 

wells were used as control. Additionally, sodium channel blocker tetrodotoxin (TTX, 

1 M, Tocris) was used to validate the biological origin of the activity. TTX was added 

to two wells of each treatment and at least to two control wells. Before the addition 

of the neuromodulators, the baseline activity was recorded for 30 minutes. The 

electrical activity influenced by the neuromodulators was similarly recorded for 30 

minutes. The activity affected by TTX was recorded for 10 minutes. 

The data selected for burst detection analysis were re-recorded from the recordings 

described above. 

3.6. Microelectrode array data analysis 

Spike detection was performed with an in-house Matlab script (The MathWorks Inc., 

Natick, MA, United States, version 2018a) based on amplitude thresholding (Kapucu 

et al. 2012; Quiroga et al. 2004). To allow detection of significant transitions observed 

during the development of the spontaneous activity, inactive electrodes were 

excluded from the spontaneous activity data. An electrode was considered inactive 

if its spike frequency was < 0.17 Hz (10 spikes per minute). The same condition was 

applied for the baseline recordings of the pharmacological assays but not for the 

recordings of neuromodulator-induced activity. Only the electrodes that were 

considered active in the baseline recordings were included in the analysis of 

pharmacological data. 

No conditions were set for the spike frequency on data selected for burst detection 

analysis. 

3.7. Performance analysis of burst detection algorithms 

3.7.1. Data selection 

The data selection was conducted so that the data set represented all activity 

patterns observed in spontaneous activity and pharmacological assays. No synthetic 

data was used in this work as a recent study of Cotterill et al. (Cotterill et al. 2016) 

had analyzed the performance of burst detection algorithms on synthetic data. 
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3.7.2. Visual burst detection 

Bursts were visually observed from the raw MEA signal. A custom-made Matlab script 

was used to generate a plot that allowed zooming of the raw signal.  The timing of 

the bursts was recorded at the scale of 10 ms. During visual burst identification, a 

burst was required to include at least five spikes. The bursts were given identity of 

either a definite burst or a possible burst.  When doubting whether a spike set was a 

possible burst or not a burst at all, the ISIs within the spike set were inspected and 

approximately 100 ms was considered as an acceptable ISI in this kind of a possible 

burst. 

3.7.3. Burst detection algorithms 

The performance of four algorithms was investigated. The four algorithms chosen for 

the analysis had shown most promise in a study conducted by Cotterill et al. (Cotterill 

et al. 2016). The analysis was performed with a custom-made R script (The R 

Foundation for Statistical Computing, Vienna, Austria, version 3.5.1). Especially the R 

package meaRtools (Gelfman et al. 2018) was applied in the script. The burst 

detection algorithms were accessed from a publicly available source at 

https://github.com/ellesec/burstanalysis, where they had been loaded by Cotterill et 

al. (Cotterill et al. 2016). A single modification was made to the code of the CMA 

method to fix an erroneous calculation of mean ISI in burst. 

For the initial performance analysis, minSpikes was set to 3 for all the algorithms. 

Rest of the parameter values were set according to the original values used by the 

authors with a single exception (Table 1). For PS, the threshold for surprise statistic 

was set to ~4.6 to allow comparison with the results of the study by Cotterill et al. 

(Cotterill et al. 2016). The surprise thresholds used by Legendy et al. were 10 and 20 

(Legendy, Salcman 1985). The threshold used in this work is lower than the originals 

and, therefore, the result will include more bursts than it would using the original 

thresholds. 
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Table 1. Default parameter values for initial burst detection analysis. The pre-defined parameters 
and their values are presented for each of the four algorithms included in the performance 
analysis. The parameter values for the initial performance analysis were set according to the 
original authors except for the minimum surprise statistic used in PS algorithm. 
 

 

3.7.4. Evaluation criteria for the algorithm performance 

Each algorithm was given a score based on two aspects of its performance. First, the 

result of each algorithm was compared with the result of the visual inspection. 

Second, the result of each algorithm was compared with the results of other 

algorithms. The scoring criteria was as follows: 

0) Failure: Many bursts are missed, or many false bursts are detected. 

1) Satisfactory performance: Majority of bursts are detected but not necessarily 

reasonably timed. False bursts are not excessive. 

2) Good performance: Majority of bursts are detected and reasonably timed. 

False bursts are rare. 

3) Excellent performance: All or nearly all bursts are detected and reasonably 

timed. Very few false bursts are detected, or none. 

To allow revelation of subtle differences between algorithms performances, the 

average level of algorithm performances was used to adjust the accepted level of 

excess or scarcity of false bursts as well as the accuracy requirements for the timing 

of bursts separately for each spike train. 

Algorithm Parameter Value

MaxInterval Maximum beginning ISI 0.17 s

Maximum ending ISI 0.3 s

Minimum IBI 0.2 s

Minimum number of spikes 3

Minimum burst duration 0.01 s

Poisson surprise Minimum surprise statistic -ln(0.01) ~4.6

Maximum beginning ISI ISImean/2

Maximum ending ISI ISImean*2

Minimum number of spikes 3

LogISI Maximum cutoff for time window 0.1 s

Minimum void 0.70

Default maximum ISI 0.1 s

Minimum number of spikes 3

Cumulative moving average Minimum number of spikes 3

α1 and α2 1.0 and 0.5 if skew < 1

0.7 and 0.5 if 1 ≤ skew < 4

0.5 and 0.3 if 4 ≤ skew < 9

0.3 and 0.1 if 9 ≤ skew
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For quantitative and objective evaluation, sensitivity and specificity were calculated 

for each algorithm for each spike train. The calculations were based on the visually 

observed identities of spikes. A time period of 10 ms was added to both ends of a 

burst to compensate for the limited accuracy of visual observation. If a spike was 

located within a definite burst in the visual inspection, it was considered a burst spike. 

If a spike was outside of bursts in the visual inspection, it was considered an individual 

spike. If a spike was located within a possible burst in the visual inspection, it was 

excluded from the calculations because both identities were accepted for this spike. 

The sensitivity states the probability of the algorithm detecting true burst spikes. The 

sensitivity was calculated as 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒⁡𝑏𝑢𝑟𝑠𝑡⁡𝑠𝑝𝑖𝑘𝑒𝑠

𝑡𝑟𝑢𝑒⁡𝑏𝑢𝑟𝑠𝑡⁡𝑠𝑝𝑖𝑘𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑠𝑝𝑖𝑘𝑒𝑠⁡
 

If no bursts were observed in a spike train, sensitivity could not be calculated. The 

specificity describes the probability of the algorithm avoiding detection of false burst 

spikes. Specificity was calculated as 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ⁡
𝑡𝑟𝑢𝑒⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑠𝑝𝑖𝑘𝑒𝑠

𝑡𝑟𝑢𝑒⁡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙⁡𝑠𝑝𝑖𝑘𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒⁡𝑏𝑢𝑟𝑠𝑡⁡𝑠𝑝𝑖𝑘𝑒𝑠
 

3.8. Statistics 

The effect of pharmacological reagents on spike frequency was investigated by 

testing whether the relative change in spike frequency (RCf) was different on an 

electrode under the influence and on an uninfluenced electrode. RCf for a single 

electrode was calculated as 

𝑅𝐶𝑓 =
𝑓(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒)

𝑓(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
∗ 100 

where f(influence) is spike frequency after addition of reagent or normal medium and 

f(baseline) is spike frequency of the baseline recording. Normal distribution was 

tested with Shapiro-Wilk’s test. As the data of most test groups did not follow normal 

distribution, the difference was tested for using Kruskal-Wallis’ test. Multiple 

comparisons were performed using Steel with control. Significance level was set to 

0.05. Median, lower (Q1) and upper quartiles (Q3) were shown as descriptive 

statistics. Statistical analyses were performed using JMP (SAS Institute Inc., Cary, NC, 

USA, version 13.1.0).  
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4. Results 

4.1. Neuronal differentiation and synaptogenesis 

Immunocytochemical staining showed that both the hPSC-derived and primary rat 

cortical neuronal networks included neurons and astrocytes (Figure 7A). In both 

cultures, the neurons and astrocytes developed an appropriate morphology similar 

to their counterparts in vivo. 

4.1.1. Human pluripotent stem cell-derived neuronal networks 

The hPSC-derived neuronal cells attached well in the final plating. During the culture, 

some aggregation was observed but the cells did not form detached aggregates. The 

behavior was similar on glass slips and on MEA plate. The neurons had a compact 

soma and thin long processes, which assembled in cable-like formations (Figure 7A). 

Majority of the astrocytes were star-shaped with a less compact soma and short 

processes. Both the presynaptic synaptophysin and the postsynaptic PSD95 were 

present in the neurons and were co-localized suggestive of structural synapses 

(Figure 7B). The synapse formation indicates that the neurons developed 

electrophysiological functionality. 

4.1.2. Primary rat neuronal networks 

The primary rat cortical neurons attached well when plated. There was no notable 

aggregation during culture. The behavior was similar on glass slips and on MEA plate. 

The neurons had a compact soma and thin long processes, which in some neurons 

included a single process thicker than the others (Figure 7A). These thicker processes 

could be axons. The astrocytes were star-shaped and had a less compact soma and 

short processes, which were thicker and more numerous than the processes of 

neurons. The morphology of individual rat cells was more apparent than that of 

individual human cells as there was no aggregation in rat neuronal culture. Staining 

for synapses revealed a presence and a co-localization of synaptophysin and PSD95 

(Figure 7B) indicating structural synapses. Staining for PSD95 was more abundant in 

rat neuronal culture in comparison to human neuronal culture. 
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Figure 7. Morphology and synaptogenesis in human neuronal networks on day 61 and rat 
neuronal networks on day 22. A) The presence of astrocytes and neurons was confirmed by 
staining of astrocyte marker S100β (green) and neuron marker MAP2 (red), respectively. DAPI 
(blue) was stained to show the location of nuclei. Scale bar is 200 μm. B) The synaptogenesis of 
the neurons was confirmed by staining of the presynaptic marker synaptophysin (red) and the 
postsynaptic marker PSD95 (green). β-tubulin (white) was stained to elucidate the localization of 
synaptic markers on the neuronal processes. Synaptophysin and PSD95 were co-localized in both 
cultures, which is pointed out by arrows at two sites in the images of both human and rat 
networks. Scale bar is 10 μm. 
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4.2. Electrophysiological properties of neuronal networks 

4.2.1. Development of spontaneous activity 

In human neuronal networks, the spike frequency varied during the four weeks on 

MEA (Figure 8A). The activity was highest between time points of 14 and 21 days. The 

median spike frequency reached its peak value 1.35 Hz on day 21 but the increase to 

this point was not continuous. Afterwards, the median spike frequency decreased. 

The proportion of active electrodes over the plate increased continuously during the 

recordings. The proportion was 67.2% in the last recording of the spontaneous 

activity on day 28. 

In rat neuronal networks, first activity was observed after 7 days on MEA (Figure 8A). 

