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Abstract

There are multiple ways in which 3 dimensional objects can be presented and
rendered to screen. Voxels are a representation of scene or object as cubes of equal
dimensions, which are either full or empty and contain information about their
enclosing space. They can be rendered to image by generating surface geometry and
passing that to rendering pipeline or using ray casting to render the voxels directly.

In this paper, these methods are compared to each other by using different octree
structures for voxel storage. These methods are compared in different generated
scenes to determine which factors affect their relative performance as measured in
real time it takes to draw a single frame.

These tests show that ray casting performs better when resolution of voxel model
is high, but rasterisation is faster for low resolution voxel models. Rasterisation
scales better with screen resolution and on higher screen resolutions most of the
tested voxel resolutions where faster to render with with rasterisation.

Ray casting performed better only when model resolution was high compared
to screen resolution or the model had high surface filling rate but low coherency.
Differences between octree models where significant, bit in some cases even the base
voxel data was faster.
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Tiivistelma

Kolmiulotteisia kappaleita ja ymparistoja voidaan esittdd ja piirtda useammilla
tavoilla. Vokseleilla malli esitetadn kuutioiksi jaettuna alueena, jossa kuutio voi olla
joko tyhja tai taysi ja sisaltdd muuta informaatiota, jota tilan piirtamiseen voidaan
kayttad. Vokseleita voidaan piirtad, joko luomalla niille pintageometria rasterointia
varten tai kiayttamalla ray cast -menetelmia.

Tassa tutkimuksessa menetelmia vertailaan mittaamalla kuvan piirtamiseen kay-
tettya aikaa molemmilla menetelmilla muuttamalla piirettavien kolmiulotteisten mal-
lejen ja piirretavan kuvan resoluutiota. Lisdksi testataan erilaisten octree-rakenteiden
kayttamista piirtdmisen nopeuttamiseen.

Tutkimuksen testit osoittavat, etta rasterointi-menetelma on nopeampi kun vok-
selimallin resoluutio on pieni ja kuvan resoluution kasvaessa se ottaa kiinni ray cast
-menetelméa myos keski ja suuri resoluutioisilla malleilla. Rasterointi menetelméa on
hyvin riipuvainen siita, etta piirrettava malli pakkautuu hyvin octree-rakenteeseen,
mutta eri octree-toteutusten erot suorituskykyyn ovat hyvin vahaisia.

Ray cast menetelméat ovat nopeampia, kun vokselimallin resoluutio on korkea tai
sen sisalto ei ole koherentia, mutta tayttoaste lahellé laitoja on korkea. Erot eri octree
menetelmien vélilla ovat merkittavia, mutta joissain tapauksissa myos alkuperdinen
vokselidata oli nopeampi.

Avainsanat Tietokone grafiikka, Realiaikainen piirtdminen, vokselit
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Definitions and Notations

Abbreviations

API

Application Programming Interface, part of software that allows other
software to use some functionality it offers

CPU Central Processing Unit, generic computation unit found in most com-
puters

GPU Graphics Processing Unit, computation device optimised for parallel
floating point arithmetic needed in rendering

MIMD  Multiple Instructions, Multiple Data, architecture where each processing
unit has their own instructions and parts of data

SIMD  Single Instruction, Multiple Data, architecture where same instructions
are run parallel with different data

SIMT  Single instruction, multiple threads, extension of SIMD with multithread-
ing

FPS Frames Per Second, common way of measuring graphical performance as
number of images shown each second

ms Millisecond, One thousandth of a second, unit usually used to measure
time in context computer performance

b Bit

B Byte

kB Kilobyte, 1000 bytes

MB Megabyte, 1000 kilobytes

KiB Kibibyte, 1024 bytes, factor of two friendly version of kilobyte, common
measure of storage

MiB Mibibyte, 10242 bytes, factor of two friendly version of megabyte

Hz Hertz, unit of frequency, 1 cycle or event per second

Terms

Bit Smallest unit of information, a single on/off storage

Byte 8 bits, common storage size unit

Pixel A regular sized and shaped discrete part of a picture

Voxel A regular sized and shaped discrete part of a space

Ray Tracer Algorithm which follows a ray in scene as light would travel in it

Ray Caster Rendering method which traces a ray to its first intersection with

scene

Ray Marching Method of ray tracing in which ray is advanced iteratively
Frame Time A time that it takes to render single frame.
Frame Rate Frames rendered per unit of time.



Notations

ST

7

8

—

T

.Y, 2) A vector’s components

A scalar
A vector

A matrix

derivative with respect to variable ¢

sum over index ¢

dot product of vectors a and b

Absolute value of x, per element for matrix or
vector

Euclidean length of a vector

Group of real numbers

Group of natural numbers including zero and
positive integers, 0, 1, .., oo

Group of numbers presentable by IEEE 754 32
bit binary single precision floating point numbers



1 Introduction

Rendering is the process of turning description of three dimensional object or scene
into a two dimensional image. Volume rendering is process of rendering volumetric
data. Voxel rendering is a subclass of volume rendering, where the volume is stored
as samples taken at discrete, regular intervals.

Besides vertex polygons approximating surface geometry, voxels can be used
to represent three dimensional models. Voxels are usually cubic discrete volumes
of space, containing information about whatever the volume is filled or not and
additional properties, such as colour, transparency or texture of space within the
voxel’s boundaries.

Advantages in generic calculation on graphics computation unit have made it
viable to render images using methods other than standard triangle rasterisation
pipeline for real time graphics.

Voxels can be rendered either by generating their surface geometry, usually
optimised to only surfaces that might be visible to camera and then using rasterisation
pipeline for drawing them, or by using ray casting or tracing to directly draw the
voxel data.

Most research on the voxel rendering has been on the side of ray tracing, but
most of current graphics hardware is optimised for rasterisation. Interest in ray
tracing solutions is likely because of better support for more advanced lighting models
and transparency calculations. But how do these methods fare against rasterisation
pipeline when lighting methods common to current real time applications are required.

In this paper we examine and compare rasterisation and ray casting methods of
rendering voxel data for real time applications.

1.1 Research motivation

Aim of this paper is to find ways in which performance of real time programs using
voxel graphics as part of their scenes can be improved.

Voxels are efficient and understandable way of modeling objects and materials,
which change mainly trough addition or subtraction, rather than bending or stretching.
While this allows voxels quite a lot of flexibility, they are usually slower to render
than models based on modeling surface geometry with vertices and edges connecting
them. This is generally, because voxel models need to be turned into surface geometry
to be rendered in normal rendering pipeline or use custom rendering methods which
rarely are as optimised.

On the other hand, voxels are quite simple and efficient presentation of model
for ray tracing and similar rendering methods. They are already axis aligned on
uniform grid and bounding volumes hierarchy can be build quite efficiently using
mipmapping, k-tree or similar techniques. These further improve the efficiency of
ray tracing options as ray can advance with a longer step in empty areas.

By finding conditions in which ray casting or rasterisation methods are clearly
faster than the other, we can optimise whole rendering pipeline to use faster method
for each model or by changing the method for all voxel objects in scene when certain
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parameters are meet. It is still possible that one method might be significantly faster
in all realistic use cases, which might lead to possibility of general recommendation.

1.2 Research Questions

This paper seeks to establish whatever or not the alternative rendering methods
might be better for performance in real time applications and if so, under what
conditions should they be used over each other.

First, we must establish whatever or not the rendering methods can provide
similar enough results to be used as alternatives to each other. This means that the
resulting images should be visually indistinguishable from each other and should be
within floating point calculation accuracy on data level.

Second, we examine whatever these methods are comparable in performance and
what are the main bottlenecks in each method. While the theoretically interesting
differences on these methods come from the complexity of rendering equation in
terms of picture size and voxel count, more likely real world bottleneck is the memory
channel between CPU and GPU.

Finally, we compare the performance of these methods in different scenes to
establish which is most powerful method and what are the major factors in selecting
a method for each application.

1.3 Scope of this paper

This section defines the scope of this research. The optimisations searched for in this
paper aim for improvements in common deferred rendering pipeline. This section
also explains why certain rendering features were excluded or why specific platforms
were not used for testing.

1.3.1 Deferred shading pipeline

At the moment most real time interactive graphics, which require complex lighting
calculations are done using deferred shading. In deferred shading, the scene is first
sampled for data needed for rendering, such as screen space positions, normals and
materials, which are stored into a texture usually referred as geometry buffer or
G-buffer. Then second pass is performed, in which this information is combined to
rendered result.

Main advantage of this method is that it allows possibly expensive material and
lighting calculations to be calculated only for visible pixels. It is usually further
optimised by dividing the second step into multiple smaller steps were only lights
affecting specified area are considered and final collection step which composes
complete image from these pieces.

Disadvantages of the method are in difficulties of transparency and reflection
calculations, which must either be done with only screen space information or rendered
on top of the image in a separate pass, and that the texture used for second pass
takes lots of memory if there are any complex materials in the scene.
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For purposes of this paper, all the differences between different rendering methods
happen in the vertex and fragment shader programs of the first rendering pass that
generates the G-buffer or in preprocessing done before the first pass.

This is both practical for research as it decreases differences between the different
rendering methods as well as necessity to keep the research relevant to many modern
real time applications.

Concerns of lighting and rendering equation are left out of this paper. By
having only differences in the first pass of deferred rendering pipeline, same lighting
calculations can be used for both tested methods as would be used for any vertex
based models in the scene. For more complete consideration of voxel based rendering
equation, see for example [24].

1.3.2 Examined features

As the paper is targeting real time applications where the rendered model might
change at each frame, optimisations which depend on heavy precalculations on the
model are left out.

