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Abstract

Sharing of threat intelligence between organizations and companies in the cyber
security industry is a crucial part of proactive defense against security threats. Even
though some standardization efforts exist, most publishers of cyber security feeds
use their own approach and provide data in varying formats, schemata, compression
algorithms, through differing APIs etc. This makes every feed unique and complicates
their automated collection and processing. Furthermore, the published data may
contain a lot of irrelevant records, such as duplicates or data about very exotic files
or websites, which are not useful. In this work, we present Feed Automation, a
cloud-based system for fully automatic collection and processing of cyber threat
intelligence from a variety of online feeds. The system provides two means for
reduction of noise in the data: a smart deduplication service based on a sliding
window technique, which is able to remove just the duplicates with no important
changes in the metadata; and efficient rules, easily configurable by the malware
analysts, to remove records which are not useful for us. Additionally, we propose a
filtering solution based on machine learning, which is able to predict how useful a
record is for our backend systems based on historic data. We demonstrate how this
system can help to unify the feed collection, processing, and data noise reduction
into one automated system, speeding up development, simplifying maintenance, and
reducing the load for the backend systems.

Keywords data feed processing, data deduplication, data filtering, data lake, sliding
window, cyber threat intelligence, information exchange, cloud
computing, serverless computing, Amazon Web Services, AWS
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CHAPTER

Introduction

Malware detection in modern antivirus (AV) software is mainly done by comparing
the potential malware (its file hashes, static malware signatures, behavior, etc.) with
a database of known malware [47]. While some malware might be identified by
generic rules, most detections are based on specific malware which was previously
encountered and rules carefully engineered by malware analysts to detect that specific
malware and its variants. Similarly, when protecting users from browsing malicious
websites, the URLs and/or content of visited websites is analyzed and compared
against a known database of malicious websites.

Such a reactive approach to malware detection requires us to encounter the
malware first, before the malware can be reliably detected by an AV. Of course,
every provider of antivirus protection wants to protect all its customers, including
the first user who encounters the malware. This can only be accomplished by having
information about new malware before it reaches any of the users. This calls for a
proactive approach — we need to actively collect information about malware from
other sources than just the AV users.

This is where threat intelligence comes in. Sharing of information in the cyber
security community and industry is of paramount importance. Cyber security
researchers and analysts continuously collect information about new threats, learn
how they function, how to protect against them, and how to detect them.

Besides the mutual sharing of information among researchers on the Internet or
in conferences, there are also automated solutions for information exchange between
companies and organizations over the Internet. Various industry partners cooperate
and share some of their own intelligence about software and websites. Such metadata
may include information whether the described samples are malicious, spy on their
users, attempt phishing, include illegal content, etc. Or, conversely, trusted software
producers, such as Microsoft, may publish information about their software, which is
then whitelisted by AV software, avoiding unnecessary malware detection analysis.
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Such information can be used to improve security software, develop new detection
rules or improve existing ones, speed up detection engines, or avoid false positives
(clean samples mistakenly detected as malicious). Thanks to such additional infor-
mation, users are better protected and cyber security companies can improve their
business.

With such strong intelligence exchange, not typical in many other industries,
one might ask the question, what motivates these industry players to share their
knowledge with others, instead of protecting their valuable know-how? Of course,
most companies are profit-oriented and the protection of other companies’ users
is not necessarily their goal. Therefore different providers and exchange networks
use various ways to get value out of this sharing. Some of these data feeds are
commercial and only available to users who pay a license fee. Other providers share
such information to improve the experience of their own users — for example, it is in
the interest of software companies that their users do not experience false detections
by AV software, marking their software mistakenly as malicious. Some exchange
networks rely on reciprocal sharing — participants can consume data only then if they
themselves provide others with good-quality data. Some community-driven feeds
are even non-profit and publish the information for free, in an effort to make the
Internet a safer place.

Whether paid or free, a lot of data can be collected from many various threat
intelligence feeds which are available on the Internet. Of course, not each feed
provides enough useful information to be worth its costs, both in the license fees
and in the amount of work needed to collect and process the data in an automated
manner. Each feed needs to be carefully reviewed, whether the provided data is
trustworthy and useful.

1.1 Problem overview

Currently, there is no common standard for the cyber security feeds (some efforts
for standardized threat intelligence exchange are described in Chapter 8). The data
schema, file format, compression algorithm, or API of the feeds are not uniform and
so almost every feed is completely unique, making the collection and processing of
each feed a very laborious task, requiring a lot of custom work and fine-tuning for
each data source.

The feeds provide a lot of data, in some cases millions of records per day (and we
expect even higher volumes in the future). However, not all of this data provides
useful value. Some feeds contain a large number of duplicates (records referring to
the same file or webpage), which do not always contain useful new information and
require advanced deduplication techniques. Secondly, not all information in the feeds
is always useful for us. For example, some very exotic files will with high probability
never be encountered by the company’s customers and can therefore be filtered out
to conserve computing and storage resources.
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1.2 Solution overview

In this work, we will describe the design and implementation of the Feed Au-
tomation system, which was developed for use in a cyber security company. It
can efficiently and automatically collect, combine, and process large amounts of
malware-related data collected from various partner sources. We present different
methods how the system can find useful information in the data — such methods
range from simple rules to sophisticated deduplication and machine learning models.
Once all the uninteresting information is removed, the resulting data with new
knowledge about malware and malicious websites is submitted to other systems
in the company’s backend and to the malware researchers and analysts, who use
this information to improve our detection mechanisms and ultimately improve the
protection of customers.

1.3 Contribution

The presented cloud-based solution shows how to efficiently collect data from many
heterogeneous Internet feeds and filter the records to only keep the new and useful
information. It shows how such a system can be designed, developed, and deployed to
the Amazon Web Services (AWS) cloud. Furthermore, we show that this system can
be fully automated, monitored, and fault resistant, based on serverless microservices
architecture.

This project has been designed, developed, and deployed at the F-Secure Cor-
poration in Helsinki. As a cyber security company developing antivirus software,
F-Secure has a big interest in collecting as much useful information about threats
as possible, to best protect its customers. The resulting Feed Automation system
has been deployed to production and is already providing value to the company.
It is an integral component of the new-generation backend system currently being
developed at F-Secure as part of the Security Cloud (cf. Section 2.5) and its further
development is in planning.

1.4 Structure of the work

In Chapter 2 we give an overview of the problems faced when processing feeds in
the cloud, along with information about the situation at F-Secure before the start of
this project. In Chapter 3, we present the problem we aim to solve with this work
and the goals we hope to reach. Chapter 4 describes the overall system architecture
and how we built and deployed this project. In Chapter 5 we go deeper into how we
achieved efficient data reduction by deduplication and filtering of records. Chapter 6
discusses the threat model of this project — the possible attack vectors and how we
mitigate the risks. In Chapter 7 we evaluate our solution based on the goals we set in
Chapter 3. Chapter 8 discusses related work by other authors. Finally, in Chapter 9
we conclude this work and discuss the impact of this project and its possible future
improvements.
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1.5 Terminology

In this work we describe a project which is processing big datasets of information
about malicious websites or files. We refer to such periodically updated datasets as
feeds and the partner companies or organizations publishing them as providers or
publishers. The information in the feeds is mainly the metadata about such objects,
such as its maliciousness rating, timestamps when first/last seen, file type, etc. Some
publishers might also provide us with the actual binaries of the described files. In this
work we generally refer to the actual files or webpages as samples. In contrast, we
refer to the metadata information about the samples (files or webpages) as records.

When discussing data volumes and file sizes, we use the terms gigabyte (GB) and
megabyte (MB) to describe 230 = 1,073, 741, 824 bytes and 22° = 1,048,576 bytes,
respectively. Some other authors use the binary prefixes and refer to the same units
as gibibytes (GiB) or mebibytes (MiB) [51, 59].



CHAPTER

Background

In this chapter, we summarize some background information and key concepts which
are important to this work. At the end of the chapter, we describe what the initial
situation was at the company at the time when this project was started.

2.1 Data Lake

One of the key concepts of this and related works is that of a data lake. The term
is generally used to describe a centralized scalable repository containing massive
amounts of “raw” data, which is readily available to any authorized users or systems
for analytics or processing [65]. Some definitions of data lake also include the
processing systems which can ingest this data [55]. With raw data we mean data
which is in its original form and content as the source data, with minimal alterations.
The stored data can be of various types, usually unstructured and arriving in big
volumes from other systems.

The data lake has a flat architecture, where each dataset has a unique iden-
tifier, optionally with some metadata. However, some categorization is possible.
Miloslavskaya et al. [55] describe various separations, for example into 3 tiers: one
for raw data, another for augmented daily data sets, and another for third party
information. Another possible separation differentiates the data depending on how
long should they be stored: data which we want to store indefinitely and data which
we want to only store for a limited time, after which it may be discarded to save
storage costs.

The concept of data lakes and having all the data in them readily available for
use can provide a lot of value to an organization, but many authors also warn of
the risk that a data lake may easily become a data swamp [65, 42]. Without proper
metadata management and catalogizing of the datasets, we may find ourselves in
a swamp of data, which nobody can effectively and safely search and use. Various
approaches and catalog systems were proposed to help with this problem [19, 42].
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Data lakes usually reside in a scalable cloud storage, such as the Microsoft
Azure Storage or Amazon S3. Various tools are used to tap into the data, either
programmatically with a big data processing engine, such as Apache Spark!, or with
specialized tools with a user interface, such as Splunk?, allowing access also to users
with no or minimal programming knowledge.

2.2 Understanding the feeds and data sources

We collect data from many partners, who provide their data through various APIs
and using differing file formats, data schemata, etc. This makes each feed quite
unique. In this section, we describe the significant differences between the individual
feeds, to highlight the challenge of a unified automated feed processing tool.

The key differences between the feeds are:

o Update mechanism. Some feeds are provided as streams, with data flowing
continuously, other publish updated packages (for example PhishTank published
an hourly dump of all known malicious URLs online at that time).

« Update interval. Some feeds provide updates at regular intervals, e.g. every
minute (such as VirusTotal feeds), once per day (as feeds from AV-TEST), or
at irregular intervals (such as the Bing malicious URLs feed by Microsoft).

o The data volume ranges from just a few megabytes to tens of gigabytes of
uncompressed data per day.

e Number of records ranges from just a few thousand to millions per day.

o The average size of individual records in the feeds also varies greatly. In
Figure 2.1 we show the statistical variation of individual record sizes during
one week. We can see that there are big differences. For example, the smallest
encountered individual record during that week was only 199 bytes and the
largest was 9.1 megabytes.

o The API of the feed endpoints is typically a REST API, but might also be
an FTP server or a webpage which needs parsing. Authentication to the
endpoint is done with an API key or a username & password pair, sent in a
request header or as part of the URL.

« Data comes in various file formats, such as JSON or JSON Lines®, XML, CSV,
or even plain text which has to be parsed. The files are usually compressed
with zip, bzip2, or gzip compression.

Thttps://spark.apache.org/

2http:/ /www.splunk.com/

3JSON Lines or newline-delimited JSON [52] is a text format well suited for processing large
datasets one record at a time. JSON Lines consists of a list of JSON values (objects, arrays, etc.),
which are separated by a newline character (\n). This allows for reading or writing of records
line-by-line, instead of reading the complete contents of a file into memory or generating the
complete contents in memory before writing it to a file all at once.


https://spark.apache.org/
http://www.splunk.com/

2.2. UNDERSTANDING THE FEEDS AND DATA SOURCES 7

o Lastly, the schema of the data differs for each feed.

The examples given in the list above are based just on the feeds we have already
added to this project, but we can expect more specialties as we keep on adding new
feeds. Particularly, in the future we aim to add some feeds with much higher data
volume. In Table 2.1 we list some of the feeds, their periodicity, and the average
amounts of data they publish daily. Note the large differences between the feeds.

Table 2.1: Example statistics for various partner feeds, based on week 13 of 2019.

Average daily

uncompressed Average daily

Feed name Periodicity number of records
.data volume (in thousands)
(in megabytes)
AV-TEST Android daily 0.9 2.9
AV-TEST Windows daily 17.6 26.7
Bing Malicious URLs irregular 3,186.5 5,170.0
MUTE Group continuous 17.4 64.9
OpenPhish continuous 294.5 589.6
PhishTank hourly 2,753.7 237.1
VirusTotal file feed every minute 25,967.0 1,567.8
VirusTotal URL feed every minute 26,769.2 5,039.1
VirusTotal notifications  continuous 1154 5.9

In the following, we briefly describe some of the feeds that we concentrated on
during the development. This is neither a complete nor a final list of all feeds which
this project is supposed to handle, but it should give the reader an overview of the
different types of information we are interested in.

o The Germany-based organization AV-TEST [38] performs daily evaluations of
antivirus software and publishes monthly rankings. They provide subscribers
with the samples which were previously used for the testing, both for Windows
and Android platforms, along with the results of the tested antivirus programs.

o Microsoft publishes a Bing Malicious URLs feed through their Interflow ex-
change platform [1]. This feed contains URLs which Bing (Microsoft’s search
engine) identifies as malicious.

o The Malicious URLs Tracking and Exchange (MUTE) group [53] is a consortium
of companies — such as Avira, Kaspersky, Facebook, or GFI — joined together in
an effort to “minimize the exposure of end users from computing threats through
timely tracking and exchanging of URLs” [53]. They publish a continuous feed
of URLs which were identified as malicious by the submitter (one of the group
members).

o OpenPhish [58] publishes free or paid feeds of URLs which were detected as
phishing websites.
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Figure 2.1: Statistical variation of individual record sizes for various partner feeds.
In the Tukey boxplots, the box visualizes the 1%, 2*4 and 3™ quartiles, the whiskers
denote the lowest and highest values within the 1.5 interquartile range, while the
circles denote outliers outside of this range. Note the logarithmic y-axis and the
large variations both between the feeds and also within some feeds individually,
particularly for the VirusTotal feeds.

o PhishTank [57] is a free community-driven website where volunteers can submit,
verify, and view information about phishing websites. They publish an hourly-
updated archive containing all phishing URLs which are verified and currently
online.

o VirusTotal [21] is a major aggregator of antivirus software, currently a product
of Chronicle (a subsidiary of Alphabet Inc., parent company of Google). Users
can submit samples (files or URLs) and collect scan results from various
antivirus engines, along with additional metadata extracted by VirusTotal from
the sample. Other users can observe the submitted files and URLs and collect
scan results, logs and further metadata.

Besides a powerful web portal, VirusTotal also provides a robust API for
automated programmatic access. We are interested in collecting the file and
URL live feeds, which contain all the files and URLs which have been submitted
to VirusTotal and scanned. Additionally, our researchers are also interested
in the feed of notifications from VirusTotal Hunting Livehunt, which can be
configured by our own YARA? rulesets.