There was a substantial increase in median spike frequency on day 10, after which 

the median decreased slightly until there was another great increase on day 21. 

Highest median spike frequency was 6.60 Hz on day 21. The proportion of active 

electrodes increased continuously until it reached 98.6% on day 17 on MEA. The 

proportion decreased to 85.0% on day 21.  

4.2.2. Pharmacophysiology of neuronal networks 

The relative changes in spike frequencies are presented per electrode in percentages 

for each reagent in Figure 8B. The median RCf (Q1, Q3) on control electrodes was 

102.45% (90.76, 112.52) on human culture and 93.12% (76.19, 104.68) on rat culture. 

GABAergic antagonist gabazine increased the spike frequency to 147.05% (112.41, 

190.41; p < 0.01) in human neuronal culture but no statistically significant effect was 

observed in rat culture for which the median RCf was 105.82% (68.38, 174.49; p = 

0.57). GABAergic agonist GABA decreased the spike frequency to 43.73% (25.25, 

65.99; p < 0.01) in human culture and to 0.00% (0.00, 0.04; p < 0.01) in rat culture. 

Interestingly, KA also decreased the spike frequency despite of being a glutamatergic 

agonist. The spike frequencies decreased to 38.67% (10.07, 84.43; p < 0.01) and 

0.86% (0.04, 24.23; p < 0.01) on human and rat cultures, respectively. Glutamatergic 

antagonists CNQX and D-AP5 also decreased the spike frequency in both cultures. 

The decrease due to CNQX was to 27.97% (6.81., 40.84; p < 0.01) on human culture 

and to 9.96% (2.48, 49.18; p < 0.01) on rat culture. Corresponding decreases due to 

D-AP5 were 27.34% (15.03, 49.53; p < 0.01) and 6.02% (1.08, 17.73; p < 0.01). All 

median decreases were greater in rat culture than in human culture. TTX silenced all 

activity in both cultures. The number of electrodes included in each test group (N) in 

statistical analysis are reported in Appendix 1, Table A1. 
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Figure 8. Electrical activity and pharmacophysiology of human and rat neuronal networks. A) The 
upper figures display spike frequencies of individual electrodes for active electrodes (spike 
frequency > 0.17 Hz) at different time points on MEA. The lower figures display the proportion of 
active electrodes on corresponding time points. Median is marked with a black line, the box 
reaches from Q1 to Q3, and the whiskers cover 80% of the data points. B) Neuromodulators 
influenced the spike frequency of human and rat neuronal networks. The relative change is shown 
per electrode as a percentage of the influenced activity of the baseline activity. The analysis 
included electrodes, which were active (spike frequency > 0.17Hz) during the baseline recording 
prior neuromodulator addition. The number of electrodes included in each test group (N) in 
statistical analysis are reported in Appendix 1, Table A1. Median is marked with a black line, the 
box reaches from Q1 to Q3, and the whiskers cover 80% of the data points. The y-axis of the plot 
displaying rat data has been cut to allow reasonable resolution of the effect. Three data points 
are located outside of the plot. *p < 0.01, **p = 0.57.  
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4.3. Data selection 

The aim of the data selection was to produce a data set, which represented the 

various activity patterns identified during the development of spontaneous firing and 

in the pharmacological responses in both human and rat neuronal cultures. 

Regarding bursting activity, these patterns could be classified into four categories 

(cat.): 

I) Non-bursting activity of low spike frequency 

II) Non-bursting activity of high spike frequency 

III) Bursting activity with noise 

IV) Bursting activity with well-separated bursts 

It should be remarked that even though occasional short bursts could be observed in 

Categories I and II, the activity cannot be called bursting due to the scarcity of bursts. 

It should also be noted that here, discussing burst detection, the noise mentioned in 

Category III refers to individual spikes outside of bursts. 

The development of spontaneous activity followed along these categories over time. 

First, the spike trains displayed a low spike frequency. The spike frequency increased 

with time. Later, the bursting activity emerged. On some electrodes, the number of 

spikes outside of bursts decreased over time resulting in well-separated bursts. On 

few electrodes, however, well-separated bursts were observed very early. In human 

cultures, two types of bursts were observed: short bursts and long bursts, also called 

super bursts. In the raw MEA signal, the short bursts visually resembled blocks and 

the super bursts roughly resembled the shape of a hemisphere. In rat culture, only 

short bursts were observed. 

The effects of neuromodulators to the spike frequency was presented in Chapter 

4.2.1. The inhibiting modulators GABA, D-AP5 and CNQX resulted in low spike 

frequency patterns, generally without bursting activity (Cat. I). KA decreased spike 

frequency in both cultures. KA dispersed the bursts, which resulted in a high 

frequency pattern without bursting activity (Cat. II). The effect was especially distinct 

in human culture. Gabazine increased the spike frequency in both cultures. It was 

more remarkable, however, that gabazine concentrated the spikes into bursts. In 

other words, the number of spikes outside of bursts was decreased resulting in well-

separated bursts (Cat IV). TTX eliminated all activity. 

Overall, 14 two-minute spike trains of different activity patterns were selected for 

the burst detection analysis. Eight spike trains were from human culture and six spike 

trains from rat culture. Each category of activity patterns was represented in the 
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spike trains from both cultures. Additionally, the spike trains from human culture 

included both short and super bursts. Effect of each neuromodulator was also 

represented but not from both human and rat cultures. Only spike trains displaying 

the effect of gabazine were included from both cultures. Detailed information of the 

selected spike trains as well as their categories are collected in Table 4.3.1. Raw MEA 

signals, detected spikes and ISI distributions of four spike trains representing each 

category are shown in Figure 9. Same information for all selected spike trains is 

presented in Appendix 2, Figure A1. 

Table 2. Spike trains selected for the burst detection analysis. The spike trains are ordered by 
category, which is displayed in the first column. The source organism and days on MEA are shown 
in the second and third column, respectively. A detailed description of the activity pattern is given 
in the fourth column. Spike count and spike frequency (Hz) are presented in the fifth and sixth 
column, respectively. 
 

 

 

Category Culture Days on MEA Description Spike count Spike frequency (Hz)

I Human 29 D-AP5-inhibited activity 123 1.0

I Human 29 GABA-inhibited activity 224 1.9

I Rat 10 Immature, low frequency activity 113 0.9

I Rat 22 CNQX-inhibited activity 279 2.3

II Human 29 KA-induced high frequency activity 1360 11.3

II Rat 10 Immature, high frequency activity 620 5.2

III Human 14 Short bursts with noise 826 6.9

III Human 28 Super bursts with noise 2288 19.1

III Rat 17 Short bursts with noise 2442 20.4

IV Human 7 Short bursts without noise 465 3.9

IV Human 29 Gabazine-induced super bursts 462 3.9

IV Rat 17 Short bursts without noise 2474 20.6

IV Rat 22 Gabazine-induced short bursts 782 6.5

- Human 29 TTX-inhibited activity 0 0.0
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Figure 9. Raw MEA signals, detected spikes, and ISI distributions of four spike train representing 
activity pattern Categories I-IV. A) The activity patterns are visible from both the raw MEA signals 
and from the detected spikes. In Categories I and II, no bursts are present. The spikes appear at a 
low frequency in Category I and at a high frequency in Category II. In Categories III and IV, bursts 
are visible. In Category III, spikes can be seen between the bursts. The bursting activity pattern is 
referred as noisy as the identification of bursts can be challenging due to the spikes outside of 
bursts. In Category IV, no spikes appear outside of bursts. The bursts are well separated and easy 
to identify. Length of the raw MEA signal in the image is two minutes. Detected spikes are 
presented in the same time scale as the raw signal. B) The ISI distributions are presented as log-
adjusted histograms. Kernel density estimate is displayed as a black line on top of the histograms. 
It is notable that majority of ISIs are above 100 ms in the non-bursting activity patterns and below 
100 ms in the bursting activity patterns. The good separation of bursts in Category IV is apparent 
in the ISI distribution as the distribution is clearly divided into two parts. The part which is mostly 
located below 100 ms represents the ISIs within bursts, and the part mostly located above 1000 
ms represents the IBIs. 
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4.4. Performance of burst detection algorithms 

4.4.1. Algorithm performance with default parameter values 

The initial burst detection was carried out using the default parameter values 

presented in Materials and Methods (Table 1). The overall performance of each 

algorithm is described below and illustrated for each activity pattern category in 

Figure 10A. Performance on all spike trains is illustrated in Appendix 3, Figure A2. The 

performance scores of each algorithm are presented for individual spike trains as well 

as for the overall performance in Table 3. The sensitivities and specificities for 

individual spike trains and their mean values are similarly presented in Table 4. 

MI detected many false bursts in low frequency non-bursting activity (Cat. I). Some 

of these bursts were quite long (Appendix 3, Figure A2). On high frequency non-

bursting activity (Cat. II), MI failed completely. It created a series of long bursts and 

placed most of the spikes into bursts (Figure 10A and B). The behavior was similar on 

noisy bursting activity (Cat. III) displaying rat bursts. MI was unable to distinguish 

bursts from mere high frequency activity. In noisy bursting activity (Cat. III) from 

human culture, MI detected many false bursts. Moreover, MI unnecessarily extended 

and, consequently, merged bursts. Nevertheless, the super bursts were detected well 

in both spike trains with and without noise, although few super bursts were split into 

two parts. The performance of MI was excellent also with the rest of the well-

separated bursts (Cat. IV). Yet, its tendency to extend and merge bursts was apparent 

also on these spike trains. 

Similar to MI, PS detected many false bursts in low frequency non-bursting activity 

(Cat. I), and some of the bursts were quite long (Appendix 3, Figure A2). On the 

contrary, PS outperformed on high frequency non-bursting activity (Cat. II). It 

detected no bursts in high frequency activity from rat culture (Figure 10A and B) and 

detected only very short bursts in KA-treated activity. In noisy bursting activity (Cat. 

III), PS typically detected only the core of the burst leaving out many spikes that 

should have been included. Additionally, PS missed many bursts in the noisy activity 

displaying human short bursts. The performance was very similar on activity 

displaying well-separated bursts (Cat. IV). The bursts were detected but not all burst 

spikes were included and, in the activity displaying human short bursts, many bursts 

were missed. 

LogISI performed very well on low frequency non-bursting activity (Cat. I). The 

number of false bursts was small (Figure 10A and B). The performance was similar on 

high frequency non-bursting activity (Cat. II) from rat culture. However, logISI failed 
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on KA-treated activity as it found many false short bursts (Appendix 3, Figure A2). On 

noisy bursting activity (Cat. III), logISI performed very well although three issues 

emerged. First, some false bursts were detected. Second, only the cores of some 

short bursts were detected, which shortened the bursts. Third, many visually 

observed bursts were detected as multiple shorter bursts. In other words, logISI 

tended to split bursts into parts. Well-separated bursts (Cat. IV) were detected 

excellently, similar to MI. Some super bursts were split into parts. Contrary to its 

behavior on noisy bursting activity (Cat. III), logISI tended to extend and merge bursts 

on activity displaying well-separated human short bursts (of Cat. IV). 