For rasterisation, combination of voxels into larger boxes or precalculating the
visible surfaces of each voxel and generating a rasterisation ready surface geometry
beforehand would no doubt speed up the rendering, but we would loose the modifia-
bility and other benefits of the voxels. If such optimisations would be feasible for
the purposes, then model format other than voxels should be considered. Instead we
will do run-time optimisations of voxels by using hierarchical data structures as date
representation for our voxels.

Similarly, as results of each rendering method needs to be comparable to others,
more complex lighting models are not examined and transparency, refraction and
reflection are left outside of the scope of this paper. With deferred rendering these
can be done at the latter steps of the rendering without caring for the original
presentation of the model.

While voxels have advantages in modeling of heterogeneous translucent objects,
these are left outside of this paper’s scope as these advantages quickly disappear
when using methods of other than full ray tracing for rendering them.

In some older contexts, term voxel is also used refer to certain kinds of height map
based ground models. For example VoxelSpace rendering engine used in Comanche
games and their recreations use height map and colour texture to render ground. [29]
This method would be quite usable for situations where only single layer of voxels
from single side of the model is ever visible, as with ground without arcs or caves.
These use cases are not general enough for our use of modifiable voxel data, as these
requirements would easily be broken by quite simple modifications to voxel data.

We will also only use cubical voxels contained in a regular rectangular grid. While
ball shaped voxels, a interlaced hexagonal grid or meta data of surfaces inside the
voxels[25] could be used to model natural shapes more accurately, they increase the
cost of the rendering and make the comparisons between the rendering methods
more difficult. For this reason voxels rendered at this paper will look like voxels
and the models will be blocky if the resolution of the model is smaller then the
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visible resolution. Other than voxels containing vertex or contour data, there is also
significant lack of easily accessible prior research on non-cubical voxels.

As an additional note, this paper will only consider situations where voxels only
changing attribute is whatever it is filled or not. This means that possible other
rendering information, such as textures don’t need to be updated during normal
rendering. In this paper we will assume that if any other information about the voxel
is required, it is available form texture that can be sampled with voxel’s position on
the model, and that this data doesn’t change between frames, so transferring the
data doesn’t need to be considered as part of the rendering each frame.

Implementations presented in this paper will work with little tweaking regardless
if a single 3D texture is used for whole model or each voxel has their own textures,
as long as there is a way of retrieving correct textures and sample them based on
position inside of the model. Individual textures for each voxel could be implemented,
for example, by redirection 3D texture where texture coordinates corresponding with
voxels position in the model contain the index of a texture for that voxel in some
collection of textures to sample with the collision position relative to the voxel’s
corners.

1.3.3 Targeted Platforms

This work only considers desktop computers with dedicated consumer level graphics
computing hardware.

While some development has been done in specialised ray tracing hardware [40][36],
these are not yet widely available, and with process on the generic programming on
GPUs and new graphics APIs giving more low level control over rendering pipeline,
it might be that they will not be common in consumer products any time soon.
Considering our practical applications for this research, targeting hardware that is
not widely available, would not give as useful results at the moment.

In autumn 2018 nVidia released series of graphics cards with ray tracing optimised
generic calculation cores and machine learning based ray tracing postprocessing tools
[33].

As the research was already underway, these are left outside of this paper’s
scope. The postprocessing smoothing is unlikely to be useful for target purposes, but
the generic processing cores optimised for ray tracing might offer advantages over
examined rendering methods. This should be investigated in further research.

Most modern consoles also have graphics processing units very similar to these
available to consumer computers, so they are not considered separately. Mostly
everything that is found to be true for modern desktop computers, should also
apply to console hardware, even if the requirements for optimisation are even tighter.
Because hardware differences between consoles using same version of the software
are minimal, more hardware specialised optimisations might be available, which are
not as easily duplicteable on personal computers with higher variety of hardware
setups for any version of distributed executable.

This thesis will also ignore mobile platforms. Mobile platforms might have
differences on what level of customisation and generic computing their rendering
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pipelines allow and most have integrated graphics processing coprocessors on CPU
or in case of Tegra[l] chips, more of a GPU with integrated CPU. Such processors
likely face different kind of bottlenecks and might be of interest for future research.

Exact configurations of hardware and operating software used for testing are
documented in the methods part of this thesis.
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2 Background

This section examines the historical and theoretical background as well as previous
research in the area of subject.

2.1 History of the topic
2.1.1 Time line of Programmable Graphics Processing Units

Implementations discussed in this paper rely heavily on programmability of modern
GPU and thus it would be useful for reader to understand outlines of how technology
has reached current state. One of the main things to note is that new features are
usually first moved from CPU to external devices as quite case specific hardware
solutions, and then latter transform into more generic devices, with more features
and more programmable behaviour.

Specialised graphics progressing hardware started as either integrated chips or as
extension hardware to offload specific parts of graphics computations from CPU. [31]

First specialised graphics chips that where not completely separate super com-
puters, where arcade machine video chips in 1970s, usually quite specific for each
game. [20]

First part of graphics computation to be offloaded from CPU was the functionality
transfer and compile image data. For 3D applications this meant rasterisation of
simple primitives to frame buffer and in 2D copying masked images to frame buffer.
[31]

Video Shifters where chips handling timing signals and transferring frame data
received from CPU memory to serial data stream for video output. [9]

In 1980s some CPUs where accompanied with blitters, which where specialised in
moving large amounts of data from parts of memory to others. They where named
after Xerox Alto processors bit blit operation. In graphics processing they where
used to drawing bit map images on top of each other. From standard movement
operations blitters differed by their ability to handle transparency with conditional
overwrite and multiple pixels per byte formats by masking and shifting. [35] [14]

Released 1984, the IBM Professional Graphics Controller was one of the first
video cards designed to handle both 2D and 3D image rendering. It was a board of
Intel 8088 microprocessors that could take over most of video processing from CPU,
but because of its high price and limited software support was not widely used. It
is significant in signalling transition from specialised integrated chips to separate
processors in graphics processing. [31]

1989 Silicon Graphics Inc. introduced OpenGL, first widely used platform
independent API for graphics programming. OpenGL also formalised the concept of
graphics pipeline for rastering 3D vertex geometry. [31] OpenGL appeared first as
a professional graphics API, but originally suffered from performance issues which
allowed competing Glide API to be the dominant force on the PC market until the
late 1990s.

In 1990s general purpose 2D graphic coprocessors died out in favour of separate
chips, which usually where specialised for 3D operations, such as transforming,
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clipping and specific lighting calculations, which give them name T&L chip, Transform
and Lighting chip. Such hardware was mostly found on arcade machines and 5th
generation video game consoles.

In 1993 SGI released RealityEngine, fixed pipeline graphics processing unit
that could handle the latter stages of the graphics pipeline while still leaving the
earlier phases for the CPU. [31] In late 1990s SGI chips where mainly targeted
for workstations while other manufacturers brought cheaper GPUs to consumer
computers, among them the current primary manufacturers ATI and nVidia.[31]

Before late 90s graphics processing components were optimised for sequential
throughput and could usually only handle single pixel per clock cycle. This changed
in late 90s when manufacturers started including multiple parallel pipelines.

In 1997, Fujitsu marketed Pinolite as the first 3D geometry processor for personal
computers. It was an extension chip capable of performing floating point operations
for large number of 3 dimensional vectors simultaneously and while not actually
faster than higher tier CPUs available for home computers of the time, it freed the
processing time for other tasks.[17]

The first hardware T&L GPU on home video game consoles was the Nintendo
64’s Reality Coprocessor, released in 1996. It is likely first commercially available
graphics processing unit that has each of the pipeline stages it takes over from CPU
programmable. [41]

First consumer level graphics cards to implement whole 3D rendering pipeline first
appeared right at the end of 90s. These pipelines where completely fixed, allowing
only limited types of input data and configuration variables, with no options for code
execution or accessing any intermediate data.

Released in 2000, PlayStation 2 had separate vertex processor that supported
complete implementation C programming language, giving it full CPU level of
programmability. [30]

In 2001, nVidia GeForce 3 was marketed as first programmable graphics card,
and likely was that for consumer PCs. Its NV20 chip supported vertex shaders with
up to 128 instructions and pixel shader with 4 texture look up instructions and 8
blending instructions. These shaders where written in hardware specific assembly
level language. The pipeline was otherwise fixed and these instructions where sent
along the rendered data. [8] [38] [31] [27] [7]

In 2002, new cards allowed for fully programmable vertex and fragment shaders
as well as some configuration of input and output operations. Still both shaders had
their own specialised hardware, and their instruction sets where somewhat limited.
31

2003 saw the introduction of DirectX 9 and new GPUs, which allowed full floating
point arithmetic, multiple rendering targets and advanced texture processing. General
processing on GPU was first handled trough proprietary languages specific for card
manufacturer or platform or by abusing programmability of fragment shader for
compute shaders.

Also in 2003, Cg was introduced as C-like language and systems for programming
vertex and fragment streaming processors in GPUs. It differed from earlier attempts
of higher level shading languages like RenderMan by not being application specific.
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It could work with both major graphics APIs of the time, Direct3D and OpenGL.
[30] Other early examples where Brook and Sh from 2004. [31] Soon after, API
specific shader languages, HLSL and GLSL (initially known as glslang based on the
reference front end) followed. [13]

After OpenGL and DirectX started supporting shaders written on relatively
higher level of abstraction and hardware was capable to execute almost any code
on vertex and fragment shaders, fixed T&L hardware become unnecessary and the
GPU where no longer limited to processing graphics.

By 2006 vertex, geometry and fragment processing units where unified into single
fully programmable processor that could handle all of them. The pipeline that had
been important part of graphics processing design became merely a abstraction useful
for software side. [31]

Besides incrementally improved memory bandwidth and parallel processing power,
recently the GPU development has seen introduction of more generic programming
performance, even separate generic programming cores, and features optimised for
ray tracing or neural network systems.