4YARA (which is an acronym for YARA: Another Recursive Acronym or Yet Another Ridiculous
Acronym) is a tool for detecting malware samples. It allows researchers to define rules based on
textual or binary patterns to identify malware in samples. [3, 70]
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2.3 Amazon Web Services

Amazon Web Services (AWS) were initially started as a suite of web services for
interacting with the Amazon.com online store [48], but soon grew into a major
provider of public cloud services and still continues to be the leader in the market [62,
56]. The core AWS services, which we also use in this project, are:

« Amazon Elastic Cloud Compute (EC2) for cloud computing, letting users
casily setup and use virtual servers [44]. Users can define auto-scaling rules,
which deploy extra server instances or shut down already running instances
depending on the load or time of day, to adapt to the current amount of traffic.
Unlike traditional servers, which need to be provisioned for the highest expected
load, auto-scaling can save costs.

The costs are calculated based on the instance type per instance per hour.

+ Amazon Simple Storage Service (S3) is an “object storage” [44] which
lets users store and retrieve their data from “buckets”, identified by string
keys. Besides the standard storage class, there are 3 more storage classes for
less-frequently accessed data (such as backups) at lower prices.

The costs are calculated per GB of storage and per request.

o Amazon Simple Queue Service (SQS) is a managed message queuing
service, which allows for easy communication between distributed software
components.

The costs are calculated based on the number of requests.

Nowadays there are many more AWS services that users can choose from. For
example, some of those which we use extensively in this project are Amazon Cloud-
Watch for logs and monitoring, AWS Key Management Service (KMS) for encryption,
Amazon Elastic Container Registry (ECR) and Elastic Container Service (ECS)
for running Docker containers, or AWS Lambda for serverless functions (see the
next Section 2.4). Amazon keeps expanding the AWS portfolio, offering services for
machine learning, virtual reality, gaming, robotics, or even managed ground station
for satellites control. At the time of writing, the family of Amazon Web Services
consisted of a total of 177 services [11].

One of the key characteristics of Amazon Web Services is the pay-as-you-go billing
model. As mentioned in the list above, the users only pay for what they use, such
as for the exact time spent running a virtual server or the amount of memory used.
This is a big difference to the traditional model of owning or renting servers in a
data center, where users generally need to allocate (and pay) as many servers as they
need during peak time. However, outside of this peak time the servers tend to be
underutilized, for example during the night. With virtual servers in the cloud, users
can automatically scale the number of server instances up or down as needed at any
given moment. This can bring significant savings and also better performance during
peak times.
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Figure 2.2: Overview of F-Secure Security Cloud. Image source: [26]

2.4 Serverless computing

One of the recent trends in Cloud Computing is the “serverless computing” paradigm.
The name might be a bit misleading, because underneath the abstraction, servers
are still needed to perform the computations, however, the developers do not need
to take care of provisioning and configuring the servers themselves [16, 45]. Adzic
and Chatley [2] describe serverless computing as “a new generation of Platform-as-a-
Service offerings where the infrastructure provider takes responsibility for receiving
client requests and responding to them, capacity planning, task scheduling and
operational monitoring.” In serverless computing, developers have complete control
over the application code but have minimal influence on the shared infrastructure.

In practice, this means that developers do not need to concern themselves with
server configurations or maintenance, they only need to provide code to handle
specific events and configure the needed resources — the cloud provider takes care of
the infrastructure, launching the code, responding to requests, auto-scaling, retries
after faults, etc. Such serverless event handlers are usually called functions, leading
to another term “Function-as-a-Service” (FaaS) [16]. In AWS, functions are offered
as “AWS Lambda” since late 2014 [13].

Due to the event-driven nature of the functions, one significant difference to the
usual Platform-as-a-Service offerings is the billing model. With functions, users only
pay for the actual time when their code is running, instead of paying for all the time
their dedicated server instances are running, including the idle time when the server
is just waiting for requests.

2.5 F-Secure

F-Secure Corporation is a Finnish cyber security company founded in 1988. Among
other products, F-Secure develops antivirus software or endpoint detection and
response (EDR) solutions. For all these security products, having a big knowledge
base about existing threats is crucial to achieve good protection for customers.
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2.5.1 F-Secure Security Cloud

As we discussed in Chapter 1, it is important to keep information about dangerous
files or websites. At F-Secure, the knowledge base of digital threats is called the
Security Cloud [26, 27]. Under the hood, two subsystems, called the File Reputation
System (FRS) for file samples, and the Network Reputation System (NRS) for
websites, are fed samples and metadata of various files or websites. Upon acquiring
this information, these systems analyze it and depending on a complex set of rules
and models, they also call multiple different tools and engines to generate as much
useful information as possible. This information is then used to generate a verdict
whether the given sample is malicious, clean, potentially unwanted®, etc. Figure 2.2
visualizes how the Security Cloud works. In this diagram, the FRS and NRS systems
are part of the “automated analysis” component on the right.

The samples come from various sources — the customers, industry partners or
organizations, manually by the researchers and analysts, etc. Although it is desirable
to have knowledge about as many samples as possible, the generation and storage of
this information is expensive, and so is efficient search over this dataset. Therefore,
it is our priority to concentrate only on the samples which were or will be (with
certain probability) encountered by the customers and avoid wasting resources on
irrelevant samples.

2.5.2 Amazon Web Services and F-Secure

F-Secure started first experiments with Amazon Web Services around 2013. At
that time, most of the company software projects were running on company’s own
servers, either on-premise or in a data center. Around 2016, some projects were
already being shifted to AWS — two particular examples are the Rapid Detection
and Response Service (RDS) [28] and the Data Pipeline project, which was later
used as a case study to show the rest of the company, that “we can put our ideas
into action faster and save 70% on infrastructure costs by using AWS compared to
running hardware on-premises,” as highlighted by Niina Ojala, the Service Lead [34].
“We’re inspiring a shift toward the cloud, and microservices in particular, because of
these great benefits.”

In recent years, F-Secure decided to move completely to AWS, and plans to
completely stop using any on-premise services once the transition is complete.

2.5.3 Data collection from feeds before this project

At the start of this project, the feeds collection situation was very fragmented.
Various feeds were collected by separate components, scattered around the company
in different teams and maintained by different people. Some systems were running

5A potentially unwanted application or program (PUA, POP) is software which might not be
directly malicious (causing damage to programs or data, spreading autonomously, etc.), but may
instead perform actions not wanted or expected by the user, such as installing additional unwanted
software, spy on user’s activities for ads targeting, change configuration of browser, etc. [41].
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in the cloud, some on in-house servers, and some even on personal computers. The
collected data was also written to various destinations. This approach has many
disadvantages in the long term.

o Each time there is a need to start importing a partner feed, it requires consid-
erable development and deployment work. That unnecessarily takes time from
developers, while also introducing a higher chance of bugs or holes in security.

o Maintenance of so many different components is tedious and expensive in terms
of total time spent by maintainers. The quality of code and documentation
differs and if the original author is not available anymore, this can lead to
further confusion.

« Different teams might not know about all the data being collected and available
for use.

e Data written to various locations leads to complicated permission issues due to
different access control imposed on different data sources and different teams.
This also makes combining the data from different sources complicated or even
unfeasible.

o Applying any advanced functionality, such as deduplication or machine learning
models, to all imported feeds is near impossible.

Clearly, unifying the process of collecting and processing data from partners
brings a lot of benefits, but also a lot of challenges, due to the differences between
various data sources and the data they provide.

2.6 Machine learning essentials

In this section, we briefly describe classification using the logistic regression and
discuss techniques to evaluate the output and compare different classification models.
A detailed introduction to machine learning is out of the scope of this thesis; for
more details about machine learning, we refer the reader to literature [39, 60].

In supervised learning, the system learns from a dataset comprising of examples
that have both input (features) and output values (labels) [60]. Such dataset is called
labeled training dataset. It produces either categorical (classification) or numeric
(regression) output.

We can also utilize the numerical output of regression for classification. This is
done by using a regression predictor function h with codomain between 0 and 1, i.e.
h(-) € [0,1]. By defining a threshold value, for example ¢ := 0.5, we can then use the
function h for binary classification, by assigning a sample with features & to category
cp if h(x) >t and to category ¢y otherwise.
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Logistic regression model achieves the codomain in range [0, 1] with the logistic
function

1
1+e*
The logistic function is an S-shaped monotonic function which takes input from the
domain of real numbers and maps it to the (0, 1) range. We can then use the output
of a linear regression model in form of z = By + f1x1 + - - - + Bnxy, where Sy, ..., 6,
are the coefficients of the model, and compute the probability p that a feature vector
x belongs to the category ¢, as

1
1+ e*

o: R—=1[0,1] : z+—

p="Pla|z)= with z := By + Biz1 + - - + Bpxn.

The sample with features @ is then assigned to category c; if p > t and to ¢y otherwise
(with e.g. ¢ :=0.5).

The performance of a binary classifier can be described by many metrics. In our
work, we use the following [60]:

o Accuracy is the fraction of correctly predicted examples by a model.

« True positive rate (TPR, also called recall or sensitivity) is the fraction of
positive examples predicted correctly by a model.

« True negative rate (TNR, also called specificity) is the fraction of negative
examples predicted correctly by a model.

o False positive rate (FPR) is the fraction of negative examples predicted as
positive by a model. It is equal to 1 — T'NR.

 False negative rate (FNR) is the fraction of positive examples predicted as
negative by a model. It is equal to 1 — TPR.

In practice, virtually no classifiers achieve perfect 100% accuracy and make some
false predictions. When setting up a model, we can influence the balance between
the above mentioned rates. For example, by making a model lean more towards
the positive category (e.g. by lowering the threshold for logistic regression), we can
increase the true positive rate but usually at the cost of lowering the true negative
rate at the same time.

A useful way of visualizing this relationship is receiver operating character-
istic (ROC) curve (Figure 2.3), which visualizes the relationship between the
true positive rate (vertical axis) and the false positive rate (horizontal axis) as the
threshold is varied. The curve starts at coordinates (0,0) and finishes at coordinates
(1,1). A perfect classifier (yielding no false positives or false negatives) would be
described by a point at coordinates (0,1), i.e. FPR =0 and TPR = 1. Points on the
diagonal describe a random guess. Points above the diagonal mean better predictions
and points below the diagonal mean predictions worse than random.

When comparing two classifiers, it is useful to compare their ROC curves to
see which one can achieve better balance between FPR and TPR, depending on
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Figure 2.3: Receiver operating characteristic (ROC) curve.

our needs. We can also quantify the overall performance of the classifier across
all thresholds with the area under (ROC) curve (AUC). The area is computed
below the curve in the range [0, 1]. Higher scores mean better overall performance
than lower scores, with AUC' = 1 being the best and AUC = 0 worst.

2.7 Threat modeling with STRIDE

Microsoft developed the STRIDE model to help their employees identify potential
vulnerabilities in their products during a security analysis [49]. It was first formally
documented in 1999 and is used by Microsoft for threat modeling of their products [64].
The threats are identified by going through a model of the system, visualized using a
data flow diagram (DFD), and for each element asking whether it is susceptible to a
threat belonging to one of the following of 6 categories [67].

« Spoofing, when attackers pretend to be someone (or something) else.
o Tampering, when attackers change data in transit or at rest.

o Repudiation, when attackers perform actions that cannot be traced back to
them.

o Information disclosure, when attackers steal data in transit or at rest.
o Denial of service, when attackers interrupt a system’s legitimate operation.

o Elevation of privilege, when attackers perform actions they are not authorized
to perform.

First letters of these categories form the mnemonic STRIDE. After the threats are
identified, their mitigations are agreed and documented.



CHAPTER

Problem statement

In order to utilize information shared by other partner companies and organizations
in the cyber security industry, a system to securely collect and process this data is
needed. The providers make this data available in various formats, through various
interfaces, released at various intervals. The data provided varies in schema, volume,
and targeted content (files, websites, spam campaigns, etc.). We can identify a
number of key problems when facing this task.

Complicated maintenance. In general, every single one of these data feeds presents
a unique endpoint with unique content and unique issues. The initial simple approach
of a separate service to download and process each feed allows for quick development
but in the long run, it presents a maintenance challenge to keep all these components
running, up-to-date and secure. Furthermore, some code and components are
unnecessarily duplicated for multiple feeds.

Scattered deployments. As a consequence of the approach where everyone develops
their own service for the feed they are interested in, all these services are deployed in
multiple unrelated locations, such as in a public cloud under different accounts, in a
private cloud, or even running on personal computers.

Separate processing. While each individual feed provides value, a combination
of the feeds can provide additional value, such as the prevalence of certain objects
in multiple feeds in a certain time window. However, if each feed is processed
completely separately from the others, combining the knowledge is complicated.
From a technical perspective, getting data from different locations (private cloud,
public cloud, different account, etc.) is problematic and requires extra work and
permissions configuration. From an organizational perspective, it is hard to keep an
overview about what data is even available to the researchers and analysts, as the
information about it is scattered.

Duplication and other data noise. The published data often contains a lot of noise,
which is a big problem particularly for the high volume feeds. Without removing

15
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any duplicate or irrelevant records from the feeds, our backend systems might get
overloaded processing big amounts of data unnecessarily. However, clearly defining
which record is to be considered duplicate or irrelevant for our purposes is not easy.
Having a unified solution for all the feeds would greatly reduce the strain on the
backend systems where the filtered data are submitted.

During the course of this work, we aim to design, develop, and deploy a unified
system, which will centralize the task of downloading data from various feed providers,
removing noise from the data, and submitting relevant samples and records for further
processing by other backend systems.

It is important that the system workflow is unified, so that data flowing from
various providers can share as many components as possible, in order to reduce
the development and maintenance costs. However, it is equally important that the
system be as flexible as needed for any individual feed. For example, some data
feeds need heavy deduplication, while others not at all; some feeds need additional
augmentation for each record, while others can pass almost without any alteration.

Finally, as part of the ongoing effort to move most of F-Secure infrastructure and
services to Amazon Web Service (cf. Section 2.5.2), the system must be deployed in a
cloud environment, utilizing as many serverless components as possible to minimize
the operational workload required to deploy and maintain the system.

3.1 Stakeholders

This project will be used by various teams in the company, and communicates with
various other systems. To better identify the requirements for the system, we need to
narrow down the list of stakeholders, who have an interest in the project. Following
is a list of teams which we consider stakeholders of this project. In this list we use
descriptive names instead the actual internal team names.

e« The developers and maintainers are the team that is tasked with the
development of the system, its deployment in the cloud, and monitoring,
maintenance, and providing support to the other stakeholders.

e The backend team maintains the backend components, such as FRS and
NRS (cf. Chapter 2), which consume some of the immediate output of this
system.

o The analysts and researchers want to easily search a large knowledge base
about malicious threats, to better understand malware behavior and define
better detections.

e The platforms team administers the base cloud infrastructure, where the
whole project will run.
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o The management and finances teams manage the budget and are interested
in keeping the overall costs low. They also manage the licenses with outside
partners providing us with the feeds.

3.2 System requirements

The main goal of the project, internally called “Feed Automation”, can be sum-
marized as follows:

Centralized automated collection, processing, noise reduction, and
storage of threat intelligence from various partner feeds.

In cooperation with the various stakeholders of the project, we have narrowed down
a list of requirements which the system should meet. Although we do not expect
to meet all the criteria in the time given, we hope to meet as many as possible and
enabling future additions to expand the capabilities of the system. Below is the list
of requirements for the new system.