CMA detected many false bursts in most low frequency non-bursting activity (Cat. I). 

These bursts were typically short but on D-AP5-inhibited activity the bursts were 

quite long (Figure 10A and B). On high frequency non-bursting activity (Cat. II), CMA 

failed entirely. It detected many short and long bursts in KA-treated activity and 

included all the spikes into a single burst on un-treated high frequency activity 

(Appendix 3, Figure A2). The latter behavior was similar to the behavior of MI. On 

noisy bursting activity (Cat. III), CMA performed very well but had two of the same 

issues as logISI: some false bursts, and many split bursts. Well-separated bursts (Cat. 

IV) were detected excellently by CMA, as they were by MI and logISI. In fact, CMA 

outperformed other algorithms on human gabazine-treated activity displaying super 

bursts. The detection of short bursts was not as flawless though, as they were often 

split into parts. 

There were two general issues that were not specific for any algorithm. The first issue 

was a presence of few bursts, which were visually confirmed but missed by the 

algorithms. It was noted that within the time frame of the visually observed burst the 

spike detection algorithm had recognized a fewer number of spikes than the human 

eye. The issue was left unsolved as it was not dependent on the performance of burst 

detection algorithms. The second issue was the opposite of the first issue. All the 

algorithms detected a great number of extremely short bursts, which were 

considered to be false bursts according to the visual observation. Due to their great 

numbers, the extremely short bursts had a tremendous effect on burst features 

derived from the detected bursts, such as burst duration or number of spikes in a 

burst. For example, on the noisy spike trains displaying super bursts, the median 

number of spikes in bursts was 5.0 or less for MI, PS and logISI and 9.5 for CMA (Figure 

10B). To dispose of the insignificant findings, burst detection was conducted again 

with a single change in the parameter values: minSpikes was increased from 3 to 5. 
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4.4.2. Effects of increased minimum number of spikes 

The increase of minSpikes enhanced the overall performance of all algorithms (Tables 

3 and 4). The cause of this was a decreased number of false bursts (Figure 10Ca). 

Especially the performance on non-bursting low frequency activity (Cat. I) from rat 

culture was improved. On similar activity from human culture, only the performances 

of MI and logISI were considered to have improved. 

Not all of the newly excluded bursts were false though. MI, logISI and CMA ended up 

missing some bursts that they had previously correctly detected (Figure 10Ca). This 

negative effect was observed on short bursts, but rarely. The effect was partly due to 

poor spike detection (Figure 10Cb). Furthermore, the bursts that had been split into 

parts, mostly by logISI and CMA, now lost the smallest of these parts. Still, the positive 

effect of the minSpikes increase was greater as the specificity of each algorithm 

increased or maintained its value on every spike train with a single exception – the 

specificity of PS on noisy spike train displaying rat bursts decreased by 0.01.  
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Figure 10. Performance of algorithms in different activity patterns and the effect of minSpikes 
selection. A) The performance of the algorithms in activity pattern Categories I-IV using default 
parameters. In D-AP5-inhibited low frequency activity (Cat. I), all algorithms detected false bursts. 
CMA detected few very long bursts. In untreated high frequency activity (Cat. II), PS outperformed 
the other algorithms as it detected no false bursts. LogISI found few short bursts. MI and CMA 
were unable to distinguish between mere high frequency activity and bursting activity. In noisy 
spike train with human super bursts (Cat. III), MI timed the super bursts well but also detected 
many false bursts. PS shortened the super bursts. LogISI and CMA split super bursts into multiple 
shorter bursts and detected short false bursts. In gabazine-treated well-separated rat bursts (Cat. 
IV), all algorithms timed the bursts excellently except for PS, which shortened the bursts. B) 
Number of spikes in a burst on the spike trains named in A. Detection of extremely short false 
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bursts consisting of only few spikes was a common issue of the algorithms. In non-bursting activity 
patterns (Cat. I and II) all the detected bursts were false. Each data point represents number of 
spikes in a single detected burst. The median is marked with a black line. C) Effect of minSpikes 
selection. Increase of minSpikes (from 3 to 5) decreased the number of detected false bursts but 
additionally some bursts, which were previously correctly detected, were now excluded (a). Some 
of the incorrectly excluded bursts were lost due to poor spike detection. Not all spikes, which 
were visually identified and included in bursts, were detected by the spike detection algorithm 
(b). In A and C, vertical lines represent spikes. Horizontal lines represent visually identified bursts 
and algorithms results. Detection method is indicated by color and location as shown in bottom 
right corner of the panel. Definite and possible visual bursts are drawn at the same level, and the 
results of each algorithm are drawn at their own level. 
 
Table 3. Performance scores of algorithms using default parameters or increased minSpikes. The 
only difference between the analysis runs was the value of minSpikes. Default parameters used 
the value of 3 whereas the increased minSpikes used the value of 5. Performance of all algorithms 
was improved. 0 = failure, 1 = satisfactory, 2 = good and 3 = excellent. In the data column, h = 
human and r = rat. 
 

 
 

Table 4. Sensitivities and specificities of algorithms using default parameters or increased 
minSpikes. The only difference between the analysis runs was the value of minSpikes. Default 
parameters used minSpikes of 3 whereas the increased minSpikes used 5. Specificity of all 
algorithms was essentially improved whereas the sensitivity was either maintained or slightly 
decreased. SE = sensitivity, SP = specificity. In the data column, h = human and r = rat. 
 

 

Category Data MI PS LogISI CMA MI PS LogISI CMA

I D-AP5-inhibited activity (h) 0 0 2 0 2 0 3 0

I GABA-inhibited activity (h) 0 0 3 0 0 0 3 2

I Immature, low frequency activity (r) 0 0 0 0 3 3 3 3

I CNQX-inhibited activity (r) 0 0 3 3 3 3 3 3

II KA-sinduced high frequency activity (h) 0 1 0 0 0 1 0 0

II Immature, high frequency activity (r) 0 3 2 0 0 3 3 0

III Short bursts with noise (h) 0 0 1 1 0 0 1 2

III Super bursts with noise (h) 1 0 1 2 1 0 2 2

III Short bursts with noise (r) 0 2 3 2 0 2 2 2

IV Short bursts without noise (h) 2 0 2 2 1 0 1 1

IV Gabazine-induced super bursts (h) 2 1 2 3 2 1 2 3

IV Short bursts without noise (r) 2 2 3 3 3 2 3 3

IV Gabazine-induced short bursts (r) 3 1 3 2 3 1 3 2

Total score 10 10 25 18 18 16 29 23

Default parameters Increased minSpikes

Category Data SE SP SE SP SE SP SE SP SE SP SE SP SE SP SE SP

I D-AP5-inhibited activity (h) - 0.80 - 0.77 - 0.95 - 0.55 - 0.90 - 0.82 - 1.00 - 0.55

I GABA-inhibited activity (h) - 0.61 - 0.61 - 1.00 - 0.80 - 0.70 - 0.61 - 1.00 - 0.97

I Immature, low frequency activity (r) - 0.50 - 0.65 - 0.68 - 0.53 - 1.00 - 1.00 - 1.00 - 1.00

I CNQX-inhibited activity (r) - 0.52 - 0.72 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

II KA-induced high frequency activity (h) - 0.02 - 0.93 - 0.25 - 0.19 - 0.03 - 0.96 - 0.47 - 0.27

II Immature, high frequency activity (r) - 0.21 - 1.00 - 0.96 - 0.00 - 0.43 - 1.00 - 1.00 - 0.00

III Short bursts with noise (h) 1.00 0.24 0.46 0.98 0.88 0.66 0.97 0.52 0.98 0.52 0.45 1.00 0.71 1.00 0.94 0.85

III Super bursts with noise (h) 1.00 0.42 0.72 1.00 0.99 0.70 0.96 0.95 1.00 0.60 0.69 1.00 0.98 0.94 0.95 0.99

III Short bursts with noise (r) 1.00 0.02 0.91 1.00 0.98 0.97 0.92 0.98 1.00 0.04 0.91 0.99 0.94 0.98 0.89 0.98

IV Short bursts without noise (h) 0.99 0.82 0.70 1.00 0.99 0.50 0.98 0.89 0.96 0.82 0.69 1.00 0.92 0.61 0.89 0.93

IV Gabazine-induced super bursts (h) 1.00 0.83 0.94 1.00 0.98 0.83 1.00 0.83 0.98 0.83 0.94 1.00 0.97 0.83 1.00 0.83

IV Short bursts without noise (r) 1.00 0.02 0.96 0.25 1.00 0.13 1.00 0.14 1.00 0.08 0.96 0.25 1.00 0.15 1.00 0.14

IV Gabazine-induced short bursts (r) 1.00 0.10 0.87 0.57 1.00 0.05 0.98 0.24 1.00 0.10 0.86 0.57 1.00 0.05 0.96 0.24

Mean 1.00 0.39 0.79 0.81 0.97 0.67 0.97 0.59 0.99 0.54 0.79 0.86 0.93 0.77 0.95 0.67

CMA

Default parameters Increased minSpikes

MI PS LogISI CMA MI PS LogISI
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4.4.3. Computation of burst features 

Exclusion of extremely short bursts allowed derivation of more representative burst 

features. Four burst features were computed and examined to further evaluate the 

algorithm function after setting minSpikes to 5. These features included: burst count, 

percentage of spikes located in bursts, number of spikes in a burst and burst duration. 

For the examination, the spike trains representing Categories II and III were selected 

since these categories seemed to be the most challenging for the algorithms in 

general. The representative spike trains were the un-treated non-bursting high 

frequency spike train (Cat. II) and the noisy spike train displaying super bursts (Cat. 

III). 

Extremely short bursts had been excluded but this did not equal exclusion of all false 

bursts. MI still detected over 40 false bursts on the non-bursting spike train (Figure 

11). CMA detected two extremely long false bursts that included 100% of the spikes. 

As reported above, MI and CMA could not distinguish between bursts and mere high 

frequency activity. PS and logISI did not detect false bursts on this non-bursting spike 

train. On the bursting spike train, MI outperformed other algorithms in detection of 

super bursts. However, some false bursts remained and the specificity was low. 

Because of the short false bursts, the median number of spikes in a burst was lower 

than that of logISI and CMA despite the superior timing of the long super bursts. 