2.1.2 Previous uses of voxel graphics

It would be difficult to understand the current state of voxel graphics if one is
unfamiliar with how and where they have been used in past. This section aims to
provide some outlines for previous uses of voxels.

There currently are two main areas of use for voxel graphics, scientific visualisa-
tion and entertainment. In scientific visualisation voxels are used to render three
dimensional scalar or vector fields. Common applications include topography scans
and magnetic resonance imagining. Visualising medical scans is one of the most
important areas in scientific visualisation. [24] Other, entertainment, applications of
voxel rendering are mostly on computer games and animations, in which voxels have
been used to represent materials and objects that can change trough addition and
deletion.

There are some differences between these fields. In scientific visualisation only
single model is usually rendered at time, while entertainment might require hundreds
or thousands of models on screen at time. Scientific models usually have much larger
amounts of data for each voxel and the aim is to accurately relay this information to
viewer. In entertainment uses, the voxels usually only have the minimum amount
of data that they require for their intended purposes and the aim is to render the
data in a way that looks visually pleasing or realistic. Both fields have use for real
time applications of voxel graphics, but in scientific visualisation updates to voxel
data at run time are less common and updates to rendering parameters other than
transforms and lighting are more common.

In entertainment, first examples of voxels where found on terrain rendering of
games like Comanche: Maximum Overkill from year 1992. These early examples
where in most cases actually height maps, though the rendering methods where
similar to what was used for full voxel models at the time. Command and Conquer
series used voxels for animating most vehicles of the games. Most common use cases
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in games for voxels are currently in destructible terrain and other environment. In
most instances of voxels used in video games, they have used software rendering,
which means that the calculations mostly took place on CPU side and GPU or other
graphics acceleration hardware was not utilised.

On side of movies, voxels have been mostly used for rendering volumetric smoke,
dust and liquid effects, because voxels represent interiors of heterogeneous materials
better than surface geometry and are more efficient format for ray tracing than
particle effects. Lately voxels have also been used for solid objects when extreme
level of detail is required.[12] Use cases in movie industry are mostly on the side of
offline rendering, and run-time rendering is only used for previews during editing.

Voxels have quite a few algorithms with which they can be rendered. Common
algorithms fall into categories of ray casting, splatting, cell projection and multi-pass
resampling. The categories are based on the order at which the data is handled if
algorithm is executed on single thread. There are also few which are combinations of
multiple methods such as sheer-factorisation. [24]

Ray casting algorithms take a view direction ray for each pixel and sample the
voxel data in its direction, splatting algorithms go trough voxel data and render each
to screen as its own object, cell projection algorithms transform the voxel data into
vertex data and draw it as polygons and multi-pass resampling works by sampling
voxel data at fixed distances like it was a set of two dimensional textures on planes
orthogonal to view direction.

One of the traditional ways of extracting polygonal data from voxel model is
marching cubes algorithm, which approximates possible isosurfaces based on values
at each of the cubes corner. Given the eight points with specific values showing if
they are inside or outside of the surface, there are limited number of ways a somewhat
smooth surface can go between them. [28] Given the simple model of filled or empty
voxels used in this paper, the algorithm would take eight voxels at time, check which
are filled and empty and then place triangles to place surfaces so that they pass
between filled and empty voxels.

Original algorithm had troubles of creating topologically correct surfaces and
leaving holes in few cases, which were later corrected by increased set of possible
surfaces and heuristic on deciding which to use based on bilinear interpolation between
the sampled values [10].

The method is most commonly used to render scalar fields in scientific visualisation,
when seeing certain value boundaries as surfaces is beneficial. The name comes from
the fact that the sample area is a cube and once it has tested one set of eight voxels, it
"'marches on’ by replacing four of the voxels with four new voxels. [28] While marching
cubes can lead to a smoother presentation of voxel model, it is too expensive to be
used in run-time creation of surfaces for any larger data set as complete set of surface
geometry would need to be updated to GPU after each update.

Earliest methods used to render voxels directly started by sampling voxel data
from far plane of the camera and rendering these as a points or vertical lines. The
algorithm then repeatedly took a new plane slightly closer to the camera and repeated
the sampling process either overwriting pixels in the existing image or blending new
samples to existing image if there was transparency in the sample.
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The voxel data could also be sampled for two dimensional textures along these
planes and then used as textures for rendering geometry corresponding with the
sampling planes with the sampled textures trough graphics pipeline.

Next step of volume rendering was turning this method from back-to-front order
to front-to-back order. Rendering the near planes first allowed decreasing level of
detail on farther planes and terminating the rendering of the further planes once the
colour of the pixel has reached specified level of opacity. This required additional
numbers for the distance of last effective voxel and/or combined opacity of the voxels
already sampled for each pixel. [29]

Because each of the pixels on the image would have to be tested for each plane
used for sampling, it made sense to instead start ray from each pixel and sample the
scene along the ray until the ray reached some specific termination conditions. If
the sampling was done at predetermined positions along the ray, such as with even
distance between each of the samples, it was quite likely that the ray would pass
trough a corner of opaque voxel without sampling it. This could be partially avoided
by sampling the data more often along the ray, but such high number of samples
would make the algorithm prohibitively expensive. Limitations of early fragment
shaders required ray casting to be performed in multiple steps, each blending results
of last step with sample from tracing the ray one step forward. [23] Usually the
samples where from predetermined planes trough the model.

Voxels have been also been used as an optimisation for ray tracing vertex based
surface geometry from at least since 1980s, and because of this there are quite a few
optimised representations and traversal algorithms for voxels available. [3]

2.2 Earlier research on topic

This section further examines earlier research on the topic and attempts at improving
the performance of voxel rendering on GPU hardware.

Splatting is a way of rendering volumetric data by presenting each voxel as a
separate 3D object having a 2D footprint that is projected on the target surface
in the back to front order. [39] This can utilise the point rendering pipeline found
in normal rasterisation optimised graphics computing hardware. Splatting benefits
greatly from view space culling, and can handle transparency quite efficiently, but
for fully opaque objects, the need for rendering inner voxels as well increases cost.

Biggest problem in the method is requiring the voxels to be sorted in back to
front order, though the sorting can be avoided when there is no transparency and
the visibility of the splat can be determined by depth testing. Splatting differs from
the our rasterisation method in that the primitives that are rendered in splatting are
simpler than the polygon cubes we use.

It would be usable option if the voxel model was of such accuracy that 2D footprints
would not make visual errors on flat surfaces. Extraction of surface features such as
normals, which we need for the lighting pass might also be more difficult.

There has also been research on compression of bounding volume hierarchies, some
of them based on specialised or mobile hardware. (see [37] for example). Because
type of voxel data examined in this paper, there are no benefits for storing positions
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or sizes of the nodes in the hierarchical presentation as these are implicitly available
from the tree structure. These methods are more useful for ray tracing vertex data,
but might also be useful for containing multiple voxel objects with different rotations
on same scene.

Parallelism of creating hierarchical container structures for scene geometry has
also been researched (for example [22]). While these are meant for vertex data, similar
radix based algorithm might improve point voxel tests needed for voxel rendering
and editing the data. Octree implementations tested in this paper include a depth
first stored voxel data, so the usefulness of memory locality from such ordering will
be tested along other features.

In 2009 Crassin et al. [12] managed to achieve interactive rendering times for
volumetric data exceeding size of the GPU memory by allowing the GPU renderer
to signal CPU about missing parts of the voxel data, so that only need parts of the
voxel model have to be stored at GPU memory at time. By having the voxel data
stored as a "bricks", small grids of voxels with a size of 163 or 323 voxels, the most
memory intensive part of the model could be updated as small packages. The bricks
where stored on a octree where they presented the actual voxel data when stored
at leaf nodes or lower level of detail combination of nodes children when stored at
non-leaf nodes. If a resolution of a brick on higher level of a node was close to a size
of a pixel it might be rendered to, the ray traversal could be done trough this lower
level of detail brick, which required fewer samples than if leaf level bricks had been
used and as added bonus provided efficient anti-aliasing at the same time. [12]

This method is quite suitable for uses where voxel size is often smaller than a
single pixel, when more complex data is stored for each voxel or when more complex
lighting model is used. The brick system might also be useful for simpler voxel data
by providing memory coherence benefits for nearby rays or to update parts of the
voxel model when voxel data changes without touching other parts as the changes are
usually concentrated to small area at time. Unfortunately, the method also wastes
lots of memory when the voxel data is not truly volumetric[25].

Laine et al.[25] presented multiple methods for compressing voxel representation
of a scene, accelerating ray casting and improving the quality of generated image
using said representation. Their main contributions are introduction of contours,
which allow for more accurate representation of flat surfaces not aligning with the
primary axes of the voxel model. Another important part is the voxel data structure,
which is implemented as sparse octree with 64 bit node. Nodes are stored in memory
pages of quite small size, and contain information about where its children are stored
and whatever the each of the children are leaf nodes, non-leaf nodes or empty, as
well as information about the contour describing the surface on the nodes area. [25]

In 2014 survey conducted by Beyer et al. [6] it was found that there are quite a
many names for methods where once the size of a voxel on screen is small enough,
lower level of detail data is used for traversal and sampling the voxel data. Basic
idea is that if closer to root nodes in hierarchical data structure representing the
voxels contain approximation of the data in their child nodes, then the parent can
be sampled instead of the children. This avoids flickering caused by ray occasionally
passing trough empty part of the model and occasionally stopping at one of the filled
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children, when user doesn’t see even pixels worth of movement in rest of the model.
Most of the other technologies mentioned on the survey are only useful once the
voxel data gets too large to be stored on GPU.

In our octree implementations this level of detail optimisation could be used to
terminate ray traversal on non-leaf nodes if whole node would fit inside the pixel cone
for current ray, even if they are only partially full. For rasterisation implementation,
using such method would be trickier as the generation of surface geometry would
need to be aware of the angle resolution of target image and the distance of the
model from the camera.