3.2.1 Centralization

The system should centralize all tasks related to the intake of threat intelligence feeds
at the company. Other departments should be able to delegate their feed-importing
needs to this system, instead of developing their own services.

Requirement of: developers and maintainers, analysts and researchers.

Evaluation criteria: Requirement satisfied if the system is robust yet flexible enough
to take care of all threat intelligence feeds we need to collect and process, without
the need for any specialized services outside of this system.

3.2.2 Cloud deployment

The finished project must be deployed completely in the AWS cloud, utilizing
serverless architecture wherever possible.

Requirement of: developers and maintainers, platforms team, management.

FEvaluation criteria: Requirement satisfied if the system is successfully deployed in
AWS cloud, without using any additional infrastructure, such as on-premise servers.

3.2.3 Automation

The system must run autonomously and without the need for any manual input. It
must be fault-tolerant and continue working or restart operations even in case of
failures.

Requirement of: developers and maintainers.
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FEvaluation criteria: Requirement satisfied if the deployed system requires no routine
manual maintenance to fulfill its day-to-day tasks, even in case of minor faults, such
as temporary network outage.

3.2.4 Monitoring

The system must provide monitoring of its health and important metrics and send
out alarms in case of failures, such as authentication problems or insufficient received
data. The metrics also include the statistics of the feeds.

Requirement of: developers and maintainers, management, analysts and researchers.

Evaluation criteria: Requirement satisfied if the system’s dashboards provide an
overview of the system health and data flows. The maintainers must be automatically
notified about any serious problems with alarms.

3.2.5 Costs

Of course, the overall costs of the system should be reasonably low. To this end, the
costs of the system must be easy to monitor.

Requirement of: management and finances team.

FEvaluation criteria: Evaluation metric is the overall monthly cost of the system.
Requirement satisfied if the complete costs of the system are clearly observable.
The goal is that the costs of the system are lower than the costs of previous solutions,
while taking into account the savings in the backend systems achieved by reduction
of data noise.

3.2.6 Security

Ensure that the data we take in cannot be tampered with and can be trusted. Ensure
that the system has no vulnerabilities which could compromise other systems.

Requirement of: all stakeholders.

FEvaluation criteria: Requirement satisfied if threat modeling identifies no serious
security risks.

3.2.7 Easy management of feeds

Adding a new feed to the system should be quick and require just minimal work,
without having to re-implement common functionality or deployment configurations.
In the same way, removal of inactive or irrelevant feeds should be quick and easy.

Requirement of: developers and maintainers, analysts and researchers.

Fvaluation criteria: Evaluated by developer satisfaction with the process. Require-
ment satisfied if the developers do not need to spend more than 2 days to add a new
feed with an uncomplicated API.
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3.2.8 Reduction of data noise

Any records or fields in a record which are irrelevant for us can be considered “data
noise” and should be removed. This can be split in three subrequirements:

 Removal of irrelevant fields in each record. The system must provide means
to modify each record to remove or rearrange fields inside a record.

o Deduplication of feed records. A record is considered an irrelevant duplicate
if it provides us no new information about a sample. That means we have seen
the same record already earlier and no significant information has changed.
The system must allow for a fine-grained configuration of which fields in a
record are considered significant.

o Filtering, which allows both for simple static rules, easily editable by analysts
and researchers, and also for dynamic techniques, such as filtering based on
machine learning models.

Requirement of: analysts and researchers, backend team.

FEvaluation criteria: Requirement satisfied if the system is able to remove as much
data noise as possible while losing as little as possible of any potentially important
information. The main metric to evaluate the efficiency of this requirement is the
ratio of the amount of data coming into the system from feeds to the amount of
data after deduplication to the amount of data being output by the system to the
backends. This can be measured both in data volume as bytes and in the number of
records.

The minimal goal is to reduce the number of records coming in from the feeds,
compared to no data noise reduction at all. On top of this minimal criterion, we
would consider it a good achievement if the system is able to reduce the number
coming from feeds by at least 50% before submitting them to the backend. This
estimated value is based on our initial analysis of the feeds (e.g. the duplicate rates
ranging from 1% to 99% for different feeds).

3.2.9 Output

The raw data collected from the feeds should be saved for mid-term storage. The
processed data must be saved for long-term storage and accessible. The processed
data must be submitted to the appropriate backend systems without unnecessary
delay.

Requirement of: analysts and researchers, backend team.

Fvaluation criteria: Requirement satisfied if the processed data is continuously saved
to data lake, the system experiences no long delays or processing times, and the
backend systems are continuously receiving data from the feeds without reporting
any faults.

The complete flow of the data from the time it is collected from a publisher until the
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time the records are submitted to backend systems should not take longer than 5
minutes on average.

3.2.10 Complete searchability and quick lookup

The system must provide ways for researchers and analysts to search through all the
current and historic feeds data in detail. The system should also provide an API for
automated systems to quickly gain information about recent feeds data.

Requirement of: analysts and researchers, backend team.

FEvaluation criteria: Requirement satisfied if authorized users have easy access to the
data for search and analysis.



CHAPTER

System design

The main task of the Feed Automation project is to retrieve data from feeds provided
to us by remote partner companies or organizations. If new data is available, we want
to download and store it in our data lake, and then process it and submit relevant
records to our backend systems for analysis. Very simplified, the whole workflow can
be described by Algorithm 1.

Algorithm 1: Simplified workflow of the Feed Automation project.
Run this process for each feed at predetermined intervals.

1 if new data available at the feed endpoint then
/* Download the feed data and store it in the data lake */

R,.w ¢ download_from_endpoint();
3 save_to_data lake(R,aw);

/* Process each record, remove duplicates, and store in the data lake
*/
4 | Rprocessed < {process(Traw) : Traw € Rraw}:

Rprocessed/\deduplicated — {Tproc € Rprocessed : _‘(Tproc is duphcate)};
Save_to_dat a_lake (Rprocessed/\deduplicated) ;

/* Apply filtering rules to each record and submit accepted records to
the backend for analysis */
foreach Tproc € Rprocessed/\deduplicated do
if 7,10c is accepted by all rules then
‘ submit_to_backend (rproc);

10 end
11 end
12 end

Although this whole workflow could be completely deployed inside one application
on one server, such monolith applications suffer from many issues [31], such as difficult
maintainability, complicated dependencies, technology lock-in, or limited scalability.

21
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Instead, we opted for the microservices paradigm [66], in which we broke up the
complexity into multiple smaller services, which perform a limited set of tasks and
communicate with each other using messages. This brings multiple advantages:

Each of the services can be deployed completely separately. The dependencies
required are relevant just to the single service. During an upgrade, only the
affected service is redeployed, instead of rebooting the whole monolithic system.

We have greater control over the resources allocated to each service. Some
services are memory-intensive, others computationally intensive, while others
might spend most time just waiting for external input and do not need an
expensive deployment environment. Instead of making compromises for the
whole system, we can fine-tune the resources for each service.

We have complete freedom over what tools, programming language, or platform
we choose for each service. Even completely replacing one service for another
one can be done very easily, as long as it follows the interface contracts with
other services.

It is often easier to track down bugs, as each service is much more compact
and bugs are more localized.

The price we pay for these benefits is a slight maintenance and communication
overhead. The contracts between the communicating services need to be precisely
defined and enforced to ensure flawless interaction of the services. Detailed metrics,
monitoring, and alarms are also needed to ensure that the system is continuously
performing as expected.

4.1 System architecture

The system is split into 4 main services:

(P)

Pollers and processors are responsible for polling information from the
remote endpoints, downloading new data (if available), processing it, dedupli-
cating the records (by querying the deduplication cache, see below), saving to
data lake, and submitting them for filtering.

The deduplication cache is a service which keeps an overview about what
records were recently encountered and in which feeds. It is used mainly by
the processors to efficiently deduplicate the records. Its secondary function is
providing programmatic access through an API for outside users to lookup the
information in the cache. See Section 5.1 for details.

The filtering service goes through all records that arrive to the filtering
queue and applies rules to each record to decide whether to send it further for
submission or to drop it (cf. Section 5.2).
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Figure 4.1: Simplified schema of the Feed Automation system and its workflow.
Pollers & processors (component P) collect data from the Internet feeds and use
the deduplication cache (C) to remove duplicates. Records are sent both to Data
Lake for storage (and analysis using tools like Spark or Splunk) and also through the
filter (F) to the submitters (S), which send them to the appropriate backend (FRS
or NRS).

(S) Submitters collect records from the submission queues and submit them to
the corresponding backends, i.e. files to the File Reputation System (FRS) and
URLs to the Network Reputation System (NRS) (cf. Chapter 2).

The simplified schema is presented in Figure 4.1. It also shows the flow of data
from the remote endpoints, through the pollers and processors (which may query
the deduplication cache), and further through the filter to submitters and on to
the backend systems. The complete system architecture and workflow is visualized
in Appendix A, Figure A.1. In the following sections, we will describe the main
components more in detail.

4.2 Pollers and processors

For the downloading and processing of file and website feeds, we use two services,
pollers and processors, which have specific separate tasks. For each feed there is a
dedicated poller and a dedicated processor service. Figure 4.2 shows the architecture
and flow of data between the services.
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Figure 4.2: Schema of the workflow between pollers, processors, the deduplication
cache, and other components.

4.2.1 Pollers

The task of each poller is to query the feed endpoint and check whether there is any
new data available since the last downloaded package. If there is (enough) new data,
it will download the data package. We call this the “raw” data and want to store it in
our data lake. The stored raw data should have as little changes done to it as possible,
so that it closely corresponds to the original data we received from the provider.
However, the package might arrive in various formats, such as JSON, XML, CSV,
etc., optionally compressed with zip, gzip, bzip2 or another compression algorithm.
If we would directly store such a package in original format, it would make reading
it from data lake complicated, so we want to use a unified format. We opted to store
all our data in JSON Lines format, one record per line (encoded as JSON object),
compressed with the gzip compression. In case the package already arrives in JSON
Lines format, we store it as-is, optionally re-compressing with gzip if the package
was not compressed or used a different compression algorithm. In other cases when
the package is provided in XML, CSV, or other format, we perform a conversion
to JSON; this conversion should not modify or remove any of the information in
the data, so that its content and schema resembles the original raw data as closely
as possible. When the package is ready in gzipped JSON Lines format, we store it
in the data lake. Afterwards, the poller checks whether there is any newer package
available. If so, the poller task will be started again.

To correctly ascertain which package is to be downloaded next, the poller needs
to store the polling state. This is information about the last downloaded package,
such as the package ID, last timestamp, ID of last retrieved record, etc., depending
on the feed.
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In most cases, it is enough to download the metadata at this stage. However,
in some special cases, we may want to also pre-download the file samples before
continuing. For example, for the AV-TEST Windows feed, the provider also publishes
the corresponding binary samples as one big 7zip archive (tens of gigabytes in size),
split into multiple files with maximum size of 512 MB. This whole archive needs
to be first downloaded, extracted and stored in the data lake, before we proceed.
Because this is a very heavy task, which can take more than an hour, we trigger a
separate service! to perform the work. Only once the download completes, it triggers
the processor.

4.2.2 Processors

Once a new raw package appears in the data lake, a corresponding processor service
is notified. It will go through all records in the package and process each of them
individually. This consists of two main tasks for each record:

1. Process each record. That may include any of the following actions:

e Removal of unnecessary, superfluous, or duplicate data.
Some feeds contain fields with dummy or useless information or have the
same value for 100% of all records.

o Addition of new data.
In some cases we want to add useful information which is available to us
during processing but not present in the original record. For example, we
might want to add the date of processing or the ID of the source package.

o Flattening the schema.
Some feeds have a deep record schema, which is better usable when
flattened to just one or two levels instead.

e Sanitization of the input.
Some records contain problematic data, such as UTF-8 surrogate pairs,
which cause issues to other tools using the output of Feed Automation
processors. Such characters need to be replaced or encoded 2.

e Removal of corrupt or otherwise unusable records.
If we cannot use the record due to e.g. invalid JSON encoding, it will be
dropped already at this stage, before reaching the filtering service.

The amount of processing strongly depends on the source feed. Records from
some feeds require barely any action at all, while others need heavy processing.
The main goal of all these actions is to clean or improve the data, while reducing
the data size wherever possible to reduce the storage costs.

IThis is an exceptional service, which is needed only for one specific feed, therefore it is not
present in the diagrams displaying the unified workflow.

2The Unicode UTF-16 serialization format uses surrogate pairs to encode code points outside
of the 16-bit Basic Multilingual Plane (BMP). These surrogate pairs are generally disallowed in
other Unicode serialization formats, such as UTF-8.
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2. Check whether the record is a duplicate. For this, the processor calculates a
special hash for each record, which is calculated from selected fields in the record
and represents the record’s state. Then it queries the deduplication cache
about the sample ID (file hash or URL) with the corresponding computed
hash. The cache replies with information whether the given record was already
seen previously with the given hash. Based on this response, the processor
decides whether to drop the record as a duplicate or let it pass. We discuss the
deduplication strategy and implementation in detail in Section 5.1.

Both the pollers and processors are services which are very feed-specific. Due to
the unique nature of each feed, a specialized poller and processor need to be designed
and configured for each. For each new feed poller, the following has to be developed
and configured specifically for the given feed:

e Schedule when to trigger the poller. This depends on how frequently the feed
is updated. Can be for example once every minute, hourly, daily at specified
hour, etc.

e An API client to connect to the endpoint and communicate with it. It must
support at least

— authentication with the endpoint,

— procedure to gather information about the currently available data, to
determine whether (enough) new data is available for downloading, and

— downloading of the actual feed data.

o A procedure how to compare information about last downloaded package with
the newest package available at the feed endpoint.

e A procedure to convert the data package to the desired gzipped JSON Lines
format.

For each new feed processor, at least the following needs to be developed and
configured:

e A procedure to process each of the records, as described above.

« A procedure to calculate the metadata hash for deduplication (cf. Section 5.1).

It was our design goal to keep all of the feed-specific algorithms and configuration
limited just to these two services. That means when a new feed is added to the
Feed Automation system, developers only need to create and deploy a poller and a
processor for the given feed, without modifying any of the remaining infrastructure.

There are several reasons why pollers and processors are separate components.
Besides improved fault tolerance, as we will discuss below, one benefit to such
separation of tasks is that we can run the processing in parallel. We do not allow
multiple pollers of the same feed to run simultaneously, because this could cause
inconsistencies in the order of downloaded data, but the processors, on the other
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hand, work on specific packages which were previously downloaded to data lake
and can therefore run in parallel if needed. The processing phase is generally more
time-demanding than the polling phase, so this is important to avoid data processing
lagging behind the data arriving to data lake.

4.2.3 Fault tolerance

As we have seen, the pollers communicate with the remote endpoints in the Internet,
yet do not go deep into the content of the data, at most converting the records to
JSON. In contrast, the processors do not communicate with any remote endpoints at
all, but they do go through the contents of the data record-by-record. This separation
of tasks is crucial to achieve robust tolerance to errors, which unavoidably happen
when dealing with remote endpoints and data from outside providers.