Nevertheless, the burst count of the other algorithms was higher because they split 

super bursts into shorter bursts. PS additionally shortened the bursts, which was 

visible in the burst duration and percentage of spikes within bursts when compared 

to other algorithms. Despite the split bursts, logISI and CMA had very high 

sensitivities and specificities. The splitting behavior was stronger with CMA, which 

was shown by its higher burst count in contrast to the similar percentage of spikes in 

bursts as well as by its shorter burst duration. 
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Figure 11. Computed burst features for two spike trains representing non-bursting high frequency 
activity (Cat. II) and noisy bursting activity (Cat. III). Burst count, percentage of spikes located in 
bursts, numbers of spikes in a burst and burst durations are presented for the un-treated non-
bursting high frequency spike train (Cat. II) and for the noisy bursting spike train displaying super 
bursts (Cat. III). All the bursts detected on non-bursting high frequency spike train were false. For 
number of spikes in a burst and burst duration, each data point represents the corresponding 
feature of a single detected burst. Medians of these features are marked with black lines. 
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4.4.4. Identification of the most promising algorithm 

The most promising algorithm was chosen based on the performance using the 

increased minSpikes. In the performance scores, the ranking from highest to lowest 

score was logISI (29 points), CMA (23 points), MI (18 points) and PS (10 points). The 

ranking in sensitivity was MI (0.99), CMA (0.95), logISI (0.93) and PS (0.79). Finally, 

the ranking in specificity was PS (0.86), logISI (0.77), CMA (0.67) and MI (0.54). When 

sensitivity and specificity were evaluated as a combination, logISI had the highest 

performance as its sensitivity was practically at a tie with CMA and its specificity was 

significantly higher than that of CMA. Moreover, the issues of logISI were not as grave 

as the issues of the other three algorithms. LogISI failed on one spike train only 

whereas the other three algorithms failed at least on three spike trains. 

Consequently, logISI was identified to be the most promising burst detection 

algorithm of the four. 

4.5. Optimization of logISI algorithm 

Setting minSpikes to 5 resolved the issue of false bursts for most spike trains. Only 

KA-treated activity (of Cat. II) still contained many false positives. On other spike 

trains, on the contrary, some bursts had been lost and thus further increase of 

minimum spikes was considered unprofitable. Remaining major issues of logISI 

algorithm included shortening, splitting and missing of bursts especially on noisy 

bursting activity (Cat. III). On well-separated human short bursts (of Cat. IV), 

extension and merging of bursts was deemed acceptable but the missed bursts, 

mostly missed only after the increase of minimum spikes, were regarded 

problematic. 

Parameters for logISI algorithm include 1) minSpikes, 2) void threshold, 3) cutoff for 

the time window in which the intra-burst peak is to be found, and 4) default maxISI. 

MinSpikes was set to 5 according to the results of the previous chapter. The 

possibilities for void threshold and cutoff optimization were explored. The original 

void threshold 0.70 and cutoff 100 ms were empirical values determined by the 

author (Pasquale et al. 2010) and thus other values could be more suitable for the 

data used in this thesis. The effect of default maxISI was tested with values higher 

than the original value 100 ms to prevent logISI from shortening and splitting bursts. 
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4.5.1. Optimization of void threshold 

Void parameters for all peak pairs were recorded to investigate possibilities for 

optimization. Nine spike trains had a void parameter above 0.70 and thus either path 

1 or 2 was selected for them (Table 5). Path 3 that uses only default maxISI was 

selected for four spike trains: both non-bursting high frequency trains (Cat. II), and 

for both noisy bursting trains from human culture (of Cat. III). Three of these spike 

trains were considered problematic. Only on un-treated high frequency activity, 

logISI performed excellently. The highest void parameters for these spike trains were 

0.60 for un-treated high frequency activity, 0.38 for noisy bursting activity displaying 

human short bursts, and 0.67 for noisy bursting activity displaying human super 

bursts. For KA-treated high frequency activity, there were no void parameters as 

there were no peaks subsequent to the intra-burst peak. According to the observed 

void parameters, the void threshold was first decreased to 0.60 and then further to 

0.35. The resulting performance scores are presented in Table 6 and the sensitivities 

and specificities are displayed in Table 7. 

Table 5. LogISI-computed values leading to path selection on each spike train. In the table, the 
intra-burst ISI represents the most probable ISI within a burst based on the computation by logISI. 
Out-of-burst ISI represents the lowest ISI, which logISI estimates to be outside of bursts with high 
probability. This probability is represented by the void parameter. Default threshold for void is 
0.70, which is why no out-of-burst ISI is found when no void parameter exceeds the threshold. 
Used void parameter is reported if such a void was found. Otherwise, highest void is reported. 
ISIth is computed if a void above the threshold is found. The value of ISIth determines the path 
selected for a spike train. If ISIth is lower or higher than the default maxISI, here 100 ms, path 1 
or path 2 are selected, respectively. If ISIth could not be calculated, path 3 is selected. It is notable 
that path 3 is chosen only for spike trains from Categories II and III. Path 3 covers the majority of 
the spike trains considered problematic for logISI burst detection. In the data column, h = human 
and r = rat. 
 

 

The decrease of void threshold to 0.60 improved the performance of logISI algorithm 

on noisy bursting activity displaying human super bursts due to reduced splitting of 

Category Data Intra-burst ISI Out-of-burst ISI
Used void or 

highest void
ISIth Path

I D-AP5-inhibited activity (h) 34 356 0.71 43 1

I GABA-inhibited activity (h) 17 55 0.80 22 1

I Unmatured, low frequency activity (r) 55 1512 0.93 367 2

I CNQX-inhibited activity (r) 1 55 1.00 3 1

II KA-induced high frequency activity (h) 92 - - - 3

II Unmatured, high frequency activity (r) 28 - 0.60 - 3

III Short bursts with noise (h) 22 - 0.38 - 3

III Super bursts with noise (h) 11 - 0.67 - 3

III Short bursts with noise (r) 2 92 0.72 36 1

IV Short bursts without noise (h) 44 588 0.95 464 2

IV Gabazine-induced super bursts (h) 10 281 0.80 176 2

IV Short bursts without noise (r) 1 70 0.91 55 1

IV Gabazine-induced short bursts (r) 17 1512 1.00 289 2
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super bursts (Figure 12A). The calculated ISIth was 143 ms. For non-bursting, un-

treated high frequency activity, the calculated ISIth was 73 ms but the performance 

was unchanged, and no bursts were detected. 

The decrease of void threshold to 0.35 slightly improved the algorithm performance 

on noisy bursting activity displaying human short bursts as less bursts were missed. 

Consequently, the sensitivity was increased. However, the bursts were unnecessarily 

extended and merged, which was seen as a decrease in specificity. A change in 

performance was also observed on well-separated rat bursts as the second highest 

void parameter for the spike train was 0.39 and was now above the threshold. The 

change was negative as some bursts were shortened and many entirely missed 

(Figure 12B). This led to a destructive decrease in sensitivity. The calculated ISIths for 

these human and rat spike trains were 229 and 35 ms, respectively. 

4.5.2. Optimization of intra-burst peak time window 

The cutoff for the time window, in which to find intra-burst peak, was originally set 

to 100 ms. This was an empirical value determined by the author. Examination of 

intra-burst peaks showed that they were successfully computed for all spike trains 

(Table 5). Thus, increasing the cutoff would have been unprofitable. Possibilities of 

cutoff decrease were explored. The intra-burst ISI of KA-treated activity (of Cat. II) 

was 92 ms, which was remarkably higher than those of other spike trains. KA-treated 

activity was also the only one without peaks subsequent to the intra-burst peak, 

which prevented computation of ISIth. KA-treated activity had a very high spike 

frequency, which explains the lack of subsequent peaks. However, there was a single 

preceding peak at 1 ms. It was theorized that decreasing the cutoff could allow 

computation of ISIth for KA activity. The second and third highest intra-burst ISIs were 

55 and 44 ms. The corresponding intra-burst peaks did not have preceding peaks. 

Consequently, decreasing the cutoff below these intra-burst ISIs would have 

prevented the computation of ISIth for the corresponding spike trains. This was not 

a desirable consequence. Thus, the effect of decreased cutoff value was investigated 

for KA-treated activity only. 

The cutoff was set to 75 ms as this was around the mean of the highest and second 

highest intra-burst ISIs. As a result, the peak corresponding to 1 ms was nominated 

the intra-burst peak and the peak corresponding to 92 ms was nominated the outer 

peak. The void parameter of the peak pair was 0.89. The corresponding ISIth was 2 

ms and thus path 1 was selected. The algorithm performance was remarkably 

improved (Tables 6 and 7), as no bursts were detected on the KA-treated activity. 
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4.5.3. Optimization of default maximum inter-spike interval 

Default maxISI parameter is used in paths 2 and 3 and, therefore, alteration of maxISI 

affects only spike trains for which path 2 or 3 is selected. In path 2, the bursts cores 

are detected using maxISI. In path 3, maxISI is applied for the whole burst. A major 

problem recognized in logISI performance was its tendency to shorten and split 

bursts. In search for a solution, maxISI was increased from the original value of 100 

ms to 150, 200 and 250 ms. The threshold for the selection between paths 1 and 2 

was also changed according to each maxISI. Key changes in algorithm performance 

due to maxISI alteration are illustrated in Figure 12C. The performance scores are 

presented in Table 6 and the sensitivities and specificities are presented in Table 7. 

Overall, increase of maxISI to 150 ms had a positive effect. The increase improved the 

results in bursting activity (Cat. III and IV) from human culture. More short bursts 

were correctly detected, and parts of super bursts were merged together. Yet, some 

splitting remained. One false burst was observed on noisy bursting activity displaying 

super bursts. On non-bursting high frequency activity (Cat. II), the increase had a 

negative effect as more false bursts were detected, especially on KA-treated activity. 

On un-treated activity the effect was minor as only one false burst was detected. 

Increase to 200 ms had both positive and negative effects. The most positive effect 

was observed on noisy bursting activity displaying super bursts (of Cat. III) as the 

splitting was reduced even more. On short human bursts (of Cat. III and IV), the 

number of correctly detected bursts was slightly higher in comparison to the 

performance using 150 ms. However, there were significant changes in performance 

on the noisy bursting spike train. Many bursts were extended, more often 

unnecessarily. One false burst was detected. As a result, the specificity decreased to 

an unacceptably low value. On non-bursting high frequency activity (Cat. II), the 

negative effect was more prominent than when using 150 ms. Even more false bursts 

were observed on both spike trains. 

Increase to 250 ms gave poor results except for one positive effect. This positive 

effect was observed on noisy bursting activity displaying super bursts (of Cat. III) as 

splitting was again slightly reduced. An additional false burst emerged though. On 

noisy bursting activity displaying human short bursts (of Cat. III), bursts were 

excessively extended and merged and more false bursts were detected. The number 

of false bursts increased also on non-bursting high frequency activity (Cat. II). This 

resulted in a failure even on un-treated activity. 

No increase affected logISI performance in gabazine-treated activity displaying well-

separated bursts (of Cat. IV) nor in non-bursting, un-treated low frequency activity 
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(of Cat. I). Nevertheless, the path selection for the gabazine-treated human spike 

train was changed from 2 to 1 when maxISI was increased from 150 to 200 ms. This 

was because the ISIth of the spike train was between these two values, namely 176 

ms. For other unaffected spike trains, path 2 was selected constantly. 