2018 Assarsson et al.[4] presented method of transferring hierarchical voxel repre-
sentations into directed acyclic graphs, examined its benefits in compressing sparse
voxel octree representations. The method is quite simple in that if two subtrees are
identical, other can be removed and any pointers to it directed to other. Their paper
is also one of the few which consider the possibility of animation, mostly by reusing
subtrees between the frames. While finding of the equal subtrees is quite expensive,
even with a efficient method based on subtree hashes, this allows rendering whole
scenes which would not normally fit into GPU memory with in-core methods. They
also examine using similar technique to store shadow maps. [4]

Ray tracing on GPU is quite difficult to approximate from theoretical intensity
of the computations so another approach for estimating and comparing efficiency
of algorithms is to simulate ideal work distribution and memory accesses for given
hardware and algorithm. While simulations and tests made on ray tracing efficiency
by Aila and Laine [2] were made for vertex data, their observations about node
traversal order might hold for nodes containing voxels as well.

Unfortunately there appears to be little relevant information on rendering dynamic
or mutable voxel data.

2.3 Computational intensity of rendering methods

This section examines the computational requirements of the voxel rendering methods
and to form hypothesis on the comparative efficiency of these methods.

In rasterisation method we calculate screen space information for each triangle,
which might be visible and then for each pixel check if it is within the bounds of that
projection of the triangle. If the pixel is within the triangle and the corresponding
point on the triangle is closer to camera than any previous point written to that pixel,
the pixel is updated by overwriting it with data sampled from the corresponding
point or interpolated from the vertices of the triangle. At its base this process for
image with n pixels and voxel data with m? voxels, takes O(n x m3) pixel information
update operations, but in practice early visibility testing and other optimisations
greatly reduce the number of operations required.

When using rasterisation methods for voxel data we also need to transform the
voxel data into surface geometry. As the rasterisation is heavily impacted by the
number of objects drawn, instead of sending surfaces of each voxel as a vertex cube
with filling information or just all filled voxels, it is beneficial to use a tree structure,
such as octree to combine completely filled subtrees as single cube. This operation is
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hard to measure because it is not fully dependent just on how fine scale the voxel
model has, but also on the structure and fill balance of the tree. At best case scenario,
the model is completely full or empty, and only single node must be processed. At
worst case scenario, one of the eight the voxels for each tree’s node is empty and the
algorithm needs to traverse all %(8m3 — 1) nodes as well as create geometry for %m?’
voxels. Memory footprint of surface geometry would still be smaller than for fully
filled model without any optimisations, as that would require creating geometry for
m3 voxels.

When rendering is done using the ray casting method, we only require rasterisation
of few surfaces. Actually just single quad or triangle covering the screen would work,
but by using a single bounding volume cube, we get additional model and word space
information from shader pipeline and can benefit from some minor optimisations.
While the ray casting requires only one cube to be drawn, computations on each
of the pixels within these surfaces is much more complex, requiring sampling the
voxel data until a collision between the ray is found. As the data is sampled on a
line passing trough the voxel model with m? voxels at most 3m voxels need to be
sampled. Thus the computational cost rendering n pixels with the method should be
around O(n x 3m). Hierarchical methods might further decrease this but depending
of the model might also cause additional overhead from having to sample lower level
nodes.

Given these complexities it would be easy to claim that for any significant size
of voxel data, the ray casting method would be faster, but using it trades many
of the highly efficient optimisations found on the modern GPU graphics pipeline.
Complexity of per pixel operations might mean that on large image resolutions, the
rasterisation has and edge over the ray casting method.

It should be expected that rasterisation method would benefit much more from
good acceleration structure and scale more heavily on the resolution of the voxel
model. Likely hidden details are also more costly for the rasterisation approach. On
the other hand, ray casting method doesn’t benefit from early culling based on depth,
so rasterisation might gain an edge on situations where it is partially hidden or out
of view.

There is also great likelihood that most of the rendering operations are bound by
memory bandwidth between the CPU and the GPU rather then calculation speed on
either end. In these cases the rasterisation benefits more from the octree acceleration
structures, as it doesn’t have to transfer the tree structure to the GPU. On the
other hand plain voxel filled or empty state can be stored in much smaller space than
surface description of the same voxel model.
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3 Implementations and Testing Methods

This chapter examines how the rendering methods were implemented and how they
were tested. First part examines generation and storage of the voxel models. Second
part describes the implementations of the ray casting and rasterisation methods.
Third part examines the methods used to accurately time different parts of the
program executions and the fourth part describes testing setup used to benchmark
the implementations against each other. The final part of this section enumerates
the different test scenarios.

All implementations were written on C++ in a way that they could be compiled
for Windows and Unix operating systems and with OpenGL 4.4 core profile used for
rendering. GLFW3 was used for window management and IO handling, Glad for
handling OpenGL bindings and GLM OpenGl Mathematics library for vector and
matrix mathematics on the CPU side. [19][21][18§]

3.1 Scene generation

This section describes the data that is rendered and how it was produced.

Most artist tool chains are geared toward creating and editing surface geometry
and textures and thus there are not as many voxel models easily available to be used
for testing. It also appears that there is no good standard format for storing voxel
data, so loading found models would not be trivial.

To get suitable test data, voxel models can be generated from surface models or
other descriptions. Surface models could even be used to generate voxel data from
vertex data in rasterisation pipeline at real time rates[15] [16] [34]. For purposes of
this paper, offline generated voxel models were used on testing.

Two methods of generation were used for the generated models, first method
generated filled balls of different sizes by setting voxels within specified distance
from the centre of the model to be filled. The ball was chosen as it is simple but
also gives good visual indication of how well model of given size and resolution can
represent natural or curved surfaces. Filled ball also has a an interesting property
for the acceleration structures as it has quite even amount of both short and long
paths from the root to completely filled or empty node. Figure 1 shows the model
rendered at different resolutions.

Figure 1: Ball model at different voxel resolutions
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Second model was created by randomly deciding for each voxel if it should be
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filled or empty. This allows for adjusting the filling rate of the voxels in the model as
well as gives an unbiased data point for comparing the different methods as methods
can not be directly optimised for data that doesn’t have known patterns. It also gives
a good representation of partially filled model, as randomisation gives both small
clusters of empty or full voxels as well as areas containing both somewhat evenly.
The used model had only small clusters of filled or empty space and its exterior had
large number of small visible details. The interior was similarly complex, making
the model difficult for octree storage as in most cases the full level of detail was
needed. For 50% fill rate, only 1 in 128 nodes on the level right above the voxels
would be empty or full. Figure 2 shows the randomly filled model, with 50% fill rate
at different model resolutions.

Figure 2: Random model at different voxel resolutions
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Additionally, a model created from vertex data using surface filling was used
for testing. Fastest methods of creating voxel data from vertex geometry are based
on rendering a depth map from different direction with orthogonal projection and
combining this information, but these methods can’t account for empty space inside
the model. Because voxelisation phase is not within the scope of this research, a
simple brute force method was used. For each triangle, a bounding box was calculated
and then voxels overlapping with the bounding box were set to be filled.

The selected model is a nightstand with a drawer. The model has both visible
and hidden empty spaces inside in it. The filled areas are quite narrow and require
more levels of octree to be presented accurately, but the large empty areas should
benefit form empty space skipping. The empty space also means that for the linear
array presentation and rasterisation the model has relatively small number of filled
voxels. The figure 3 shows the model rendered with different voxel resolutions.

Figure 3: Nightstand model at different voxel resolutions
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To simplify the testing process and to avoid overhead from the other parts of
rendering, the simplest testing scenes only contain a camera, a single voxel model
and a directional light source.

Each model is generated at 7 different levels of accuracy, from 23 to 22 voxels per
edge. The upper limit was chosen because the there was an integer overflow on the
random model when trying use accuracy of 2'° voxels per edge.

Camera and the model are positioned so that the model is completely or almost
completely visible and that covers most of the screen space. In test scenes, where
nothing else is mentioned, the camera is positioned on 45 degrees to side and 25
degrees up from the model.

3.2 Voxel storage

Format of storage for the voxels is one of the main optimisation points for both
methods. Storage format affects both time it takes to update the voxel data and time
it takes to transfer the updated data to GPU. It can also be used as an acceleration
structure for empty space skipping in ray tracing and to combine fully filled areas
for the rasterisation method.

As the memory requirement increases linearly to number of the voxels or cube
of number of divisions in one dimension, accurate voxel models require significant
amounts of memory. To store only the filling status of the voxel, only single bit is
needed and byte can hold eight voxels, but if the model has been divided to voxels so
that it has resolution of 256 voxels per direction, we already need 2 MiB of storage.
Given that in many real use cases the voxel data has to be accompanied with a
quite large 3D textures for other information the renderer requires of the voxels, it is
important to not use too much of memory for the voxel structure. Given that the
voxel information is updated for each frame, it is also important that the memory
requirements don’t exceed the available bandwidth.

Simplest implementation tested in this paper stores the voxels in scan line order.
Voxels, with same x and y coordinates, are in order of rising z coordinate, then
followed by another row with coordinates x and y + 1. This method is used for its
simplicity, but a more complex linearisation order, such as indexing with Morton
encoded coordinates [32], might allow for better locality of datal[5].

The storage for this scan line linearised data is a array of 32 bit integers. Position
of voxel is in the model transformed into index in the linear representation by
multiplying position along x-axis with square of the voxel model resolution and
position along the y-axis with the voxel model resolution, these are then added to
position along z-axis. This result is then divided by 32 to gain index in this array
and the remainder of the division gives us the offset in the given integer.

The voxels can also be stored in a hierarchical tree structure, such as octree. The
octree can be stored on memory in multiple ways. Because we need to be able to
send the octree data to GPU we need to store it in a continuous memory block.
Octree can be represented in a memory as a dense tree, a sparse tree or a graph.