The most typical error that occurs during a poller’s work is a problem in commu-
nication with the remote endpoint — either a problem in our proxies, remote server
is down, authentication has failed, etc. Thanks to the information we store about
the last package which was successfully downloaded, we can easily retry later if the
communication with the remote server failed, and continue from the correct package.
Many feed providers allow access also to older packages, not just the newest one, so
with this approach we do not lose any data. The access to older packages is, however,
usually limited, e.g. to the last 24 hours for VirusTotal feeds. If the connection to
the feed endpoint is not fixed before this time period, we will start losing data.

The processors face different type of errors, such as malformed data or unexpected
schema (missing or superfluous fields etc.). This type of errors are generally not
solvable by a repeated execution of the processor, and require a manual fix of the
processor code. But thanks to being decoupled from the pollers, a single problematic
package causing a processor to fail will not block the whole workflow — the poller will
still keep on downloading new data. Secondly, because we have the raw data from
the poller stored in the data lake, we can re-run the processor on the problematic
package at any time later, after we have improved the processing algorithm.

In practice, the processor faults happen much less frequently than poller faults
and after fine-tuning the feed processing algorithm, processor faults occur rarely.

4.2.4 Alternative sources of data

Even though the initial main goal of this project was to collect and process data
from feeds, already early in the development we noticed the opportunity to use the
Feed Automation system to also process data from other sources. Thanks to the
modularity of the architecture, the system is very flexible. Other services collecting
data from different sources can work alongside the pollers and processors. They can
also optionally utilize the deduplication cache and then they send their output to
the filtering queue.
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Currently in the deployed system, we use two other components which send data
to the Feed Automation (see Figure A.1 in Appendix A):

o Web crawlers, which browse various websites, particularly software portals, for
new files to analyze before our customers encounter them.

o Spam collectors, which process emails delivered to special email addresses and
collect files and URLs from them.

These components were not developed as part of this thesis work, yet they were
already connected into the deployed Feed Automation project and demonstrate its
extensibility.

4.3 Deduplication cache and filter

Applying deduplication and filtering to the feeds is the most effective way to reduce
the number of records submitted to the backend systems. The deduplication cache
keeps an overview of which files and URLs were seen recently in the feeds and provides
this information to the processors for removing duplicates. The filter service allows
efficient filtering based on static rules or advanced models. We discuss both the
deduplication and filtering in more detail in Chapter 5.

4.4 Submitters

The final stage in the workflow of our system is to submit the records to company
backends for analysis or enlarging the knowledge base. By the time a record reaches a
submitter, it has been processed, it is not a duplicate, and it has passed all the filtering
rules. All that is left is sending it to the appropriate backend. As we described in
Chapter 2, the two systems interested in this data are the File Reputation System
(FRS) for files and the Network Reputation System (NRS) for websites. Because their
submission APIs are very different, Feed Automation has two different submitters.
Each of them has its own queue of records waiting to be submitted.

4.4.1 Submitter to the Network Reputation System

The simpler of the two is submission to NRS, because we submit only the URL and
metadata, not the website content. Whenever a new message appears in the URL
submission queue, the submitter collects it from the queue, verifies that it contains
all the required information, and then sends it to a special REST API responsible
for importing data to NRS.

Unfortunately, the current version of the API supports only a very limited set of
metadata which we can send, which limits the amount of information we can pass to
the backend. This limitation should be relaxed in a future version of our backend
systems.
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4.4.2 Submitter to the File Reputation System

Submission to the FRS involves more than just sending the metadata information,
but also uploading of the binary sample if it is not yet available in the backend.
Whenever a new message appears in the file submission queue, the submitter collects
it from the queue, verifies that it contains all the required information, and then
queries the API of FRS to find out whether the sample is already present in the
backend. If it is, the record metadata can be simply sent to the FRS API. Otherwise,
we need to download it first. The record from a feed must include a URL where it
can be downloaded, either from the Internet, or from our data lake where it was
stored at a previous step (e.g. by a web crawler). Once we have the sample ready, it
can be uploaded to FRS, along with the metadata.

4.5 Security

Throughout the whole design and development of this system, security has been one
of the top priorities. The data output by this system is used by the backend systems
as one of the contributing resources to generate verdicts about files and websites,
marking them as malicious, clean, potentially unwanted, etc. Therefore we need to
make sure that the system is secure and it is especially important that we can trust
the data and that nobody can tamper with it. In this section, we will discuss the
security measures applied to this system and in Chapter 6 we will again go over the
security of the system with threat modeling.

The basic security consideration of this cloud-based system is the security of the
underlying infrastructure. Here we rely on the core security guarantees of Amazon
Web Services, and trust Amazon to keep our data in storage, running services,
and communication between services secured. For example, we make the following
assumptions:

o QOur user access policies prevent anyone else from accessing our AWS services.

o Our data in Amazon S3 cannot be read or tampered with by unauthorized
parties.

o All communication between AWS services is secure and encrypted (using TLS).

o Encryption by the AWS Key Management Service (KMS) is secure.

On top of these basic security assumptions for the infrastructure, here we mention
several security measures which we apply to the system.

When configuring the roles and policies for our services using the AWS Identity
and Access Management (IAM), we set the permissions to the smallest set needed
to perform the service’s task. TAM lets us configure fairly fine-grained permissions,
so that we can limit what actions and on which resource a service is allowed. For
example, a processor service has no need to write to the S3 bucket with raw data,
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therefore we only give it reading permission for that particular bucket. Similarly,
only the filtering service is allowed to receive and delete messages from the filtering
SQS queue and it is also the only service allowed to send messages to the submission
queues.

Most of the APIs we communicate with (both feed APIs and backend APIs) require
API keys or username and password authentication. To secure these credentials and
avoid their accidental leak, we store them in the AWS Secrets Manager, additionally
encrypted by the AWS Key Management Service (KMS).

It is crucial that we can trust the feed data we receive from our partners. First
and foremost, we need to trust the partner, so the following must be asserted:

o The data produced by the partner is reliable and of high quality,
» the partner’s systems are secure from tampering, and

o the partner immediately informs us of any breach of security which could affect
the integrity of the data.

We cannot guarantee the above requirements by technical means in this system. It is
the task of the team managing the licensing contracts with our partners must make
sure that they apply during the whole period when we use the data from any partner.
In our system, we must ensure that any downloaded feed data came from the partner
without being tampered with. We accomplish this by using the Transport Layer
Security (TLS) protocol for all connections to any API and verifying the certificate.

4.6 Implementation

The Feed Automation system has been deployed in Amazon cloud, utilizing many of
the provided services. The whole data lake is stored in Amazon S3 storage, using
one S3 bucket for the raw data (as generated by the pollers) and another S3 bucket
for the processed data (as generated by the processors).

All of the AWS resources are deployed in a dedicated and isolated network, using
the Amazon Virtual Private Cloud (VPC). For improved security, the network does
not have access to the Internet or any outside services, except through special proxies.

We used the serverless AWS Lambda functions for most of our computing com-
ponents, wherever possible. The advantages which we described in Section 2.4 make
serverless functions ideal for use in our project. The feeds are updated at various
intervals from minutes to hours or days (cf. Table 2.1). It would be wasteful to keep
(and pay for) a server running unnecessarily idle between the requests. Serverless
functions allow us to start them only at specific intervals or by a custom trigger
(such as whenever a new file appears in data lake), pay for a few seconds or minutes
to perform their task and terminate.

However, the AWS Lambda functions also have certain limitations. Namely,
the maximum execution time is limited to 15 minutes (the limit used to be only 5
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minutes until October 2018 [7]), maximum memory is 3,008 MB, the file system
has only 512 MB of disk space available to use [8], etc. Due to such limits, AWS
Lambda is not well suited for heavy tasks, such as downloads of massive archives
or uploads of big files. In such cases, we used a more traditional solution of Docker
containers running on Amazon Elastic Compute Cloud (EC2) server instances using
the Amazon Elastic Container Service (ECS)?. The used AWS components are listed
in Table 4.1.

Table 4.1: Feed Automation services and the corresponding AWS computing platform
used for implementation.

Service AWS service Configuration
Pollers Lambda  1024-2048 MB of memory
Processors Lambda  1024-3008 MB of memory
Filter Lambda 1024 MB of memory
Submitter to FRS ECS 2% ch.xlarge EC2 instance”
Submitter to NRS Lambda 1024 MB of memory
Deduplication cache API ~ Lambda 1024 MB of memory
AV-TEST downloader ECS 2x c5.xlarge EC2 instance”

) The EC2 instances of the ECS cluster are shared by all ECS containers in the
Feed Automation project, including the crawlers and spam components.

When configuring the computing components, we need to balance the performance
and the price. AWS Lambda functions are configured by specifying the allocable
memory (in MB). This setting determines not only the maximum amount of memory
that the function can use, but also the CPU power and the price per 100ms — doubling
the memory setting will also double the CPU power and also double the price (cf.
current AWS Lambda pricing schema in Appendix C, Table C.3). In practice, this
can mean that doubling the memory setting of a computationally intensive Lambda
function will make the function finish in half the time, incurring the same costs as
previously! On the other hand, if the function spends most of its running time waiting
for input (such as downloading a big file from a slow server), increasing the setting
will not make the function run much faster, yet it will cost more. In our case, the
separation of pollers and processors fits this well, because pollers are input-intensive
and processors are computationally intensive, so we generally configured them with
lower and higher memory settings, respectively.

The communication between the individual services occurs mostly through mes-
sages passed via queues (Amazon Simple Queue Service, SQS). Queues help to
spread the load according to the throughput of consuming service — the messages

3 Amazon also offers a “serverless” solution for ECS, called Fargate. It simplifies the launching
of containers without the need to provision and configure EC2 instances (although whether it can
be considered truly “serverless” is disputed [71]). Unfortunately, due to technical limitations of
Fargate combined with some company-internal AWS deployment policies, we are unable to use it
for this project at this time.
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are processed as quickly as the consumer can process them. Additionally, queues
improve the fault-tolerance — failed messages are not deleted from the queue and are
automatically retried later.

There are two exceptions which do not use queues for communication. First is
the triggering of processors. Instead of the poller sending a message to the processor
through a queue, we use the event notification feature of Amazon S3. Whenever a new
feed package is saved to the data lake’s S3 bucket, a processor for the corresponding
feed is triggered and instructed to process that package.

The second exception is the communication between processors and the deduplica-
tion cache. As we will discuss in detail in Section 5.1, the deduplication cache service
consists of a Redis cache and a Lambda function which responds to the deduplica-
tion queries. These queries are synchronous, awaiting a response. To achieve that,
the processor invokes the cache Lambda function with a special RequestResponse
invocation type, which keeps the connection open until a response from the cache is
sent, back.

4.6.1 Monitoring

When maintaining a complex system built up from microservices, it is crucial to set
up thorough monitoring. Without observing a wide range of metrics, it is difficult to
assess the system’s health and performance.

In AWS, metrics are made available through the Amazon CloudWatch service.
There are many built-in metrics for each AWS service, for example the number of
errors or function running times for AWS Lambda|[9], the number of waiting messages
in a queue for Amazon SQS [6], or the number of evicted keys for Amazon ElastiCache
for Redis [12]. Such metrics are already available without any configuration needed,
but additionally, we can also log our own metrics, such as the number of records
flowing through.

In the following list we show a selection of some of the most important metrics
we collect and observe for our services (note that this is not a complete list).

e For each poller:

— amount of data downloaded from feed endpoint (both compressed and
decompressed, if available), and

— amount of data stored to S3 (in bytes).
e For each processor:

— number of records received,
— number of records dropped as duplicates, and

— number of records dropped for other reasons.

o For the deduplication cache:
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— number of records received,

— number of records identified as “new”,

— number of records identified as “modified”,

— number of records identified as “seen”,

— memory used by each of the Redis caches, and

— number of records evicted once the memory is full.

For the filter service:

— number of records received, and

— number of records output (not dropped).
o For submitter services:
— number of records submitted to FRS/NRS backends.

For each Lambda function:

— number of errors (e.g. when the function timed out, ran out of memory,
or terminated unexpectedly due to an exception),

— number of function invocations, and

— function running time.

For each SQS queue:

— number of messages waiting to be received,
— number of messages being processed (received but not yet deleted), and

— age of the oldest message waiting.

All metrics can be observed either directly in the Amazon CloudWatch web
console or through an external tool (we use mainly the Grafana? tool). They are
very useful for understanding how the system is behaving or looking for irregularities.
They can also be used to set up alarms, which can actively notify the maintainers
of the system of any serious problems by sending an email or text message. For
example, we have alarms configured to notify us whenever too many Lambda errors
occur or when the pollers are collecting insufficient amounts of data, which usually
signals problems with our Internet connection.

For a more detailed monitoring of the service’s activity, Amazon CloudWatch
also provides a Logs service, which allows us to observe the logs which were output
by the Lambda functions or ECS container tasks. This is useful for debugging the
services and following their activity in detail.

4https://grafana.com/
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CHAPTER

Data processing and filtering

One of the main tasks of our project is to reduce the load on our backend processing
systems. To achieve that, we want to avoid submitting all of the data which came
from the feeds to the backend. Instead, we want to remove as many records as
we can, while retaining as much cumulative information as possible. Records with
information that is of no use to our customers (such as very exotic files), or with
information that we already have, brings us no additional value, yet incurs processing
costs. Such data can be categorized as data noise, and should be dropped.

5.1 Data deduplication

The first step in reducing the number of records in a big data system is to look for
possible duplicates and determine whether the information in the record is already
present in our knowledge base. This can be achieved either by directly querying our
backend systems, or by maintaining this overview in our system. Because the former
approach would incur additional load on the backend systems, which we are trying
to lower, we use the latter approach.

5.1.1 Initial version

In our initial efforts, we concentrated on making the system very light-weight and
simple. Our deduplication algorithm was included directly in the feed processor
and operated statelessly on each received batch. Depending on the source feed, we
waited until we accumulate enough data (e.g. half-hour of VirusTotal URL feed)
and performed processing and deduplication on each batch. We have based the
deduplication on the URLs for websites and the SHA-256 hashes for file records.
The advantage of this approach is its simplicity. It is entirely stateless, requiring no
extra storage or additional computational power, therefore keeping the costs low.
However, it has two significant disadvantages. First, because we are batching the
incoming data, the system has to wait until enough data has been accumulated — this

34
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causes delays in the delivery of the data to backend. Secondly, we are only detecting
duplicates inside each batch but not duplicates across different batches — this makes
the deduplication less effective over longer periods of time.

5.1.2 Stateful deduplication

Ultimately, we resolved to try a more robust stateful approach to deduplication. To
keep the state, we use a sliding window technique [20] to store knowledge about
recent records. At any given point in time, the window contains information about
what records have appeared in observed feeds in recent time. A visualization of this
technique is shown in Figure 5.1.