 
 
Figure 12. Effects of void threshold and default maxISI optimization. A) Using void threshold of 
0.60, splitting was reduced on the noisy spike train displaying super bursts. B) Further decrease 
of void threshold to 0.35 had an extremely negative effect on gabazine-treated rat bursts. The 
bursts were significantly shortened and some were missed entirely. C) On the noisy spike train 
displaying super bursts (a), the higher the increase of maxISI was, the better was the performance 
as splitting was reduced. On the noisy spike train displaying human short bursts (b), the burst 
detection was most accurate using 150 ms. Using 200 ms, the bursts were unnecessarily 
extended. The extension was even more excessive using 250 ms and also false bursts were 
detected. In all parts, vertical lines represent spikes. Horizontal lines represent visually identified 
bursts and algorithm results with default or modified parameters. 
 
Table 6. Performance scores using modified parameter values during the optimization of logISI 
performance. The scores of the affected individual spike trains are highlighted in blue even if no 
change in the performance was observed. 0 = failure, 1 = satisfactory, 2 = good and 3 = excellent. 
In the data column, h = human and r = rat. 
 

 
 

Category Data Default
Void 

0.60

Void 

0.35

Cutoff 

75 ms

MaxISI 

150 ms

MaxISI 

200 ms

MaxISI 

250 ms

I D-AP5-inhibited activity (h) 3 3 3 3 3 3 3

I GABA-inhibited activity (h) 3 3 3 3 3 3 3
I Immature, low frequency activity (r) 3 3 3 3 3 3 3
I CNQX-inhibited activity (r) 3 3 3 3 3 3 3

II KA-induced high frequency activity (h) 0 0 0 3 0 0 0

II Immature, high frequency activity (r) 3 3 3 3 3 2 0

III Short bursts with noise (h) 1 1 2 1 2 2 1

III Super bursts with noise (h) 2 3 3 2 3 3 3

III Short bursts with noise (r) 2 2 2 2 2 2 2

IV Short bursts without noise (h) 1 1 1 1 2 2 2

IV Gabazine-induced super bursts (h) 2 2 2 2 2 2 2

IV Short bursts without noise (r) 3 3 3 3 3 3 3

IV Gabazine-induced short bursts (r) 3 3 0 3 3 3 3

Total score 29 30 28 32 32 31 28
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Table 7. Sensitivities and specificities using modified parameter values during the optimization of 
logISI performance. The sensitivities and specificities of the affected spike trains are highlighted 
in blue even if no change in the performance was observed. On the bottom row, the relation of 
the mean to the default mean is shown. Sensitivity was increased by all modifications except 
when using void threshold of 0.35. Void threshold and cutoff modifications increased specificity. 
Specificity was decreased by increase of default maxISI. SE = sensitivity, SP = specificity. In the 
data column, h = human and r = rat. 

 

 

4.5.4. Combining optimized parameters 

In the preceding chapters, parameters were optimized separately. The performance 

of logISI was most improved when 1) minSpikes was set to 5, 2) void threshold was 

set to 0.60, 3) cutoff for intra-burst peak time window was set to 75 ms, and 4) default 

maxISI was set to 150 ms. Next, the combined effects of the optimized parameters 

were examined. MinSpikes had already been set to 5 during the separate 

optimization of the other three parameters. The optimization effects of these three 

parameters overlapped on three spike trains, namely the KA-treated non-bursting 

high frequency spike train (of Cat. II), the un-treated non-bursting high frequency 

spike train (of Cat. II) and the noisy spike train displaying super bursts (of Cat. III). On 

both non-bursting high frequency spike trains, the effect of increased maxISI became 

non-existent since the path selection had become 1 due to either the optimal cutoff 

or the optimal void threshold. This was advantageous as it also resulted in the highest 

performance. On the spike train displaying super bursts, optimal void threshold and 

maxISI had earlier improved the performance due to reduced splitting of bursts. 

When the two optimal parameters were combined, the ISIth was computed to be 143 

ms and, consequently, path 1 was selected. The path selection was different than 

when using either one of the optimal parameters separately, but all performances 

highly resembled each other. In conclusion, combined use of optimal parameters 

maintained the individual positive effects of each parameter. This resulted in the 

Category Data SE SP SE SP SE SP SE SP SE SP SE SP SE SP

I D-AP5-inhibited activity (h) - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

I GABA-inhibited activity (h) - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

I Immature, low frequency activity (r) - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

I CNQX-inhibited activity (r) - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

II KA-induced high frequency activity (h) - 0.47 - 0.47 - 0.47 - 1.00 - 0.24 - 0.08 - 0.05

II Immature, high frequency activity (r) - 1.00 - 1.00 - 1.00 - 1.00 - 0.99 - 0.93 - 0.72

III Short bursts with noise (h) 0.71 1.00 0.71 1.00 0.96 0.76 0.71 1.00 0.89 0.95 0.95 0.74 0.97 0.51

III Super bursts with noise (h) 0.98 0.94 0.99 0.94 0.99 0.94 0.98 0.94 0.99 0.89 0.99 0.84 1.00 0.76

III Short bursts with noise (r) 0.94 0.98 0.94 0.98 0.94 0.98 0.94 0.98 0.94 0.98 0.94 0.98 0.94 0.98

IV Short bursts without noise (h) 0.92 0.61 0.92 0.61 0.92 0.61 0.92 0.61 0.96 0.61 0.97 0.61 0.98 0.50

IV Gabazine-induced super bursts (h) 0.97 0.83 0.97 0.83 0.97 0.83 0.97 0.83 0.97 0.83 0.97 0.83 0.97 0.83

IV Short bursts without noise (r) 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15 1.00 0.15

IV Gabazine-induced short bursts (r) 1.00 0.05 1.00 0.05 0.51 0.67 1.00 0.05 1.00 0.05 1.00 0.05 1.00 0.05

Mean 0.93 0.77 0.93 0.77 0.90 0.80 0.93 0.81 0.96 0.74 0.97 0.71 0.98 0.66

Relative to default 1.00 1.00 0.97 1.04 1.00 1.05 1.03 0.97 1.05 0.92 1.05 0.85

Default
MaxISI     

150 ms

MaxISI     

200 ms

MaxISI     

250 ms

Void        

0.60

Void       

0.35

Cutoff        

75 ms
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highest performance score to this point (Table 8). The performance of optimized 

logISI algorithm is illustrated in Appendix 4, Figure A3. 

Table 8. Performance scores, sensitivities and specificities using the default parameter values and 
the optimized parameter values. MinSpikes was set to 5 in both runs. In the default run, void 
threshold was set to 0.70, cutoff for intra-burst peak time window to 100 ms, and default maxISI 
to 100 ms. In the optimized run, void threshold was set to 0.60, cutoff to 75 ms, and default 
maxISI to 150 ms. The results are highlighted for spike trains, on which the effects of optimal 
cutoff, optimal void threshold or optimal maxISIs overlap. P = performance, SE = sensitivity, SP = 
specificity. In the performance scores, 0 = failure, 1 = satisfactory, 2 = good and 3 = excellent. In 
the data column, h = human and r = rat. 
 

 
  

Category Data P SE SP P SE SP

I D-AP5-inhibited activity (h) 3 - 1.00 3 - 1.00

I GABA-inhibited activity (h) 3 - 1.00 3 - 1.00

I Immature, low frequency activity (r) 3 - 1.00 3 - 1.00

I CNQX-inhibited activity (r) 3 - 1.00 3 - 1.00

II KA-induced high frequency activity (h) 0 - 0.47 3 - 1.00

II Immature, high frequency activity (r) 3 - 1.00 3 - 1.00

III Short bursts with noise (h) 1 0.71 1.00 2 0.89 0.95

III Super bursts with noise (h) 2 0.98 0.94 3 0.99 0.93

III Short bursts with noise (r) 2 0.94 0.98 2 0.94 0.98

IV Short bursts without noise (h) 1 0.92 0.61 2 0.96 0.61

IV Gabazine-induced super bursts (h) 2 0.97 0.83 2 0.97 0.83

IV Short bursts without noise (r) 3 1.00 0.15 3 1.00 0.15

IV Gabazine-induced short bursts (r) 3 1.00 0.05 3 1.00 0.05

Total score (P) or mean (SE, SP) 29 0.93 0.77 35 0.96 0.81

OptimizedDefault
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5. Discussion 

The aim of this thesis was to assemble a test data set representing the variety of 

activity patterns observed in neuronal networks derived from hPSC and rat cortical 

neuronal cells, and to identify a single burst detection algorithm with optimal 

parameters that would successfully detect bursts in this test data set. As such, 

functional neuronal networks were derived from hPSCs and primary rat cortical 

neuronal cells and their electrical activity was recorded on MEA. Both spontaneous 

and pharmacologically modulated activity was recorded. A variety of activity patterns 

was identified in the recordings. A test data set representative of the identified 

activity patterns was assembled to evaluate the performances of four burst detection 

algorithms, namely MI (Nex Technologies 2014), logISI (Pasquale et al. 2010), PS 

(Legendy, Salcman 1985), and CMA (Kapucu et al. 2012). Of the four methods, logISI 

was identified as the highest-performing algorithm and was chosen for parameter 

optimization. Parameter optimization significantly improved the performance of 

logISI. 

5.1. Properties of the differentiated neuronal networks 

Neuronal networks derived from hPSCs and primary rat cortical neuronal cells 

obtained appropriate morphology and developed synapses and electrical activity. 

The activity of the hPSC-derived networks developed within the typical time line 

observed in earlier studies (Heikkilä et al. 2009; Lappalainen et al. 2010; Mertens et 

al. 2016). The effects of neuromodulators were in accordance with their known 

function except for the effect of KA and, on rat culture only, the effect of gabazine. 

KA decreased the spike frequency in both cultures despite of being a glutamatergic 

agonist. It is probable that the concentration of 5 μM was high enough to become 

excitotoxic for the cultures. In a previous study that used human HIP-009 neurons, 

10-fold increases of KA concentration were shown to increase the spike frequency in 

a concentration-dependent manner between 0.001 and 1 μM but 10 μM KA 

decreased the spike frequency (Fukushima et al. 2016). However, 5 μM KA was shown 

to increase the spike frequency in another study using hiPSC-derived neurons 

(Odawara et al. 2016). The difference in results could be due to various reasons such 

as the age of the neuronal networks or the different origin of hPSCs. On rat culture, 

the effect of gabazine on spike frequency was not statistically significant. It is possible 

that degradation of connections had already begun on rat neuronal networks in 

certain wells as indicated by the decrease in proportion of active electrodes just prior 

the pharmacological assays. Setting a threshold for number of active electrodes per 
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well could allow exclusive selection of active networks for the analysis. In this study, 

the effect of neuromodulators was investigated per electrode and, accordingly, a 

threshold was set only for the spike frequency of a single electrode. Although there 

was no statistically significant difference in spike frequency, gabazine was observed 

to reduce the number of individual spikes outside of bursts on many electrodes both 

in human and rat cultures. 