In dense tree approach, every node and leaf voxel is stored in the memory. This
method doesn’t save space over storing just the voxels, but it is useful as acceleration
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structure for both methods. For example, a model with resolution of 16 voxels per
dimension takes 512 bytes of memory to store the voxel data but 1168 bytes to store
voxels on a tree structure.

The nodes and the voxels can be stored in the memory either in depth first order
or breath first order. Depth first order allows updating any subtree as overwriting a
continuous part of memory, so it handles partial updates between CPU and GPU
better, while breath first order might improve the locality of data required in the
higher levels of the tree which are accessed more often than the leaf nodes and the
voxels in ray traversal. Because the position of the node in the tree and its location
in the memory can be inferred from each other, the nodes need to only be 2 bits in
size, indicating either full, partially filled or empty node.

In sparse tree, children of a node are only stored if they don’t have same values.
This method saves space when there are nodes close to the root that are completely
empty or filled, but because the memory location of a node and its location on the
tree don’t relate to each other, each node needs to contain memory addresses or
offsets of its children and if stackless algorithm is required, also its parent’s address.

If breath first order is used to store the nodes, only first of the children needs to
have its address stored, but for depth first order either addresses of every children
needs to be stored in its parent, or then each node must also contain position of its
next sibling. The address of children might be either offset from current node or
from start of the array. There is also a hybrid order obtained by storing all children
of a node as continuous block but selecting next block to store in depth first order.
This method preservers the benefit of only needing one child pointer per node, but
will also give locality benefits of depth first order. For larger trees, storing it in
smaller parts, and having the address as part number and index in that part might
be beneficial for updates.

The sparse tree versions of our rendering methods use the hybrid version of this
data structure. For each node we store the index of its first children. As root is not
children of any node, its index, zero, is used to indicate empty subtree. The largest
unsigned integer value representable by the storage unit for each node is used to
signify that sub tree is full. This leaves all the values between these two available
as indexes of the the tree nodes, meaning 32 bit nodes can represent octree with
11 layers of nodes completely but with sparse presentation, even deeper trees are
possible if there are any fully empty or filled areas.

If we used offset from current node to its first children, we could store more voxels
for same size node, but in breath first storage order the the additional complexity is
not really worth the gained addressing space on models used for the experiment.

Because of changing a value of voxel that is not already a node in the sparse tree
requires new nodes to be created, this operation is quite expensive. Creating a node
requires us to move the nodes after the addition position forward to make room for
the new subtree and we have to update any pointers that point to the moved area,
which includes siblings of the any changed voxel and anything after the moved part.

Similarly, when node changes in a way that its parent now has all of its children
with a same value, it must also be changed to match that value. Now the children are
no longer needed and should be removed to minimise memory footprint and maintain
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the order, but any nodes pointing over the removed nodes need to be changed to
match the new indexes, and the nodes after the removed nodes need to be moved
toward the beginning of the memory area and changed if they are pointers. If we
don’t remove the nodes, we will either have to keep track of this empty space or
create new space at the end of the array when the node’s children would be added
again.

This is one of the places where using offsets can be helpful, as only the nodes
pointing over the changed area, which are latter siblings of the root of the changed
subtree, must be changed, rest can just be copied to their new places.

A graph is an extension of sparse tree with equal subtrees joined at their root. This
saves lots of memory when there are identical subtrees at different parts of the tree,
and can be effective optimisation for huge trees with regular or repeating patterns.
Unfortunately this means that ordering of nodes in memory is very complex after
first few nodes from the root. Construction of the graph and checking for duplicate
subtrees is also quite expensive and updating a single voxel leads to having to make
a copy of the subtree before the change, to avoid changing other subtrees that use
the same data. The update might also lead to creating subtree that is identical to
other subtree and these should be joined periodically to avoid losing the benefits of
the graph. With the construction and update costs so much higher this is unlikely
to be suitable for real time applications with mutable voxels and is not implemented
in tests presented in this thesis.

In this paper, 4 storage methods for the voxels have been used, linear array for
voxel data, dense depth first octree, dense breadth first octree and sparse hybrid
order octree.

To compare results without overhead of texturing only filling data is used in the
test renderer. Information needed for texture sampling is generated as part of the
rendering methods, but no sampling is done. If textures or other voxel information
would be required, the sampling information can easily be used to check these from
additional textures. This means that the method can be easily adapted to situations
where each voxel has its own textures as well as in places where the whole model has
single texture with resolution lower than that of the voxel model.

Since voxel models are not generated on run time in applications that are within
the scope of this paper, the generation itself is not performance critical. Instead the
critical parts of the data structure are the time and memory required to render it
and how quickly small edits can be done to the model.

Table 1 shows that with quite a large and coherent model of filled ball, the sparse
octree takes significantly less space than the other methods. The dense octrees take
bit more than a double of the space required by the linear array representation and
don’t depend on the content. The sparse octree on the other hand does depend
on data and the size of the random model is 20 times larger than that of ball with
doubled resolution and thus eight times more voxels.

3.3 Rendering Implementations

This part describes implementation in each of the rendering methods.
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Model Ball Random

Voxel resolution 8 32 1024 32 512
Linear Array 68 B| 4100B | 128 MiB | 4 100 B | 16.0 MiB
Depth first octree 148 B | 9364 B | 293 MiB | 9 364 B | 36.6 MiB
Breadth first octree 148B | 9364 B | 293 MiB | 9 364 B | 36.6 MiB
Sparse octree 1828 B | 27.3 KiB | 28.7 MiB | 145 KiB | 581 MiB

3.3.1 Rasterisation of generated triangles

The rasterisation pipeline relies on the use of instanced rendering to render multiple
cubes with single draw call. First the a cube model and shader program are loaded
to the GPU, then an array containing positions and size of filled voxels or octree
nodes is sent to the GPU and instanced draw is called.

Initialisation of the shader programs and environment as well as the creation of
the cube model work as in any modern rendering application. The vertex data for
the cube requires normals for each side as well as the corners set at model space
coordinates (0,0,0) and (1,1,1). UV coordinates can also be supplied in vertex data,
but can also be taken from the other data if needed.

To render the model for each frame, we need to collect the filled voxels and their
positions from the voxel storage to a buffer of model space positions and scales.

For the linear array this is quite simple but expensive part, we iterate over the
voxel data and if the voxel is filled, append its location to a buffer. For the other
storage methods, we need to traverse trough the tree starting from the root node
and add new elements to the buffer when ever a full node is found, the scale of the
voxel is dependant on the depth of the voxel in the tree and its position from the
path that was taken to find it. This requires 4 numbers per voxel, or in case of
the octree, for each fully filled node. These number need to be large enough that
they can accurately describe the voxels position within the model. For model with
resolution of 256 voxels per dimension, 8 bits would be enough for each model. Any
reasonably sized voxel models should be representable with 16 bit numbers. In the
implementation used in this paper a 32 bit floating point numbers were used.

This part can be parallelised by splitting the model to regions of continuous
memory or subtrees, creating a buffer for each of these parts and then joining the
parts together once they have been filled in different threads. With single thread
implementation, the drawing with this method took around 6.6 ms for a linear array
stored ball with resolution of 64 voxels. With 4 threads the same process took 6.2
ms, so there is room there but not much. On other models the parallelisation had
similar results, so if other CPU cores or hyper threads are idle, they can be utilised
for this. The tree structures were parallelised based on the 8 child nodes of the root
node. Given the tree structure and linear end result, use of computation shaders or
massive parallel methods would likely not be beneficial.



29

After the buffer of positions and scales have been generated, they must be passed
to the shader program. In modern OpenGL this can be done trough uniform types
or instance vertex attributes. Uniforms are a simpler method, but only about
500 instances could be send per draw call. This worked quite well for smaller data
resolutions, but became excessively expensive on larger resolutions. Another approach
is to use instanced vertex attribute arrays. Rabidly changing buffer data has its own
problems, as the operations are not done synchronously but their use decreased the
time needed for the 64 voxel ball from around 6 ms to around 4 ms. At this point the
drawing of the linear array ball of higher resolution still takes too long to measure,
but the octree versions are in real time frame rates.

While using ray casting, we have to send the voxel data to GPU, with rasterisation
method we have to send the offsets and scales. Table 2 shows the sizes of the completed
instance data that must be send to GPU. All the different octree options tested in
this paper end up sending the exact same data. The combination of full subtrees
into single cubes saves significant amount of memory for coherent data.

Table 2: Size of offset and scale data sent for instanced rendering.

Model Ball Random

Voxel resolution 8 32 512 32 512
Linear Array 4480 B | 270 KiB | 1.05 GiB | 258 KiB | 1023 MiB
Octree Versions | 3 584 B | 43.0 KiB | 12.5 MiB | 256 KiB | 1017 MiB

Vertex shader is quite simple, it takes the cubes vertex position, normal and UV-
coordinates and applies the instance offset and scale to them, transforms positions
and normals to world space and projection space, and then stores them to output
variables. For the UV coordinate, we expand it into 3D position within the model
space, so that it can be used to identify both the voxel and the position on its surface.
The graphics pipeline then performs primitive assembly, view space culling, early
z-buffering and other operations and optimisations, which leaves us with possibly
visible fragments on fragment shader. The fragment shader is equally simple, and
only transfers the position and normal data to G-buffer. If the voxels were textured,
this would also include the fetching of the texture data, which can be found based
on the UV coordinates.

3.3.2 Ray casting voxel data

In ray casting method we use the rasterisation pipeline to render single cube scaled
and oriented to match the outer bounds of the voxel model. The vertex shader simply
applies model, world and camera transformations and stores the parameters we need
to interpolate for each pixel. Fragment shader performs the ray casting for pixels
which are within the bounding volumes projection to screen space.