For example, if we start with an empty window and encounter a file F;, we store
its hash to the window and process the file. Once we encounter another file F5, we
look in the window whether we have seen it recently. Because we did not, its hash is
stored in the window and the file is processed. If we encounter file F} again, we can
see that it is already present in the window. That means this file is a duplicate and
it can be dropped.

past window

feed 1 ] | ]
feed2 | | | |

feed3 [ ] [CTT] [[J [CLTT]

past t_1

feedl | | [ [[[TTTTT]]| E
feed2 | [ | [ J LI L] LI LI L]
l l

feedd [ | [ [ [ ] [LJ L]

past i1 to

Figure 5.1: Visualization of the sliding window technique for the deduplication of
three feeds. In the top graphic is a past window of knowledge at time ¢_;; while in
the bottom graphic we see the current window of knowledge at time .

We can also store additional information, such as when this record was seen for
the first time, when it was last seen, how many times, etc. Based on this information,
the deduplication logic decides whether a newly appeared record is considered a
duplicate or not and consequently whether it should be accepted for further processing
or dropped.
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Information about the files remain in the window until it becomes full, then the
oldest records will be discarded. The size of the window is limited only by the size
of storage we have available (instead of fixing the maximum number of records or
age of oldest record). The size of the window must be chosen so that it balances
the number of records we want to keep in the window and the running costs of the
storage. With more memory, we can store more records and see further into the past,
but this brings higher running costs.

5.1.3 “Smart” deduplication

The most basic form of deduplication compares only the record identifiers, i.e. the
URLs of web pages or the SHA-256 hashes of files. However, generally we are
interested in important changes of the metadata that we collect from our partner
sources. For example, if we encounter the same record for the second time, but
its rating has changed from “clean” to “malicious”, we do not want to drop this
information as duplicate, but instead let our backend systems know about this
important change. Therefore, we need to take certain additional metadata into
account during deduplication, so that only records with no new important information
are dropped as duplicates.

As an example, let us consider records describing files, with attributes sha256,
last_seen, and malicious. In a feed, we encounter the following 3 records:

recordl record?2 record3
sha256: 012..def sha256: 012..def sha256: 012..def
last_seen: 12:00 last_seen: 13:00 last_seen: 14:00
malicious: false malicious: false malicious: true

All three records describe the same file with identical SHA-256 hash. A basic
deduplication approach based just on the hash identifier would only retain just the
first record and drop the following two as duplicates. However, with our “smart”
approach we can specify that we want to know if the important malicious attribute
has changed, but at the same time we do not care about changes of the last_seen
attribute. Applied to the three records above, only record2 would be dropped as
a duplicate, as only the value of last_seen has changed, but record3 would be
retained, because the important malicious flag has changed.

For efficient storage in the deduplication window, we keep only a hash of this
metadata, instead of storing all the data. This is enough to detect any changes in
any of the selected metadata.

5.1.4 Implementation

The deduplication service consists of two main components. One is a high-performance
storage, which maintains the current state of the deduplication window. The second
is an interface which provides an abstraction layer over the cache, acting as an API
responding to requests from other services, such as the feed processors.
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To achieve high performance of the deduplication storage, we chose Redis, which is
an in-memory key-value data store. Thanks to keeping all the data in main memory,
instead of reading from disk, it is well suited for high-performance caching, which
makes it ideal for the implementation of our deduplication sliding window. In AWS,
Redis is available as part of the ElastiCache service. We chose to keep two separate
Redis instances, one for files and one for URLs.

In Redis, data is stored as a key=object pairs and various object types are
supported [50]. In our implementation, we use the object’s identifier as the Redis
key and a hash map for values to store the metadata we need. The ideal schema for
our data would be the following:

| 01234567..89abcdef ... ... identifier
| feed A
seen counter ........... how many times was this record seen in feed,

metadata hash
first seen timestamp
last seen timestamp

| feed B

L ..

|

Unfortunately, Redis does not support nested hash maps, so it is not possible to
directly use the above schema. Instead, it is necessary to mimic nested hash maps
by encoding the data in the keys or objects. To achieve that, we have investigated
three variants:

(i) Incorporate the feed identifier into the Redis key.

| 01234567..89abcdef:feedA
seen counter
metadata hash
first seen timestamp
last seen timestamp
| 01234567. .89abcdef :feedB

L ..

(ii) Incorporate the feed identifier into the hash field name for each field

| 0123456789abcdef
feed A:seen counter
feed A:metadata hash
feed A:first seen timestamp
feed A:last seen timestamp
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(iii) Save all metadata in an encoded string, such as JSON.

| 0123456789abcdef
LfeedA:{"seenicounter": number, "metadata': "hash', "first_seen":
timestamp, "last_seen": timestamp}

The first approach provides a clean hash schema for each “identifier—feed” pair
and we can also specify expiration time for each. However, listing all encountered
feeds for a given record is very inefficient — Redis is quick to retrieve a value for a
given key, but slow to list keys by prefix. Furthermore, the identifier, which may
be very long (such as a long URL), has to be stored multiple times, unnecessarily
wasting storage space.

The second approach allows easier iteration over all feeds where the object was
seen, thanks to efficient retrieval of subkeys of a given hash map. We can only set
expiration on the whole key, therefore the individual feed records do not expire
automatically.

Finally, the third solution wastes space and limits the actions we can directly
perform in Redis with individual fields.

Given the facts described above, we selected the schema (ii).

The size of the sliding window is determined by the size of the available Redis
memory. However, it is impossible to precisely predict how many records will fit
into the sliding window, as this depends on the size of data stored in each key. For
example, if file F} appeared in just one feed, it will take considerably less space than
a file I, which appeared in five feeds. Due to the structure selected above, both
will count as one key, yet consume very different amounts of memory. Neither is it
possible to predict how long the time frame of the deduplication window is, as this
also depends on the amount of new records coming in.

In Table 5.1 we present some values from our testing, which provide a good
guiding value for how much can fit into the deduplication cache. These can be used
when deciding on the optimal Redis instance type. The AWS ElastiCache costs
for big memory instances are substantial (cf. Appendix C, Table C.2) and make a
very significant part of the Feed Automation budget. Finding an optimal size for
the deduplication cache is therefore important to balance the benefits of efficient
deduplication and the corresponding costs.

5.2 Filtering

After the deduplication phase, the second step to reduce the number of records is to
perform filtering of the data. We differentiate two types of filtering:

o Static rules to determine which records should be accepted and which records
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Table 5.1: Redis memory statistics for a fully filled deduplication cache.

Memory allocated

ElastiCache memory Memory allocated Keys count
per key

Record type

(in gigabytes) (in gigabytes)”  (in millions) (average, in bytes)
URLs 28.4 21.3 62.1 368.3
URLs 6.1 4.5 13.1 337.6
files 13.5 10.1 32.1 372.2
files 2.8 2.1 6.6 341.9

(*) Memory allocated is the total memory used for storing the actual data, without the overhead.

should be dropped, based on the values of the fields of each single record.
For example: drop every record whose last modification date is older than a
month.

o Dynamic filtering based on machine learning models, which adapt and evolve
over time as our knowledge of the data increases.
For example: drop those records which with high certainty are not interesting
to us, based on previous experience.

Unlike deduplication, which only removes records we have already seen and stored,
filtering removes even records which are potentially useful. Therefore it is crucial to
properly define and understand the filtering rules, so that only the irrelevant records,
the “noise”, are filtered out, otherwise we may lose useful information.

5.2.1 Static filtering with rules

In some cases we can quickly determine that certain records are surely not useful to
us and can be dropped without losing any important information. Static rules are
ideal for this scenario, as they are simple to define, easy to understand, and quick to
evaluate.

There are various rule engines available to define complex sets of rules. One of
the early systems is CLIPS (“C Language Integrated Production System™), which
is considered to be probably the most widely used expert system tool [30]. The
more modern rule engines include Jesse or DROOLS, both written in Java. Our
filtering component (as described in Chapter 4) has been purposefully designed as a
stand-alone component, allowing the use of any rule engine on any platform, which
can read and output SQS messages. This allows for easy “in-place” swap with another
component based on a different rule engine if needed.

As we currently do not expect any need for complicated rulesets, we have opted
for a simple Python approach. Such a solution is very lightweight, without the need
of any specialized rule engine, and easy to understand, as the Python syntax is more
widely understood than the specialized rule syntax of e.g. CLIPS or DROOLS.
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One of our main aims for these rulesets is that they need to be very easily
understandable and editable by any analyst, without specialized knowledge of the
filtering component itself. We achieved this by providing a very simple rule interface,
which consists only of a Python function returning either True or False, based on
the fields of the record. The scope of the rule can be narrowed down with a function
decorator! to specific feeds.

For example, in Listing 5.1 we can see a rule which applies only to the VirusTotal
URL feed, which instructs the filter to drop any records which have zero positives
(the number of vendors claiming the given URL is malicious) and no categories
specified. Such records are currently not useful for our backend systems, therefore
we have no need to process them further.

Code Listing 5.1: An example of a filtering rule for VirusTotal URL feed.
@feeds (’virustotal-url’)

def virustotal_url_is_url_accepted(positives, categories, **fields):
"""Drop URLs with zero positives and no categories.

:param positives: number of positive verdicts by vendors, as reported by VT
:param categories: categories information, as reported by VirusTotal
:param fields: dictionary of all remaining fields available in the record

:return: True to accept the record, False to drop it

nnn

return positives > O or categories

As the example shows, the rule consists just of three easily understandable lines of
code and helpful comment?. In practice, this allows the malware analysts to quickly
understand and adapt the rules with minimal assistance from the software engineers
or need to learn any new rules language.

5.2.2 Dynamic filtering

Instead of just static filtering rules, which base their decision solely on the contents of
a single record, we may also use advanced techniques, which learn from older records
we have seen earlier and provide us with a filtering algorithm that is continuously
adapting to the incoming data we have seen. For example, we can achieve more
advanced, intelligent filtering with machine learning (ML) by learning from the
historical feed data to predict which records would be useful or “interesting” to our
malware analysts or backend systems. Such records might be those referring to
malicious files or phishing URLs, but also records which could be marked as false
positives or have a high probability of being encountered by our customers.

In Python, a decorator is any callable which can be used to modify the behavior of an-
other wrapped function, method or class. A function is “decorated” by adding @decorator_name
(**optional_params) above its definition. Python decorators are similar to annotations in Java.

2The docstring we use to document the rule function is in the reStructuredText format. It
describes the function, its parameters, and the return value.
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To this end, we explored the possibility of using supervised learning to train a
model which could predict which records are “interesting” to us. In our case, the
input data are the records coming from each individual feed. The output values (the
labels) describe how “interesting” a given record is. Categorical labels might be just
binary “interesting” and “uninteresting”, or even “malware”, “potentially unwanted”,
“clean”, etc. At this point, it is important to stress that the goal of this system is not
to generate verdicts about any samples, only decide what records will be imported
and thus which samples will get analyzed at this stage. However, the results are
used by other systems, which might adapt their verdict or analysis workflow based
on this (and other) data. For that reason we need to be careful not to try to guess

the verdict and rather use the binary “interesting” / “uninteresting” classification.

The second option is to use regression to generate numeric output. Such a number
can be interpreted as an index or probability of how interesting would a given record
be. Then we can define a threshold, under which we consider records “uninteresting”
and above “interesting”. The advantage of such approach is that we can adapt this
threshold as needed even without retraining the model.

Whichever strategy we select, the goal remains to only drop records which are
not interesting with a high probability. In other words, false positives (uninteresting
records which we accept and submit needlessly) are less of a problem than false
negatives (dropping interesting records and not submitting them). False positives
cause unnecessary computing and storage costs for our backend systems, while false
negatives cause us to lose potentially useful information.

Experiment

Dynamic filtering is currently not deployed as part of the Feed Automation system.
However, we explored possible ML-based filtering strategies and here we present one
experiment which serves as a proof of concept for the use of dynamic filtering on
feeds with threat intelligence.

It is clear that we cannot apply the ML approach to every feed. Most of the feeds
we currently collect do not contain many fields which would be particularly useful as
features for the ML process. Secondly, the typical problem in supervised learning is
getting a training dataset which is big enough, is a truly random sample, and has
good quality labels. In our case we need labels categorizing records as interesting or
not interesting, which is hard to get.

Based on these considerations, we selected the VirusTotal file and url feeds for
our experiment. The VirusTotal feeds consists of reports for files and urls which
were submitted to VirusTotal and contain various information. As an example, in
Appendix B the Listing B.1 shows one file report for an EICAR test file [14]. The
content of the report varies depending on the sample (we have shown the significant
differences in sizes of individual records in Figure 2.1), but all the reports contain
information about scan results from the same vendors (although the list of vendors
can change slightly over time). As we can see in the example, scan result for each



5.2. FILTERING 42

vendor tells us whether the sample was detected by the vendor, results of the detection,
date of the scan and version of the scanner. The detection result contains the name
of the detection as given by the vendor and is generally not compatible between
the vendors. Similarly, the VirusTotal URL feed contains scan results from various
vendors about the maliciousness of webpages.

As features for our model, we use only the binary results detected (1), or not
detected (0) by each vendor. As labels, we use the verdicts given by our internal
Object Reputation Service Platform (ORSP) [27]. This backend service provides
clients with information whether any queried sample (file or URL) is categorized
as malicious, unknown, clean, etc. For our filtering scenario, that means we only
consider the maliciousness for how “interesting” a sample is; or, in other words, we
try to predict whether ORSP would declare a sample as malicious (1) and or not
malicious (0). In future research, we plan to also explore other hypotheses exploring
e.g. the prevalence of a sample or its categorization (adult content, gambling, etc.).

Is summary, for our experiment we are looking for a model described by hypothesis

h(z) ~ { 1 if ORSP(s;) = “malicious”,

0 otherwise.

For our testing, we took one week of data, from May 6" to May 12", 2019,
and randomly sampled 1.5 million records from both the VirusTotal file and URL
feeds. These records were already deduplicated using our deduplication cache (cf.
Section 5.1), yet we further removed any records referring to the same file or URL.
Then we queried ORSP for verdicts for all the samples and only kept those records for
which ORSP had a known verdict. The collection of ORSP verdicts was performed
at various times * during the end of May 2019, when all the collected records from
VirusTotal were at least 10 days old, to give our backend systems time to process
more samples in the meantime and thus ORSP providing us more verdicts. Due to
this delay, we did not take the time difference between the individual records in the
dataset into account.

This resulting dataset was the base for our experiments. We split it with ratio
70:30 into a training and testing dataset to train and test our model. Table 5.2 shows
the number of records that we collected in the described process and Figure 5.2 shows
the cumulative frequency of records, which had at least d positive detections.

Then we used Apache Spark to train a binary classifier based on the logistic
regression algorithm. We trained the model using the elastic net regularization
with hyperparameters of @ = 0.1 and A = 0.1 (tuned by grid search optimization).
The code used to train the model is shown in Listing 5.2. For details about the
LogisticRegression model in Spark, please refer to the documentation [15].

3Due to throughput limitations of the ORSP service available to us, we were not able to collect
all the verdicts at the same time. Instead, the collection was performed over the course of multiple
days.
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Table 5.2: Number of records used for the experiment on VirusTotal feeds.