5.2. Evaluation of methods assessing burst detection performance 

The performance of burst detection algorithms was evaluated by comparing the 

burst detection results to visually identified bursts. Bursts were visually identified 

from the raw MEA signal. This was occasionally challenging especially on noisy 

bursting activity patterns, which contained many individual spikes between the 

bursts. Additionally, some spikes of low amplitude might have been missed by human 

eye and, consequently, some bursts including these low-amplitude spikes could have 

been missed as well. This did not raise a concern in regard to performance analysis 

of burst detection algorithms as it was noticed that the spike detection algorithm 

missed even more spikes making it impossible for burst detection algorithms to 

correctly detect all bursts. 

Visual burst identification is never objective as it is performed by a human observer. 

Yet, visual identification of bursts is an accepted method for burst detection, and 

comparison of algorithm results to visually identified bursts has been used to 

evaluate algorithm performance (Cotterill et al. 2016; Pasquale et al. 2010; 

Gourévitch, Eggermont 2007). Visual identification of bursts can be considered an 

adaptive technique. Human brain automatically looks for abnormalities in data. Thus, 

to the human eye, a spike set of a specific spike frequency might look tighter in a low 

frequency spike train and looser in a high frequency spike train. Consequently, a spike 

set of a specific spike frequency might be considered a burst in a low frequency 

environment but not in a high frequency environment when visually inspecting these 

spike trains. Visual identification adapts to each individual spike train similarly to self-

adapting algorithms, such as logISI (Pasquale et al. 2010) and CMA (Kapucu et al. 

2012). 

The aims of this thesis did not include finding a definition for a burst. Yet, some 

defining restrictions had to be made to reach the aims of this thesis. A key question 

in this thesis was what events the burst detection algorithm should help the 

researcher to recognize from the data. In this work, only mature bursts apparent to 

the human eye were considered as essential findings. Because of this, the visually 
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identified bursts were given identity of either a definite burst or of a possible burst. 

The detection of definite bursts was a strong requirement for a burst detection 

algorithm, but the detection of possible bursts was not required. Visual identification 

of the possible bursts was still necessary as they should not be considered as false 

bursts either if detected by the algorithms. Classification of visually detected bursts 

into definite and possible bursts has not been used in this format elsewhere in the 

literature according to the knowledge of the author. 

The performance of each algorithm was given a separate score for its performance 

on each of the spike trains included in the test data. This allowed evaluation of the 

algorithms also separate of each other and made their strengths and weaknesses 

visible in the scores. A ranking system, where the best algorithm receives 1 point, the 

second best receives 2 points etc., has been used for comparative performance 

analysis before (Cotterill et al. 2016) and would have been more straightforward, but 

it would have disabled examination of the algorithm performances independently. 

Sensitivity and specificity are widely used to evaluate methods in different fields. 

They have also been utilized to evaluate the performance of burst detection 

algorithms (Cotterill et al. 2016). However, there are two noteworthy points when 

discussing sensitivities and specificities. First, the sensitivity value does not reveal 

whether a burst has been detected as a whole or in parts. Only the performance score 

takes this into account. Second, on spike trains containing well-separated bursts the 

effect of a single erroneously classified individual spike is huge on specificity as there 

are very few individual spikes. This should be kept in mind when evaluating and 

comparing the specificity values for well-separated bursts (Cat. IV). Nevertheless, the 

conditions are same for all the algorithms and, thus, the ranking of specificities is 

informative. 

5.3. Variation of bursting activity and assembly of test data set 

The goal of the test data set was to represent the variety of bursting and non-bursting 

activity identified during neuronal network development and pharmacological 

assays. The data was derived from both human and rat neuronal networks. The main 

focus was on human neuronal networks on which burst detection algorithms have 

rarely been verified. Rat neuronal networks were included in the study because they 

are commonly used in the field. The bursting patterns were variable in both cultures 

but especially the burst duration varied more in the human culture. Similar 

observations have been made in earlier studies (Wagenaar et al. 2006; Heikkilä et al. 

2009). Generally, human bursts also had longer intra-burst ISIs and a smaller number 

of spikes in a burst in comparison to rat bursts. The different types of bursting activity 
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identified in each culture were included to the data set. Additionally, at least one 

spike train was selected to represent the response to each pharmacological reagent. 

Naturally, the data set in this work was relatively small and for example duplicates of 

the most varying activity patterns, namely noisy bursting activity patterns (Cat. III), 

could have provided useful information to this work. On the other hand, the small 

size of the data set allowed efficient and profound investigation of the algorithm 

behaviors. 

An extended culture time allows further development of the hPSC-derived neuronal 

networks and more activity patterns to emerge. In the later stages of development, 

however, the activity has been shown to switch from bursts to more complex and 

dynamic activity patterns (Kirwan et al. 2015). Dispersion of bursts in the later 

cultures was also observed in the hPSC-derived neuronal networks in this work. As 

the resulting patterns were similar to those of the previously included spike trains 

(Cat. II and III), no spike trains were included to the data set from the cultures after 

30 days on MEA. Due to the complexity of the later activity patterns however, it is 

not secure to say that the burst detection algorithms would perform similarly on all 

of these complex patterns. All things considered, the assembled test data set was 

considered to be representative of the activity patterns identified in the human and 

rat neuronal networks. Derivation of data from both human and rat networks as well 

as inclusion of modulated activity patterns were significant strengths of the test data 

set. 

5.4. Comparative analysis of algorithm performances 

In the comparative performance analysis, logISI and CMA showed high overall 

performance whereas MI and PS were not as capable. LogISI and CMA had high 

performance scores and their sensitivities and specificities were well balanced. Of the 

two, logISI received a higher performance score mainly because it failed on fewer 

spike trains than CMA. MI had a very low specificity resulting from its tendency to 

overestimate the number of spikes included in bursts. This also reflected in its 

performance score. Contrary to MI, PS had an unacceptably low sensitivity as it 

shortened bursts and often failed to detect bursts altogether. MI and PS both failed 

on multiple spike trains. It is notable that all algorithms except PS failed on KA-treated 

non-bursting high frequency activity (of Cat. II). PS showed satisfactory performance 

on this spike train. All the aforementioned points remained the same when minSpikes 

was increased because the increase improved the performances of all algorithms in 

a more or less identical scale. The effect of minSpikes selection is discussed later. It 

should be noted that in the majority of the referred studies minSpikes had been set 
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to 3. As minSpikes was set to 5 in the second run of this work, new information was 

obtained. Here, the algorithm performances are discussed based on the results using 

5 as minSpikes as it provided results that were more in accordance with visual 

observations. 

5.4.1. Performance of logISI method 

LogISI performed generally well on all activity patterns. It outperformed other 

algorithms on non-bursting activity patterns (Cat. I and II). On bursting activity 

patterns (Cat. III and IV), however, it tended to shorten and split bursts which 

impaired its performance especially on human bursts. Shortening and splitting of 

bursts results in underestimated burst durations and proportions of intra-burst 

spikes. Similar underestimations have been reported earlier (Cotterill et al. 2016). 

Low intra-burst spike frequency has been shown to be one reason for detection of 

shortened or split bursts on synthetic data (Cotterill et al. 2016). In the test data of 

this study, human bursts displayed lower intra-burst spike frequency than rat bursts, 

which explains why logISI performance was weaker on human bursts than on rat 

bursts. 

On one spike train, logISI extended and merged bursts, which is contrary to the 

behavior described above. The spike train in question contained well-separated short 

human bursts. The merging behavior has earlier been reported on synthetic data, 

which displayed short irregular bursts occurring at a high frequency and no noise 

(Cotterill et al. 2016). The high frequency of bursts results in lower separation of 

bursts and could be the reason behind the behavior but there might be other factors 

in play as well. LogISI had no problem detecting correctly timed bursts in gabazine-

treated well-separated rat bursts, which also occurred at high frequency. However, 

the gabazine-treated rat bursts occurred more regularly, and the intra-burst spike 

frequency was remarkably higher in these rat bursts in comparison to human short 

bursts. The differences in regularity and intra-burst spike frequency are visible in the 

spike plots and the log-adjusted ISI histograms, respectively (Appendix 2, Figure A1). 

Proportional effects of different factors cannot be determined based on the current 

test data set alone. 

All things considered, logISI displayed highest performance and was nominated as 

the most promising burst detection algorithm. LogISI was also ranked amongst the 

two highest-performing algorithms in the comparative study of Cotterill et al. 

(Cotterill et al. 2016). They reported that logISI showed utmost promise on activity 

recorded from mouse retinal ganglion cells and from hiPSC-derived neurons. In the 

study by Kapucu et al. (Kapucu et al. 2012), logISI was praised for its performance on 
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matured bursting activity on hESC-derived neuronal networks although it was 

criticized of being unable to detect unstable bursting activity in the developing 

networks. In this thesis work, the most immature and unstable bursts in hESC-derived 

cultures were observed in the form of short bursts. Two samples of such bursting 

activity, recorded after 7 and 14 days on MEA, were included to the test data set and 

logISI performance was satisfactory on both with sensitivities of 0.92 and 0.71, 

respectively. The latter was still considered acceptable as the relatively low value was 

partly due to poor spike detection. When minSpikes was set to 3, as it was by Kapucu 

et al., the respective sensitivities were 0.99 and 0.88. More immature activity in this 

study was determined non-bursting during visual observation. 

5.4.2. Performance of Cumulative moving average method 

CMA performed generally well on bursting activity but had major issues on non-

bursting activity patterns. On bursting activity patterns (Cat. III and IV), its only issue 

was splitting of bursts. This behavior has been previously described on synthetic data 

(Cotterill et al. 2016). On non-bursting high frequency activity (Cat. II), CMA failed as 

it could not distinguish between a bursting spike train and a non-bursting high 

frequency train. The authors of CMA proposed post hoc screening to solve this issue 

(Kapucu et al. 2012). With thresholding, spike trains with mean burst duration > 5 s 

or mean number of spikes in a burst > 50, would be determined as non-bursting 

(Kapucu et al. 2012). Post hoc screening with thresholding would solve the issue on 

un-treated high frequency activity, but higher thresholds would be needed. When 

bursts were detected by CMA, the highest mean burst durations were 59.9, 4.3 and 

2.9 on un-treated non-bursting high frequency activity, well-separated super bursts, 

and D-AP5-treated non-bursting low frequency activity, respectively. The highest 

mean numbers of spikes in burst were 310, 114 and 64 on un-treated non-bursting 

high frequency activity, well-separated super bursts, and well-separated short rat 

bursts, respectively. It can be concluded that thresholds for mean duration and 

number of spikes can be increased. More spike trains displaying non-bursting high 

frequency activity (Cat. II) and well-separated bursts (Cat. IV) should be analyzed to 

determine appropriate threshold values. However, it is uncertain whether suitable 

threshold values could be found. Post hoc screening with thresholding has earlier 

been applied for hiPSC-derived neuronal networks with the original threshold values 

and though long false bursts were successfully excluded many true short bursts in the 

same spike train were missed as the whole spike train was designated non-bursting 

(Cotterill et al. 2016). 
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Another problem of CMA was that it detected long bursts even on non-bursting low 

frequency activity (Cat. I). Because of this, the mean burst duration of D-AP5-treated 

low frequency activity was third highest in the test data, as mentioned above. The 

issue was due to the tendency of CMA to detect unusual, or surprising, activity events 

as bursts, which has also been described earlier on synthetic data (Cotterill et al. 