Ray is defined by equation 7= §+ td where 5 is the starting point of the ray, d is
vector in the the rays direction. ¢ is a positive scalar that goes from zero to infinity,
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defining each of the points along the ray as 7. [26]

There are two options for starting position of the ray. If the fragment shader is
invoked for camera facing face of the bounding cube, we start from the surface of
the cube and move in the direction from camera position to surface position.

If the fragment is for a surface facing away from the camera, we check if the
camera is inside the voxel model and start from the camera position if it is. If the
camera is outside of the model boundary, the same pixel will be tested by front facing
face fragment, and can be discarded, unless the front facing bound is between near
plane and camera position, in which case we only have the back face for rendering,
but to avoid artefacts and inconsistency, we have to calculate respective position on
the front face and handle the fragment as it was front face fragment.

To simplify later calculations, we transform the rays starting position and direction
from world space, in which they are received in the fragment shader, to model space.
Model space of the cube has its coordinates configured so that that they fall to range
[0 — 1] and can be used to query the voxel data or textures.

After the ray starting position and direction has been selected, we must find
place where it collides with filled voxel. When finding a collision between ray and
another object the analytic way is to solve the ¢ for group of equations where 7 is
also defined as a point of another object.

For example for ray—ball intersection we would solve equations ||7"— ¢|| = r, 7 =
5§+ td where ¢ is centre of the ball and r its radius. If there are multiple objects, the
pair of equations is solved for each object and smallest value of ¢ is used to find the
first collision point.

In case of our voxel models we avoid unnecessary equation solving by checking
collisions in order the ray travels trough them until we find a collision with existing
voxel or pass out of the voxel models bounding volume. Because the voxels are in
uniform grid we only have to test which of the three cardinal planes corresponding
with the current voxel’s back boundaries the ray first passes trough.

In uniform grid, such as when using the linear array storage for the voxels, we can
also reuse two of the distances to boundaries, and update the one that was closest
with a constant describing distances along the ray of two boundaries in that cardinal
direction.

Main optimisation point and trade off of this method is between the memory
use and ray traversal speed. 3D array or texture is simple to sample for voxel data
and the travelling can be done with simple fixed steps, but large areas of empty
voxels will require sample for each of them. The another option is to store the voxel
data in a tree structure, which allows us to skip larger empty areas at cost of bit
more complex calculations for next boundary and more memory accesses required
for sampling a voxel, especially in partially filled subtrees. Earlier research suggests
that the using of tree structure is faster. [26]

With the octree structures it is possible to skip empty areas of the model by
calculating the next collisions based on the layer of the tree, where the first completely
empty node for that position was found. This method exchanges time needed for the
voxel traversal to time used to fetch data from the voxel storage.

If the ray reaches the back facing outer bounds of the model, we will discard
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the fragment. If there is a filled voxel on the path of the ray, we will return ¢
corresponding with first boundary of that voxel and then calculate the collision
position using the rays parametric equation. We will also store the normal of the
collision boundary. The model space normal can be deduced from the signs of the
rays direction vector and the direction in which the found boundary was from the
last crossed boundary. The position and the normal can then be transformed from
the model space to world space and stored to G-buffer data as well as used to gather
additional voxel data from 3D texture or other source.

The method for voxel traversal for ray tracing has not changed significantly from
the format it was presented by Amanatides et al. in 1987. [3] Only differences are
in inclusion of acceleration structures and context in which the voxel traversal is
performed.

Another common optimisation of ray tracing, early ray termination, is automati-
cally included to our solution as all rays terminate on first contact with filled voxel
or on reaching outer boundary of the voxel model. Unfortunately GPU architecture
doesn’t fully benefit from early ray termination as each thread in same execution
block will have to execute same instructions. This means that large groups of threads
have to wait for the slowest thread in the execution block before they can take new
set of rays to trace.

The voxel data is send to the GPU as texture buffer, because uniform buffers
had size limitations too strict for the massive voxel data.

3.4 Timing methods

This section explains the setup used for timing the execution of the programming.

Best way to compare performance cost of rendering methods is to compare their
effects on the frame time, or time it takes to render one frame. [11] In real time
applications targeting 60 FPS, frame time should be under 16 ms, but we should
expect that only small portion of that is available for rendering a single voxel model.

To avoid extra overhead from the timing, we store the system time at highest
accuracy available from the system. For each context and model, 100 frames are
rendered before the starting time is recorded. After 1000 frames have been rendered
from the start of the timing, end time is measured and the difference between start
and the end is recorded. Another 100 frames is rendered, the time as well as other
information about the test is printed, the next model and rendering parameters
are initialised and the process is started from the beginning. For comparison, the
rendering process without any models takes 0.33 ms at resolution of 640 x 480 and 0.63
ms at resolution of 2560 x 1440. This includes clearing the frame buffers, activating
the shader for geometry pass, passing the camera and model transformation uniforms,
activating lighting pass shader, swapping the G-buffer to input texture and rendering
a single whole screen covering quad with the G-buffer as texture. Table 3 shows the
full list of times for rendering an empty frame, so that these can be used as reference
to latter results. Accuracy of the measurements is of magnitude £0.03 ms.

By measuring the time for thousand frames, instead of just one, we will decrease
the order of effect from measuring overhead by factor of 1000 and also smooth out
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lots of random variance caused by other processes and hardware timings on the

computer.

Table 3: Rendering times for frame without any model.

Resolution Time

640x480 0.33 ms
800x600 0.33 ms
1280x720 | 0.33 ms
1366x768 | 0.33 ms
1600x1024 | 0.33 ms
1920x1200 | 0.42 ms
2560x1440 | 0.63 ms

3.5 Testing platform

This section describes the system used for the testing.

The primary computer used for the testing of the rendering methods is a few years
old mid-range gaming computer. Table 4 describes the the technical specifications of
the hardware and the operating system. All test result reported on this thesis where
taken on this hardware, though others were also used during development. To avoid
driver software from interfering with the system, all forms of v-sync and frame limits
were disabled from the driver settings. For the timing runs, the program is also run
as an individual application, without attached debugger or profiling software, which
would affect the execution with added overhead.

Table 4: Technical specification of the main test hardware.

Operating System
CPU

GPU

Graphics clock

Memory data rate
Memory interface
Memory bandwidth
Driver Version

Dedicated Video Memory
Total Video Memory

Microsoft Windows 10 Pro N, 64-bit
version 10.0.17763 build 17763

Intel Core i5-3570K CPU

3401 MHz, 4 Cores, 4 Logical Processors
NVIDIA GeForce GTX 1060

1569 MHz

8.01 Gb/s

192 bits

192.19 GB/s

430.86

3072 MB GDDR 5

7115 MB
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3.6 Test cases

This section describes test scenes used for rendering.

3.6.1 Test case 1: Filled ball with changing model resolution

First test case renders a scene where only object is a voxel model of a filled ball. The
ball and camera are positioned so that the ball almost fills the height of the view.

This scene has completely filled interior and empty exterior, with a curved surface
between the two. Empty corners of the model allow for empty space skipping, and
tree presentations require only few layers of depth near the centre or the corners, but
full depth at the boundary.

This scene examines the effects of increased model resolution in case where the
octree structure can be utilised to quite high degree. It would be expected that
acceleration structures showed performance gains in both methods. Tests were
repeated with increasing model resolution until the time required for average frame
was above the 16 ms real time requirement, for most storage and rendering methods.

This test was performed with target resolution of 1280 x 720.

3.6.2 Test case 2: Random voxels with changing model resolution

This scene is created to test how different methods perform on less regular voxel
model, the test is initialised with each voxel randomly assigned to either filled or
empty state. Each voxel’s state is assigned independently with equal change for both
states.

As there is little coherency in the voxel data created in this way, the efficiency of
acceleration structures is likely greatly reduced. Similar to test case 1, the resolution
of the model is increased until most of the storage and rendering method combinations
take more than 16 ms on average to render a frame.

This test was performed with target resolution of 1280 x 720.

3.6.3 Test case 3: Filled ball with changing target resolution

This test uses same ball scene from test 1 with model resolutions of 16 and 128 voxels
per dimension. The target image resolution is changed for each measurement, using
common monitor resolution as target resolutions. Purpose of this test is to uncover
the extend of target image resolution dependency in the rendering cost.

Voxel models of resolution 16 and 128 where used in this test.

3.6.4 Test case 4: Best for the specs

This test iterates over all target and model resolutions and finds the fastest way to
render the ball model with them. The search is done by rendering for 1000 frames
with each storage and rendering method combination for each resolution combination.
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3.6.5 Test case 5: Nightstand model with changing model resolution

This scene uses voxel version of a night stand drawer vertex model. The model is
only filled from surface and has a large concave area at front. While the thin layers
are more difficult for octree structures the concave area should show benefits of the
empty space skipping.
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4 Results

This part presents the results of the test cases described in previous section.

4.1 Results of test case 1: Filled ball with changing model
resolution

Tables 5 and 6 show the effects of the model size for different storage methods. For
the ray casting method the highest resolution benefits from the breadth first or
sparse octree storage methods, while depth first octree is always a bit slower. With
rasterisation the benefits of the octrees are quite clear, the resolution 128 voxels per
dimension takes 12 longer to render without a tree structure than with the slowest
tree structure.

It should be noted that the 256 and 512 voxels per dimension resolutions could
not be measured for linear array version using the rasterisation method, as the
rendering time was too long. It is possible that the memory requirements for the
voxel displacement and scale data were larger than testing hardware allowed.

Comparing fastest method for both implementations, we see that rasterisation
starts faster at lower model resolutions, but scales worse than ray casting that catches
up on higher resolutions.