Without  ORSP

Feed Total Sample duplicates  verdict

ORSP positive Training Testing

File 9,208.2 1,500 1,427.5 233.0 146.4 (63%) 163.4 69.6
URL 19,525.0 1,500  1,381.0 770.0 163.1 (21%) 539.5  230.5

The numbers of records (in thousands) are based on data we collected and processed from
the VirusTotal file and URL feeds in the week from May 12*%, 2019. The columns (in order)
describe the total number of records received, size of the random sample subset, number of
records with unique samples (SHA-1 hash or URL) in the sample, number of those records
for which ORSP has a known verdict, number and ratio of records with positive verdict by
ORSP, and finally the sizes of the training and testing datasets.
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Figure 5.2: Cumulative histogram visualizing the number of records with at least d
detections in our experiment sample of VirusTotal data collected during the week
from May 12", 2019.

Code Listing 5.2: PySpark code used to create and train (fit) the logistic regression
classifier model.
classifier = LogisticRegression(

regParam=0.1,

elasticNetParam=0.1,

maxIter=50

)

model = classifier.fit(training_data)

The logistic regression computes the probability p that a sample s, with feature
vector & would be declared as malicious by ORSP:

p := P(ORSP(s;) = “malicious” | x)

The classifier f; then predicts 1 if the probability is above certain threshold ¢ and
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0 otherwise.

fi(@) = 1 if P(ORSP(s;) = “malicious” | ) > t,
=1 0 otherwise,

For comparison, we also created a simple model based only on a static rule, which
predicts 1 if there were at least d positive detections, and 0 if there were less. We
can describe it by a function

1 it Y x> d,
9a(®) = { 0 otherwise,
where x; = 1 if the sample with features & was detected by the ¢-th vendor, and
x; = 0 otherwise.

For the predictor fi(-) to be useful and worth the additional costs of model
training, it must perform better than the simple gy4(-) function. We present and
evaluate the results of our experiment in Section 7.1.8, where we also compare the
performance of f; and gy.



CHAPTER

Security threats analysis

The security of the system has a very high priority. As we discussed in Section 4.5,
the results of this system are used by other backend systems and researchers, therefore
we need to have complete trust in the integrity of the data, which needs to be assured
both by technical and by organizational means. In this chapter, we will discuss the
security aspects of this system and summarize the outcome of our threat modeling.

When talking about the integrity of the data, it is important to understand that
it begins already at the feed provider. This was highlighted by a security breach
which happened at the MUTE feed endpoint in October 2018. Due to a vulnerability
in a database administration tool Adminer [37, 22|, the attacker was able to gain
access to the local file system and database, including members’ email addresses and
hashed passwords. Although there is no indication that the published feed data was
compromised, it shows that we need to take into account the possibility of a security
breach outside of this system and even outside of the company.

6.1 Who is the adversary and what are the
assets?

Before we discuss the threats in detail, it is useful to think about who the adversaries
and their goals are. As a cyber security company, F-Secure is fighting against various
kinds of electronic malicious behavior, with the aim to protect its customers. Any
malicious actors could have an ambition to negatively affect the protection capabilities
of F-Secure or damage its reputation. If they would succeed in compromising the
Feed Automation system, they could observe or modify the data which the backend
systems use for their processing or researchers for their analyses.

Therefore, these are the theoretical adversaries, who might benefit from attacking
this system.

o Any actor who creates malware, phishing websites, etc. has an interest in

45
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making antivirus or browsing protection less effective. This includes a wide
range of possible attackers, from vandals causing damage to criminals seeking
financial gain to government agencies. Their goal might be for example to
block information which identifies their malware as malicious from reaching
the company backends, or modifying the data to mark their phishing website
as clean.

e Other security companies have an interest to make their protection work
better than ours. Some company might want to improve their business by
damaging our protection capabilities. Or they want access to our collected
data in the data lake.

o A disgruntled employee, current or former, might want to hurt the company
for personal reasons. In contrast to other attackers, employees can have inside
knowledge of the system, and current employees might even have access to the
credentials or the system and data itself.

The following are the key assets which we need to protect.

e The backend systems.
e The data lake.
e The data from feeds.

e The credentials for API authentication.

6.2 Threat modeling

To identify potential security risks and evaluate the security measures, we performed
a threat modeling session together with the team maintaining this system, using the
STRIDE methodology (cf. Section 2.7). In this section, we summarize some of the
interesting findings which were identified.

6.2.1 Assumptions

During the threat modeling we make several assumptions. The project is deployed in
AWS in an isolated network. We need to assume that Amazon enforces the security
of the infrastructure. That includes the following:

« secure communication between all services (all connections between AWS
services are encrypted with TLS),

« no unauthorized users or services can gain access to our services or data,

e nobody can tamper with the logs and metrics, etc.
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Figure 6.1: A simplified data-flow diagram between the components of the Feed
Automation system.

6.2.2 Identification of security risks

We split up the data flow of Feed Automation into 6 main groups, as visualized in
Figure 6.1, and we identified possible security risks of the system. In this section we
present some of the findings.

I. Poller downloading from feed endpoint

o An attacker takes over the feed endpoint, allowing him to act as the provider
and doctor the data. (Spoofing, Tampering)
Note: We use TLS connection to verify the provider’s identity but we cannot
detect breach of the provider’s system. Once such a breach is discovered, we
need thorough information about when and where did each record come from
to revert any influence it might have had on our verdicts.
Mitigation: Be in contact with the provider, turn off the feed intake if provider
was compromised. Log more information about each downloaded package,
including e.g. IP address of the endpoint.

o An attacker steals the TLS private key and is able to eavesdrop on the traffic or
perform man-in-the-middle attack and alter the traffic. (Spoofing, Tampering,
Information disclosure)

Mitigation: As above, be in contact with the provider, turn off the feed intake
if provider was compromised.

o An attacker is able to make an endpoint send huge amounts of data, overloading
our systems. (Denial of service)
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Mitigation: Monitor the metrics for unexpected amounts of data coming from
an endpoint, add alerts.

» An attacker is able to make an endpoint send corrupt data, breaking our proxies
or poller. (Denial of service)
Mitigation: Data is sanitized before processing. Monitor alarms for unexpected
errors in processing.

o An attacker performs a denial-of-service attack on a feed endpoint, stopping
flow to our services. (Denial of service)
Mitigation: Monitor metrics and alarms for warnings of insufficient data. Con-
tact the provider if the outage appears to be a serious problem.

II+IT1I. Poller saving data, processor processing data

« An attacker can make the poller write to a different destination. (Tampering)
Mitigation: Poller Lambda only has permissions to write to the S3 bucket with
raw data.

Recommended action: limit the permission only to the S3 prefix of corresponding

feed.

e An attacker can make the processor write to a different destination.
(Tampering)
Mitigation: Processor Lambda only has permissions to write to the S3 bucket
with processed data.
Recommended action: Limit the permission only to the S3 prefix of correspond-
ing feed.

o An attacker can make processor write sensitive data to data lake, where it is
readable by a wider audience. (Information disclosure)
Mitigation: The processor does not have access to any sensitive data, such as
API credentials (only pollers can read and decrypt them).

» An attacker can overload the deduplication cache by sending too many records.
(Denial of service)
Mitigation: Not required. This would already have effect in earlier stages of
the pipeline.
Recommended action: Verify that the system flow does not stop if the dedupli-
cation cache fails (for whichever reasons) and stops responding.

o An attacker can send a faulty record which breaks other services (such as
Splunk) which read the data from data lake. (Denial of service)
Mitigation: All known problematic input is being sanitized. Monitor for unex-
pected parsing errors in other services which consume our data.
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IV.

Processor querying the deduplication cache

o An attacker is able to gain access to Redis from anywhere in the network.

(Information disclosure, Tampering)

Note: ElastiCache for Redis currently does not support any AWS-based au-
thentication mechanisms.

Mitigation: Evaluate the SecurityGroup used by the Redis caches and restrict
access only to services which need the access (currently only the processors).

V. Filtering

VI.

o A filtering rule dropped a record without us knowing about it. (Repudiation)

Mitigation: Improve logging.
Recommended action: Add more detailed logging of dropped records and the
corresponding rule which rejected it.

Submitters

Certificate expiration causes the submissions to halt. (Denial of service)
Note: This is not directly a security threat but for example an expired FRS
certificate could block all file submissions.

Mitigation: Establish a procedure to regularly update the certificates.



CHAPTER

Evaluation of our solution

In this chapter we evaluate our deployed solution and reflect on the goals and
requirements we defined in Chapter 3. We present both the measurable improvements
introduced by this system, as well as discuss which requirements defined in Section 3.2
were successfully achieved and which still need to be addressed in future work.

7.1 Evaluation of the requirements

7.1.1 Centralization

The system was successfully deployed to production. Compared to the previous
situation as we described it in Section 2.5.3, the system functionality is now located
centrally in one place. Some feeds, which were previously downloaded by specialized
single-task components in different accounts, in on-premise servers, or even at personal
computers and maintained by various people around the company, were already
successfully ported to the Feed Automation project. Thanks to this move, these
similar tasks are now maintained by just a single team with clear responsibilities for
the project, which frees up the earlier maintainers (often researchers or analysts) to
spend more time working with the delivered data instead of the development and
maintenance of specialized services for feed collection.

There are still some legacy feed downloaders remaining which have yet to be
moved to this project. Those feeds which we have already moved to Feed Automation
were appreciated by the previous maintainers and users of the data, for multiple
reasons.

o The time-consuming development and maintenance was moved from them to a
dedicated team.

o The additional functionality like efficient deduplication or centralized storage
in data lake, which allows easy use of big data tools or Splunk, provides extra
value which was not available earlier.

20
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o The dedicated team maintaining this new project is quick to respond to bug
reports or feature requests.

Summary: Requirement was satisfied for all the feeds which were already ported
to the project. To fully complete this requirement, the remaining feeds need to be
added to the project.

7.1.2 Cloud deployment

The system has been deployed and is running completely in the Amazon Web Services
cloud. It has been designed utilizing the microservices paradigm based mostly on
serverless functions, except where this was not possible due to technical limits.

Summary: Requirement satisfied.

7.1.3 Automation

The whole system is running autonomously. Feed endpoints are contacted in pre-
defined intervals and data downloaded whenever available. Further services are
started using triggers or queues. Thanks to the built-in retry behavior of the AWS
Lambda functions, combined with the SQS messaging queues, we have achieved good
fault tolerance, which has proven itself in many cases since the deployment of this
system. For example, when our Internet proxies were temporarily down, the system
regularly continued attempts until a connection was established, then downloaded
all missing data and resumed normal operation.

The development and deployment to the cloud is following the DevOps practices
of continuous integration and continuous deployment. Therefore also the testing
and deployment is automated using Jenkins', which deploys the project from the
company’s internal Git.

Summary: Requirement satisfied.

7.1.4 Monitoring

The system provides many metrics, which can be observed either through AWS
console or with Grafana dashboards. The development team is automatically alerted
of any serious problems (such as insufficient data received from a feed) or failed
deployments in Jenkins.

Summary: Requirement satisfied.

! Jenkins is an open source automation server. https://jenkins.io/
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7.1.5 Costs

Deployment to Amazon cloud also enabled us to better monitor the costs of the
system. Thanks to services like the AWS Cost Explorer? we are able to view the
total costs but also explore the costs in more detail, such as per-service. This
provides much better visibility than previously, when the costs were spread around
the company and often hidden or shared with other services.

Due to the hidden costs of the previous solutions, we were unable to compare the
total costs before this project and after. We were also unable to receive information
from the backend systems about the financial impact that the new system is making
thanks to reduced load. Secondly, as the current project includes feeds which were
previously untapped and provides some new functionality, a direct comparison to
the previous situation is not easily possible.

Summary: We have succeeded to make the overall costs easily observable. However,
we were unable to perform a comparison of the running costs before this project and
with the Feed Automation system.

7.1.6 Security

The security of the system was explored in detail during threat modeling in Chapter 6.

7.1.7 Easy management of feeds

Our aim was to make the additions, modifications, or removals of feeds in Feed
Automation as simple as possible. To this end, we contained all feed-specific func-
tionality and configuration just to 2 services, the pollers and processors. We provide
some common functionality (such as typical API clients or tools for generating files
for data lake) ready for use in the form of prepared classes, which only need to be
subclassed. For example, to add a feed, a developer generally only needs to extend
two classes and configure the corresponding Lambda functions (schedule, memory,
etc.). After submitting these changes to the common git repository and receiving
approval, the changes are automatically deployed.

To evaluate this requirement practically, we have observed and supported a fellow
data engineer in adding a new feed processor. Although he had only minimal previous
knowledge of the system, he considered it to be a simple and straightforward process.
Nonetheless, we have identified some areas which could be further streamlined to
simplify the feed-specific code by moving the complexity to the common superclasses.

Summary: To objectively evaluate this requirement, we would need to perform a
thorough usability study with multiple engineers to see if we succeeded to make the
management of feeds simpler and to identify areas which could further improve this
aspect. Unfortunately, this was not possible during the given time frame of this
project.

2https: //aws.amazon.com/aws- cost-management /aws- cost-explorer /
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Our goal was to make the process of adding a new feed so simple that it takes at
most 2 days of developer’s time. As the currently included feeds were added during
the development of the whole system, we will only be able to properly evaluate this
goal once we start adding more feeds during the upcoming work.

7.1.8 Reduction of data noise

Removal of irrelevant fields

Requirement achieved by the processors, which allow performing arbitrary changes
on every processed record.

Deduplication

Removing duplicate records from the received data proved to be a very powerful
tool for reducing the data volume without losing any important information. As we
defined in Section 3.2, we consider a record an irrelevant duplicate if it provides us
no new information about a sample. As a consequence of this definition, we look
for duplicates only among earlier records from the same feed, not across all feeds.
If we see a record about a sample X in feed A and later in feed B, that is a useful
information to our analysts and we want to keep both records.

To evaluate the effectiveness of such deduplication, we present a few examples of
how the ratio of duplicates per feed evolves when starting from zero knowledge, i.e.
when the deduplication is empty at the beginning, over the course of the same 10
days. For these experiments, we used a dedicated cache, which we used exclusively
for deduplication of records from a single feed.

The presented examples show that the effectiveness of deduplication depends
strongly on the source feed. The average ratio of duplicates ranges from 0% to
99% between the feeds. The reason for such a difference between the feeds is
generally how the data is published. Some providers, such as PhishTank, publish a
regularly updated package, which contains largely the same information between two
consecutive updates, only with minor changes — that results in a very high duplicate
rate. Some other providers, such as MUTE, only publish information about new
samples which have not yet previously appeared in the feed — that results in a low
or zero duplicate rate. In between these two extremes are feeds which publish new
information as it appears, whenever there is new information about a sample. Good
examples are the VirusTotal feeds, where the rate of duplicates varies.

In the following figures, for each example feed we show three graphs which show
various metrics during the same 10-day period. The top graph shows how many
records we processed in total and how many were accepted as not duplicates, i.e.
either a new record for a sample we haven’t seen before, or a “modified” record for a
sample we have seen earlier with different metadata. The middle graph shows the

percentage of “new”, “seen”, and “modified” records at different points in time, with
the thin lines showing the actual values and the thicker lines representing a running
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average of the surrounding +12 hours. The bottom graphs shows how much memory
was used by the deduplication cache to store the information. We did not include
the bottom graph for PhishTank and MUTE feeds, as the storage needs are minimal.
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Figure 7.1: The effect of deduplication on VirusTotal URL feed, when starting with
an empty dedicated deduplication cache.