2016). It was reported that CMA detected false bursts especially on non-bursting 

synthetic spike trains with a nonstationary spike frequency. The spike frequency of 

the D-AP5-treated spike train was also considered nonstationary based on visual 

inspection (Appendix 2, Figure A1). The other low frequency spike trains were more 

stationary than the D-AP5-treated train. The issue of detecting long bursts on 

nonstationary low frequency spike trains could not be assessed using post hoc 

screening with thresholding because the mean burst duration and the mean number 

of spikes were higher on well-separated super bursts than on D-AP5-treated spike 

train. Instead, it might be possible that an extensive investigation of the skewness of 

the ISI histograms of different activity patterns and optimization of the skewness 

thresholds accordingly might improve the performance of the algorithm. Cotterill et 

al. (Cotterill et al. 2016) also suggested a simpler modification to improve the 

performance by restricting the allowed values of intra-burst ISI to biologically realistic 

range. Nevertheless, it is uncertain whether the performance of CMA could take over 

the performance of logISI. LogISI showed evidently more potential in the initial 

performance analysis and was even able to overcome the issues related to KA-treated 

non-bursting high frequency activity during the parameter optimization. In this work, 

CMA was ranked second right below logISI and above MI. In the earlier study by 

Cotterill et al. (Cotterill et al. 2016), CMA was ranked below both logISI and MI. In 

their study, CMA was used to detect only the bursts cores whereas in this thesis also 

burst-related spikes were detected. Nevertheless, similar to the results of this thesis 

work, Cotterill et al. reported that the major problem of CMA was the low specificity 

on non-bursting spike trains resulting from the detection of multiple false bursts. It 

should be noted that they used 3 as minSpikes. In this work, minSpikes was increased 

to 5, which decreased the number of false bursts but did not solve the issue 

completely. It is very probable that the multiple false bursts stem from the fact that 

CMA was built on developing hESC-derived neuronal networks to detect even 

primitive and unstable bursting activity (Kapucu et al. 2012). The concept of burst 

was probably looser in comparison to this work, in which only mature bursts obvious 

to the human eye were considered as desirable findings. 
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5.4.3. Performance of MaxInterval method 

MI performed well on well-separated bursts (Cat. IV) and on most non-bursting low 

frequency spike trains (Cat. I). Its major issues were with noisy bursting activity (Cat. 

III) and non-bursting high frequency activity (Cat. II). This was because MI tended to 

extend bursts and, more importantly, was unable to differentiate between bursts and 

a period of mere high frequency. The average specificity of MI on these activity 

patterns was lower than that of any other algorithm. Previously, it has been reported 

that on high frequency activity from hiPSC-derived neurons MI detected larger 

proportion of spikes in bursts in comparison to logISI, CMA (including post hoc 

screening) and PS (Cotterill et al. 2016). However, no comparison to visually identified 

bursts was presented for this particular type of activity pattern, so the ground truth 

is unknown. It is notable that the begISI in that study had been increased from 0.17 s 

to 0.20 s. Such increase would have resulted in even lower specificity in this study. As 

the other algorithms in this thesis had generally higher specificity and comparable 

sensitivity on both bursting (Cat. III and IV) and non-bursting high frequency activity 

(Cat. II), the performance of MI should not be trusted over the other algorithms on 

high frequency spike trains. Thus, it is possible that MI extended bursts also on 

activity derived from hiPSC-derived neurons. Despite the deviating behavior of MI on 

high frequency activity, the algorithm was nominated as the most promising 

algorithm in the comparative study by Cotterill et al. (Cotterill et al. 2016). 

Nevertheless, they highlighted the challenge presented by parameter choice, and 

suggested that parameters could be altered for the high frequency activity that was 

observed at a certain time point during the network development. Parameter 

alteration is acceptable and sometimes required for specific type of data but, 

unfortunately, it prevents comparison of results. 

Admittedly, parameter optimization could highly improve the performance of MI. In 

this data set, decreasing the value of begISI was recognized as a key optimization 

point. However, optimization of MI for many distinct types of activity was considered 

unprofitable. First of all, MI was not suitable for both human and rat cultures because 

the spike frequencies in human and rat bursts were very different. The human bursts 

often contained spikes with wider spacing, and the longest burst begISIs were 

approximately 150 ms. The high frequency activity preceding rat bursts very often 

included more than five subsequent ISIs < 150 ms. Typical range was observed to be 

60-130 ms. Moreover, the ISIs were even shorter in the KA-treated non-bursting high 

frequency train from human culture. The mean ISI was 88 ms, which is very low 

considering that the spike train was non-bursting. Finding begISI, which would 

recognize a beginning of a human burst but ignore mere high frequency activity, 

would thus be impossible. The restricted applicability of MI-like algorithms using pre-
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defined parameters has been discussed in earlier studies (Pasquale et al. 2010; 

Kapucu et al. 2012). The aim of this thesis was to find a single well-performing 

algorithm with constant parameter values suitable for hPSC-derived neuronal 

networks, and preferable also for rat neuronal networks. MI would not be able to 

meet these criteria even after parameter optimization. 

5.4.4. Performance of Poisson surprise method 

PS displayed poorest performance of the four algorithms. Its performance was 

generally better on rat data than on human data. The distinction in performance 

between the two types of data was not similarly obvious for other algorithms. PS had 

its major issues on human data. It detected many false bursts on non-bursting low 

frequency activity (Cat. I). Similar behavior has been described previously on 

synthetic non-bursting spike trains with nonstationary spike frequency (Cotterill et 

al. 2016). On the contrary, PS missed many bursts on bursting human data (Cat. III 

and IV). Additionally, it tended to shorten bursts on both human and rat data. 

Similarly, the sensitivity of PS has been shown to be low on synthetic spike trains 

displaying noisy bursting or high frequency bursts without noise (Cotterill et al. 2016). 

Peculiarly, opposite results have been shown on biological activity. On activity from 

hiPSC-derived neurons, PS tended to extend and merge bursts that logISI, CMA and 

MI detected as separate bursts (Cotterill et al. 2016). The threshold for the surprise 

statistic for the data in question was set to -ln(0.0025) (~6.0) instead of -ln(0.01) 

(~4.6), which was used in this thesis work. Different thresholds, however, cannot 

explain the difference in results as the algorithm uses the threshold only to exclude 

potential bursts that have been detected in the previous step. The distinction in 

results thus raises a question whether the electrical activity of hESC- and hiPSC-

derived neuronal networks differ. All things considered, PS does not provide steady 

performance across different activity patterns of various sources. Both false positives 

and false negatives were common with PS. Fixing both of these contrary problems 

with parameter optimization was deemed unachievable. 

5.5. Significance of minimum number of spikes in a burst 

The performances of the four algorithms, namely MI, PS, logISI and CMA, were first 

evaluated using the default parameters. MinSpikes was set to 3, which resulted in 

multiple extremely short false bursts. This was expected as these extremely short 

bursts had been considered insignificant findings in the visual identification of bursts. 

When examining the number of spikes in noisy bursting activity (Cat. III), it was 

noticed that the median for three algorithms was 5 spikes or less. CMA had a higher 
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median, but it was also affected by a great number of extremely short bursts. 

Increasing minSpikes to 5 consequently excluded up to half of the bursts detected by 

each algorithm. 

It has been suggested that the minSpikes required for a burst could be altered 

according to the activity type of the data (Turnbull et al. 2005) but this would prevent 

comprehensive comparison and interpretation of the results. Thus, a single value is 

desirable. Exclusion of the extremely short bursts makes the burst features, which 

are calculated from the detected bursts, more informative and representative of the 

activity. This allows recognition of significant events and trends in the developing 

neuronal networks as well as changes in activity induced by neuromodulators. 

Although 3 has been shown to be a practical value for example in developing human 

neuronal networks where bursting activity is primitive and unstable (Kapucu et al. 

2012), it is not feasible for the detection and characterization of mature bursting 

activity. Value 5 but also higher values, e.g. 10, have been considered feasible in 

earlier studies (Pasquale et al. 2010; Chiappalone et al. 2005). In this work, use of 

value 5 excluded majority of false bursts but also resulted in a loss of some true 

bursts, which had been correctly detected in the first run. Therefore, value 5 was 

proved to be optimal for the data in this work and no further increase was applied. 

Nevertheless, some of the lost bursts were due to poor spike detection. Enhanced 

spike detection could allow or even require further increase of minSpikes. 

5.6. Significance of spike detection performance 

Adequate spike detection performance is crucial for reliable burst detection (Mayer 

et al. 2018; Quiroga et al. 2004). All burst detection algorithms included in this study 

utilize ISIs, which are naturally influenced by performance of spike detection. In this 

study, burst detection was occasionally compromised by poor spike detection 

performance. Often more spikes were observed within bursts by visual examination 

than by the spike detection algorithm. The issue was obvious especially for burst-

related spikes but few bursts were missed completely. As mentioned earlier, increase 

of the minSpikes led to loss of some true bursts partly due to poor spike detection. 

Poor spike detection is also partly to blame for the splitting of bursts, which was a 

major issue of logISI and CMA. Failure to detect one or more subsequent intra-burst 

spikes resulted in a long ISI, which could be interpreted as an IBI by the burst 

detection algorithms. Nevertheless, probably most of the longer ISIs observed within 

bursts are real biological events. ISIs within a single burst can display great variability 

(Pasquale et al. 2010; Kapucu et al. 2012). 
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Despite the poor spike detection, the performances of the algorithms are still 

comparative as the conditions were same for all of them. Enhancement of spike 

detection would most likely improve the performance of all burst detection 

algorithms on most of the spike trains. However, the enhancement could be of 

different magnitude since the principles of function are different for each of the burst 

detection algorithms. Burst detection algorithms can compensate for poor spike 

detection at some level via parameter optimization. Especially optimization of 

maxISI-like parameters can allow improved identification of burst-related spikes and 

reduce splitting of bursts, as remarked in this study while optimizing maxISI for logISI 

algorithm. 