Table 5: Ball scene rasterised at different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse

8 0.597 ms | 0.536 ms 0.535 ms 0.536 ms
16 0.894 ms | 0.618 ms 0.620 ms 0.620 ms
32 1.705 ms | 0.794 ms 0.793 ms 0.793 ms
64 4.159 ms | 1.084 ms 1.083 ms 1.084 ms
128 31.45 ms | 2.007 ms 2.568 ms 1.999 ms
256 8.567 ms 11.41 ms 8.509 ms
512 36.92 ms 54.85 ms 36.52 ms

4.2 Results of test case 2: Random voxels with changing
model resolution

Results of this test are visible on tables 7 and 8.

Tests could not be performed for the largest size of the sparse octree with the ray
casting method as parts of the tree were not successfully transferred to GPU, even
though the frame rate still appeared to be within reasonable numbers. Other than
the sparse tree, where memory run out, the ray casting seems to have taken less time
on the random model than it did with the ball model. This is likely because the
most rays on the random model were terminated quite early as half of the surface
voxels were filled.



Table 6: Ball scene with ray casting at different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse

8 0.619 ms | 1.022 ms 0.804 ms 0.949 ms
16 0.790 ms | 1.597 ms 1.148 ms 1.409 ms
32 1.148 ms | 2.442 ms 1.567 ms 2.102 ms
64 1.846 ms | 3.616 ms 2.080 ms 3.080 ms
128 3.332 ms | 5.939 ms 3.039 ms 5.041 ms
256 6.768 ms | 9.245 ms 4.702 ms 7.661 ms
512 15.71 ms | 17.06 ms 10.14 ms 11.99 ms
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The linear array rasterisation works within the same time limit it did with the
ball scene, but the octree versions now behave worse once the model resolution gets
a bit bigger. In fine grained data, octree structure doesn’t reduce the amount of
cubes that need to be send for GPU and processed by it, but it does introduce slight
overhead to generating this data.

Table 7: Random scene rasterised at different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse
8 0.604 ms | 0.611 ms 0.608 ms 0.608 ms
16 1.022 ms | 1.016 ms 1.018 ms 1.013 ms
32 2.033 ms | 2.000 ms 2.012 ms 2.008 ms
64 4.697 ms | 5.801 ms 6.984 ms 5.708 ms
128 30.40 ms | 48.38 ms 58.93 ms 47.00 ms

Table 8: Random scene ray casted at different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse
8 0.591 ms | 0.842 ms 0.709 ms 0.827 ms
16 0.605 ms | 1.140 ms 0.850 ms 1.036 ms
32 0.643 ms | 1.502 ms 1.043 ms 1.348 ms
64 0.672 ms | 1.982 ms 1.273 ms 1.823 ms
128 0.748 ms | 2.731 ms 1.645 ms 3.265 ms
256 0.969 ms | 3.880 ms 2.425 ms 15.05 ms
512 3.610 ms | 8.178 ms 7.844 ms
1024 25.54 ms | 56.84 ms 56.66 ms
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4.3 Results of test case 3: Ball with changing target resolu-
tion

Tables 9 and 10 show the effects of increasing the rendering target resolution. With
rasterisation the changes are quite minor. In the case of the larger model resolution,
the linear array, any changes seem to be hidden below measurement error and random
variance, though it is already the most expensive method tested. Other storage
methods show very similar results for rasterisation, where the change is within factor
of 4 for the smaller model resolution and factor of two for the larger model resolution.

Ray casting methods show much higher dependency on the resolution. The
required rendering time for the highest target resolution is 4 to 7 times more than
the time needed for the lowest resolution. This is still below the difference between
the target resolutions themselves, as the highest resolution has 12 times more pixels
than the lowest one. If the model covered whole rendering area, the differences might
be closer to that.

4.4 Results of test case 4: Best for the specs

Table 11 shows the fasted method of rendering the ball model with given model
and target resolutions. Table lists combination of rendering method, voxel storage
method and average time it took to render a frame. It must be noted, in few cases
there were multiple options within a very small margin and these results could very
well vary between tests. Most commonly the closest tied methods were the different
octree versions of rasterisation, as they only have minor differences in the buffer
generation part and send exactly same data to GPU. On the other hand, ray casting
seems to fit best with the breadth first order.

4.5 Results of test case 5: Nightstand model with changing
model resolution

Tables 12 and 13 show the rendering times for the nightstand model at different voxel
model resolution. This scene was rendered to 640 x 480 resolution. There seems to
be increasing cost on using octrees with rasterising this model, likely because the
rasterisation only works with the filled area and they are in most places only single
voxel wide. Same also seems to be true for the ray casting as there is no evidence of
octree structures empty space skipping benefits.



Table 9: Ball rasterized at different target resolutions.

Target Resolution ‘ Pixel count ‘ 16 Voxels ‘ 128 Voxels
Array
640x480 307200 0.520833 ms | 33.1744 ms
800x600 480000 0.73671 ms | 33.0761 ms
1280x720 921600 0.920398 ms | 31.4991 ms
1366x768 1049088 1.05492 ms | 31.3225 ms
1600x1024 1638400 1.59914 ms | 31.0305 ms
1920x1200 2304000 2.12471 ms | 30.9439 ms
2560x1440 3686400 2.92995 ms | 31.2283 ms
Breadth First
640x480 307200 0.432222 ms | 2.85937 ms
800x600 480000 0.501319 ms | 2.911 ms
1280x720 921600 0.637064 ms | 2.7023 ms
1366x768 1049088 0.716699 ms | 2.65254 ms
1600x1024 1638400 1.08089 ms | 2.69529 ms
1920x1200 2304000 1.42368 ms | 3.52196 ms
2560x1440 3686400 1.99414 ms | 4.62582 ms
Depth First
640x480 307200 0.425012 ms | 2.3064 ms
800x600 480000 0.502187 ms | 2.28395 ms
1280x720 921600 0.635996 ms | 2.12206 ms
1366x768 1049088 0.719455 ms | 2.24645 ms
1600x1024 1638400 1.08139 ms | 2.71024 ms
1920x1200 2304000 1.42114 ms | 3.52862 ms
2560x1440 3686400 1.99466 ms | 4.63546 ms
Sparse

640x480 307200 0.42135 ms | 2.26507 ms
800x600 480000 0.499356 ms | 2.26412 ms
1280x720 921600 0.640705 ms | 2.0554 ms
1366x768 1049088 0.719918 ms | 2.12352 ms
1600x1024 1638400 1.08057 ms | 2.70861 ms
1920x1200 2304000 1.4221 ms 3.5291 ms
2560x1440 3686400 1.99409 ms | 4.63606 ms
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Table 10: Ball ray casted at different target resolutions.

Target Resolution ‘ Pixel count ‘ 16 Voxels ‘ 128 Voxels
Array
640x480 307200 0.476711 ms | 1.84445 ms
800x600 480000 0.616808 ms | 2.60847 ms
1280x720 921600 0.854705 ms | 3.60626 ms
1366x768 1049088 0.898847 ms | 3.75736 ms
1600x1024 1638400 1.40666 ms | 6.10015 ms
1920x1200 2304000 1.85738 ms | 8.00283 ms
2560x1440 3686400 2.63917 ms | 11.1832 ms
Breadth First
640x480 307200 0.656961 ms | 1.81473 ms
800x600 480000 0.90145 ms | 2.482 ms
1280x720 921600 1.24681 ms | 3.08097 ms
1366x768 1049088 1.28603 ms | 3.42392 ms
1600x1024 1638400 2.04373 ms | 5.25886 ms
1920x1200 2304000 2.67372 ms | 6.82278 ms
2560x1440 3686400 3.76686 ms | 9.15793 ms
Depth First
640x480 307200 0.94513 ms | 3.67431 ms
800x600 480000 1.27486 ms | 4.92084 ms
1280x720 921600 1.71131 ms | 6.43214 ms
1366x768 1049088 1.81519 ms | 6.63728 ms
1600x1024 1638400 2.86434 ms | 9.87629 ms
1920x1200 2304000 3.72246 ms | 12.5897 ms
2560x1440 3686400 5.24207 ms | 16.6415 ms
Sparse

640x480 307200 0.81623 ms | 3.13034 ms
800x600 480000 1.12724 ms | 4.22451 ms
1280x720 921600 1.53161 ms | 5.08934 ms
1366x768 1049088 1.59829 ms | 5.64201 ms
1600x1024 1638400 2.51629 ms | 8.27159 ms
1920x1200 2304000 3.2797 ms 10.501 ms
2560x1440 3686400 4.60142 ms | 13.7503 ms
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Table 11: Fastest method for each model and target resolution. Time is in milliseconds.
Key: A = Array, BF = Breadth First, DF = Depth First, S = Sparse, RC = Ray
Cast, RS = Rasterisation

Resolution 8 16 32 64 128 256 512
640x480 S-RS A-RC S-RS S-RS | BF-RC | BF-RC | S-RC
0.412 0.468 0.549 0.946 1.780 3.037 8.316
800x600 DF-RS | DF-RS | S-RS S-RS | BF-RC | BF-RC | BF-RC
0.526 0.557 0.731 1.277 2.570 3.923 9.106
1280x720 DF-RS | BF-RS | S-RS | BF-RS | S-RS | BF-RC | BF-RC
0.558 0.650 0.836 1.136 2.170 4.811 10.51
1366x768 S-RS | DF-RS | BF-RS | BF-RS | S-RS | BF-RC | BF-RC
0.627 0.727 0.934 1.297 2.208 5.317 11.25
1600x1024 || DF-RS | S-RS | BF-RS | BF-RS | DF-RS | BF-RC | BF-RC
0.903 1.091 1.437 1.941 2.744 7.657 14.46
1920x1200 || DF-RS | S-RS S-RS S-RS S-RS | DF-RS | BF-RC
1.224 1.434 1.877 2.568 3.596 9.568 17.40
2560x1440 || DF-RS | BF-RS | DF-RS | DF-RS | S-RS S-RS | BF-RC
1.747 2.029 2.587 3.445 4.730 9.752 21.41

Table 12: Nightstand scene rasterised at different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse
8 0.396 ms | 0.394 ms 0.424 ms 0.408 ms
16 0.520 ms | 0.406 ms 0.415 ms 0.407 ms
32 0.719 ms | 0.631 ms 0.695 ms 0.627 ms
64 1.733 ms | 2.229 ms 2.708 ms 2.241 ms
128 6.605 ms | 9.211 ms 11.62 ms 8.996 ms
256 31.90 ms | 41.80 ms 56.33 ms 41.53 ms

Table 13: Nightstand scene with ray casting different model resolutions.