The VirusTotal feeds are currently the most frequently updated feeds which we
process. In Figure 7.1 we show the effect of deduplication for the VirusTotal URL
feed. We can see that the ratio of detected duplicates (yellow line) goes up vey quickly
and stays around 46% on average. Secondly, we can also see the ratio of “modified”
records (blue line). This shows that thanks to the “smart” deduplication, we were
able to detect on average 6.8% of records which we have seen already before but
which contain important new information. If we had used just naive deduplication,
based only on the URL, these records would have been discarded as duplicates. The
bottom graph tells us that the information about VirusTotal URL feed records uses

almost 1 GB of storage per day.

Another interesting high-volume feed to look at is the Microsoft Bing Mali-
cious URLs feed, which is shown in Figure 7.2. Unlike VirusTotal feeds, which
are updated regularly every minute, this Microsoft feed is updated in big batches at
irregular intervals, therefore it shows steps. The interesting thing to point out is that
it takes longer for the deduplication to reach its maximum effectiveness, which can
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Figure 7.2: The effect of deduplication on Microsoft Bing Malicious URLSs feed, when
starting with an empty dedicated deduplication cache.

be up to 99% on average. This means that a short deduplication window of e.g. one
day would be significantly less efficient than a long one. We can also see that due
to the high ratio of duplicates, the storage needed for this feed rises only minimally
after a few days.

Next we will show two examples with completely opposite ratios of duplicates. In
Figure 7.3 we show the PhishTank feed and in Figure 7.4 the feed from the MUTE
Group. As we explained in Section 2.2, the PhishTank feed is published as an hourly
updated package, so a lot of the records will remain unchanged between subsequent
packages. This leads to a very high percentage of duplicates in this example. After
deduplicating, we get a much smaller flow consisting only of the new or changed
phishing sites.

In contrast, the MUTE Group’s feed of malicious URLs appears already cleaned
at the source, and we detect no duplicates at all.
Rule-based filtering

The rule engine we introduced in Section 5.2.1 allows for rules which are easily
configurable even by users with limited programming knowledge. Given more time,
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Figure 7.3: The effect of deduplication on the PhishTank feed, when starting with
an empty dedicated deduplication cache.
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Figure 7.4: The effect of deduplication on the MUTE feed, when starting with an
empty dedicated deduplication cache.

it would be beneficial to perform a thorough user study to properly evaluate the
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usability of these rules for the researchers and analysts at the company.

The effectiveness of the rule engine to reduce the amount of data naturally
depends on the rules themselves. In most feeds, there is no reason to filter out any
records at all. But as an example, the rule given in Listing 5.1, which drops any
records with zero positive detections and no categories, was able to discard almost
30% of records, as Table 7.1 shows.

Table 7.1: Percentage of records accepted by the filter for the VirusTotal URL feed
during the first 5 months of year 2019.

January February March  April May  Total average
68.3% 1%  71.7% 64.9% 77.4% 70.6%

Dynamic filtering

To evaluate the feasibility of the dynamic filtering approach, we compared the
performance of a classifier based on a logistic regression model with the performance
of a simple static rule-based approach which only takes into account how many
positive detections were reported (not by which vendor).

Each of these classifiers can be configured to accept more or less records (i.e.
predict value 1) by adapting the threshold, i.e. the minimal probability for the
logistic regression or the minimal number of positives in the rule. When configuring
this value, we can find the balance between the number of false positives and true
positives. The setting depends on the needs (e.g. how much data the backend
systems can currently accept) and there is no one correct value.

Therefore, to compare the two approaches, we use the receiver operating character-
istic (ROC) curve, which plots the true positive rate (TPR) against the false positive
rate (FPR) as the threshold is varied. This allows us to compare the performance of
the classifier over the whole range of possible thresholds. To numerically compare
the overall performance of a classifier, we use the “area under curve” (AUC) metric,
which measures the area below the ROC curve on the [0, 1] range.

For each of the two feeds, we evaluated first on the complete testing data set,
but additionally also on a subset of the testing dataset with only those records
which have at least one positive detection. The records with zero detections will
be trivially evaluated to 0 by any meaningful classifier (unless the threshold is set
to 0, i.e. accepting all records), therefore it is interesting to see how the classifiers
perform on the subset which contains only records with at least one detection. In
the VirusTotal file feed, 47% of the records in our sample had at least one positive
detection, and 31% of the records in the URL feed.

First, we calculated the area under the ROC curve (AUC) for each of the classifiers.
We compared the values for both feeds and both for the complete testing dataset
and for the subset only with records with at least one detection. This provided us
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(ii) Trained and evaluated on the VirusTotal URL feed.

Figure 7.5: ROC curves comparing the performance of a classifier based on logistic
regression (ML model) and a classifier based on static rule. (a) Evaluated on the
complete testing dataset. (b) Evaluated on subset of the testing dataset only with
records with at least one detection.

with 4 pairs of values, which are presented in Table 7.2. As we can see, the logistic
regression ML model performs better in each case, although the difference for URL

feed with complete testing test is small.

To better understand the performance of the classifiers, we further analyze the
ROC curves. In Figure 7.51 we compare the curves for the file feed and we can see
that the logistic regression model outperforms the static rule. Particularly in the
right plot when applied only to records with detections (Figure 7.5i(b)), we can see
that we get considerably lower rate of false positives for higher values of true positive

rate.

Figure 7.5ii shows the ROC curves for the VirusTotal URL feed. Also here the
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Table 7.2: The area under the ROC curves for the classifier based on logistic regression
(ML model) and classifier based on static rule, when evaluated on the complete testing
dataset and on a subset of only records with at least one detection.

Complete Testing subset,
testing dataset only with detections
Feed ML model Static rule ML model Static rule
VirusTotal file feed 0.961 0.915 0.909 0.799
VirusTotal URL feed 0.951 0.937 0.852 0.745

logistic regression model achieves better results when applied to the dataset with
positive detections (Figure 7.5ii(b)) but does not show significant differences when
applied on the complete dataset (Figure 7.5ii(a)).

Summary: Overall, the classifier based on the logistic regression ML model shows
better performance than the static rule and good promise for a possible future
application.

However, for our current production system, it was decided there is not a need
for this type of filtering at this moment, because we only drop certain records with
zero positive detections and there is no advanced model required for this. In the
future, if the amount of data would increase significantly, we will reconsider whether
to apply this advanced filtering technique. To do that, we would perform a detailed
analysis of the costs, particularly the costs of collecting the labeled data and training
the model, to see whether the reduction of data volume by the advanced filtering
outweighs its costs and added complexity.

It would be beneficial to perform more thorough tests. In particular, we would like
to analyze different data samples and see how the delay between training of a model
and the time of its evaluation influences the quality of the predictions. Unfortunately,
performing more experiments is currently hindered by the speed at which we are able
to collect ORSP results — the backend service we use was not designed to perform
millions of sample queries in short time, as we need for our evaluation. We hope
this limitation is only temporary and will be improved in the next versions of the
backend service.

Summary of data noise reduction

Our minimal goal was to achieve a reduction in the number of records, compared to
the records coming in from the feeds, while setting an additional ambitious target of
reaching at least 50% reduction. In Table 7.3 we show the statistics for one example
week and show that we achieve ca. 70% overall reduction, when comparing the
number of records of records coming in from the feeds and the number of records we
submit to the backend. The reduction is achieved mainly on the URL feeds with an
average reduction of 78.4%, while the file feeds are reduced only by 11.4% (mainly
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due to low rate of duplicates in the file feeds currently imported and processed by
Feed Automation).

Table 7.3: The number of records (in thousands) coming in from the feeds and
submitted out of the Feed Automation system to the backend, after processing,
deduplication and filtering. Based on values over the course of one week (May
6th-12t2 2019).

Feed Input Output Ratio
AV-TEST Windows 279.4 279.4 100.0%
VirusTotal file feed 10,254.6  9,046.3  88.2%
VirusTotal Hunting not. 31.8 31.3  98.5%
File feeds total 10,565.8  9,357.0  88.6%
Bing Malicious URLs 32,569.7 604.7 1.9%
MUTE Group 354.6 354.6  100.0%
OpenPhish 6.9 6.9 100.0%
PhishTank 2,039.9 48.7 2.4%
VirusTotal URL feed 37,336.8 14,591.3  39.1%
URL feeds total 72,307.9 15,606.2 21.6%
All feeds total 82,873.7 24,963.2 30.1%

Summary: We have achieved our overall target of reducing the number of records by
more than 50% but only thanks to the URL feeds, while the average for file feeds is
well below this goal.

7.1.9 Output

First, all the data received from the feeds is saved “raw” (with minimal alterations)
to the data lake. Secondly, the processed and deduplicated data generated by the
processors is also saved to the data lake. The processed, deduplicated, and filtered
records are automatically submitted to the backend systems, the File Reputation
System and the Network Reputation System, to provide new information to the
Security Cloud knowledge base.

Measuring the exact time it takes for individual records to go through the whole
system is not easily directly measurable but we can estimate it from the running
times of the individual services. We calculated the average hourly running times
for each service over the course of one week. Out of these values, we compute the
statistics shown in Table 7.4. Note that the significantly greater maximum for file
submitter is caused by occasional download and upload of very big files.

We can see that the total average processing time from polling form published
to submitting to backend is only about 10.4 and 12.5 seconds for URLs and files,
respectively. To estimate the total time of the whole flow, we also need to include
the delay caused by communication between the services, mainly the waiting time in
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Table 7.4: Statistics of hourly average running times of individual services per package
or SQS message. Based on values over the course of one week (May 612" 2019).
All times are in seconds.

Hourly average running time

Service Unit of work Minimum Average Maximum
Pollers Package 0.5 5.8 74.2
Processors Package 1.4 4.3 96.1
Filter Message 0.2 0.2 0.3
URL submitter = Message 0.1 0.1 0.2
File submitter Message 0.1 2.2 2040.0

queues. For the filtering and URL submission queue, the average age of oldest message
in queue (i.e. the longest waiting message) was 3.5 and 8.2 seconds, respectively. For
the file submission queue, this value was unfortunately not usable®.

Summed up, we estimate that the complete flow of URL records takes on average
approximately 22.1 seconds. For file records, we can currently only estimate the
time between polling of the data until it reaches the submission queue, which is on
average 16.0 seconds.

Summary: Requirement to save records to data lake and submit to backend is satisfied.
The estimated average time for the complete flow of data from polling to submission
is well below the goal of 5 minutes. However, the estimates are not exact and we
are missing values for the waiting time in the file submission queue. During future
work we would like to add a more precise timing method, for example by passing a
timestamp of polling with each message.

7.1.10 Complete searchability and quick lookup

All the collected data, along with other datasets in the company’s data lake, can
be analyzed, searched, and processed using big data tools provided for the users,
such as Apache Spark. Additionally, we index the processed data using Splunk,
which provides a simpler user interface for any authorized user to search in this
data and perform advanced queries combining multiple indexes — not just from Feed
Automation but also other sources and tools.

The deduplication cache keeps a useful overview of all the samples we have recently
encountered in any of the feeds and when. We have prepared the functionality for

3The reason why we could not use this metric to estimate the average waiting time was that the
SQS metric ApproximateAgeOfOldestMessage also includes messages which encountered an error
during the submission. For file records, this often happens when the sample cannot be downloaded
from the Internet. If a record could not be submitted, the submission will be postponed until a
later time by returning it to the queue and hiding it for an iteratively increasing period of time.
This strategy increases fault tolerance but causes the metric to show higher times than the actual
average waiting times of messages in the queue.
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providing this information to outside users and systems by the means of a REST
API. It is not yet completely ready to be deployed, as it still requires more detailed
configuration of the access control, so that only authorized systems and users can
query this API.

Summary: The searchability requirement is satisfied by providing our users, such as
malware researchers, with powerful ways of searching over this data. The requirement
of quick lookup is currently not satisfied, as we were not yet able to deploy the API
providing a fast lookup ability over the samples encountered recently in the feeds.



CHAPTER

Related work

The difficulties of security-related intelligence are well known. In 2009, Camp
et al. [17] described some of the challenges. They argue that even though sharing
data, such as malware samples, URLs found in spam, or network data, is invaluable
for cyber security research and for development of new defenses, it is often hard for
researchers to get access to such data, as the service providers lack interest to share
data with researchers, often due to legal or privacy concerns. They also describe
how different types of data require different types of delivery mechanisms — as a
continuous feed, periodically updated package, or a one-time archive. Finally, they
propose a list of examples of data which would be useful for the needs of security
researchers.

Dumitras et al. [33, 32] from Symantec Research Labs also recognize the problem of
insufficient availability and sharing of security-related data for experimental research.
To tackle the issue, they propose a security-benchmarking framework, called the
Worldwide Intelligence Network Environment. This framework makes a dataset of
representative field data available to researchers worldwide, and additionally provides
a platform for repeatable cyber security experiments with these data sets. Researchers
can apply for access to this framework from Symantec.

There are also other data sharing platforms, for example:

o The Security Information Ezchange (SIE) [36], originally by the Internet
Systems Consortium and acquired in 2013 by Farsight Security, Inc. [35]
provides traffic data using its passive DNS technology from many contributors
worldwide.

o The Protected Repository for the Defense of Infrastructure Against Cyber
Threats (PREDICT) was an initiative by the U.S. Department of Homeland
Security, which aimed to form a “partnership between government, critical
information infrastructure providers, and the security development community
(both academic and commercial)” and provide “researchers, developers, and
evaluators with regularly updated network operations data sources relevant to
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cyber defense technology development.” [69] In 2015, the PREDICT project
was superseded by the Information Marketplace for Policy and Analysis of
Cyber-risk € Trust (IMPACT) project [68, 43].

o The Internet Measurement Data Catalog (IMDC) [18] was developed by the
Center for Applied Internet Data Analysis at the University of California to
“provide a searchable index of available (Internet) data, enhance documentation
of datasets via a public annotation system, and advance network science by
promoting reproducible research” [63]. IMDC stopped in 2018, after the funding
of the project had ended.

o Internet Traffic Archive (ITA) [25], sponsored by Association for Computing
Machinery (ACM) SIGCOMM, is a pubic-domain repository of filtered traces
of Internet network traffic.

The international defense alliance NATO recognized the strong need for automated
sharing of quality-assured security-related data and tasked the NATO Communi-
cations and Information Agency to develop the Cyber Security Data Exchange and
Collaboration Infrastructure (CDXI) knowledge management tool. Dandurand and
Serrano [29] define that the objectives are to “(1) facilitate information sharing, (2)
enable automation, and (3) facilitate the generation, refinement and vetting of data
through burden-sharing collaboration or outsourcing.” In their work, they discuss
many of the challenges still present in the process of automated information sharing
in the cyber security domain, such as different sources with inconsistent data, large
volumes, various not interoperable protocols and access mechanisms, incompatible
semantics, and varying quality of the data. They define 11 high-level requirements
for the CDXI capability and propose a high-level architecture for the tool.