5.7. Effects of logISI parameter optimization 

The selection of minSpikes was discussed above and it was determined crucial for 

recognition of significant events. The remaining adjustable parameters for logISI 

included void threshold, cutoff for the intra-burst peak time window, and default 

maxISI. Of the three, alteration of maxISI had the greatest positive effect. In general, 

increasing maxISI from the original value of 100 ms reduced splitting of bursts and 

increased sensitivity, sometimes in the expense of decreased specificity. Using value 

of 150 ms resulted in the best performance although using 200 ms had its advantages 

as well. On this test data set, specificity decrease with 200 ms was considered too 

grave. On developing hESC-derived neuronal networks however, even increase to 

200 ms has been considered insufficient (Kapucu et al. 2012) but this was at least 

partly because the study in question concentrated on detection of more primitive 

and unstable bursting activity. On hiPSC-derived neuronal networks, 150 ms has been 

considered optimal as it was in this study (Cotterill et al. 2016). It should be noted 

that in both studies also cutoff was simultaneously changed to 150 ms. Although it is 

impossible to absolutely determine the relative effects of the alterations without 

assessing them separately, it seems more probable that the positive effects are due 

to increased maxISI. This suggestion arises from the notion that in this thesis work 

the intra-burst peak was successfully determined for all spike trains with both 75 and 

100 ms. Increasing the cutoff cannot increase the probability of finding an ISIth 

because if ISIth is found for a peak with a longer ISI, it will also be found for the 

preceding peaks. The ISIth found by the preceding peaks will be either of the same 

value or smaller. Consequently, increasing the cutoff value may only decrease the 

probability of finding ISIth. This is disadvantageous since the path that is selected 

when no ISIth is found (path 3) was shown to display weaker performance in 

comparison to the other paths. Thus, reverting cutoff to 100 ms or lower but 

maintaining default maxISI at 150 ms might improve the performance on hiPSC-
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derived neuronal networks. If aiming to detect primitive bursting, the increase of 

cutoff might be advantageous if the majority of intra-burst ISIs are believed to be 

above 100 ms as mentioned by Kapucu et al. (Kapucu et al. 2012). In this thesis work, 

such events were considered insignificant findings. 

Decrease of cutoff from 100 ms to 75 ms enhanced logISI performance on KA-treated 

spike train and had no effect on other spike trains. The effect was outstanding since 

the KA-treated spike train was then recognized as non-bursting. No other algorithm 

had succeeded in this during the comparative performance analysis and even 

parameter optimization of the other algorithms was not believed to yield such 

outstanding results. Further decrease of cutoff was unprofitable. A larger test data 

set would be needed to determine whether the effect, here observed on a single 

spike train, was a chance or general behavior. A larger set would be needed also to 

define an optimal value for the cutoff, but it should be well above 55 ms and below 

92 ms. 

Decrease of void threshold from the original 0.70 to 0.60 increased the performance 

of logISI on one spike train and had no significance on other spike trains. The effect 

was similar to that of increasing maxISI since the splitting was reduced. Due to these 

facts, the positive effect of decreased void threshold was not very significant when 

the optimal parameters were combined. Nevertheless, it was believed that the effect 

of void threshold of 0.60 would become apparent in a larger data set also when 

combined with 150 ms. Further decrease of void threshold to 0.35 was unprofitable. 

Again, a larger test data set would be needed to determine the precise optimal 

threshold value as very few spike trains were affected in this test data set. The results 

from this experiment are in agreement with the original authors about the 

approximate value of void threshold (Pasquale et al. 2010). The original threshold has 

yielded good results in other studies (Cotterill et al. 2016; Kapucu et al. 2012) but it 

might be beneficial to try a lower threshold for example for hiPSC-derived neuronal 

networks. 

5.8. Future prospects 

In this thesis, the enhancement of algorithm performance focused on parameter 

optimization. Besides parameter optimization, it might be possible to enhance logISI 

performance by small modifications to the algorithm function. Currently, only path 2 

searches for burst-related spikes after burst core detection. It might be advantageous 

to extend this function to the two other paths. Especially the performance of path 3, 

which uses the default maxISI to detect burst cores only, was weaker in comparison 
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to the other paths. Defining a default threshold for burst-related spikes might 

increase the performance with path 3. Another potential modification could tackle 

the problem encountered when increasing minSpikes. When the value of minSpikes 

was increased to 5, some of the erroneously excluded bursts included in fact 5 or 

more spikes. This was because the algorithm applies minSpikes to the burst cores. If 

it was applied to the whole burst, the algorithm performance would probably 

improve. 

KA-treated non-bursting high frequency spike train (of Cat. II) proved to be the 

biggest challenge for many of the algorithms. In comparison to the un-treated non-

bursting high frequency spike train, the KA-treated spike train had remarkable higher 

spike frequency. The spike frequency on un-treated spike train was 5.2 Hz whereas 

on KA-treated spike train it was 11.3 Hz. The spike frequency of KA-treated spike train 

was second only to the un-treated spike trains displaying rat bursts (20.4 and 20.6 

Hz) or human super bursts (19.1 Hz). The KA-treated activity pattern was a challenge 

to the burst detection algorithms because of its high but varying spike frequency. Due 

to the variability, especially self-adapting and surprise-based algorithms tend to 

detect false bursts within the non-bursting spike train. A solution for the KA-treated 

spike train was found during the logISI optimization and it was successfully classified 

as non-bursting. In the future however, it could be beneficial to find a way for logISI 

to recognize and separately classify this kind of non-bursting spike trains with 

extremely high spike frequency to a new category instead of simply defining them as 

non-bursting or bursting. This could possibly be achieved by investigating the log-

adjusted histogram properties specific to this activity pattern. 

Comprehensive evaluation of algorithm performance requires testing on wide variety 

of activity patterns. In this study, the test data for algorithm performance analysis 

was derived from healthy hPSC-derived neuronal networks. In the following studies, 

it would be interesting to use patient-derived hiPSCs to develop neuronal networks. 

In diseases such as epilepsy proteins involved in generation of electrical activity are 

dysfunctional (Weick 2016)  and thus patient-derived networks might present activity 

patterns that are not present in healthy neuronal networks. To obtain multiple 

different types of data, it would be beneficial to record both spontaneous activity as 

well as pharmacologically modulated activity as done in this study. 

LogISI has previously been shown to be amongst the two highest performing burst 

detection algorithms for the data obtained from hiPSC-derived neuronal networks as 

well as mouse retinal ganglion cells (Cotterill et al. 2016). In this thesis, logISI was 

shown to be the most promising burst detection algorithm for the data recorded 

from hESC-derived and rat cortical neuronal networks, and parameters of logISI were 
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optimized for these networks. After parameter optimization, logISI successfully 

detected bursts in the variety of electrical activity patterns identified from 

spontaneous and pharmacologically modulated activity of these neuronal networks. 

Based on its high competence on this variable data, logISI has potential to become a 

standard burst detection method in the field. Naturally, a larger test data set would 

be needed to confirm the applicability of the optimal parameter values determined 

in this work. Furthermore, the optimal parameters need to be tested on a wider 

range of data derived from different types of cells.  
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Appendices 

Appendix 1: Additional data on statistical tests 

Table A1. Statistical tests for the effects of neuromodulators in human and rat neuronal networks. 
For each treatment, the number of electrodes included in the analysis (N) is shown in the first 
column under the network. Median RCf and lower (Q1) and upper quartiles (Q3) are presented in 
the second column. The p-value for the tested difference against control is reported in the third 
column. 
 

 

 
  

Treatment N Median RCf (Q1, Q3) (%) p-value N Median RCf (Q1, Q3) (%) p-value

Control 50 102.45 (90.76, 112.52) - 63 93.12 (76.19, 104.68) -

Gabazine 46 147.05 (112.41, 190.41) <0.01 44 105.82 (68.38, 174.49) 0.57

GABA 49 43.73 (25.25, 65.99) <0.01 68 0.00 (0.00, 0.04) <0.01

KA 42 38.67 (10.07, 84.43) <0.01 54 0.86 (0.04, 24.23) <0.01

CNQX 49 27.97 (6.81., 40.84) <0.01 64 9.96 (2.48, 49.18) <0.01

D-AP5 40 27.34 (15.03, 49.53) <0.01 57 6.02 (1.08, 17.73) <0.01

Human Rat



 

 

Appendix 2: Additional data on test data set 

 
 
Figure A1. Raw MEA signals, detected spikes, and ISI distributions of the spike trains included in 
the test data set. Length of the raw signal (left) in the figure is two minutes. Detected spikes 
(middle) are presented in the same time scale as the raw signal. The ISI distributions (right) are 
presented as log-adjusted histograms with a Kernel density estimate displayed as a black line on 
top. The spike trains are a) D-AP5-treated human spike train (I), b) GABA-treated human spike 
train (I), c) un-treated low frequency rat spike train (I), d) CNQX-treated rat spike train (I), e) un-
treated high frequency rat spike train (II), f) KA-treated human spike train (II), g) noisy spike train 



 

 

with short human bursts (III), h) noisy spike train with human super bursts (III), i) noisy spike train 
with rat bursts (III), j) well-separated short human bursts (IV), k) gabazine-treated human super 
bursts (IV), l) well-separated rat bursts (IV), m) gabazine-treated rat bursts (IV), and n) TTX-treated 
recording without activity. Numbers I-IV in parenthesis represent the category of the spike train. 
  



 

 

Appendix 3: Burst detection results on test data set 

 



 

 

 



 

 

Figure A2. Burst detection results of MI, PS, logISI and CMA algorithms using default parameters. 
MinSpikes was set to 3. The vertical lines represent spikes. The horizontal lines represent visually 
identified bursts and algorithm results. Visually identified bursts are drawn at the highest point. 
The time interval in each image is 20 s. The spike trains are a) D-AP5-treated human spike train 
(I), b) GABA-treated human spike train (I), c) un-treated low frequency rat spike train (I), d) CNQX-
treated rat spike train (I), e) un-treated high frequency rat spike train (II), f) KA-treated human 
spike train (II), g) noisy spike train with short human bursts (III), h) noisy spike train with human 
super bursts (III), i) noisy spike train with rat bursts (III), j) well-separated short human bursts (IV), 
k) gabazine-treated human super bursts (IV), l) well-separated rat bursts (IV), and m) gabazine-
treated rat bursts (IV). Numbers I-IV in parenthesis represent the category of the spike train. 
  



 

 

Appendix 4: LogISI optimization results on test data set 

 



 

 

 
 

Figure A3. Burst detection results of logISI algorithm using default and optimized parameters. 
MinSpikes was set to 5 in both runs. In the default run, void threshold was 0.70 and both cutoff 
for intra-burst peak time window and default maxISI were 100 ms. In the optimized run, void 
threshold was 0.60, cutoff was 75 ms, and default maxISI was 150 ms. The vertical lines represent 
spikes. The horizontal lines represent visually identified bursts (top) and algorithm results with 
default (middle) and optimized (bottom) parameters. Spike trains, which were affected by 
parameter optimization but on which performance remained unchanged, are marked with ¤. 
Affected spike trains with altered performance are marked with ¤¤. The time interval is 20 s. The 
spike trains are a) D-AP5-treated human spike train (I), b) GABA-treated human spike train (I), c) 
un-treated low frequency rat spike train (I), d) CNQX-treated rat spike train (I), e) un-treated high 
frequency rat spike train (II), f) KA-treated human spike train (II), g) noisy spike train with short 
human bursts (III), h) noisy spike train with human super bursts (III), i) noisy spike train with rat 
bursts (III), j) well-separated short human bursts (IV), k) gabazine-treated human super bursts 
(IV), l) well-separated rat bursts (IV), and m) gabazine-treated rat bursts (IV). Numbers I-IV in 
parenthesis represent the category of the spike train. 