Resolution | Array Depth First | Breadth First | Sparse
8 0.494 ms | 0.405 ms 0.407 ms 0.398 ms
16 0.410 ms | 0.454 ms 0.396 ms 0.427 ms
32 0.431 ms | 1.173 ms 0.727 ms 1.029 ms
64 0.629 ms | 1.764 ms 0.995 ms 1.537 ms
128 1.064 ms | 2.698 ms 1.442 ms 2.439 ms
256 2.147 ms | 4.356 ms 2.529 ms 4.237 ms
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5 Evaluation

This chapter presents evaluation of the results and how well they are generaliseable.

5.1 Reading the results

Rasterisation method without octree optimisation was able to render models only
to resolutions of 128 or 256 voxels per dimension, depending on model. That the
nightstand model could be drawn with higher model resolution is due to lower filling
rate of the model, as total number of instances is equal to number of filled voxels in
this method. Octree structures allowed coherent models like the ball to be rendered up
to model resolution of 1024 voxels per dimension, but frame times were significantly
higher than what would be required for real-time application even with resolution of
512.

For rasterisation, it seems that any of the acceleration octrees will significantly
improve performance over the flat linear array representation, when there are con-
tinuous large completely filled areas in the model. In these cases the differences in
different octrees performance are quite small, likely within margin of error from the
test and timing setup as well as random variance from background processes.

On cases where there is a low coherency or filling rate, the octrees cause a
noticeable performance penalty on higher resolutions and while depth first and sparse
octrees perform similarly, breath first seems to be somewhat slower.

Performance of the rasterisation method could likely be improved by using smaller
numbers to contain the offset and scale of each instance that needs to be rendered.
Using 16 bit numbers would require only half of the memory used by 32 bit numbers
used in this implementation. Though the savings from decreased memory use would
be slightly offset by need to pack and unpack numbers that don’t match with internal
register sizes and memory alignment.

Ray casting shows more differences between the different storage variants. For
small model resolutions all formats seem to be within error margin, but on larger
resolutions plain linear array and breadth first octree seems to be faster than the
other octrees. Sparse octree performs bit better than

Most tests don’t show meaningful performance gains from empty space skipping,
and in cases where model coherency is low there seems to be a performance penalty
for using tree structures. This might be from the size of the data transferred to GPU
each frame or from additional branching and voxel data accesses on the traversal
algorithm.

The best for the specification test shows that for small model resolutions, the
rasterisation method is faster. As the target resolution rises, the resolution of the
model that can be rendered faster with rasterisation methods grows as ray casting
methods are more dependent on the resolution of the target image.
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5.2 Generalising results

Comprehensive testing was only performed on single hardware setup, but given
the similarity of most modern computer and console hardware, results should be
indicative of the performance on most similar platforms.

Sparse octree solutions fared rather poorly in our test case, this is likely because
the nodes where much larger in size. If other rendering data, such as textures, where
included into the voxel data, and thus voxel required more than 1 bit to be stored, it
would likely be much more beneficial to use sparse structure as more data could be
stored closer to the root of the octree.

Results for the best for the spec test are consistent with the theoretical complexity
of the rendering methods, it is unlikely that any optimisations on the rendering
methods would fundamentally change the results, just adjust the line at which the
faster method changes.

Because of targeting highly dynamic and changing voxel data, implementations
on this paper required the whole voxel data to be updated on each frame. If such
requirements are not met or a method to track changes and create partial updates is
used many of the larger models will see significant performance gains.

In the test scenarios, the rendered voxels were without any texture data. In real
applications where these textures would be present, each fragment shader would have
to do few texture sampling operations for each fragment it needs to calculate. This
would apply a small performance penalty to each method. As ray casting method
already does multiple texture fetches for the voxel data and only handles maximum
of two fragment per pixel, effects of textures would likely be quite minimal for it.
On the other hand, rasterisation method may have to perform quite a many texture
fetches for fragments that are hidden from the view, because another fragments can
latter overwrite it.

In our tests, the voxel model was a only model on the scene. In real applications,
there would likely be multiple objects, both voxel and vertex models, on the scene, in
these situations, the ray casting methods inability to use early depth testing would
likely give the rasterisation method a slight advantage.
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6 Conclusions

This chapter presents the conclusions which can be drawn from the evaluated results
and questions left open for further research.

6.1 Recommendations

Given the results of the tests represented here, it seems that ray casting is better
option for larger model resolutions. Though situations in which the ray casting
methods are faster, are usually quite close to a line where their use in real time
applications needs to be considered with care as rendering times with larger model
resolutions were in 10 to 20 ms general area. If model is likely to be coherent, using
breadth-first octree is recommendable. For low coherency models array of voxels will
work better.

Rasterising the models seems suitable for small and medium resolution voxel
models with large coherent areas that can be easily optimised by hierarchical struc-
tures. Being less affected by rendering resolution might be useful in some situations
as well. If rasterisation solution is needed, it would be beneficial to try to keep the
models quite coherent.

6.2 Further research topics

There are still further optimisations available for both methods, which could not be
implemented or tested in the limited time of this thesis work.

This thesis did not examine situations where model was only partly visible. In
rasterisation version the view space culling and early z-buffer testing should remove
most of the overhead from fragmentation shader, but the amount of data send to
GPU and the workload of the vertex shader and need for memory bandwidth could
be greatly reduced if the parts that are out of view or hidden behind other objects
could be detected and ignored on the instance offset and scale buffer generation.
Similarly parts hidden by the models own geometry could be ignored if there was a
cheap way of detecting them.

For ray casting, view space culling removes most of the unnecessary work for
partly out of view models, but because the z-buffer needs to be adjusted for the
voxels depth, early z-buffer testing can’t be used for the voxel object. Manual z-buffer
testing before or during the ray traversal might improve the performance, when
model is partly covered.

Tests performed with the ray casting showed benefits from acceleration structures,
but not as great as could be expected based on prior research. It might require that
algorithm for ray traversal was adjusted so that last place examined from the octree
was kept in memory and used as a starting point for the the next voxel status query,
instead of starting form the root node at each query. Using of brick approach where
leaf nodes of the model are not singular voxels but blocks of multiple voxels might
also be beneficial.
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With dynamic voxel data, tracking changes in the data separately and updating
only the necessary parts of the voxel data each frame might help reduce the memory
bandwidth requirements.

Texturing of the voxels was mostly ignored on this paper. Testing how texture or
other rendering data fetches affect the different rendering methods, would provide
useful information on wider range of application areas. It is quite likely that the
rasterisation method might scale worse with the rendering resolution if texture
sampling was performed on each fragment that ends up being computed on fragment
shader. On the other hand, ray cast method already makes multiple texture fetches
for each fragment, and is computed for much smaller number of fragments, so the
penalty there might be lower.

In tests presented here we did not address optimisations based on level of detail.
In both methods, if we knew that a partially filled node in the octree would be far
enough from the camera that its children could not be visually differentiated, the
node could be rendered as full or empty node, depending the majority of the children.
Our 2 bit system for the octrees would even have room for this information.

As noted in the introduction of this paper, there seems to be lack of experiments
with non-cubical voxels. Given the efficiency of the rasterisation solution and that
the instancing other shapes would be trivial, it would by interesting to perform
similar study to non-cubical voxels. Do they require different hierarchical structures
and what level of detail on voxel model leads to similar level of visual detail? Is there
efficient algorithms for traversing non-cubical voxels.

While the testing system is quite descriptive of the algorithms’ performance on
modern hardware, it might be of interest to extend the tests to other hardware and
software setups and compare the results to hardware features such as GPU memory
bandwidth and amount of processing cores. This might lead to some insight on how
well the algorithms will scale on future hardware.

Given the recent hardware releases, in which consumer GPUs have included
increasing number of generic programming specialised cores, as well as hardware and
software optimisations for ray tracing, performing similar experiment with algorithms
optimised for the new GPUs might provide interesting data on their performance.
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7 Summary

At the beginning of this thesis we examined the history of programmable graphics
hardware and the previous research of voxel graphics. Graphics processing units
formed when specific operations where moved from CPU to external chips, chips used
in graphics processing were combined and extended for other features and eventually
opened for application programmers. Voxel data has uses in both scientific and
medical fields as well as entertainment industry. Most research on rendering voxels
in real time has been on area of more complex static models and lighting methods
for ray casting.

Two voxel rendering methods, aimed for highly dynamic, but simple voxel data,
were build on top of simple standard deferred rendering pipeline and extensively
tested using four different implementations of voxel storage.

The tests showed that rasterisation method was faster for low resolution voxel
models and less dependent of resolution of the rendering target. Ray casting was
most suitable for high resolution voxel models on smaller rendering target resolutions.
Coherency of the model and use of octree storage structures for optimisation was
more important for rasterisation method.

Benefits of the octree structures where dependent on the coherence of the model,
and low coherence models even saw performance drops over plain voxel data. For
rasterisation, the octree storage methods where about equal to each other, but ray
casting benefited most from breadth first storage order.

While these results are likely to generalise for many use cases, anyone implementing
voxel rendering should consider their needs for other rendering information as well
as context and type of the voxel models rendered.
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