Nowadays, probably the most widely used [46, 61] standards for threat intelligence
sharing are the Structured Threat Information Expression (STIX) language together
with the Trusted Automated Exchange of Indicator Information (TAXII) protocol.
These standards were initially started by the US Department of Homeland Security
in 2012 and 3 years later licensed it to the Organization for the Advancement of
Structured Information Standards (OASIS), a nonprofit consortium that drives the
development, convergence, and adoption of open standards. STIX [23] is a language
and serialization format used to describe and exchange intelligence about cyber
threats. It uses a graph model to describe relationships between various Domain
Objects to describe the cyber threat intelligence. A Domain Object can be one
of Attack Pattern, Campaign, Course of Action, Identity, Indicator, Intrusion Set,
Malware, Observed Data, Report, Threat Actor, Tool, or Vulnerability. The default
serialization format of STIX Version 2 is JSON (used to be XML for version 1) but
other formats can also be used. TAXII [24] is an application layer protocol used to
exchange the intelligence about cyber threats over HT'TPS, using a RESTful API.
While not limited to STIX, it has been designed specifically for transferring cyber
threat intelligence represented in the STIX language. While it seems that the use of
STIX and TAXII is increasing, unfortunately none of the feeds that we have included
in this work support it.
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Multiple studies comparing the sharing standards and platforms have been
published in recent years. Kampanakis [46] lists and describes the available security
intelligence sharing options. Goodwin and Nicholas from Microsoft [40] created a
general guide for cyber security threat exchange, discussing the challenges, models, and
methods of exchange, data formats, etc. Finally, they give a set of recommendations
for anyone developing a new intelligence sharing system. Sauerwein et al. [61]
examined the state of the art of threat intelligence sharing platforms. Menges and
Pernul [54] thoroughly compare and evaluate state-of-the-art incident reporting
formats and advise readers about suitable use cases.



CHAPTER

Conclusion and future work

Efficient and fully automated collection and processing of data from very hetero-
geneous sources poses a challenge. Especially in the cyber security industry it is
important to gather as much information as possible about malicious files, websites,
and activities, in order to provide best possible protection to the users of security
software. In particular, proactively gathering information from third parties is crucial
to achieve protection for the “first customer”, i.e. the first user of a security software
who encounters a malicious file or visits a malicious website. Without getting infor-
mation about these samples from a different source, the security provider can only
wait and react after their first customer encountered the malware and possibly got
infected, scammed, etc.

Having collected all this data, we encounter the other problem — how to separate
the useful information from the data noise? Processing unnecessary data leads to
unnecessary costs or might even be unfeasible if the amount becomes too large.

In this work, we presented the cloud-based Feed Automation system, which
centralizes and fully automates the collection and processing of data from various
sources, in varying formats, schemata, sizes, etc. It also provides powerful yet flexible
options to reduce the noise in the data, both by the means of a smart deduplication
process, which takes into consideration more than just the record identifier, and
by static logic rules, easily configurable by the analysts. Furthermore, we propose
ways to achieve additional dynamic filtering based on machine learning (ML) models,
which could be used to remove records from some feeds based on the probability of
their usefulness.

The whole system has been successfully deployed in the Amazon Web Services
cloud and we show how such a data processing system can be designed as a collection
of microservices based on serverless functions. This approach brings a number of
benefits, such as the pay-as-you-go billing model of functions (not paying for idle
time), easy maintenance, scalability, fault tolerance, and a great flexibility to extend
the system. Thanks to the deployment in the Amazon cloud, we gained detailed
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insight into the costs of the system. We can also take advantage of various readily
provided services for security, logging, monitoring, alarms, etc.

During evaluation of the system, we have shown that we can achieve very signifi-
cant reductions in the amount of data by efficient smart deduplication, without losing
any, or only minimal, information, in contrast to filtering, where static rules determine
which records we drop and what information we lose. Therefore we determine that
efforts should always concentrate first on removing the duplicates and only if the
loads are still too high even after deduplication, look for ways to filter the data with
rules or MLL models.

The described system has been deployed and is currently running in the production
environment of F-Secure, already providing value to the backends and ultimately
helping to better protect the customers. It has become one of the core components of
the new-generation backend for analyzing samples and providing reputation service
for files and websites.

Additionally, the deployment of this cloud-based system allows the disabling of
other legacy downloaders, contributing to the big move of all F-Secure services from
on-premise servers to Amazon Web Services.

We expect this project to be further developed and extended, to provide new
functionality to the other services and users in the company.

The next key step will be to include more feeds into the project, with the closest
goal of replacing all legacy downloaders and becoming the sole central system for
receiving all feed-like data from other providers.

As we described in Section 4.2.4, the system already supports alternate data
sources besides feeds, such as crawlers and spam. There have been requests for
extending the functionality of these data sources. Particularly the spam component
could provide a lot more value, but requires additional processing of the records,
which the current system does not support yet. We would also like to explore other
interesting data sources, such as crawlers of social media, e.g. Twitter.

An interesting new addition would be to import feeds of indicators of compromise
(IoC). These records indicate possible security breaches, and are useful for the
incident response teams, but also for the malware researchers and analysts. This
would mean a new, incompatible record type. Because Feed Automation was initially
built only to support records referring to a file or a webpage, including IoCs into the
system would require substantial modifications, but it would provide a very valuable
new source of information.

We want to explore the possibility of ingesting internal streams of data, not
only external feeds. Some of these data streams provide very useful information.
For example, a stream of logged requests to the ORSP system (querying about the
“reputation” of a file or a webpage) would provide a valuable information about the
prevalence of those samples. However, these streams have such high volumes that
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there is currently no system deployed capable of handling all the data to generate
new intelligence. This is where an efficient deduplication service like the one in Feed
Automation could help to reduce the flow to a manageable size. Because this is an
internal stream of data from the customers, we would — besides technical challenges —
also have to address other new concerns, such as privacy of the requests from our
customers.

There are also some interesting technical opportunities. Amazon continuously
creates new services which we might take advantage of. Last year, Amazon launched
a new high-performance graph database engine called Amazon Neptune [5], describing
it as “optimized for storing billions of relationships and querying the graph with
millisecond latencies”. That opens up interesting possibilities of storing the data we
collect about files and websites in a graph, which would make it faster to access, and
open up new possibilities to traverse and understand the relationships between the
different samples.

We intend to explore other formats for storing the data in Amazon S3. Currently,
we store all the data in JSON Lines format, compressed with gzip (cf. Section 4.2.1).
JSON has the great advantage of being widely supported and fairly easily readable
by humans. However, it is not very efficient for storing big amounts of data. A
promising alternative is the Apache Parquet!. Unlike JSON Lines, which is stored
in file line-by-line, Parquet stores data physically column-by-column. This can save
considerable space, because there is no need to save the column names for each
record, the compression is more efficient if the column contains a lot of similar
values, and the format also supports dictionary encoding to encode categorical values.
Furthermore, reading only a subset of the columns from a file is faster. One of the
main disadvantages is that due to the column format, the data must have a flat
schema. For a schema that goes multiple levels deep (like VirusTotal), this requires
restructuring the data. Furthermore, it is a risk to commit ourselves to a less-widely
used format.

As the processing of each feed incurs costs to the company (license fees, AWS
costs, development and maintenance costs), we would like to have information how
useful each feed is and whether the value it brings to the company is worth the costs.
Defining such metrics is a very challenging task, which requires good understanding
of the information in the feed data, how it is used in the company by the backend
systems, analysts, and researchers, and also requires feedback from the backend
systems. One of the initial steps should be to observe the overlap between the feeds
and the time when the records appear. For example, if 99% of the records from feed
A are present also in feed B, we might be ingesting feed A needlessly. But if the
records in feed A appear a day earlier than in B, the costs might be worth the earlier
delivery.

Finally, this project only concentrated on receiving intelligence from other part-
ners. A logical next step would be to explore the methods currently used to share

Thttps://parquet.apache.org/
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the company’s own threat intelligence to other partners, and possibly introduce
a centralized system for publishing such information, with some of the standards
described in Chapter 8, such as STIX and TAXII.



APPENDIX

Feed Automation

A.1 Complete system architecture

In Figure A.1 we present the complete architecture of the Feed Automation system.
The diagram includes other data sources, such as crawlers or spam feeds, which we
have only briefly described. Although these components were initially not parts of
this project, they utilize the system’s functionality — the deduplication cache, the
filter, and the submitters. The diagrams also shows some of the AWS services which
were used to build the Feed Automation system.
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APPENDIX

Feeds

B.1 VirusTotal

Listing B.1 shows an example file report from VirusTotal for an EICAR test file [14].
Note that the reports may be much bigger, depending on the behavior of the file.

Code Listing B.1: VirusTotal file scan report for an EICAR test file, in JSON format.
Some data was omitted to reduce size. Retrieved from on June 6*, 2019.

{

"sha2b56": "131£95c51cc819465fal1797f6ccacf9d494aaaff46fa3eac73ae63ffbdfd8267",

"shal": "cf8bd9dfddff007f75adf4c2be48005ceal317c62",

"md5": "69630e4574ec6798239b091cda43dcal",

"scan_id": "131£f95c51cc819465fal1797f6ccacf9d494aaaff46fal3eac73ae63ffbdfd8267
-1559348089",

"permalink": "https://www.virustotal.com/file/131
£95c¢51cc819465fa1797f6ccacf9d494aaaff46fa3eac?73ae63ffbdfd8267/analysis
/1559348089/",

"scan_date": "2019-06-01 00:14:49",

"first_seen": "2006-05-23 17:26:21",

"last_seen": "2019-05-24 11:42:56",

"times_submitted": 1716,

"community_reputation": 213,

"malicious_votes": 19,

"harmless_votes": 71,

"size": 69,

"type": "Text",

"positives": 58,

"total": 64,
"scans": {
"Avast": {

"detected": true,
"result": "EICAR Test-NOT virus!!!",
"update": "20190601",
"version": "18.4.3895.0"
},

"Avira": {
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"detected": true,

"result": "Eicar-Test-Signature",
"update": "20190601",
"version": "8.3.3.8"
3,
. skipped 60 scan results ...
"Panda": {
"detected": false,
"version": "4.6.4.2",
"result": null,
"update": "20190531"
},
"Yandex": {

"detected": true,
"result": "EICAR_test_file",
"update": "20190531",
"version": "5.5.2.24"
},
"Zoner": {
"detected": true,
"result": "EICAR.Test.File-NoVirus.250",
"update": "20190531",
"version": "1.0"
¥
},
"vhash": null,
"authentihash": null,
"unique_sources": 936,
"ssdeep": "3:at+JraNvsgzsVqSwHqN:tJuOgzsky",
"resource": "cf8bd9dfddff007f75adf4c2bed8005ceal317c62",
"response_code": 1,
"additional_info": {
"magic": "ASCII text",
"sigcheck": {},
"exiftool": {
"FileAccessDate": "2015:02:17 17:23:18+01:00",
"FileCreateDate": "2015:02:17 17:23:18+01:00"
},
"trid": "EICAR antivirus test file (100.0%)",
"positives_delta": O,
"autostart": [... skipped ...],
. skipped more entries about sample parents ...

},
"tags": ["text", "attachment", "via-tor"],
"submission_names": [
"eicar.com", "malicious.txt", "abc.txt",
. skipped further 97 submission names...
1,
"ITW_urls": [
. skipped 100 ““in the wild ”’ wurls ...
1,

"verbose_msg": "Scan finished, information embedded"



APPENDIX

Amazon Web Services

C.1 ElastiCache node types and pricing

Tables C.1 and C.2 list the currently available ElastiCache node types and their
corresponding on-demand pricing, as per April 2019 [4].

Table C.1: Available standard ElastiCache node types of current generation, and
their on-demand pricing (April 2019).

Cache Node Type vCPU (inl\gielr)ril{));{es) Network Performance EECIQISP ZYOIIIIa c;:)r
cache.t2.micro 1 0.6 Low to Moderate 0.432
cache.t2.small 1 1.6 Low to Moderate 0.864
cache.t2.medium 2 3.2 Low to Moderate 1.752
cache.m4.large 2 6.4 Moderate 4.128
cache.m4.xlarge 4 14.3 High 8.232
cache.m4.2xlarge 8 29.7 High 16.464
cache.m4.4xlarge 16 60.8 High 32.952
cache.m4.10xlarge 40 154.6 10 Gigabit 82.392
cache.mb.large 2 6.4 High 4.128
cache.mb.xlarge 4 12.9 High 8.232
cache.mb.2xlarge 8 26.0 High 16.464
cache.mb.4xlarge 16 52.3 High 32.952
cache.mb.12xlarge 48 157.1 10 Gigabit 99.072
cache.mb.24xlarge 96 314.3 25 Gigabit 198.144
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Table C.2: Available memory optimized ElastiCache node types of current generation,
and their on-demand pricing (April 2019).

Cache Node Type  vCPU (inl\gé?g;i’es) Network Performance EZICSSP Zroli c;:)r
cache.r4.large 2 12.3  Up to 10 Gigabit 0.254
cache.r4.xlarge 4 25.1  Up to 10 Gigabit 0.507
cache.r4.2xlarge 8 50.5  Up to 10 Gigabit 1.014
cache.r4.4xlarge 16 101.4  Up to 10 Gigabit 2.028
cache.r4.8xlarge 32 203.3 10 Gigabit 4.056
cache.r4.16xlarge 64 407.0 25 Gigabit 8.112
cache.rb.large 2 13.1  Up to 10 Gigabit 0.241
cache.rb.xlarge 4 26.3  Up to 10 Gigabit 0.480
cache.rb.2xlarge 8 52.8  Up to 10 Gigabit 0.961
cache.rb.4xlarge 16 105.8  Up to 10 Gigabit 1.921
cache.rb.12xlarge 48 317.8 10 Gigabit 5.775
cache.rb.24xlarge 96 635.6 25 Gigabit 11.550

C.2 Lambda pricing
Table C.3 lists the current pricing schema for AWS Lambda, as per April 2019 [10].

Table C.3: Amazon Lambda pricing (April 2019). Prices are in millionths of a US
Dollar per 100ms of billed running time.

Memory Price Memory Price Memory Price
(MB)  per 100ms (MB)  per 100ms (MB)  per 100ms
128 0.208 1088 1.771 2112 3.438
192 0.313 1152 1.875 2176 3.542
256 0.417 1216 1.980 2240 3.647
320 0.521 1280 2.084 2304 3.751
384 0.625 1344 2.188 2368 3.855
448 0.729 1408 2.292 2432 3.959
512 0.834 1472 2.396 2496 4.063
d76 0.938 1536 2.501 2560 4.168
640 1.042 1600 2.605 2624 4.272
704 1.146 1664 2.709 2688 4.376
768 1.250 1728 2.813 2752 4.480
832 1.354 1792 2.917 2816 4.584
896 1.459 1856 3.021 2880 4.688
960 1.563 1920 3.126 2944 4.793
1024 1.667 1984 3.230 3008 4.897

2048 3.334
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